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ABSTRACT
We present a concept and formalism, the string graph, which repres-
ents all that is inferable about a DNA sequence from a collection of
shotgun sequencing reads collected from it. We give time and space
efficient algorithms for constructing a string graph given the collec-
tion of overlaps between the reads and, in particular, present a novel
linear expected time algorithm for transitive reduction in this context.
The result demonstrates that the decomposition of reads into kmers
employed in the de Bruijn graph approach described earlier is not
essential, and exposes its close connection to the unitig approach we
developed at Celera. This paper is a preliminary piece giving the basic
algorithm and results that demonstrate the efficiency and scalability
of the method. These ideas are being used to build a next-generation
whole genome assembler called BOA (Berkeley Open Assembler) that
will easily scale to mammalian genomes.
Contact: gene@eecs.berkeley.edu

1 INTRODUCTION
Paired-end whole genome shotgun sequencing has become the pre-
vailing paradigm for the first phase of sequencing an organism’s
genome (Weber and Myers, 1997; Adams et al., 2000; Venter et al.,
2001) and routinely delivers 95–99% of the euchromatic sequence
in large scaffolds of ordered and oriented contigs. The experiments
required to finish the remaining few percent are an order of mag-
nitude more expensive than the shotgun sequencing. For this reason,
only the most important reference genomes will likely ever to be
finished. Thus, improved algorithms and software for whole genome
shotgun sequencing can have a large impact on genomic science. For
example, an assembler that takes a 97% reconstruction and improves
it to 99% is reducing the amount of unresolved sequence by a factor
of three (from 3% to 1%) and, typically, improving contig sizes by a
factor of 10 or more (by resolving 90% of the gaps) according to the
Poisson statistical theory of sampling (Lander and Waterman, 1988).

There are currently a number of assemblers capable of whole-
genome assembly that all perform comparably by employing vari-
ations on the basic paradigm of first finding and assembling unique
stretches of DNA with high reliability (Myers et al., 2000; Aparicio
et al., 2002; Mullikin and Ning, 2003; Jaffe et al., 2003; Huang et al.,
2003). Recurrent strategies include finding mutually reinforcing read
pairs and examining the relationship of a read to all others in order to
assess its repetitiveness and to correct errors. The central objective
for better assembly is to effectively resolve repetitive sequences.

Consider perfect data and a genome that has several perfect repeats
whose lengths are longer than any read as shown in Figure 1. Imagine
that the genome is a piece of thread and meld or collapse all the like
repetitive elements as illustrated in Figure 1. We call the resulting
graph a string graph and it effectively represents everything that can
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Fig. 1. A genome and its string graph. The thick arrows of the same shade
represent identical repetitive sequences. The numbers in the string graph give
the number of copies of each repeat inferable by counting entry and exits into
the collapsed segment.

be inferred from the read data. If one can identify arcs corresponding
to unique sequence, then a simple flow analysis reveals how many
copies of each repeat are collapsed together and if one replicates
each of those edges according to their copy count, then the expanded
graph has an Eulerian tour and one of those tours corresponds to the
original sequence. We show how to build such a graph in this paper.

In 1992 this author and Waterman–Idury presented two new ideas
for fragment assembly in back to back talks at a DIMACs workshop
on bioinformatics which were later published in the same volume of a
journal (Myers, 1995; Idury and Waterman, 1995). Myers’ approach
was based on finding maximal interval subgraphs in the graph of
all read overlaps, and was subsequently developed into the ‘unitig’
concept of the Celera assembler. Waterman and Idury presented an
approach based on building the de Bruijn graph of all kmers from
the reads and then finding paths in this graph supported by the reads.
This approach was subsequently extended by Pevzner et al. (2001)
of his research group giving rise to the Euler assembler.

While the idea of a string graph is explicit in the Euler algorithms,
we show in this paper that a string graph directly follows from the
unitig algorithm as well. What this amounts to is a demonstration
that the idea of kmers is unnecessary, that one can work directly
from the reads, obviating the need for the complex read-based path
splitting of Euler and giving rise to a much more space efficient
algorithm—one that can scale to a mammalian genome on current
hardware. Our approach requires a transitive reduction step and we
give a novel linear expected time algorithm for this in our context.
We also show how to treat contained reads in an efficient way and
how to efficiently solve large parts of the rigorously formulated,
minimum cost network flow problem that is our last step with a
series of simplifying reductions. Finally, the problem of orientation,
i.e. that reads can be from either the forward or reverse strand, is
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addressed and accounted for in our string graph formulation. This
work is a first report on a new line of algorithm development, so
we conclude with some preliminary empirical results and a brief
discussion of future work.

2 BUILDING A STRING GRAPH
Consider a genome sequence S of length G and a shotgun data set of
n reads, f1, f2, . . . , fn randomly sampled from either the forward or
reverse strand of the genome. Let f .lenbe the length of read f and let
f [1]f [2]f [3] . . . f [f .len] be its DNA sequence over the alphabet
� = {A, C, G, T}. The average over-sampling of the genome is
c = N/G, where N = �f f .len is the total amount of sequence
in the dataset. We assume that the reads have been preprocessed so
that each is truly a sample of the genome (i.e. contains no vector
sequence or other contaminant) and that the mean error rate of the
read’s sequence is less than ε (e.g. 2.5%) under an exponentially
distributed arrival rate model.

The first step in constructing a string graph is to compute all 2ε

overlaps of length τ or more between the reads. For a given ε, τ

should be chosen so that the probability of a 2ε match between two
random strings of length τ is exceedingly low, e.g. when ε = 2.5%
we choose τ = 50. The overlap computation is the most time con-
suming step and amounts to a large sequence comparison between
the concatenation of all the reads against itself. Numerous heur-
istic and filtration algorithms have been developed that offer good
performance—roughly O(N2/M) expected time, where M is the
available memory of the machine. In particular, we use a recently
introduced filter based on q grams (Rasmussen et al., 2005) so that all
desired overlaps are guaranteed to be found. On the order of O(cN)

overlaps generally results comprise both true overlap relationships
and those induced by repetitive sequences in the genome.

For an overlap o between reads f and g the matching substrings
are specified by giving the two intervals, [o.f .beg, o.f .end] and
[o.g.beg, o.g.end], delimiting them. We index the positions between
characters starting at 0 so that f [a, b] = f [a + 1]f [a + 2] . . . f [b].
Moreover, if a > b then f [a, b] = comp(f [b, a]), where comp(f ) is
the Watson–Crick complement of f . An interval endpoint is termed
extreme if it is either 0 or the length of the relevant read. Observe
that every overlap has at least two extreme endpoints, and that
|o.f .end− o.f .beg| ≈ |o.g.end− o.g.beg|. An overlap is a con-
tainment if both ends of a read are extreme and the read in question
is said to be contained. Otherwise an overlap is proper and for these
o.f .beg(o.f .end) or o.g.beg(o.g.end) it is extreme, but not both.

Given the set of all overlaps we can now give a preliminary con-
struction of a string graph. The goal is a string-labeled graph in which
the original genome sequence corresponds to some tour of the graph,
and where the graph has as few extraneous edges and alternate tours
as possible. For example, a graph consisting of a single vertex and
four self-loops with each DNA letter label is always a string graph
of a genome, but not a particularly informative one.

The basic observation is that every read and the concatentation
of every overlapping pair of reads must be spelled in the graph. It
follows immediately that every contained read can be removed from
the problem because there will be a tour spelling the sequence of the
reads containing it. Typically 40% of the reads in an assembly data set
are contained, and so 64% of the overlaps involve a contained read.
Removing these reads and their overlaps gives a significant practical
reduction in the size and memory requirements for the problem.
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Fig. 2. String graph construction. At upper left is an overlap with its defining
intervals and the left and right overhanging strings annotated. At the upper
right are the two edges that should be placed in the string graph for the two
overhangs of the overlap. At the lower left are some reads that overlap and
then branch in two directions. At the lower right is the resulting portion of
the string graph for just the right overhangs of this arrangement of reads. The
edges that are transitively reduced are dashed.

Henceforward consider the set of non-contained reads and their
overlaps. For each such read f there will be two vertices, f .B and
f .E, one for each end of the read, in the string graph. Figure 2
illustrates the construction of edges and their labels. The intuition
is that one adds a directed edge labeled with the non-matched or
overhanging sequence at each end of the proper overlap between
two reads. More formally, assume without loss of generality that
in the encoding of overlap o, o.f .beg< o.f .end. Then exactly the
following two edges are added for each overlap:

if o.f .beg> 0 then
if o.g.beg< o.g.end then

Add g.B
f [o.f .beg,0]� f .B and f .E

g[o.g.end,g.len]� g.E
else

Add g.E
f [o.f .beg,0]� f .B and f .E

g[o.g.end,0]� g.B
else

if o.g.beg< o.g.end then

Add f .B
g[o.g.beg,0]� g.B and g.E

f [o.f .end,f .len]� f .E
else

Add f .B
g[g.len,o.g.beg]� g.E and g.B

f [o.f .end,f .len]� f .E

For a vertex v in the string graph, let v.read be the read cor-
responding to the vertex and let v.type be B or E, depending on
which end of the read corresponds to the vertex. Consider any path
p = v1 → v2 → v3 · · · vn and the reads vi .read of each vertex
oriented as given if v.type= E or complemented if v.type= B. By
induction, the layout of these n reads induced by the n − 1 edges of
p form a valid contig that up to the sequencing error rate models the
sequence of v1 (or its complement depending on v.type) followed
by sequence spelled along p. Since every overlap between reads is
modeled in the graph, it follows that the original source sequence S

and its complement are spelled by some path in the graph. We say
that the graph is read coherent to mean that any path in the graph
models a valid assembly of the reads. Note that this is not true of a
de Bruijn graph built from k-mers of the reads and most of the effort
for such approaches is in restoring this coherence.
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The graph still has more edges than necessary, in particular, if f

overlaps g overlaps h in such a way that f overlaps h as well, then
the string graph edge f → h is unnecessary as one can use the edges
f → g → h to spell the same sequence. That is, one may remove all
transitive edges from the graph above without impacting what can
be spelled. Moreover, this reduction typically decreases the number
of edges in the graph by a factor of c.

Transitive reduction also leaves many vertices with in- and out-
degree exactly one. That is, there are many chains with no branching
possibilities. We call a vertex a junction vertex if it has in- or out-
degree not equal to 1, and an internal vertex otherwise. Collapse
all paths whose interior vertices are internal and that begin and end
with a junction vertex, replacing them with a single composite edge
whose label is the concatenation of the labels along the path. The
resulting graph of junction vertices and composite edges is obviously
still a read coherent string graph.

At this juncture observe that because no read contains any other,
every composite edge e = v1 → v2 → v3 · · · → vn has a
complementary edge comp(e) = comp(vn) → · · · comp(v3) →
comp(v2) → comp(v1), where comp(v) is the other end of the read
for f . That is, if v = f .B then comp(v) = f .E and if v = f .E then
comp(v) = f .B. This property implies that we can model endpoint
pairs as a single, read vertex with bidirected edges between them
corresponding to an edge and its complement. Bidirected edges have
an arrowhead at each end that can independently be directed in or
out of the vertex at each end of the edge. The arrowhead is directed
into a vertex if the edge to its .E vertex is the head of the relevant
one of the two complementary edges, and directed out of the ver-
tex otherwise. This framework was first introduced by this author
and Kececioglu (Kececioglu and Myers, 1995). The concepts of in-
degree and out-degree of a vertex still make sense and a path is a
subgraph, where every interior vertex has in-degree and out-degree
exactly one. Figure 3 gives an example of our construction for the
genome Canpylobacter jejuni, although due to scale we suggest the
reader look at Figure 5 in order to see an example of bidirected edges.

The bidirected string graph typically has between two to three
orders of magnitude fewer vertices and edges than the number of
reads and overlaps giving a significant reduction in the complexity
of the problem. Moreover the transitive-reduction/chain-collapsing
steps are in essence a recapitulation of the maximal interval sub-
graph algorithm introduced by this author in 1992. Previously the
string graph was implicit, with edges being modeled by vertices
(unitigs) and vertices by edges (overlaps). Now it is explicit and its
generalization of the de Bruijn graph should be apparent.

3 A LINEAR TRANSITIVE REDUCTION
ALGORITHM

General transitive reduction of a graph takes O(�v→w∈Edeg(w)) =
O(ED) time, where deg(w) is the out-degree of w, E is the number
of edges, and D is the maximum out degree of a vertex. But in
our context, the graph models overlaps in which the length of the
interval represented by each read is known as is the amount of overlap
between two such intervals. We will leverage this to give an algorithm
that takes O(�v tr.deg(v)deg(v)) worst case time, where tr.deg(v)

is the out degree of v in the transitively reduced graph. Assuming
all input sequences are equally likely, tr.deg(v) = O(1) on average
and the algorithm thus takes O(E) expected time. Of course, real
genomes have non-random repetitive structures, but even in these

Fig. 3. The bidirected string graph of C.jejuni(prior to traversal analysis and
compression).

cases the preponderance of the genome is unique sequence so that
in practice we see very rapid, near linear behavior.

Consider the edges out of a vertex v : v → w1, v → w2, . . . , v →
wn. Let len(v → w) be the length of the string labeling the edge,
which we also consider to be the length of the edge. In a preprocessing
sorting step we order the adjacency lists of all vertices so that the
edges out of each are in increasing order of their length. Suppose
that tr.deg(v) is one, i.e. that there is only one non-transitive or
irreducible edge out of v. Then it must be the shortest edge v → w1

and every edge w1 → w2, . . . , w1 → wn must be in the graph. In
general, suppose tr.deg(v) = k. Then there is at least one edge from
one of the w at the head of one of the k irreducible edges out of v

to each w that is not at the head of a irreducible edge. Therefore the
following simple marking strategy, the pseudo-code for which is in
Figure 4, correctly identifies the heads of the irreducible edges.

Initially mark every vertex in the graph as vacant and record that
every edge need not be reduced (lines 1–4). Then for each vertex
apply the following marking strategy (line 5). First, mark every vertex
reachable from v as inplay (lines 6–7). Then for each vertex wi on
v’s adjacency list in order of edge length do the following (line 9).

ii81



E.W.Myers

constant FUZZ ← 10

1. for v ∈ V do
2. { mark[v] ← vacant
3. for v → w ∈ E do
4. reduce[v → w] ← false

}

5. for v ∈ V do
6. { for v → w ∈ E do
7. mark[w] ← inplay

8. longest ← maxwlen(v → w) + FUZZ

9. for v → w ∈ E in order of length do
10. if mark[w] = inplay then
11. for w → x ∈ E in order of length and
12. len(w → x) + len(v → w) ≤ longestdo
13. if mark[x] = inplay then
14. mark[x] ← eliminated

15. for v → w ∈ E in order of length do
16. for w → x ∈ E in order of length and
17. (len(w → x) < FUZZ or

w → x is the smallest edge out of w) do
18. if mark[x] = inplay then
19. mark[x] ← eliminated

20. for v → w ∈ E do
21. { if mark[w] = eliminated then
22. reduce[v → w] ← true
23. mark[w] ← vacant

}
}

Fig. 4. Transitive reduction algorithm.

If wi has been marked eliminated during the processing of an earlier
wj then nothing need be done (line 10). Otherwise, v → wi is
an irreducible edge and we traverse edges out of wi marking as
eliminated any vertex we encounter at the head of such an edge that
is marked inplay, indicating that it is adjacent to v (lines 11, 13–14).
We further take advantage of the fact that wi’s edges are ordered to
stop processing edges once an edge is too long to eliminate edges
out of v (lines 8, line 12). One concludes the processing of v by
examining every vertex on its adjacency list, marking as needing
reduction any edge whose head has been marked eliminated and then
restoring the vertex marks to vacant (lines 20–23). Confirming the
time complexity of the algorithm stated above is left as an exercise.

Thus far we have been implicitly assuming that read overlap rela-
tionships are completely consistent with each other as one might see
if the data were perfect. But read overlaps are approximate matches
which can have two consequences. First, endpoint positions can shift
a bit and one needs to allow for this in any logic that uses distances,
i.e. the use of FUZZ in line 8. Second and more importantly, approx-
imate equality is not an equivalence relation because transitivity can
fail to hold depending on the distribution of errors in the reads. For
example, it is not infrequent that w1 → wn is not found because even
though wn has a larger overlap with w1 than with v, both overlaps
are thin and coincidentally w1 has just a couple of more errors in the

relevant interval than v does and so is pushed above the ε error rate
for overlaps. Notice in this case that the read most likely to be found
overlapping with wn is wn−1, its nearest predecessor. So we make
the algorithm very stable with respect to approximate matching by
adding lines 15–19, that for each wi checks if its immediate successor
and additional successors within FUZZ (10) base pairs of it elimin-
ate vertices on v’s adjacency list. In expectation, the neighborhood
is O(1) in size so the addition adds only a total of O(E) expected
time to the algorithm.

4 ESTIMATING GENOME SIZE AND
IDENTIFYING UNIQUE SEGMENTS

Given a read coherent string graph, we now wish to label every edge
with an integer specifying the number of times one should traverse the
edge in reconstructing the underlying genome. Our first step towards
this end is to determine those edges that with very high probability
should be traversed exactly once, i.e. those which correspond to
unique stretches of DNA. Consider a composite edge between two
junction vertices v and w, and suppose it is of length � and there are
k internal vertices that comprise the chain of the composite edge. This
path models an overlapping sequence of k + 2 reads that assemble
together consistently. Suppose for the moment we know the size G

of the genome so that we know the average spacing G/n expected
between reads. As we did for the Celera assembler we can then
determine the log-odds ratio, or A-statistic, of the path representing
a unique sequence versus an overcollapsed repeat.

A quick derivation of the A-statistic is as follows. The probability
that the path is single copy is

(
n

k

) (
�

G

)k (
G − �

G

)n−k

,

which is approximately [((�n)/G)k/k!] e−�n/G in the limit as
G → ∞. By the same approximation, the probability that the
path should be traversed twice is [((2�n)/G)k/k!] e−2�n/G. The
natural log of the ratio of these two probabilities, or A-statistic is
A(�, k) = �(n/G) − k ln 2.

Unfortunately, we do not know the size of the genome G. An
inspection of the typical string graph reveals that most of the total
lengths of all the edges is concentrated in a few rather large ones
which are almost all likely to be single copy. So an effective bootstrap
procedure is to compute the average arrival rate over all edges over a
certain length, say 10 kb, and then compute the A-statistic for every
edge using this estimate. One then considers every edge with an A-
statistic over a threshold, say 17 (1-in-24 million chance of being
wrong), to be single copy. One can then re-estimate the average
arrival rate over this subset of edges and then reapply the statistic
until convergence or a fixed number of times. We find that just one
iteration suffices to yield an estimate of G that is typically accurate
to within 1% of the sampled genome’s true size.

Using the A-statistic, we identify every edge of the string graph
that is with extremely high probability a single copy edge, and label
it an (=1)-edge. Of the remaining edges, observe that those that
are composite and have an interior vertex must be traversed at least
once if the read(s) corresponding to the interior vertex(ices) are to
take part in the reconstruction of the genome. Since every read was
presumably sampled from the genome, we conclude that every such
edge must be used at least once and we label it a (≥1-edge. All other
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edges, those that do not have interior vertices, do not have to be in a
solution path and are labelled (≥0)-edges.

In summary, we have estimated the size of the genome and now
have a string graph graph in which every edge has a lower and pos-
sibly an upper bound on the number of times it must be traversed
in a reconstruction. Specifically, there are three cases: (1) the edge
must be traversed = 1 time, (2) the edge must be traversed ≥1 time
or (3) the edge must be traversed ≥0 times.

5 MAPPING CONTAINED READS
There is actually a rather serious flaw in the procedure of the previous
section. Recall that contained reads were removed from the problem,
and the graph is only built from the remaining reads, all of which
properly overlap. This means that the density of read start points is
underestimated as, typically, 40% of the reads are contained. If the
underestimation were uniform accross all edges then there would
be no problem, but unfortunately the probability of a read being
contained by reads from a unique segment is significantly less than
the probability of a read being contained by reads from a repeat
segment, the probability increasing the higher the copy number. This
has the effect of making repeat segments look less repetitive than
they are with respect to an A-statistic computed over just the non-
contained fragments.

To rectify this bias and also get a better true estimate of the genome
size, we map every contained read endpoint to the composite edge
or edges in which it would lie if it had been part of the original
graph. Note carefully that all we need to do is accumulate the count
with each edge in order to compute a more accurate A-statistic, the
location of the end point in the composite edge’s chain is irrelevant.
Also note that we state that a contained read endpoint can map to
several edges. The reason for this becomes apparent as we sketch the
mapping procedure below.

Consider the end of a contained read f . The treatment for the
position of the start of a read is symmetric and will not be given for
brevity. We first find the containing overlap o = OE(f ) for which
the length of the overhang, DE(f ) = HE(f , o), off that end of f

to the relevant end of the containing read, VE(f ) is the smallest.
Formally,

HE(f , o) =
{

o.g.len − o.g.end if o.g.beg< o.g.end

o.g.end otherwise

OE(f ) = o s.t. HE(f , o) is smallest over all o for which o.g
contains f and o.g is not itself contained

VE(f ) =
{

OE(f ).g.E if OE(f ).g.beg< OE(f ).g.end

OE(f ).g.B otherwise

DE(f ) = HE(f , OE(f )).

The computation of O, V , DE for each contained read can clearly be
accomplished in time linear in the number of overlaps. The endpoint
of contained read f belongs DE(f ) base pairs upstream of the vertex
VE(f ) in the string graph. By upstream we mean in the direction
opposite to those for which the edges through VE(f ) are directed.
Algorithmically, we engage in a reaching computation that moves
DE(f ) base pairs along the reverse edges of the graph from VE(f ).
While in most cases the graph does not branch during the search,
in some cases, it may in which case we find all edges at which the

endpoint of f could lie. Formally, we compute Map(VE(f ), DE(f ))

as follows:

if len(w → v) < d then

Map(w, d − len(w → v))

Map(v, d) =
⋃

w→v

else {w → v}

If a contained read’s endpoint maps to a unique edge then the end-
point is counted toward that edge’s A-statistic. When an endpoint
maps to multiple locations we give each location a fractional count
of 1/|Map(VE(f ), DE(f ))|. As an estimator of the mean popula-
tion this is sensible, as the reads in such an ambiguous situation are
equally likely to be in one of the possible locations. Note that the
A-statistic as formulated above easily accommodates fractional edge
counts. Finally, if the number of possible locations exceeds some
threshold, say 100, the reaching computation is terminated and the
endpoint, which would contribute <1/100-th of a count to any edge,
is ignored. This guarantees that the mapping phase takes a maximum
of O(n) time.

In summary, containment endpoints are first mapped as above
and then with these revised edge endpoint counts, the estimation of
genome size and edge traversal bounds described in the prior section
takes place.

6 MINIMUM COST NETWORK FLOW AND
SIMPLIFICATIONS

The last task is to decide on the traversal count, t(e) for each edge
in the string graph, given upper and lower bounds [l(e), u(e)] on the
edges from the previous phases of the construction. We begin by
formulating the problem as a minimum cost network flow problem
wherein we find the minimum traversal counts that satisfy the edge
bounds and preserve equality of in- and out-counts (flows). That is,
if we think of the traversal counts as integral flows, then if net inflow
to a node equals net outflow, there is a generalized Eulerian tour that
traverses each edge t(e) times. By minimizing the flow, subject to the
bound constraints, we are appealing to parsimony. The use of network
flow is suggested in (Pevzner et al., 2001), but without elaboration.

A reconstruction takes the form of a number of contiguous
sequences, the breaks between sequences being due to a failure to
sample some regions by chance. Each of these is a distinct tour and
typically these begin at a vertex with zero in-degree and end at a
vertex with zero out-degree. However, a contig could begin or end
at a vertex with non-zero in/out-degree. So to correctly model the
flow problem, we must add ε-labeled meta-edges s → v and v → s

into and out of every junction vertex from a special source vertex s.
There are no bounds on these edges and we now seek a cyclic tour
wherein we understand there is to be a contig break whenever s is
traversed. We appeal to parsimony and seek a minimum integral flow
satisfying the edge bounds. Formally, a minimum cost network flow
problem (Ahuja et al., 1993) is usually formulated as follows:

Input: For each edge e, an upper bound c(e) ≥ 0 on flow, and a
cost per unit flow v(e). For each vertex v, a supply (positive) or
demand (demand) b(v) for flow.
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Output: A flow x(e) on each edge such that �ev(e)x(e) is min-
imal subject to x(e) ∈ [0, c(e)] and �u→vx(u → v) + b(v) =
�v→wx(v → w).

In these terms our problem is as follows (where we have used a known
transformation to convert the lower bounds into 0’s by capturing them
in the supply/demand values):

c(e) = u(e) − l(e)

b(v) = �u→vl(u → v) − �v→wl(v → u)

v(e) = 1

t(e) = l(e) + x(e)

The particularly simple structure of our edge bounds, =1, ≥1,
or ≥0, leads to a particularly simple flow problem. Specifically, all
(=1)-edges have c(e) = 0 and all other edges have c(e) = ∞. In
compensation the supply/demand values b(v) take on integral values
as per the formula immediately above.

Before invoking an existing algorithm (Ahuja et al., 1993) for the
flow problem, whose worst case complexity is O(EV), there are a
number of simplifications that can take place:

(1) For any (=1)-edge, implying c(e) = 0, set x(e) = 0 and
remove the edge.

(2) If a vertex has b(v) = 0 and either no in-edges or no-out edges
then set x(e) = 0 for any edge e adjacent to the vertex and
then remove the vertex, and its adjacent edges.

(3) If a vertex v has a single out-edge v → w and b(v) > 0,
then add b(v) to x(v → w), add or subtract b(v) to b(w)

depending on the direction of the arrowhead at w (i.e. in(+),
out(−)), and set b(v) to 0.

(4) If a vertex v has a single in-edge u → v and b(v) < 0, then
add b(v) to x(u → v), add or subtract b(v) to b(u) depending
on the direction of the arrowhead at u (i.e. in(−), out(+)), and
set b(v) to 0.

We call the edgess that remain, after the simplifications above, non-
trivial edges and the vertices that have non-zero supply/demand
unsatisfied vertices. While these transformations are all quite simple,
on assembly string graphs they are very effective in reducing the
size of the problem, in particular, the edge removals turn the graph
into a collection of small connected components with few unsat-
isfied vertices, each of which is more efficiently solvable with the
full, standard algorithms. Basically, one needs to push flow between
unsatisfied vertices in a minimal cost way. Flow-pushing algorithms
generally perform much better than their worst case complexity in
such scenarios. Indeed, in some cases, we find components that have
no unsatisfied vertices, in which case the solution is trivial. For an
example of the final string graph see Figure 5.

7 PRELIMINARY RESULTS
This paper is a preliminary algorithms piece. We are still in the
process of producing a total solution that takes into account all the
subtleties of real data, which does not satisfy key assumptions made
at the outset of the paper. Specifically, vector sequence generally
contaminates some percentage of the reads, the sample genome DNA
is not completely isogenic, and the error rate across a purported
high-quality interval determined using Phred scores is not always
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Fig. 5. The final C.jejunistring graph with traversal counts. The dashed edges
are those that need to be traversed more than once and their traversal counts
label them.

particularly accurate. We are working on a variety of levels including
preprocessing methods and extensions of the basic approach presen-
ted here to address these realities. Our more modest goal here is to
show that this approach is highly time and memory efficient, and
under the stated assumptions produces the desired string graph. The
method will scale on current architectures to problems of the scale
of the human genome, something not possible with the de Bruijn
graph approach.

We consider simulated shotgun datasets of three target genomes:
a 500 kb synthetic genome with 10 copies of a 300 bp repeat at 2%
variation (‘synthetic alus’), the 1.64 Mb sequence of the bacteria
C.jejuni, and the first 13.9 Mb of the euchromatic sequence of arm
3R of Drosophila melanogaster. For each genome we synthetically
sampled a 10× dataset of reads of length chosen uniformly between
550 and 850 bp. Each read has errors introduced with probably 0.008
at its 5′ end linearly ramping to .025 at its 3′ end. We used the celsim
simulator (Myers, 1999).

In Table 1 we present a number of empirically measured paramet-
ers for these three genomes of increasing size. The first row gives
the genome size. The next grouping gives the number of reads in the
input data set and the number of overlaps computed between those
reads. The third grouping gives the number of reads that are contained
by at least one other read and the number of (relevant) overlaps that
are between non-contained reads. We note that when read lengths
are normally distributed, as opposed to the uniform distribution of
our simulation, the percentage of contained reads is even higher.
That is, the savings from eliminating contained reads realized here is
conservative compared to what we observe for real data. The fourth
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Table 1. Computational results on three simulated shotgun datasets

Synthetic alus C.jejuni D.melanogaster3R

Genome size (Mbp) 0.500 1.641 13.919
Reads 7000 23 900 202 200
Overlaps 127 K 462 K 3997 K
Contained reads (%) 41.4 42.6 43.1
Relevant overlaps 44 K (41%) 150 K (43%) 1268 K (43%)
Irreducible edges 8310 27 500 231 096
Junction vertices 33 75 756
Composite edges 89 113 1294
Size estimate (Mbp) 0.499 1.626 13.765
(=1)-edges 11 20 179
Non-trivial edges 2 51 538
No. of components 1 4 33
Unsatisfied vertices 0 6 109
Time (s) 3.7 13.1 113.6
Space (Mb) 0.53 1.81 15.28

Table 2. Containment mapping for D.melanogaster3R dataset

|Map| Containment endpoints

1 173 399
2 642
3 173
4 70
5 18
6 6
7 5
8 22
9 3

grouping gives the number of irreducible edges not removed from
the initial string graph, the number of junction nodes, and the num-
ber of composite edges that result when chains are collapsed. Note
that the graph is generally small compared to the number of reads
and overlaps input. For example, for 3R we go from 202 000 reads
to 756 junction vertices, and from 4 million overlaps to 1200 com-
posite edges. The fifth grouping gives the genome size estimated
after inserting contained read endpoints and the number of edges
that are with very high confidence deemed to be single copy DNA,
i.e. (=1)-edges. The sixth grouping characterizes the results of the
simplifications we apply before invoking general min-cost network
flow algorithms. By non-trivial edges we mean those that do not get
eliminated by the simplifications, and we give the number of con-
nected components containing those edges. For example, in the case
of 3R, the min-cost network flow algorithms are applied to 33 com-
ponents containing a total of 538 non-trivial edges, for an average of
16–17 edges per component. Also note that the number of unsatis-
fied vertices for which b(v) 	= 0 is small. Finally, we report the total
computation time and space used. One sees a clearly linear increase
in resources and very efficient times. In particular, the amount of
memory is slightly more than the size of the target genome in Mb.

In Table 2 we illustrate the amount of ambiguity that occurs in
mapping containment endpoints by giving a histogram of the size

of |Map| for the contained reads in the D.melanogaster3R dataset.
The main thing to observe is that most endpoints map to a unique
location with an exponentially vanishing but somewhat irregular tail
of multiple location endpoints. In effect, the mapping is linear in
expected time and very rapid.

The shape and size of the string graph for C.jejuni is shown in
Figure 3, after transitive reduction and collapsing, and the final solu-
tion after flow analysis in Figure 5. There are 72 possible tours of the
final string graph. Seven PCR reactions would resolve the true tour,
or in a project with paired end reads, the correct tour would probably
be readily apparent.

8 FUTURE WORK
We are developing an open-source pipeline called BOA (Berkeley
Open Assembler) with a very compact code base and clean,
data-defined interfaces. Our primary efforts are on (1) developing
a ‘scrubber’ that removes vector, chimers and low quality segments
of reads, (2) sequence error correction, (3) using mate-pairs to further
resolve the solution path through the string graph and (4) address-
ing the issue of polymorphism with a more sophisticated network
flow approach. Additional modules are contemplated and could be
incorporated by third parties.
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