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We present an O(R log P) time, O(M+ p2) space algorithm for searching a restriction map with 
M sites for the best matches to a shorter map with P sites, where R, the number of matching site 
pairs, is bounded by MP. As first proposed by Waterman et al. (1984, Nucl. Acids Res. 12, 
237-242) the objective function used to score matches is additive in the number of unaligned sites 
and the discrepancies in the distances between adjacent aligned sites. Our algorithm is basically a 
sparse dynamic programming computation in which "candidate lists" are used to model the 
future contribution of all previously computed entries to those yet to be computed. A simple 
modification to the algorithm computes the distance between two restriction maps with M and N 
sites, respectively, in O(MN (log M+log N)) time. 

1. Introduction. A restriction map of a D N A  strand is an ubiquitous tool of 
molecular biology. For  each of a finite and small number of restriction enzymes, 

a "map" gives the position along the strand of the recognition sites at which 
each enzyme cleaves the DNA.  For  example, Kohara  et al. (1987) recently 
produced a map of the D N A  of the bacteria E. coli with respect to eight 
restriction enzymes. The map of the first 25 kilobases of this 4.72 million 
nucleotide sequence is shown in Fig. 1 as originally presented by Kohara.  
There is an open bar for each restriction enzyme (its name is to the left of the 
bar) and each vertical line within a bar indicates the location of a recognition 
site for the given enzyme. Experimental errors inherent in the techniques used 
to produce such maps result in inaccurate site locations, and missing and 
spurious sites. Consequently one cannot expect perfect alignment and 
correlation between maps arising from different experimental sources. This fact 
alone necessitates software that can compute  optimal alignments between two 
potentially similar maps. But there are many other uses for such a comparison 
algorithm, among them: assembling complete physical maps from partial ones, 
locating potentially conserved regions between and within species, finding the 

* This author's work was supported in part by National Library of Medicine Grant R01-LM4960. 
~ This author's work was supported in part by National Library of Medicine Grant R01-LMS110. 

599 



600 E . W .  MYERS A N D  X I A O Q I U  H U A N G  

physical location of sequenced segments of DNA, and diagnosing genetic 
disorders by analysing polymorphisms. 

Barn 1 
Bgl I 
EcoR I 
Eco RV 
Hind III 
Kpn I 
Pstl 
Pvu 11 - - V 7  l , ~ I 

Figure 1. The first 25 kb of the Kohara map. 

This paper focuses on the problem first considered by Waterman et al. 
(1984), of aligning two restriction maps under a measure of similarity that is 
additive in the number of unaligned sites and the discrepancies in the distances 
between adjacent aligned sites. This similarity measure admits a dynamic 
programming formulation that leads directly to an O(M2P 2) worst-case 
algorithm where M and P are the number of sites in the two maps. Recently, 
Miller and Huang (1988) considered the variation of finding subregions of a 
long map of M sites that are highly similar to a short probe map of P sites, 
where M is orders of magnitude larger than P. For this problem they designed 
an algorithm whose worst-case performance is O(MP 3) but empirical evidence 
suggests that its expected case performance is o(Mpa). Concurrently, I luang 
(1988) gave an O(MP 2) worst-case algorithm. 

This paper presents an O(MP log P) algorithm for comparing restriction 
maps or searching a long map for an approximate match to a short probe. The 
basic idea for the algorithm is an outgrowth of recent work on fast sequence 
comparison algorithms in the case where gap costs are concave (Hirschberg 
and Larmore, 1987; Miller and Myers, 1988; Eppstein et al., 1988). While the 
objective function for aligning restriction maps appears at first to be affine, its 
dependence on map distances implies a dynamic programming recurrence for 
which multiple indels or gaps must be treated as a unit. Eppstein et al. (1990), 
have considered such recurrences for the problems of determining first-order 
RNA secondary structures and sparse sequence comparisons. Indeed, we 
discovered that their work encompasses that of this paper when slightly altered 
and specialized appropriate to the problem of comparing maps. Nonetheless, 
we proceed in this paper to give an algorithm development concretely tied to 
the map comparison problem. Our approach also differs in its conception, 
being based on the candidate-list paradigm introduced in our earlier work. 

The remainder of the paper is organized as follows. In the next section 
preliminary concepts and notations are introduced. In Section 3, we give the 
outline of our algorithm based on a candidate-list paradigm. In Section 4, 
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profiles are introduced and their essential properties exposed. In Sections 5 and 
6, sub-procedures for performing the necessary updates to candidate lists based 
on their profiles are presented in detail. In Section 7, refinements that use only 
O ( M +  p2) space, and that compare, as opposed to search, maps are discussed. 

2. Preliminaries. A restriction map (or simply map) of length M is a sequence 
of M sites, where each site is an enzyme-distance pair. Any given mapping effort 
involves a small and finite number,  U, of restriction enzymes, so we model 
enzymes as a small integer in the range [1, U]. The distance or location of a site 
is the number  of base pairs to the site with respect to the origin of the map and 
so is modeled as an arbitrary integer. Thus we represent a map as an array of 
site records: 

type site = record 
enz: [1 . .  U];  

dist: integer 
end; 

map = a r r a y  [1 .. M ]  of site. 

We assume all distances are. non-negative and that each map is sorted 
according to distance, i.e. map[i], dist >10 and m a p [ i - 1 ] ,  dist < map[i], dist 
for all i > 1. A probe is a map of length P where, in practice, P is much smaller 
than M. Throughout  the remainder of the paper, it is assumed without loss of 
generality that P<~M. While distances are modeled as integers, this is not 
critical to the algorithm of this paper which also applies in the case where 
distances are modeled as floating point numbers. 

Introducing the problem formally requires some notation. Given probe of 
length P and map of length M, let: 

a i :~ map[i], enz, bj = probe[j],  enz, 

m i =--- map[i], dist, py = probe[j],  dist, 

for 1 ~< i~< M, and 1 ~<j~< P. Define the set of match points, Matchpts, to be 
{(i,j) la i = bj} and let R ~ M P  be the number  of match points. An alignment or 
trace of map and probe is a sequence of match points (il, J 1) (i2, J2) '"  " (iL, Jg), 
such that for each k, ik< ik+ 1 and Jk <Jk+ 1, i.e. trace lines do not cross as 
illustrated in Fig. 2. 

Let # and 2 be positive real constants. The score of an alignment e -= < (i I ,Jl) 
(i2,J2) �9 �9 �9 (iL,JL)>is defined to be: 

L 

score(e)=2[(P--L)+ ( iL- i  ~ + 1 - L ) ]  +/~ ~ 
k=2  
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map il i2 i3 i4 i5 i6 

i i I i I i 

' , ! j ' , P : 8  probe ', f ; 
Jl ~2 J3 J4 15 ~6 

Figure 2. A restriction map alignment. 

where P -  L is the number  of sites in probe not  in the alignment,  i L - i 1 + 1 - L is 
the number  of sites in map between sites il and i L not  in the alignment,  and 
(mi~- mik-1)- (P~-  Pj~-I) is the discrepancy in distance between aligned sites 
(ik,Jk) and (i k_ ~ ,Jk- 1)" In this formulat ion each unaligned site in probe and each 
"internal" unaligned site of map is charged 2. The constant /~ determines the 
relative cost of distance discrepancies between adjacent aligned sites. Given 
probe, map, #, 2 and a threshold T~>0, our  problem is to search for all 
alignments between map and probe that  have scores greater than T. 

For  (i, j)eMatchpts, let D(i, j) be the score of the best al ignment whose 
r ightmost  match  points is (i, j). The following L e m m a  (Miller and Huang,  
1988) gives a basic recurrence for D(i, j). 

LEMMA 1. D(i, j ) =  m i n { 2 ( P -  1), min contribi,j(i, j)}, where 
(I,J)~Matchpts 

l < i ,  J < j  

contribLj(i, j) = D (I, J) + 20 -- I - 2) + ~tl(m i -  m 0 - (pj - PJ)I 

A straightforward induct ion verifies the correctness of the lemma. Any 
algori thm that  computes  the R D-values suffices to solve our searching 
problem: we seek those D-values that  are not  greater than the threshold T. 

The computa t ion  of D(i, j) requires determining a point ,  (L J), I< i, J<j,  
such that  contrib1,s(i , j) is minimal.  Simply comput ing  each min imum of the 
recurrence requires O(R) t ime per match  point  and thus takes O(R2)  = 
O(MzP 2) total time. Much  greater efficiency is possible by organizing the 
points into a data  structure that  allows each min imum to be economically 
computed ,  e.g. in time propor t ional  to the logar i thm of the number  of the 
points. In the next section we begin the development  of an algori thm based on 
this idea. 

3. Algorithm Outline. In order to exploit the recurrence of Lemma 1, the 
algorithm computes the R D-values in increasing order of i, and for a given i, in 
increasing order of j. The computat ion is restricted to the ordered pairs in 
Matchpts, so it is sparse. In order to only spend O(R) time, as opposed to O(MP) 
time locating the match points, U match lists are precomputed as follows. For  
each a~[-1, U], let the match list of a-sites in probe be the ordered list, 
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Match[,a] = <Jl, J 2 , . . . ,  Jt > where {Jk} = {Jlbj = a} and j ,  <J2 < " "  <J,. It is a 

basic exercise to compute these match lists in O(P) time and space using a bucket 
sort (Aho et al., 1974, pp. 77-78). Note that it is assumed that the "names" of the 
enzymes in the maps have already been assigned to unique integers in the range 
[,1, U]. If this is not the case, doing so requires O(M log P) time in the worst case 
with the aid of a comparison-based dictionary (Aho et al., 1974, pp. 145-152). 
Any names in map not in probe can be mapped to the same integer, and thus we 
can assume U<.P+ 1. With this preprocessing accomplished, the algorithm 
outline below spends only O(R) time indexing the match points. 

Our algorithm is based on the candidate-list paradigm first introduced by 
Waterman (1984), and later refined by Miller and Myers (1988). As the 
algorithm computes each "column" of the "D-matrix" in increasing order of i, a 
list of match points called candidates is updated and used to compute subsequent 
D-values. The candidate list is conservative in that a match point whose D-value 
is known is removed from the list if it cannot possibly contribute to the D-values 
of match points yet to be considered. At the time such a candidate is found to be 
unimportant to future match points it becomes dead; those that remain are live. 
In addition to being conservative, the list for the current column i represents the 
possible contribution of its candidates to future points and is a partitioning of the 
interval [-0, pp], one candidate per partition interval. The candidate associated 
with an interval is called the owner of that interval. 

An outline of the algorithm is given in Fig. 3. The function Find_rain(i, j) 
returns contribi,j(i, j), where (I, J) is the owner of the current candidate list 
interval containing pj. After the D-values of the points of column i are 
computed, they are inserted into the list by the procedure Insert if not 
immediately found to be dead. Conversely, their insertion may cause older 
candidates to be removed because they are dead as a consequence. Finally 
Update shifts the candidate list to prepare it for the next column and may 
remove candidates that die as a result. 

Initialize candidate_list () 
for i~- 1 to M do 

{ forj~Match[ai] do 

D(i, j ) ~ m i n ( 2 ( P -  1 ), FindAnin(i, j)) 
if i < M then 

{ for j ~ Match[ai] and j < P in increasing order do 

Insert(i, j) 
Update(i) 

) 
} 

Figure 3. An outline of the algorithm. 
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In Sections 5 and 6, the sub-procedures Find_min, Insert and Update will be 
presented in detail. It will be shown that the total time spent in these procedures 
is bounded by O(R(logL+logM)),  where L is the maximal size of the 
candidate list. Because L is O(R) it follows that the algorithm takes 
O(R(log M + l o g  P)) time and O(R) space in the worst case. The superior 
bounds claimed in the abstract are obtained by a refinement deferred to 
Section 7. 

4. Profiles. In this section, the exact nature of the future contributions of 
previously computed match points is introduced via the concept of a profile. In 
previous dynamic programming algorithms one can imagine computing an 
(M+ 1)-by-(P + 1) grid or matrix of values D(i,j) where i indexes columns and j  
indexes rows. As noted previously our problem is sparse in that we only require 
the value of D at the R match points. A key insight for the problem at hand is to 
consider the computation as proceeding over the rectangle [0, mM] • [0, pp] of 
the Cartesian plane where we require the value D(i,j) of the R points (mi, pfl. 
Over this sparse map grid, the contribution of a point (mi, Ps) to future points 
can be conveniently and analytically described in the treatment that follows. 

For (I, J)eMatchpts and i>>-I, define the function f~,j(x) on the interval 
(pj, pp] as: 

fl,s(x)=pJCl,s-xJ+B•,s w h e r e  c i i , y = m i ~ t - A l , j ,  Al,j=py--m I, 

BI, J = 2 i + E , , j ,  Et,s=D(I, . /)--2(1+2). 

Assume f~, j(x)= oo for x not in (p j, pp] and notice that AI, J and El, s are 
independent of i. The function f~,s(X ) gives the contribution of match point 
(/, J) to any point in "column" mi of the map grid. Lemma 2 shows h o w f  i is 
used to compute D-values, and t h a t f  i+ 1 can be obtained by shifting f ~ right by 
Am~ = m~+ 1 -  m~ and up by 2 as illustrated in Fig. 4. The proof of Lemma 2 
follows directly from the definitions above. 

LEMMA 2. For match points (I, J), (i,j) such that I < i  and J< j ,  contribl,j(i, j) = 
fil,j(pj ). Moreover,/ f i<M then fi+l i q,j (x) = fl,j(x - Ami) + 2. 

The/-profile is the minimum envelope of the ficurves of all match points 
strictly left of column i and is defined formally by: 

pi(x) = min f~,j(x) 
(I,J)~Matchpts 

I<i, J<P 

The/-profile gives the contribution of all match points left of column m i to any 
point in column m i of the map grid. From Lemma 2 it easily follows that 
D(i, j)= min(2(P- 1), pi(pfl). Figure 5 illustrates a hypothetical i-profile. Note 
that it is not continuous in x. 
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Figure 5. An/-profile. 

P i ( x )  

From Fig. 5, observe that the domain [0, pp] of the/-profile is naturally 
partitioned into intervals for which there is some (L J) such that fl3(x) 
coincides with Pi(x) over the entirety of the interval. For such an interval, the 
match point (/, J) is its owner in that it represents the minimum envelope or 
profile Pi over the interval. Note that a given match point may be the owner of 
several intervals. If one could maintain a list of these representative match 
points in order of the partition of [0, Pe], then computing Pi(x) is simply a 
matter of locating which subinterval x lies in and then evaluating the function 
fg(x) of its owner. The task of maintaining such a candidate list is considerably 
simplified by decomposing the f-curves into the left and right halves of their V- 
shape, and maintaining separate minimum envelopes and associated candidate 
lists for the two halves. Formally split f~,j(x) into the two simple functions, 
Li~,j(x) and Rl,j(x) defined as follows: 
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i i i cLA f~,s( x ) -  ~L'l'j(X)=l~(C1's--x)+ i i i f xm(p j ,  i 
~RI, J (X) = ]l(X -- CI, J) + B i d  if x e (C~,j, p~,] 

Once again we assume both  L~,j(x) and Ri~,s(X) have the value oo for x not  in 
the intervals of the above definition. Define the left/-profile U(x) and right 
/-profile Ri(x) by: 

Li(x) = min  L~,j(x) Ri(x) = rain Ri1,s(x) �9 
( I , J ) ~ M a t c h p t s  ( l , J )  ~ M a t c h p t s  

l < i , J < P  I < i ,  J < P  

It follows directly from these definitions that  pi(x)= min (Li(x), Ri(x)). Thus 
comput ing  U(x) is equivalent to separately comput ing  Li(x) and Ri(x) and 
taking the min imum of the two. 

Like the function U ,  the domains  of each of L ~ and R ~ are naturally 
part i t ioned into intervals and can be represented by ordered candidate lists of 
owners (see Figs 6 and 8) Thus  our algori thm actually maintains two 

I 

f 4  

R'(x) 
' ' I 5 
' ' ' f 

+" e":  
X ~ I J 

A e I e 2 e 3 e 4 e 6 

Figure 6. The profile R i and list Cand~ for the profile of Fig. 5. 

candidate lists, one for each "half" of the desired profile, that  together 
effectively represent it. So in the outline of Fig. 3, the call to Find_min(i,j) is in 
fact the expression min (Find~eft(i,j), Find_Right(i,j)), the call to Insert(i,j) is 
really a call to Insert~eft(i , j)  immediately followed by a call to Insert_~ight(i, 
j), and so on. The procedures for the right candidate list are treated first because 
they are simpler than the ones for the left candidate list. 

5. The Right Profile. Proceeding formally, an element e of the right candidate 
list is a four tuple </, J, AI, J, EI,j> where (I, J) is the match  point  from which the 
candidate arose. The notat ions  e. L e. J, e.  A, and e.  E index the four values in 
the candidate e. Fur ther  let the nota t ion e. C i denote  e. A + mi, let e. B i denote 
e .E+2i ,  and let e. RZ(x) denote # ( x - e . C ~ ) + e . B  ~. It is easy to see that  

i_  i i i .R~(x)=R~,j(x) for x e ( e . C  i, pp]. Thus a e . C - C z ,  s, e .B  =Bt, J, and e 
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candidate e is independent  of i, but  can deliver any of the re levant / -dependent  
quantities or functions in O(1) time. This point  is impor tan t  since one cannot  
afford to update  the record of each candidate in the list as the algori thm 
progresses f rom column to column.  Fur ther  note,  that  for algorithmic 
convenience we have chosen to let e. Ri(x) be defined for all values of x, 
whereas R~,s(x ) is Go outside of its relevant interval. 

The right candidate list, Cand_R, is a linear list of the tuples or records 
in t roduced above. A linear list data  type that  supports  logari thmic insertion, 
deletion and search primitives is required and any height-balanced tree 
structure will do, e.g. AVL trees (Aho et al., 1974, pp. 145-152) or splay trees 
(Sleator and Tarjan, 1985). Specifically, the following operat ions are assumed: 

last: Return the last element of the list. 
pred(e), succ(e): Return the predecessor and successor of list element e, 

respectively. If no such element exists, return A. 
f ind(x): Return the element e such that  e.  C i < x  and (e= last or 

x <<, suee(e). C i. If no such element exists, return A. 
delete(e): Remove the element e from the list. 
insert(e, f ) :  Insert f as the successor of e. 

By simply threading the tree, last, succ, and pred require only O(1) time. The 
remaining primitives require O(log S) time where S is the current  size of 
Cand_R. Find is possible because, as will be seen momentar i ly ,  Cand_R is 
always ordered so that  e.  C i < suce(e). C i for all e ~ last. 

To simplify matters,  A is realized as an actual record whose tuple is (0, 
0 , -  m~t, 2P) .  This choice of values guarantees that  for all i ~> 1 and all x >1 0, 
A .  Ri(x)  = #(x  - (m i - mu)) + 2(P + i) ~>/~x + 2P > 2(P -- 1). Thus  by the recur- 
rence of L e m m a  1, A's curve is high enough  to effectively represent ~ over the 
entire map  grid. In Fig. 7, Initialize_Right sets Cand_R to consist of this single 
record. Because of the way A is chosen, it will never be removed from C a n d ~  
and the primitives above avoid having to treat the special case where Cand_R is 
empty.  Moreover ,  the problematic  case of intervals where R~(x)= ~ is also 
avoided: A will own these intervals and effectively represent their value. 

Consider  two candidates e a n d f a n d  let i--- max(e .  I , f .  I). I fe .  Ri(O) <<,f. Ri(O) 
then e.  R~(x) <~f. R~(x) for all x as both  functions are straight lines. Moreover,  
e. Rk(x) <<,f. Rk(x) for all k >~ i because as k is increased each line is shifted right 
and up by the same amoun t  by Lemma  2. The same reasoning implies that  if 
e. C ~ <~f. C i then this remains true as i is increased. Thus  if e. Ri(0) ~<f. R~(0) 
and e.  C i <<.f. C ~ then e's contr ibut ion to the right profiles R k for any k ~> i is 
always smaller t h a n f ' s  contr ibut ion over the domain  ( f .  C k, pp] of R~.I,I. s . In 
this case we sayf is  dominated by e, a n d f i s  dead since it will never contr ibute to 
a subsequent  right profile. 

With this observation, it follows that  R i is represented by an ordered 
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candidate list ( e l ,  e 2 , . . .  , e L )  , where (1) eh. C i < e h + l  .C  i, (2) e h . R i ( O ) >  
eh+ 1 .Ri(O), and (3) Ri(x)=eh.Ri (x)  for x e ( e h . C  i, eh+ 1 .C  i] provided we 
define e l+ 1 �9 c i =  PP" The illustration in Fig. 6 helps visualize these properties. 
Moreover,  I is always nonzero and e 1 is always A as A.  Ci<<. O. Given such a 
candidate list, Find_Right(i, j) in Fig. 7 computes D(i, j) by simply returning 
find (pj). R~(pj), i.e. the R~-value of the owner of the interval containing pj. 

Next consider the procedures Insert_Right and Update_Right that are used 
to compute the candidate list for successive columns. Suppose that we start 
with a candidate list, Cand_R ~, properly representing R i. To produce Cand 
R ~ + 1, the match points in column i are first added by Insert_Right to produce a 
candidate list representing Ri(x) = Ri/~Ri(x)min(R~,j(x)] (i, j) ~ Matchpts and 
j < P)). The resulting candidate list is then modified by Update_ Right to reflect 
a shift of /~ i  right Am i and up 2 map units to produce Cand_R i+l which 
represents R i + 1 (x) = R i(x - Ami) + 2. 

Procedure Initialize_Right( ) 
C a n d ~ - ( O ,  O, - m u ,  2P) 

Function Find_Right(i, j) 
return find(pj) . Ri(pj) 

Procedure Insert_Right(i, j) 
e~-R[,j(o) 
e*-find (pj) 

if c < e .  Ri(O) then 
{ f-*succ(e) 

whilefcA and c<<.f . Ri(O) do 
{ delete(f) 

f ~ succ( e ) 
} 

insert(e, ( i , j ,  p j - -m i, D( i , j ) - -2( i  + 2)) ) 
} 

Procedure Update Right(i) 
while last. C i+ 1 >~pe do 

delete(last) 

Figure 7. The right candidate list procedures. 

The procedure Insert_Right(i,j) takes a candidate list for a right profile/~i at 
column i and adds the effect of match point (i, j) to produce a candidate list 
representing min(Ri(x), i Ri,j(x)). Let g = (i, j, P i - m , ,  D(i, j ) - 2 ( i  + 2))be the 
candidate for match point (i,j) recalling that D(i,j) is known at this time. First 
find(p j) returns the candidate e in the current list that owns the interval 
containing g.  C~= p~. I f e .  RZ(0)<~ g.  R~(0) then e dominates g and Insert_Right 
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correctly exits wi thout  adding g to the list. Otherwise, g must  be added to the 
candidate list immediately after e since it contributes to the desired profile on at 
least the interval (9. Ci, succ(e). C].  The insertion of 9 may cause successors of 
e to become dead. Suppose e ~ last and let f - -  succ(e). I fg .  Ri(O) <<,f. Ri(O) t h e n f  
is domina ted  by g since g. C~<<.f. C ~, and consequently is removed.  Such 
successors of e are removed until either e becomes last or a successor is reached 
that  is not  domina ted  by g, whereupon g is inserted into the list immediately 
after e. The candidate list now reflects the contr ibut ion of (i, j) and Insert_Right 
returns. 

The procedure Update_Right(i) takes the candidate list f o r / ~  and updates it 
to represent the shift giving R ~ + 1. Because all candidates are independent  of i, 
the shift requires no change to the elements. However,  the shift does imply that  
candidate e near the end of the list may no longer be relevant because 
e. C ~ + 1 = e. C ~ + Am i >>,pp, i.e. the interval owned by e no longer intersects 
[0, pp]. Thus  Update_Right need only remove the suffix of the candidate list 
containing such elements. 

Consider  the total t ime spent in the procedures of Fig. 7 over the course of 
the algori thm outline of Fig. 3. Let L be the max imum size of Cand_R at any 
point  in the computa t ion .  Initialize_Right() is quickly dismissed since it is 
called once and takes constant  time. Find_Right is called exactly R times at a 
cost of O(log L) time per call for a total of O(R log L) time. Insert_Right is called 
less than R times, and each call inserts at most  one element to Cand_R. Each of 
these elements can only be removed once, thus the total number  of iterations of 
both  while loops in Insert_Right and Update_Right is bounded  by R. Thus  a 
total of O(R log L) time is spent in the while loops of both  procedures.  Apart  
from these loops, O(log L) time is consumed by each call to Insert_Right, and 
O (1) time for Update_Right. Thus the total t ime spent in the procedures of Fig. 
7 is O(R log L). Certainly L is O(R) and later we will show how to guarantee 
that  L is O(p2). 

6. The Left Profile. Attent ion is now turned to the structure and manipula-  
t ion of the candidate list, C a n d Y ,  that  represents the left profiles for successive 
columns.  Like the right candidate list, Cand_L is a linear list of candidates,  each 
giving the value of the left profile over some subinterval of [0, pp] .  For  an 
element e = (I ,  J, AI, s, EI , j )  of this list, the notat ions,  e. I, e. J, e. A, e. E, e. C i 
and e. B i are as before. Analogous to e.  Ri(x), let e.  Li(x) denote #(e. C i -  x)+ 
e. B i and note that  e.  Li(x)=L~,j(x) for x~ (p j, e. Ci]. 

Consider  two candidates e a n d f a n d  let i = max(e .  I , f .  I). If e. Li(O) <<,f. Li(O) 
then as argued for the right case e. Lk(x) <~f. Lk(x) for all x and all k >~ i. Also, if 
e. C i >~f. C i then this remains true as i is increased. But for a left profile L k, e and 
f potentially contr ibute over the intervals (p~. j ,  e.  C k] and (py. j ,  f .  ck],  
respectively. Thus  even if e.Li(0)<<.f. Li(0) and e.  Ci>>,f. C i, e does not  
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dominate  f when f .  J <  e.  J because f ' s  curve is still exposed on the interval 
(Pl.  s, Pc. s]. It is this feature of the left case that  makes it difficult. For  while the 
curves and their right ends (e.g.e.  C~) all shift the same relative amoun t  with i, 
their left ends (e.g. pc. s) are stat ionary and hence "moving" relative to right 
ends. For  example, consider a third candidate 9 for which O - J < f .  J<e. J, 
9.I=i,  and 9.Li(O)<~f.Li(O). As the algori thm progresses from column i 
forward, 9's right end is less than Pl .  s, then between it and p~. j ,  and finally 
greater than p~. s, at which ins tan t fd ies  because 9 now covers that  part  o f f  not  
covered by e. 

Figure 8 gives an example of a left profile and its candidate list. First note,  
that  a given match  point 's curve may contr ibute  at a number  of distinct 
intervals and hence have several candidates in the list. Moreover ,  the right ends 
of some intervals are the right end of the owner's curve, while others are the left 
end of their successor's curve. Thus,  to determine the interval endpoints  from 
the candidate records in the list, we must  add a fifth attribute to a candidate 's  
record, ,  mobile, that  is true in the former cae, and false otherwise. Formally,  ire 
is a candidate,  then its interval right end, righti(e), is e.  C i if e.  mobile is true, 
and P=,ccte). J otherwise. Note  that  the .  mobile attribute is also independent  of i 
but  the right end may  easily be determined in constant  time. Of  course, the left 
end, left~(e), is easily recovered as the right end ofe's predecessor, or 0 ife has no 
predecessor. 

The left candidate list, Cand~L, is a linear list of candidate tuples and is 
realized with the same implementa t ion  and primitive repertoire as for the right 

', Li(x) 

i i r ~ i ', , ' , f 6  

, J ] "% , , "~, 
, i i , i i , 

A e 3 el*. e 3 e2! e3! el! e 5 " e6~es! A!' 

F i g u r e  8. T h e  p ro f i l e  U a n d  l is t  CandJL fo r  t h e  p ro f i l e  o f  F ig .  5. 

candidate list. We need only note  thatfind(x) returns the element e such that  
lefti(e)<x and x<<.righti(e), and this is possible because Cand~L is always 
ordered so that  lefti(e)< lefti(suec(e)) for all e r last. As for the right profile, 
matters are simplified by realizing A as an actual record whose tuple in this case 
is (0, O, pp, 2P, true(=, mobile)). As before, this choice of values guarantees 
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that A effectively represents ~ where necessary (i.e. for all i~> 1 and x <~Pe, 
A.  Li(x)> 2P-1)) ,  and guarantees that C a n d ~  is never empty. In Figure 9, 
Initialize_Left sets C a n d L  to initially consist of this single record. 

With these remarks, it follows that L i is represented by an ordered candidate 
list (e l ,  e 2 , . . . ,  el) , where (1) le f t i (eh)  < lef t i (eh+ l), and (2) L i ( x )  = e h . L i ( x )  for 
x~(lefti(eh), lefti(eh+t)] provided we define lefti(et+l)=pe. Moreover, 
last. mobile is always true and since such candidates are never removed, I is 
always nonzero. Unlike Cand_R, Cand_L may contain several candidates for a 
given match point, but each represents its curve over a different subinterval. 
Note in Fig. 8, that only the rightmost (if any) of these candidates is mobile (i.e. 
has .  mobile set to true). Given such a candidate list, Find_Left(i, j) in Fig. 9 
computes D(i, j) by simply returning find(p1). Li(pj), i.e. the Li-value of the 
owner of the interval containing pi. 

Next we examine what happens when the left candidate list is shifted from 
column to column. The situation is more complex than for right profiles, 
because now the right ends of mobile candidates shift Am i to the right in going 
from column i to i + 1, whereas the right ends of non-mobile candidates remain 
stationary. Thus if e is mobile and f =  succ(e) is not, then after enough column 
shifts the right end of e will overrun the right end off. At this time f ceases to 
contribute to the profile as its left end (e's right end) becomes greater than its 
right end. Let overrun (e, f)=max{klrightk(e)<<.rightk(f)}=max{kle. Ck<<. 
P~,cct:). s} =max{klmk <<-P~,c~t:). s-- e. A}. A simple binary search over map 
suffices to compute k = overrun(e,f) in O(log M) time.* Now observe that it is 
exactly when shifting from column k to k + 1 that f 's  interval disappears, or 
equivalently, is overrun by e. 

An array of sets, Bucket, is maintained that records all potential future 
overrun events for CandY.  Specifically, for a given state of Cand_L during the 
computation, Bucket[1.. M] satisfies the following invariant: 

Bucket[k] = {ele. mobile and not succ(e), mobile and overrun(e, succ(e))= k}. 

In essence, Bucket is an event queue of those overrun events that will take place 
if the adjacency relationships in the current candidate list remained unchanged 
as it is shifted through successive columns. Of course, these adjacency 
relationships will change due to the introduction of new candidates and 
overrun events themselves, thus necessitating continual updating of the Bucket 
structure to maintain the invariant. 

Bucket is realized as an M-element array of pointers to doubly-linked lists 
representing each set. Each element in a list points at its candidate record in 
Cand_L and each candidate record in turn has a pointer to its Bucket list- 

* In Section 7 a refinement limits the search to a map  of size 2P and hence guarantees that  only O(log P) 
time is spent on this operation. 
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element if it exists (i.e. the candidate overruns its successor). With this 
structure, the following operations are all performable in constant time: 

pop(i): Return and remove the first element of Bucket[i]'s list. 
If the list is empty, return A. 

push(e): If e is mobile and its successor is not then append an element for 
candidate e to the front of Bucket[overrun(e, succ(e))]'s list. 

remove(e): Remove the element for candidate e from whatever Bucket list it 
is in, if any. 

Note that both push(e) and remove(e) have no effect on Bucket unless the 
mobility of e and its successor are such that an overrun event can occur. 

Now consider the procedures Insert_Left and Update_Left that compute the 
left candidate list for successive columns. Analogous to the right candidate list, 
given a list Cand_L i properly representing U,  the match points in column i are 
added by Insert_Left to produce a candidate list representing L-~(x). This list is 
then modified by Update_Left to produce Cand-L ~+ 1. 

The procedure Insert(i,j) takes a candidate list for a left profile s at column i 
and adds the contribution of match point (i, j) to produce a candidate list 
representing min(s i r ,jlx) I~.j(x)). Note first that the domain of is (pj, 
C[,j ] = (p j, pj], i.e. the point pj. It is useful to think of the curve's initial domain 
interval as being infinitesimally small. This feature is intentional, it is much 
easier to add such curves to the profile than those that span a measurable 
interval. As soon as the shift from column i to i + 1 takes place the interval will 
be proper and of width Am i . First find(p j) returns the candidate e in the current 
list that owns the interval containing p j, i.e. lefti(e)<pj <~ rightZ(e). Candidate 
e's interval contains pj and thus contains (i,j)'s infinitesimally small interval. In 
the discussion that follows, let d = pred(e),f= succ(e), and let 9 = (i, j, p~-m~, 
D(i, j)--  2(i + 2), true) be the candidate for match point (i, j). 

First consider the case where pj < righti(e). I fe .  Li(0) ~< g. Li(O) then e's match 
point curve dominates g's match point curve and Insert_Left quits without 
adding 9 to the list. Otherwise, 9 represents the new profile over its infinitesimal 
interval (p j, 9. C~], and e . U ( x )  continues to represent the profile over the 
intervals (left~(e), pj] and (9. C ~, right~(e)] �9 To reflect this, h, a non-mobile copy 
of e, and 9 are inserted between d and e. In order to maintain the Bucket 
invariant the new adjacencies between d and h, and between 9 and e, are 
checked for overrun. The new adjacency between h and 9 need not be checked 
because 9 is mobile and h is not. 

In the case where p j= righti(e) = lefti(f), we have two subcases depending on 
the mobility ofe. I fe  is mobile then lefti(f) = e. C i and e. L i is belowf.  L i. Thus 
9 represents a part of the profile if and only if g. U(0) < e. Li(O). If so, then e 
becomes non-mobile as its new right end is p j, and thus e's overrun event (if 
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Procedure Initialize_LeftO 
Cand_L~-(O, O, Pc, 2P, true) 

Function Find__Left(i, j) 
return find(p j). Li(p fl 

Procedure Insert_Left(i, j) 
e~-~,j (0) 
e ~  Find. (pj) 
if right'(e) # pj then 

{ if e. Li(O)>cthen 
{ d~pred(e) 

remove(d) 
insert(d, ( i, j, pj - m i, D(i, j) - 2(i + 2), true)) 
insert(d, (e .  I, e. J, e. A, e. E, false)) 
push(pred(e)) 
push(d) 

} 
else if e. mobile then 

{ i fe .Li (O)>c then 
{ remove(e) 

insert(e, ( i, j, p j - m  i, D(i, j ) -  2(i + 2), true)) 
e . mobile ~ false 
push(pred(e)) 
push(succ(e)) 

} 
) 

else if succ(e). Li(O)> c then 
{ insert(e, ( i , j ,  pj--m i, D(i , j )--2(i+2),  true)) 

push(succ(e)) 
) 

Procedure Update_Left(i) 
while (e,--pop(i))~A do 

{ delete (succ(e)) 
if succ(e) # A then 

if e .  Li(O) < succ(e). Li(O) then 
push(e) 

else 
{ e. mobile~false 

push(wed(e)) 
} 

} 
while left + 1 (last) >~ pe do 

delete (last) 

Figure 9. The left candidate list procedures. 

any)  mus t  be removed and  the adjacency between pred(e)  and e mus t  be 
checked for overrun.  In addi t ion,  g is inserted between e and  f ,  and  the 
adjacency between g and  f is checked for overrun.  It  remains to t reat  the 
subcase where e is no t  mobile.  In this event l e f t i ( f )  = p f j  a n d f .  L i is below e .  L i. 
Thus  g represents a par t  of the profile if and  only i fg .  Li(O) < f .  IJ(O). If  so then g 
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is inserted between e and f, and the adjacency between g a n d f i s  checked. The 
new adjacency between e and g need not be checked as e is non-mobile and g is 
mobile. 

The procedure Update-Left(i) takes the candidate list for/5 i and updates it to 
represent the shift giving U + 1. As for the right candidate list, the shift requires 
no change in the elements as they are independent of i. But some number of 
candidates intervals may become empty due to overrun events during the shift. 
Recall that these events are exactly those recorded in Bucket[i]'s list. So 
Update_Left pops these events offBucket[i] giving the overrunning candidate e 
and deletes the overrun candidate, succ(e). Now the deletion creates a new 
adjacency between e and its new successor, sayf. If e. Li(0)<f.  Li(O) then e is 
still mobile and it may overrun f (possibly during this shift) and must be so 
checked. Otherwise e becomes non-mobile (it passes "behind" f )  and the 
adjacency between pred(e) and e must be checked for overrun to maintain the 
Bucket invariant. Elements are popped from Bucket[i] and so processed until 
its list becomes empty. The shift is completed like that of the right candidate list 
by removing the suffix of elements of Cand-L whose left-ends are greater than 

Pp. 
Consider the total time spent in the procedures of Fig. 9 over the course of 

the algorithm outline of Fig. 3. Let L be the maximum size of Cand-L at any 
point in the computation. Initialize-LeftO is quickly dismissed since it is called 
once and takes constant time. Find-Left is called exactly R times at a cost of 
O(log L) time per call for a total of O(R log L) time. Insert_Left is called less 
than R times, and each call inserts at most two elements to Cand-L. Thus the 
total number of elements ever entering Cand-L is bounded by 2R. Because each 
iteration of either while loop of Update-Left deletes a candidate, it follows that 
the bodies of these loops are executed at most O(R) times over the course of the 
algorithm. The straight-line portion of these routines involve O(log L) time 
candidate list routines, O(log M) time calls to overrun, and O(1) calls to the 
bucket routines. Thus the total time spent in the procedures of Fig. 9 is O(R(log 
L + l o g  M)). At most half the candidates in Cand-L can overrun their 
successors, so the total space consumed by the Bucket lists and Cand_L is O(L). 
The Bucket array requires O(M) space but this will be reduced to O(P) in the 
next section where L is also reduced to O(p2). 

7. Refinements 
Using only O ( M +  p2) space and O(R log P) time. The analyses of the 

previous two sections only show that Cand_R, CandL, and the Bucket lists 
contain at most O(R) = O(MP) elements. Indeed on certain inputs it is possible 
for this many elements to be in the lists at a particular instant, although in 
practice the lists are usually no worse than O(p2). For problems in which M is 
very large, one might wish to guarantee that only O(P 2) space is used in the 
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worst case. Arranging this is quite easy to do with the initial observation that if 
i - I >  P then all j and J, contribt,j(i, j) >>. 2 ( P -  1) >~ D(i, j) by Lemma 1. Thus a 
candidate in column i cannot possibly affect the D-value of a match point in a 
column numbered greater than i+  P. 

This observation is levered by dividing the "M x P" problem into roughly 
M/P  "2P x P" consecutive problems each of which overlaps its successor in P 
columns. Let mapk = map[(k - 1)P+ 1 . . .  min(kP, M)] for k = 1,2 . . . .  rM/P-]. 
Apply the central algorithm to search for P in map1 and report the results. Then 
for k = 2 ,  3 , . . . ,  search for P in mapk_ 1 . maPk (the concatenation of the two 
maps) and report the results found in the columns of maPk. From the 
observation above the results reported in each column must be correct since all 
candidates that can affect that column are considered in the given subproblem. 
Moreover, the number of match points in each subproblem is less than 2P 2. 
Thus the list structures for any subproblem never require more than O(P 2) 
space in the worst case. 

This approach has two additional benefits. First, the time for candidate list 
primitives is reduced to O(log P) in the worst case because of their reduced size. 
Second, the O(log M) binary search for overrun is also reduced to O(log P) 
because the map of an individual subproblem contains at most 2P sites. So in 
summary, the algorithm requires at most O(R log P) time and O(M+ p2) space 
where the factor of M is present solely to account for the space for map. 

Comparing as opposed to searching maps. Thus far the focus has been on an 
algorithm for searching a large map for a good approximate match to a short 
probe, and therefore the score of alignments did not reflect any discrepancies in 
the large map to the left and right of the first and last aligned sites. Consider 
now the related problem in which map and probe are of roughly the same size 
and we wish to compare the two maps to see if they are similar. First we modify 
the score of an alignment e--- ((i1, J l) ( i 2 ,  J 2 ) "  �9 �9 (iL, JL)) to be: 

score(e) = 2(M + P -  2L) + g lmi~ - p~ /+  
L 

# 2 I(mi~--mi~-,)--(P~k--Pik-,)l+#l(mM--miL)--(Pl'--P~L)l 
k=2 

where M +  P -  2L is the number of sites in map and probe not in the alignment, 
and ( ta lk-mik_l ) - (p ik-  pj~_ 1) is the discrepancy in distance between aligned 
sites (ik,Jk) and (i k_ 1 ,Jk-1)" Note that all unaligned sites in map are penalized, 
as are the distance discrepancies to the first and last aligned pairs (i.e. mi, - p  j, 
and (m u - m,,) - (Pe--PjL))" An optimal alignment of map and probe is one with 
the minimum score. The distance between map and probe is defined as the score 
of their optimal alignment. 

For (i, j )eMatchpts,  let D(i, j) be the score of the best alignment whose 
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rightmost pair is (i, j), excludin9 the penalty for the distance discrepancy 
between aligned sites (i,j) and the end of the maps. Then we have the following 
recurrence for computing D-values. 

D(i, j) = min{ (2(M + P -  2) + I~[m,- Pi[, min contrib,,j(i, j)} 
(l,J)eMatchpts 

I< i , J< j  

where contribl,s(i , j) = D(I, J) - 22 + (mi- m,)-  (p j -  pj)[. 
Any algorithm that computes the D-values can then deliver the cost of an 
optimal alignment between map and probe in O(R) additional time by 
computing the minimum: 

min{2(M+ P), min D(i , j )+l~ l (m~t -m~)- (pe-p j ) ]  } . 
(i,j)~Matchpts 

Our search algorithm is easily modified to compute the D-values for this 
slight variation to the recurrence of Lemma 1. In fact, we need only redefine 
EI, j=D(I ,  J )+22  and B~,j=EI, J. With these simple modifications, the 
treatment of profiles in Sections 4 through 6 is correct for this variation. In 
essence, curves in this problem are shifted right by Am i and up by 0 (as opposed 
to 2) in advancing from column i to i+  1. As shown earlier the basic algorithm 
takes O(R(log R + log M)) time, where R is bounded by MP. Thus computing 
the distance between two maps requires no more than O(MP (log M +  log P)) 
time and O(MP) space. 

Empirical experience. Table 1 reports the running times, in seconds, of the 
Miller-Huang algorithm (1988) and the basic version of the new algorithm for 
various values of P. Both algorithms were coded in C and the times were 
obtained on a SUN 4/260 workstation running SunOS Unix (Release 4.0.3.). 
For the new algorithm the candidate lists were realized with AVL trees. As seen 
in Table 1, for P~< 400, the Miller-Huang algorithm is faster than the new 
algorithm. However, while the running time of the new algorithm is increasing 
roughly as P log P, the Miller-Huang algorithm is increasing faster than p2. 

Table 1. Running time 

M P O(MP 3) O(MP log P) 

7000 100 30.3 103.6 
7000 200 93.5 222.7 
7000 300 209.0 350.4 
7000 400 414.9 501.4 
7000 500 721.7 635.8 
7000 600 1236.9 784.9 
7000 700 2090.6 939.4 
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8. Conclusion. We have presented a sparse dynamic programming algorithm 
for comparing and searching restriction maps under an objective function that 
is a linear combination of mismatch and distance discrepancy penalties 
(Waterman et al., 1984). Our algorithm is based on a candidate list paradigm 
and can either search or compare maps in O(R(log M +  log P)) time and O(R)  
space in the worst case. For  the searching variation where P is much smaller 
than M, as simple refinement gives O ( M +  p2) space and O(R log P) time. 

The notion of alignment and objective scoring function for a particular class 
of objects is usually chosen to reflect an underlying model for the origin of the 
differences. Unlike the case of sequences where differences are usually 
evolutionary, a principle reason for the need for approximate matching in 
comparing restriction maps is the introduction of experimental errors in 
producing the maps. The nature of these experimental inaccuracies has not 
been studied but it is clear from preliminary experience that: (1) close, adjacent 
sites may be ordered incorrectly; and (2) close, adjacent sites for the same 
enzyme may be detected as only one. Thus one may need to consider alignment 
models that permit transpositions and/or  the alignment of a site with two or 
more sites on the other map. Miller et al. (1990) presents an O ( M P  2) algorithm 
that accommodates  transpositions under an alternate scoring scheme. In 
addition to these "topological" considerations, the objective function itself is in 
question. For  a linear distance discrepancy penalty, an alignment with one 
"unreasonably" large discrepancy can score better than an alignment with four 
or five "reasonable" ones. Perhaps one needs to penalize according to the 
square or some other power of the distance discrepancy? This leads to the 
problem of comparing maps under more general scoring schemes than the one 
considered in this paper, e.g. convex discrepancy penalties. Finally, there is the 
problem of designing an efficient algorithm that accommodates both more 
general alignment topologies and objective functions. 
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