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ABSTRACT
We present a concept and formalism, the string graph, that repres-

ents all that is inferable about a DNA sequence from a collection of
shotgun sequencing reads collected from it. We give time and space
efficient algorithms for constructing a string graph given the collec-
tion of overlaps between the reads and in particular, present a novel
linear expected time algorithm for transitive reduction in this context.
The result demonstrates that the decomposition of reads into k-mers
employed in the de Bruijn graph approach of Pevzner et al. is not
essential and in fact creates both efficiency problems and uneces-
sary conceptual complexities. The current paper is the first in a series
and presents the basic algorithm and preliminary results that demon-
strate the efficiency and scalability of the method. The result is a step
toward a next-generation whole genome shotgun assembler that will
easily scale to mammalian genomes.
Contact: gene@eecs.berkeley.edu

1 INTRODUCTION
Paired-end whole genome shotgun sequencing has become the pre-
vailing paradigm for the first phase of sequencing an organism’s
genome (WeM97; ACH00; VAM01) and routinely delivers 95-99%
of the euchromatic sequence in large scaffolds of ordered and ori-
ented contigs. The experiments required to finish the remaining few
percent are an order of magnitude more expensive than the shotgun
sequencing. For this reason, all but the most important reference
genomes will likely never be finished. Thus, improved algorithms
and software for whole genome shotgun sequencing will have a
large impact on genomic science. For example, an assembler that
takes a 97% reconstruction and improves it to 99% is reducingthe
amount of unresolved sequence by a factor of three (from 3% to
1%) and typically improving contig sizes by a factor of 10 or more
(by resolving 90% of the gaps) according to the Poisson statistical
theory of sampling (LaW88).

There are currently a number of assemblers capable of whole-
genome assembly that all perform comparably by employing varia-
tions on the basic paradigm of first finding and assembling unique
stretches of DNA with high reliability (MyS00; ApC02; MuN03;
JBG03; HWA03). Recurrent strategies include finding mutually
reinforcing read pairs and examining the relationship of a read to
all others in order to assess its repetitiveness and to correct errors.
The central objective for better assembly is to effectivelyresolve
repetitive sequences.

Consider perfect data and a genome that has several perfectly
repetitive elements as shown in Figure 1. Imagine that the genome
is a piece of thread and meld or collapse all the like repetitive ele-
ments as illustrated in Figure 1. We call the resulting grapha string
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Fig. 1. A genome and its string graph. The colored segments of the same
color represent identical repetitive sequences. The numbers in the string
graph give the number of copies of each repeat inferable by counting entry
and exits into the collapsed segment.

graph and it effectively represents everything that can be inferred
from the read data. If one can identify arcs corresponding tounique
sequence, then a simple flow analysis reveals how many copiesof
each repeat are collapsed together and if one replicates each of those
edges according to their copy count, then the expanded graphhas
an Eulerian tour and one of those tours corresponds to the original
sequence. We show how to build such a graph in this paper.

In 1992 this author and Waterman-Idury presented two new ideas
for fragment assembly in back to back talks at a DIMACs workshop
on bioinformatics that were later published in the same volume of
a journal (Mye95; IdW95). Myers’ approach was based on finding
maximal interval subgraphs in the graph of all read overlapsand
was subsequently developed into the “unitig” concept of theCelera
assembler. Waterman and Idury presented an approach based on
building the de Bruijn graph of allk-mers from the reads and then
finding paths in this graph supported by the reads. This approach
was subsequently extended by Pevzner and members of his research
group, giving rise to the Euler assembler (PTW01).

While the idea of a string graph is explicit in the Euler algorithms,
we show in this paper that a string graph directly follows from the
unitig algorithm as well. What this amounts to is a demonstration
that the idea ofk-mers is unnecessary, that one can work directly
from the reads, giving rise to a much more space efficient algorithm
– one that can scale to a mammalian genome on current hardware.
Our approach requires a transitive reduction step and we give a novel
linear expected time algorithm for this in our context. We also show
how to treat contained reads in an efficient way and how to effi-
ciently solve large parts of the minimum cost network flow problem
that is the last step by making some simple observations. This work
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is a first report on a new line of algorithm development, so we con-
clude with some preliminary empirical results and a brief discussion
of future work.

2 BUILDING A STRING GRAPH
Consider a genome sequenceS of lengthG and a shotgun data set of
n reads,f1, f2, . . .fn randomly sampled from either the forward or
reverse strand of the genome. Letf.len be the length of readf and
let f [1]f [2]f [3] . . . f [f.len] be its DNA sequence over the alphabet
Σ = {A, C, G, T}. The average over-sampling of the genome is
c = N/G whereN = Σff.len is the total amount of sequence in
the data set. We assume that the reads have been preprocessedso
that each is truly a sample of the genome (i.e. contains no vector
sequence or other contaminant) and that the mean error rate of the
read’s sequence is less thanε (e.g. 2.5%) under an exponentially
distributed arrival rate model.

The first step in constructing our string graph is to compute the set
of all 2ε overlaps of lengthτ or more between the reads. For a given
ε, τ should be chosen so that the probability of a2ε match between
two random strings of lengthτ is exceedingly low, for example,
whenε = 2.5% we chooseτ = 50. This overlap computation is the
most time consuming step and amounts to a large sequence com-
parison between the concatenation of all the reads against itself.
Numerous heuristic and filtration algorithms have been developed
that offer good performance – roughlyO(N2/M) expected time
whereM is the available memory of the machine. In particular, we
use a recently introduced filter based onq-grams (JSM05) so that all
desired overlaps are guaranteed to be found. On the order ofO(cN)
overlaps generally result comprising both true overlap relationships
and those induced by repetitive sequences in the genome.

For an overlapo between readsf andg the matching substrings
are specified by giving the two intervals,[o.f.beg, o.f.end] and
[o.g.beg, o.g.end], delimiting them. We index the positions between
characters starting at 0 so thatf [a, b] = f [a + 1]f [a + 2] . . . f [b].
Moreover, ifa > b thenf [a, b] = comp(f [b, a]) wherecomp(f)
is the Watson-Crick complement off . An interval endpoint is ter-
med extremeif it is either 0 or the length of the relevant read.
Observe that every overlap has at least two extreme endpoints, and
that |o.f.end − o.f.beg| ≈ |o.g.end − o.g.beg|. An overlap is a
containmentif both ends of a read are extreme and the read in que-
stion is said to becontained. Otherwise an overlap isproperand it
follows thato.f.beg (o.f.end) or o.g.beg (o.g.end) is extreme but
not both.

Given the set of all overlaps as specified above we can now give
a preliminary construction of a string graph. The goal is a string-
labeled graph in which the original genome sequence corresponds
to some tour of the graph and where the graph has as few extra-
neous edges and alternate tours as possible. For example, a graph
consisting of a single vertex and four self-loops with each DNA let-
ter label is always a string graph of a genome, but not a particularly
informative one.

The basic observation is that every read must be spelled in the
graph and the concatenation of every overlapping pair of reads must
be spelled in the graph. It follows immediately that every contai-
ned read can be removed from the problem because there will bea
tour spelling the sequence of the reads containing it. Typically 40%
of the reads in an assembly data set are contained, and so 64% of
the overlaps involve a contained read. Removing these readsand
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Fig. 2. String Graph Construction. At upper left is an overlap with its defi-
ning intervals and overhanging strings annotated. At the upper right are the
two edges that should be placed in the string graph for the given overlap.
At the lower left are some reads that overlap and then branch in two direc-
tions. At the lower right is the resulting portion of the string graph for the
overhangs on the right side of the arrangement of reads. The edges that are
transitively reduced are colored magenta.

their overlaps gives a significant practical reduction in the size and
memory requirements for the problem.

Hence forward consider the set of non-contained reads and their
overlaps. For each such readf there will be two vertices,f.B and
f.E, one for each end of the read, in the string graph. Figure 2
illustrates the construction of edges and their labels. Theintuition
is that one adds a directed edge labeled with the non-matchedor
overhanging sequence at each end of the proper overlap between
two reads. More formally assume without loss of generality that in
the encoding of overlapo, o.f.beg < o.f.end. Then exactly the
following two edges are added for each overlap:

if o.f.beg > 0 then
if o.g.beg < o.g.end then

Add edge fromg.B to f.B labeledf [o.f.beg, 0]
Add edge fromf.E to g.E labeledg[o.g.end, g.len]

else
Add edge fromg.E to f.B labeledf [o.f.beg, 0]
Add edge fromf.E to g.B labeledg[o.g.end, 0]

else
if o.g.beg < o.g.end then

Add edge fromf.B to g.B labeledg[o.g.beg, 0]
Add edge fromg.E to f.E labeledf [o.f.end, f.len]

else
Add edge fromf.B to g.E labeledg[g.len, o.g.beg]
Add edge fromg.B to f.E labeledf [o.f.end, f.len]

For a vertexv in the string graph, letv.read be the read cor-
responding to the vertex and letv.type be B or E depending on
which end of the read corresponds to the vertex. It follows bya sim-
ple induction that for a pathp = v1 → v2 → v3 . . . vn every read
vi.read, iff vi.type = E, or its complement, iffvi.type = B is a
prefix or substring of the string spelled along the edges of the path
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p. That is, any path in the graph represents a consistent assembly
of the reads, or their reverse complement, whose ends occur along
it. Therefore the original source sequence and its complementary
strand can be spelled in the graph just constructed. Moreover, every
sequence of two edgesv1 → v2 → v3 is a corroborated by a read,
namelyv3.read. We call this propertyread coherence.

The graph still has more edges than necessary, in particular, if f
overlapsg overlapsh in such a way thatf overlapsh as well, then
the string graph edgef → h is unnecessary as one can use the edges
f → g → h to spell the same sequence. That is one may remove all
transitive edges from the graph above without impacting what can
be spelled. Moreover this reduction typically decreases the number
of edges in the graph by a factor ofc.

Transitive reduction also leaves many vertices with in- andout-
degree exactly one. That is, there are many chains with no branching
possibilities. We call a vertex ajunction vertex if it has in- or out-
degree not equal to 1, and aninternal vertex otherwise. Collapse
all paths whose interior vertices are internal and that begin and
end with a junction vertex, replacing them with a singlecompo-
site edgewhose label is the concatenation of the labels along the
path. The resulting graph of junction vertices and composite edges
is obviously still a read coherent string graph.

At this juncture observe that because no read contains the other,
every composite edgee = v1 → v2 → v3 · · · → vn has a
complementary edgecomp(e) = comp(vn) → . . . comp(v3) →
comp(v2)→ comp(v1) wherecomp(v) is the other end of the read
for f . That is, ifv = f.B thencomp(v) = f.E and if v = f.E
thencomp(v) = f.B. This property implies that we may instead
think of the endpoint pairs as a single vertex with bidirected edges
corresponding to an edge and its complement, where an arrowhead
is directed into a vertex if the edge to its.E vertex is the head of
the relevant one of the two complementary edges, and directed our
of the vertex otherwise. This gives us a framework identicalto the
one introduced by this author and Kececioglu (KeJ95) where atour
through a vertex must involve one inward arrowhead and one out-
ward arrowhead. Figure 4 gives an example of our construction for
the genomeC. jejuni.

As we will see in the preliminary results section, the stringgraph
that results from the above algorithm has between two to three
orders of magnitude fewer vertices and edges then the numberof
reads and overlaps and thus represents a significant reduction in the
complexity of the problem. We also point out that the transitive-
reduction/chain-collapsing steps are in essence a recapitulation of
the maximal interval subgraph algorithm introduced by thisauthor
in 1992. Previously the string graph was implicit, with edges being
modeled by vertices (unitigs) and vertices by edges (overlaps). Now
it is explicit and the connection to the de Bruijn approach ofEuler
should be apparent.

3 A LINEAR TRANSITIVE REDUCTION
ALGORITHM

General transitive reduction of a graph takesO(Σv→w∈Edeg(w)) =
O(ED) time wheredeg(w) is the out degree of w,E is the number
of edges, andD is the maximum out degree of a vertex. But in our
context the graph models overlaps in which the length of the interval
represented by each read is known as is the amount of overlap bet-
ween two such intervals. We will leverage this to give an algorithm
that takesO(Σv tr.deg(v)deg(v)) worst case time wheretr.deg(v)

is the out degree ofv in the transitively reduced graph. Assuming
all input sequences are equally likely,tr.deg(v) = O(1) on average
and the algorithm thus takesO(E) expected time. Of course, real
genomes have non-random repetitive structures, but even inthese
cases the preponderance of the genome is unique sequence so that
in practice we see very rapid, near linear behavior.

Consider the edges out of a vertexv: v → w1, v → w2, . . .,
v → wn. Let len(v → w) be the length of the string labeling the
edge, which we also consider to be the length of the edge. In a pre-
processing sorting step we order the adjacency lists of all vertices so
that the edges out of each are in increasing order of their length. Sup-
pose thattr.deg(v) is one, i.e. that there is only one non-transitive or
irreducibleedge out ofv. Then it must be the shortest edgev → w1

and every edgew1 → w2, . . ., w1 → wn must be in the graph.
In general, supposetr.deg(v) = k. Then there is at least one edge
from one of thew at the head of one of thek irreducible edges out
of v to eachw that is not at the head of a irreducible edge. Therefore
the following simple marking strategy, the pseudo-code forwhich is
in Figure 3, correctly identifies the heads of the irreducible edges.

constant FUZZ ← 10

1. for v ∈ V do
2. { mark[v]← vacant
3. for v → w ∈ E do
4. reduce[v → w]← false

}

5. for v ∈ V do
6. { for v → w ∈ E do
7. mark[v]← inplay

8. longest←maxwlen(v → w) + FUZZ

9. for v → w ∈ E in order of lengthdo
10. if mark[w] = inplaythen
11. for w → x ∈ E in order of lengthand
12. len(w → x) + len(v → w) ≤ longest do
13. if mark[x] = inplaythen
14. mark[x]← eliminated

15. for v → w ∈ E in order of lengthdo
16. for w → x ∈ E in order of lengthand
17. (len(w→ x) < FUZZ or

w→ x is the smallest edge out ofw) do
18. if mark[x] = inplaythen
19. mark[x]← eliminated

20. for v → w ∈ E do
21. { if mark[w] = eliminatedthen
22. reduce[v → w]← true
23. mark[w]← vacant

}
}

Fig. 3. Transitive Reduction Algorithm.
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Initially mark every vertex in the graph asvacantand record that
every edge need not be reduced (lines 1-4). Then for each vertex
apply the following marking strategy (line 5). First, mark every ver-
tex reachable fromv asinplay (lines 6-7). Then for each vertexwi

onv’s adjacency list in order of edge length do the following (line 9).
If wi has been markedeliminatedduring the processing of an earlier
wj then nothing need be done (line 10). Otherwise,v → wi is a irre-
ducible edge and we traverse edges out ofwi marking aseliminated
any vertex we encounter at the head of such an edge that is marked
inplay, indicating that it is adjacent tov (lines 11, 13-14). We further
take advantage of the fact thatwi’s edges are ordered to stop proces-
sing edges once an edge is too long to eliminate edges out ofv (lines
8, line 12). One concludes the processing ofv by examining every
vertex on its adjacency list, marking as needing reduction any edge
whose head has been markedeliminatedand then restoring the ver-
tex marks tovacant(lines 20-23). Confirming the time complexity
of the algorithm stated above is left as an exercise.

Thus far we have been implicitly assuming that read overlap rela-
tionships are completely consistent with each other as one might see
if the data were perfect. But read overlaps are approximate matches
which can have two consequences. First endpoint positions can shift
a bit and one needs to allow for this in any logic that uses distances,
i.e. the use ofFUZZ in line 8. Secondly and more importantly,
approximate equality is not an equivalence relation because transi-
tivity can fail to hold depending on the distribution of errors in the
reads. For example, it is not infrequent thatw1 → wn is not found
because even thoughwn has a larger overlap withw1 than withv,
both overlaps are thin and coincidentallyw1 has just a couple more
errors in the relevant interval thanv does and so is pushed above the
ε error rate for overlaps. Notice in this case that the read most likely
to be found overlapping withwn is wn−1, its nearest predecessor.
So we make the algorithm very stable with respect to approximate
matching by adding lines 15-19, that for eachwi checks if its imme-
diate successor and additional successors withinFUZZ (10) base
pairs of it eliminate vertices onv’s adjacency list. In expectation,
the neighborhood isO(1) in size so the addition adds only a total of
O(E) expected time to the algorithm.

4 ESTIMATING GENOME SIZE AND IDENTIFYING
UNIQUE SEGMENTS

Given a read coherent string graph we now wish to label every edge
with an integer specifying the number of times one should traverse
the edge in reconstructing the underlying genome. Our first step
towards this end is to determine with very high probability those
edges that should be traversed exactly once, i.e., that correspond to
unique stretches of DNA. Consider a composite edge between two
junction verticesv andw, and suppose it is of length∆ and there
arek internal vertices that comprise the chain of the composite edge.
This path models an overlapping sequence ofk+2 reads that assem-
ble together consistently. Suppose for the moment we know the size
G of the genome so that we know the average spacingG/n expec-
ted between reads. As we did for the Celera assembler we can then
determine the log-odds ratio, orA-statistic, of the path representing
a unique sequence versus an overcollapsed repeat.

A quick derivation of theA-statistic is as follows. The probability

that the path is single copy is

„

n
k

«

(∆

G
)k(G−∆

G
)n−k which is

approximately((∆n
G

)k/k!) e−∆n/G in the limit asG→∞. By the

same approximation the probability that the path should be traversed
twice is(( 2∆n

G
)k/k!) e−2∆n/G. The natural log of the ratio of these

two probabilities, orA-statistic isA(∆, k) = ∆( n
G

)− k ln 2.
Unfortunately, we do not know the size of the genomeG. An

inspection of the typical string graph reveals that most of the total
length of all the edges is concentrated in a few rather large ones
which are almost all likely to be single copy. So an effectiveboot-
strap procedure is to compute the average arrival rate over all edges
over a certain length, say 10Kbp, and then compute theA-statistic
for every edge using this estimate. One then considers everyedge
with anA-statistic over a threshold, say 17 (1-in-24million chance
of being wrong), to be single copy. One can then re-estimate the
average arrival rate over this subset of edges and then reapply the
statistic until convergence or a fixed number of times. We findone
turn suffices to yield an estimate ofG that is typically accurate to
within 1% of the sampled genome’s true size.

Using theA-statistic, we have, with very high probability, labe-
led every single copy edge of the string graph. Further observe that
every composite edge that has an interior vertex must be traversed
at least once if the read(s) corresponding to the interior vertex(ices)
are to take part in the reconstruction of the genome. Since every
read was presumably sampled from the genome, we know that every
such edge must be used once. All other edges, those that do nothave
interior vertices, may be ignored if desired.

In summary, we have estimated the size of the genome and now
have a string graph graph in which every edge has a lower and pos-
sibly upper bound on the number of times it must be traversed in a
reconstruction. Specifically there are three cases: (a) theedge must
be traversed= 1 times, (b) the edge must be traversed≥ 1 times, or
(c) the edge must be traversed≥ 0 times.

5 MAPPING CONTAINED READS
There is actually a rather serious flaw in the procedure of thepre-
vious section. Recall that contained reads were removed from the
problem, and the graph only built from the remaining reads, all of
which properly overlap. This means that the density of read start
points is underestimated as typically 40% of the reads are contained.
In and of itself this would not be a problem save that the probabi-
lity of a read being contained by reads from a unique segment is
significantly less than the probability of a read being contained by
reads from a repeat segment, the probability increasing thehigher
the copy number. This has the effect of making repeat segments look
less repetitive than they are with respect to anA-statistic computed
over just the non-contained fragments.

To rectify this bias and also get a better true estimate of the
genome size, we map every contained read endpoint to the com-
posite edge or edges in which it would lie if it had been part ofthe
original graph. Note carefully that all we need to do is accumulate
the count with each edge in order to compute a more accurateA-
statistic, the location of the end point in the composite edge’s chain
is irrelevant. Also note that we state that a contained read endpoint
can map to several edges. The reason for this becomes apparent as
we sketch the mapping procedure below.

Consider the end of a contained readf . The treatment for the
position of the start of a read is symmetric and will not be given for
brevity. We first find the containing overlapo = OE(f) for which
the length of the overhang,DE(f) = HE(f, o), off that end off
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to the relevant end of the containing read,VE(f) is the smallest.
Formally,

HE(f, o) =



o.g.len− o.g.end if o.g.beg < o.g.end
o.g.end otherwise

OE(f) = o s.t.HE(f, o) is smallest over allo for whicho.g
containsf ando.g is not itself contained

VE(f) =



OE(f).g.E if OE(f).g.beg < OE(f).g.end
OE(f).g.B otherwise

DE(f) = HE(f, OE(f))

The computation ofO, V, DE for each contained read can clearly be
accomplished in time linear in the number of overlaps. The endpoint
of contained readf belongsDE(f) base pairs upstream of the ver-
texVE(f) in the string graph. By upstream we mean in the direction
opposite to those for which the edges throughVE(f) are directed.
Algorithmically, we engage in a reaching computation that moves
DE(f) base pairs along the reverse edges of the graph fromVE(f).
While in most cases the graph does not branch during the search in
some cases it may in which case we find all edges at which the end-
point of f could lie. Formally, we computeMap(VE(f), DE(f))
as follows:

Map(v, d) =
[

w→v

if len(w → v) < d then
Map(w, d− len(w → v))

else
{w → v}

If a contained read endpoint maps to a unique edge then the end-
point is counted toward that edge’sA-statistic. When an endpoint
maps to multiple locations we give each location a fractional count
of 1/|Map(VE(f), DE(f))|. As an estimator of the mean popula-
tion this is sensible as the reads in such an ambiguous situation are
equally likely to be in one of the possible locations. Note that theA-
statistic as formulated above easily accommodates fractional edge
counts. Finally, if the number of possible locations exceeds some
threshold, say 100, the reaching computation is terminatedand the
endpoint, which would contribute less than 1/100th of a count to
any edge, is ignored. This guarantees that the mapping phasetakes
a maximum ofO(n) time.

In summary, containment endpoints are first mapped as above
and then with these revised edge endpoint counts, the estimation of
genome size and edge traversal bounds described in the priorsection
takes place.

6 MINIMUM COST NETWORK FLOW AND
SIMPLIFICATIONS

The last task is to decide on the traversal count,t(e) for each edge
in the string graph, given upper and lower bounds[l(e), u(e)] on
the edges from the previous phases of the construction. We begin by
formulating the problem as a minimum cost network flow problem
where in we find the minimum traversal counts that satisfy theedge
bounds and preserve equality of in- and out-counts (flows). That is,
if we think of the traversal counts as integral flows, then if net inflow
to a node equals net outflow, there is a generalized Eulerian tour that

traverses each edget(e) times. By minimizing the flow subject to
the bound constraints we are appealing to parsimony.

A reconstruction takes the form of a number of contiguous
sequences, the breaks between sequences being due to a failure to
sample some regions by chance. Each of these is a distinct tour and
typically these begin at a vertex with zero in degree and end at a
vertex with zero out degree. However, a contig could begin orend
at a vertex with non-zero in/out-degree. So to correctly model the
flow problem, we must addε-labeled meta-edgess→ v andv → s
into and out of every junction vertex from a special source vertex
s. There are no bounds on these edges and we now seek a cyclic
tour where in we understand there to be a contig break whenever s
is traversed. We appeal to parsimony and seek a minimum integral
flow satisfying the edge bounds. Formally, a minimum cost network
flow problem (AMO93) is usually formulated as follows

Input: For each edgee, an upper boundc(e) ≥ 0 on flow, and
a cost per unit flowv(e). For each vertexv, a supply (positive)
or demand (demand)b(v) for flow.

Output: A flow x(e) on each edge such thatΣev(e)x(e) is
minimal subject tox(e) ∈ [0, c(e)] andΣu→vx(u → v) +
b(v) = Σv→wx(v → w).

In these terms our problem is as follows where we have used
a known transformation to convert the lower bounds into 0’s by
capturing them in the supply/demand values:

c(e) = u(e)− l(e)
b(v) = Σu→vl(u→ v)− Σv→wl(v → u)
v(e) = 1
t(e) = l(e) + x(e)

The particularly simple structure of our edge bounds –= 1,≥ 1,
or≥ 0 – leads to a particularly simple flow problem. Specifically, all
(= 1)-edges havec(e) = 0 and all other edges havec(e) = ∞. In
compensation the supply/demand valuesb(v) take on some integral
value.

Before invoking an existing algorithm (AMO93) for the flow pro-
blem, whose worst case complexity isO(EV ), there are a number
of simplifications that can take place. (1) For any(= 1)-edge, imp-
lying c(e) = 0, setx(e) = 0 and remove the edge. (2) If a vertex has
b(v) = 0 and either no in-edges or no-out edges then setx(e) = 0
for any edgee adjacent to the vertex and then remove the vertex and
its adjacent edges. (3) If a vertexv has a single out-edgev → w,
then setx(v → w) to b(v), resetb(w) to b(w) + b(v), and merge
v andw removing the edge. (4) If a vertexv has a single in-edge
u → v, then setx(u → v) to−b(v) and resetb(u) to b(u) − b(v)
and mergev andu. While these transformations are all quite sim-
ple, it turns out that on practical problems they are very effective in
reducing the size of the problem, in particular, the edge removals
and fusions turn the graph into a large collection of small connec-
ted components each of which is more efficiently solvable with the
full, standard algorithms. For an example, see Figure 5 We call the
edges that remain after the simplifications abovenontrivial edges
and the vertices that have non-zero supply demandunsatisfied ver-
tices. Basically, one needs to push flow between unsatisfied vertices
in a minimal way. Flow pushing algorithms generally performmuch
better than their worst case complexity in such scenarios. For an
example of the final string graph see Figure 6.
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7 PRELIMINARY RESULTS
This paper is a preliminary algorithms piece. We are still inthe
process of producing a total solution that takes into account all
the subtleties of real data, which does not satisfy key assumpti-
ons made at the outset of the paper. Specifically, vector sequence
generally contaminates some percentage of the reads, the sample
genome DNA is not completely isogenic, and the error rate across
a purported high-quality interval determined using Phred scores is
not always particularly accurate. We are working on a variety of
levels including preprocessing methods and extensions of the basic
approach presented here to address these realities. Our more modest
goal here is to show that this approach isverytime and memory effi-
cient and under the stated assumptions produces the desiredstring
graph. The method will scale on current architectures to problems
of the scale of the human genome, something not possible withthe
de Bruijn graph approach.

We consider simulated shotgun data sets of three target genomes:
a 500Kbp synthetic genome with ten copies of a 300bp repeat at2%
variation (“Synthetic Alus”), the 1.64Mbp sequence of the bacteria
C. jejuni, and the first 13.9Mbp of the euchromatic sequence of arm
3R of D. melanogaster. For each genome we synthetically sampled
a 10X data set of reads of length chosen uniformly between 550bp
and 850bp. Each read has errors introduced with probably .008 at
its 5’ end linearly ramping to .025 at its 3’ end. We used thecelsim
simulator (Mye99).

In Table 1 we present a number of empirically measured parame-
ters for these three genomes of increasing size. The first rowgives
the genome size. The next grouping gives the number of reads in
the input data set and the number of overlaps computed between
those reads. The third grouping gives the number of reads that are
contained by at least one other read and the number of (relevant)
overlaps that are between non-contained reads. We note thatwhen
read lengths are normally distributed, as opposed to the uniform dis-
tribution of our simulation, the percentage of contained reads is even
higher. That is, the savings from eliminating contained reads at this
point is conservative compared to what we observe for real data. The
fourth grouping gives the number of irreducible edges not removed
from the initial string graph, the number of junction nodes,and the
number of composite edges that result when chains are collapsed.
Note that the graph is generally small compared to the numberof
reads and overlaps input. For example, for 3R we go from 202,000
reads to 756 junction vertices, and from 4 million overlaps to 1,200
composite edges. The fifth grouping gives the genome size estima-
ted after inserting contained read endpoints and the numberof edges
that are with very high confidence deemed to be single copy DNA,
i.e. (= 1)-edges. The sixth grouping characterizes the results of
the simplifications we apply before invoking general min-cost net-
work flow algorithms. By non-trivial edges we mean those thatdo
not get eliminated by the simplifications, and we give the number
of connected components containing those edges. For example, in
the case of 3R, the min-cost network flow algorithms are applied
to 33 components containing a total of 538 non-trivial edges, for
an average of 16-17 edges per component. Also note that the num-
ber of unsatisfied vertices for whichb(v) 6= 0 is small. Finally, we
report the total computation time and space used. One sees a clearly
linear increase in resources and very efficient times. In particular
the amount of memory is slightly more than the size of the target
genome in Mb.

Table 1. Computational Results on Three Simulated Shotgun Datasets.

Synthetic Alus C. jejuni D. mel.3R
Genome Size(Mbp) .500 1.641 13.919

Reads 7000 23,900 202,200
Overlaps 127K 462K 3,997K

Contained Reads 41.4% 42.6% 43.1%
Relevant Overlaps 44K (41%) 150K (43%) 1,268K (43%)

Irreducible Edges 8,310 27,500 231,096
Junction Vertices 33 75 756
Composite Edges 89 113 1294

Size Estimate (Mbp) .499 1.626 13.765
(= 1)-edges 11 20 179

Nontrivial Edges 2 51 538
No. of Components 1 4 33
Unsatisfied Vertices 0 6 109

Time (sec) 3.7 13.1 113.6
Space (Mb) .53 1.81 15.28

Table 2. Containment Mapping forD. mel.3R Dataset.

Containment
|Map| Endpoints

1 173,399
2 642
3 173
4 70
5 18
6 6
7 5
8 22
9 3

In Table 2 we illustrate the amount of ambiguity that occurs in
mapping containment endpoints by giving a histogram of the size of
|Map| for the contained reads in theD. mel.3R dataset. The main
thing to observe is that most endpoints map to a unique location with
an exponentially vanishing but somewhat irregular tail of multiple
location endpoints. In effect the mapping is linear in expected time
and very rapid.

We illustrate the shape and size of the string graph at various steps
in the process with theC. jejunidata set as the automated graph dra-
wing program produces rather unaesthetic results for the larger 3R
dataset. In Figure 4 we show the graph after transitive reduction and
chain collapsing. In Figure 5 we show the 4 subproblems that must
be solved with min-cost network flow, and in Figure 6 we show the
final string graph. Note carefully that it is exactly what we desi-
red to compute at the outset. The red edges are those that are to
be traversed multiple times. There are 72 possible tours of the final
string graph. Seven PCR reactions would resolve the true tour, or
in a project with paired end reads, the correct tour would readily be
apparent.
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Fig. 4. C. jejuni String Graph Prior To Traversal Analysis.

8



String Graphs

>=1

360

7008

>=0

9550

>=1

17547

>=1

1876

13228

>=2

2361

2769

>=1

2761

20881

>=1

3844

>=1

22427

>=0

2777

9071

>=2

17854

>=0

2869

>=1

3894

>=0

>=2

11043

>=2

6368

>=0 >=0

17205

>=1

>=1

>=0

9443

9510

17873

>=1

18861

>=0

22861

>=1

>=1

10786

18035

>=0

21268

>=1

>=1

>=2

11403

>=0

22077

>=0

>=1

>=1

14136

>=1 >=0

14779

20682

>=0 >=1

15013

>=0 >=0 >=1

18080

>=1

>=1>=0

>=1>=1

19362

>=1

>=0

18655

>=1

19994

>=0

>=1

>=0

>=1

Fig. 5. C. JejuniString Graph Components Requiring Min Cost Network Flow forC. jejuni. We show the subgraph of non-trivial edges with unsatisfied
vertices drawn as solid purple vertices.

2

1500

1876

19663

19695

2

13228

2

2831

5758

2

23260

727423206

7234

9071

21268

2

18691

3

3

Fig. 6. The FinalC. jejuni String Graph with Traversal Counts. The red edges are those that need to be traversed more than once.

9


