Chapter 1
Chaining Multiple-Alignment Fragments in Sub-Quadratic Time

Gene Myers*

Abstract

We describe a multiple-sequence alignment algorithm for
determining the highest-scoring alignment that can be ob-
tained by chaining together non-overlapping subalignments
For

a given set of K sequences, a problem instance consists of

selected from a given collection of such “fragments”.

a set of F' precomputed fragments, an alignment score for
each fragment, and a “gap” penalty function that assigns
When inter-

preted as a maximum weight path problem in a directed

a cost for chaining two fragments together.

acyclic graph, it is computable in ©(F?) time. Here we
instead interpret the problem as “K-dimensional sparse dy-
namic programming” and take advantage of its underlying
geometric nature. Assuming K < log F, our algorithm runs
in time O(Flog™ F) and space O(K Flog®~! F), making it
the first sub-quadratic sparse dynamic programming algo-
rithm for the case K > 2.

1 Introduction

Consider sequences A, A',... AKX~ where A’ =
aial, .. 'aé\f, has length NV;. Intuitively, a “fragment sub-
alignment” is an alignment of a highly conserved region
between the sequences that we assume has been pre-
computed by some other method. The literature from
computational molecular biology contains dozens of pa-
pers describing methods to compute various kinds of
fragment subalignments (e.g., [10, 7]). Our goal is to
find an optimum subset of such a collection of fragments
that can be linked together to form a longer alignment
of maximum score.

Proceeding formally, let a point be a K-tuple p' =
(po,p1,- .- PKr—1) of integers, where p; € [0, N;] for all
i € [0, K — 1]. The partial order p" < ¢ orders point §
before point § = (g0, q1,...,9x—1) if and only if p; < ¢;
for all i € [0, K — 1]. For our purposes, a fragment can
then be summarized as a triple < f.beyg, f.efid, f.score >
where f.bég and f.efid are points satisfying f.beg <

~ *Department of Computer Science, University of Arizona,
Tucson, AZ 85721. Supported by grant LM04960 from the
National Library of Medicine and by the Aspen Center for
Physics.

tDepartment of Computer Science and Engineering, The Penn-
sylvania State University, University Park, PA 16802. Supported
by grant LM05110 from the National Library of Medicine.

Webb Miller!

f.efid, and f.score is a real number. The two end-points
specify the substring of each sequence that is aligned by
the fragment f, i.e., aj;tbegl+1aj¢.begi+2 .. .a?endl for each
i, and f.score 1s the score attributed to the precomputed
multi-alignment of f’s substrings.

The other component of our problem is a real-
valued function gap_cost(f,{) that gives the penalty
for linking a fragment that ends at the point p with
a fragment that begins at the point §. The partial
order e < f iff e.efid < f.beg on fragments asserts that
the substrings aligned by e precede those of f in their
respective sequences, so € and f can be linked together.
A chain of fragments is a sequence {f;}/~, such that
ft < fig1 for t € [1, L — 1], and the score of the chain
is:

L L-1

th.score - Zgap_cost(ft.eﬁd,ft+1.bé’g)

t=1 t=1

The fragment-chaining problem is to determine a
chain of maximum score, given a set of fragments
and a gap_cost function. The straightforward method
of fragment-chaining is, in essence, a special case of
the classic optimum-path algorithm for directed acyclic
graphs, which works for any definition of gap_cost. Let
score_at(f) be defined as the maximum score of all
chains that end with f and immediately observe the
recurrence:

score_at(f) = f.score + maz{0, u}
where
u = maz{score_at(e) — gap_cost(e.efid, f.bég) : e < f}

A dynamic programming algorithm applies this
recurrence in any topological order of the fragments
with respect to the partial order < on fragments. This
simple algorithm requires time O(F2G), where F is
the number of fragments and computing gap_cost takes
O(G) time. Tts space requirement is O(KF), i.e.,
the space needed for the fragments. This algorithm
has been proposed as a practical approach for aligning
biological sequences, first for K = 2 by Wilbur and
Lipman [13], then for K > 2 by Sobel and Martinez
[11].

For K = 2 sequences, fragment-chaining algorithms
that run in time O(Ng + N1 + Flog F') or faster were

found independently by Eppstein et al. [4] and by My-
ers and Huang [8]. Eppstein et al. observed that in the
case of sequence comparison the coordinates of points
are integers between 0 and N = maxz(N;), and so the
running time can be reduced to O(F loglog F'), using
a data structure of Johnson [5]. However, Myers and
Huang were considering the problem of comparing re-
striction maps, where the points have to be modeled
as K-tuples of real numbers, a context in which the
speedup does not apply. In order to make the central al-
gorithm of practical value to biologists, Chao and Miller
[2] extended it simultaneously in two directions. First,
space consumption was reduced to O(N), assuming that
fragments can be generated at will and discarded as
the algorithm proceeds. Second, the generalized algo-
rithm delivers any desired number of highest-scoring,
non-intersecting chains at a slight increase in asymptotic
time complexity. Though these subquadratic fragment-
chaining algorithms require gap_cost(p, {) to satisfy cer-
tain restrictions, they are sufficiently general to appro-
priately handle biological data, and they have been used
in a practical program for aligning very long DNA se-
quences [3].

For potential application to biology, it is natural
to seek generalizations of these algorithms to K > 2
sequences. Unfortunately, the above earlier methods,
which are based on the sweep-line paradigm from two-
dimensional computational geometry, do not readily
generalize in that direction. Zhang et al. [14] gave
a practical algorithm based on kD-trees to compute
optimum fragment chains for more than two sequences.
However, no rigorous analysis of running time was
provided, as is typical with kD-tree methods. Moreover,
the paper left open the problem of reducing space
requirement below (K F).

This paper develops a fragment-chaining algorithm
whose worst-case time breaks the O(F?) barrier. As
with earlier time-efficient algorithms, this requires spec-
ifying restrictions on gap_cost, specifying a particular
topological order for fragments, dividing the computa-
tion of score_at into cases and developing data struc-
tures that allow each case to be solved efficiently. In
effect, for a given point ¢ these “cases” partition the
set of fragments e such that e.efid < ¢ into classes E,
for m € [1,Ck]. Each of these classes has associated
data structures supporting a procedure select_best,({)
that returns the maximum value of score_at(e) —
gap-_cost(e.eiid,) taken over all e € Ep. The recur-
rence for score_at then operationally becomes:

score_at(f) = f.score + maz{0, u}
where
pu = maz{select_best. (f.bég) : m € [1,Ck]}

MYERS AND MILLER

If select_best,(q’) runs in time O(Tk) then, ig-
noring the time needed to maintain the data struc-
tures, the fragment-chaining algorithm runs in time
O(FCkTk,r). In the algorithm that follows, there are
Ckg = K! cases, each of which can be solved in time
Tk r = (logK F)/K!. Our task is thus to describe the
partitioning of fragments into classes and for each class
to design an efficient procedure for select_best,. The
next section presents our results for K = 2, Section 3
sketches some geometric intuition in the case K = 3,
and the general algorithm is described in Section 4.

2 The Case of K = 2 Sequences

The efficient algorithms discussed above all require that
gap-_cost(e.efid, f.bég) (i.e., the cost of placing fragments
e and f consecutively within a longer alignment) be
defined in such a way that no accounting is made
for the particular sequence symbols that occur in the
region between e and f. That is, the gap cost must
be symbol independent. In the definition adopted for
this paper, two parameters, € and A, are used to define
gap_cost. Intuitively, ¢ > 0 is the cost of aligning
two anonymous symbols, while A > 0 is the cost of
aligning an anonymous symbol with a gap position in
the other sequence. We require that d, defined as 2A—¢,
satisfy > 0; otherwise it would always be best to
connect fragments entirely by gaps (i.e., insertions and
deletions, but never replacements). Thus, the best way
to connect two fragments is to perform substitutions
until the entries in one of the sequences are exhausted,
then insert the remaining elements.

The precise definition of gap_cost(p, §) for p' < ¢
is as follows. Define A; = ¢; — p; for ¢ = 0 and 1.
Thus, Ag and A; are the numbers of symbols in each
sequence that would lie between a fragment ending at
P and one beginning at ¢. Note that p’'can be linked to
¢ (i.e., <) if and only if Ag, Ay > 0. If Ay > Ay,
then gap_cost(p,§) = A1e + (Ao — A1)A. See Figure 1.
Otherwise, gap_cost(p,q) = Aoe + (A1 — Ag)A. These
two cases, i.e., (1) Ag > Ay and (2) Ag < Ay, constitute
the aforementioned 2! = 2 cases that will become K!in
the general case.

A point § = (s,t) is said to be on antidiagonal
antidiag(p’) = s +t and on diagonal diag(p) = s — ¢.
These two quantities provide an alternate, diagonal-
based coordinate system for naming points. Specifically,
the Cartesian point p’ can be described and written as
the antidiagonal point [x],, where z = diag(F) and a =
antidiag(p’). Note that the mapping between these two
frameworks is isomorphic; each Cartesian point maps to
an antidiagonal point and vice versa.

Suppose § = [], is the end-point e.efid of some
fragment e. For points ¢ = [y]s on a future antidiagonal

CHAINING MULTIPLE-ALIGNMENT FRAGMENTS

Figure 1: If Ag > Ay, then gap_cost(p,) = Ae +
(Ag — Ap)A.

~<—— antidiagonal b

Figure 2: If x < y < x+b—a, then gap_cost([z]q, [y]s) =
%6([) —a)+ 8y —x).

b > a, we wish to know in antidiagonal coordinate terms
(1) which of Cases 1 or 2 apply, (2) whether ¢> 7 (i.e.
the points can be linked), and (3) an explicit formula
for gap_cost(f,¢). Tt is readily seen that ¢ satisfies
Case 1 (i.e., Ag > Ayp) with respect to § if and only
if y > x, and assuming that, then §> p' (i.e., A1 > 0)
if and only if y < z + (b — a). Moreover, in this case
it also follows algebraically that gap_cost([z]q, [y]s) =
1e(b — a) + 6(y — z), recalling that § = 2\ — . See
Figure 2. For Case 2, the conditions are y < z and
y > z+ (a—1b), and the gap cost is %E(b—a)—l—é(a:—y).

In terms of the more general formulation that
will follow, note that in both cases the conditions
corresponding to (1) and (2) define a domain of points
that is the intersection of two half-lines, where one half-
line has the form Cyy > ¢¢ and the other has the form
Ciy < ¢1 + ab, where Cy, C7 and «a are dependent only
on the case in question, whereas c¢g and c¢; also depend
on e.efid. In particular, for Case 1, Cy = C; = a = 1,
cg =x and ¢; = x — a; for Case 2, Cy = C1 = a = —1,
co = —z and ¢; = —x —a. It is further true that the gap
cost in each case is expressible as Sy + s + 8b, where S
and 3 depend only on the case, whereas s depends also
on e.enid. Specifically, S =4, 8 = %6, and s = —iae—dz

2
for Case 1,and S = -6, B = %6, and s = —%aa—}—ém for
Case 2.

Our fragment-chaining algorithm processes the
fragments in increasing order of the antidiagonal of their
beginning points. For a fragment f, let f.b¢g = [y]s, and
let Fy be the set of fragments e with antidiag(e.efid) <
b. For each of the two cases, 7 € {1,2}, we need a
data structure that permits us to efficiently determine
select_bestr (f.beg), i.e., the largest value of score_at(e)
— gap_cost(e.eiid, f.bég) over those e € Fp for which
e<f.

Consider a specific case (the other is handled sym-
metrically) that is uniquely characterized by the values
Cy, C1, S, a, and [described above. Further recall
that for each fragment e, we will have constants cg,
c1, and s that complete the specification of the region
and cost of a gap from e.efid. We will denote these as
e.cg, e.cy and e.s to model their dependence on e. In
these terms the problem is to compute the maximum of
score_at(e) — e.s — Sy — 3b over those e € F}, for which
Coy > e.cg and Chy < e.c; + ab.

Our efficient data structure is a small variation
of the traditional “range tree” [1], which is discussed
in a number of books on algorithms or computational
geometry, e.g., pp. 83-88 of Preparata and Shamos [9].
Essentially what is needed is a maximum function value
over those fragments e for which the pair (e.cq, e.c1) isin
the semi-infinite range (—oo, Coy] x [C1y—ab, 00). Note
that all the e.-quantities are known at the outset and
hence static. The only quantities that change during
the course of the algorithm proper are the set of active
fragments Fj and values score_at(e).

Recall that a 2-level range tree is a binary tree of
binary trees. Specifically, we let T be a complete binary
tree whose leaves are the set of all fragments e ordered
by increasing value of e.cy. In order to perform binary
searches over T, each interior vertex, v, is labeled with
the cg-value of the rightmost leaf in its subtree. In
addition, v has a pointer to a tree T, whose shape and
leaves are the shape and leaves of v’s subtree, but which
is ordered by increasing value e.c;. Each interior vertex,
w, of one of these nested binary trees T, has a label to
direct binary searches over ci-values, analogous to T'.
In addition w has a dynamically maintained pointer,
w.maz, such that at the time the algorithm is about
to process antidiagonal b, w.mazx points to the leaf e in
w’s subtree maximizing score_at(e) — e.s subject to the
constraint that e € Fy,. See Figure 3.

For each of the two cases, the following procedure
evaluates select_best(q’) for any § = [y]p. iFrom T’s
root, traverse the path to the fragment with the smallest
e.cg > Cyy using the search labels. Define a left child of
a path as all left children of a vertex on the path that
are not themselves on the path. For all left children
v of the path in T just traversed, in T, traverse the

UUUUUUUUU'UUUU

-

increasing e.c, increasing e. ¢

Figure 3: Data structure for a given case when K = 2.

path to the fragment with the largest e.c; < Ci1y — ab
using the search labels. Over all the right children of all
these paths, accumulate the maximum of the w.maz’s
associated value score_at(e)—e.s. Return this maximum
minus the quantity Sy + Bb. The required time is
O(log® F) per evaluation of select_best. Observe that
this is just a 2-dimensional range query except that the
nested trees are being used to efficiently compute the
desired maximum over the entries in the range of the
query.

The range tree structure for each of the two cases is
completely static save for the .max fields, and so they
are constructed in a preprocessing step. The leaves of
T, are obtained by merging the leaves of T ;.7 and
Ty right, so we can order the leaves of all 7, trees (for
all v in T) in time O(FlogF). Note that a given
fragment e occurs in O(log F') T, trees (corresponding
to the vertices on a path from 7’s root to e). Given the
leaf orders, the interiors of the trees can be built in time
linear in the number of leaves. Thus all the trees can
be built in a total of O(F log F') time and space.

Before beginning the antidiagonal ordered loop over
the fragments, all the values w.maz are set to nil. When
the “sweep antidiagonal” passes e.efid, the entry for e
is activated by the following procedure. In each of the
O(log F') T, trees where e occurs, update the w.maz
values in an upward pass from e to the root. The time
required is at most O(log? F).

In summary, for K = 2 sequences, we do O(F log F)
preprocessing, then process F' fragments, each of which
takes time O(log” F) for each of two cases used to
evaluate score_at(f) plus time O(log? F) to activate
f in the range trees for the two cases. Thus, the
total time is O(Flog® F) and the space requirement
is O(FlogF). The knowledgeable reader might ask
whether the Willard-Lueker variation [12, 6] on range

MYERS AND MILLER

Figure 4: Intersection of the sweep plane in three
dimensions with the set of ¢ > p for fixed p. The
six subtriangles are regions within which the “sum-of-
pairs” gap_cost function (see Section 4) is affine. Arrows
indicate directions of triangle expansion as the sweep
plane recedes from p.

trees that shaves a log F' factor from the complexity
of queries could be applied here. Unfortunately, the
answer appears to be negative, as we must not only
divine the set of entries in the range, but also determine
a maximum function value over a dynamic subset of
them.

3 A Glance at K = 3 Sequences

Development of geometric intuition for three sequences
was a key step for us in discovering the general algo-
rithm, and we expect that 1t will be useful for the reader.
Of course, geometric intuition is a highly individual. We
hope that the following remarks will provide a useful
guide. These ideas are formalized below as Theorem
4.1.

Consider a fixed point, p, in Cartesian 3-space. The
set of all ¢ > p forms a semi-infinite “rectangle” with
its corner at p. Let £ be the line in 3-space that
passes through the origin and the point (1,1,1), and
consider the intersection of the semi-infinite rectangle
with a “sweep plane” that is perpendicular to £. That
intersection forms an equilateral triangle in the plane.
As the plane recedes from p, the triangle expands,
though the center remains fixed relative the the plane’s
intersection with £. See Figure 4.

Assuming that p’ = e.enid for some fragment e, we
seek to divide the triangle (i.e., the set of points on the
plane that can be chained after f) into regions within
which the function h(§) = score_at(e) — gap_cost(p, {)
is affine. In other words, if the function’s value in
one of these regions is interpreted as the height of a
surface over the region, then the surface is planar. The
number and nature of the subregions depends on how

CHAINING MULTIPLE-ALIGNMENT FRAGMENTS

we define gap_cost for more than two sequences. With
the definition adopted in the next section, the triangle
is divided into 6 = K! right triangles. FEach of the
smaller triangles can be interpreted as the intersection
of three half-planes; two of the half-planes stay fixed as
the sweep plane recedes from p, while the other moves
in a regular fashion. Moreover, the orientations of the
sides of this family of triangles are independent of p.

4 The General Case

The algorithm of Section 2, though it incurs an addi-
tional log F' factor in time and space over previous re-
sults for K = 2, generalizes to K > 2, as described in
this section. While it is clear how to define gap_cost
when K = 2, there are a number of ways to extend it to
the multi-dimensional case. We explored several, as dis-
cussed in the paper’s Epilog. The most difficult of these
is the so-called “sum-of-pairs” model, where the cost of
a multi-gap is the sum of the pairwise gap costs of the
+K(K — 1) pairs of unaligned segments, and so we fo-
cus on just it here. Specifically, if = (po, p1, ..., PKx-1)
and ¢ = (qo,q1,-..,9x—1) then we define:

Y gapcost((pi,ps), (4i,45)

0<i<j<K

gap_cost(§, 7) =

For this definition of gap_cost, our approach to
fragment chaining divides the computation of gap_cost
into K! cases, each of which is determined by one of the
possible orderings of the components, A; = ¢;—p;, of the
vector A = ¢ — p'between p and §. Specifically, for each
permutation 7 of [0, K — 1] the condition Ar gy > Ar(y)
> ... > Ag(k—1) defines one of the cases, and we say
7 sorts A. In what follows, 71 will denote the inverse
permuation of 7, i.e. 7= (m(i)) = i for all i. Each case is
handled identically, so we find that in an initial reading
of this section it helps to focus on the particular case
where 7 is the identity permutation, i.e., w(¢) = 7 for all
t. Summation notation is simplified by assuming that
all sums are over the index i which always begins at
0. For example, xg + x1 + ... + xnx will be written as
ZN ZTi.

Hence forward each case is denoted by a permuta-
tion 7, and a pair of points p’ and { are said to be in
the domain of the case if 7 sorts ¢ — p’. Certainly, every
pair of points is in the domain of at least one case. For
any case m, Lemma 4.1 below gives the condition under
which two Cartesian points in the domain of 7 can be
linked, as well as a formula for the gap_cost between
them.

LEMMA 4.1. Let m be a permutation of [0, K — 1].
If # sorts A = p'— ¢ then (1) § can be linked to
iff Arx—1)y > 0 and (2) gap_cost(p,§) = %(K — e -

SEA 48 YRR = 1) = r @) A

Proof. Part (1) is easily proved by noting that
within the domain of 7, Ar(x_1) > 0 is equivalent to
A; > 0 for all ¢, which in turn is equivalent to asserting
that p < ¢. The proof of part (2) begins by observing
that simply permuting terms in the summations by «
gives the equivalent identity:

gap_cost(p,q) = %(K —1e- ZK_l A
+3- T T E(K = 1) =) A,

()

which we prove by induction on K.

(BASIS) When K = 2, equation (f) asserts that
gap-cost(7,§) = 3¢ - (Ar(o) + Ar(1)) + 8 (3Ar0) —
%Aﬂ(l))’ whereas the definition of gap_cost(p,) is
£-Ar(1y + A-(Ar(0)—Ar(1)). Substituting the definition
d = 2X — ¢ and rearranging terms proves the identity of
these formulas.

(INDUCTTON) Assume equation (}) for fixed K >
2. Adding another sequence, where Arx) < Az for
0 <i< K, adds K terms of the form:

g[lp_COSt(< pﬂ'(z)apﬂ'(K) >’ < q”(l)’qﬂ-(K) >)
= eAn(i) + MAr(i) — Ar(i)-

Thus when 7 and § are (K + 1)-vectors:
(K —1)e- X5 A
+0- X (K — 1) = i) Agg)
+ YT A r k) + A Arp) — Arir)))
=[1Ke - YK Ariy = 16 57 Arpsy) — LKeA R (10)]
+ 10X GK =)Arm - 56X T Ary
+ 1 K6A (k)]
+ Y Ay + M Ay — Anry))
= IKe Y Ariy + I (LK — i) Argiy
+(—3e— 30N T T Ay
+ K(—1e+ 36 +e— M)A k)
= 1Ke Y Ariy + I (LK — i) Argiy

and thus equation (}) holds for all K > 2 by induction.
O

gap_cost(p,q) = %
(

Our chaining algorithm proceeds in order of antidi-
agonals of the fragment endpoints, in accordance with
the data-dependencies of the recurrence for score_at
given in the Introduction. Thus Lemma 4.1 must be
expressed in terms of an antidiagonal coordinate sys-
tem. As for 2 dimensions, a K-dimensional point 7

is defined to be on the antidiagonal antidiag(p’) =
EK_lpi, i.e., the sum of p’s coordinates. However,
the idea of p’s diagonal must generalize from a scalar to
a (K — 1)-vector. Namely, 7 is said to be on diagonal
diag(p) = (po—a/K,p1—a/K,...,pxk_2—a/K) where
a = antidiag(f). Once again there is an isomorphism
between a Cartesian point p and its antidiagonal point
[Z]s where ¥ = diag(p) and a = antidiag(F). Be wary
in what follows that # is a (K — 1)-vector and p'is a K-
vector. Lemma 4.2 below gives the equivalences needed
to express Lemma4.1 in the framework of antidiagonals.

LEMMA 4.2. Suppose p' = [Z]s and § = [§]p. Let
[[la = [#]s — [£a, ie. Ty =y — 2 for0<i<K-—1
and A =b—a. The conditions for sorting A and linking
P and ¢ may be directly translated as follows. For i,

j<K—1:

A > A ff Ti—T;>0.
Ai>Agor iff (XFTPT) 4T >0
A; >0 iff -T; <A/K.

Ag_1 >0 iff YF7r < A/K.

Finally, «f m sorts A then:
gap_cost([Z]a,[7]s) = (K — 1)e - A
+ 8- a YK —1) — 7L (i))Ty

Proof. Tt follows from the definitions of antidiagonal
coordinates that if 0 < 7 < K — 1, then A; = T; +
A/K, whereas Ag_1 = A/K — ZK_2FZ-. The stated
equivalences between inequalities follow immediately
from these facts.

To see the equivalence of the formula for gap_cost
with the formula given in the statement of Lemma 4.1,
first note the straightforward identity of the coefficients
of ¢, i.e., that J(K—1) 2% 7" A; = L(K —1)A. For the
coefficients of § we have:
ST GE = 1) =7 (@) A

= XGR - 1) -

+ ($(K —1)—
= ZK‘2(%(R’— 1) -
+ (3(K —1)—
SETR(K = 1) =77 ()

— (3(K = 1) =7~ (K = 1))
+ I PGK = 1) =771 (@)

+ (3(K —1) =7~ (K — 1))]JA/K

~H()A
(I\ -1)AK 1
~1(1)

)

(T; + A/K)
YK —1))(A/K —

)

ZK—QFi)

MYERS AND MILLER

YT (K = 1) = n T ()T

+ [TG K 1) =T @)IA/K

= X (K = 1) = (@)T
+[RK(K—-1)- ZK LiA/K

= Y TN E —) = A ()T

O

Our last mathematical step, before proceeding to
algorithmic development, is to recapitulate Lemmas 4.1
and 4.2 in vector algebraic terms in order to abstract
the relevant structure of the domain of the cases and of
the associated gap costs.

THEOREM 4.1. Let m be a fixred permutation of
[0, K — 1]. For a given fmgment end, e.efid = [f]a,
there exists (K — 1)-vectors Co, Cl, .. CK 1, and S
and scalars cq, ¢1, ..., CK_1, S, «, and ﬁ that have the
following properties.

(a) For a fixed antidiagonal b > a, the set of all
points [§]e that are in the domain of © and can be
linked to e.eiid (i.e., satisfy Aro) > Ary > ... 2>
Arx-1y > 0) are wzthm a non empty, bounded
and convex polytope delimited by K hyperplanes (of
dimension K — 1).

(b) K—1 of the inequalities defining the conver polytope
have the form C; -4 > ¢; for j =0,..., K —2
where “” denotes inner product. Note that these

hyperplanes are independent of b.

(c)

The remaining bounding hyperplane depends on b
and s given by the inequality Cx_1-i§ < cx_1+ab.
(d) [36) is S+ 5 + b

(c)

The value of gap_cost([Z],

Finally, the vectors éi, g, and scalars a, [are
independent of e.
depend on e.

Only the K scalars ¢; and s

Proof. In order to succinctly describe the vari-
ous vectors of the construction that constitutes the
proof, we define [--- f(u) -], as the (K — 1)-vector
[£(0), f(1), f(2), -, f(K = 2)] where f is a function of
the index u. In addition, let ¢,; be 1 if u = 7 and 0
otherwise.

First consider the conditions for which the point
[¥]s is in the domain of m. For i,j < K — 1, A; > A;
is equivalent to I'; — I'; > 0, which is equivalent to
ég' > ¢ for C = [tui — tuj--Ju and ¢ = C.z
Similarly, A; > Ag_q fori < K—1if C-§ > ¢
for C = [1+ tys -
Ag_1 > Ay, i1s simply obtained by multiplying C and

Ju and ¢ = C - #; the converse,

CHAINING MULTIPLE-ALIGNMENT FRAGMENTS

¢ by —1. Taken together, the K — 1 inequalities that
guarantee that 7 sorts A translate into the K — 1
inequalities of part (b) of the theorem.

The linking inequality, Az (g _1) > 0 of Lemma 4.1
translates into the inequality of part (c) as follows. If
7(K — 1) = K — 1, then the condition is equivalent to
ZK_l I; < A/K, which is equivalent to C- J<ec+ab
forC=[-1]y,a=1/K, and ¢ = C-F—aa. On the
other hand, if 7(K —1) < K —1, then the link condition
is equivalent to C-§ < c4ab for C = [=ty u, =

1/K,and ¢ = C - ¥ — aa. Similarly, gap-cost([Z]a, [¥]s)
=S G+s+pbfor S=[--d(x Y (K—=1)—=7""(u)) -]u,
p=2%(K-1)e and s = —S.#—Ba. This gives part (d),
and part (e) follows by inspection of the construction to
this point.

The final point to be proved is part (a). Certainly
the polytope bounded by the K hyperplanes embodying
the case and linking condition is convex as it is the
intersection of these hyperplanes. The one issue of
interest is to prove that the region is non-empty and
bounded for any b > a. It is certainly non-empty as
[Z]s always satisfies all K inequalities. To prove the
region is bounded is rather lengthy, so we just sketch
how it can be done here as this fact is not directly
relevant to the algorithm that follows. It suffices to
show that 0 is the only vector ¢ for which [Z + ¢l is
in the region for all ¢ > 0. In terms of the constraints,
the condition is equivalent to C; > 0foralli< K—1
and Cg_1 - ¢ < 0. ;From this point one can argue on
a case-by-case basis that it is impossible for ¢ to have
any non-zero components by levering the special form
of the C-vectors. a

To illustrate the construction of Theorem 4.1, we
list the vectors and scalars for the case of the identity
permutation with K = 5:

Co=1[1,-1,0,0] co=Cqo &
Ci=1[0,1,-1,00 e, =C, &
Cy=100,0,1,-1 e;=Cs %
Cs=1[1,1,1,2] c5=Cs Z
Cj4:[1,1,1,1] 64:C_"é~:i"—oza a:%
S =1[40,30,20,18] s=-S-&F—pPa p=2

;, From here on, we will denote each item belong to
a case m by superscripting with 7, and a scalar item ¢
depending on fragment e will be denoted by e.i. For
example, for a point [§] in the domain of case m, we
have that gap_cost(e.efid, [§]) = ST .+ e.s™ + Bb.
The quantities « and § are never qualified by a case
superscript as they are the same for all cases. Note that
there are only O(K?) distinct values of the vectors C_"f
over all choices of # and i, and the same is true for

the set of all e.c]. Unfortunately, there are K! different
S-vectors and e.s-scalars.

Theorem 4.1 gives us the appropriate generalization
of the K = 2 case discussed in Section 2. While the
Theorem identifies the range of fragment start-points
f.b€g that can be chained after a fixed e.efid, the derived
inequalities serve equally well to characterize the set of
fragment end-points that can be chained ahead of a fixed
fragment start-point.
reduce the problem of locating all such permissible
predecessors to a geometrical search problem.

As is widely known among computational geome-

In particular, the inequalities

ters, the data structure of Figure 3 generalizes readily
to a K-level range tree, as sketched in Figure 5. For
a given case m and fixed [§]p, the data structure al-
lows one to quickly determine a set of subtrees of 751
trees, the union of whose leaves is precisely the set of
fragment end-points, e.efid, that satisfy the K inequal-
ities given in parts (b) and (c¢) of Theorem 4.1. We
augment the traditional range-tree construction so that
each interior vertex of a 7K1 tree has a dynamically
maintained pointer, maz, to the leaf in the vertex’s sub-
tree that maximizes score_at(e)—e.s™ over all contained
leaves (i.e., fragment end-points) that have already been
passed by the algorithm’s “sweep hyperplane.”
In the following algorithm description, P denotes
the set of all permutions 7 of [0, K — 1] and fi, fo,
-+, fr are the given fragments. The notes following
the algorithm summary give expanded descriptions of
individual lines of the algorithm.

for each m € P do
Create a range tree for {f;.enid}_,.

for § € {f;.bég, f;.enid}]_, in antidiagonal order do
if p= f;.ernid then

Activate §in each 7K~ tree containing it.
/* = fi.bég */

score_at(f:) < fr.score + max{0, u} where
pu = maz{select_best (p) : m € P}

else

0O =1 O O i W N —

—
[\
~—

A K-level range tree, as depicted in Figure 5, is
created for each w. The mazr pointers discussed
below in connection with line 5 are initialized to

nil.

The loop treats fragment begin- and end-points in
order of increasing b. If one fragment’s end-point
coincides with another fragment’s begin-point, the
end-point is processed before the begin-point.

Consider a fixed 7 € P. Only the 75~ trees of
Figure 5 contain chain-score information, i.e., the
maz pointers. In each such tree that contains the
given f.erid, an upward walk from that leaf updates
maz pointers.

8 MYERS AND MILLER
TO
v T!
Ta
TK—l
e o o it
—

increasing e.cg

increasing e.cy'

increasing e.c; increasing e.c;_1

Figure 5: Data structure for a given case m when K > 2.

(8) The range tree for m, augmented with maz point-
ers in all of its 7K~ trees, supports efficient com-
putation of the maximum score_at(e) — e.s™ over
those previously processed f.efid’s that satisfy in-
equalities (b) and (c) of Theorem 4.1. Subtract-
ing S . ¥+ B7b from this maximum value gives
select_bestr(f.bég) (part (d) of Theorem 4.1). In
particular, the relevant fragments e are precisely
those where (e.cf,e.cT,..., e.ck_;) lies in the semi-
infinite range (—oo,ég T (—oo,C_"{T R TH R
(—00,C%_, -] x [CE_, - § — ab,00). An ordi-
nary binary-tree search for the value Cf - # in the
TO tree determines a set of O(log F') subtrees (F
is the number of fragments) whose leaves are the
fragment end-points e satisfying the first inequal-
ity, C§ > e.cl; those subtrees are just the “left chil-
dren” of the search path. Each of the corresponding
T? trees is searched with CT - § to identify a total
of O(log” F) subtrees of T trees containing frag-
ments satisfying the first two inequalities, and so
on. Finally, searches in T~ trees with the value
CF._, - — ab locates a total of O(log" F) subtrees
of TK=1 trees containing precisely the set of end-
points that satisfy all K inequalities. Use of each
subtree’s maz pointers produces the maximum for
score_at(e) — e.s™ in that subtree, and we take the
maximum over all all those subtrees.

5 Analysis of the Algorithm

Analysis of the algorithm’s time and space requirements
can be broken down into analyses of the following
quantities: (1) the time needed to construct the range
trees, (2) the space needed for the range trees, (3) the
time to evaluate score_at(f), and (4) the time to update

maz values in the 7K~ trees. Space constraints in these
Proceedings limit us to considering quantity (3) in some
detail.

5.1 Analysis of Search Time. Define C(K, H) to
be the maximum number of comparisons involved in a
search of a K-level range tree of height H. Since our
trees are balanced, H is O(log F'). The time to search
with given range values is O(C(K, H)), since the total
number of RAM steps is proportional to the number of
comparisons. C(K, H) satisfies the recurrence relation:

c+1 ifK,H>1
C(K,H)={ K if H =0
0 ifK =0

where

c=C(K,H-1)+C(K—1,H—1).

FEzplanation: When processing a vertex in the K-th
level (considering the top level to be level K) at height
H, one comparison operation might determine that all
leaves of one of the subtrees lie in the range. In that
case, inspection of the other subtree constitutes a level-
K search of a node at height H — 1 (hence the term
C(K, H—-1)), and a height-(H —1) tree containing leaves
of the first subtree must be searched at level K—1 (hence
the term C(K — 1, H — 1)). The other case is that one
of the subtrees is eliminated from the search, leaving
only inspection of the other subtree, which constitutes
a level-K search of a node at height H — 1. Finally, note
that in the boundary case of H = 0, the search may have
to affirm that the fragment represented by the vertex is
in each of the K ranges.

The remainder of this subsection utilizes the nota-
tion:

CHAINING MULTIPLE-ALIGNMENT FRAGMENTS

k

E .
H+1—-2
H *[H] denot _
1_[[]or1_[[]enoesi1r[1 ;
These terms are central to our analysis, and we need the
following technical lemmas. The first three of them can

be verified by straightforward algebraic manipulations.
k k-1 k

Lemva 5.1. [(# - 11+ []1# - 11 = [J1#].

K k K-1 k
Lemva 5.2 1+ Y JJH -1+ > JJ# -
K k F=t
>[I
k=1
K-1 k
LEMMA 5.3. Z (K —k) H
K-

k=1

K-2 kk ’ 1 k
(K-1)—k)][E-1=> (K -k]]H].
k=0 k=0
K k
LEMMA 5.4. C K, H) < EH
K-1 k h=t
(K — k)H[H].
k=0

Proof. By induction on K. When K = 0, simply
note that indeed C(0,H) = 0 (by the recurrence),
while the two summations on the right-hand side in the
statement of the Theorem are empty. It is also easy to
verify that C(K,0) = K = K []°[0].

For the induction step:

C(K,H)<1+C(K,H-—1)+C(K—1,H —1)

(by the recurrence)

IA
in
]~
—
ay
|
T

(by induction)

K k K-1 k
> [IHI+ X (K =k []1H]
k=1 k=0

(by Lemmas 5.2 and 5.3).

O

LEMMA 5.5. If K < then C(H,K) <

B (0 ENT
K! H ’

Proof. Relaxing Hk[H] to

Lemma 5.4 gives:

log F,

k

W and applying

. H? HK
C(K,H)< <H+7++F) +

H2 HK—I
<K—|—(K—1)H—|—(K—2)2—'+“'+m)

HEK K K\? K\5!
= T+2(2) +3(= r K=
((5 s (B) +oan (E)

HK K\ 2
<= (1-=
- K! H

where the last inequality requires that K < H. a

THEOREM b5.1.
there are K

Assume that K < logF, where
sequences and F fragments. Then
score_at(f) can be evaluated for fragment f in time
O(logk F).

Proof. Lemma 5.5 shows that the time for a sin-
gle range query is O((log F)/K!), and evaluating
score_at(f) requires K!such queries. Only O(K?) range
values, (_7;
they are all computable in that amount of time since
the vector inner products only take O(1) time due to

- ¢/, are needed over all these searches, and

the special form of the vectors C_"Z Thus the time to do
all the searching for a given fragment is O(K2 +log" F)
= O(log" F). m

5.2 Other Factors in the Analysis. An analysis
that 1s not given here shows the algorithm’s space
requirement to be O(K!F 4+ K F(log F + K)X~1). The
term K F(log F 4+ K)X~1is for the K! range trees, while
the term K!F comes from the information associated
with each of the F' fragment end-points. Specifically,
for each fragment there are O(K?) distinct e.cT values
and K! different e.s™ values. The time required to
compute the information for each fragment and to build
the range trees is proportional to the space requirement.
The time for all updates of maz-values in TK~" trees is
O(F(log F 4+ K)¥. Thus, assuming that K < log F, the
algorithm’s total time requirement is O(F logX F) and
space is O(K FlogK ™! F).

6 Epilog

We found it interesting and somewhat vexing that there
is a log-factor gap between our result and existing work
in the case where K = 2. We thought hard about
trying to reduce this discrepancy but have been unable
to do so, and the reasons appear to be fundamental.
In the two-dimensional case, previous authors appealed
to the fact that one could partition an antidiagonal
into O(F') convex domains for which a fragment would
yield the best link. However, in three dimensions there
can be O(F?) convex domains in the partitioning of an
antidiagonal. Thus the generalization of earlier work
would lead to an Q(F?) algorithm for K = 3, worse

10

than the simple algorithm. To improve upon our result
appears to be a difficult open problem.

The result of the previous section is specific to the
sum-of-pairs scoring scheme for gap_cost. Other com-
mon choices are the consensus scheme gap_cost(p, {)
= A", A;, and the column scheme gap_cost(p,§) =
Amax; A;. For the consensus scheme there 1s only one
case. For example, when K = 3 the equilateral trian-
gle of Figure 4 is not subdivided. Only one range tree
is required, and the O(K) e.c values and one e.s value
needed are computable in O(K) time per e. Thus the
time complexity is O(KF + F logh F/ K!) and space is
O(KF + Flogh=' F /(K —1)!).

For the column scheme, things are a bit trickier.
Technically the gapcost “projection” of a fragment
can be decomposed into K planar faces, but each of
these is bounded by 2(K — 1) hyperplanes. K — 1 of
the hyperplanes move with the antidiagonal, while the
others are fixed. One could model the situation with
only K range trees but each would be of dimension
2(K —1). So while from one perspective there are only
K cases, 1t is computationally more efficient to break
the domain into K! cases, giving an algorithm with
the same time and space complexity as for sum-of-pairs
scores. It appears that our approach is quite general
and applicable to a wide range of symbol-independent
choices of gap_cost.

References

[1] J. Bentley and H. Maurer, Efficient worsi-case data
structures for range searching, Acta Informatica, 13
(1980), pp. 155-168.

[2] K-M. Chao and W. Miller, Linear-space algorithms
that build local alignments from fragments, to appear
in Algorithmica.

[3] K.-M. Chao, J. Zhang, J. Ostell and W. Miller, A local
alignment tool for very long DNA sequences, to appear
in CABIOS.

[4] D. Eppstein, Z. Galil, R. Giancarlo and G. F. Italiano,
Sparse dynamic programming. I: linear cost functions;
1I: convex and concave cost functions, J. Assoc. Com-
put. Mach., 39 (1992), pp. 519-567.

[5] D. B. Johnson, A priority queue in which initialization
and queue operations take O(loglog D) time, Math.
Syst. Theory, 15 (1982), pp. 295-309.

[6] G. Lueker, A data structure for orthogonal range
queries, Proceedings of the 19th Annual [EEE Sym-
posium on Foundations of Computer Science (1978),
pp- 28-34.

[7] W. Miller, M. Boguski, B. Raghavachari, Z. Zheng and
R. C. Hardison, Constructing aligned sequence blocks,
Journal of Computational Biology, 1 (1994), pp. 51-64.

[8] E. Myers and X. Huang, An O(N?log N) restriction
map comparison and search algorithm, Bull. Math.
Biol., 54 (1992), pp. 599-618.

(9]

[10]

[11]

[12]

[13]

[14]

MYERS AND MILLER

F. Preparata and M. Shamos, Computational Geome-
try, Springer-Verlag, New York, 1988.

G. Schuler, S. Altschul and D. Lipman, A workbench
for multiple alignment construction and analysis, Pro-
teins: Structure, Function and Genetics, 9 (1991), pp.
180-190.

E. Sobel and H. Martinez, A multiple alignment pro-
gram, Nucl. Acids Res., 14 (1986), pp. 363-374.

D. E. Willard, Predicate-oriented database search algo-
rithms, Ph. D. Thesis, Harvard University, and Aiken
Computation Laboratory Report TR-20-78, 1978.

W. Wilbur and D. Lipman, Rapid similarity searches of
nucleic acid and protein data banks, Proc. Nat. Acad.
Sci. USA, 80 (1983), pp. 726-730.

7. Zhang, B. Raghavachari, R. Hardison and W.
Miller, Chaining multiple-alignment blocks, Journal of
Computational Biology, 1 (1994), pp. 217-226.

