A Sublinear Algorithm for Approximate Keyword Searching1

Eugene W. M yers2

Abstract. Given arelatively short query string W of length P, along subject string A of length
N, and a threshold D, the approximate keyword search problemisto find al substrings of A that
align with W with not more than D insertions, deletions, and mismatches. In typical applica
tions, such as searching a DNA sequence database, the size of the "database" A is much larger
than that of the query W, e.g., N is on the order of millions or billions and P is a hundred to a
thousand. In this paper we present an algorithm that given a precomputed index of the database
A, finds rare matches in time that is sublinear in N, i.e. N¢ for some ¢ < 1. The sequence A
must be over a finite alphabet =. More precisely, our agorithm requires O(DNPV() [og N)
expected-time where e = D/ P is the maximum number of differences as a percentage of query
length and pow(€) is an increasing and concave function that is 0 when € = 0. Thus the algo-
rithm is superior to current O(DN) algorithms when € is small enough to guarantee that
pow(g) < 1. Asseenin the paper, thisistrue for awide range of €, e.g., € up to 33% for DNA
sequences (| Z| =4) and 56% for proteins sequences (| Z| =20). In preliminary practical
experiments, the approach gives a 50- to 500-fold improvement over previous agorithms for
problems of interest in molecular biology.

Key Words. Approximate match, Dynamic programming, Index, Word neighborhood

0. Introduction

Given arelatively short query string W of length P, along subject string A of length N, and a
threshold D, the approximate keyword search problem is to find all substrings of A that aign
with W with not more than D insertions, deletions, and mismatches. More precisaly, if &(V, W)
is the edit distance between V and W, and if A[i..j] denotes the substring of A consisting of its
i through j ™ characters, then the problem is to find all pairsi, j such that 3(W, A[i..j]) < D.
For this problem, we say that the maximum mismatch ratiois€ = D/ P and that we are searching
A for e-matchesto W.

This problem has been much studied. Sellers[Sel80] presented the obvious O(PN) algorithm
as a dight variation of the classic dynamic programming algorithm for the sequence vs.
sequence comparison problem (here we are comparing a sequence vs. substrings of the other).
! This work was supported in part by the National Institutes of Health under Grant RO1 LM04960-01 and the Aspen Center for Phy-
sics.

2 Department of Computer Science, University of Arizona, Tucson, AZ 85721, U.SA.

In roughly the same time frame, Ukkonen and Myers [Ukk85a,MyM86] both reported practical
and smple O(DN) expected time algorithms. Not long thereafter, Landau and Vishkin [LaV86]
arrived at an O(DN) worst case algorithm that required O(N) space. At about the same time
Myers [Mye86a] presented an algorithm with the same worst case time complexity but which
required only O(D?) space. Recently, Galil and Park [GaP89] have reported another O(DN)
worst-case time a gorithm that takes O(P?) space.

With the advent of applications such as those in molecular biology where the database will be
massive, e.g. N in the billions, the need for algorithms that are less than linear in N is becoming
of paramount importance. Recently, Chang and Lawler [ChL90] devised a method that takes
O(DN log P/ P) expected-time when the threshold D islessthan P/ (log P +O(1)). It does so
by quickly eliminating stretches of the "database" sequence A where a match cannot possibly
occur. They term their algorithm sublinear in the sense of Boyer and Moore [BoM77], i.e., cN
characters of A are examined where c < 1. Note however, that the algorithm still takes time
linear in N and that as P gets larger the stringency of a match must be tightened as € must be less
than 1/(log P +O(1)).

In this paper we present an algorithm that given a precomputed index of the database A, finds
rare matches in time that is truly sublinear in N, i.e. N® where ¢ < 1. More precisely, our algo-
rithm requires O(DNP™(®) |og N expected-time where pow(¢) is an increasing and concave
function that is O when € = 0. Thus the algorithm is superior to the O(DN) agorithms when € is
small enough to guarantee that pow(g) < 1. For example pow(¢€) isless than one when € < 33%
for | Z| =4 (DNA alphabet), and when € < 56% for | Z| =20 (Protein alphabet). Figure 4 on
page 9 precisely plots the curve for several choices of | 2| Apart from the fact that our algo-
rithm is "truly” sublinear, it aso has the advantage over the Chang and Lawler algorithm that the
degree of sublinearity just depends on € and not on P. On the other hand, we require a precom-
puted O(N) space index structure, whereas their method is purely scanning based, requiring only
O(P) working storage. The bounding argument used in proving the expected complexity of our
algorithm is rather crude. Consequently, performance in practice is much superior. In prelim-
inary experiments, the approach appears to represent a 100- to 500-fold improvement over the
O(DN) search algorithms for problems of interest in molecular biology.

1. Overview

In this overview, we sketch the basic concepts and outline the algorithm embodying our
result. The various sections of the paper then embellish upon the individual components.

The agorithm assumes that an index for the sequences in the database has already been con-
structed. An index for a large text is a data structure that allows one to rapidly find al
occurrences of a given query string in the text. In our method, queries will al be of length T =
log| 5| N. Thus, each query can be uniquely encoded as an O(N) integer, and we can store the
results of all possible queries (which are lists of indices where the corresponding strings of size T
appear in A) in an O(N) table. This simple structure can be built in O(N) time and 2N words of
space as shown in Section 2.

Let d(V, W) be the edit distance between V and W. Let the D-neighborhood of a string W be
the set of al strings distance less than or equa to D from W, i.e, Np(W) =
{V:0(V,W)<D}. Letthe condensed D-neighborhood of W be the set of all strings in the
D-neighborhood of W that do not have a prefix in the neighborhood, i.e., Np (W) ={ V: V in
Np (W) and no prefix of Visin Np (W) }. One way to find all approximate matches to W is to
generate every string in the condensed D-neighborhood of W, then, for each such string, to find
the locations at which the string occurs in the database using an index. Each such location is the
leftmost position of an approximate match to W. The obvious problem is that as W or D become
large the number of stringsin Np (W) quickly explodes, making the standard O(DN) algorithms
superior. However, for strings Wwhose length is T =log 5| N, the following are true:

Section 3: There exists an algorithm to generate the strings in Np (W) in lexicographical order
in O(DNPO(®)) worst-case time. The algorithm involves computing rows of a
dynamic programming matrix in response to a backtracking search that essentially
traces atrie of the wordsin Np (W).

Section 4: | Np (W) | < NPE) where pow(e) = log 5 (c+1)/(c—1) + € log|zc + eandc
=gl +V1+e72,
Section 5 Using the simple index described above, the algorithm above can look up the loca

tions of these strings at no additional overhead, and under the assumption that A is
the result of Bernouiilli trials, finds O(NP°(€)) matches in expectation.

Therefore, for small strings the strategy of generating all words in the neighborhood of the
query is effective for sufficiently small distances. To extend this strategy to larger queries
requires the following observation detailed in Section 6. Consider dividing the query W in a
binary fashion until all pieces are of size log| 5; N. To model the various pieces, let W, for a [
{0, 1} be recursively defined by the equations: W, = W, W = first_half_of(W), and Wyq =
second_half_of(Wy). The following lemma follows from a simple application of the Pigeon-
Hole Principle.

Lemma: If W alignsto astring V with not more than D differences, then there exists a word o
such that for every prefix B of a, Wpg aligns to a substring Vg of V with not more than
| D/ 2!Pl] differences. Moreover, Vg, is a prefix or a suffix of Vg according to
whether aisOor 1.

This suggests that we can efficiently find approximate matches to W by first finding approximate
matches to the words W, of length T and then verifying that Wp approximately matches for pro-
gressively shorter prefixes 3 of a. At each stage, the string in question is twice as large and
twice as much distance is allowed in the match, but the number of matches found drops hyperex-
ponentially except where the search will reveal adistance D match to W.

Suppose for simplicity that the length of W, P equals 2KT for some value of K. For d =
| D/ 2K |, we begin by generating the words in Ny (W,) for each of the 2K words W,, of length
T. From the above this takes O(DNP¥(®)) total time and delivers this many d-matches. We
then see if these d-matches can be extended to | D/ 2 ~* | -matches to the words W of length

-3-

2T. This step requires envisioning the result of the word generation lookups as delivering paral-
lelogram shaped regions of a dynamic programming matrix or edit graph. All d-matchesto a T-
word of W are guaranteed to lie in one of these paralelograms. To find matches to 2T-words it
suffices to do a dynamic programming calculation over a 2T-by-2d parallelogram about each
parallelogram of a T-word ‘‘hit”’. At the k™ stage of this process, the number of matches is
reduced by a factor of 1/N2‘(2~PW(e)) - Thys while the time to extend matches grows by a fac-
tor of 4 at each stage, thisis overwhelmed by the reduction in the number of surviving matches.
In the end, the total time consumed in expectation is O(DNP*¥(®) jog N + HDP) where H isthe
number of matches to W found.

Note that our algorithm’s expected time complexity is based on the assumption that the data-
base is the result of random Bernouilli trials. In this case its expected complexity is
O(DNP¥(#) |og N). However, if the database is not random but preconditioned to have H
matches to W, then O(HDP) time will be spent on each of these matches. Consequently, our
algorithm does not improve upon the O(DN) algorithm for the sequence-vs.-sequence problem.
Nonetheless, for searching problems where the database is large and ** sufficiently’’ random, this
algorithm can find near matches with great efficiency and no lossin sensitivity.

2. A Simple Index Data Structure

Anindex for alarge string A=aja, - - - ay, is adata structure that allows one to efficiently
locate all occurrences of a shorter query string within A. In this work, a very simple technique
based on integer encodings can be used because all queries are of length O(log N) and we
assume that the underlying alphabet = is fixed and finite. From here on, let T = log, 5y N and
assume all queries are of length between T-D and T + D whereD < T.

Consider an arbitrary assignment (bijection) ¢ of the symbols in X to the integers O through
| Z] 1. @ is naturaly extended to strings with the recursive definition @(Wa) =
| Z] W) + @(a) where Wis a string over & and a is a symbol in 2. Essentially @(W) is the
integer obtained when the string is viewed as a radix-| =| number. For n O [0, | Z|T -1] O
[0, N-1], let Bucket(n) = {i:@(@ajaj+1 - aj+1-1) = n}. That is, Bucket(n) gives the
indices of the leftmost character of each occurrence in A of the unique T-symbol string whose
@-codeisn. Thissimple array of setsis our index structure.

Under the assumption that A is the result of equi-probable Bernouilli trials, one can use
Bucket to find all the, say H\,, occurrences of a query V within Ain O(T +DH\/) expected time
asfollows. If Visof length U < T then the leftmost indices of the occurrences of V are exactly
the contents of Bucket(k) for k O [@(V)] Z|T 7Y ,(e(V) +1)| Z|T~Y -1]. In this case, it takes
time O(U) to compute the integers defining the interval of codes and O(H\/) timeto list the Hy,
occurrences of Vin A. Thus the total timeisless O(T +DHy,) as claimed. In the case where U
is greater than T one knows that the occurrences of V must be a subset of those in
Bucket (¢@(VT)) where V1 denotes the string consisting of the first T symbols of V. It takes O(T)
time to compute the @-code, and then it suffices to ssimply check whether the remaining U - T
symbols of V match at each of the locations in the given bucket. While potentialy quite

inefficient in the worst case this step works extremely well in the expected case where A is the
result of equi-probable Bernouilli trials. Under this assumption the average number of coin-
cidental matches to V1 is one and on average only 1/(] Z| —1) additional symbols of such coin-
cidental matches to V1 need be checked before they are discovered not to match V. Thus in
expectation only a constant amount of time is spent investigating locations that do not match V.
Moreover, O(U —T) = O(D) time is spent checking additional characters at those locations that
do match V. Thusonly O(T +DH\,) expected timeis spent in the casewhere U > T.

Producing the index is also quite simple. First @; = @(ajaj+1 - - - aj+1-1) is computed for
every index i. This is easily done in an O(N) sweep of A using the observation that ¢; =
ai| 2" + |@i+1/| Z||. Since the numbers @; are al in the range [0, N —1], asimple O(N)
radix sort produces the list Indices = <iq,ip, - -+ in> such that G, <P, Finally, the array
Header[n] = min{ j : Qingices;jj =N} is produced in an O(N) sweep of Indices. The arrays,
Indices and Header, together provide a realization of the Bucket sets. Namely, Bucket(n) =
{ Indices[j] : jO[Header[n], Header[n+1]-1] }. Thus our index occupies O(N) space
and takes O(N) time to construct.t

In the treatment immediately above two details were overlooked that require attention. First
was the statement that T be set to log|) N. T must be an integer, and so in fact one must round
the logarithm either up or down. Rounding up implies that as much as O(| Z| N) time and space
are required to construct the index. Rounding down implies that while only O(N) space is used,
long queries may take O(T + | Z| + DH\/) expected time because the average bucket size can
approach | Z| If the cardinality of Z isfairly large (e.g. 20 for protein sequences) then both of
these alternatives are undesirable in practice. A simplerepair isto round up, i.e., T=[log s NT,
but to use only the first R=[log, N - [log| 5N]log, | Z| | hits of the last symbol when com-
puting a code. Specifically, if Wis of length T —1 then the modified encoding p of Wa is given
by p(Wa) = @(W)2R + @(a) mod 2R. The treatment for constructing the index is as before
except that @; isreplaced withp; =p(ajaj+1 - - aj+7-1). With this choice of encoding, there
are no more than N codes and there are no less than N/ 2. Thus the structure takes ©(N) time
and space to construct independent of the size of %, and the average bucket size is between 1 and
2 so that searches using the p-code on the first T symbols of a query V will take no more than
O(DHy/) expected time. Note that the T symbol of V will have to be compared against its
corresponding symbol for each bucket entry, but this does not add to the asymptotic complexity.

The second detail is that @; (p;) is not properly defined for i > N-T+1 (N-T). This can
rectified by simply adopting the convention that for i > N, a; is any symbol not equal to ay.
This guarantees that the integer codes for indices N—-T +2 to N are al distinct and thus contri-
bute at most one extra element to any particular Bucket set. Thus the expected case analysis for
searching still holds, athough one must additionally check each index in a bucket and reject it if
it isgreater than N — U where U isthe length of the query.

TThe structure requires exactly 2N + O(1) integersin the range O to N, and may be built with o(N) additional space with some very
careful *‘in-place’’ manipulations. It isthus avery space efficient and practical index.

3. Generating Word Neighbor hoods

The traditional sequence comparison of word W = wiw, - - - wt with another word V =
V1Vy - - Vy involves the computation of a dynamic programming matrix L[0..U, 0..T] where
L[i, j] =0(Vi, W;). The notation V; denotes the prefix consisting of the first i symbols of V.
Given a vector R[0..T] and symbol a in alphabet Z, let row(R, a) be the vector S[0..T] such
thata S[0] = R[0]+1 and for j>0O, S§j] = mn{ g j-1] +1, R[]] + 1,
R[j-1] + (if a=w; then 0 else 1) }. Itiswell knownthat L[0] =<0, 1, 2, ..T> and for
i >0, L[i] = row(L[i-1], bj). Moreover, an induction reveals that entries in the matrix L
increase by 0 or 1 along diagonals (e.g., L[i, j] =L[i—-1,j-1] + {0,1}),andby -1,0, or 1
aongrows(eg., L[i, j]=L[i, j—-1] + {-1,0, 1}).

a a b a a
L —b a a
a——a

—b a b b a a
L a a

a

Figure 1: Triefor N (abbaa).

Consider the problem of generating the words in the condensed D-neighborhood of word W.
Imagine atrie of all the words in this neighborhood and imagine traversing or delineating it with
a backtracking search that explores the space of all words in lexicographical order. Figure 1
gives the trie for the neighborhood N (abbaa) over the alphabet £ = {a, b}. Note that all ver-
tices of the trie have outdegree equal to either | Z|or 1. The forthcoming algorithm of Figure 3
essentially provides a constructive proof of this fact. It also proves that every word in the con-
densed neighborhood is exactly distance D from W. More directly, this follows by observing
that if a more closely matching word were in the neighborhood, then the prefix obtained by
deleting its last symbol is also in the neighborhood. As the search generates words it computes
the corresponding rows of the dynamic programming matrix of the current word versus W. It
uses these rows to direct the search as follows. If aword is generated for which the last entry of
the most current row is D, then aword in the condensed neighborhood has been reached. On the
other hand, if all entries of a row are greater than D then the corresponding word and all exten-
sions of it cannot be in the condensed neighborhood of W, and the search can backtrack. Other-
wise there is some extension that is in the neighborhood and the search proceeds forward. The
algorithm of Figure 2 details such a search.

array L[0.. T+D +1, 0.T]
vector V[1..T+D +1]

1. procedure GEN(i)

2. { foralx do

3. { L[i] « row(L[i-1], a)

4, V[i] - a

5. if L[i, T] < Dthen

6. V[1..i]isinNp (W).

7. elseif min {L[i, j]} < Dthen
8. GEN(i +1)

0.

10. }

11. L[0] = <0,1,2, ..T>
12. GEN(1)

Figure 2: Neighborhood Generator Algorithm

The correctness of this procedure requires several observations. First, the smallest entry of
row(R, a) is never smaller than the smallest entry of R and so it is correct to backtrack when a
row is reached for which all entries are greater than D. Second, if a row contains an entry not
greater than D then it contains an entry equal to D because successive entries in a row differ by
-1, 0, or 1. Moreover, if the largest index of such an entry is j, then adding the suffix W =
Wj+1Wj+1 -+ - Wt givesaword in the neighborhood, and this justifies the decision to search for-
ward. Finally, the length of alongest word in the neighborhood is bounded by T +D and so the
sizesof L and V are adequate.

The agorithm of Figure 2 spends O(] Z| T) time per cal to GEN and the number of callsis
the number of characters in the trie of the neighborhood. The size of the trie is bounded by
O(TZ) where Z is the number of words in the neighborhood. Thus the algorithm has a worst
case complexity of O(| Z| T2Z). One can do quite a hit better, namely O(TZ) time, by better
utilizing the information in the matrix rows.

Note that as the search progresses forward through the trie one must compute a row whose
minimum entry is D before computing a row whose minimum entry is greater than D. Consider
the case where such a row is reached and it is further true that the last entry is not D. In this
case, the only extensions of the currently generated word that are in the condensed neighborhood
are those that perfectly match the appropriate suffixes of W. That is, if the j! entry is D, then
adding W! gives a word whose distance from W is D and this is the only way to get a word this
close to W. The one difficulty is that while the word may be in the D-neighborhood, it may not
be in the condensed neighborhood. For example, when aba has been generated in the example
of Figure 1, the current vector is< 3, 2, 1, 1, 1, 2> and the possible extensions are the suffixes
baa, aa, and a of W = abbaa. But abaeaa is not in the condensed neighborhood as abaea is. In
essence, of the available suffix extensions, one must choose only those that do not have another
asaprefix.

This difficulty can be efficiently handled with the failure links of the Knuth-Morris-Pratt con-
struction [KMP77] used for exact keyword search. For a word V, let fail\,(0) = 0 and for

-7-

jO[1,|V]] letfaily(j) =max{ k: Vy is a suffix of V; }. An array recording the values of
faily can be computed in time linear in the length of V. For our problem, let Jump[T —j] =
T - faily=(j) where WR is the reverse of W. For index j, the indices Jump[j],
Jump[Jump[j11, Jump[Jump[Jdump[j]]], --- are exactly those whose suffix extensions are
prefixes of j's suffix extension. Thus to check if j's extension gives a word in the condensed
neighborhood simply requires checking the above sequence until an index whose entry is D is
reached (in which case regject) or until index T is reached (in which case accept). These checks
areredlized in lines 8 to 15 of the algorithm of Figure 3. In order to only spend O(T) time, the
indices are checked in decreasing order and Quick, a **short-circuited’” version of Jump, is built
on the fly. After index j is processed in lines 10 to 12, Quick[j] either contains the smallest
index on the Jump-chain from j whose entry is D, or T if there is no such index. This permits
index j to be checked for suffix extension in constant timein lines 13 and 14.

array L[0..T+D, 0..T]
vector V[0..T +D], Jump[0..T], Quick[O..T]

1. procedure GEN(i)

2 { foralX do

3 { LJ[i] « row(L[i-1], a)

4. V[i] - a

5. if L[i, T] = Dthen

6. V[1.i]isinNp(W).

7 elseif min {L[i, j]} = Dthen

8 QuIck[T] < T

9. forj - T-1,T-2, --- 0do

10. { Quick[]] « Jump[j]

11. if L[i, Quick[j]] # D then

12. Quick[j] « Quick[Quick[j]]
13. if Quick[j] = TandL[i, j] = Dthen
14. V[1.iJeW isin Np (W).

15. }

16. else

17. GEN(+1)

18. }

19. }

20. Compute Jump[0..T].
21. L[0] -~ <0,1,2,..T>
22. if D = Othen

23. W is the only member of Np (W).
24. ese
25, GEN(1)

Figure 3: Refined Neighborhood Generator Algorithm

Figure 3 gives the improved variation of the algorithm of Figure 2. The search is more
efficient because it stops as soon as a row whose minimum is D isreached. Each iteration of the
loop of lines 2 to 18 takes O(T) time provided the concatenation in line 14 is not actually per-
formed. It is shown in Section 5 that it is indeed unnecessary to actually concatenate the two
strings. An iteration is either charged to the one or more words in the neighborhood reported in
lines 6 or 8 to 15, or if line 17 is executed than the iteration is charged to the vertex of the trie
labeled with the current word. But there are only O(Z) such vertices as each has outdegree | Z|>
1. Thusthetotal time spent in the algorithm is O(TZ).

A fina improvement from O(TZ) to O(DZ + T) time is possible by observing that only a
portion of the matrix L need be computed. As observed in several earlier papers
[Ukk85b,Mye86b], only those entries L[i, j] for which | i —j| < D can have avalue less than D.
Thus all the row queries of the algorithms above can be answered by only computing these por-
tions of each row. Since this portion consists of at most 2D + 1 entries, the time for each execu-
tion of lines 3-18 can be reduced to O(D) worst case time. This includes the extension step of
lines 8 to 15 because it need only operate over the relevant indices. The O(T) term remains for
the computation of the Jump-vector.

4. Hit Probabilities and Neighbor hood Sizes

In this subsection bounds are determined on the number of words in the condensed D-
neighborhood of a word of length T, and on the probability of matching one of these words at a
given position in a large and random database. Formally, let Z(T, D) = max{ | Np (W)| : Wis
aword of length T }. Further let Pr(T, D) be the maximum of > | Z|‘|V| over all words

V 0 Np (W)
W of length T. If adatabase is the result of equi-probable Bernouilli trials over alphabet 2, then

| =]~ "M'is the probability of matching word V at a given position in the database. Thus Pr (T, D)
is the maximum probability of matching a word in a condensed D-neighborhood of a word of
length T at a given position in the database. Call Pr the hit probability and observe that if the
database is of size N then the number of occurrences of words in a neighborhood, or
equivalently, the number of hitsisN Pr(T, D). Expressions that bound both of these quantities
from above are derived below.

Every word V in the condensed D-neighborhood of a word W is exactly edit distance D from
W as noted near the start of Section 3. Thus a very crude bound on Z(T, D) is to count the
number of D-operation edit scripts on an arbitrary word of length T. This is an upper bound
since some distinct scripts will produce exactly the same word, and others produce words not in
the neighborhood. For example, if W = abbaa, then deleting the fourth and fifth symbol produce
the same word (abba) and inserting a b after the third symbol produces a word (abbbaa) that is
not in N (abbaa) because abbba is. However, in making such an estimate one can avoid count-
ing obviously redundant scripts that, for example, delete a symbol and insert another, as opposed
to simply substituting the inserted symbol. Specificaly, it suffices to consider only normalized
scripts that may (0) insert some number of symbols before the first symbol of W, and at each
position/symbol of W may either (1) do nothing, (2) delete the symbol, (3) insert some number

-9-

of symbols after the position, or (4) substitute a different symbol and insert zero or more sym-
bols after the position.

Let S(T, D) be the number of D-operation edit scripts that adhere to restrictions (1) to (4)
above. These scripts do not allow one to insert symbols before the first character of aword (res-
triction 0 above). Lemma 1 below presents arecurrence for Sand abound on Zinterms of S.

Lemma 1.
1 if D=0
23] ifD=1ladT=1
ST, D)z{ (2| 2| -1)| Z|°~? ifD>1land T=1

D)
S(T-1,D) + §(T-1,D-1) + (2| | -1) -le ~1S(T-1,D-j) otherwise
J:

D .
Z(T,D)= % | Z/S(T, D))
J:

Proof. S(T, 0) = 1 asthere is only one empty edit script. In general, note that at a given posi-
tion there is 1 script that deletes the symbol there, | Z|' scripts that insert j symbols, and
(I =] -1)| =)'~ scripts that substitute a non-identical symbol and then insert j — 1 new symbols.
Thus S(1, 1) is 2| Z| because one may perform one delete (1 script), perform one substitute
(| Z| =1 scripts), or perform one insert (| Z| scripts). For S(1, D) for D > 1, there is only one
position at which to perform D operations and deleting is not a possibility. Thus one may per-
form D inserts (| Z|° scripts) or asubstitute and D - 1inserts (| Z| -1)| =|P ~? scripts). Finally,
in the general and recursive case one may either (1) do nothing at the first position and perform
D edits at the remaining T — 1 positions (S(T -1, D) scripts), (2) delete the symbol at the first
position and perform D —1 edits at the remaining T —1 positions (S(T -1, D —1) scripts), (3)
insert j symbols after the first position for j 0 [1, D] and perform D —| edits at the remaining
T -1 positions (| =)' S(T -1, D —j) scripts), or (4) substitute a non-identical symbol and insert
j —1 symbols at the first position for j [J [1, D] and perform D —j edits at the remaining T -1
positions (| Z| -1)] Z)) "1 S(T -1, D —j) scripts).

Certainly Z(T, D) is bounded from above by the total number of normalized scripts. The
only scripts not counted by S(T, D) are those with inserts before the first symbol. The number
of normalized scripts where j [0 [0, D] symbols are inserted before the first symbol is
| Z|j S(T, D —j). Thus Z(T, D) is bounded by the summation given in the statement of the

Lemma -

To bound the probability Pr, a recurrence analogous to that for N is developed. In Lemma 2
below, Q(T, D) is the sum of the probabilities of matching each word generated by a normal-
ized D-operation script that does not insert before the first character. Since different scripts gen-
erate the same word, its contribution may be summed several times, and so Q is not necessarily
lessthan 1. It isabound and not a probability.

-10-

Lemma 2.

| Z|" ifD=0
(35| -1)/| 5| ifD=1ladT=1
QUT. D)=y (2151 -1y 3 ifD>1adT=1

D
Q(T-1,D)/| 2] +Q(T-1,D-1) +j§1Q(T-1,D-J’) otherwise

Pr(T,D) < Eo Q(T,D-j)
j=

Proof. The argument mimics exactly the proof of Lemma 1 except that now one multiplies by
1/] Z| for each character that must be matched. For example, for thecase T =1 and D > 1,
each of the | | insertion scripts produce a word that matches with probability | Z| P, and each
of the (| Z| -1)| Z|P ~1 scripts that substitute and insert produce words that also match with this
probability. Thus the sum of the probabilities is | Z|P/| Z|° + (| | -1)| Z|P /) =P =
(2] Z] -1)/] £} As the second and final example, consider the recursive formula for Q. If one
does nothing at the first position then it will match with probability 1/|] Z| and the extensions,
words obtained by performing D operations on the T — 1 other positions, will match with proba-
bility less than Q(T -1, D). This yields the Q(T -1, D)/| Z| term in the recurrence. If one
deletes the first symbol then one must match a word obtained by performing D — 1 operations on
the other T — 1 positions and this happens with probability lessthan Q(T -1, D —1). Inserting |
symbols gives | Z|j new symbols which along with the first position match with probability
1/| £ *1. The extensions match with probability less than Q(T -1, D —j) for atota contribu-
tion of Q(T-1, D —j)/| Z| Finaly, the substitute and j — 1 insert case yields a contribution of
Q(T-1, D -j)(Z| -1)/| Z|to the bound. Summing the four cases and doing a bit of algebraic

simplification gives the central recurrence of the Lemma. -

With these recurrences in hand, the bounding expressions for Z and Pr given in Lemma 3 can
easily be verified. Slightly tighter bounds for Pr are possible but not necessary since their use
does not improve the complexity analysis which is dominated by the expression for Z.

Lemma 3. Let Bnd(T, D, ¢) = (z—j)TcD| Z|P. Fordlc > 1,
N(T, D) < Bnd(T, D, c)Z(T, D) < C—lend(T, D, c)

C
c-1

Q(T, D) < Bnd(T, D, ¢)/| £|Pr(T, D) < Bnd(T, D, c)/| Z|T
Proof. A simple induction using Lemmas 1 and 2 suffices to verify the correctness of the

bounds. -

In the analyses of the algorithmic components that follow, T will be log| 5N or a multiple
thereof, where N is the size of the database being searched. Letting € = D/ T be the permissible
mismatch ratio, Lemma 4 below shows that both the Z and Pr quantities are proportional to a
power of N that isaconcave increasing function of €.

-11-

Lemma4. For T=log;sNandD < T,
Z(T, D) < 2NPOW(D/T) gnd pr(T, D) < 2NPW(D/T) -1

where pow(€) = log 5 g J_rl

T +elog)zc + gandc=¢71 + V1+e 2

Proof. When T =log| 5N and € = D/ T, some algebraic manipulation shows that Bnd(T, D, c)

= Bnd(log| 5N, € log; 5N, ¢) = N%(:©) where a(e, c) = Iog|z|gt
straightforward application of calculus further shows that the value of a (e, ¢) is minimized

1
+ ¢lo c+e A
1 d| 5|

when ¢ = €71 + V1+e72. In the statement of the lemma we let pow(e) = a(e, c) for this
choice of c. Since € ranges from O to 1, it follows that ¢ ranges from 1+ V2 and up, and thus
¢/ (c-1) isadways less than 2. Thus it follows that Z(T, D) < 2NP?(®/T) " The bound for Pr

follows easily from the final observation that | =|'%=N = N. -

Figure 4 shows a plot of pow(¢g) for X of sizes 4 and 20. Note that pow(e) < 1 for € < .3303
and € < .5671 for these two choices of | Z| Further note that the function is concave and for a
fixed choice of c, a(g, c) is an affine function of € that bounds pow(€) and is a tangent of the
curve. For example, when | Z| = 4, pow(g) < a(g, 6.520) = .2230+2.352¢. When | | = 20,
pow(e) < a(e, 3.971) =.1718+1.460¢. The bounding lines in these two examples are plotted
in Figure 4. The value of ¢ chosen for each line was that for which a (€, ¢) = 1 exactly when
pow(g) = 1.

2=4 2=20

33% 57%

0.1 0.2 0.3 0.4 0.5 0.6 0.7

Figure 4. Plot of pow(g) and Sample Bounding Lines

As noted in Section 2, T must be chosen to be an integer and so, in general, one must round
log| 5y N up or down. Considering | | as a factor in the complexity, rounding up can increase
Z(T, D) by afactor of | =|P*(€) and decrease Pr(T, D) by the same amount. Rounding down
can decrease neighborhood size but increase match likelihood by the same factor. While in
theory this is not important since Z is assumed to be of a fixed and finite size, in practice we
choose to round up for several reasons. Aswill be seen in the next section, this has the effect of
increasing neighborhood generation time some (Z is larger) but decreases the space consumed by

-12 -

the record of positions matched in the database (Pr is smaller). So our first reason to round up, is
that we prefer to trade time (which is unbounded) for space (which is bounded). Secondly, the
next phase of the algorithm requires O(Dlog N) time per match versus the O(D) time spent per
neighborhood word. Thus reducing the number of matches is more desirable than reducing the
number of words generated. Finally, we have shown in Section 2 that we can conveniently
accommodate rounding up for the index structure without increasing the time or space complex-
ity of thisfacet. With this said, we henceforth assume | Z|is a constant when expressing asymp-
totic complexity claims.

5. Finding Hitswith the Index

This subsection deals with the details of combining word generation with index lookups and
characterizes the complexity and results of this first phase of the total algorithm. Consider the
following statement of this first phase problem. One is given a database A = a;a, ---ay, a
word W of length T = [log;sN], and a threshold D. Let Scorew(i) =
min{ d(ajaj+1 - an, W) }. That is, Scorey(i) is the score of the closest word to W that

h>i

begins at position i of the database. Also let Hitsy,(D) ={ i : Scorey (i) <D }, i.e, the set of
al positions in the database where a word in the D-neighborhood of W begins. The task is to
compute Hitsyy (D).

The solution is to simply run the generator algorithm of Figure 3 and as each word is gen-
erated, to look up the indices of the left ends of all occurrences of thisword in A with the index.
This set of positions, {i: OV O Np(W), V = ajaj+1 - aj+v -1 }, IS exactly the desired
set Hitsy/(D). This follows because if Scorey, (i) < D then there is some word in the D-
neighborhood whose leftmost character is at index i, and certainly some prefix of thisword isin
the condensed D-neighborhood.

Looking up aword V in the neighborhood takes O(T + DH\,) expected time. Recall that the
O(T) term is for computing the @ (p) code, and that the O(DH\,) term is for verifying the Hy,
instances found in the relevant index bucket. If realized exactly as described above the time to
find al occurrences of all wordsin the neighborhood would thus be O(TZ + DH) expected-time
where Z is the size of the condensed neighborhood and H = | Hits\y(D)| is the number of hits.
However, the T-term is eliminated by noting that codes can be generated in paralel with the
neighborhood words. That is, as each character is added to the string V in Figure 3, the @-code is
easily updated using its defining recurrence, @(Va) = @(V)| Z| + ¢a). Moreover, for those
words that consist of concatenating the current word with a suffix of Win line 14 of Figure 3,
one does not need to explicitly perform the concatenation to do the lookup. If the current word,
V, is of length less than T, than consulting a precomputed, (T+ 1)-element table of the codes of
every prefix of W alows the needed code to be delivered in O(1) ti me.Jr Whatever suffix of W
remains is then used in checking for matches at each position in the appropriate bucket. Thus, as
promised earlier, al words, as well as their codes are effectively computed in O(DZ + T) worst-
case time and the appropriate buckets of the index are checked for hitsin O(DH) expected time.

t If in line 14 the neighborhood word is V[1..i]eW and i < T then we need the code for VeW[j+1..j+ (T —i)] and the remainder,
suffix Wi+ (T =D =2 must be checked against bucket positions (or suffix Wi *(T~1 in the case that the parameter R = 0 for the index
structure). But the needed codeis simply (V)] Z|7 " + @(W[j +1..j+(T —i)]) and with the table of codes of every prefix of W, the

-13-

Lemma 5. Given a precomputed index as described in Section 2, there exists an algorithm
to compute Hitsyy (D) in O(DNPY(®/T) + T) expected-timeand H < 2NPOW(P/T)

Proof. From Lemma 4 it follows that for a database of size N, H is on average Pr(T, D) x N <
2NPOW(DIT) / 1-pow(DIT) \where k = | Z|T ~'°9=N 0 [1,| =|]. Thus the result on the size of H
follows. Lemma 4 also asserts that Z is O(NPW(P/T)) " Byt then the result immediately follows
as the procedure just described takesO(D(Z +H) + T) expected-time. -

Aswill be subsequently seen, we will also need to solve a "reverse" version of the first phase
problem. Specifically, let Scorew (i) = hmin_{ o(apan+1 -+ -aj, W) } and let Hitsyw(D) =

<1

{i:Scorey(i) <D}. These quantities are analogous to their unbarred counterparts above
except that they address where matches end as oppose to where they begin. Computing
Hitsy (D) requires a simple modification of the word generator and index lookup. The key
observation is that Hitsw(D) ={ i : OV O Np(WR), VR = a;_y+1@i-jvj+2 - - - & } where
WR, the reverse of W, iswtwy_; - - - wy.™ Thusit suffices to generate the condensed neighbor-
hood of the reverse of W and then lookup the positions at which the reverse of the neighborhood
words match A. The one subtlety is that we have an index for left-to-right matching and we can-
not afford the time to reverse a neighborhood word. Thisis easily solved by computing the "for-
ward" codes of the reverse words as they are generated by observing that @((Va)R) = @(aV) =
o(a)] =V + (V). In addition, the "concatenation" problem for line 14 of Figure 3 can be
solved with the O(T) table of prefix codes in a fashion similar to that proposed above. Thuswe
can find the left end of a match to the reverse of a neighborhood word at no additional overhead.
For each such location i at which VR matches, we need simply record in Hitsy (D) the right end
of the match, i +| V| —1.

6. Extending Hits

We now turn to the problem of handling a query W of length P > T = ﬂog| 2|N'| .
Throughout this section we will assume that P/T is a power of 2, i.e., P = 2KT for some K. The
case where it is not will be treated at the conclusion of this section. To begin, we review tradi-
tional dynamic programming approaches and their graph-theoretic interpretation as finding shor-
test paths in an edit graph. With this machinery we prove the decomposition Lemma described
in the overview. Finally, we show how to apply this lemma to finding all approximate matches
to W in the database A.

As noted at the start of Section 3, the comparison of word W against another word A can be
achieved with the computation of a dynamic programming matrix L[0..N, 0..P] where L[i, j] =

S(A;, W) =
min{ L[i, j-1]+1,L[i -1, j]+1,L[i -1, j-1] + (if aj=w; then O else 1) } for
i,] > 0. For the cases where i or | is zero, we have L[i, 0] = L[O, i] =i. From a graph-

code for Wk..h] issimply @(Wp) = (W1)| Z|"7K*+2, o
t Care must be taken here to realize that { VR : VONp (WR) } is not equal to N (W). On the other hand, equality does hold in the
caseof Np (W).

-14 -

theoretic perspective, we can also view the problem as follows. Given A and W, construct a
graph with vertices (i, j) foriJ[0, N] and jO[O, P], arranged inaN +1 by P + 1 grid or matrix
as illustrated in Figure 5. For vertex (i j) there are up to three edges directed out of it: (1) a
deletion edge to (i +1, j) (iff i < N), (2) an insertion edge to (i, j+1) (iff] < P), and (3) an
alignment edgeto (i +1, j+1) (iffi < Nandj < P). Intheresulting edit graph, all paths from
source vertex (0, 0) to sink vertex (N, P) model the set of all possible aignments between A
and W with the following simple interpretation: a deletion edge to (i, j) models leaving a;
unaligned, an insertion edge to (i, j) models leaving w; unaligned, and an alignment edge to
(i, j) models aligning a; and w;. If one weights deletion and insertion edges 1 and alignment
edges O or 1 according to whether a; equals w;, then the problem of finding a minimal cost
alignment between A and W is equivalent to finding a minimum cost source to sink path in the
corresponding edit graph. The correlation to the matrix L is that L[i, j] is the cost of the
minimum path from the source to (i, j). Since the edit graph is acyclic, the shortest paths to
each vertex may be computed in any topological order of the vertices using the recurrence
defining L.

The preceding treatment was for the problem of comparing all of A against all of W. For
approximate keyword searching, we seek substrings of A that align to W with less than D differ-
ences. In the respective edit graph, a d-path (i.e., a path of cost d) from vertex (i, 0) to vertex
(j, P), models an alignment between A[i +1..j] and Wwith d differences. Thus, we are seeking
paths from "row" O to "row" P whose cost is not greater than D. That is, in this version of the
problem, any vertex with j = O can be a potential source vertex, and any vertex withj = P, a
potential sink. We can accommodate this shift by ssimply changing the boundary for the
recurrence for L to be L[i, 0] =0, i.e, al values aong row 0 are set to zero. With this
modification it is easy to show that L[i, j] = mri\n{ O(A[h..i], W) }, the shortest path to (i, j)

from some vertex in row 0. Thus, a; is the right end of an approximate match iff L[i, P] < D.
In the treatment that follows, we will be computing the matrix L for a number of different query
words. Thus, we let F\y be the approximate match matrix for query W. We use F to denote
"forward", for there will also be occasion to view this problem in its reverse sense. Namely, let
Rwli, j] = mrin{ 5(A[i +1..h], W!) }, the shortest path from (i, j) to some vertex inrow P. In

this case, the recurrence for Ryy is by analogy seen to be Ryl[i, j] = min{ Ry[i, j+1]+1,
Rwli+1,j]+1, Rw[i+1, j+1] + (if aj+1=wj+1 thenOelse 1) } for i < Nand j < P.
The boundaries are given by R[N, j] = P—jand Ry[i, P] = 0. Notethat in thiscase, a;j +1
isthe left end of an approximate match iff R\y[i, 0] < D.

Let diagonal k of an edit graph be the set of vertices{ (i, j) : i =] = k}. Note that a d-path
that begins or ends in diagonal k must lie entirely between diagonals k —d and k +d as it requires
adeletion or insertion to move from one diagonal to another. In the algorithm that follows there
will be occasion to determine if there is a D-path from row 0 to row P lying between two diago-
nals k < h. Note that it suffices to apply either the forward or reverse recurrence over just the
vertices lying in the parallelogram shaped region between the diagonals, i.e., if the value a a
vertex between the diagonals depends on the value of a vertex outside the diagonals, simply

-15-

ignore that vertex’s contribution to the 3-way minimum of the recurrence. Let F\'j\’,h denote the
values of the forward recurrence when evaluated over just this region of the edit graph. Natur-
aly F\'j\’,h[i, j] is the value of a minimum cost path to (i, j) over al paths lying between diago-
nals k and h. Thus there is a D-path from row O to row P between diagonas k and h iff
RS "[i, 0] < D forsomei O [k, h], or iff F,"[i, P] < D for somei O [k+P, h+P].

We) Wo| Woo

/T R

— — - D/2-path
WlO NN NN e D/4-path

Wy Wiy N\

Figure 5. A Sample Edit Graph and Illustration for Lemma 6

With these preliminaries, we now proceed to the central lemma which we lever to efficiently
extend matches to subwords of W of length T, to approximate matches to al of W. Consider
dividing the query W in a binary fashion until all pieces are of size T =[log 5N (recall we are
assuming P = 2XT). To model the various pieces, let W, for o O {0, 1}" be recursively defined
by the equations: W, = W, Wyg = Wy [1.|Wq|/ 2] (the first haf of W), and Wy, =
Wy [|Wq|/2+1..| Wy|] (the second half of W,). Figure 5 illustrates the decomposition as
well as the proof of Lemma 6 below. Note that for a given length k < K, there are 2¥ distinct
labels o of that length and the strings W, are all of length 2K T = p/ 2K, Let P, = P/ 2! @
denote the length of W, and let D, = | D/ 2! | be the match stringency to W, required in
Lemma 6 below.

Lemma6. If Walignsto astring V with not more than D differences, then there exists aword a
such that for every prefix B of o, W aigns to a substring Vg of V with not more
than Dg differences. Moreover, Vg, is a prefix or a suffix of Vg according to
whether aisOor 1.

Proof. We show that under the hypothesis it follows that either Wy or W, aligns to a prefix or
suffix, respectively, of V with not more than | D/ 2] differences. Applying this observations
inductively givestheresult. If Walignsto V with not more than D differences, than asillustrated
in Figure 5 there is a source to sink path of cost D-or-less in the corresponding edit graph. The

-16 -

path passes through one or more vertices on row P/ 2. Consider the two subpaths consisting of
that part of the path from the source to itsfirst vertex in row P/ 2 and the part from its last vertex
inrow P/ 2 to the sink. By the Pigeon Hole Principle, one of these two subpaths must have cost
not greater than | D/ 2]. If its true for the first part, then simply observe that the subpath aligns
W, and a prefix of V. If itstrue for the later subpath, then there is an alignment of cost | D/ 2 |-
or-less between W, and a suffix of V. -

Note that the conclusion of Lemma 6 may be rephrased as: there exists alabel a such that for
every prefix B of a, W e-matches a substring Vg of V. This follows simply because for each 3
the mismatch ratio of the match between Wy and Vg is D /| Wp| =D/ 2/l | / (P/2IPl) <
D/ P = €. Moreover, while the induction of the proof yields the conclusion on progressively
smaller subwords, the Lemma gives the strategy for extending approximate matches to progres-
sively larger subwords of W. For example, if one finds an e-match to W11, then one checks
for an e-match to Wqy9; and if successful then one checks for an e-match to Wg;q, and so on,
until either one fails to match at some level or succeeds in matching all of W = W¢. If this
extension strategy is applied to al e-matches to al subwords W, of length T, then one is
guaranteed to detect all e-matchesto W by the Lemma.

The one difficulty in applying the extension strategy is that in aregion where there is a partic-
ularly stringent match, one can spend an excessive amount of time if one proceeds one match at
a time. For example, if Fy[i, P] = O, then it is guaranteed that F\y[itd, P] < d because
entries along a row or column of the dynamic programming matrix change by —1, 0, or 1. That
is, if there is a O-match at a particular position, then there are guaranteed to be 2D additional
matches in the immediate neighborhood. Moreover, since W exactly matches this location, then
W, matches at corresponding locations for every a. Each of these exact subword matches
implies D, matches immediately about them all of which if extended individually would
uncover the same matches at the level above. Extending each match of length T would result in
the O(D) matches to W being discovered O(DK) times. So clearly, one must accumulate the
matches at each level before proceeding to the next. Moreover, one must pursue extensions of
adjacent matches simultaneously as otherwise the O(D) matches at the upper level will be
uncovered O(D ?) times by the level below.

Let Fq ={i:Fw,[i, Pq] <Dg }, the set of positions at which an g&-match to W, ends.
Similarly, let Ry = {i: Ry,[i, 0] <Dy }, the set of positions at which an e-match to W
begins. Our goal isto compute a representation of either F 4 or Ry for al a in decreasing order

of label length. Certainly this suffices because F is the set of right ends of e-matches to W and
R¢ givesthe left ends. Term alist of ordered pairsC =< (I, u1), (I2, us), -+ (4, uy) >

n
where | < ug < ly+1, acovering list of set X if and only if kgl [k, ug] O X. For each a of

length less than K our algorithm computes a covering list for F o and one for Ry1. Moreover,
these coverings are parsimonious in that if C covers Fy (Ry) then |y uy O Fy (Ry) and
lc+1 — ux > Dy + 1 for dl k. Note that these additional conditions uniquely determine the
covering list. Furthermore, because values change along arow by —1, O, or 1, it follows that for

-17 -

every pair (I, u) either Fy_[I, Pq] =Fw_[uU, Pq] =Dg or Ry [I, 0] =and Ry_[u, 0] =Dg4
depending on whether the list coversF 4 or R .

1. function FGEN(w, d)

2 { S < Hitsy(d)

3 Sort S

4, G0

5. U « _d_2

6. for k [0 Sinincreasing order do
7. { ifk=-d > u+1then

8. { ifu=0thenG ~ Ge(l, u)
9. I «

10. }

11. Uk

12. }

13. ifu=0then G — Ge(l, u)

14. return G

15. }

Figure 6: Generating F4’scovering listwhen | a] =K

Initially, the processis started by computing coverings for F, (Ry) where Py = T using the
generator agorithm of Lemma 5 as a subroutine. Simply observe that F, =
{i: Lnin{ d(anan+1 -+ aj, Wy) } <D} =Hitsy_(Dqy). Thus producing a covering list for

<i

Fq consists of simply invoking the reverse generator to compute ITtsWa (Dg), sorting the
resulting set of indices with any O(Hlog H) sort, and then producing the desired covering list in
a simple O(H) scan of the sorted index list. This process is encapsulated in the procedure
FGEN(w, d) in Figure 6 above. Computing a covering for R, follows analogously with the
observation that it equas Hitsy_(Dy) — 1 where the notation X —1 denotes { i =1 :iIX}.
Assume that procedure RGEN(w, d) computes coverings for R-sets for subwords of W of length
T.

With basis of the induction handled by the generator algorithms, we now turn to the induc-
tion: given covering lists for F 4o and Ryq, how do we compute a covering list for F, (Ry)?
Consider the edit graph for W versus A and a path between rows 0 and P, of cost no greater
than Dy. Suppose this path passes through row Py / 2 = Pyg = Pyq at vertex (i, Pyg). Then
by Lemma 6, i must be a member of either F o or Ry; and hence covered by apair (I, u) of the
appropriate covering list. We show that the entire path must lie between diagonals
| = Pgqo —Aq andu - Pyg + Ay Where Aq =Dy — Dgo. Suppose that i O Fq; the case
where i [J Ry4 is entirely symmetric. This implies that the first part of the path from row 0 to
vertex (i, Pyg) costs Dyq or less, say its d. As observed earlier, since this d-subpath ends in
diagona i — P g, the entire subpath must lie between diagonalsi — Py — dandi — Pyg + d.
But sincei O [I, u] and Dyg < Ay it follows that the first part of the path lies between the
desired diagonals. Now, the remainder of the path from (i, Pyq) to row P has cost no greater
than D — d. Asnoted when covering lists were introduced, Fw_[X, Pqo] = Fw,,[X, Paol =

Dyo for x =1 and x = u. Moreover, since values change by —1, 0, or 1 aong a given row it

-18 -

follows that d = Fy, [i, Pgo] cannot be less than Fy_[I, Pqo] — (i =1) nor less than
Fw,[U, Pgo] — (u=i). Thusd=Dgy9 — min{i -1, u—i}. Butthenit follows that the second

pat of the path must lie between diagonals |- Pgoxt(Dyq —-d) 0O
i = Pgoxt(Dg = (Dgo —min{i—=l,u=i})) = i-Pgozxt(Ag +min{i-Il,u-i}) O
[I_PGO_AG1U_PGO+A(X]'

1. function UNION(L,, Lo, d, p)

2 { GO

3 U ~ —d—2

4, whileL, # O or L, # O do

5. { ifL, = Oor head(Ly).l <head(L5).l then

6. (i,) < pop(Lq)

7 else

8 (0, 0) ~ pop(Ly)

0. ifi—d> u+1lthen

10. { ifuzpandl < N-pthenG —~ Ge(l —p, u—p)

12. }

13. U~ j+d

14.

15. ifuzpandl < N-pthenG — Ge(l —p, u—p)

16. return G

17. }

Figure 7: Merging Covering Lists

In the last paragraph we showed that if there is a path between rows 0 and P, of cost D, or
less in the edit graph of W, versus A, then it must lie entirely between diagonals| — Pyg — Aq
andu — Pyg + Ay for some pair (I, u) in the covering list of F,g or Ry;. Let Ly be the cov-
ering list of O{ [l = Pgo = Aq,U—Pgo + Aq] : (I, u) OF4o O Ryy } that is as parsi-

n

monious is possible, i.e., span(Ly) = kZ | ug =l +1] is minimal and among those lists whose
=1

spanisminimal, L 4’s cardinality, n, issmallest. Thislistis computable in time linear in the size
of the lists F 49 and Ry 1 with the call UNION(F 40, Rg1, Aq, Pao) to the subroutine UNION
shown in Figure 7. It consists of ssimply merging the two ordered lists while "expanding” each
par by A, and "trandating" each by —P,o. Transformed pairs whose intervals overlap are
fused into asingle pair representing the combined interval.

From the two preceding paragraphs it follows that to compute F it suffices to compute Fy_

only between those diagonas given by pars of the list Ly. Formadly, Fy =

(|)DDL {i:Fy"[i,Py] <Dg }. Replacing F with R gives the analogous result for Ry. Let
» u a a

FSCAN(L, w, d) be a procedure that computes Fl; ! for each pair (I, u) on the list L and exam-
ines the last row of this computation to build a covering list of the entries that are less than d.
The algorithm is sketched in Figure 8 primarily to confirm the details of the covering list con-
struction. The time required by this procedure is O(] w| x span(L)) and the space required is
O(max{ | —u+1: (I, u)dL }). The space requirement could be O(N) in the worst-case but in
expectation it isO(D). By virtue of the preceding remarks it follows that the list returned by the

-19-

call FSCAN(Ly, Wy, Dy) is a covering list for F,. We assume an analogous procedure
RSCAN(L, w, d) that computes a covering list for R-sets.

1. function FSCAN(L, w, d)

2 { GO

3 U « _d_2

4. whileL # [0 do

S. { (i,]) < pop(L) .

6. Compute vector Fi; ' [?, p=|W|]
7 for kK — i +ptomin{j+p, N} do
8 if Fiy) [k, p] <dthen

0. { ifk-=d > u+1then
10. { ifu=0then G ~ Ge(l, u)
11. | « k

12. }

13. u- Kk

14. }

15.

16. ifu=0then G — Ge(l, u)

17. return G

18. }

Figure 8: Generating F 4’ s covering list from Ly when | a| <K

The overal algorithm in terms of the subprocedures — F(R) GEN, F(R) SCAN, and UNION
— isgiven in Figure 9. The recursive procedure LIST(a) returns a pointer to the covering list
Ly. When | a] = K-1, it does so by generating covering lists for F4o and Ryq with the
appropriate calls to the neighborhood-based algorithms FGEN and RGEN. It then combines
theseto form L, with acall to UNION. When | a] < K -1, the difference is that recursive calls
to LIST produce L o9 and L 47 which are then used by FSCAN and RSCAN to produce the cover-
ing lists for F,o and Ry ;. At the top level, when L, is returned it suffices to call RSCAN to

list of pairsG

1. function LIST(a)

2 { list of pairsH

3 if | a] = K-1then

4. { H < FGEN(Wq0, Dq0)

5. G « RGEN(Wq1, Dg1)

6. }

7. else

8. H — FSCAN(LIST(a0), Wqo, Dqo)
0. G « RSCAN(LIST(al), Wq1, Dg1)
10. }

11. return UNION(G, H, Ay , Pqo)

12. }

13. G ~ LIST(¢)
14. Report intervalsin RSCAN(G, W, D)

Figure 9: The Sublinear Algorithm

-20 -

obtain a covering list of the positions at which approximate matches to W begin. A cal to
FSCAN would produce a covering list of the right ends. For these top level calls to the SCAN
routines, one should remove the term —d in line 9 of Figure 8 in order to produce covering lists
whose covered positions are exactly the indices at which approximate matches begin or end.

The various covering lists are assumed to be implemented as simple linked lists of integer
pairs. Note that each of the subroutines presented in Figures 6, 7, and 8 are careful to consume
(viapops) their input lists as they produce their resultant lists. Thus the algorithm of Figure 9 is
carefully structured so that at a given instance there is never more than the list G of the current
recurrence level, and one list H pending a UNION at each level of the recurrence. Thisfeatureis
very important to the space requirement of the algorithm proven in Lemma7.

Lemma7. Given that A isthe result of equi-probable Bernouilli trials and that pow(e) < 1, the
algorithm of Figure 9 in expectation takes O(DNPPW(E)|og N + P) time and
O(NPW(E) + P) working space (excludes the index). If A does have matches to W,
then in the worst case O(DP) time is spent on each of these occurrences.

Proof. First, consider the time spent in calls to FGEN and RGEN. The number of calls to each
is P/ 2T. Observe that when |a] =K, Dy equas ¢ = [eT|. By Lemma 5, it takes
O((o +1) NPW(9/T) + T) expected time to produce S in line 2 and it is of size NPOW(O/T),
Further sorting S and producing the covering list takes O(NPPW(°/T) [og NPOW(9/T)Y) additional
time. There are two cases to consder. First, if ¢<1/T then 0=0 and
NPow(o/T) = NPoW(0) = NO = 1. Thus in this case, each cal to FGEN or RGEN takes O(T)
time om expectation, for a total over al P/ T calls of O(P) time. For the other case where
€>1/T, note that P/ T<eP =D. Thus the time taken in line 2 over al cadls is
O(P/ T (oNP(9/T) +T)) = O(P/ T (¢ TNPOW(®) +T)) = O(e PNPOW(E) + P) = O(DNPW(E) + p),
The time taken for the sort and covering list construction is O(P/ T (NPOW(9/T) |og NPOW(0/T)Y)
= O(DNP() Jog N). Thus, the total expected time spent in the GEN subroutines is within the
bound of the Lemma.

The time spent in a cal to UNION is linear in the sizes of the lists produced by the
corresponding calls to FSCAN and RSCAN. Thus the total time spent in calls to the SCAN rou-
tines dominates the time spent in UNION. Extending the proof of Lemma 4, observe that
Bnd(mtlog; N, Tt €log| N, ¢) = N™ ©) and thus Pr(nT,nD) < 2N™PS(O/N =1 Thys it
follows that the expected number of approximate matches to a word of length P, with no more
than D differences is less than Nx Pr(22T, 22eT) < 2N/ N2 (1=Pow(®)) \where a denotes
K —| al Now acovering list for F4 or R, has this many elements in expectation, each pair giv-
ing a O(D) width interval about an approximate match. Because L is the union of F 4 and
Ry it follows that it has less than 4N/ N2 (2=POW()) intervals of expected width O(D).
Thus, the expected time spent in a call to FSCAN(Ly, Wy, Dg) is O(|Ly| Dy Pqy) =
O(eNT243/N2" "' (1-pow(£))) " The same amount of time is spent in a call to RSCAN and there
are a total of P/(22T) such calls made on words of length P,. Thus the total time spent on
words of length P is O(DNT(23/N2" " (1-Pow(#))) Over the entire course of the algorithm, a
runs from 1 to K, so the tota time spent in calls to FSCAN and RSCAN is

-21-

K-1 .
O(DNT ZO 2¢/N2 (1=pow(€))) " For ¢ in the range of interest we can assume N17POW(E) > 2
c=

and so the progression of terms in the summation above approach zero hyperexponentially.
Thus the sum is asymptotically dominated by the first term and we can conclude that in expecta-
tion O(DNT/N1~PoW(e)) = O(DNPO™(€) |og N) time is spent extending hits.

As stated in the first paragraph of the proof, the size of the "’ Hit list”” Sused in RGEN and
FGEN is NPOW(9/T) = (NPOW(#)). Thus the bound on space is observed at the lowest level of
the recursion, since only one Sis in existence at any given time. At an arbitrary point in the
computation there are some number of H lists a a distinct levels of the recursion, awaiting the
production of the G list to which they will be merged. Each H isacovering list of F, for some
o and so as argued above is of expected size 2N/ N2"(1-POW(e)) - Thys the total space occupied

K
by the at most K H lists at distinct levelsis O(N z N/NZ (1-pow(e))y - Asnoted previously, this

c=
sum is dominated by the first term which is O(NPY(8)). At any moment there is at most one G
list in existence, so certainly the space claim is not exceeded by the covering lists created and

destroyed during the course of the algorithm. -

We conclude this section with a discussion of how to treat the case where P/ T is not a power
of 2. To make a beginning, consider the case were P is a multiple of T. The difficulty here is
that progressively halving W does not lead to pieces of size T. The key to handling this is to
observe that one could equally well have divided W into thirds, then split the thirds in third, and
so on without changing the principle aspects of Lemma 6, the algorithm, and its complexity.
Specifically, for aword W such that its length P = 3XT for some K, we could have let W, for o
0 {0, 1, 2}" be recursively defined by the equations: Wy = W, Wqg = Wy [1..| Wy |/ 3] (the
first third of Wy), Wq1 = Wq[| Wq|/ 3+1..| Wq| 2/ 3] (the second third of W), and Wy, =
Wy [| Wq| 2/ 3+1..] Wq4|] (the last third of W,). If we had then let D, = |D/ 3! | be the
match stringency to W then Lemma 6 as stated would remain true. Moreover, in analogy with
the argument given for producing L, in Figure 7, one can show that all paths of
cost D, or less in the edit graph of W, versus A, must lie on the set of diagonals:
O{[l =Pago = Dg,U=Pgo +Dqg] : (I, u) UFqo} g
{[l =Pgo = Pgq1 = Dg,U=Pgo = Pgq1 + Dq] : (I,u) OF41 O Ry> }. Certainly, acov-
ering list L4 of this set can be built with a three way merge of covering lists for F ¢, F41, and
Rq2. Note that in this case we must expand each pair (I, u) by D as opposed to A, and thus
the F(R) SCAN procedure over the covering list L, may take twice as long as before, but this
inefficiency does not affect the asymptotics of the complexity argument. Thus, in aimost exact
analogy with the development of the algorithm of Figure 8, we could have proceeded to build an
algorithm based on three way merges. Moreover, the complexity would remain unchanged since
the critical sum, go 2¢ /N2 (1-PoW(E)) in the analysis becomes, ;0 3¢/N3 (1-pow(e)) " \hich

c= c=
still converges hyperexponentialy.

Taking this idea a little further, observe that as we partition W into pieces we may split these
pieces into halves or thirds on an individual basis. The only difficulty is how to distribute the

-22 -

errors in the case where an even split is not possible, e.g. if P = 11T then ‘*halving’’ it gives
pieces of sizes 5T and 6T. An easy extension of Lemma 6, shows that if W aligns to V with not
more than D differences and W = WyW, then either W, aligns to a prefix of V with not more
than | D/ | Wy|] errors, or W aligns to a suffix of V with not more than| D/ | W4|| errors. Thus
an uneven split does not create a problem, we still seek e-matches to the subparts. So our solu-
tion involves repeatedly halving W into pieces whose length is divisible by T until pieces of size
T or 3T result. Those pieces of length 3T are split into thirds and then processed as a three way
merge as discussed above. For example, if P =7T, then P = 3T, P =4T,Pgy =Pg1 =P =
T, P1g = Po1 = 2T, and P1gg = P101 = P110 = P111 = T. Such a subdivision method aways
applies when T divides P, and requires finding e-matches at each level. Note that three-way
merges are always confined to the deepest level and that the expected time still decreases
hyperexponentially as one moves up the decomposition hierarchy. Thus this approach continues
to guarantee O(DNP™() |og N) expected-time under the more general condition where T
divides P.

Finally, consider the case where P is arbitrary. Our technique for this case requires that P
must not be less than T2 or Q(log? N) in order to maintain the asymptotic complexity claim. In
principle this is permissible since we need prove the result only for N and P sufficiently large.
So suppose P = T2 andleta =|P/ T andb = P (mod T), i.e. P = aT +b whereb < T. Now
it is possible subdivide W into a pieces using the 2- and 3-splitting method, where b of the pieces
are of length T+1 and the rest are of length T (this requires that P = T?). For the pieces of
length T +1, finding e-matches to them requires the generation of O(| Z|P°V(&) NPOW(E)) words
for a | Z}factor increase in time for this phase (recall the discussion at the bottom of page 9).
Since | XZ|is assumed to be a constant from an asymptotic point of view, we are done. In practice
this works very well since the per-word cost of generation is much less that than the per-hit cost
of extension. For queries that are very short, we divide W into pieces of length T+c for small c,
in afashion that gives the best performance possible.

7. Practical Experience

In order to determine the practical efficiency of our approach to the approximate keyword
searching problem, the theoretical algorithm described in the preceding sections was imple-
mented in the C programming language. The implementation effort amounted to about 1500
lines of software. The index data structure was implemented exactly as described in Section 2.
For the algorithm proper, however, a number of practical considerations require slight variations
on the theoretical design and these are described in the next two paragraphs.

Three small observations improved the practical performance of the word generation and
lookup phase of the algorithm. First, in practice there is no advantage in going from the O(TZ)
version to the O(DZ +T) version that computed only the relevant 2D + 1 entries of each row.
For the small values of T and D actually involved (e.g., T O [5,10] and D J [0,4]), the over-
head of checking which entries to compute outweighs the straightforward calculation of the
entire row. Secondly, using the KMP construction to avoid generating words not in the

-23-

condensed neighborhood was similarly found to be ineffective in practice because it eliminates
very few words in expectation. The third variation involves the interaction of the generation of
words with their lookup in the index. Specifically, in the case where aword of length T has been
generated that is still a proper prefix of a condensed neighborhood word (i.e., there is an entry
less than D in the current row), then this word is looked up in the index immediately, and the
extensions of the individual matches to this word are checked for membership in the condensed
neighborhood by continuing the computation of the dynamic programming matrix on the exten-
sion. This is more efficient in practice because there are always at least | Z| extensions of the
word in the condensed neighborhood, but on average only one occurrence of their T-symbol
prefix in the database.

The last and most significant deviation from the theoretical algorithm described above, isin
the way Hits,, (d) (Hits,,(d)) is recorded and sorted in lines 2 and 3 of FGEN (RGEN). An
array Sof bitsis used to record the position of the hits. Initially all bits are set to zero and when-
ever aword is generated that matches at position i, then the i ™" bit of Sis set. Thus at the con-
clusion of word generation S[i] is set iff i O Hits,,(d). Simply reading off the set bits left to
right gives the hit list in sorted order. We take this another step farther, by recording both the
forward generation on W and the reverse generation on W, for what would normally be the
callsto FGEN and RGEN at the bottom level of the recursion of the function LIST in lines 4 and
5. That is, instead of calling these two routines, we establish the bit array Sso that S[i] = 1 iff
i O %wao(Dao) 0 Hitsy,,(Dg1). Then we call a specia version of UNION which pro-
duces the covering list for L, in a single left-to-right pass over the array S As regards space,
this is not too great a cost, since Srequires N/8 bytes versus the 6N bytes required by the index
itself. While avoiding a couple of covering list constructions, the potential pitfall isthat the scan
of Stakes O(N) time as opposed to the O(NP°(€) |og N) time taken by a sort over a listing of
the hit set. This inefficiency for sparse problems (i.e., small €) is rectified as follows. On the
computers in our laboratory an integer occupies 32-bits and Siis realized as an N/32 element
array of integers. The left-to-right scan only needs to examine the bits of an integer if it is
nonzero, i.e., one of its 32 bitsis set. Thusthe time for the scan isimproved by a factor of 32 for
sparse problems, but this may still be too inefficient. So a second array T of N/322 = N/1024
integers is maintained such that the j ™ bit of T is set if and only if the ! word of Sis nonzero.
This requires twice as much time when a bit, say i, of Smust be set, because the i/32™" bit of T
must also be set. But for sparse problems, only N/1024 integers need to be checked during the
scan, and only those 1024 position stretches containing hits are examined further. We could
extend thisidea recursively, essentially arriving at alogarithmic scheme, but we found that a two
tiered approach was quite sufficient for problems where N isin the million to 10 million range.

We compared our implementation against an implementation of the standard O(NP) dynamic
programming algorithm [Sel80], the O(DN) expected-time algorithm of Ukkonen
[Ukk85a,MyM86], and a novel use of the 4-Russians paradigm that permits the dynamic pro-
gramming matrix to be computed 5 entries at a step [WMM91]. In al cases the software had
been written at an earlier time by this author and represent his best efforts at efficient code. All

-24-

experiments were performed on a SparcStation 2 with 64 megabytes of memory and al code
was compiled under the standard SunOS C-compiler with the optimization option on. For each
timing result reported, we ran the given agorithm enough times so that the total elapsed time
was at least 100 seconds and then averaged. Given that the system clock is accurate to about 0.1
to 0.2 seconds, timing results are figured to be accurate to the third digit. A random query of
length 80 was searched against a random (every symbol equally likely) database of a million
symbols for a four letter alphabet, and four million symbols for a twenty letter alphabet. A plot
of the results is shown in Figure 10. The curves for the standard dynamic programming algo-
rithm are labeled T pp, those for the Ukkonen algorithm are labeled Ty, those for the 4-Russians
algorithm are labeled T 4R, and those for our sublinear algorithm Tg,y,. A logarithmic time scale
is used because the sublinear algorithm’s time performance increases exponentialy in D. Thus
the curve for Ty is shaped like a log curve because it is actually a straight line on a normal
scale. Tpp and T4r are straight lines because the complexity of their underlying algorithms
depend only on P and N.

A
100 sec: T ‘ 4 Tpp I
Tpe o~] 100 sec-t
— 4Rs] — T4RS
§ 10 sec.+ §
=] T, 0 0 0 0 g 10 Sec'./ —
S e U 10% 0% [30% | 40% 5 u
5 Mismatch Ratio (&) 3 20% 40% 60% _
£ £ s Mismatch Ratio (g)
— 1/10sec+ -
[
«— 1/10 sec.1-
1/100 sec:- -
Tyam 1/100 sec.+—22%
¢ &
1/1000 sec+
Y
N = 1,000,000 and | Z| =4 N = 4,000,000 and | Z| =20

Figure 10: Timing Plots for Queries of Length P = 80

Observe from the figures that for the case where | Z| =4, our algorithm is three orders of
magnitude faster than any of the others when € < 10%. It is two orders of magnitude faster
when € < 20%, and a single factor of 10 faster when € < 30%. Moreover, it crosses over with
the best algorithms in the 30-40% range of € exactly as suggested by the curve for pow(e) given
in Figure 4. In the case where | £| = 20, our algorithm achieves dightly more modest factors of
improvement for the intervals 0-20% (3 orders), 20-40% (2-orders), and 40-60% (factor of 4).
When € is above 60% it performs considerably word than the 4-Russians a gorithm.

Tables 1 and 2 below, shows some of the exact numbers used to produce the plots of Figure
10 and also displays some statistics on the the number of hits and covering list spans for the sub-
linear algorithm. In studying these statistics, which readily explain the time performance, it is

-25-

important to note that T = 10 for the experiments in Table 1, and T = 5 for the experiments in
Table 1. Thusin thefirst case, the length of the query P = 23T, and in the latter, P = 2*T. The
column, Hits, gives the average number of matches to words in the neighborhood about each T
subpiece of the query string. The columns labeled, Span;, for some j, give the percentage of the
database spanned by the average covering list Ly where | a| =j. For example, when
€ = 20/80 = 25%, Span, = 1.54in Table 1, indicating that on average span(L 4) = 1.54N/100
= 15,400 when | a| = 2. The interesting observation about these columns is that they reveal
that as D isincreased for the query, D increases at each level and the corresponding statistics
increase exponentially, but more slowly at the higher levels. Some readers may wonder what
happens when P becomes larger than 80. If P were doubled (without changing N) then each of
the first three columns concerning time would double. But the numbers in the remaining
columns would be exactly the same. However, the headers Span; would become Span; ;. Thus

for fixed € and N, time varies proportionally with P while coverage statistics remain constant.

D | Tgam (sec.) | Ty (sec.) | Tur (sec.) Hits Soan, (%) Span, (%) Fpang (%) Matches
0 .0015 18 12.8 1 .0 .0 .0 0
4 .0017 7.6 12.8 1 .0 .0 .0 0
8 .037 13.0 12.8 54 .03 .0 .0 0
12 .045 18.7 12.8 54 .05 .0 .0 0
16 .97 24.3 12.8 1400 112 .0 .0 0
20 117 305 12.8 1400 154 A2 .0 0
24 10.8 36.6 12.8 17000 14. 1.2 .0 0
28 16.0 42.6 12.8 17000 18. 9.4 4 0
30 17.3 455 12.8 17000 18. 10.5 2.2 1
Table 1: Times and Hit frequencies when P=80, |ZF4, and N=1,000,000

D | Tgam (seC) | Ty (sec) | Tur (sec.) Hits Sanz (%) Span, (%) Spany (%)

0 .0097 6.1 40.1 1 .0 .0 .0

8 .0097 385 40.1 1 .0 .0 .0

16 .184 71.0 40.1 220 .03 .0 .0

24 .223 104. 40.1 220 .05 .0 .0

32 9.8 140. 40.1 13000 25 0.3 .0

40 134 173. 40.1 13000 34 10 .0

44 13.8 190. 40.1 13000 34 11 .07

48 179. 204, 40.1 284000 46. 15. 11

Table 2: Times and Hit frequencies when P=80, |Z20, and N=4,000,000

- 26 -

In afinal experiment, we ran our algorithm over an older version of the PIR database contain-
ing 3,000,538 symbols. The query was the 104 symbol sequence for human Cytochrome C.
This test was run to see how critical the uniformity assumption for the database was. The under-
lying alphabet had 23 characters, containing two codes that denoted one of two residues, and a
wild card code, ' X', denoting any residue. These symbols appeared much less frequently than
the others, and, in general the frequency of occurence of each letter was not uniform. Indeed,
about 40% of all buckets in the index were empty, and there was one that had 553 positionsin it.
Nonetheless, note that the performance figuresin Table 3 are very comparable to those in Table
2. Times are roughly about three times slower. As D increases the factor becomes less. The
key thing to note is that there are many cytochrome C entries for other organisms in the database
and consequently, this search is preconditioned to contain quite a few matches to the query. As
noted in the overview, this effectively means that complete dynamic programming computations
are run for each match. It isthistime that is primarily responsible for the differential over smu-
lated data and not the skew in character distribution.

D | Tgam (sec.) Hits Sanz (%) Span, (%) Fpan, (%) Fpang (%) Matches
0 .027 23 >.0 >.0 >.0 >.0 2
.067 23 .005 .005 .01 .01 18
16 40 298 .06 .01 .02 .03 32
24 .58 298 .09 .02 .04 .07 44
32 12.4 19900 3.2 1 1 1 74
40 17.2 19900 4.3 16 A 2 79

Table 3: Times and Hit frequencies for Searching a Protein Database

8. Conclusion

A sublinear algorithm for approximate keyword searching has been presented that not only
represents an asymptotic improvement for the problem, but also provides order-of-magnitude
speedups in practice. We close with several observations and conjectures. First observe that
with € = 37.5%, a match was found just by chance as shown in Table 1 above. We conjecture,
that the point at which D becomes large enough so that Z(T, D) = N is strongly correlated to
the point at which a (D/ T)-match to a word W would be found purely by coincidence in aran-
dom database. Second, we observe that there is nothing in the algorithm itself that precludes
using more general measures of similarity such as real-valued arbitrary scores for indels and sub-
stitutions. The only aspect of our treatment that was specifically tied to the simple unit measure
was in the mathematics for bounding the sizes of neighborhoods. An open development is to
demonstrate that the approach works well in practice for scoring schemes where neighborhoods
aren’'t "too" large. Alternatively one needs to develop a formal treatment of how neighborhood
size is a function of scoring scheme. Third, is there anyway to improve upon the O(NPOW(E))

-27 -

working storage required by the algorithm? Finally, we note that the essential idea of this paper
can be summed up as. *‘find approximate matches to subparts using exact matches to neighbor-
hoods as a filter to those locations where an extension strategy can be profitably employed.”
There are potentially many other ways to instantiate this idea and perhaps there are better ones
than that realized here. For example, this approach was the essentially idea behind a heuristic
sequence comparison tool, BLASTA, now in popular use for protein database searches
[AGM90].

Acknowledgement
The author wishes to thank his colleague and mentor Andrzel Ehrenfeucht for his advice,

ideas, and encouragement early in the development of this work. Also thanks to George
Corugedo for the courage to finish along overdue paper.

Refer ences.

[AGM90] Altschul, S, W. Gish, W. Miller, E. Myers, and D. Lipman, ‘*A Basic Local Align-
ment Search Tool,”” J. of Molecular Biology 215 (1990), 403-410.

[BoM77] Boyer, R. and J. Moore, ‘‘A fast string searching agorithm’’, Comm. ACM 20(10)
(2977), 262-272.

[ChL90] Chang, W.l. and E.L. Lawler, ** Approximate matching in sublinear expected time'’,
Proc. 31st IEEE Symp. on Foundation of Computer Science (1990), 116-124.

[GaP90] Gdlil, Z. and K. Park, ‘* An Improved Algorithm for Approximate String Matching'’,
SIAM J. on Computing 19(6) (1990), 989-999.

[KMP77] Knuth, D.E., JH. Morris, and V.R. Pratt, ‘*Fast pattern matching in strings’, SAM
J. on Computing 6(2) (1977), 323-350.

[Lav86] Landau, G.M. and U. Vishkin, ‘‘Introducing efficient paralelism into approximate
string matching and a new serial algorithm’’, Symp. on Theory of Computing (1986),
220-230.

[Mye86a] Myers, EW., ‘“‘Incremental alignment algorithms and their applications’’, Tech.
Rep. 86-22, Dept of Computer Science, U. of Arizona, Tucson, AZ 85721.

[Mye86b] Myers, EW., ‘*An O(ND) difference agorithm and its variants’, Algorithmica 1
(1986), 251-266.

[MyM86] Myers, EW. and D. Mount, **Computer program for the IBM personal computer
that searches for approximate matches to short oligonucleotide sequences in long
target DNA sequences’’, Nucleic Acids Research 14(1) (1986), 501-508.

[Sel80] Sellers, P.H., ‘* The theory and computation of evolutionary distances: pattern recog-
nition’’, J. Algorithms 1 (1980), 359-373.

- 28 -

[Ukk85a] Ukkonen, E., *‘Finding approximate patterns in strings’’, J. of Algorithms 6 (1985),
132-137.

[Ukk85b] Ukkonen, E., ‘* Algorithms for approximate string matching’’, Information and Con-
trol 64 (1985), 100-118.

[WMM91] Wu, S., U. Manber, and E.W. Myers, *‘Improving the running times for some string
matching problems’’, Technical Report TR91-20, Dept. of Computer Science, U. of
Arizona, Tucson, AZ 85721 (submitted to Algorithmica).

-29-

