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Abstract

A progressive alignment algorithm produces a multi-alignment of a set of
sequences by repeatedly aligning pairs of sequences and/or previously gen-
erated alignments. We describe a method for guaranteeing that the alignment
generated by a progressive alignment strategy satisfies a user-specified collec-
tion of constraints about where certain sequence positions should appear rel-
ative to others. Given a collection of � constraints over � sequences whose
total length is � , our algorithm takes � � � � � � � � � 	 	 time. An alignment
of the 
 -like globin gene clusters of several mammals illustrates the practi-
cality of the method.

Key words: Multiplesequence alignment, constrained alignment, dynamic
programming

1 Introduction

It is straightforward to extend the dynamic programming alignment algorithm(Needle-

man and Wunsch 1970) to the simultaneous alignment of � �  sequences. How-

ever, the � �  � � � � execution time for sequences of length � makes it impracti-

cal to align more than three sequences this way, unless the sequences are extremely

short. In practice, it is common to compute multiple-sequence alignments with a
�
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progressive alignment strategy. Although the computed alignment cannot be guar-

anteed to be mathematically optimal, large numbers of sequences can be aligned.

Progressive alignment works as follows. Two of the � sequences are aligned

together, and the resulting pairwise alignment replaces the two sequences. This

gives an alignment problem with � �
�

“sequences”, one of which is a sequence

of aligned pairs (i.e., each of its “symbols” is a column of the pairwise alignment).

Two of those sequences are chosen, aligned together, and replaced by that align-

ment, until only a � -way alignment remains. What makes this possible is that the

dynamic programming algorithm for aligning two sequences can be made to work

when one or both of the input sequences is itself an alignment of some of the originally-

given sequences. This strategy can be traced to a paper of Waterman and Perlwitz

(1984), and has been implemented, with numerous variations on the basic theme,

by many investigators (Feng and Doolittle1987, Taylor 1987, Corpet 1988, Higgins

and Sharpe 1988).

Alignment algorithms, even theoretically optimal ones, are typically designed

to perform well on a wide range of datasets. On the other hand, a program’s user

frequently has knowledge of their particular data that should override the conven-

tional wisdom embodied in the program. For example, it might be known that in

all members of a certain protein family a particular cysteine residue enters into a

disulfide bond, so an alignment of members of that family should place all those

cysteines in the same column even if the program awards a higher score to some

other configuration.
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This paper presents an algorithm for progressive alignment under a very general

class of constraints. The last section describes an example of constrained alignment

of genomic DNA sequences.

2 Constraints

Consider sequences � � � � � � � � � � � � , where � � � � �� � �� � � � � �� 	 has length � � , and

let � � 
 � � � . An alignment of the � sequences is a rectangular matrix with �
rows, each composed of sequence entries and dashes (indicating gaps introduced

into a sequence), such that (1) removing dashes from row � leaves sequence � � for

each � �  � � � � and (2) no column consists entirely of dashes.

A constraint denoted by � � � � � asserts that the symbol � �� should occur in a

column of the alignment strictly before the column containing the symbol � �� . We

call � � a sequence position, since it designates the � � � position in the sequence � � .
We also consider constraints of the form � � � � � , which asserts that the symbol � ��
should occur in the same column as, or before the column containing, � �� . Given a

collection � of such constraints, we wish to produce a multi-alignment that satisfies

all of the constraints in � .

The two types of constraints are not equivalent. One might be tempted to think

that � � �
� � � � � � is the same as � � � � � , but this is not so as the former permits � ��

to occur in a column after � �� . On the other hand, a constraint that � � and � � are in

the same column is equivalent to the two constraints � � � � � and � � � � � . Indeed

an assertion that � � � sequence positions in distinct sequences should be in the
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same column is readily expressed by a cyclic chain of � � -constraints. Similarly,

negation of a constraint can be expressed since, e.g., � � �� � � is equivalent to � � � � � .
We can thus restrict our attention to a collection � of � - and � -constraints.

Note that any multi-alignment satisfies the constraints � � �
� � � � � � for all

� �  � � � � and � �   � � � � , since the entries of sequence � occur in order within the

corresponding alignment row. We call such constraints implicit and denote the set

of implicit constraints by � . In contrast, the constraints of � are explicit.

3 A Consistency Test

We say that the set � of constraints is consistent if there exists at least one multi-

alignment of the � sequences satisfyingall of the constraints. This section develops

efficient algorithms to test for consistency.

Given � , consider the graph � whose vertices are the � sequence positions and

whose edges are directed between vertex pairs that are related either explicitly or

implicitly. Each edge has an associated type, which is either � or � . In particular,

implicit edges are always of type � , while each explicit edge has the type of the

constraint defining the edge. If more than one constraint exists between an ordered

pair of sequence positions, then the edge is of type � if at least one of the constraints

is of type � , and of type � otherwise.

Theorem 1 Let � be the graph constructed as above for a given set of constraints.

There exists an alignment that is consistent with the constraints if and only if each

cycle in � involves only edges of type � .
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Proof. First suppose that there exists a cycle in � containing a � edge, say

� � � � � . The remainder of the cycle from � � back to � � demands that � � � � � , an

impossibility.

For the converse direction, suppose that every cycle of � involves only � edges.

Form the graph � whose nodes are the strongly connected components of � and

where there is an edge in � from � to � iff there is an edge from some � -node con-

tained in � to some � -node in � . Edges in � are not assigned a type (i.e. � or � ) and

by definition � is acyclic. A node of � cannot contain two distinct positions in the

same sequence, since otherwise there would be a cycle in � containing an implicit

� edge. For each node of � , form an alignment column whose non-dash entries

are precisely the sequence positions in the node, and order the columns according

to some topological sort of � . This ordering guarantees that all of the constraints

in � � � are met. Thus the resulting matrix is an alignment and it satifies all of the

explicit constraints. �

Theorem 1 leads directly to the following algorithm to check for consistency.

Given a set of � explicit constraints, the graph � is constructed in � � � � � � time

and space. Then the graph’s strongly connected components are determined in time

proportional to size of the graph, using any of several known algorithms (e.g., Cor-

men et al. 1990, pp. 488-493). By definition two vertices are in the same compo-

nent if and only if there is a cycle containing both of them. Thus there is a cycle

involving a � edge if and only if some � edge connects two vertices in the same
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component. In the final step, the algorithm inspects each � edge and thereby checks

consistency. Thus consistency can be determined in � � � � � � time and space.

The algorithm can be improved in cases where � is much smaller than � , in

particular, when � � � � � � � � � � . Term a sequence position that occurs in some

constraint of � active. Consider the graph � � whose vertices are just the active se-

quence positions. Let there be an edge � � � from vertex � to vertex � iff either

(1) � � � or � � � is a constraint in � , or (2) � � � � , � � � � (i.e., � and � are

positions in the same sequence), � � � , and there does not exist an active position

� � such that � � � � � . Such an edge � � � has type � if either � � � is in � or

case (2) applies, and type � otherwise. Observe that � � has at most  � vertices and

� � edges. In essence, � � is a sparse encoding of � where chains of implicit edges

whose internal vertices are not active have been collapsed into a single edge. It then

follows that checking this graph for a � edge connecting two vertices in the same

strongly connected component also determines the consistency of the constraints.

Using a comparison-based method to sort the active positions in each sequence, � �

can be constructed in � � � � � � � � time and � � � � space. Computing strongly con-

nected components and checking their edges takes an additional � � � � time. Thus

consistency can be determined in � � � � � � � � time and � � � � space.

4 Transitively Implied Constraints

Given that � is consistent, our goal is to build up a multi-alignment of the � se-

quences by progressively aligning pairs of sequences or smaller alignments in a way
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that results in a multi-alignment satisfying the constraints. Clearly, when aligning

two of the given sequences, one must select only from pairwise alignments that sat-

isfy the constraints between the two sequences. However, because of the transitiv-

ity of the constraint relations, one must be even more careful. For example, if �
contains � � � � � and � � � � � , then one must ensure that � � � � � in any pairwise

alignment between � � and � � , since otherwise it would be impossible to align the

resulting alignment of � � and � � with � � to produce a three-way alignment satis-

fying � .

The following two relations capture the transitive implications of a given set �
of constraints. Define the constraint � �

� �
iff either � � �

or there exists a chain

� � � � � � � � � � � � � � � � � � �
such that � � 	 � � � � � is in � � � for each

� , and define the constraint � �
� �

iff there exists such a chain with at least one

(possibly implicit) � constraint. (Note: In this context, � � does not mean the � th

position in the � th sequence, but instead denotes the � th sequence position in the

chain.) We denote by � �
the set of �

�
and �

�
constraints arising from constraints

� . Note that � � � 
 � �
. Because the relationships in � �

model every transitive

chain of � � � it certainly follows that every alignment satisfying the constraints of

� satisfies those of � �
and vice versa.

The following definitions will be used to formulate Theorem 2, which formal-

izes the key observation concerning transitively implied constraints. The restriction

to � � and � � of a set � of constraints is the set of all � � �
in � such that � and

�

are positions in either � � or � � . An alignment � is a subalignment of alignment 
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if � can be obtained from  by deleting zero or more rows and then removing any

columns that consist entirely of dashes. A sample use of these notions is provided

by the following straightforward converse to Theorem 2: the subalignment consist-

ing of rows � and � of an alignment of sequences � � � � � � � � � � � � satisfying � is a

pairwise alignment satisfying the restriction to � � and � � of � �
.

Theorem 2 Let constraints � for sequences � � � � � � � � � � � � be consistent, and let

� be a pairwise alignment of � � and � � that satisfies the restriction to � � and � �
of � �

. Then there exists an alignment  of � � � � � � � � � � � � satisfying � such that

� is the subalignment consisting of rows � and � of  .

Proof. Let � be the set of all constraints satisfied by � . To be more precise, let

� � � � � � � � denote the index of the column of � in which � � occurs. Then � � � � � is in

� iff � � � � � � � � � � � � � � � � � , and � � � � � is in � iff � � � � � � � � � � � � � � � � � . Note that an

alignment of � � � � � � � � � � � � satisfies � if and only if the subalignment consisting

of rows � and � is exactly � .

We want to verify the existence of an alignment that satisfies all constraints in

� � � . By Theorem 1, it is sufficient to examine cycles � � � � � � � � � � � � � � � �
� � , where each � � 	 � � � � � is in � � � � � . Within the cycle, each run of consecutive

constraints from � � � can be replaced by a single constraint in � �
. Thus the cycle

can be replaced by one where the successive constraints, � � 	 � � � � � , alternate

between a member of � �
and a member of � , whence every sequence position in

the cycle is in either � � or � � . But since � satisfies the restriction to � � and � �
of � �

, that restriction is a subset of � , i.e., all constraints in the cycle are in � .
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Figure 1: Edges entering node � � � � � in the edit graph and their labels.

Consistency of � implies that the cycle contains only � constraints, so the original

cycle (with constraints in � � � � � ) contains only � constraints. �

5 Constrained Pairwise Alignment

We now address the problem of computing a pairwise alignment subject to a con-

straint of the form � �
� �

or � �
� �

. It is helpful to think in terms of an edit

graph for sequences � � and � � . We will frame the discussion in terms of the sim-

plest kind of edit graph, which is appropriate when the pairwise alignment is opti-

mized with respect to the sum of scores for each column (including those contain-

ing dashes). The discussion carries over with only minor changes to graphs that are

based on scores more appropriate for progressive alignment of biological sequences

(e.g., Chao et al. 1994, pp. 280-282).

The simplest kind of edit graph for � � and � � consists of an � � � � � � -by- � � � �
� � matrix of vertices �  � � � � � �  � � � � � � . The vertex at gridpoint � � � � � with � � � ,
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Figure 2: Edges forbidden by � and � constraints.

� � � has three entering edges, each of which is labeled by an alignment column,

as pictured in Figure 1. (Vertices in row 0 and column 0, except for � � � � � , have

only one entering edge.) To each path from � � � � � to � � � � � � � there corresponds

the alignment of concatenated edge labels; this gives a one-to-one correspondence

between such paths and alignments of � � and � � . Note that the alignment column

containing � �� comes from the edge where the path enters row � , and � �� comes from

the edge entering column � .

The constraint � � �
�

� � requires that the alignment’s path reach row � strictly

before it reaches column � . Thus the constraint is equivalent to requiring that the

path avoid edges in the interior of the forbidden region �  � � � � � �  � � �
� � � � � � . The

constraint � � �
�

� � differs only in allowing the column aligning � �� and � �� , so its

forbidden region differs from that for � � �
�

� � by permitting use of the diagonal

edge from � � �
� � � �

� � to � � � � � . Figure 2 illustrates these forbidden regions.
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6 Prime Constraints

This section and the next describe how to delimit, for all sequence pairs � � and

� � , the forbidden regions corresponding to the restriction to � � and � � of � �
. The

number of these constraints can be quadratic in the sequence lengths; for instance,

this happens if � contains a constraint � � � � � with � not too near 1 and � not too

near � � . Fortunately, we need only consider the constraints whose forbidden region

is not contained in the forbidden region of another constraint.

A constraint � � �
�

� � will be called prime if (1) no � � � satisfies � � �
�

� �
or � � �

�
� � and (2) no � � � satisifies � � �

� � � or � � �
� � � . Furthermore, a

constraint � � �
�

� � is prime if it is not the case that � � �
�

� � . It follows directly

from these definitions that the forbidden region of a non-prime constraint is con-

tained within that of some other constraint. For example, if � � �
�

� � is not prime

because (1) is violated, then there exists an � � � such that � � �
�

� � or � � �
�

� � .
The forbidden region of either of these two constraints properly contains that of

� � �
�

� � . Henceforward, we say that a constraint dominates another if its forbid-

den region properly contains that of the other. Now every non-prime constraint � �
is dominated by some other constraint � � . If � � is non-prime then it is dominated

by some other constraint � � . Continuing this chain inductively, one must eventually

reach a prime constraint � � or the chain must loop on itself. But the later is impossi-

ble as this would imply that a forbidden region properly contains itself. Thus every

non-prime constraint is dominated by a prime constraint.

Let � � � � be the � -ordered list of prime constraints between � and � , i.e., � � �� � �
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� � � � �
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and � � � � � � � �
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� �� � � �� � � � �� � � � � � � � �
� 	 	 


� � � �
� 	 	 
 � � �

� 	 	 

�

�
where � �� � � � � �� and � � is either �

�
or

�
�

. Note that by primality it follows that � �� � � � � �� for all � . The union of the

forbidden regions of all constraints in the restriction to � � and � � of � �
equals the

union of the forbidden regions for the prime constraints (this follows from the previ-

ous paragraph), and hence the union is properly specified by � � � � and � � � � . Further

note that there is at most one prime constraint whose right position is � � for a given

� , that this constraint can be uniquely charged to a constraint of � whose right po-

sition is � � , and thus that the size of � � � � is bounded by the number of constraints

in � whose right position is in � � . Hence, for a fixed � , 
 � �� � �  � � � � � � , where �
contains � constraints.
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7 An O(K+C) Prime Constraint Algorithm

It now remains to design an efficient algorithm for determining the ordered list � � � �
for all � �� � . Consider the sparse graph model � � of the constraints in � � � de-

scribed in the last paragraph of Section 3. For algorithmic purposes assume that

every vertex � is annotated with a �� � � and � �  �
attribute, so that � �� � � � � � � � is the

sequence position represented by � . Further assume that � � is a sorted list of the set

of vertices � for which � � �  � � � in increasing order of their �� � � attributes. Recall

that the lists � � are needed to construct � � in the first place. Finally, to distinguish

the types of edges in � � we will write � � � if the constraint between � and � is

of type � , and � � � if the constraint is of type � .

For a given sequence � � , the algorithm of Figure 4 computes � � � � for all � �� �
in � � � � � � time and space. It does so by computing the prime constraint (if one

exists) from each position in � � to every other sequence in reverse order of � � .

Theorem 3 The algorithm of Figure 4 correctly determines � � � � for fixed � and all

� �� � .

Proof. It suffices to prove the invariant that when one is about to enter the loop

of lines 6-14 then (1) � � � � is an increasing sorted list of all prime constraints from �
to � originating at a successor of � in � � , (2) every vertex reachable from a successor

of � in � � has its � � � � � field set to �
�

, and all others have their’s set to � , (3)

� � � �   � � is the leftmost position in sequence � that is reachable from a successor

of � in � � , and (4) � � � �   � � � � for all � �� � . This is certainly true before the first
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1. procedure � � � � � � � � � � � � � � � 	
2. 	 � 
 � �  � � � �� �
3. � � � � � � � �  � � �
4. � � � � � � � �  � � �
5. � � � � � �  � � vertices �
6. for � � � 
 in reverse order do
7. 	 � � �   
8. Search � � ! " # 	
9. for �  � to � � � do
10. 	 �  $ � � � � � �
11. � 
 � �  � � �� % � � � � � � � � � � � � � � � � � 	 & � 
 � �
12. � � � � � � � �  �
13. '
14. ( � � � ) � � � 	
15. '
16. '

17. procedure Search(� : vertex, � � � � : 	 * # , " # ' )
18. 	 if � � � � � � � � or � � � � � � � � " # and � � � � � * # 	 then
19. 	 � � � � � �  � � � �
20. if � � � � � � � � � � + � , � �� % � then
21. 	 if � � � � � � � � � � + � � � and � � � � + �� � then
22. $ � � � � � � �  � � � � � �  � � � � +
23. � � � � � � � � � � + �  � �� % �
24. � � � � � � � � � � + �  � � � �
25. '
26. for � - . do
27. Search � . ! * # 	
28. for � / . do
29. Search � . ! � � � � 	
30. '
31. '

31. Markup(� : vertex )
32. 	 if � � � � � � �� * # then
33. 	 � � � � � �  * #
34. for � / . do
35. Markup � . 	
36. '
37. '

Figure 4: Algorithm to determine the lists � � � � for fixed � .
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execution of line 8 by the action of lines 2-5. Lines 18, 19, and 26-29 implement a

traversal from the originating � vertex that traverses a vertex once if it is first reached

via a �
�

chain and possibly twice if it is first reached via a �
�

chain. An additional

traversal realized by Markup advances the mark field of all vertices marked with

�
�

to �
�

so that clause (2) of the invariant is true upon completion of the loop

body. Since all vertices reachable from a successor of � have been visited, the test

at line 20 guarantees clause (3). Similarly, � � � and the � � � � array are manipulated

in lines 21-22 and lines 9-12, so that � � � �   � � is reset if it gets set during the marked

traversal. Thus clause (4) is also true upon completion.

What remains is to prove the invariance of clause (1). We first show that af-

ter executing line 8, if there is a prime constraint originating at � �� � � � and end-

ing in sequence � then it is the constraint � �� � � � � � � �   � � � � � �   � � � , and otherwise

� � � �   � � � � . Suppose that � �� � � � �
�

� � is the prime constraint originating at

� �� � � � . Then the vertex for � � is marked � , for otherwise there is a successor � of

� on � � for which � �� � � � �
�

� � or � � � � � � �
�

� � . In either case � contradicts

the primality of � �� � � � �
�

� � . By primality, � � � for any other position � � for

which � �� � � � �
� � � . Thus when � � is reached, � � � �  will be properly set to � . The

only other possibility is that � � � � � � �
�

� � , but because Search retraverses vertices

marked �
�

when reached by a �
�

-chain the �
�

constraint will take precedence.

Thus � � � �  will be properly set. The argument for � �� � � � �
�

� � is much the same,

save that we need not worry about the possibility of � �� � � � �
�

� � as it would imply

the constraint is not prime.
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The final observation is that only prime constraintsare added to � -lists. If � � � �   � � �
� before executing line 8, and if � �� � � � � � � is added to list � � � � at line 11, then

� � � because of invariant (2) and the test at line 20. Invariant (4) then guarantees

that the constraint is prime. �

8 A Multiple Alignment Algorithm

An algorithm for progressive alignment of sequences � � � � � � � � � � � � subject to

constraints � is given in Figure 5. As noted in Section 3, the constraint graph, � � ,

for the original set of sequences can be determined in time � � � � � � � � � � � � � � � � � ,
where � is the sum of the sequence lengths and � is the size of � . At each subse-

quent iteration of the while loop, � � can be updated as follows. Let � and � be the

sequences selected at line 6 in the previous iteration, let � � � � � � � � � � � � be the ver-

tices of � and let � � � � � � � � � � � � be the vertices of � . The two lists can be merged to

get the implicit constraint edges for vertices of � � , which replace the implicit con-

traints between two � or two � vertices and explicit contraints between a � vertex

and a � vertex (or vice versa). A � vertex and a � vertex that correspond to the

same column of � � are represented as a single node, with the appropriate changes to

adjacency lists. Thus subsequent executions of line 3 take time � � � � .
Each execution of line 4 involves � � � executions of Figure 4, and hence requires

time � � � � � � � � . Computation of all pairwise alignments takes time � � � � � .
(For the time being, assume that pairwise alignment of sequences of lengths � � and

� � takes time � � � � � � � , even if each sequence is an alignment of several � �
. See
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1. �  	 � � ! � � ! � � � ! � � '
2. while � � � � � do
3. 	 � �  the constraint graph for �
4. compute � 
 � � for all � ! � � � with � �� �
5. compute all constrained pairwise alignments for � ! � � �
6. � ! �  the most similar pair in �
7. � �  the alignment of � and �
8. �  � 	 	 � ! � ' 
 	 � � '
9. '

Figure 5: An algorithm for progressive multiple alignment with constraints.

the next section for a different analysis that is appropriate for a particular alignment-

scoring scheme.) It follows that the algorithm of Figure 5 runs in time � � � � � � �

� � � � .
In practice, it may be possible to reduce the running time by avoiding some of

the pairwise-alignment computations. For example, after � � � � and � � � � are recom-

puted, one can check in linear time whether the previous alignment of � and � sat-

isfies the new constraints. If so, then no recomputation is required.

9 An Implementation

� � � �  (Chao et al. 1994) is a progressive multi-alignment program used for ge-

nomic DNA sequences. The order in which sequences are aligned is predetermined

according to the assumed evolutionary relationships among the sequences.
� � � � 

scores a multiple alignment as the sum of scores of the implied pairwise alignments,

using quasi-nataral gap costs (Altschul 1989). With these scores, progressive align-

ment of � sequences takes time � � � � � � � (Chao et al. 1994), where the final align-
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ment has � columns.

We modified � � � �  to handle constraints, calling the new program � � � � �
.

The implementation task was simplified by the fact that � � � �  already limited each

progressive step to a region of the dynamic-programming grid determined by a lower

and an upper column bound for each row. The earlier algorithm (Chao et al. 1993)

defined a “forbidden region” strictly in terms of vertices, and required modification

to disallow an edge in the case of a � constraint. Each of the � �
�

merge steps

requires time � � � � to update � � and time � � � � � � to determine the forbidden

regions. (Only the regions for the two sequences being aligned at this step are re-

quired.) Thus the program runs in time � � � � � � � � � � .

10 An Example

One � � � �  alignment, which includes a 73,308-nucleotide sequence from the hu-

man � -like globin gene cluster, can be accessed by electronic mail (Hardison et

al. 1994) or the WorldWide Web (http://globin.cse.psu.edu). It is in-

tended that the alignment can be inspected to locate conserved regions falling out-

side of protein-coding segments, which may indicate signals associated with the

regulation of gene expression. Of course, it is possible that regulatory sites which

are homologous (i.e., descended from the same DNA region in the species’ common

ancestor) may not correspond under the current alignment. For any such cases, it

would be desirable to force them to align using � � � � �
.

A potential example of this phenomenon concerns GATA1 binding sites lying
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-207 -187 -177

                   |                   |         |
 61915:  ACTGATGGTATGG----GGCCAAGAGATATATCTTAGAGGGAGGGCTGAG human
 34701:  G...C...G....----.A...T...C..C.C---.C............C galago
 30703:  ....C........----.T.TGG......C..---...A...A....... rabbit
 10556:  .T..C...A...ACTGT.AT.T......GCCC---...AA.........T cow
 50533:  T...CACAG..AA----..A...ACAT...TC---........TA.CC.. mouse

GATA1 GATA1

Figure 6: Portion of a � � � �  alignment of the � -like globin gene clusters of sev-
eral mammals. A dot indicates agreement with the entry of the human sequence in
that column. Boxes are drawn around runs of six or more successive columns with
at most one mismatch per column. GATA1 binding sites in the human and mouse
sequences, as discussed in the text, are underlined.

about 200 basepairs before the transcription initiation site of the � -globin gene.

GATA1 is a transcriptionfactor known to be critical in regulation of the globingenes.

Its consensus binding site is WGATAR, where W designates either A or T, and R

designates either A or G. An imperfect match, AGATAT, at �  � � (relative to the

transcription start site) in the human sequence has been shown experimentally (de-

Boer et al. 1988) to bind GATA1, as has a conforming AGATAA at �  � �
in the

mouse sequence (Macleod and Plumb 1991). However, these two regions do not

align (Fig. 6), even when the alignment-scoring scheme is varied.

There is some experimental evidence that these sites play a functional role in

regulation of the � -globin gene. They appear to have an effect on laboratory proto-

cols that chemically induce expression of the � -globin gene in cultured MEL (mouse

erythroleukemia) cells, which may indicate that the sites play a role in regulation

of that gene in vivo. In particular, an experiment involving deletion of the human

GATA1 site at �  � � indicated that it can act with other sites to confer inducibility

(deBoer et al. 1988), whereas point mutations in the �  � �
mouse GATA1 site re-
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-213 -207 -187

         |         |                   |         |        
 61915:  ACTGATGGTATGG----GGCCAAGAGATATATCTTAGAGGGA--------GGGCTGAG human
 34701:  G...C...G....----.A...T...C..C.C---.C.....--------.......C galago
 30703:  ....C........----.T.TGG......C..---...A...--------A....... rabbit
 10556:  .T..C...A...ACTGT.AT.T......GCCC---...AA..--------.......T cow
 50533:  T...C-----------------------.C.G---.T.A...CAAACATTATT.A... mouse

GATA1 GATA1

Figure 7: Portion of the � � � � �
alignment computed with the single constrant:

� � � � � �
� � � � �

�
�

� � � � � � � � . Note that the two GATA1 sites have reversed their
order.

-213 -207 -187 -179

         |         |                   |         |  
 61915:  ACTGATGGTATGG----GGCCAAGAGATATATCTTAGAGGGA--GGGCTGAG human
 34701:  G...C...G....----.A...T...C..C.C---.C.....--.......C galago
 30703:  ....C........----.T.TGG......C..---...A...--A....... rabbit
 10556:  .T..C...A...ACTGT.AT.T......GCCC---...AA..--.......T cow
 50533:  T...C-----------------.C.....AGG---.C.AAC.TTATT.A... mouse

GATA1GATA1

Figure 8: Portion of the � � � � �
alignment computed with the two constrants:

� � � � � �
� � � � �

�
�

� � � � � � � � and
�

�
� � � � � � � � � � � � � � �

� � � � . Note that the two
GATA1 sites are now aligned.

lieved repression prior to induction (Macleod and Plumb 1991). On the other hand,

different point mutations in the mouse GATA1 site had no effect either before or af-

ter induction by the hormone erythropoietin in two different cell lines (Taxman and

Wojchowski 1995), and we feel that the putative homology and functional roles of

the two GATA1 sites have yet to be fully verified.

In any case, assume for the moment that further experiments will confirm that

the two GATA1 binding sites are homologous and that they play a role in regulating

expression of the � -globin gene. With only one constraint given, � � � � �
fails to

produce the desired alignment (Fig. 7), but it succeeds when given two constraints

(Fig. 8).
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