GOING AGAINST THE GRAIN

Gene Myers'? Mudita Jain'?

! Dept. of Computer Science, University of Arizona, Tucson, AZ 85721
2 Partially supported by NLM Grant LM-04960.

Abstract. We review a general, space and time efficient technique for
delivering a sequence of values computable by a recurrence relation, in
the order opposing the data-dependencies of the recurrence. The tech-
nique provides a series of time/space tradeoffs we characterize by pa-
rameter K > 0. Namely, N values can be delivered against the grain
in O(K'N) time and O(KNl/K) space. This basic idea is not new, but
here we present it in a framework exposing its essential nature and we
give a concise yet easily understood explanation of it in terms of count-
ing in a radix-N'/% number system. We then show how to apply this
paradigm to a couple of problems in sequence comparison, a domain
where it has here to fore not been used. We show that in the limiting
case of K = log, N, the method coincides with the well-known divide-
and-conquer algorithm of Hirschberg. Thus, our observation provides a
continuum of time/space tradeoffs for all comparison problems that have
appealed to the Hirschberg paradigm for greater space efficiency, e.g., se-
quence comparison with concave weights, approximate matching of reg-
ular expressions, etc. In particular, an O(M N + (M + N)W log(M + N))
algorithm for computing a representation of all suboptimal alignments
is a corollary of our technique with the important property that only
O(M + N + Wlog(M + N)) working storage is required versus the
O(M + N + F) space of an earlier result by Chao. Here F is the size of
a graph modeling all of the suboptimal alignments, and W is its width.
Since F' may be O(M N) this savings can be important in contexts where
only summaries of the suboptimal region is required, e.g., the number
of suboptimal paths with score greater than some threshold. Another
application to computing locally optimal alignments as defined by Sellers
illustrates the broad utility of the technique.

1 The Paradigm

1.1 Introduction

Consider a one-variable recurrence:

I = Mfa-1,m) ifn>0
n do otherwise

where the values f,, are from domain D, dy is a valuein D, and A : D x X +— D is
a computable function. Further assume that O(S) memory is required to store
a value from the domain D and that h(d, n) is computable in O(T') time for any

value d and integer n. For such a recurrence, the sequence fy, f1,-- fy—1 for
some N > 0 can be easily computed in O(T'N) time and delivered in that order in
O(S) working storage. In this case the sequence of values to be delivered follows
the “grain” or data-dependency of the recurrence. The problem we consider
is one of “going against the grain” of the recurrence, that is, of delivering the
sequence of values fy_1, fn_2, - fo in reverse order.

An obvious approach is to simply compute and store the entire sequence of
values with the grain in O(T'N) time and O(SN) space, and then deliver the
values in the reverse order. At the other extreme, one can deliver each value in
reverse order, computing each from scratch with the grain in only O(S) working
storage. The obvious drawback is that the total time taken is O(TN?). We
present an approach that produces the N values against the grain in O(TKN)
time and O(SKNUK) space, where K > 0. Thus our algorithm provides a
series of time/space tradeoffs between the two extremes of O(SN) space ver-
sus O(T'N?) time. Starting at K = 1 we get the O(T'N) time, O(SN) space
algorithm, followed by a series of algorithms that end with an algorithm of com-
plexity O(T'N log N) time, O(Slog N) for K = log, N. This last algorithm in
the series has the best possible space-time product. Note that as the series
does not continue beyond K = log, N we do not meet the O(T'N?) time, O(S)
approach at the other extreme of the spectrum.

One might characterize the approach as a K-level geometric partitioning of
a problem. This paradigm has appeared several times in the context of specific
problem domains. For example, we believe it was first used by Bentley and
Maurer in “dynamizing” static search problems [1], later by Myers in realizing
persistent arrays [7], and by Kannan and Myers in finding twins [5]. However
the paradigm has never been presented as one of going against the grain and
has not been applied in a general way to sequence comparison. Moreover, in
the next two paragraphs we concisely and cleanly describe the idea by appealing
to the idea of counting in a radix-N'/X number system. Typically, this idea
is described as a series of results, first for K = 2, then K = 3, and then the
inductive case, in lengthy expositions that are further complicated by the details
of a specific application.

1.2 The Algorithm

Our approach counts down from N — 1 to 0 delivering the values in sequence.
At the time a given value f, 1s delivered, a specific subset of f-values has been
computed and cached to assist in the efficient delivery of subsequent values.
The simplest way to describe the set of cached values is to consider represent-
ing the integers from 0 to N — 1 in a radix R = N'/X number system. Let
(ik—1iKk—2 - -ig)r be a radix-R number. Recall that each digit 7 is a number
between 0 and R — 1 and the integer represented is Zf:_ol ix R®. For example, if
N =625 and K =4, then R =5 and (2431)5 denotes the integer 366. In our al-
gorithm, upon delivery of the 366" value, the cache contains the values f. where
c € {(z000)s, (2200)s, (2420)s5, (243z)5}2_,. In general, when f, has just been
delivered for n = (ig_1ix—2 - - - io) R, then the algorithm has currently cached the

values f, where ¢ € {(;L‘OK_I)R,(iK_lmOK_Q)R,~~~,(iK_1iK_2~~~i1m)R f:_ll.

Simple counting reveals that exactly K(Nl/K — 1) values are cached at any one
time and so our space complexity claim follows. Since f, is in the set of cached
values it can certainly be delivered once the cache has been updated.

So it only remains to investigate the work involved in updating the set of
cached values when n is decremented. Suppose n = (at0*)p where t is the
rightmost non-zero digit and « represents the sequence of the leftmost K —k —1
digits. Then n — 1 = (a(t — 1)(R — 1)*)g. Thus updating the cache requires
discarding the cached values {(at0*~7=1207) g} *=! for each j < k and replacing
them with {(a(t—1)(R—1)*=209) g}, For each choice of j the new cache
values can be computed with O(S) working storage by computing the “panel”
fe to foppi+1_1 where ¢ = (a(t — 1)(R — 1)k¥=9-109+1) g in forward order in
O(TR*!) time and saving the needed values. For a given level j < K, such an
update occurs only when the j** digit transits from 0 to R — 1, so the values
computed in a level-j panel are disjoint. Thus for each level a total of O(T'N)
time 1s taken as n is counted down from N — 1 to 0. Thus the total time is
O(TKN) over all K levels. Appendix A gives a detailed pseudo-code for the
algorithm.

1.3 Practical Considerations

With regard to choosing K, note that in asymptotic terms the time taken is
O(TN) for fixed small choices of K, e.g., 2, 3, or 4, whereas space complexity
improves, e.g., O(SN%)7 O(SN%), or O(SN%). The best possible space con-
sumption, O(Slog N), occurs when K = O(log N) for which choice the time is
O(T'Nlog N). Another interesting choice of K is O(log N/log N log N), giving
O(TN log N/ log N log N) time and O(S log® N/ loglog N) space.

In practice our result i1s best used when the amount of memory, say M,
available for the task is known a prior:. Then for a given N choose the smallest
value of K such that the number of cached values will not be greater than M/S.
In this way one gets the best possible time performance within a given space
limitation. Table 1 gives an example of the largest N possible for each value of K
assuming M = 1,000,000 and S = 1,000, S = 10,000, and S = N, respectively.
When S = 1,000, 1,000 values can be cached and when S = 10, 000, only 100 can
be cached. The final column is relevant to one of our forthcoming applications
where two strings of length N are being compared. In this case S = N, i.e.,
as the length of the sequence to deliver in reverse order grows, the size of each
value grows proportionally. The apparent anomaly at K = 9 is due to rounding
factors, namely R must in practice be chosen to be [NI/K] and this creates such
non-monotone progressions as K approaches log, N.

K| S=1,000 S=10,000 S=N
1 1,001 101 1,000
2 251,001 2,601 6,329
3 | 37,259,704 39,304 13,888
4 > 10° 456,975 20,833
5 > 10° 4,084,101 28,571
6 >10° 24,137,569 33,333
7 >10° 170,859,375 35,714
8 > 10° > 10° 41,666
9 > 10° >10° 37,037

10 > 10° >10° 50,000

Table 1. Maximum problem sizes solvable with M = 1,000, 000.

2 Applications to Sequence Comparison

2.1 Sub-Optimal Alignments

Consider the comparison of sequences A = ajas---ay and B = byby - - - by over
alphabet X with respect to scoring scheme § : (£ +4¢)? + R. Polymorphically let
d(A, B) denote the score of the best alignment between A and B. Let A; be the
prefix ajas - - -a; and let A’ be the suffix a;y1a;12 - -an. Let P(i,j) = 6(A;, B;)
be the score of aligning the prefixes A; and Bj, and let S(i, j) = §(A?, B7) be the
score of aligning the suffixes A’ and B7. The now classic dynamic programming
algorithm for sequence comparison computes §(A, B) = P(M,N) = S(0,0) by
computing an (M + 1) x (N + 1) table of one or the other of P or S using the
well-known recurrences:

(i— 1,7 — 1) —}-(S(Cti,bj)
(i—1,7) +8(ai,e)
(4,7 —1) 4+ d(e, b;)

P(i,j) = min

(Z + 1a.7 + 1) + (5(ai+1a bj+1)
(1+1,7) +d(aiy,)
(1,5 +1) + (e, bj11)

S(i,j) = min

We assume the reader is familiar with the “edit graph” model of sequence
comparison. Briefly, the graph has (M + 1)(N + 1) vertices labeled (i,j) €
[0, M]x [0, N] arranged in a rectangular grid. There are alignment edges (4, j) —
(¢4 1,7+ 1) of weight d(a;, b;) modeling the alignment of a; and b;. Also, there
are indel edges (7,7) — (i 4+ 1,7) and (i,7) — (4, + 1) of weights d(a;,€) and
d(e, b;) that model leaving a; and b; unaligned, respectively. Within this frame-
work, a best alignment between A and B is modeled by a least cost path from
(0,0) to (M, N) and the score of such a path is §(A, B). Moreover, P(i,j) is the
cost of a best path from (0,0) to (4,7), S(4,j) is the cost of a best path from
(7,7) to (M, N), and note carefully that P (i, j) +S(i, j) is the cost of a best path
from (0,0) to (M, N) that passes through (3, j).

A series of results in the literature concern enumerating all suboptimal paths
that score within some threshold 7, typically near the optimum [13, 9, 2]. Since
the number of such alignments grows very rapidly as 7 moves away from the
optimum, investigators have found it superior to depict the subgraph of the
edit graph containing the paths representing the alignments [9]. Such depictions
reveal invariant aligned segments common to all or many of the subpaths and
give an interesting characterization of the similarity between two sequences.
The subgraph G, containing all suboptimal paths of score not greater than =
consists of the vertices v such that P(v) + S(v) < 7 and the edges v — w such
that P(v) + 6(v = w) + S(w) where d(v — w) is the weight of the edge.

Let ﬁj be the (M +1)-vector [P(0, j), P(1,37),--P(M,j)] and similarly define
57. Next observe that these values satisfy the recurrence relations for going
against the grain. For example, for the S values/vectors:

g _ h5(57+1,J) ifj <N
J SN otherwise

where §N = [ZQ/I i+ §(ag,e) 1M, and hg computes the next column from the
previous one using the fundamental recurrence above. Note that the sequences
SN, SN 1,0 SO and Po, Pl, PN are with the grain, i.e., the grain directions
of S- and P-vectors oppose each other.

To deliver the vertices and edges of G; in column increasing order it suffices
to compute the sequence PO + SO, P1 + Sl, PN + SN, 1.e. the P-vectors with
their grain and the S-vectors against theirs. Using our central idea we have an
O(KMN) time, O(K M N'¥) space algorithm for doing so for any choice of
K > 0. Note that GG; does not need to be saved, it can be sent to a graphics de-
vice to be drawn or statistics about it can be gathered as the algorithm proceeds.
Especially note that since GG, 1s delivered in column order one can accumulate
order-dependent information such as the number of suboptimal paths, the in-
variant alignment segments, or suboptimal alignments matching a pattern as in
[2]. Since the size of G, call it F', may be O(M N) this feature of our algorithm
is an advantage not possessed by the earlier O(M + N + F) space algorithm by
Chao which while achieving O(M N + Floglog W) time cannot deliver G in
column major order. By contrast the grain-based algorithm delivers columns in
order and requires only O(M log N) space when K is chosen to be log, N.

At this juncture we digress to make the observation that our approach gen-
eralizes the basic divide and conquer algorithm of Hirschberg [4]. To see this
observe that in the case that K = log, N, the set of S-vectors cached at any
moment is exactly the set of mid-point vectors that would be on the recursion
stack of the divide-and-conquer algorithm. So for this choice of K| going-against
the grain can alternately be seen as basically an iterative version of the divide-
and-conquer algorithm. So what’s important about the grain-based algorithm,
is that for different choices of K one gets a tradeoff in space and time, thus
generalizing the divide-and-conquer approach. Indeed, in a recent independent
discovery Grice et al. [3] also arrived at an algorithm like the recursive formula-
tion given in Figure 1.

Procedure D_and_C(start,end: integer, p,s: array [0--- M] of real)
{ Var P,S: array [0--- NY/E][0-.. M] of real

#p= starta'nds— end#

If start+ 1 = end then
{ Process column p + hs(s, start)
return

}

q « (end— start)/f\’l/K
P[] < p
SINVE] s
For j «+ 1 to N'K _1do
{Fork« (j—1)-q+1to j-qdo
{p < he(p, start + k)
s « hs(s, end— k)
}
Phlep
SINVE _ 4]l « s
}

For j «+ 1 to N'¥ do
D_and_C(start+ (j — 1) - g,start+ j - q,P[5 — 1],5[7])
}

D_and_C(0, N, Py, Sx)

Fig.1. Recursive Version of Going-Against-The-Grain.

For example, when K = 2, the recursive formulation computes and saves the
VN column vectors P[j] = P, 5 and S[j] = S, and then recursively com-

putes the P- and S-vectors for columns between each pair P, N and S(]_H) JN-

One can show that at the time a particular column, say P + Sj, is delivered,
the recursion stack contains exactly the vectors that Would be cached by the
grain-based algorithm if one were going against the grain of both P and S. The
recursive formulation has the advantage of permitting one to manipulate each
vector based on the values of the columns at the division points before further
recursive division because both P and S are effectively being computed against
the grain. The grain-based algorithm has the advantage that it stores half as
many vectors and one can easily extend it to be finger-based so that one may
efficiently deliver a set of columns in any order desired. Since many sequence
comparison results appeal to variations of Hirschberg’s divide-and-conquer algo-
rithm to deliver alignment in an efficient amount of space (e.g., [6, 8]), it follows
that our central idea is immediately applicable and gives one the flexibility of a
series of time/space tradeoffs parameterized by K.

Returning to the suboptimal paths problem, we now show how to refine our

approach to make its complexity sensitive to the width of G;. The source of
inefficiency 1s that we compute all of ﬁj + §j for a given j, whereas all we need
to know are the entries not greater than 7. In order to do so, we must move
from computing column-vectors of values to anti-diagonals of values. That is,
for a € [0, M+ N] let B, = [P(l,a=0),P(l—1,a—1—1),---P(la—r,r)] where [=
min(a, M) and r = min(a, N). Let left(a) = max; {P(i,a —i)+ S(i,a —i) < 7}
and let right(a) = min; {P(i,a—1i)+ S(i,a—1%) < 7}. We will now maintain only
the portion of the vectors P, and S, between left(a) and right(a), i.e., let]3; =
[P(left(a), a — left(a)), P(left(a) + 1,a — left(a) — 1), - - - P(right(a), a — right(a))].
It suffices to maintain just these portions of the vectors as all suboptimal path
of score not greater than 7 must pass through a vertex of the retained portion.

Consider a K-level version of the recursive algorithm. Its goal is to compute
just the P* and §* portions of the P- and S-vectors. In a given call suppose
p=]3; and s = 5%* where a < b. It follows from the basic structure of the edit
graph that for any d € [a, b]:

left(d) € [max(left(a), left(b) + (d — b)), min(left(a) + (d — a), lef(h))]

and that the statement also holds if left 1s replaced by right. The basic structure
being appealed to is that the paths in G, are connected and so from a given
vertex such a path can proceed, in the most extreme case, either horizontally or
vertically. The critical point is that these bounds on the range of the limits of }3(’;
and §§ imply that they may be found by computing an area of the graph between
P* and §§ that is of size O(W (b — a) + (b — a)?) where W is the width of the
largest starred vector, i.e., W = max, (left(a) — right(a)). Tt then follows that the
algorithm takes O(M N 4 K (M + N)W) time and O(M 4+ N + KW (M 4 N)'/K)
space. Thus when K = log, N our sparse variation takes O(MN + W (M +
N)log(M + N)) time and O(M + N + W log(M + N)) space.

We compare this with the O(M N+F loglog W) time and O(M+N+F') space
result of Chao. In worst case terms these algorithms are basically incomparable.
However, in practice one expects F' = O(NW) and usually W = o(M + N).
Under these circumstances our algorithm takes O(M N log(M + N)) time and
O(M + N) space, where as Chao’s takes O(M N) time and O((M + N)W) space.
While less time efficient, recall that our algorithm can deliver order-dependent
statistics without storing GG; and in practice we can pick the smallest K fulfilling
a preset space requirement, for O(M N) time performance in practice.

2.2 Seller’s Locally Optimal Alignments

In the context of comparing protein sequences, one is frequently interested in
whether or not there are substrings of each sequence that are unusually similar.
In terms of the edit graph, this local alignments problem requires finding paths in
the graph of unusually high score. In the basic approach of Smith and Waterman
[12], the underlying scoring scheme is assumed to be negatively biased so that the
expected value of any path is negative. One then asks for subpaths of maximum

(positive) score. This is easily accomplished by adding a 0 term to the recurrence
for either P(7,j) and/or S(3, j).

The one potential difficulty of such an approach is that there may be many
“interesting” local alignments. In the approach of Waterman and Eggert [14],
this problem is resolved by finding the highest scoring path, removing it, finding
the next highest path, removing it, and so on. While conceptually simple, this
approach does have the disadvantages of requiring repeated recomputation of
regions of the dynamic programming matrix and of requiring the space to store
all previously reported local alignments.

Another unpublished proposal was made by Sellers in 1987 [10, 11] that is
interesting and involves only a single pass. Let Gp be the graph whose edges give
rise to the P-values at each vertex, i.e.,v = w € Gp iff P(v)+d(v = w) = P(w).
Similarly, let G's be the edges for which S(w) + §(v — w) = S(v). Sellers
defines a path p as locally optimal if it is maximal with respect to the following
properties: (1) all its edges are in Gp N Gg, (2) there does not exist a path in
Gp ending at a vertex of p such that one of its edges is not also in Gg, and (3)
there does not exist a path in Gg starting at a vertex of p such that one of its
edges is not also in Gp. Sellers showed that the implications of this definition
are that p is prefix- and suffix-positive and that any other path intersecting p
has lesser or equal score. A path is prefix-positive if every prefix of the path has
positive score. Clearly one can compute Gs and Gp in O(M N) time and space,
and it then follows that one can compute all locally optimal paths in a single
O(MN) time and space computation. Using our grain-based algorithm we will
develop an O(K2M N) time algorithm that delivers Sellers locally optimal paths
in column-order with only O(K M N'/X) space.

We will say that a vertex v is P-free if it satisfies condition (2) above, i.e.,
there does not exist a path in Gp to the vertex such that one of its edges is
not also in Gg. It then follows by induction that v is P-free iff for all edges
e=w—=v, e Gpore€ GpNGs and w is P-free. A similar recurrence
(with opposing grain) holds for the definition of an S-free vertex. It follows next
that an edge e = w — v is on a locally optimal path if and only if v and w are
both S- and P-free and e € Gp N Gs. It remains to lever these recurrences in a
computation.

Let P and S be column vectors of the P- and S-values as defined in the pre-
vious subsectlons save that the recurrence is slightly altered by the introduction
of a 0-term. Also let IJP be the (M + 1)-vector [Is_P-free(0, j), Is_P-free(1, 7), - -
Is_P-free(M, j)] of boolean values where Is_P-free(w) is true iff w is P-free. Sim—

ilarly define I'5. Now consider the following demand-driven chain of computa-
tions. To deliver the edges of optlmal paths Whose head vertex is in column j,
it suffices to know P] 1, S] 1, IJ - 151, P S I , and IS. The P- and
S-vectors permit one to determine Whlch edges are in Gp and GS, respectively.
To deliver the optimal edges in column major order thus implies that we must
deliver the P-, S-, I¥- and I°-vectors in order of increasing j. This is with the
grain of both the P- and I*-vectors and against that of the S- and I°-vectors.

We can deliver S-vectors in sequence against their grain as previously discussed.

Now note that to compute I;-P requires knowing I?il, ﬁj_l, 5_'}_1, ﬁj, and 5'}.
Thus to deliver IP-vectors in increasing order of j, requires delivering P- and
S-vectors in increasing order of j. Thus another thread of S-vectors, separate
from the one needed to compute local path edges, must be computed against the
grain. Finally, to compute ij vectors against their grain involves with-the-grain
computations to cache values. But to deliver fjs in decreasing order of j requires
knowing fjﬁ_l, ﬁj+1, §j+1, ﬁj, and §j. Now S-values are with the given grain
but the P-values are not, and so one must recursively run a grain-based subalgo-
rithm for P-vectors within the grain-based algorithm for computing I°-vectors.
A careful analysis shows that the subalgorithm consumes O(K?M N) time in
the process of carrying out the O(K M N) steps of the I grain-based algorithm.

The analysis just completed has the interesting feature that the grain of op-
timal edge delivery opposes the grain of I°-vectors which opposes the grain of
P-vectors, and each depends in turn on the other. Thus we have doubly nested
grain-conflicts. In general, one may show that for a multi-recurrence problem
with at most a C-level nesting of grain-conflicts, the grain-based approach yields
an O(KC NT) time, and O(C K N'/XS) space algorithm for delivering the outer-
most entity in the desired order. In the case of Seller’s local alignment problem,
C = 2 and we have an O(K?M N) time, O(K M N'/X) space algorithm. For any
fixed value of K, time is O(M N) and space is o(M N). For the limiting choice of
K =log, N, the result is an O(M N log? N) time, O(M log N) space algorithm.

This last example, of a two-tiered grain-based approach hopefully illustrates
the utility of the going-against-the-grain framework. It is very awkward to
express the demand driven computation above within a recursive divide-and-
conquer framework and we doubt that one would have easily seen the optimiza-
tion opportunity from such a conceptual vantage point.

References

1. Bentley, J., and H. Maurer, “Efficient worst-case data structures for range search-
ing,” Acta Informatica 13 (1980), 155-168.

2. Chao, K.M., “Computing all suboptimal alignments in linear space,” Proc. 5th
Symp. on Combinatorial Pattern Matching (Asilomar, CA 1994), 31-42.

3. Grice, J.A., Hughey, R. and D. Speck, “Parallel Sequence Alignment in Limited
Space,” Proc. 3rd Conf. on Intelligent Systems for Molecular Biology (Cambridge,
England 1995), 145-153.

4. Hirschberg, D.S., “A linear space algorithm for computing longest common subse-
quences,” Comm. Assoc. Comput. Mach. 18 (1975), 341-343.

5. Kannan, S. and E. Myers, “An algorithm for locating non-overlapping regions of
maximum alignment score,” Proc. 4th Symp. on Combinatorial Pattern Matching
(Padova, Italy 1994), 74-86. Also to appear in SIAM J. on Computing.

6. Miller, W. and E. Myers, “Sequence Comparison with Concave Weighting Func-
tions,” Bull. of Mathematical Biology 50 (1988), 97-120.

10.

11.

12.

13.

14.

Myers, E., “Efficient applicative data types,” Proc. 11th ACM Symp. on Principles
of Prog. Lang. (1984), 66-75.

Myers, E., and W. Miller, “Approximate Matching of Regular Expressions,” Bull.
of Mathematical BiologyP 51 (1989), 5-37.

. Naor, Dalit and D. Brutlag, “On suboptimal alignments of biological sequences,”

Proc. 4th Symp. on Combinatorial Pattern Matching (Padova, Italy 1994), 179-196.

Sellers, P.H., “Pattern recognition in genetic sequences by mismatch density,” Bull.
Math. Biol. 46 (1984), 501-514.

Sellers, P.H., personal communication.

Smith, T.F. and M.S. Waterman, “Identification of common molecular sequences,”
J. Mol. Biol 147 (1981), 195-197.

Waterman, M., and T. Byers, “A dynamic programming algorithm to find all
solutions in a neighborhood of the optimum,” Math. Biosciences 77 (1985), 179-
185.

Waterman, M.S. and M. Eggert, “A new algorithm for best subsequence alignments
with application to tRNA-rRNA comparisons,” J. Mol. Biol. 197 (1987), 723-728.

APPENDIX A

Figure 2 below details the general algorithm for going against the grain. The
generation of values in reverse order is begun by setting a global variable cntr
to N. Thereafter, the sequence fy_1, fn_2, - fo of values are delivered with
each successive call to the function getnert. The logic of the algorithm can be
simplified by roughly half if one caches K N'/¥ values by including (@007 g in
the level-j cache {(az07)p B-1 However, when k = log, N, NY/K =2 5o that

r=1"
in this important limiting case our more complex algorithm caches half as many
values as the simplified version, i.e., log, N versus 2log, N. For this reason we
presented the somewhat more complex alternative.

Var C: array [0--- K — 1][1--- R — 1] of value
cntr: integer

Function cache(base: value; startstep: integer): array [1--- R — 1] of value
{ Forj+ 1ltoR-1do
{For k «+ 1 to step do
{start + start+1
base + h(base, start)

cache[j] + base
}
}

Function getnext: value
{ cntr+ entr—1
k+ 0
While k& < K and cntr modR* = R — 1 do
k+—k+1
Jj—k
While j < K and (entr divR?)modR = 0 do
Jei+1
If j > K then
base + do
Else
base + C[j][(entr divR?)modR]
For j + k — 1 downto 0 do
{C[j] « cache(base, (cntr divRI*t!) x RIt1 RY)
base + C[j][R — 1]

k+ 0

While k£ < K and cntr modR* = 0 do
k+—k+1

If £ > K then
getnext + do

Else
getnert « C[k][(cntr divR*)modR]

}

cntr +— N
For j + N — 1 downto 0 do
[+ getnext # delivers f; #

Fig. 2. lterative Going-Against-The-Grain Algorithm.

This article was processed using the IXTEX 2¢ macro package with CUP_CS class

