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Abstract

Simulated data sets have been found to be useful in developing software systems
because (1) they allow one to study the effect of a particular phenomenon in isolation,
and (2) one has complete information about the true solution against which to measure
the results of the software. In developing a software suite for assembling a whole
human genome shotgun data set, we have developed a simulator, celsim, that permits
one to describe and stochastically generate a target DNA sequence with a variety of
repeat structures, to further generate polymorphic variants if desired, and to generate
a shotgun data set that might be sampled from the target sequence(s). We have found
the tool invaluable and quite powerful, yet the design is extremely simple, employing
a special type of stochastic grammar.
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1 Introduction

The push to sequence the entire human genome is gearing up [1]. We recently proposed a
whole genome shotgun approach [2] that is now being undertaken in the setting of a private
company [3]. A software system for assembling a 10x data set in 18 months must be capable
of incrementally processing 200,000 sequencing reads a day, up to a total of 70 million reads
at the end of the project. Tasked with rapidly building such a software system, but with no
inputs to work with until production sequencing begins, it was essential for us to develop
celsim, a simulator capable of generating realistic, repetitive target sequences and shotgun
data sets thereof.

In brief, celsim consists of three sequential parts. In the first, sequence generation stage,
one describes a DNA sequence via a stochastic grammar in which elements can be mutated



and distributed hierarchically within other elements. It is thus possible to model tandem
repetitive arrays, transposon-like repetitive elements, and large-scale duplications. One can
further use templates of real DNA sequence if available. In the second and optional poly-
morphism stage, one can then develop a set of polymorphic variations of the target sequence
generated in the first stage. This is necessary to model the effect of different donors or
DNA sources in some projects. Finally, in the shotgun stage one simulates sampling and
end-sequencing of any number of insert libraries.

There is to our knowledge only one previously reported simulator of this kind, Genfrag
2.1 [4, 5]. This simulator permitted one to precisely model the introduction of errors into
sampled sequences, but is otherwise significantly superceded by the current work in its ability
to model sequences, polymorphisms, and end-sequencing. There are at least three advantages
to having such a simulator to work with:

1. One has complete information about the correct solution. This information can be
propagated through a software system so that one can build software testers and an-
alyzers that can computationally assess how well a particular phase of the assembly
is performing its task. For example, after the overlap phase of our assembler, that
attempts to find all pairwise overlaps between reads within a certain stringency, we
built an analyzer that reported on the number of true overlaps missed, the number of
overlaps induced by each type of repetitive element in the target sequence, and other
informative statistics.

2. One can analyze the effect of a particular phenomenon. For example, we can generate
DNA sequences that just have micro-satellite repeats in them and no others, and then
observe the slippage effect of such elements on overlap detection. As another example,
we can generate a DNA sequence that has just ALU-like elements in it and then observe
the effect on the layout phase that attempts to build contigs out of individual overlaps.

3. One has available very large data sets that can be rapidly regenerated from small de-
scriptions. For example, we can generate a 10x data set of a synthetic human-like
genome of 1/10th scale or 300Mbp in 30 minutes. The description of the data set
occupies 1Kb but the data set occupies over 3Gb of disk. We thus have available an
entire of library of interesting data sets upon which we can perform timing, optimiza-
tion, and analysis experiments without the burden of having to securely store them for
prolonged periods.

The one caveat with using simulated data is that it only tests for what is simulated. The
question arises as to whether celsim is sufficiently realistic in that it models all phenomenon
that substantially affect the computation. At this time, approximately 6% of the human
genome has been sequenced and C. Elegans, E. Coli, and S. Cervisae have been sequenced.
Moreover, much work has been done on the analysis of various types of repetitive sequences
6, 7, 8, 9]. Tt is thus fair to say that much is known about what to model. In addition, we
also have available large data sets of real sequencing reads collected from real sequences, and
we have also used just the shotgun phase of celsim to generate synthetic shotgun data sets
of real sequences, e.g., all of C. Elegans. To first approximation, the statistics our analyzers
produce on these data sets correspond directly with those produced on our synthetic data sets



for the organism, indicating that our modeling of the genomes and the sequencing process
is, to first approximation, valid.

The remainder of the paper is devoted to a description of the design of celsim, primarily
from a grammatical point of view, interspersed with examples of its use. We apologize for
the simple fixed format syntax of the language, hopefully the reader will appreciate that
development time was a key issue for us. What we think interesting here is the design and
semantic principles and not the syntax. With just a handful of concepts we can describe and
create many interesting and useful data sets. We will conclude with some other applications
to which one might put celsim to use.

2 Program Interface and Top Level Description

Celsim is written as a UNIX command line tool that may be called with several options.
The single mandatory argument is the name of the file containing the specification, and the
resulting list of simulated sequence reads is sent to the standard output. There are options
to ...

e ... specify a specific seed value for the random number generator. Normally celsim
uses the program process id as the seed to give a different output on every invocation,
so this option is essential in the frequent case where one wants to consistently produce
the same data set. The seed is also always output by celsim so one always knows how
to regenerate a given data set.

e ... produce a FASTA format file of just the read sequences. Normally celsim also out-
puts comment lines that give a detailed description of the instantiation of the grammar
describing the target sequence, the polymorphisms introduced into copies of the target,
and the source and errors introduced into every read.

e ... to request the output of the DNA sequence generated, and another to output
the instantiations of each sub-element (e.g. repeat) flagged with an @-sign in the
specification.

A specification file consists of a DNA specification segment beginning with a “.dna” line,
followed by zero or more polymorphism segments beginning with a “.poly” line, followed by
one or more sampling segments beginning with a “.sample” line. Formally,

< Specification> — < DNA_Segment>< Poly_Segment>*< Sample_Segment>T

< DNA_Segment> “.dna” < DNA _Spec>
< Poly_Segment > “.poly” < Weight>"< Poly_Spec>
< Sample_Segment> “.sample” < Sample_Spec>

Ll

and Figure 1 gives an example that we will use extensively. The single DNA segment gives
what is effectively a stochastic grammar specifying the structure of the target DNA sequence.
Each polymorphism segment specifies the form of a set of mutations that will be applied to
the target, each polymorphism modeling a haplotype from the DNA of an instance of the
species being sequenced. After the “.poly” keyword one may place a series of real numbers.



A haplotype is generated for each number and the number gives the relative proportion
with which each haplotype will be sampled. Each sampling segment specifies a collection
of reads to be collected from inserts sampled from the pool of haplotypes specified by the
polymorphism segments. If there are no polymorphism segments given, then all reads are
sampled from the target sequence specified by the DNA segment.

.dna .poly .4
A = 150; S .001
B=AAmn(30); D 1-2 .0005
C ~ 3-7 p(.2,.3,.3); .sample
@D =C m(.03) n(10,30); 48,000
S = 30,000,000 400 600 .5
B m(.05,.10) £(.1,.1,.01) n(.10) .01 .02
D !(500); .33 .33
.poly .8 .8 .3 1800 2200 .005
S .0008 .sample
D 1-1 .00012 12,000
D 2-2 .00006 400 600 .5
D 3-3 .00002 .01 .03
D 500-1000 .00005 .33 .33
X 1000-2000 .00005 .4 9000 11000 .015

Figure 1: A complete example of a celsim specification.

To illustrate consider Figure 1. The DNA segment creates a target sequence that is
30Mbp long. The first polymorphism segment creates two mutated instances, say H1 and
H2, of the source strand, weighted .8 each, and the second polymorphism segment creates
another haplotype, H3, weighted .4. The first sample segment then generates 48,000 end-
reads from inserts of average length 2Kbp, where .8/2.0 = 40% of the inserts are sampled
from H1, 40% from H2, and 20% from H3. Similarly the second sample segment then
generates 12,000 end-reads from inserts of average length 10Kbp with inserts sampled from
H1, H2, and H3 in the same proportions.

3 Specifying DNA sequences

A celsim sequence specification consists of a series of context free production rules where
each non-terminal in a right hand side may be qualified by a collection of postfix stochastic
operators that orient, mutate, fracture, and replicate the given item. In linguistic terms:

< DNA_Spec> — < Rule>T

<Rule> — < Name> (“="|“"7) < Container>? < Element>* “;”
< Container> — < File_Name> | < String_Constant> | < Length>< Composition>?
< Element> — < Name>< Orient>7< Mutate>? < Fracture>? < Repeat>? < Regenerate>?



For simplicity the names of non-terminals are just single upper case letters, limiting one to 26
names. The grammar cannot be recursive, all names referred to must have been previously
defined. The string produced in response to the last production is assumed to be the desired
target DNA sequence.

There are two types of rules depending on whether the first right hand side item is a
container or an element. A container is either:

e < File_Name>: a fixed sequence to be imported from a FASTA-formated file,
e.g. A = "</usr/joe/data/ALU.FASTA".

o < String_Constant>: a manually specified string constant, e.g. A = "aaaaaaaa".

o < Length >< Composition>: a string of Length bases where each is randomly chosen
with probabilities according to Composition, e.g. A = 150 and C = 3-7 p(.2,.3,.3)
(as in Figure 1).

In the last example, the length of C' is chosen uniformly between 3 and 7, and bases are
chosen so that A is generated with probability .2, C and G with probability .3, and T
with the remaining probability of .2, giving a GC-rich string. While we could have easily
generalized to second- and higher-order Markov models for generating such strings, we did
not deem the effect to be significant for our purposes.

A rule that consists of just a container element assigns the sequence of the container
to the name on the left hand side. If the container is followed by some number of qual-
ified elements then all the instances of those elements generated by the qualifiers are in-
serted at random, non-overlapping positions within the container. If the container is speci-
fied by length and composition, then the total length of the sequence generated, including
the contained elements, equals the specified length. Otherwise the elements are inserted
and increase the length of the result. Rules that do not begin with a container, e.g.
“C = A B A;”, concatenate all generated elements in order and assigns the result to the
name on the left hand side.

Each element reference consists of a name, referring to a previously defined sequence,
followed by an optional list of postfix stochastic operators whose simple syntax consists
of a letter followed in parenthesis by a number and/or interval. For example, the phrase
“A 0(.8) m(.1,.3) n(6)”, specifies that 6 copies of sequence A are to generated, each
mutated with between 10 and 30% point mutations, and occurring in the reverse complement
orientation 20% of the time. The point mutations are single base insertions, deletions, and
substitutions chosen with equal frequency. The celsim mutation operator always applies
exactly the requested number of mutations to the element, probabilistically rounding up or
down when required so that the average over a large number of mutations would converge
on the exact mutation percentage. For example, the rule for D in Figure 1 specifies that it is
to consist of between 10 and 30 copies of C each mutated at 3%. Suppose C is of length 5.
Consistently rounding down would make D a tandem array of perfect copies and rounding
up would give D an overall error rate of 20%. By introducing an error into each copy with
probability 5 x .03 = .15, celsim produces a micro-satellite that is a 3% perturbation of a
perfect one. Another fine point, is that one is permitted to specify the number of copies of
an element to be inserted into a container as a fraction of the container’s size. For example,
in Figure 1, 10% of the 30Mbp target genome will consists of the Alu-like B elements.



We also think it essential to model the generation of substrings of given elements. For
example, in human DNA many Alu’s and LINE’s are only partial copies of the full repetitive
element. The fracture operator permits one to indicate the percentage of prefix segments,
suffix segments, and substring segments of the given element that should be produced. For
example for the Alu-like element B in the target sequence S of Figure 1, 10% of the time a
prefix or suffix of the copy is inserted, and 1% of the time an interior substring is inserted.

The regeneration qualifier, “!”, was introduced to allow a given rule to serve not just
to produce one sequence, but to be a template from which many sequences with the same
structure can be generated. But in order to hold some parts of the template immutable,
we further introduced ~-definitions in which the =-sign is replaced with a tilde, and the
interpretation is that the rule is to never be regenerated even if elements referring to it are
being regenerated. Consider the three examples below:

A = 10; A = 10; A 7 10;
B=Am(.05 n(4,8; B =Am(.05) n(4,8); B = A m(.05) n(4,8);
S 10000 B n(5); S 10000 B ! (5); S 10000 B 1(5);

In the example at left 5 identical copies of a micro-satellite B are inserted into S’s container,
where B is 4 to 8 tandem copies of A mutated by 5% between copies. In the sample at
center, 5 different generations of micro-satellite B are inserted. Each regeneration poten-
tially involves a different number of copies of A, a different sequence for A (since it is also
regenerated), and a different set of mutations to each copy. In the example at right, A
is "-defined, so the micro-satellite unit A is the same in all 5 generations, but each copy
involves potentially different mutations and a different number of copies of A. In general,
these two mechanisms give one complete control over the evaluation of non-terminals in the
underlying context free grammar.

4 Specifying Haplotypes

A polymorphism segment consists simply of a series of lines each specifying either a point
substitution operation, a deletion operation, or a translocation operation. The syntax is
simply:

< Poly_Spec> — < Operator>*

< Operator> — “S” < Fraction>
“D” < Min_Length> “~" < Max_Length>< Fraction>
“X” < Min_Length> “-” < Max_Length>< Fraction>

The S-operator specifies that the given Fraction of the target DNA sequence is to be sub-
jected to point substitutions. The locations of the substitutions are chosen with uniform
probability across the target sequence. The D-operator specifies that the given Fraction
of the target is to be deleted in blocks whose sizes are chosen uniformly from the in-
terval [Min_Length, Max_Length], and from non-overlapping locations chosen uniformly
across the target. Finally, the X-operator specifies that the given Fraction of the tar-
get is to be translocated in blocks whose sizes are chosen uniformly from the interval



[Min_Length, Max_Length]. Both the source and destination coordinates for a translo-
cation are chosen uniformly across the target.

Nate that there is no operation for inserting sequence. The rationale behind this is
that generally the target has a rich repeat structure that would be destroyed by inserting
random sequence within it. Moreover, it isn’'t necessary as deleted sequence in one haplotype
looks like inserted sequence from the point of view of another haplotype. Another subtle
point is that all deletion and translocation operations are performed first, and thereafter
substitutions are applied to the entire potentially shorter sequence at the specified rate.
Thus, while deletion and translocation blocks are guaranteed not to overlap, substitutions
do occur within translocated blocks.

The first “.poly” segment of Figure 1, gives what should be a reasonably realistic poly-
morphism model for human DNA if what has been found to be true for the lipoprotein lipase
region is true of the entire genome [9]. The specification introduces about .1% SNPs of which
80% are substitutions, 12% are 1-base deletions, 6% are 2-base deletions, and 2% are 3-base
deletions. In addition, .05% of the genome will be deleted/inserted in blocks of size .5Kbp
to 1Kbp, and another .05% will be translocated in blocks of size 1-2Kbp.

5 Specifying Shotgun Datasets

The specification of a shotgun dataset is simply a series of 8 numbers followed by an addi-
tional 4 numbers if end-sequencing of inserts is desired. Formally:

< Sample_Spec> — < Read_Spec>< Pair_Spec>"?

< Read_Spec> — < Num_Reads>< Min_Read_Len>< Maz_Read_Len>< Forward_Odds>
< Beg_Rate>< End_Rate>< Insert_Odds>< Delete_Odds >

< Pair_Spec> — < Fail_Odds>< Min_Insert_Len>< Mazx_Insert_Len>< Chimer_Odds>

The parameter Num_Reads specifies the number of reads to be sampled from target(s). The
length of each read is uniformly chosen from the interval [Min_Read_Len,Maz_Read_Len).
Each read is selected from the forward, as opposed to the reverse strand of the target,
with probability Forward_Odds. The sequence of each read is subjected to the introduction
of single base errors, beginning at the start of a read at a rate of Beg_Rate and ramping
linearly to finish at the end of a read with a rate of End_Rate. For example, for the ramp
“.01 .02” in Figure 1 causes single differences to be introduced into a read at a 1% rate at
the beginning of the sequence, increasing linearly to 2% at the end of the read. The final
two parameters of the 8 number series, Insert_Odds and Delete_Odds, give the percentage of
the errors that should be insertions and deletions, respectively. The remaining percentage
will be substitutions.

If one wishes to further model “double-barreled” shotgun sequencing where both ends of
inserts of some size range are sequenced, then an additional four parameters must be given
as follows. First Fail_Odds specifies the failure rate of read reactions. For example, in Figure
1 this is .3 implying that 30% of all reads will not be paired because the read at the other
end failed. Then one gives the range, [Min_Insert_Len, Max_Insert_Len| from which insert
lengths are uniformly selected. In Figure 1, the first sample involves end-reads from inserts



that are 2Kbp & 10%, and the second specifies inserts that are 10Kbp 4+ 10%. The final
fraction, Chimer_Odds, specifies the odds with which an insert is chimeric, implying that the
two end reads are completely unrelated in terms of their locations within the genome. For
our running example, this is set to 1%.

While the sample specification is quite elementary, we find that it is more than sufficient
for the purposes of evaluating whole genome shotgun sequencing. Adding features, such
as, normally distributed read lengths, or more sophisticated models of sequencing error,
while having some second order impact on certain statistics one might collect, will have
little bearing on the solvability of the central problem. In fact, a flatter uniform sampling
distribution and an absence of specific information about the distribution of errors makes
the problem harder, not easier. Our sense is that a design that operates well on such a data
set will operate even more accurately given greater information. For example, we ultimately
will use quality values associated with reads to further discriminate true from repeat-induced
overlaps, but such additional information will only make the job easier.

6 Discussion

From an implementation perspective, celsim is a collection of awk and perl scripts that oper-
ate three separate UNIX filters: one for generating DNA sequences, another for producing a
single polymorphism, and another for performing a read sampling. There is thus the possibil-
ity of recombining these processing elements in different ways if required. In one incarnation,
celsim outputs a single FASTA file of the sequence reads with the small addition of a large
number of comment lines beginning with a “#”. These comment lines contain complete
trace information on how the DNA sequence was generated, where the various elements
in the specification were instantiated, where polymorphisms were induced, where sequence
reads came from, and where errors were introduced within them. In a second version, tai-
lored to our environment, celsim produces two files, one containing the sequence reads and
any audit information about them, and another containing all the generation information
otherwise placed in the comment fields of the first version.

We have been using celsim for the last several months in the development of an incremen-
tal shotgun assembler for whole genome sequencing. We use it both to generate synthetic
DNA sequences and synthetic shotgun data sets thereof, as well as to generate synthetic
shotgun data sets of existing sequences, e.g. all 75Mbp of C. Elegans. This later data set
is easily produced with a DNA specification consisting of a single rule whose right hand
side is a file name container referring to a FASTA file containing the sequence of the organ-
ism. Apart from the benefits described at the outset of this paper, we’ve also found these
data sets to be an excellent software testing vehicle as we can mechanically test output for
correctness. Moreover, by varying the amounts of sequence, or the fidelity of repeats, or
the level of sequencing error, we have been able to study the robustness, sensitivity, and
efficiency of our codes in response to such parameters. Indeed, we are currently testing our
codes on synthetic sequences that have repeat complexities beyond those we ever expect to
see in human DNA, but may see in plant species.

Apart from its direct use in testing shotgun assembly algorithms, celsim can be co-opted
to other uses. For example, I have used it in developing and testing algorithms for finding



micro-satellites. Along these lines one could also use it to test any repeat finding method.
One can also generate two polymorphisms of a given sequence and test a large-scale sequence
comparison algorithm. Another possibility is to sample fragments from a DNA sequence of
the same size as the sequence, providing a natural input for a DNA sequence multi-alignment
program. Yet another use, would be to first sample large BAC sized fragments from a
synthetic or imported sequence and then shotgun sample the BACs. This would require a
modest reconfiguring the component parts of celsim, but would permit the modeling of the
sequence tagged connector sequencing and the low-pass shotgun sequencing protocol recently
announced by the NIH.
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