Comparing Sequence Scaffolds

Gene Myers
Informatics Research, Celera Genomics Corp.,
45 W. Gude Dr., Rockville, MD 20850, USA.
Email: Gene.Myers@celera.com,

Abstract

The DNA sequence assembler we built for the whole genome
shotgun assembly of the human genome, utilizes end-reads
of inserts to order and orient assembled contigs into scaf-
folds for which the distances between consecutive contigs
are statistically characterized. We consider the problem of
comparing two such scaffolds. Applications include compar-
ison of two distinct assemblies for mutual confirmation, and
comparison of scaffold assemblies of BACs to determine a w-
hole genome tiling of the BACs. We formalize the problem
and develop efficient algorithms for a number of variations
of the problem, the essential result being a sparse algorithm
that refines gap estimates based on the overlap evidence.

1 Introduction

Most sequence analysis programs make the assumption that
the subject sequence or sequences model contiguous stretch-
es, or contigs, of an underlying genome. However, most large
scale genome projects generally produce collections of con-
tigs whose order, orientation, and approximate separating
distances are known to varying levels of completeness. For
example, the current rough draft human genome effort of
the Human Genome Project (HGP) [1] has produced a set
of partially ordered contigs, of median size 2750bp, covering
each of roughly 30,000 BACs clones of average size 150Kbp,
that are partially ordered across the genome. Celera’s whole
genome shotgun approach [2, 3] produces a set of contigs,
of median size 9900bp, that are ordered and oriented into
scaffolds spanning an average of 1.7Mbp, each of which is
mapped and ordered across the genome. An interesting line
of inquiry for many investigators would be how to make their
tools work on such data.

In this paper we focus on a particular class of problems
associated with the scaffold assemblies that result from as-
sembling shotgun data sets for which end-sequence pairing
information is available. End-sequence pairs are generated
by running sequencing reactions from both ends of a vector
insert. For example, in Celera’s whole genome protocol, we
build libraries of 2Kbp, 10Kbp, and 50Kbp inserts and de-

termine the sequence of 500-600 base pairs from both ends of
these inserts. Thus the input to the assembler is pairs of D-
NA reads whose distance from each other is known to be dis-
tributed normally with a well-characterized mean and stan-
dard deviation. It is well-known by the Lander-Waterman
formula [4] that even with the collection of enough data to
cover the genome ten times over, there will statistically be
many gaps or regions where the genome was not sampled.
So the assembler produces a collection of contigs with inter-
spersed gaps. Without the end-pairs, the order and orienta-
tion of these contigs would be unknown and the information
of little value. However, the end-pairs connect contigs by
virtue of having the reads of their pairs in different contigs.
This relation orders and orients the contigs into scaffolds
for which the distance between consecutive contigs is sta-
tistically characterized, with especially tight variance when
many pairs provide the linkage. Figure 1 illustrates the idea
of a scaffold. The same Lander-Waterman formula implies
that scaffolds are expected to span millions of base pairs on
average at coverages as low as 5X, and these large scaffold-
s are easily mapped to a location on the genome via any
coarse-grained genetic map such as a low-density STS map
[5]-

The problem of comparing such scaffolds arose in sev-
eral practical contexts within our work on whole genome
sequencing. Through successive refinements of the assembly
algorithms, we found ourselves with different assembly ver-
sions, for which we wanted to understand the differences, if
any. Moreover, there was often independently determined
sequence data and we wanted to compare our scaffolds a-
gainst such data for the purpose of validating our techniques.
Finally, in the case of the human genome, we were able to
use our end-reads to build scaffolds of the light shotgun data
produced by the public HGP effort on a BAC clone basis.
The public tiling of the BACs, inferred by restriction digest
length fingerprints, was not particularly reliable. With our
scaffold assemblies fully ordering the data and further com-
pleting the sequence of each BAC, we proceeded to produce
our own tiling based on observing the overlap in sequence
between scaffolds.

What makes the scaffold overlap problem interesting, is
the requirement that the contigs of the scaffolds overlap in a
way that is consistent with their inter-contig spacing. This
is particularly subtle when contigs from the two scaffolds are
interleaved as in Figure 1. The paper focuses first on for-
mulating the problem and building up to a sparse variation
of it. Then the two critical subproblems of the sparse prob-
lem are solved and the paper concludes with performance
results.

7 o
Contig i Gap(known u & 0)
Scaffold

Interleaved overlap

Figure 1: Scaffolds and Scaffold Overlaps.

2 Scaffolds and the Comparison Problems

Formally, a scaffold A consists of na contig sequences A.ci,
A.ca, ... A.cn, over alphabet ¥ where the length of each
gap, say between A.c; and A.ciy1, is assumed to be nor-
mally distributed with mean A.u; and standard deviation
A.o;. For a given scaffold A, let its relazed sequence be
the string A.ci *! Ao ... zPut Ac,, where x is
a special wild-card symbol not in ¥ and z* is the string
consisting of k x's. That is, the relaxed sequence of A is
the concatenation of its contigs separated by runs of wild-
card symbols whose lengths are the expected lengths of the
relevant gaps. Similarly, let the set of A-feasible sequences
for A be the set of strings A.ciz™ A.ca...z"a' A.c,, where
7 € [Li© Aoy, i+ Ac;] for all 4, where p© g = max{0,p—q}.
That is, the set of A-feasible sequences for A is the set of
all sequences consisting of the concatenation of its contigs
separated by runs of wild-card symbols that can vary by A
standard deviations from the expected mean length subject
to the restriction that a gap cannot be “negative”. This last
restriction is natural in that a negative gap would general-
ly imply overlap between the adjacent contigs that should
have been detected in the construction of the scaffold. At
the end of the paper we treat the general case of negative
gaps. To recapitulate, the set of feasible strings represent
all possible contiguous stretches of sequence underlying the
scaffold wherein any gap can be stretched or compressed by
at most A standard deviations.

For a given pair of scaffolds A and B, the first question
to ask is what is the best alignment between them given
a threshold A on how much the gaps can be adjusted. As
for other sequence comparison problems there are the global
alignment, the overlap alignment, and the local alignment
variations that basically involve exercises in adjusting the
boundary conditions of a core algorithmic solution [6]. For
our purposes the most relevant version to our intended set
of applications is the overlap variation, wherein a prefix and
suffix of the sequences may remain unaligned at no charge.
We focus on this case and leave the remaining variations as
an exercise.

If o and S are strings, then let §(a, 3) be some overlap
similarity measure between them, subject to the restrictions
that (1) z is assumed to match any symbol including itself at
no cost, and (2) every x must be aligned to some character
(i.e. it cannot be inserted or deleted). The motivations
behind these conditions are (1) an unknown symbol in a
gap of a scaffold should match any known symbol of the
other scaffold, and (2) the length of a gap is controlled by
the number of z’s in the run modeling it, and therefore, one
should not be able to further stretch it by leaving some of
these symbols unaligned.

Best Querlap Problem: Given scaffolds A and B,
overlap similarity measure §, and threshold A,
compute da(A, B) = max { d(a,B) : where «
and B are A-feasible sequences for A and B, re-

spectively }. Moreover, give specific instances of
a and S realizing this value and an alignment
between them.

Given da (A, B) there then arises the problem of finding
instances a and f realizing this value that stretch their gap-
s as little as possible. While there are many measures of
stretch, the one we study here is related to the physics of
spring forces: we seek to minimize the sum of the squares
of the deviation from the relaxed state for each gap. This
choice minimizes the potential energy of a set of a springs
spanning each gap.

Optimum Stretch Problem: Over all a and 3 for
which §(a, 8) = da(A4, B), find the pair (o, 8) for
which 274 (a.mi— A.ps) 242721 (B.n; — B.pj)?

M j=1
is minimal.

Both of these formulations of the problem are easily solv-
able in O(MN) time where M = 74 |A.c;| + 14 (i +
Ac;) and N is similarly the length of the longest feasible
sequence for scaffold B. To see this observe that the set
of feasible strings of A and B can be modeled by regular
expressions of length O(M) and O(N). Moreover the finite
automaton for these regular expressions are also of the same
order and are acyclic graphs. It has long been known that
two such regular expressions can be compared in O(MN)
time [7] and this solves the best overlap problem. The opti-
mum stretch problem is then solved by simply determining
the least stretched alignment over all the optimal paths in
the underlying edit graph used to compare the regular ex-
pressions.

The typical relaxed size of an assembly scaffold is 25Kbp
to 15Mbp, and contigs are at least on the order of thousands
of base pairs, if not tens of thousands of base pairs. More-
over, the sequence of the scaffolds is typically 99% or more
accurate, so that one expects near-identity matches of sig-
nificant length between contigs of scaffolds that overlap or
correspond to the same sequence. Under these input condi-
tions, the former algorithmic methods can be rendered more
practical by moving to a sparse version of the problem where
all possible alignments between contigs of the two scaffolds
that are above a given quality are computed efficiently in a
preprocessing step by a program such as BLAST [8]. For-
mally, one can assume a set of contig overlap alignments
Y = {71, 72,... 7} where for an overlap 7, one is given that
the overlap is between contigs A.c,;.« and B.c,; .5, has score
T;.8core, and has unaligned prefixes and suffixes specified by
signed numbers 7;.beg and 7;.end. For the last two quanti-
ties we let n > 0 imply that the unaligned portion is the
first(last) n symbols of the A-contig, and n < 0 implies that
the unaligned portion is the first(last) —n symbols of the
B-contig.

In this sparse variation, the problem becomes one of find-
ing alignments properly composed of a subset of the align-
ments in Y. To this end an alignment between two feasible

strings o and g is valid with respect to Y if all aligned seg-
ments of non-z symbols are in T (and continue to meet the
earlier restriction on §, such as no unaligned x symbols). But
perhaps it is simpler to understand this definition in terms
of the dynamic programming matrix of « versus 8. Term the
rectangular submatrix consisting of the cells corresponding
to the comparison between an A- and a B-contig, a block.
Term the rectangular regions for all of 8 versus an A-gap,
a gap pillar, and the rectangular regions for all of « versus
a B-gap, a gap beam. The total matrix is thus partitioned
into nanp blocks and a gap grid consisting of the union of
na — 1 gap pillars and ng — 1 gap beams. The alignments
in T are paths from the upper or left border to the lower or
right border of the relevant block. An alignment between
a and f is valid if it is (a) an alignment from Y whenever
it passes through a block, and (a) a straight diagonal line
when it is within the gap grid. Figure 2 illustrates.

For the sparse variation, the problems thus become to
find the optimal and least stretched optimal alignment over
the space of all those that are valid with respect to Y. One
should note immediately, that it is possible for there to be
no valid overlap alignments, a possibility that did not exist
for the basic versions of the problem. As for other sparse
algorithms, we can convert the problem into one of finding
an optimal path through a stretch graph. There is one vertex
in this graph for each overlap alignment in Y. There is a
directed edge from one vertex, 7, to another, , if and only if
it is possible to connect the end point of 7’s alignment to the
start point of 7’s alignment with a diagonal line not passing
through a block in the dynamic programming matrix for
some pair of feasible strings for A and B. In addition there
is a special source vertex, O, and special sink vertex, ® with
edges as follows. There is an edge from O to a vertex 7 if
either (a) the start of 7’s alignment is at the upper or left
border of the dynamic programming matrix, or (b) there is
a diagonal line not passing through a block from the upper
or left boundary to the start of 7’s alignment in the dynamic
programming matrix for some pair of feasible strings for A
and B. The edges to ® are similarly constructed where one
considers the end of an alignment and the lower and right
boundaries.

Within this stretch graph, a path from © to ® repre-
sents a valid overlap alignment. This is not immediate as
one must verify that there are two specific feasible strings o
and B implying the existence of all the edges in the path si-
multaneously, i.e. one can simultaneously adjust all the gaps
so as to imply diagonal, non-block connections between all
block alignments used. Consider path 7 = 72 — ... = 7.
Observe that the existence of the edge from 75 to Ti41 in-
volves properly adjusting the gaps 7;.a through 741.a—1in
the A-scaffold and the gaps 7;.b through 7;41.6— 1 in the B-
scaffold. But since 75.a < 7i41.a and 73.b < 7341.b for all 4, it
follows that the gaps influencing each edge on the path are
disjoint, and therefore one can simultaneously adjust gaps
to insure the existence of all edges.

It is thus the case that we have mapped the sparse, opti-
mal overlap problem into one of finding a maximum weight
path in the acyclic stretch graph, where the weight of each
vertex is the d-score of the block overlap it models. The
time for doing so is proportional to the number of edges in
the graph which is certainly O(MN) but in most of the sce-
nario’s we see in practice it is O(]|Y|). Thus the remaining
problem is to devise an efficient procedure for determining
the edges of this graph. Moreover, since the gaps relevant
to each edge on a path are independent, the optimal stretch
problem is easily solved if one additionally determines the

minimum stretch possibility for each edge. We now delve in-
to these essential subproblems in the following two sections.

3 The Edge Determination Algorithm

The problem we face in this section is how to determine if
two overlap alignments in T can be connected by a diagonal
line that lies strictly within the gap grid for some choice of
the relevant gaps separating the two blocks. The problem
has some of the flavor of the guard posting problem seen in
computational geometry [9], the interesting twist here being
the unusual model/concept of visibility /reachability.

Imperative to a formal treatment is the need to precisely
specify locations relative to the boundaries of blocks within
the possible dynamic programming matrices between feasi-
ble strings for A and B. In essence the block submatrices
are rigid rectangles whose intervening gap pillars and gap
beams can expand or contract. We will refer to the block
submatrix for contig A.c; versus B.c; simply as block (4, 7).
Position p on a left or right boundary will be the cell p sym-
bols from the top border. If p is negative then it refers to a
cell in the gap beam above the block along the column con-
taining the relevant border, —p cells above the top border.
Position p on a top or bottom boundary will be the cell p
symbols from the left border. If p is negative then it refers
to a cell in the gap pillar left of the block, —p cells left of
the left border.

We start with the basic subproblem of connecting two
blocks across a single gap pillar. Consider position p on
the right border of block (a,b). Assuming one can adjust
gap a and gaps b through d — 1 by A standard deviation-
s, what positions on the left boundary of block (a + 1,d)
can you reach? The highest position is reached by mak-
ing gap a as small as possible and all the gaps between
B.cy, and B.cg as large as possible. Following the diago-
nal from point p, this takes one to position Low(q,p,p)(d) =
(@ + (Apta © AA.0,)) — P2 on the left boundary of block
(a+1,d) where P? = E?;;(|B.cj| + B.pj + B.oj). Similarly
the lowest position would be Hgh(q) (d) = (p + A.pa +
AAo,) — Mgl where M{,i = E?;;(|B.cj| + (B.yj © B.oj)).
Of course, one can under- and over-shoot the left boundary
of block (a +1,d). So the set of positions reached are those
in [Low(a,b’p) (d), th(a,b,p)(d)] n [0, |B.Cd|].

Symmetric equations and conditions apply for the sub-
problem of connecting blocks across a single gap beam. More-
over, note that Low(, b,y (d+1) < Low(q p,p)(d) —|B.cq| and
Hgh(a,b,p)(d+1) < Hgh(, b p)(d)—|B.cg|. Thus both these
functions are monotone decreasing in d and if one of the val-
ues is in the interval [0, |B.cq4|) for a given value of d, then
the d + 1’st value is less than 0. Therefore, the range of d
for which a point on the left boundary of block (a + 1,d)
is reached form an interval [e, f] where if e < f the points
reached are a suffix of the boundary of block (a+1,¢), all of
the boundary of blocks (a + 1,e + 1) through (a + 1, f — 1)
(if any), and a prefix of boundary block (a + 1, f).

Lemma: If gaps are restricted to be non-negative
then the blocks reachable across a gap pillar from
a point on a given block constitute an interval
and can be found in O(log ng) time using binary
search.

The next step is to consider connections that traverse
not only gap pillar a, but enter gap beam d to connect to
the top of block (a+1,d+1) and beyond. To do so it suffice
to determine what positions left of the bottom boundary of

A-scaffold

1 1

N N

Beam

Pillar

Gap Grid
Block

\'\ Overlap alignment

\

N
L

Diagonal connector

B-scaffold
_r r I _1

\Valid Alignment

Figure 2: Blocks, Pillars, Beams, Gap Grid, and Valid Alignments.

block (a + 1,d) are reachable from position p on the right
boundary of (a,b). We call this interval of gap entry po-
sitions, beam portal (a,d). Recall that these positions are
negative and are the cells on the border of gap beam d at
which a connection diagonal can enter the beam. There-
after one can recursively solve the reachability problem for
the beam, reaching the tops of blocks and entering gap pil-
lars from which one can again recurse. The leftmost posi-
tion is reached by making gap pillar a as large as possible
and gap beams b through d — 1 as small as possible. Fol-
lowing the diagonal from point p, takes one to the position
|B.cg| — Hgh(q,p,p)(d) on the bottom border of block (a,d).
Similarly it follows that |B.cg| — Low, s)(d) is the right-
most position reachable on this border. While one can reach
points further left than —slimg = —(B.uqa © AB.og) there is
no need to consider them as one can reach position 0 on the
top of block (a+1,d+ 1) from this point. We thus consider
the interval [—slimg,0] as the set of possible points con-
stituting beam portal (a,d). However, one must be careful
because in some cases one reaches only points in the interval
[wideg, —slimg) where wideq = B.uq + AB.og, in which
case one must and can equivalently assert that the point
—slimg has been reached. To this end we define

|B.ca| + slimg if Lowq pp)(d) €
[|B-ca| + slimag,
| B.ca| + wideq]
otherwise

Low(,) (d) =
Low(q p,p)(d)

One should observe that Low™ is still monotone decreasing
and always not greater than the corresponding Hgh val-
ue. So accounting for over- and under-shooting the relevant
range, the set of positions at which one can reach beam por-
tal d through some instantiation of gap pillar a, are those in
[1B.ca| — Hgh(app)(d),|B.ca| — Lowy, ; ,,(d)] N [=slimg, 0].
We leave it as an exercise to verify the following lemma:

Lemma: If gaps are restricted to be non-negative
then the beam portals reachable across a gap pil-
lar from a point on a given block constitute an
interval and can be found in O(lognp) time.

One should now observe that the general subproblem
of crossing a gap pillar or beam has as input not a single
position but an interval of positions along a right or bot-
tom boundary. Given such an interval [p,q] the interval-
s of positions reached on a diagonal trajectory are simply

[Low(g p,p)(d), Hgh(qp,4)(d)] in the case of reaching block-
s, and [|B.cq| — Hgh(a,b,q)(d), |B.ca| — Low(, ; ,)(d)] in the
case of entering gap beams or pillars. We put the pieces
together in the algorithm sketch of Figure 3 and illustrate
the operation of this reaching computation with a computer
generated depiction of its operation on a problem instance
in Figure 4. In particular, one should note that we treat the
problem of computing edges from © and to ® by starting
searches from the top of each pillar and the left end of each
beam, and when searching, noting that one has reached the
bottom of a pillar or the right end of a beam.

It remains to explore the issue of efficiency. To start, ob-
serve that if one precomputes np-element arrays, Psum][i] =
E;;ll(|B.cJ-| + B.uj + AB.oj) and Msum[i] = E;;ll(|B.c]‘ |+
(B.n; © AB.oj)), in O(np) time, then one can compute
Low(q pp)(d) = (p+ A.ppa © AA.0,) — (Psum[d] — Psuml[b])
and Hgh(a,b,p)(d) = (p + A.pa + AA.0o) — (Msum[d] —
Msum[b]) in constant time on demand.

Presented as a recursive search routine above, the time
for the algorithm is equal to the number of recursive calls
and reached blocks times a logarithmic factor. In the prac-
tical situations we see, gaps are generally quite narrow com-
pared to blocks and most searches involve a constant number
of blocks and recursive calls. However, this recursion from
a worst case point of view could potentially involve expo-
nential time for ill-posed cases. So we conclude this section
with a restructuring of the reaching steps to give an algo-
rithm with an O(nans(na + ng)log(na + np)) worst-case
time to find an edge, primarily for its theoretical value in
demonstrating that the problem is polynomial.

First observe that there are (na — 1)(np — 1) beam and
pillar portals. The (a,b) beam portal is reachable from ei-
ther a pillar portal for a block (a—1,d) for d < b or the vertex
~ if its overlap ends on the right boundary of such a block.
Similarly what portion of the (a,b) pillar portal is covered
depends on what portion of beam portals (¢,b—1) for c < a
are covered and if vertex 7’s overlap ends on the bottom
boundary of such a block. The graph of these dependencies
is acyclic implying that one can order the computation so
the one does not call the T'raverse routine on a portal until
all its predecessors have been processed and thus when all
possible entry points into the portal are knowable. In fac-
t, processing portals in row or column major order of their
affiliated blocks suffices.

We need to conceptually simplify the notion of the re-
gions reached across a pillar or beam from a given portal
interval or block position. To do so we move from the rela-

global ~: local alignment
G: stretch graph

Procedure Traverse_Pillar((a, b): block, [p, q]: interval)

{if [p,g) =0 or a > na then

{ if [p, q] # 0 then “Make an edge from v to ® in G”

return

for d < b...np do
{ T LO’u)(a’b,p)(d)
Y < Hgh(a,b,q)(d)

for 7 s.t. Ta=a+1and 7.b =d and —7.beg € [z,y] N[0, |B.cq|] do
“Make an edge from « to 7 in G”

z + Lowg, , .,(d)

Traverse_Beam((a + 1, d),[|B.cq4| — ¥, |B.ca| — z] N [—(B.pq © AB.og),0])

}
}

Procedure Traverse_Beam((a, b): block, [p, q]: interval)

{ “Symmetric to Traverse_Pillar” }

“Initialize stretch graph G with no edges”

¥+ ©
for j < 1...np —1do

Traverse_Pillar((1, j),[—(B.p; © AB.o;),0])

fori< 1...nyp —1do

Traverse_Beam((i,1),[—(A.u; © AA.g;),0])

for v € T do
if v.end > 0 then

Traverse_Pillar((y.a,7.b),[| B.cy.5| — v-end, |B.cy.p| — v.end])

else

Traverse_Beam((vy.a,7v.b),[|A.cy.a| + 7v.end,|A.cy o| + v.end)])

Figure 3: The Basic Edge Determination Algorithm.

tive positioning scheme used above to an absolute one. Map
point p on the left boundary of block (a,d) to absolute po-
sition M¢ + p and map point p in beam portal (a,d) to
M¢ + |B.c4| — p. Every unique point on left block bound-
aries and beam portals involving contig a of A are mapped
isomorphically to the domain [0, M2~ 4 |B.c,,|]. More-
over, the result of projecting an interval of points across
pillar @ — 1 is an interval of this range in the absolute sys-
tem by our previous lemmas. Thus we may now think of
the result of propagating an interval across a beam or pillar
as resutling in an interval of reached points.

To obtain an efficient ordering of the reached boundaries,
we associate an interval tree [10] with every row and colum-
n of the blocks. When pushing from an interval across a
beam or column, we compute the absolute-coordinate inter-
val reached and add it to the appropriate interval tree for
the boundary and portal positions on the far side of the gap
in O(log(na+npg)) time. When it is time to process a portal
or block boundary, the set of intervals covering the objec-
t’s range are extracted in O(log(na +np)) time per interval
from the relevant interval tree. It only remains to argue that
at most O(nanp(na +np)) intervals are extracted from in-
terval trees during the course of execution.

The regions of a given portal or block boundary that are
reached from « constitute a collection of disjoint interval-
s and we distinguish three types: (a) whole intervals that
cover the entire object’s range, (b) end intervals that cover
a suffix or prefix of the object’s boundary, and (c) interior
intervals that are strictly interior to the object’s boundary.
Clearly there can be at most O(nang) whole and end inter-
vals, as there can be at most two such intervals per portal
and block boundary. Next observe that if propagating por-
tal interval u produces an interior interval at a portal across
its beam or pillar, then u cannot produce intervals at any of
its other successors in the portal dependency graph. Thus
every interior interval ”consumes” its successors. A chain
of dependent interior intervals can pass through at most
O(na + np) portals and must initially start at a whole or

end interval of which there are only O(nang) to consume.
Thus there are at most O(nanp(na+ng)) interior intervals.

We thus have an O(Ynang(na + ng)log(na + ng)) al-
gorithm for building the stretch graph for a sparse scaffold
comparison problem. It remains an open problem to design
a better worst-case algorithm. For the simple reaching-based
algorithm of Figure 3 we will show in empirical trials that
performance is O(Y) for our real-world applications. This
leaves open the problem of characterizing expected-case per-
formance as a function of some parameterization of problem
instances.

4 The Stretch Optimization Algorithm

In the previous section we gave a practical algorithm for
finding all edges in the stretch graph and further demon-
strated that the problem was polynomial. Given the stretch
graph one can then in O(|Y|) time compute an optimal path
from O to ® where each vertex is weighted by the d-cost of
its overlap alignment. Moreover, it is well-known [11] how
to compute the set of edges that are on an optimal path
in the same time. Every path over the set of edges in this
subgraph is an optimal path, so we can solve the optimal
stretch problem if we can determine the minimum weight
path through this subgraph when each edge is weighted ac-
cording to its minimum stretch weight. This follows as the
set of gaps involved in the connection of a given edge are
disjoint from all others on any O to ® path. So we need on-
ly solve the problem of finding the minimum stretch weight
of each edge in the subgraph of optimum paths.

Consider edge v — 7. The algorithms of the previous
section determined all the portal and block boundary posi-
tions reachable along a diagonal connector from 4’s overlap
end position in some feasible d.p. matrix. By running the
same algorithm in the reverse direction one can determine
all positions reachable from the start position of 7’s overlap.
Taking the intersection of these two sets of positions, one
obtains the set of positions II that are on a diagonal con-

=~ Gapvaiation
|:| Contig block
Contig overlap
W Pillar Ray
[>. BeamRay

Figure 4: Depiction of Edge Determination Algorithm.

nector from < to 7 in some feasible d.p. matrix. It is clear
we need only restrict our attention to the positions in II.

A connector between v and 7 starts at 7’s end point,
passes through an alternating chain of beam and pillar por-
tals, and then ends at 7’s start point. We can thus de-
compose the problem into determining how to minimally
stretch the gaps involved in each hop of this chain. Suppose
one moves from position p relative to block (a,b) across gap
pillar a to position q relative to block (a + 1,d). The total
deformation required in the gap pillar a and gap beams b
through d — 1, is given by:

Deform,p—a)(p,q) = (p+A.pa)—(q+5i=5 (|1B.c;|+B.p5))

The sum of the squares of the deformation on each of the
k = (d — b) + 1 springs involved is minimized by deforming
each spring equally. However, recall that each spring may
be stretched at most A standard deviations from its resting
state. So in general, the optimum is achieved by maximal-
ly stretching the springs with the smallest limitations and
equally deforming all other strings equally. Suppose that
the limit on stretch of the k springs is w1, w2, ...wr where
they have been sorted so that w; > wiy1 for all 4. Then the
minimal stretch energy to achieve a total deformation of x
units among the k strings is given by:

bk (@) = { (a/k)” ifo/k < w

Wi + ¢1k—17(x — wi) otherwise

One should note that you cannot, in general, simply consid-
er the springs between v and 7 and minimally distributed
stretch across them as the diagonal connector in the selected
feasibility d.p. matrix may not lie in the gap grid.

To solve for the minimum stretch weight of edge v — 7
we perform a dynamic programming computation over all
the positions in II. For each position ¢ € II we compute,
S|g], the minimum stretch weight of the springs from the
end of «’s overlap to the position g through all possible con-
nection paths over II. We do so in row- or column-major

order of the blocks associated with the positions. For posi-
tion g, S[qg] is the minimum of S[p] + ¢(Deform(p,q)) over
all direct predecessor positions p that are across a gap from
q. One can further optimize the computation of ¢ so that
it takes O(1) time to incrementally compute for successive
value of p.

It takes O((A-pi + AA.o;)(B.uj + AB.uj)) worst case
time to compute the S-values for positions in a portal for
pillar 7 or beam j reachable from those in a portal for beam j
or pillar 7. In the worst case, all such pairings occur in eval-
uating an edge, for a total worst case complexity of O(VW)
time where V = 3; A.u; + AA.o; and W = X;B.u; + AB.oj,
are the sums of the lengths of the maximal A and B gaps,
respectively. On the other hand, one should observe that
in practice only a linear number of optimal edges arise, and
the connection hops between portals for each edge are also
linear. Further restricting the positions considered to those
in IT limits the quadricity of the problem even further.

5 Empirical Results

While we focused on the problem in which all gaps were
proper, we found that in practice permitting negative gaps
was desirable. Such a gap, if sufficiently large, allows two
small contigs in a scaffold to reverse their positions. More-
over, small negative gaps model situations in which two con-
secutive contigs have a small overlap that might be missed
or would be considered insignificant by our overlap detection
software. So we permitted the use of a negative gap provided
that if it implies an overlap between contigs, then the over-
lap must be observable between the sequences of the contigs.
Incorporating this into the basic algorithm as described in
Figure 3 only requires verification of contig overlaps, the al-
gorithm otherwise handles this variation as presented. What
becomes an open problem, that we do not address here, is
whether the edge detection problem remains polynomial.
To understand the empirical behavior of the basic reach-
ing algorithm of Figure 3, we built a simple simulator that

_ Blocks || Contigs | [Portals]| Contigs |
Edges Contigs |
I ges H —— I Gaps | 5] 10 20 T Gaps [5] 10] 20
0% || 2.44 | 2.70 | 2.88 T0% || 41| .39 .39
égg" i'gg }'(1)8 1?? 20% || 3.26 | 4.06 | 4.39 20% 87| 114 | 1.22
2000 || 1oe | 159 | 1o 30% || 9.32 | 658 | 7.16 30% || 4.48 | 250 | 2.86
ol Il Il I 40% | 17.31 | 15.03 | 17.51 40% || 927 | 77| 895
son || 252 L 558 | aon 50% || 16.74 | 41.93 | 87.65 50% || .9.07 | 24.30 | 51.83
o |l 2. : : Max. 80 | 360 | 1440 Max. 40 | 180 | 720
(a) (b) (c)

Table 1: Empirical results.

builds two overlapping scaffolds. One can specify the span
of the scaffolds, the length of the overlap (of the underlying
sequences), the number of contigs per scaffold, the percent
of the scaffold that is in gaps versus in contigs, the total
variation in gap lengths, and the error rate of the sequence
in the contigs. For the trials leading to Tables 1.a-c we gen-
erated scaffolds that span 100Kbp, overlap by 80Kbp, have
a 2% sequencing error rate, and for which the gaps can vary
in total by one-half of the total average length of the gaps.
In the experiments we varied the number of contigs per scaf-
folds (5, 10, and 20, respectively) and we varied the percent
of the scaffold that was in gaps (10, 20, 30, 40, and 50%,
respectively). Each data point is the average value over 100
trials.

For these datasets, the number of vertices in the stretch
graph is always between 1 and na + np + 1, and averages
1+ .8(na +mnp)/2 because of the choice of 80% overlap. We
present in Table 1.a the average number of outgoing edges
found from each non-® vertex. In Table 1.b, we present the
average number of block boundaries reached from an ini-
tial call on Traverse from each such vertex. In Table 1.c,
we present the average number of gap portals reached from
an initial call on Traverse from each vertex. This last ta-
ble reflects the number of recursive calls that are made on
Traverse. The main conclusion is that the time per edge
is basically constant for any fixed level of completeness of
the scaffolds, with the constant decreasing with the degree
of completeness. In our applications scaffolds were an aver-
age of only 5% gaps and so performance was excellent. In
fact, compute time is basically dominated by the underlying
computation of the overlap alignments between contigs. So
much so that once we have the contig overlaps, we solve a
series of problems for A from 1, 2, through 10, stopping at
the minimum A for which a scaffold overlap is found (i.e.,
a O to ® path exists in the stretch graph). This gives us a
rough estimate of the amount of stretch required to get the
scaffolds to overlap.

Acknowledgements: The author wishes to thank Lau-
rent Mouchard and Aaron Halpern for their assistance in the
practical aspects of this work and the critical evaluation of
the results.

References

[1] U.S. Dept. of Energy, Office of Energy Research and Office of Bi-
ological Environmental Research. Human Genome Program Re-
port. http://www.ornl.gov/hgmis/publicat/97pr/ (1997).

J. Weber, E. Myers Genome Research 7 (1997).

J.C. Venter, M.D. Adams, G.G. Sutton, A.R. Kerlavage, H.O.
Smith, and M. Hunkapillar. Shotgun sequencing of the human
genome. Science 280 (1998), 1540-1542.

(2]
(3]

E.S. Lander, M.S. Waterman. Genomic mapping by fingerprint-
ing random clones: a mathematical analysis. Genomics 2 (1988),
231-239.

(4]

[5] M.R. Olson, L. Hood, C. Cantor, and D. Botstein. A common
language for physical mapping of the human genome. Science
245 (1989), 1434-1435.

D. Gusfield. Algorithms on Strings, Trees, and Sequences.
(Cambridge University Press, 1997), Chapter 11.

E. Myers, W. Miller. Approximate matching of regular expres-
sions. Bull. of Mathematical Biology 51 (1989), 5-37.

S.F. Altschul, W. Gish, W. Miller, E. Myers, D.J Lipman. A
basic local alignment search tool. J. Mol. Biol. 215 (1990), 333-
340.

J. O’Rourke Art Gallery Theorems and Algorithms (Oxford U-
niversity Press, 1987).

(6]
7]
(8]

(9]

F.P. Preparata, M.I. Shamos Computational Geometry: An In-
troduction (Springer-Verlag, 1985).

[10]
[11] D. Naor, D. Brutlag. On suboptimal alignments of biological se-

quences. Proc. 4th Symp. on Combinatorial Pattern Matching
(Padova, Italy 1994), 179-196.

