A Table-Driven, Full-Sensitivity
Similarity Search Algorithm

Gene Myers * Richard Durbin f
July 1, 2002

In honor of Michael Waterman’s 60th birthday.

Abstract

Searching a database for a local alignment to a query under a typical scoring scheme
such as PAM120 or BLOSUMG62 with affine gap costs, is a computation that has resisted
algorithmic improvement due to its basis in dynamic programming and the weak nature
of the signals being searched for. In a query preprocessing step, a set of tables can be
built that permit one to (a) eliminate a large fraction of the dynamic programming
matrix from consideration, and (b) to compute several steps of the remainder with
a single table lookup. While this result is not an asymptotic improvement over the
original Smith-Waterman algorithm, its complexity is characterized in terms of some
sparse features of the matrix and it yields the fastest software implementation to date
for such searches.

Key words: dynamic programming, similarity search.

1 Introduction

Consider the problem of searching a database of protein sequences looking for those that are
similar to a given query sequence. By similar we mean that the query and the target sequence
in question have a local alignment between a substring of each that scores above a specifiable
threshold under a specifiable alignment scoring scheme. The first algorithm for this problem
was given by Smith and Waterman [12] whose names have now become synonymous with the
search. A Smith-Waterman search is considered a full-sensitivity search as it is guaranteed
to find all local alignments above a threshold, whereas the popular heuristics BLAST [1]
and FASTA [8] miss some matches. While its a considered a standard search, it is used less
often because it is the most computationally expensive search due to its basis in dynamic
programming.

Techniques for speeding up Smith-Waterman searches have primarily involved appeals to
hardware parallelization. A coarse-grained parallelization is achieved by evenly partitioning
the database to be searched and assigning each partition to a processor of a MIMD machine
or network of workstations [7]. Fine-grained parallelization of the dynamic programming

*Informatics Research, Celera Genomics, Rockville, MD, USA (email: Gene.Myers@celera.com).
tSanger Centre, Hinxton Hall, Cambridgeshire, UK.

algorithm using SIMD supercomputers or systolic arrays has also been reported and involves
assigning an array of processing elements to the cells on an anti-diagonal of the dynamic
programming matrix [9]. While performance gains scale in the number of processors, they
require a correspondingly greater investment in hardware. We are concerned in this paper
with trying to speed Smith-Waterman searches by improving the software, that is, by de-
signing a cleverer algorithm. The best current implementation of Smith-Waterman search
is Phil Green’s SWAT code [5] which attains it speed by a direct appeal to sparsity and
some machine-level coding tricks. An example of sparsity lies in the basic observation that
under common scoring schemes over 60% of the dynamic programming matrix has value 0,
and it is simple to avoid computing most of these “unproductive” entries. In this paper, we
explore the approach of building a set of tables that allow us (1) to perform several steps of
the underlying dynamic programming computation in a single lookup, and (2) to more fully
exploit sparsity, often eliminating over 90% of the entries because they are unproductive (i.e.
cannot be part of a local alignment above threshold).

This work focuses specifically on improving protein similarity searches as they are con-
ducted in practice. That is we consider sequences over the 23 letter amino acid alphabet
that includes the three ambiguity codes B, Z, and X, and we consider evaluating the score
of alignments with (a) substitutions matrices such as the PAM120 or BLOSUM62 matrix
[3, 6], and (b) affine gap penalties [4]. Recall that a gap of length n is scored a+ bn under the
affine gap model where a and b are user-specifiable scores for (1) the introduction of a gap,
and (2) for each symbol in the gap, respectively. Accommodating such gap scores compli-
cates the underlying dynamic programming computation and the design of the corresponding
speedup tables. But the greatest difficulty arises from the fact that the scoring schemes are
designed to extract very weak signals from the background and this makes it impossible to
easily eliminate whole-sale regions of the dynamic programming matrix as is done in some
recent algorithms [2, 11] for approximate string matching involving comparatively stringent
identity matches as their match criterion. Moreover, the large range of integer scores and
alphabet size preclude a direct application of the Four-Russians table-based approach [13]
that computes the dynamic programming matrix by consulting a universal table of solutions
to all possible v x v sub-matrices. Specifically, for a uniform gap cost scoring scheme such a
table would involve ((29+0+1)|X|)**" entries where g is the gap penalty, o is the maximum
substitution score, and |X| is the size of the underlying alphabet. For a realistic combination
of g = 8 and the PAM120 scoring scheme, where ¢ = 12, the Four-Russians table would in-
volve 667" entries. Thus even a 2 x 1 table would be impossibly large (296 million entries)
and this does not even consider the further complication of affine gaps costs.

After carefully studying the characteristics of the underlying dynamic programming ma-
trix and after much experimentation, we arrived at the approach we present below. Typically,
this approach examines and computes only 4% of the underlying dynamic programming ma-
trix and can do so 2 or 3 database symbols at a time using only a constant amount of time
per entry examined. The steps per entry are not complex so it is the case that we have sig-
nificantly reduced the number of instructions executed per database comparison, probably
on the order of 30-fold over the basic Smith-Waterman algorithm. Nonetheless, the resulting
algorithm is only anywhere from break-even to twice as fast as the tuned SWAT program
depending on the scoring scheme and sequences involved. The reason for this phenomenon
is based in the poorer caching behavior of table-based algorithms: the tables are large and
the reference pattern into the tables is relatively random implying many cache misses which
slow memory references by a factor as high as ten. Despite this our algorithm is still the

fastest software-based algorithm for Smith-Waterman searches. For searches involving more
selective scoring schemes, the improvement of our algorithm over implementations based on
dynamic programming should widen.

2 Preliminaries

We begin the development of our algorithm with the case of uniform gaps and extend it to
affine gaps at the last. Our problem is formally as follows. We are given:

1. an alphabet X over which sequences are composed,

[\V]

. a |X] x |X]| substitution matrix S giving the score, S[a][b], of aligning a with b,
3. a uniform gap penalty g > 0,

4. a query sequence Query = qiqs» . ..qp of P letters over alphabet 3,

5. a target sequence Target = t1to...tx of N letters over X, and

6. a threshold 7' > 0.

The problem is to determine if there is an alignment between a substring of Query and
a substring of T'arget whose score is greater than or equal to threshold 7. It should be
noted that while not formally necessary, the problem makes little practical sense unless the
substitution matrix S consists of both positive and negative scores and is negatively biased
(see, for example, Figure 2).

We assume that the reader is familiar with the edit graph formulation [10] of sequence
comparison where the problem of finding a high-scoring local alignment between Query and
Target is mapped to one of finding a high-scoring path in an edge-weighted, directed graph
whose vertices are arranged in a (P 4+ 1) x (N + 1) array as illustrated in Figure 1. Briefly
reviewing its construction, each diagonal substitution edge from (i — 1,5 —1) to (¢,7) models
aligning ¢; and ¢; and has weight or score S|g;][t;], each horizontal deletion edge from (i—1, j)
to (7, j) models leaving ¢; unaligned and has weight —g, and each vertical insertion edge from
(4,j—1) to (¢, j) models leaving ¢; unaligned, also with weight —g. There is then a one-to-one
correspondence between local alignments of say Querylg...i| and Target[h...j] and paths
from (¢ — 1,h — 1) to (4,j) where the score of the alignment equals the weight or score of
the path. Thus, in the edit graph framework, our problem is to determine if there is a path
in the graph whose score is T' or greater.

The first observation is that it suffices to limit our attention to prefiz-positive paths. A
prefix of a path is a sub-path consisting of some initial sequence of its edges. A path is prefix-
positive if the score of every non-empty prefix of the path is positive. Given an arbitrary path
of positive score T', one obtains a prefix-positive sub-path of score 7" or greater by eliminating
the prefix (if any) with the most negative score. Thus if there is a path of score T" or greater
in the edit graph of Query and Target then there is a prefix-positive path of score T or
greater. While we will not use it here, one could go on to define suffix-positive paths and
argue that it suffices to consider only paths that are both prefix- and suffix-positive.

Now consider the sequence of edges in a prefix-positive path. Let S denote a substitution
edge, I an insertion edge, and D a deletion edge. Then the sequence of edge types must be in
the regular language S(I|S|D)* as the first edge must be positive and only substitution edges

score so. We may equivalently write this as SD*((S|I) D*)* which in plain words asserts that
a path can be partitioned into sub-paths such that each subpath is a substitution or insertion
followed by a possibly empty series of deletions, save for the first which must begin with a
substitution. We define the length of a path to be the number of substitution and insertion
edges within it, or equivalently, to be the number of target symbols in its corresponding
alignment. Thus a path from (g, h) to (¢, j) has length j — h.

The basic dynamic programming algorithm for Smith-Waterman searches involves com-
puting C(i,7), the score of a heaviest or maximal path ending at vertex (i,j). It is not
difficult to observe the following recurrence [12]:

0(7”]) = max{O,C(i - 17.7 - 1) + S[q,][t]],C’(z - 1’]) - 9’0(7'7.7 - 1) - g}

The 0 term models the possibility of the null-path that begins and ends at (4, j), the other
three terms capture the possibilities of reaching (i, j) by a maximal path whose last edge is a
substitution, deletion, or insertion, respectively. Note that the recurrence is true regardless
of whether we consider C(i, j) to be the score of a maximal path ending at (4, j) or that of
a maximal prefix-positive path to (i, j) as these are the same.

For the purposes of illustration we will use, except where noted otherwise, the example
of S being the PAM120 substitution matrix shown in Figure 2 and g = 12. In this case,
one observes that, on average, 62% of the (P + 1) x (N + 1) matrix of C-values is 0 when
a random protein is compared against another!. It is possible to take advantage of the
sparsity of non-zero values by arranging a computation which spends time proportional to
the number of such entries in the C-matrix. We sketch such an approach in the remainder
of this section as a preliminary exercise.

Consider a set p of index-value pairs {(i,v) : i € [0, P]} where each index is to a column
of the edit graph. In what follows, the pairs will model the column and score of a path
ending in a given row of the edit graph. We call such collections path sets. The following
operators on path sets will be used to succinctly describe forthcoming algorithms. Given
two path sets p and ¢ let their merged union, U™ be

p U™ g ={(i,maxu) : (i,u) € pUq}

'We assumed an average length of 300 residues and generated each “random” protein via a series of
Bernouilli trials that selected residues with the frequency with which they are found in Version 7?7 of
Genbank.

Query
OO L HI SFRL I E SWE (120
Target L
i| R (3.2
S
_ SFRL-
L T os-LLI
L
[
Q (7.6)
S
w
(0,9 (12,9)

Figure 1: A sample edit graph and local alignment.

4

Al 3

R|-3 6

N|o-1 4

D|0-3 2 5

cl3 45709

Q-1 10 1-7 6

E|{03 137265

G|140053-15

H|-3 1 2 0-4 3-1-47

I|-1-2-2-3-3-3-3-4-486

L|3-4-4-5-7-2-4-5-3175

K2 2 1-1-70-1-3-2-2-435

M[-2-1-3-4-6-1-4-4-4 13 0 8

F|l4 4476665200618

P|{1-12-2-30-1-2-1-3-3-2-3-56

S{1-110-1-2-11-2-2-4-1-2-31 3

T/120-1322-1303-1-14-124

WI|-7 1 -5-8-8-6-8-8-5-7-5-5-7-1-7-2-612

Y|-46-2-5-1-5-4-6-1-2-3-6-44-6-3-3 -1 8

V|i0-3-3-3-2332-331-41-3-2220-8-35

B|02 3360201350 46-20-174-34

Z|-1-102-7 43-21-3-3-1-3-6-1-2-2-7-5-315

X0 000O0O0O0OO0OOOOOO0O0O0O0O0OOO0O00O00O0
ARNDCQEGHTILKMFPSTWYUVBZX

Figure 2: PAM120 Scoring Matrix.

That is, for index-value pairs in p and ¢ with the same index, keep the pair with the greatest
value. Furthermore for a path set p and symbol a € X, let

Advance(p,a) = {(i,v — g) : (4,v) € p} U™ {(i+1,v+ S[git1][a]) : (¢,v) € p}

Informally, Advance(p,a) extends the paths in p with a substitution or insertion edge pre-
suming the next target sequence letter is a. To capture the effect of extending by a (possibly
empty) sequence of deletion edges, let

Delete,(p) = U™ {(i+ A,v — Ag) : (i,v) € pand v — Ag > 7}

Finally, the path set Start(a) will define the set of paths that begin with a positive substi-
tution edge on target letter a:

Start(a) = {(i,v) : v = S[g;|[a] > 0}

The value of Start(a) is computed in an O(P|X|) preprocessing step for each value of a € X
and stored in a table for use during the search proper.

With these definition in hand we now turn to the problem of computing the non-zero
values of the C-matrix row by row. Let Pos; be the path set {(i,v) : v = C(s,5) > 0}
that models the non-zero values in row j. A positive entry in row j of the edit graph is the
value of a prefix-positive path that is either (a) a maximal prefix-positive path to row j — 1
followed by an insertion or substitution edge to row j followed by a possibly empty sequence
of deletion edges in row j, or (b) a positive weight substitution edge from row j — 1 to row
j followed by a possibly empty sequence of deletion edges in row j. It thus directly follows

that
Pos. — Deleteg(Advance(Pos;j_1,t;) U™ Start(t;)) ifj>1
%iT 0 ifj <1

Thus we have a computable recurrence for Pos; in terms of Pos;_;. All that remains is to
examine how efficiently the computation can be done.

Once a table of Start values has been precomputed, one can perform any number of
searches against targets in a database in O(N + Pos) search time per target, where Pos =
Y;|Pos;| is the number of non-zero entries in the C-matrix. With each path set modeled
as an index-ordered list, it is an easy exercise to compute each intermediate set in the
recurrence for Pos; in time proportional to the sum of the sizes of its input and output
path sets. |Start(t;)| < |Pos;| and |Advance(Pos;j_1,t;)| < 2|Pos;_1|, so their U™*®-merge
can be computed in O(|Pos;_1| + |Pos,;|) time. A traversal of this list, culling non-positive
entries and propagating delete edges, accomplishes the effect of Deletey in the same time,
because the size of the result is |Pos;|. Simply checking the Pos; list for an entry greater
than or equal to T completes the computation in the desired time.

In practice, the algorithm is implemented most efficiently by modeling path sets as a
stack of non-zero positions and an O(N) array explicitly modeling a matrix row. This is
explained in Appendix A. In the practical case of comparison under PAM120 scores with
a uniform gap penalty of 12, this simple algorithm results in only 38% of the matrix being
computed on average. However, the increased logic required to compute each entry requires
about 2.74 times longer than the basic dynamic programming algorithm, making our sparse
algorithm take about 7% more time on average.

3 The Start and Extension Tables

Entries that are zero in the dynamic programming matrix are clearly “unproductive” in
that a prefix-positive path does not pass through such a vertex. In this section we lever
this basic idea further by building tables that help us avoid expending effort on additional
unproductive vertices. The size of our tables and the degree to which they screen the matrix
will be determined by two small parameters ks and kg which in practice might typically be
set to 4 and 3, respectively. Let the length of a path or alignment be the number of symbols
in the target subsequence it aligns. Consider a vertex x in row j of the edit graph of Query
vs. T'arget and the following definitions:

1. z is a seed if there exists a prefix-positive path to = that is of length kg, i.e., that starts
in row j — kg.

2. x is startable if there exists a positive path to x whose prefix of length kg is a seed.

3. x is extendable if there exists a positive path through = to row j + kg whose suffix
of length kg is prefix positive, i.e., it has a prefix-positive “extension” of length kg
beyond z.

4. x is productive if it is both startable and extendable.

Let Seed, Startable, Extensible, and Productive be the sets of vertices that are seeds, are
startable, are extendable, and are productive, respectively. Note that Seed is a proper subset
of Startable as the suffix of a long prefix-positive path that spans the last ks rows need not
be prefix-positive.

In this section we show how to build tables for a given query that with an O(1) lookup
deliver the startable vertices for any target substring of length kg, and indicate if a given
vertex is extendable given any ensuting target substring of lenght kg. Using these tables
allows an algorithm that compare the query to a target in O(N + |Productive| + |Seed|)

ks | Startable Seed kg | Extensible
1 37.8% 22.1% 1 23.4%
2 24.1% 11.2% 2 15.6%
3 17.2% 6.9% 3 12.7%
4 12.7% 4.6% 4 10.3%
Productive ks
1 2 3 4
1 123.4% 16.1% 11.8% 9.2%
ke 2 | 15.6% 11.3% 8.5% 6.9%
3 112.7% 94% 6.9% 5.3%
4 1103% 7.9% 6.6% 4.5%

Table 1: Sparsity of Table-Computed Vertex Sets.

time. While the times to build the tables will be significant, keep in mind, that they need
only be built once for a given query and then may be used to scan the entire database. Also
note during the following development that the algorithm of the previous section is just a
special case where ks = 1 and kg = 0. Table 1 gives the expected percentage of the matrix
that is in each of the sets Seed, Startable, Extensible, and Productive for a variety of values
of ks and kg in the case where S is the PAM120 scoring matrix and g = 12.

3.1 Start Trimming

Limiting dynamic programming to the startable vertices requires a table Start(w) where w
ranges over the |X|¥s possible sequences of length ks. The entry for a given sequence w is
defined as follows:

Start(w) = { (i,v) : 3 prefix-positive path from row 0 to vertex (i, ks) in the edit
graph of Query vs. w, and v is the score of a maximal such path }

The entire table may be computed efficiently using the simple sparse algorithm of the previous
section for figuring the path set for each entry w and by factoring the computation of entries
that share a common prefix as detailed in the following recurrence:

Start(e) = {(,0):i €0, P]}
Start(wa) = Deleteq(Advance(Start(w),a))

Effectively Start(w) is computed for every sequence of length kg or less, with the path set
for wa being computed incrementally from that for w. This reduces the worst-case time
for computing the entire table Start, O(P|%[Fs), by a factor of ks over the brute-force
algorithm. Let o be the expected percentage, |Seed|/(N+1)(P+1), of vertices that are seed
vertices in a comparison, for example, as reported in Table 1. It follows by definition that
the expected size of the path set for an entry of the Start table is P and thus that the
entire table occupies O(aP|X|*s) space in expectation. With care, only 4 bytes are required
for each index-value pair in a path set and the table can be realized as an array of pointers to
sequentially allocated path sets giving a concrete estimate of (4aP+4)|%|Fs bytes on a 32-bit
address machine. Efficiently looking up an entry w is simply a matter of converting w to an

integer index in the range [0, |3|¥s—1] in the usual fashion. Returning to the time to compute
the table, note that there is a greater degree of sparsity in this computation over that of a
search comparison as Start(w) becomes sparser geometrically as w gets longer. Hence, of
the (P+1)(|S[Fs+1—1)/(|X|~1) dynamic programming entries that would be computed in the
worst case computation of the entire Start table, only a small percentage, 3, are actually
computed. Indeed f is O(«a) in expectation as the deepest level of the recursion for Start
dominates the cost. So in expectation Start is computed in time proportional to its size.

With the Start table in hand, one can easily limit the dynamic programming computation
of Query vs. Target to the startable vertices in each row as follows. Let Stable; be the path
set {(i,v) : (4,7) is a startable vertex and v = C(4,7)}. It follows directly from the definition
of a startable vertex and the structure of prefix-positive paths that:

Deleteg(Advance(Stable;_q,t;) U™ Start(Target[j—(ks—1)...7])) if j>kg

Stablej:{ 0 if < kg

Incrementally converting each successive subsequence Target[j — (ks — 1) ... j] of the target
into an integer index into the Start table takes constant time, so the above recurrence outlines
an O(N + |Startable|) algorithm for detecting local alignments at or above threshold 7.

3.2 Extension Trimming

We now turn to the development of a table that eliminates vertices that are not extendable.
For a given sequence w of length ky and a column index in the range [0, P], let:

Extend(i,w) = min{ drop(p) : p is a path from (4,0) to row kg
in the edit graph of Query vs. w }

where drop(p) = — min { score(q) : ¢ is a prefix of p } > 0.

That is, Extend(i, w) gives the least decrease in score that will be encountered along a path
from column 7 when the next kg target symbols are w. Thus (i, j) is an extendable vertex if
and only if C(4,j) > Extend(i, Target[j +1...5 + kg]).

Computing the Eztend table involves the following variation of the basic dynamic pro-
gramming algorithm. Let E,[0...P] be a (P + 1)-vector of numbers for which E,[i] =
—Ezxtend(i,w). It is a straightforward exercise in induction to verify the following recur-
rences:

El] = 0
Ewwli] = min(0,max(Eyli + 1] + Slgir1][al, Ewli] — 9, Eawlt + 1] — g))

As for the Start table, a factor of kg in efficiency is gained by factoring the computation of
Extend(i, w) for different w but this time for sequences sharing a common suffiz. Working
“backwards” by extending suffixes is required in this case as we are interested in optimal
paths starting in a given column as opposed to ending in one. Overall the computation of
the Extend table takes O(P|X|*#) time and the table occupies the same amount of space.
In practice, the values in the Extend table are small enough to fit in a single byte so that
the table occupies exactly (P + 1)|X[F# bytes.

Once the Extend table is computed it can be used to prune vertices that are not extend-
able during the search computation. The point at which to do so is during the extension of
path sets along deletion edges. To this end define:

Deleteg(p,w) = U™{(i + A,v — Ag) : (i,v) € p and v — Ag > Extend(i + A, w)}.

8

Since Extend(i, w) > 0 for all ¢ and w it follows that Deleter(p, w) C Deletey(p) for all p and
w. One must trim vertices that are not extendable during the deletion extension of an index-
value pair, as opposed to afterwards, in order to avoid potentially wasting time on a series
of vertices that are all not extendable along a chain of deletion edges. Stopping at the first
vertex that is not extendable in such a chain is correct as Extend(i, w) —g < Extend(i+1,w)
implies that all vertices reached from it by virtue of a deletion are also not extendable.

Let Prod; be the path set {(¢,v) : (¢,7) is a productive vertex and v = C(,7)}. Then
by definition it follows that:

Deleteg(A-S(j), Target[j+1...j+kg]) ifj > ks
0 if j < kg

where A_S(j) = Advance(Prod;_y,t;) U™ Start(Target[j—(ks—1)...j])

Computing the indices into the Start and Extend tables can easily be done incrementally at
an overhead of O(N) time over the course of scanning T'arget. The time to compute Prod;
from Prod;_; is as follows. Advance takes time O(|Prod;_1|). The merge of this result
with the Start table path set takes time proportional to the sum of the lengths of the two
lists, i.e., O(|Prod;_i| + |Seed,|), where Seed; is the set of seed vertices in row j. Finally
computing Deleter takes no longer than the sum of the size of the path set given to it and
the size of the path set that results, i.e., O(|Prod,_| + |Seed;| + |Prod;|). Thus the overall
time to search Target is O(N + X;|Prod;| + X;|Seed;|) = O(N + |Productive| + |Seed|) as
claimed at the outset.

A subtlety ignored to this point is that alignments of score 7" or more can end on non-
productive vertices when 7' is sufficiently small, specifically when T' < mazx(o(ks—1), g(kg—
1)), where o is the largest entry in the scoring matrix S. This happens in two ways: when
the alignment is of length less than kg and so does not give rise to a seed vertex, and when
the last vertex of the alignment is followed by such negative scoring edges that all extensions
drop to 0 in less than kg rows. How to make the algorithm detect these cases at no extra
asymptotic cost is shown in Appendix B. For now we note that to create such instances 7’
has to be set to an unrealistically small value. For example, for our running example of
PAM120 and g = 12, with kg = kg = 3, T would have to be 24 or less, and typically users
never set 1" below 50.

Table 2 shows the time and space to produce the tables, and the search time for given
choices of ks and kg. Time and space for both tables increase geometrically with &, with
the factor for the Start table being somewhat less because the number of seeds per entry
is also decreasing geometrically. For running time, one notes that times generally decrease
as the k parameters increase save that when kg goes from 2 to 3, times actually increase in
columns for larger kg, so that the best overall time is obtained with kg = 4 and kg = 2. The
reason for this is due to memory caching behavior on todays hardware. As processor speeds
have gotten ever faster, memory speeds have not, so that for todays machines any memory
cache miss typically incurs slowdowns of more than a factor of 10 over accesses that are in
cache.? As the Start and Extension tables get larger, it becomes more and more likely that
an access into the table will not be in the cache as the access pattern to these tables is more
or less random. Thus the observed behavior: even though only 1/20th of the d.p. matrix is
being computed for ks = 4 and kg = 2, only a factor of 2.6 is gained in time over the naive
algorithm. Nonetheless, this is not an inconsequential performance gain.

Prod; = {

2All timing experiments were performed on a T22 IBM laptop with 256Mb of memory and a 1Ghz
Pentium III processor with 256Kb cache, running SuSE Linux 7.1.

Start | Preprocessing Space Extend | Preprocessing Space
ks Time(secs) (Kb) kg Time(secs) (Kb)
1 .00027 5 1 .00053 7
2 .0019 62 2 .0081 159
3 .025 892 3 .19 3,650
4 .38 13,390 4 4.3 83,952
Search ks

Time(secs) 1 2 3 4
off | 201 127 96 81 vs. Dynamic

kg 1 (177 115 94 82 Programming:
2 (132 91 79 T2 187
3 (118 92 87 78

Table 2: Times and space for sparse SW-searches on queries of length 300 and a database
of 100,000 300 residue entries.

4 A Table-Driven Scheme for Dynamic Programming

In addition to restricting the SW computation to productive vertices, one can further develop
a “jump” table that captures the effect of Advance and Delete over k; > 0 rows. For each se-
quence of k; potential row labels w and each column position ¢, an entry Jump(i, w) gives the
change in score that can be obtained at each column position k£ > i. That is, Jump(i,w) =
{(k,u) : the maximal path from (0,) to (k;, k) is u in the edit graph of w versus Query}.

As formulated the table Jump is unmanageably large at O(X*’ P?) space. However, this
is greatly improved by realizing that one need only record those (k, u) for which u > —(7T'—1).
One will never jump from a vertex of score 7" or more as the algorithm can quit as soon as
it encounters such a vertex. Jumping from a vertex of score less than 7" with a change of
—(T — 1) or more leads to a non-positive entry and so need not be considered. We can thus
formulate the computations of the Jump table as:

Jump(i,e) = Delete_r_1)({(i,0)})
Jump(i,wa) = Advance(Delete_r_1)(Jump(i,w)), a)

If we truly wish to compute only critical entries on every other k% row of the dynamic
programming matrix, then care must be taken to model all possible seed paths that can lead
to the next row to be computed. For example, if £; = 2, so that only every even row is
actually computed, and ks = 4, then one might miss seeds that end in an odd row. The
required fix is to modify the Start(w) table so that it models all seeds of length ks—(k;—1)
to kg that align to a suffix of w. While this decreases the sparsity of the table, the loss
is offset by the gain in being able to skip rows. So the Start table is now defined by the
recurrence:

Start(e) = {(:,0):7 € [0, P]}

Deletey(Advance(Start(w), a)) U™ Start(e) if |w| < k;—1

Start(wa) = { Deletey(Advance(Start(w), a)) otherwise

The Jump table considers all paths from the current row to a future one that begin with
a series of deletion edges. Moreover, if there is a path with score 7" or more that ends with

10

a deletion, there is always one with such score that ends on a substitution, as deletion edges
have negative score. Thus it is no longer necessary in the search algorithm to explicitly
compute entries in a given row that can obtained by deletion edges from another entry in
the same row. So we can save time in the main loop by not having to invoke Deleteg, but
rather letting the application of the Jump table take care of its effect. Moreover, we can
save a little space in the Jump and Start tables by removing entries in a path set that can
be obtained through deletion from other entries in the path set. Specifically, define

Nodels(p) = p—{(i,v):3(k,u) €pst. k<iandv<u—(i—k)g}

Jump'(i,w) = Nodels(Jump(i,w))
Start'(w) = Nodels(Start(w))

Unlike the algorithms of the proceeding sections, the tactic of letting the Jump table
handle deletions implies that the set of entries, Cand;, explicitly computed for every k™ row
is a subset of the productive entries in the row and a superset of the entries not producible
by deletions. That is, Nodels(Prod;) C Cand; C Prod;. To compute Cand;, one first
applies the Jump table to the entries of C'and;_;, and then merges these with all the seeds
of lengths between kg — (k;—1) and ks ending on row j. Finally, this aggregate set of entries
on row j are checked for extendability. Putting this together formally in recurrences:

JUMP(Cand;_y,, Target[j—(k;—1)...7])

umae Start'(Target[j—(ks—1)...j]) Target[j+1...j+kg))

Cand; = Trimg(

where JUMP(p,w) = {(i+k,v+u): (i,v) € pand (k,u) € Jump'(i,w) and v+u > 0}
and Trimg(p,w) = {(i,v) € p:v > Extend(i,w)}

Efficiently implementing JU M P involves organizing the index-value pairs for a given entry
Jump(i, w) as a list ordered on the value of the pairs, not their index. Thus when jumping
from an entry (i,v) one processes the offsets (k,u) in order until v + u < 0 at which point
no further elements of the list need be considered.

The remaining detail is to modify the check for paths scoring T" or more. One should, of
course examine every entry in Cand,, but since one is skipping k; — 1 rows, it is necessary
to check if there is an extension of each of these that has score over 7" in the skipped rows.
To this end let Peak(i, w) be the maximum score acheived on all possible paths starting at
(7,0) in the matrix of Query versus w. Like the analysis for the Extend table, except easier,
Peak(i,w) = P,i] where:

Pl] = 0
Puli] = max(0, Pyli + 1] + Slgir1][al, Puli] — 9, Pawli + 1] — g))

To test for paths of score T or greater, it simply suffices to check if v + Peak(i, Target[j +
1...j+(k;—1)]) > T for each (i,v) in Cand;. The total space for the Peak table is
O(|Z|F7LP).

It is no longer possible to give a statement of the complexity of the resulting algorithm in
simple terms as JUM P(p, w) potentially involves enumerating a position of the underlying
dynamic programming matrix several times. It simply becomes an empirical question as to
whether in practice this inefficiency is offset by the fact that one no longer needs to consider
deletion sequences and that one skips rows when k; > 1. In Table 3 one sees that the time
and space for producing the jump table increase geometrically with the highest reasonable

11

Jump' | Preprocessing Space
ky Time(secs) (Kb)

1 0.0031 32

2 0.098 1,175

3 2.18 35,786

Seed ks Start' kg

Vertices 1 2 3 4 Space(Kb) 1 2 3 4
1 22.1% 11.2% 6.9% 4.6% 1 5 62 880 14,020
ky| 2 273% 154% 9.7% ky 2 156 1,949 28,356
3 31.9% 18.4% 3 3,966 52,677

Search Time (secs)

kr=1 ks kr=2 ks kr=3 ks
1 2 3 4 2 3 4 3 4
1 130 88 76 63 1 134 110 94 1 102 85
kg | 2 102 76 75 62 kg | 2 126 107 87 kg | 2 84 71
3 112 92 88 79 3 89 80 T2 3 94 72
4 102 89 8 78 4 78 T2 62 4 64 56

Table 3: Times and space for sparse, jump-based SW-searches on queries of length 300 and
a database of 100,000 300 residue entries.

value of k£; being 3. In the second row of tables, one sees that for every row skipped there
is a corresponding increase in the number of verices that are seeds and in the size of the
Start tables. If Seed(s,j) is the fraction of seeds for ks = s and k; = j, then one sees
that Seed(s,j) < ¥ji_, ;,,Seed(t,1) as a seed for a given kg is often a seed for kg — 1.
Running time is a complex function of the three k£ parameters due to the stochastic nature
of competition for the cache as the parameters increase. In particular, increasing k; doesn’t
win, unless one is running with large values of ks and kg. The basic insight is that the cost
of the table lookups per row is such that skipping rows only wins if the number of entries
per row is made small enough with the use of the Start and Extension tables. Overall, on
our test machine, the best performance was acheived with k¢ = kg = 4 and k; = 3. At 56
seconds for the search, this is 3.33 times faster than the our implementation of the original

Smith-Waterman algorithm.

5 The Case of Affine Gap Costs

We now turn to the case where a gap of length n has an affine cost g+ hn for user specificiable
constants g, h > 0. This variation of the problem was first solved by Gotoh who observed
that one simply needed to maintin separate reccurences for the best path ending at (i, j)
with an insertion, /(7, j), and with a deletion D(3, j). The resulting recurrence system is as

follows :
C(Z:J) = maX{O: 0(2_1:.7_1)+S[Qz][tj]aD(Z:J)vl(Z:])}
D(Z:]) = maX{D(i_laj)aC(i_laj)_g}_h
I(Z:]) = maX{I(iaj_l)aC(i:j_l)_g}_h’

12

@ D—vertex
O C—vertex
® [-vertex

Figure 3: Affine edit graph edge and vertex structure.

An edit graph construction follows immediately from these recurrences where now at each
coordinate (i, j) there are three types of vertices — C, D, and I — corresponding to the three
recurrences. Figure 3 shows the structure of the graph and the weights of its edges. Just as
in the uniform gap case, any path through this graph models an alignment and our objective
is to determine if there are paths of score greater than 7.

Some simple observations follow directly from examining the dependencies and terms in
the recurrences. First note that to compute the j%* row from the (j — 1)** requires knowing
only the vectors of C' and I values in row j — 1, and not on the D values in that row. The
second observation is that if 1(4,j) < C(i,7) — g then the I value at vertex (7, j) need not
be recorded as any maximal path through its /-vertex will have score less than the maximal
path passing through the corresponding C-vertex. Similarly if C(i,j) = I(4,7) (it can never
be that C(i,j) < I(i,j)) then the C value at (i,) need not be recorded as any maximal
path through its C-vertex will have score less then the maximal path passing through the
corresponding I-vertex.

To generalize the uniform case to the affine case, it suffice to generalize path sets for a
given row to a set of index-value-type triples, p = {(4,v,t) : ¢ € [0,P] and t € {C,[}}. A
triple (i, v, C') denotes that the C-vertex in column ¢ can acheive value v, and a triple (i, v, I)
denotes the same for the I-vertex. With this definition in place, the basic constructors —
umaer - Advance, and Delete — are easily extended as follows:

p U™ g = {(i, maxu,t) : (i,u,t) € pUq}

Advance(p,a) = {(i,v— (g4 1).1): (1,0,C) € p} U™® {(iyv— hI): (i,v, 1) € p}
U {(i+1,v 4 Slginllal, €) : (1,0,7) € p}
Duoalues(p) = U™ {(i+A,w,C) : (i,v,?) € pand w = v—(g+Ah) and A >0}

Delete.(p) = {(i,v,C): (i,v,C) € Dvalues(p) and v > 7}
umerd (G v, t) : (i,v,t) € pand v > 7}

Since all other tables — Start, Jump, and Fxtend — can be defined in terms of these basic
functions the overall feasibility of the generalization follows.

Nonetheless there are a few details that need to be addressed. First, jumping from an
I-term penalizes extensions beginning with an insertion less than from the corresponding
C-term. Therefore, there actually need to be two jump tables, Jumpes and Jumpy, one for
each type of path set tuple. The difference is simply in the basis of the recurrence for each

as follows:
Jumpc(i,e) = Delete_r_1)({(4,0,C)})
Jumpy(i,e) = Delete_r_1)({(¢,0,1)})

13

Search Time (secs)

ky=1 ks ky=2 ks
1 2 3 4 2 3 4
1 149 129 109 95 1 194 145 112 vs. Dynamic
kg | 2 144 124 117 104 kg | 2 164 126 107 Programming:
3 145 129 113 104 3 139 113 93 288
4 131 113 106 100 4 115 98 86

Table 4: Times and space for sparse, jump-based SW-searches with affine gaps on queries of
length 300 and a database of 100,000 300 residue entries.

The same issue arises for extension values following a C- or I-term. However, in this case
we found that it was in practice not worthwhile to develop two tables but simply to use the
lower cutoff afforded by the two cases.

Finally, just as in the earlier treatment one should remove terms that can be obtained
by deletion from another term (i.e. see Nodels). In addition, one should eliminate, wher-
ever possible, C-terms for which the corresponding /-term has the same value, and I-terms
for which the corresponding C'-value is g or larger than it, as per the observations made
immediately after the introduction of the recurrences. Capturing this in equations:

Nodels(p) = p—A{(i,v,C): (i,w,C) € Dvalues(p) and w > v}

Reduce(p) = p—{(i,v,I): (i,w,C) € pU Dvalues(p) and w — g > v}
- {(’i,U,C) : (i,U,I) Ep}

Jump'(i,w) = Reduce(Nodels(Jump(i,w)))
Start'(w) = Reduce(Nodels(Start(w)))

This then completes a sketch of the modifications needed to extend our algorithm to the
case of affine gap costs.

We now turn to the empirical performance of the algorithm. All measurements where
with the PAM120 matrix and the affine gap cost 8 + 4n. The time and space to build the
Eztend table is as before whereas the Start and two Jump tables increase by fixed fractions
to the extent that it is no longer possible to build Jump tables for k; = 3 in under 100Mb
of memory. In table 4 run times are given as a function of kg and kg for k; set to 1 and
to 2. As in in the uniform gap case, time does not improve with larger k; unless the other
two parameters are large enough to make each row sufficiently sparse. The best overall time
occurs when ks = kg = 4 and k; = 2, and in this case the search time is 3.34 times faster
than a tightly coded implementation of the basic dynamic programming algorithm.

In practice today, the code considered best by the community is Phil Green’s SWAT
program [5] that implements the Smith-Waterman algorithm with affine gap costs. In ad-
dition to a query specific scoring matrix, that we also used in our dynamic programming
baseline, this code packs values into words and uses some basic properties of the recurrence
to reduce the operation counts at each cell. In order to get a sense of how our algorithm
performs against this standard program and on real, as opposed to simulated datasets, we
ran a series of searches against a 3 million residue subset of the PIR database, with four
different proteins — a periodic clock protein of length 173 (pcp), a lactate dehydrogenase of
length 319 (dehydro), a cGMP kinase of length 670 (kinase), and a growth factor of length
1210 (g factor). We ran our algorithm with several settings of (ks, kg, ks) as shown in tables

14

Space | QOurs Ours Ours Ours

(Mb) | 3:1,1) (4,1,1) (4,3,2) (4,4,2)

pcp 1.1 7.8 22.3 68.6

dehydro 1.8 17.2 47.5 132.9

kinase 3.1 31.8 94.9 274.2

gfactor 5.6 54.3 166.6

Times Total = Setup + Search Total
(secs) Ours (3,1,1) Ours (4,1,1) Ours (4,3,2) Ours (4,4,2) | Swat
pep| 43=.0+ 43| 43= 3+ 40| 50= 8+ 42| 85= 4.7+ 3.8 6.6
dehydro | 124 =.0+124 | 11.8= 6+ 11.2 | 123 =194+ 104 | 189 = 9.6 + 9.3 14.1
kinase | 29.3 =.1+29.2 | 246 =1.1 4+ 235|214 =40+ 174 | 364 =212 + 152 | 28.9
gfactor | 59.2 = .2 + 59.0 | 48.4 = 1.8 + 46.6 | 36.4 = 7.4 4+ 29.0 Not run 51.5

Table 5: Times and space of our algoriithm and SWAT on 4 different queries against a real
protein database of 3 million residures under the PAM120 matrix and gap costs 8 + 4n.

Space | Ours Ours Ours Ours

(Mb) | 3,1,1) (41,1) (43,2) (4,4,2)

pep 1.4 9.7 31.0 77.4

dehydro 2.3 22.1 66.7 152.1

kinase 4.5 40.0 131.2 318.6

gfactor 7.8 67.7 230.4

Times Total = Setup + Search Total
(secs) Ours (3,1,1) Ours (4,1,1) Ours (4,3,2) Ours (4,4,2) | Swat
pep| 53=.0+ 53| 53= 3+ 50| 58=11+ 4.7 95= 52+ 43 7.4
dehydro | 26.4=.1 +26.3 | 24.7= .7+240|199=25+4+ 174|268 =115+ 153 | 15.7
kinase | 56.2 = .2 + 56.0 | 50.8 = 1.4 + 49.4 | 34.1 = 5.4 + 28.7 | 50.3 =24.7 + 25.6 | 34.1
gfactor | 98.6 = .3 + 98.3 | 87.4 = 2.3 + 85.1 | 55.8 = 9.6 + 46.2 Not run 60.5

Table 6: Times and space of our algoriithm and SWAT on 4 different queries against a real
protein database of 3 million residures under the BLOSSUMG62 matrix and gap costs 8 + 2n.

5 and 6 and the SWAT program whose performs depends only on the scoring matrix and
gap costs. We ran the series of trials with the PAM120 matrix and a gap cost of 8 + 4n, and
again with the BLOSUMG62 matrix and a gap cost of 8 + 2n. The timings for our program
involve a setup time to build the tables that is only a function of the query, and a search
time that is directly proportional to the size of the database. We report both these numbers
and their total in the tables. Swat takes neglible startup time and runs in time linear in the
size of the database. For the PAM120 scheme, our algorithm was consistently faster than
SWAT for the parameter tuple (4, 3,2) and occasionaly more so for other choices. Moreover,
search speed was the fastest for (4,4, 2) implying this combination will eventually give the
best performance on a large a database, and is 1.5 to 2 times faster than SWAT’s search
speed. For the BLOSSUMG62 scheme, our algorithm basically takes the same amount of total
time with the search speed ranging from a small fraction faster to 1.5 times faster than that
of SWAT’s search speed. The basic reason for the lesser performance of our algorithm in
the BLOSSUMG62 case is do to the small per symbol deletion penalty of 2 versus 4 in the
PAM120 case. This lower gap extension penaly reduces the effectiveness of the Fxtension
table trimming and so more marginal entries remain alive.

15

References

[1] S.F. Altschul, W. Gish, W. Miller, E.-W. Myers, and D.J. Lipman. A basic local align-
ment search tool. J. Mol. Biol. 215 (1990), 403-410.

[2] W.I. Chang and E.L. Lawler. Sublinear expected time approximate matching and
biological applications. Algorithmica 12 (1994), 327-344.

[3] M.O. Dayhoff, W.C. Barker, and L.T. Hunt. Establishing homologies in protein se-
quences. Methods in Enzymology 91 (1983), 524-545.

[4] O. Gotoh. An improved algorithm for matching biological sequences. J. Molec. Biol.
162 (1982), 705-708.

[5] P. Green. “http://www.genome.washington.edu/phrap.docs/swat.html” (1994).

[6] S. Henikoff and J.G. Henikoff. Amino acid substitution matrices from protein blocks.
Proc. Natl. Acad. Sci. USA 89 (1992), 2264-2268.

[7] X. Huang. A space-efficient parallel sequence comparison algorithm for a message-
passing multi-processor. Int. J. Parallel Prog. 18, 3 (1989), 223-2309.

[8] D.J. Lipman, and W.R. Pearson. Rapid and sensitive protein similarity searches. Sci-
ence 227 (1985), 1435-1441.

[9] D.P. Lopresti. P-NAC: A systolic array for comparing nucleic acid sequences. Computer
20, 7 (1987), 98-99.

[10] E. Myers. An O(ND) difference algorithm and its variations. Algorithmica 1, 2 (1985),
251-266.

[11] E. Myers. A sublinear algorithm for approximate keyword matching. Algorithmica 12,
4-5 (1994), 345-374.

[12] T.F. Smith and M.S. Waterman. Identification of common molecular sequences. J.
Mol. Biol 147 (1981), 195-197.

[13] S. Wu, U. Manber, and E. Myers. A sub-quadratic algorithm for approximate limited
expression matching. Algorithmica 15, 1 (1996), 50-67.

6 Appendix

6.1 Detecting Short High-Scoring Alignments

As noted in the paper proper, it is possible for there to be an alignment of length less than
ks that has score T' or more when 7" < o(ks — 1) (recall o is the maximum entry in S). To
handle this rare scenario it suffices to build a table Short indexed by sequences w of length
ks that indicates if an alignment of score T" or more exists between w and Query. It is easy

16

to compute Short as a byproduct of computing Start and it occupies only |X|*s bytes in
practice. A recurrence for computing Short is as follows:

Short(e) = false
Short(wa) = Short(w) or (3(i,v) € Start(wa),v > T)

Note carefully, that the table Short needs to be checked for every row, regardless of the use
of a Jump table, so that O(N) time is taken checking for short matches during a search.

6.2 Detecting Hits Ending on Non-Productive Vertices

An alignment or hit of score T or more can end on a non-productive vertex when all possible
extensions of the alignment of length less than kg drop by score more than 7". Moreover, in
the Jump table version of the algorithm productive vertices on skipped rows are not checked.
Indeed, we treated this later possibility in the main text by introducting a table Peak(w, 7).
To treat the case first case, simply requires that the table be over strings w of length kp — 1
(if kg > ky). The fix is then to check every productive candidate (i,v) in a row j to see if
v+ Peak(Target[j+1...54+(kg—1)],i) > T.

6.3 Implementation Nuances

Within the body of the paper, values in a given row are modeled by path sets consisting of
a column-ordered list of column,value pairs. While one can implement the functions such as
Advance on such a representation in linear time, we find that in practice a better representa-
tion is to have a O-terminated list of all columns, ¢, in the path set (not necessarily ordered)
and a (P + 1)-element array, D for the row of the dynamic programming matrix where the
corresponding value is in each column position within the array, and all other values are set
to 0. For example, suppose P = 10 and we have the path set p = {(3,10),(5,3),(8,6)}.
Then a representation would be ¢ = {5,8,3,0} and D = [0, 0,0, 10,0, 3, 0,0, 6, 0,0]. The rea-
son this representation provides a better implementation than the path set representation,
is that the core operation U™ does not require a merge of lists, but simply uses the setting
of the D array to see if there is a collision between two path sets.

17

