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0. Introduction

The ‘‘Four Russians’’ paradigm, first introduced in [AKD70], decomposes a problem into smaller subparts,

precomputes in a table all possible outcomes of a small computation, and then solves the larger problem by looking

up a series of solutions to its subparts. This technique led to an O(N 3 /lg N) time boolean matrix multiplication

algorithm [AKD70, AHU75(§6.6)], and an O(N 2 /lg N) time sequence comparison algorithm [MaP80]. Both of

these results assumed a RAM model with logarithmic operation costs, i.e. operations take time proportional to the

size (number of bits) in their operands. In this paper we assume that operation costs are uniform. Precisely, a lgN-

bit uni form RAM can add and compare integers of size O(N), and can access an O(N) memory, all in constant time.

No assumptions are made about the complexity of multiplicative operations because we do not need them. Under

this more powerful model the results above improve to O(N 3 /lg 2 N) and O(N 2 /lg 2 N), respectively.

We present an O(PN/lg N) worst-case time and space algorithm for determining if a word A of length N is in

the language denoted by a regular expression R of length P. For a small integer parameter K, our method achieves a

K-fold speedup of the standard O(PN) state-set simulation of R’s non-deterministic finite automaton, F, on the word

A [Tho68, Sed83(§9)]. For a given K, F is hierarchically decomposed into O(P/K) modules. In O(K2K ) time and

O(2K ) space, tables are constructed that permit the state-set of a module to be advanced in O(1) time. In essence,

the tables encode a deterministic finite automaton for each subautomaton module of F and information about the

connections between them. With these tables the module-based simulation of F on A can be performed in

O(PN/ K) time. Thus, on a B-bit uniform RAM, we have an O(P(N/ B + 2B )) time, O(P2B / B) space algorithm

for regular expression pattern matching. If B ≥ (lg N)/ 2, then choosing K = (lg N)/ 2 yields an O(PN/lg N) time

and space algorithm. These results assume the alphabet Σ is finite, as does the result in [MaP80]. This restriction

can be relaxed at an additional cost in the time complexity of O(Nlg P).

Our result represents a worst-case improvement over the standard state-set simulation [Tho68], because it is an

O(lg P) factor faster, regardless of whether a uniform or logarithmic cost model is chosen. The standard O(PN)

time claim relies on a lg P-bit uniform model, in which case our algorithm takes O(PN/lg P) time. Under the loga-

rithmic cost model, the standard algorithm is O(PNlg P) and ours is O(PN). Thus our algorithm places a new

upper bound on regular expression pattern matching and affirmatively answers an open "stringology" problem posed

in [Gal85].

Unlike the implementation of the sequence comparison algorithm of [MaP80], which outperformed its standard

counterpart [WaF74] only when N ≥ 262,000 [MaP83], our method yields an implementation on architectures sup-

porting bit-vectors that is faster than existing software for small patterns. Most machines support at least 16-bit

word operations, so our strategy in practice is to choose K = 14 regardless of N or P. With this choice, the tables

require less than 2520P words of memory, and the time to build them is less than 4P milliseconds on a VAX8650
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running 4.3bsd UNIX. For small patterns, our implementation is competitive with egrep, which employs an O(N)

expected-time algorithm [Aho80, ASU85(§3.7)] and is the fastest tool currently used in practice.

1. Regular Expressions, Parse Trees, and Finite Automata

Regular expression are built up from individual symbols via union, concatenation, and concatenation-closure

operations. Formally, the set of regular expressions over a given alphabet, Σ, is defined recursively as follows:

(1) If a ∈ Σ ∪ {ε}, then a is a regular expression.

(2) If R and S are regular expressions, then so are (R)| (S), (R)(S), and (R) *.

A regular expression determines a language, i.e., a set of words where each word is a sequence of symbols from Σ.

The precise language-defining rules are as follows. If a ∈ Σ ∪ {ε}, then a denotes the set containing the single

word a. The word ε is the unique word of length zero, and ε is assumed to be a symbol not in Σ. (R)| (S) is the

union of the languages denoted by R and S. (R)(S) denotes the set of words obtained by concatenating a word in R

and a word in S. Finally, (R) * consists of all words that can be obtained by concatenating zero or more words from

R. Unnecessary parentheses may be removed by observing that concatenation and union are associative, and by

utilizing the ‘‘natural’’ precedence of the operators, which places * highest, concatenation next, and | last. For

example, abb| b| cb* denotes the language, { abb, b, c , cb , cbb , . . . }. Note that our definition is differs slightly

from the usual one in that we exclude the empty language.

While regular expressions permit the convenient textual specification of regular languages, their parse trees

better model their hierarchical structure. A parse tree T R for a regular expression R consists of a labeled, rooted,

and ordered tree with the following properties.

(1) The leaves are labeled with symbols from Σ ∪ {ε}.

(2) The interior vertices are labeled with |, ⋅, or *.

(3) Interior vertices labeled | or ⋅ have two sons, those labeled * have one.

Regular parse trees correspond in a one-to-one fashion with regular expressions as shown by the following inductive

construction. For the basis, regular expressions a ∈ Σ∪ {ε} are modeled by parse trees consisting of a single leaf

labeled a. Inductively, suppose expression R is modeled by tree T R, and expression S is modeled by tree T S. Then

regular expression RS is modeled by a tree whose root is labeled ⋅ and whose sons are the roots of subtrees T R and

T S. The regular expression R| S is modeled by a tree whose root is labeled | and whose sons are the roots of subtrees

T R and T S. Finally, R* is modeled by a tree whose root is labeled * and whose son is the root of subtree T R. Figure

1 gives a regular expression R and its corresponding parse tree T R.
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FIG. 1. T R, F ′ R, and F +
R for R = a (b| cd) *.

The finite state machine counterpart to a regular expression is best suited to the task of recognizing the words in

a regular language. Several different models of finite automata have appeared, but all are equivalent in power and

recognize exactly the class of regular languages. The complexity results of this paper require the use of a non-

deterministic, ε-labeled model, and labeling states instead of edges yields simpler software. Formally, a finite auto-

maton, F = < V , E , λ , θ, φ >, consists of:

(1) A set, V, of vertices, called states.

(2) A set, E, of directed edges between states.

(3) A function, λ, assigning a ‘‘label’’ λ (s) ∈ Σ ∪ {ε} to each state s.

(4) A designated ‘‘source’’ state, θ, and a designated ‘‘sink’’ state, φ.

Intuitively, F is a vertex-labeled directed graph with distinguished source and sink vertices. A directed path through

F spells the word obtained by concatenating the state labels along the path. Recall that ε acts as the identity element

for concatenation, i.e., vεw = vw. So, one may think of spelling just the non-ε labels on the path. L F (s), the

language accepted at s ∈ V, is the set of words spelled on paths from θ to s. The language accepted by F is L F (φ).
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For any regular expression, R, the following recursive method constructs a finite automaton, F R, that accepts

exactly the language denoted by R. For a ∈ Σ ∪ {ε}, construct the automaton:

F : a
a

a=θ aφ

Suppose that R is a regular expression and automaton F R with source θR and sink φR has been constructed. Further

suppose that automaton F S with source θS and sink φS has been constructed for regular expression S. Then auto-

mata for R| S, RS, and R* are constructed as follows:

ε

Rθ

FR*:

R|Sφ

Sφ

R|Sθ

Rφ

R|SF :

Sθ

ε ε

FS

Rθ
FR

Rφ Sθ Rφ RS

θ

φ=RSθ Rθ=
FRS: FR FS

FR

Rφ

R* φR*

ε

Each diagram precisely specifies how to build the composite automaton from F R and F S. For example, F RS is

obtained by adding an edge from φR to θS, designating θR as its source state, and φS as its sink.

A straightforward induction shows that automata constructed for regular expressions by the above process have

the following properties:

(1) The in-degree of θ is 0.

(2) The out-degree of φ is 0.

(3) Every state has an in-degree and an out-degree of 2 or less.

(4) | V| < 2P where P = | R|, i.e., the number of states in F R is less than twice R’s length.

For the sub-automaton to be used in the subsequent modular decomposition, it is required that the start and final

states of the automaton be distinct and ε-labeled. This alteration is simply accommodated by modifying the
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automaton F R produced for R above as follows:

:R

Rθ’ Rθ Rφ

’

Rφ= ’

ε FRF

The altered automaton F ′ R satisfies the properties above, save that now | V| ≤ 2P +1. The key observation is that

for any regular expression R there is a non-deterministic, ε-labeled automaton whose size, measured in vertices or

edges, is linear in the length of R. Figure 1 gives a regular expression R and its finite automaton F ′ R. Hereafter, the

subscript R is dropped whenever it can be inferred from context.

The algorithms to be developed depend on another, more subtle, property of the constructed automata. Call the

constructed edges that run left-to-right in the above pictures dag edges. The remaining back edges consist of just

those from φR to θR in the diagram of F R*. For those familiar with the data flow analysis literature, Part 2 of

Lemma 1 asserts that the loop connectedness parameter of the automaton’s graph is 1 [HeU75].

LEMMA 1. Consider any finite automaton, F, constructed by the above processes. (1) Any cycle-free path in F

that begins at θ consists solely of dag edges. (2) Any cycle-free path in F has at most one back edge.

PROOF. Suppose a path from θ has a back edge. It must connect the final state of some sub-automaton, S, to its

start state. But any path passing to the final state of S must enter via S’s start state by the hierarchical construction

of F. Thus the back edge forms a cycle. This proves part 1 by contradiction.

Let p be a cycle-free path in F and suppose that, contrary to part 2, p contains two back edges. The first back

edge in p connects the final state of some sub-automaton, S, to its start state. Consider the suffix, q, of p that follows

that back edge. If q leaves S, then a cycle would be formed when it exits via S’s final state. But since p is cycle-

free, q must stay within F. However, part 1, when applied to S, implies that q contains no back edges, contradicting

the assumption that p contains two back edges.
�

Our subsequent algorithms require an automaton F +
R accepting the language denoted by R whose only ε-

labeled states are the start and final states of the machine. We term such automata ε-free and for these automata

each interior state of a path spells a symbol in Σ. F + is obtained from F ′ as follows. The vertices of F + are θ′, φ′,
and all Σ-labeled states of F ′. A path is an ε-path if it consists of one or more edges and its interior vertices are all

labeled ε. There is an edge from s to t in F + if and only if there is an ε-path from s to t in F ′. F + has O(P) states,

O(P 2 ) edges, accepts the same language as F ′, and can be constructed from F ′ in O(P 2 ) time. Figure 1 gives a

regular expression R and its finite automaton F +
R.

For each edge s→t of F + there is, by definition, at least one ε-path from s to t in F ′. Choose an ε-path from s to

t that has the fewest number of edges as the image, µ(s→t), of edge s→t. Note that µ(s→t) must be cycle-free as
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paths with cycles can be shortened by excising the cycle. Consequently, µ(s→t) has at most one back edge by

Lemma 1. Term an edge s→t of F + a dag edge if and only if its image consists solely of dag edges in F ′. Other-

wise, classify the edge as a back edge and note that its image has exactly one back edge in F ′. Further observe that

for both F ′ and F +, the subgraph obtained by removing all back edges is acyclic.

Lemma 2 generalizes Lemma 1 for F + where a ‘‘cycle-free’’ path is considered to be one whose image in F ′ is

cycle-free. A shortcut for a path p = s→t 1 →t 2 → . . . →t n →t is a path s→t i 1
→ . . . →t im

→t such that

t i 1
t i 2

. . . t im
is a subsequence of t 1 t 2

. . . t n, i.e., i k ∈ [1, n] and i k −1 < i k , for all k. A shortcut of p is proper if it

is not p itself. Note that since t i does not necessarily have an edge to t j for j > i +1, not all subsequences of the

interior vertices of a path form a shortcut.

LEMMA 2. Consider a path p in an ε-free automaton, F +, constructed as above. (1) If p starts at θ then there is

a shortcut of p consisting solely of dag edges. (2) There is a shortcut of p that has at most one back edge.

PROOF. It suffices to show that if p itself does not satisfy (1) or (2), then there is a proper shortcut of p. This

suffices because if we can repeatedly shorten shortcuts of p not satisfying (1) or (2), then we must eventually arrive

at one that does. First observe that if p contains a cycle, truncating it produces a proper shortcut of p. So suppose p

is cycle-free, does not satisfy (1) or (2), and contains the edges, t 0 →t 1 → . . . →t n, where t 0 = s and t n = t. Let the

image of p in F ′ be the path obtained by replacing each edge of p with its image, i.e., µ(p) =

µ(t 0 →t 1 ) ⋅ µ(t 1 →t 2 ) ⋅ . . . ⋅ µ(t n −1 →t n ). Since p does not satisfy (1) or (2), it follows by Lemma 1 that µ(p)

contains a cycle. Suppose v is the first state to appear twice in µ(p)’s state list. There is an edge t k −1 →t k such that

the first occurrence of v is one of the vertices in µ(t k −1 →t k ) excepting t k . Similarly, there is an edge t h −1 →t h for

which the second occurrence is one of the vertices in µ(t h −1 →t h ) excepting t h −1. Of course, k ≤ h, but also k ≠ h

as an edge’s image does not contain a cycle. Moreover, the edge t k −1 →t h exists in F + because there is an ε-path or

empty path from t k −1 to v and another from v to t h. v can coincide with t k −1 or t h but not both as p is cycle-free

implies t k −1 ≠ t h. Hence there is indeed an ε-path from t k −1 to t h. Thus we may delete states t k
. . . t h −1 from p’s

state list to obtain a proper shortcut of p.�

2. The Modular Decomposition of R’s Parse Tree

Our modular decomposition of a finite automaton for R takes advantage of the hierarchical (inductive) formation

of regular expressions. For this reason, it is easiest to first express our decomposition in terms of a decomposition of

the associated parse tree, T R, for R. As per convention established earlier, T will refer to T R whenever R can be

inferred from context.

Suppose T has L leaves and note that L ≤ P. For a small integer K, it is possible to partition the edges of T into

O(P/K) sets such that the subgraph of T induced by each edge set is a parse tree, V, whose leaves may have interior
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labels. That is, V is weakly connected and if a vertex has one son, it has all of its sons. Each edge set and its sub-

graph V is termed a module. Each module is guaranteed to have Θ(K) leaves except for the one containing the root

of T which has O(K) leaves. Figure 2 gives an example of our decomposition of the parse tree for

(a| bc) * | (ab(c| d)) * with K = 3.

| M0

**

|.a .
b a c d

.

bc

|
M1 M2

M3

FIG. 2. A K = 3 partition of T R for R = (a| bc) * | (ab(c| d)) *.

LEMMA 3. For K≥2, T can be partitioned into a module U that contains T’s root and has no more than K leaves,

and a collection X of modules that have between�K/2�+1 and K leaves each.

PROOF. By induction on the size of the tree. For the basis, T consists of a single leaf. The hypothesis is true with X

empty and U = T. For the induction, there are two cases depending on the outdegree of T’s root, r.

First, suppose that r has two children, c and d, and let T c and T d be the subtrees rooted at c and d, respectively.

Assume inductively that T c can be partitioned into modules { U c } ∪ X c satisfying the hypothesis, and similarly for

T d. Let k c ≤ K be the number of leaves in U c . If k c +k d ≤ K then let X = X c ∪ X d and let U =

{ r→c , r→d } ∪ U c ∪ U d. Otherwise suppose without loss of generality that k c ≥k d. This implies that

k c ≥�K/2�+1. If k d +1 ≤ K then let X = X c ∪ X d ∪ { U c } and let U = { r→c , r→d } ∪ U d. Otherwise it must be

that k d = k c = K and one can let X = X c ∪ X d ∪ { U c , U d } and U = { r→c , r→d }.

Finally, suppose that r has one child c and that T c can be partitioned into module U c and set of modules X c .

The hypothesis is made true by selecting X = X c and U = { r→c } ∪ U c .�

Now we show that the number of modules, M, in a K-partition of T is Θ(L/K) where L is the number of leaves

in T. Suppose for the moment that every module has t leaves. Then M is the number of interior vertices in a t-ary

tree with L leaves. It thus follows that L = (t −1) M +1. In the best case, every module is of size K, in which case

M =
K −1
L −1�����. In the worst case every module is of size�K/2�+1, in which case M =�K/2�

L −1������. Now consider
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partitions in which module sizes are not necessarily uniform. The smallest value of M is obtained when every

module has K leaves except one which has between 1 and K. In this case, M ≥�
K −1
L −1������. The largest value of M is

obtained when (a) L ≤ K and there is one module, or (b) L > K and every module has�K/2�+1 leaves except one

which has at least two leaves. In either case (a) or (b), M ≤��K/2�
L�������. Thus the bounds on the number of leaves in

each module guarantee that M is Θ(L/K). Moreover, because L is O(P), it follows that M is O(P/K).

The language of regular expressions over alphabet Σ is LL(1) and so a simple recursive-descent parser can con-

vert R to T in Θ(P) time and space. Moreover, the induction argument of Lemma 3 immediately permits one to

mark the root of each subtree in the partition with a simple bottom-up traversal of T. Since T is produced by the

parser in post-order as it scans R, both T and its partition can be computed in a single Θ(P) left-to-right scan of R.

3. The Modular Decomposition of R’s Automaton

Consider a module V of the partition of T produced by Lemma 3. Term a leaf of V atomic if and only if it is a

leaf of T that is not labeled with ε. Note that the label of an atomic leaf is a symbol in Σ. A modular leaf of V is one

that is not a leaf of T. Note that a modular leaf is labeled with an operator symbol and must coincide in T with the

root of another module W of the partition. In this case, we say that V is the father of W, and, conversely, that W is a

son of V. Let σV ∈/ Σ be a unique symbol associated with each module V. Consider V when each modular leaf is

relabeled with σW where W’s root coincides in T with the leaf. This module is a parse tree for a regular expression,

R V, over the alphabet Σ ∪ { σW : W is a son o f V }. Let E V be the automaton F +
RV

given by the construction in

Section 1. Term a state of E V atomic if it is labeled with a symbol from Σ, and term it modular if it is labeled with

σW for some son W. Note that the modular and atomic leaves of V and the modular and atomic states of E V are in

one-to-one correspondence. Moreover, the construction of E V guarantees that its start and final states, θV and φV,

are distinct, ε-labeled, and consequently, neither atomic or modular.

Since regular languages are closed under the substitution of regular languages, the automata for the modules

partitioning T can be hierarchically combined to form a finite automaton F * for R. More precisely, for each module

V, we recursively construct an automaton F V accepting the language denoted by the regular expression for T V, the

subtree of T rooted at module V’s root. For the base case where V has no sons, we let F V be E V. Now suppose V

has h ≥ 1 modular leaves and we have recursively constructed F W for each of the h sons, W, of V. Then F V is con-

structed by replacing each modular state labeled σW in E V with the automaton F W . Every edge into the modular

state becomes an edge into the start state θW of F W and every edge out of the modular state becomes an edge out of

the final state φW of F W . Thus, if U is the module containing T’s root, then the automaton F * = F U accepts the

language denoted by R. F * is called the augmented automaton for R with respect to the partition of T. Figure 3
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gives F * and its partition for the example of Figure 2. F * has M module start states θV, M module final states φV,

and L atomic states. Thus F * has O(P/K) ε-labeled states and O(P) Σ-labeled states. Moreover, F * has O(PK)

edges, O(K 2 ) in each module. Constructing F * is easily accomplished in O(PK) time by building F V for each

module V and then redirecting the edges adjacent to modular states.

a

b c

a

c

d
b

θ1
θ0 φ0

M0
M1

M2

M3

φ2θ2

θ3
φ3

φ1

FIG. 3. F * for the partition of Figure 2.

We now associate a set of edges and states of F * with each module V in a manner that partitions F *. The edges

of a module V are those edges in F * that were introduced by E V. The edge sets partition the edges of F * because

E V contributes exactly one copy of its edges to F *. Note that all edges out of a state are in the same edge set, as are

all edges into a state. It is thus sound to define a state s as belonging to that module Mod(s) containing its outedges.

With this definition, the set of states, Π V, belonging to a module V is { θV } ∪ { φW : W is a son o f V } ∪

{ s : s is an atomic state o f E V }. Note that the sets Π V partition the set of all states of F * except for its final

state. In symmetry with Mod(s), let Pre(s) be the module containing the edges into s. From the construction of F *

it follows that the set of states, s, for which Pre(s) equals V is { φV } ∪ { θW : W is a son o f V } ∪

{ s : s is an atomic state o f E V }. Note that t→s implies that t ∈ Π Pre(s) , i.e., the predecessors of s form a subset

of the states belonging to module Pre(s).

Consider classifying the edges of F * as dag or back edges according to their type in the ε-free automaton E V

contributing the edge. Then Lemma 2 holds for F *. This is most intuitively seen by consider the automaton F ′′
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obtained by using F ′ RV
instead of F +

RV
in the construction of F *. The hierarchical construction of F ′′ by the same

processes that constructed each F ′ implies that it satisfies Lemma 1. But then F * is an ε-path reduction of F ′′
and the argument of Lemma 2 applies to F *. This property of F * is important to our algorithm as embodied in

Corollary 4. The notation s→*t asserts that there is a path from s to t all of whose vertices are labeled ε except pos-

sibly s.

COROLLARY 4. If s→*t in F * then s→*t along a path with at most one back edge, and none if s = θ.

PROOF. Simply note that shortcuts of a path spelling ε also spell ε and then apply Lemma 2.�

4. The (K+1)-bit Uniform RAM Algorithm

Our algorithm consists of a phase in which the regular expression is preprocessed into a number of tables, fol-

lowed by a scanning phase in which the text is searched for occurrences of the pattern. The preprocessing phase

consists of building F * as described in Sections 1 through 3, and then constructing tables as detailed in Section 4.1

below. A Goto table models a deterministic finite automaton for each module, and a Reach table permits ε-paths

between modules to be easily traversed. The scanning phase described in Section 4.2 mimics the standard state-set

simulation of F * save that the state-set of each module is modeled as an integer and advanced in O(1) time with the

Goto table. The subtle difficulty is that ε-labeled states reachable from states in other modules must be detected by

an additional two-sweep closure pass over the modules. Nonetheless, the phase consumes O(P/K) time per symbol

scanned and thus gives a factor of K speedup over the standard state-set simulation. The treatment assumes Σ is

finite and small. In Section 4.3 we present a refinement that circumvents this restriction at effectively no increase in

space and time.

4.1 PREPROCESSING STEP. Our algorithm uses a (K +1)-bit integer to encode a subset of Π V for each module V.

Each state s in Π V is assigned a unique bit position, Bit(s), between 0 and | ΠV| −1 ≤ K. For X ⊆ Π V, let the col-

lection of set bits, BIT(X), equal { Bit(s) : s ∈ X }. For Y ⊆ [0, K], let the integer, NUM(Y), corresponding to set

Y equal
k ∈ Y
Σ 2k . Note that NUM is an isomorphism, so its inverse exists. Finally, let the integer encoding X ⊆ Π V

be INT(X) = NUM(BIT(X)).

For each module, a number of tables are built in the preprocessing step. Setbit[k , Z] gives the integer resulting

when the k-th bit of Z is set. It is needed because O(1) integer multiplication is not assumed. Reach[s, Z] is a

boolean table whose entries are true if and only if there is a state in the set encoded by Z that is a predecessor of s.

For this table, s ranges over just those states that are labeled with ε, i.e., the θ and φ states of F *. Reach is used to

trace subpaths spelling ε. Finally, Goto[V , Z, a] gives the integer encoding the set of states in Π V labeled a that are
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successors of states in the set encoded by Z. Goto is used to discover paths ending with a specific symbol. A formal

specification of the domain and entries of each table is given in the list below.

(1) For k ∈ [0, K] and Z ∈ [0, 2K +1 −1]:

Setbit[ k , Z] = NUM( NUM −1 (Z) ∪ {k})

(2) For s an ε-labeled state and X ⊆ Π Pre(s):

Reach[ s, INT(X)] = There exists t ∈ X s.t. t→s

(3) For V a module, X ⊆ Π V, and a ∈ Σ :

Goto[ V , INT(X) , a] = INT( { s : There exists t ∈ X s.t. t→s and λ (s) = a } )

Note that t ∈ Π V, t → s, and s atomic implies that s ∈ Π V by the construction of F *. Thus Goto is properly defined

since the set on the right is a subset of Π V.

For a given value of Z, the entries, Setbit[k , Z] for all k, can be computed in O(K) integer steps. Thus all of Set-

bit can be computed in O(K2K ) time and space. The M2K +2 entries of the table Reach can be computed in

O(P2K / K) time and space using the recurrence:

Reach[s, Z] ≡ if Z = 0 then false else Reach[s, Z −2k ] or t→s ∈ F +

where 2k is the greatest power of 2 less than Z (i.e., k =�lg Z�), and t is the unique vertex for which t ∈ Π Pre(s) and

Bit(t) = k. For a given ε-labeled state s, successive entries, Reach[s, Z], can be computed in O(1) time in increas-

ing order of Z using the recurrence. The Goto tables can be efficiently computed using the same recursive decom-

position over Z used for Reach. In this case the recurrence for positive Z is:

Goto[V , Z > 0, a] ≡ NUM( NUM −1 (Goto[V , Z −2k , a]) ∪ BIT(Succ(t, a)) )

where k = �lg Z�, t is the unique vertex for which t ∈ Π V and Bit(t) = k, and Succ(t, a) =

{ s : t→s and λ (s) = a }. Given a specific V, one first computes the Succ sets and then applies the recurrence for

each a, and each Z in increasing order. For the K| Σ|choices of t and a, the lists Succ(t, a) can be built in O(K| Σ| )

time and space by setting the lists to empty and then for each s ∈ Π V, for each t such that t→s ∈ F V, adding s to

Succ(t, λ (s)). To perform the union in the recurrence, each element of Succ(t, a) is added to Goto[V , Z −2k , a]

with a table lookup into Setbit. For a given V and Z, a total of O(K) bits are set over all choices of a. Thus, the

M2K +1| Σ| entries of Goto can be computed in O(M2K (| Σ| + K)) time. Assuming | Σ| is a constant, it takes

O(P2K ) time and O(P2K / K) space to build Goto and this dominates the complexity of the preprocessing step.
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4.2 SCANNING STEP. The standard state-set simulation of an automaton reads the symbols of A from left-to-right

while computing the set of states reachable from θ on paths spelling the prefix of A scanned thus far. More for-

mally, suppose A = a 1 a 2
. . . a n and let A i denote the i-symbol prefix of A, i.e., A 0 = ε and A i = a 1 a 2

. . . a i for

i > 0. Further, let θ
w
→s assert that there is a path from θ to s spelling w. After reading the i’th symbol of A, the

current set of states computed by the standard simulation is S i = { s : θ
A i
→s }. The standard algorithm computes S 0

from scratch, then for each i it computes S i from S i −1 as it reads a i , and it concludes by reporting that A matches R

if and only if φ ∈ S n. Computing each current state-set takes O(P) time for an automaton such as F ′ R, giving an

O(PN) time, O(P) space algorithm [Tho68, Sed83(§9)].

The algorithm of Figure 4 computes the same sequence of state-sets as the standard algorithm but in only

O(P/K) time per state-set. It achieves this speed up by modeling the current state-set as an array, Set[V], of M

(K +1)-bit integers, one for each module V. After scanning the i’th symbol of A, Set[V] encodes the subset of S i

belong to V, i.e., Set[V] = INT(Π V ∩ S i ). Note that
module V

∪ (Π V ∩ S i ) = S i − {φ} because the sets Π V partition

the states of F * less φ. Thus the array Set does indeed model the current state-set of the standard simulation with the

exception of φwhose omission is harmless since it has no successors in F *.

Given the array Set modeling S i −1, our algorithm reads a i and updates Set so that it models S i and does so in

two O(P/K) time phases. In the first module phase, Set is updated in lines 6 and 7 of Figure 4 by reseting each

integer Set[V] to Goto[V , Set[V] , a i ]. After this phase, Set models the set of states , S
�i

, that are atomic and in S i .

The proof is as follows. The states in S
�i

must all be labeled a i and so S
�i

= S i ∩ L a i
where L a = { s : λ (s) = a }.

Moreover, Π V ∩ S i ∩ L a i
= { s : s ∈ Π V and there exists t ∈ S i −1 s.t. t → s and λ (s) = a i }. But by the con-

struction of F *, t → s and s atomic implies that t and s belong to the same module. Thus, Π V ∩ S i ∩ L a i
= { s :

There exists t ∈ Π V ∩ S i −1 s.t. t → s and λ (s) = a i }. It then follows that INT( Π V ∩ S i ∩ L a i
) =

Goto[V , INT(Π V ∩ S i −1 ) , a i ]. Thus after the module phase, Set[V] = INT(Π V ∩ S i ∩ L a i
) and so models S
�i

.

In the second closure phase of lines 8 and 9, the ε-labeled states of S i are added to the state set S
�i

modeled by

Set. Let χ be the set of ε-labeled states in F * except for its start and final states. Note that χ has only O(P/K) states

and consists solely of θ and φ states. Moreover, s ∈ χ is in S i if and only if there exists a state t ∈ S
�i

such that

t→*s, i.e., there is an ε-path to s from an atomic state in S i . But then by Corollary 4, s ∈ S i ∩ χ if and only if there

is an ε-path to s from a state in S
�i

with at most one back edge. As in the algorithm of [MyM88], the algorithm of

Figure 4 finds the ε-labeled states in S i by processing the states in χ twice in a topological order relative to F *’s dag

edges. Recall that the subgraph of F * restricted to dag edges is acyclic and so a topological ordering exists. Such a

topological ordering of χ is precomputed in O(P) time† and used by each invocation of ε −closure( ) to process the

states once in this order.
������������������

† To produce a topological listing of χ, it suffices to traverse T R top-down and left-to-right. When module V’s root is first visited ap-
pend θV to the list, and when leaving V’s root append φV to the list.
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At the beginning of the phase, Set models S
�i

, and as the phase proceeds, states in χ are added to the state-set

modeled by Set. When an ε-labeled state s is processed, its bit is set in the integer Set[Mod(s)] if and only if

Reach[s, Set[Pre(s)]] is true. Every predecessor of s is in Π Pre(s) . Thus s’s bit is set if and only if it is a successor

of a state in the state-set currently modeled by Set. It follows by induction that Set models a subset of S i and a

superset of S
�i

at all times during the phase. It remains to prove that at the end of the phase, every state s in S i ∩ χ

has been added to Set. By Corollary 4 there is an ε-path p = t→ . . . →r→s such that it contains zero or one back

edges and t ∈ S
�i

. If r ∈ S
�i

then certainly s is added to Set. Here after, assume r ∈ χ or, equivalently, that r ≠ t. If

p contains no back edges then we claim by induction that s is added when it is processed in the first call to ε −clo-

sure( ). Suppose it is true for all predecessors of s in the topological order. r is processed before s since r→s is a

dag edge, and r is also reached from t along a path with no back edges. Thus, by the induction hypothesis, r has

been added before s is processed. But then s will be added since r→s. Finally, we claim that if p contains one back

edge then s is added when it is processed in the second call to ε −closure( ). Suppose it is true for all predecessors

of s in the topological order. If r→s is a dag edge, then r is processed before s in the second call and r satisfies the

induction hypothesis. Thus, in this case, r has been added before s and so s is also added. Otherwise r→s is a back

edge, and r is reached from t along a path with no back edges. Thus, r is added in the first call to ε −closure( ) and s

is added in the second call. For those familiar with the data flow analysis literature, the correctness of the closure

phase follows simply from the fact that the list obtained by concatenating two copies of the topological order of

states in χ is a node listing [Ken75] for the set of all ε-paths to states in χ with at most one back edge.

The algorithm of Figure 4 starts by initializing Set to model the state-set { θ } in lines 1-3. After executing

ε −closure( ) in line 4, Set models the set { s : θ→*s } as there must be a path with no dag edges to s by Corollary

4. But { s : θ→*s } = S 0 and so lines 1-4 correctly start the state-set simulation. Upon completion of the main loop

of lines 5-9, Set models the set S n − {φ}. Thus in line 10, Reach[φ, Set[Pre(φ)]] is true if and only if φ is the suc-

cessor of a state in S n, which in turn is true if and only if A matches a word in the language denoted by F *. Thus the

algorithm reports a match exactly when there is one.

Each call to ε-closure takes O(P/ K) time as do the loops in lines 1-2 and 6-7. It then follows that the algorithm

takes a total of O(PN/ K) time. Construction of the tables takes O(P2K ) time and they occupy O(P2K / K) space.

Combining the preprocessing and scanning steps, we have a O(P(N/ K + 2K )) time, O(P2K / K) space algorithm

for a (K +1)-bit uniform RAM. As long as K < lg (N/ K), the algorithm requires O(PN/ K) time and O(PN/ K 2 )

space. Thus on a lgN-bit uniform RAM, we can choose K to be (lg N)/ 2 and the algorithm requires O(PN/ lg N)

time and O(PN
1⁄2 / lg 2 N) space.

- 14 -



1. for V a module do
2. Set[V] ← 0

3. Set[Mod(θ)] ← Setbit[Bit(θ), Set[Mod(θ)]]

4. ε-closure()

5. for i ← 1 to N do

{ # Module Phase: Set[V] = INT(Π V ∩ S i −1) for all V. #

6. for V a module do
7. Set[V] ← Goto[V, Set[V], a i]

# Closure Phase: Set[V] = INT(Π V ∩ S i ∩ L a i
) for all V. #

8. ε-closure()

9. ε-closure()

}

# Set[V] = INT(Π V ∩ S n) for all V. #

10. if Reach[φ, Set[Pre(φ)]] then
11. ‘‘Match A’’

procedure ε-closure()

12. { for s ∈ χ in topological order do
13. if Reach[s, Set[Pre(s)]] then
14. Set[Mod(s)] ← Setbit[Bit(s), Set[Mod(s)]]

}

FIG. 4. The O(PN/K) state-set simulation of F * on A.

4.3 INFINITE ALPHABETS. We now consider the case where Σ is a countably infinite set, e.g., the set of all words

over some finite alphabet. Assume that a total ordering of Σ exists, and that two symbols may be compared in O(C)

time. The key observation is that ΣR, the set of symbols used in R, contains no more than P symbols and hence is

finite.

Using an optimal comparison-based sort, a sorted list L R of the symbols in ΣR is built in O(CPlg P) time. Let

Code(a) be symbol a’s position in L R if a ∈ Σ R, and 0 otherwise. Code(a) can be computed in O(Clg P) time

using a binary search over the list. For each module V, let ΣV be the set of symbols labeling the atomic leaves of V.

As above, a map Code V (a) is realized by producing a sorted list of ΣV for each V in a total of O(CPlg K) time. In

O(CPlg P) additional time, Code(λ (s)) and Code V (λ (s)) is computed and stored with each state s ∈ Π V so that

these quantities need not be recomputed during the construction of the following altered tables.

Noting that Goto[V , Z, a] = 0 if a ∈/ ΣV, we reduce the range of the third index from Σ to the integers in the

interval [1, | ΣV| ]. That is, for each a ∈ Σ V, Goto[V , Z, Code V (a)] ≡ Goto[V , Z, a]. With this change, O(K2K )

time and space is needed to compute the Goto table of a module. In addition, for each a ∈ Σ R the scanning step

needs a list Cont[Code(a)] of the modules containing an a-labeled state and the symbol’s code in that module.
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Formally, Cont[Code(a)] = { (V , Code V (a)) : a ∈ Σ V } and this table of lists can be built in O(P) time with a

bucketing approach.

With these new tables, the module-phase of the scanning step consists of computing c = Code(a i ) for the

current symbol a i , and then looking up the Goto transition for each V in Cont[c]. For V not on Cont(c), the state

set of V becomes the empty set. Thus we can replace lines 6 and 7 of Figure 4 with:

for V a module do
Temp[V] ← 0

c ← Code(a i)

if c ≠ 0 then
for (V , d) ∈ Cont[c] do

Temp[V] ← Goto[V,Set[V],d]

for V a module do
Set[V] ← Temp[V]

This code fragment takes O(P/ K + Clg P) time, for a total over the entire scanning step of O(PN/ K + CNlg P)

time. Table construction still takes O(P2K ) time but now also takes this much space. There is also the smaller

O(CPlg P) term for building sorted translation lists. In summary, infinite alphabets can be accommodated at an

additional cost of O(CNlg P) time.

5. Experience with a Practical Algorithm for Bit Vector Machines

We now assume more realistically that a K-bit machine can perform bit-wise logical operations | (or) and &

(and). With these operations we can express the quantities in the tables Setbit, Reach, and Goto with O(1)-

computable expressions involving four smaller tables: Power, Pred, Succ, and Atom. The list below defines the four

tables and how they specify the original three.

(1) Setbit[Z, k] ≡ Z | Power[k]

where Power[k] = 2k .

(2) Reach[s, Z] ≡ (Z & Pred[s] ≠ 0)

where Pred[s] = BIT({ t : t→s }).

(3) Goto[V , Z, a] ≡ Succ[V , Z] & Atom[V , a]

where Succ[V , INT(X)] = INT({ s : There exists t ∈ X s.t. t → s and s is atomic })

and Atom[V , a] = BIT( { s : s ∈ Π V and λ (s) = a } ).

Power consists of K integers and takes O(K) time to compute by successive doubling. The Pred table consists of

2M integers, one for each ε-labeled state. Each integer takes O(K) time to compute for a total of O(P) time for the
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entire table. For each module V, its Succ table consists of 2| ΠV | integers that can be computed in O(2K ) time with a

recurrence like that for Goto and Reach. V’s Atom table consists of | Σ | integers and is easily computed in

O(| Σ | +K) time. Thus the time to compute the four new tables is reduced to O(P2K / K) time overall. Moreover,

the total space required is less than [
K −1
2K +1�����+

K
3| Σ |�����+ O(

K
1��)] L integers in the worst case. The first term is for

the Succ tables, the second for the Atom tables, and the remainder is an insignificant term in practice. Recall that L

is the number of leaves in the parse tree for the regular expression. For example, over the ASCII alphabet at most

270L integers are needed for K = 10, and 2520L for K = 14.

Software of the same functionality as UNIX egrep [Aho80] was built using our bit-vector algorithm for regular

expression pattern matching. A number of pragmatic optimizations were employed. As in egrep, character classes

are implemented as a single atomic state. Second, the tables are built directly from T R; F * is never explicitly con-

structed. This is done by computing the predecessor and successor relations of states in F * directly from T R in two

O(P) sweeps of the tree as observed in Section 3.9 of [ASU85]. Third, Atom and Succ tables are not built for

modules all of whose leaves are modular. For such modules V, Set[V] is set to zero as opposed to

Succ[V , Z] & Atom[V , a] in the module phase as Atom[V , a] = 0 for all symbols a. Fourth, only those vertices in

χ that are within the ‘‘scope’’ of a back edge are traversed in the second call to ε −closure( ) in line 9 of Figure 4.

A vertex v needs to be processed a second time only if it can follow a back edge in a non-cyclic path and is in a dif-

ferent module than the one containing the back edge. This is true if and only if there is a * or + operator on the path

from T R’s root to the root of v’s module. Note that when the regular expression does not contain * or + operators,

this optimization halves the time spent in ε −closure( ) by removing the entire second sweep.

Our final optimization takes advantage of the particularly simple structure afforded our node-listing approach.

Once R has been processed and before A is scanned, so much is known about the control flow and values in the

inner loops of lines 6 to 9 that significant time gains can be achieved by compiling code for these lines that is

tailored to R [Pen86, Mil88]. Figure 5 shows a hypothetical C-program tailored to the pattern in Figures 2 and 3.

The calls to ε −closure( ) are in-line, and each loop in lines 6-7 and 12-14 has been completely unrolled. For each

module, Set[V] is mapped to a register variable, e.g., S00 through S03 in Figure 5. Succ and Atom tables are also

reduced to one-dimensional arrays by naming the table for each module, e.g. Succ01 and Atom02. Also, all

occurrences of Pred[s] are known and compiled as constants. The values of Set computed in lines 1 to 4 are known

and so are compiled into initialization values for the S variables. The outer loop of line 5 is realized as a series of

buffered reads from the file A file. Further note that the second call to ε −closure( ) is back-edge optimized, and

Succ00 is omitted since its module has no atomic leaves. The declarations and initialization values of the Atom

tables are omitted for brevity.
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While the compiled scanner is fast, the time taken to compile it is unacceptable. To circumvent this, we produce

object code for the host machine in memory and then call it directly. We performed this optimization on a VAX

8650 running 4.3bsd UNIX and obtained the following timing estimates. The time to build the tables and scanner

object code is less than M(2K +1 ⋅ 2.0µs + 1ms). The time taken to construct each module is thus about 65ms when

K = 14, and about 5ms when K = 10. The scanner processes characters at a rate of one every

M ⋅ .46µs + X ⋅ .35µs + .44µs where X is the number of vertices processed in the two calls to ε −closure( ), e.g., X

= 8 in Figure 5. X varies between 2(M −1) and 4(M −1) depending on the efficacy of the back-edge optimization.

Thus for patterns that require one module, the scanner runs at .9µs per character; for two modules between 2.06 and

2.76 µs; for three between 3.22 and 4.62; and so on. The variance in the time spent per character is very small,

since there is very little conditional execution in the scanner’s inner loop.

#include <stdio.h>

succ01[] = { 000, 006, 006, 006, 010, 016, 016, 016,
006, 006, 006, 006, 016, 016, 016, 016,

};

succ02[] = { 000, 002, 004, 006, 000, 002, 004, 006,
002, 002, 006, 006, 002, 002, 006, 006,

};

succ03[] = { 000, 006, 000, 006, 000, 006, 000, 006, };

main()
{ int ifile, num;

char buf[BUFSIZ+1];
register char *s;
register int a;
register int S00=07, S01=01, S02=01, S03=0;

/* Scan loop */
ifile = open("Afile",0);
while ((num = read(ifile,buf,1024)) > 0)
{ buf[num] = 0;

for (s = buf; a = *s; s++)
/* Module phase */

{ S00 = 0;
S01 = succ01[S01] & atom01[a];
S02 = succ02[S02] & atom02[a];
S03 = succ03[S03] & atom03[a];

/* ε-closure() */
if (S00 & 001) S01 |= 001;
if (S01 & 013) S00 |= 002;
if (S00 & 001) S02 |= 001;
if (S02 & 004) S03 |= 001;
if (S03 & 006) S02 |= 010;
if (S02 & 011) S00 |= 004;

/* ε-closure() */
if (S02 & 004) S03 |= 001;
if (S03 & 006) S02 |= 010;

}
}
exit (S00 & 00006);

}

FIG. 5. Compiled scanner for F * of Figure 3.
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We compared the scanning speeds over ASCII texts of our program, called mgrep, against an implementation of

the standard state-set simulation, called sgrep, and another employing Aho’s cache-based deterministic simulation

used in the UNIX System 5 implementation of egrep [Aho80, ASU(§3.7)]. Care was taken to fully optimize these

implementations too, as evidenced by the fact that our implementation of egrep is faster than the UNIX implementa-

tion. Table 1 shows the scanning speed of the three programs on a set of patterns chosen to illustrate the following

points. For all patterns, mgrep with K = 14 uses one or two modules and performs exactly as characterized in the

paragraph above. Note that when L ≤ K, mgrep effectively builds a single DFA for the pattern and so, not surpris-

ingly, is very fast. egrep’s O(1) expected-time algorithm scans a character every 1.6µs as long as its cache does

not overflow frequently. This happens only when the pattern’s deterministic finite automaton has a large number of

states and many of them are reached during the scan, e.g., p.... f = p.4 f. Such patterns are quite infrequent, but

when they are used, egrep’s performance becomes worse than sgrep’s as shown in the last two patterns of Table 1.

The expected time complexity of the standard state-set simulation is significantly better than its O(PN) worst-case

complexity suggests. sgrep consumes between 3Sµs and 7Sµs per character scanned where S is the average

number of states visited when advancing its state set. The size of S is generally much less than P and it depends on

the degree of alternation in the vicinity of the start state. The size of S for several patterns is shown in Table 1.

PATTERN mgrep (M,X) egrep sgrep (S)��������������������������������������������������������������������������������������������������������
print f 0.9 (1,0) 1.6 4.5 (1.06)

print f| while| else 2.1 (2,2) 1.6 11.5 (4.11)

(print f| while| else) * 2.7 (2,4) 1.6 19.0 (6.11)

[a − z][a − z0 −9] * 0.9 (1,0) 1.6 14.5 (2.30)

p.20 f 2.1 (2,2) 12.3† 7.0 (1.57)

[a − z].6 f 0.9 (1,0) 21.4† 19.8 (3.43)
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† - Time is 1.6 for p.15 f and [a − z].5 f.

TABLE 1. Scanning speed of three algorithms in µs per character.

In practice it is the expected time complexity of the underlying algorithm that determines a tool’s empirical per-

formance. Thus while our algorithm represents a worst-case improvement over the sgrep algorithm, mgrep’s per-

formance in practice demonstrates that it is the most effective for small patterns. This is because mgrep’s expected

scanning speed is Θ(P/ K) while that of egrep is usually Θ(1) and that of sgrep is Θ(S) where S and P/ K are

incomparable. As a consequence, mgrep is guaranteed to be superior to egrep only for patterns with less than 14

leaves, and sgrep only for patterns with less than about 40 leaves. However, mgrep’s performance is independent of

the structure of the pattern and so does not exhibit the explosive behavior of egrep on some types of patterns. This

fact also implies that mgrep is frequently faster than sgrep on patterns with more than 40 leaves.
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6. An Open Problem

The ‘‘Four Russians’’ paradigm has provided algorithms for sequence comparison and regular expression pat-

tern matching that are superior in the worst case. The approximate regular expression matching problem, also

known as regular order correction [WaS78], involves the fusion of sequence comparison and exact pattern matching

concepts. For this problem, the node-listing algorithm of [MyM88] has a structure that may lend itself to modulari-

zation as in this paper. Can the ‘‘Four Russians’’ paradigm be successfully applied to approximate regular expres-

sion pattern matching?
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