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ABSTRACT

We present a concept and formalism, the string graph that repres-
ents all that is inferable about a DNA sequence from a collection of
shotgun sequencing reads collected from it. We give time and space
efficient algorithms for constructing a string graph given the collec-
tion of overlaps between the reads and in particular, present a novel
linear expected time algorithm for transitive reduction in this context.
The result demonstrates that the decomposition of reads into k-mers
employed in the de Bruijn graph approach of Pevzner et al. is not
essential and in fact creates both efficiency problems and uneces-
sary conceptual complexities. The current paper is the first in a series
and presents the basic algorithm and preliminary results that demon-
strate the efficiency and scalability of the method. The result is a step
toward a next-generation whole genome shotgun assembler that will
easily scale to mammalian genomes.
Contact: gene@eecs.berkeley.edu

1 INTRODUCTION
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Fig. 1. A genome and its string graph. The colored segments of the sam
color represent identical repetitive sequences. The ntsnibethe string
graph give the number of copies of each repeat inferable byt entry
and exits into the collapsed segment.

Paired-end whole genome shotgun sequencing has becomeethe p

vailing paradigm for the first phase of sequencing an orgalsis
genome (WeM97; ACHO0O; VAMO1) and routinely delivers 95-99%

of the euchromatic sequence in large scaffolds of orderedoain
ented contigs. The experiments required to finish the remaiew

percent are an order of magnitude more expensive than thgusho

sequencing. For this reason, all but the most importanreate
genomes will likely never be finished. Thus, improved altjonis

and software for whole genome shotgun sequencing will have
large impact on genomic science. For example, an assentialer t
takes a 97% reconstruction and improves it to 99% is reduitiag

amount of unresolved sequence by a factor of three (from 3% to

1%) and typically improving contig sizes by a factor of 10 cone
(by resolving 90% of the gaps) according to the Poissonssitzdi
theory of sampling (LaW88).

There are currently a number of assemblers capable of whol
genome assembly that all perform comparably by employim@va
tions on the basic paradigm of first finding and assemblingui
stretches of DNA with high reliability (MyS00; ApC02; MuN@3
JBGO03; HWAO03). Recurrent strategies include finding muyual

reinforcing read pairs and examining the relationship oéadrto
all others in order to assess its repetitiveness and toatogreors.
The central objective for better assembly is to effectivedgolve
repetitive sequences.

Consider perfect data and a genome that has several pgrfec

repetitive elements as shown in Figure 1. Imagine that themge
is a piece of thread and meld or collapse all the like repetiéle-
ments as illustrated in Figure 1. We call the resulting graptring

*to whom correspondence should be addressed

graph and it effectively represents everything that can be iefiérr
from the read data. If one can identify arcs correspondingnique
sequence, then a simple flow analysis reveals how many copies
each repeat are collapsed together and if one replicateoétwse
edges according to their copy count, then the expanded draph
an Eulerian tour and one of those tours corresponds to tgaati
Sequence. We show how to build such a graph in this paper.

In 1992 this author and Waterman-ldury presented two neaside
for fragment assembly in back to back talks at a DIMACs wodgsh
on bioinformatics that were later published in the same malwf
a journal (Mye95; IdW95). Myers’ approach was based on figdin

maximal interval subgraphs in the graph of all read overlapd

was subsequently developed into the “unitig” concept ofGleéera
assembler. Waterman and Idury presented an approach based o
ebuilding the de Bruijn graph of akt-mers from the reads and then
finding paths in this graph supported by the reads. This @gbro
was subsequently extended by Pevzner and members of higakse
group, giving rise to the Euler assembler (PTWO01).

While the idea of a string graph is explicit in the Euler algons,
we show in this paper that a string graph directly followsirthe
unitig algorithm as well. What this amounts to is a demortisina
that the idea ok-mers is unnecessary, that one can work directly
t1rom the reads, giving rise to a much more space efficientigo
— one that can scale to a mammalian genome on current hardware
Our approach requires a transitive reduction step and vesegiovel
linear expected time algorithm for this in our context. Waoashow
how to treat contained reads in an efficient way and how to effi-
ciently solve large parts of the minimum cost network flowtjeon
that is the last step by making some simple observations. Wik
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Sample et al

is a first report on a new line of algorithm development, sowec  o.f.beg o.f.end -
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2 BUILDING A STRING GRAPH 0.8.beg o.g.end
Consider a genome sequerttef lengthG and a shotgun data set of

n reads,fi, f2, ... fn randomly sampled from either the forward or
reverse strand of the genome. Lfeten be the length of readl and y
let f[1]£[2]f[3] - .. f]f.len] be its DNA sequence over the alphabet /
> = {A,C,G, T}. The average over-sampling of the genome is<—/B

c = N/G whereN = X f.len is the total amount of sequence M — - O

the data set. We assume that the reads have been preprosesse

G'—\‘| o
that each is truly a sample of the genome (i.e. contains ntowvec - N\
€

sequence or other contaminant) and that the mean errorfrétie o
read’s sequence is less tharfe.g. 2.5%) under an exponentially
distributed arrival rate model.

The first step in constructing our string graphis to Commt Fig. 2. String Graph Construction. At upper left is an overlap withdefi-
of all 2¢ overlaps of length- or more between the reads. For a given ning intervals and overhanging strings annotated. At thgetpight are the
€, T should be chosen so that the probability dfeamatch between  two edges that should be placed in the string graph for thengowerlap.
two random strings of length is exceedingly low, for example, At the lower left are some reads that overlap and then brameiva direc-
whene = 2.5% we choose = 50. This overlap computation is the tions. At the lower right is the resulting portion of the sgigraph for the
most time consuming step and amounts to a large sequence com@verhangs on the right side of the arrangement of reads. desethat are
parison between the concatenation of all the reads agasedf.i transitively reduced are colored magenta.

Numerous heuristic and filtration algorithms have been lopesl

that offer good performance — rough@y(N?/M) expected time

wherelM is the available memory of the machine. In particular, we their overlaps gives a significant practical reduction ie $ize and
use arecently introduced filter basedg@grams (JSMO05) so thatall memory requirements for the problem.

desired overlaps are guaranteed to be found. On the ord&fcd¥) Hence forward consider the set of non-contained reads ad th
overlaps generally result comprising both true overlapti@hships  overlaps. For each such regdhere will be two verticesf.B and
and those induced by repetitive sequences in the genome. f-E, one for each end of the read, in the string graph. Figure 2

For an overlap between readg andg the matching substrings illustrates the construction of edges and their labels. ifihétion
are specified by giving the two interval§y. f.beg, o. f.end] and is that one adds a directed edge labeled with the non-matohed
[0.g.beg, 0.g.end], delimiting them. We index the positions between overhanging sequence at each end of the proper overlap dretwe
characters starting at 0 so théltz, b] = fla + 1]f[a + 2] ... f[}]. two reads. More formally assume without loss of generaligt in
Moreover, ifa > b then f[a,b] = comp(f[b, a]) wherecomp(f) the encoding of overlap, o.f.beg < o.f.end. Then exactly the
is the Watson-Crick complement ¢gf An interval endpoint is ter-  following two edges are added for each overlap:
med extremeif it is either 0 or the length of the relevant read.
Observe that every overlap has at least two extreme endpaindl
that |o.f.end — o.f.beg| = |o.g.end — 0.g.beg|. An overlap is a
containmentf both ends of a read are extreme and the read in que-
stion is said to beontained Otherwise an overlap igroperand it
follows thato. f.beg (o.f.end) or o.g.beg (0.g.end) is extreme but
not both.

Given the set of all overlaps as specified above we can now give
a preliminary construction of a string graph. The goal israngt
labeled graph in which the original genome sequence canesp
to some tour of the graph and where the graph has as few extra-
neous edges and alternate tours as possible. For examplapta g
consisting of a single vertex and four self-loops with eadtDet-
ter label is always a string graph of a genome, but not a paatiy
informative one.

The basic observation is that every read must be spelledein th
graph and the concatenation of every overlapping pair afseaust For a vertexv in the string graph, lev.read be the read cor-
be spelled in the graph. It follows immediately that everyted responding to the vertex and lettype be B or E depending on
ned read can be removed from the problem because there véll bewhich end of the read corresponds to the vertex. It followa bym-
tour spelling the sequence of the reads containing it. Bllyiel0% ple induction that for a path = v1 — v2 — vs3...v, every read
of the reads in an assembly data set are contained, and so64% @ .read, iff v;.type = E, or its complement, ify;.type = Bis a
the overlaps involve a contained read. Removing these raadls prefix or substring of the string spelled along the edges @ftdith

if 0.f.beg > 0 then
if 0.g.beg < o0.g.end then
Add edge fromy.B to f.B labeledf]o. f.beg, 0]
Add edge fromf.E to ¢g.F labeledg[o.g.end, g.len]
else
Add edge fromy.E to f.B labeledf|o. f.beg, 0]
Add edge fromf.E to g.B labeledg[o.g.end, 0]
else
if 0.g.beg < o0.g.end then
Add edge fromf.B to g.B labeledg[o.g.beg, 0]
Add edge frony.E to f.F labeledf|o.f.end, f.len]
else
Add edge fromf.B to g.E labeledg[g.len, 0.g.beg]
Add edge frony.B to f.F labeledf|o.f.end, f.len]
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p. That is, any path in the graph represents a consistent Agsem
of the reads, or their reverse complement, whose ends otang a
it. Therefore the original source sequence and its compitmne
strand can be spelled in the graph just constructed. Moreevery
sequence of two edges — v2 — wv3 is a corroborated by a read,
namelyvs.read. We call this propertyead coherence

The graph still has more edges than necessary, in partiéular
overlapsg overlapsh in such a way thaf overlapsh as well, then

is the out degree of in the transitively reduced graptAssuming
all input sequences are equally likely,deg(v) = O(1) on average
and the algorithm thus take3(E) expected time. Of course, real
genomes have non-random repetitive structures, but evérese
cases the preponderance of the genome is unique sequere so t
in practice we see very rapid, near linear behavior.

Consider the edges out of a vertexv — w1, v — wa, ...,
v — wy. Letlen(v — w) be the length of the string labeling the

the string graph edgg — h is unnecessary as one can use the edgegdge, which we also consider to be the length of the edge. ta-a p
f — g — hto spell the same sequence. That is one may remove alprocessing sorting step we order the adjacency lists oggtiices so

transitive edges from the graph above without impactingtveha
be spelled. Moreover this reduction typically decreasestimber
of edges in the graph by a factor @f

Transitive reduction also leaves many vertices with in- ant
degree exactly one. That is, there are many chains with mabiag
possibilities. We call a vertex janction vertex if it has in- or out-
degree not equal to 1, and &mternal vertex otherwise. Collapse
all paths whose interior vertices are internal and that roegid
end with a junction vertex, replacing them with a singtempo-

that the edges out of each are in increasing order of thaijtteSup-
pose thatr.deg(v) is one, i.e. that there is only one non-transitive or
irreducibleedge out ofv. Then it must be the shortest edge- w,

and every edgev; — wo, ..., w1 — w, Must be in the graph.

In general, supposg-.deg(v) = k. Then there is at least one edge
from one of thew at the head of one of theirreducible edges out

of v to eachw that is not at the head of a irreducible edge. Therefore
the following simple marking strategy, the pseudo-codenfioich is

in Figure 3, correctly identifies the heads of the irredueibdiges.

site edgewhose label is the concatenation of the labels along the

path. The resulting graph of junction vertices and compasitges
is obviously still a read coherent string graph.

At this juncture observe that because no read contains ke, ot
every composite edge = v1 — vy — wz--- — v, has a
complementary edgeomp(e) = comp(vn) — ...comp(vs) —
comp(vz) — comp(v1) wherecomp(v) is the other end of the read
for f. Thatis, ifv = f.B thencomp(v) = f.E and ifv = f.E
thencomp(v) = f.B. This property implies that we may instead
think of the endpoint pairs as a single vertex with bidirdatelges
corresponding to an edge and its complement, where an agemivh
is directed into a vertex if the edge to it& vertex is the head of
the relevant one of the two complementary edges, and ditecte
of the vertex otherwise. This gives us a framework identioghe
one introduced by this author and Kececioglu (KeJ95) wheoeia
through a vertex must involve one inward arrowhead and ote ou
ward arrowhead. Figure 4 gives an example of our constnudtio
the genome. jejuni

As we will see in the preliminary results section, the stigmgph
that results from the above algorithm has between two toethre

orders of magnitude fewer vertices and edges then the nuafber 1

reads and overlaps and thus represents a significant reductihe
complexity of the problem. We also point out that the transit
reduction/chain-collapsing steps are in essence a retatpn of
the maximal interval subgraph algorithm introduced by thithor
in 1992. Previously the string graph was implicit, with esidgpeing
modeled by vertices (unitigs) and vertices by edges (opsylaNow
it is explicit and the connection to the de Bruijn approacttafer
should be apparent.

3 A LINEAR TRANSITIVE REDUCTION
ALGORITHM

General transitive reduction of a graph tak&&, — e pdeg(w)) =
O(ED) time wheredeg(w) is the out degree of wy is the number
of edges, and is the maximum out degree of a vertex. But in our
context the graph models overlaps in which the length ofriterval
represented by each read is known as is the amount of ovestap b
ween two such intervals. We will leverage this to give an atgm
that takesD (X, tr.deg(v)deg(v)) worst case time wherg.deg(v)

constant FUZZ «— 10

. forveVdo
2. { mark[v] « vacant
. forv —we Edo
4, reducep — w] « false
}
5. forveVdo
{ for v - w € Edo
7. mark[v] < inplay
8. longest— mazlen(v — w) + FUZZ

for v — w € E in order of lengthdo
if mark[w] = inplaythen
for w — x € F in order of lengthand
len(w — z) + len(v — w) < longest do
if mark[x] = inplaythen

10.
11.

14.

mark[x]« eliminated
15. for v — w € E'in order of lengthdo
16. for w — x € F in order of lengthand
17. (len(w — ) < FUZZ or

w — x is the smallest edge out of) do

18. if mark[x] = inplaythen
19. mark[x]« eliminated
20. forv — we Edo
21. { if mark[w] = eliminatedhen
22. reducef — w] « true
23. mark[w]« vacant

}
}

Fig. 3. Transitive Reduction Algorithm.
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Initially mark every vertex in the graph ascantand record that  same approximation the probability that the path shoulddetsed

every edge need not be reduced (lines 1-4). Then for eachxvert twice is((222)* /k!) e~2An/C The natural log of the ratio of these

apply the following marking strategy (line 5). First, mareey ver-  two probabilities, orA-statistic iSA(A, k) = A(g) — kln2.
tex reachable fromr asinplay (lines 6-7). Then for each vertey; Unfortunately, we do not know the size of the genofie An
onv’s adjacency listin order of edge length do the followingé€l). inspection of the typical string graph reveals that mostef tbtal

If w; has been markegliminatedduring the processing of an earlier length of all the edges is concentrated in a few rather largs o
wj then nothing need be done (line 10). Otherwise; w; isairre-  which are almost all likely to be single copy. So an effectiomt-
ducible edge and we traverse edges outpmarking aeliminated  strap procedure is to compute the average arrival rate dvetges
any vertex we encounter at the head of such an edge that igdhark over a certain length, say 10Kbp, and then computeAtstatistic
inplay, indicating that it is adjacent to(lines 11, 13-14). We further  for every edge using this estimate. One then considers edgyg
take advantage of the fact that’s edges are ordered to stop proces- with an A-statistic over a threshold, say 17 (1-in-24million chance
sing edges once an edge is too long to eliminate edges outioés of being wrong), to be single copy. One can then re-estintae t
8, line 12). One concludes the processing dfy examining every  average arrival rate over this subset of edges and thenlyetgp
vertex on its adjacency list, marking as needing reductignesige  statistic until convergence or a fixed number of times. We €ind
whose head has been marlaiminatedand then restoring the ver- turn suffices to yield an estimate 6f that is typically accurate to
tex marks tovacant(lines 20-23). Confirming the time complexity within 1% of the sampled genome’s true size.
of the algorithm stated above is left as an exercise. Using the A-statistic, we have, with very high probability, labe-
Thus far we have been implicitly assuming that read ovesdgp r  led every single copy edge of the string graph. Further olestat
tionships are completely consistent with each other as dagktreee  every composite edge that has an interior vertex must bersad
if the data were perfect. But read overlaps are approximatelmes  at least once if the read(s) corresponding to the intericexéces)
which can have two consequences. First endpoint positamslaift ~ are to take part in the reconstruction of the genome. Sineeyev
a bit and one needs to allow for this in any logic that usesdists,  read was presumably sampled from the genome, we know that eve
i.e. the use ofFUZZ in line 8. Secondly and more importantly, such edge must be used once. All other edges, those that Havet
approximate equality is not an equivalence relation bexztwassi-  interior vertices, may be ignored if desired.
tivity can fail to hold depending on the distribution of esan the In summary, we have estimated the size of the genome and now
reads. For example, it is not infrequent that — w,, is not found  have a string graph graph in which every edge has a lower asd po
because even though,, has a larger overlap witlv; than withv, sibly upper bound on the number of times it must be travensed i
both overlaps are thin and coincidentadly has just a couple more reconstruction. Specifically there are three cases: (a@dbe must
errors in the relevant interval thardoes and so is pushed above the be traversed: 1 times, (b) the edge must be traversed times, or
e error rate for overlaps. Notice in this case that the read fitady (c) the edge must be traversedd times.
to be found overlapping withv,, is w,—1, its nearest predecessor.
So we make the algorithm very stable with respect to appratém
matching by adding lines 15-19, that for eachchecks if its imme-
diate successor and additional successors willify Z (10) base S5 MAPPING CONTAINED READS
pairs of it eliminate vertices on’s adjacency list. In expectation, There is actually a rather serious flaw in the procedure ofptee
the neighborhood i©(1) in size so the addition adds only a total of vious section. Recall that contained reads were removed fhe
O(E) expected time to the algorithm. problem, and the graph only built from the remaining readisofa
which properly overlap. This means that the density of raad s
4 ESTIMATING GENOME SIZE AND IDENTIEYING points is u_nderest_imated as typically 40% of the reads armima_d.
In and of itself this would not be a problem save that the pogba
UNIQUE SEGMENTS lity of a read being contained by reads from a unique segn®ent i
Given a read coherent string graph we now wish to label ewdgg e  significantly less than the probability of a read being cimeta by
with an integer specifying the number of times one shouldetrse  reads from a repeat segment, the probability increasindititeer
the edge in reconstructing the underlying genome. Our fiegi S the copy number. This has the effect of making repeat segrimuk
towards this end is to determine with very high probabilitpge  less repetitive than they are with respect tadastatistic computed
edges that should be traversed exactly once, i.e., thatsmond to  over just the non-contained fragments.
unique stretches of DNA. Consider a composite edge between t  To rectify this bias and also get a better true estimate of the
junction verticesv andw, and suppose it is of lengtA and there  genome size, we map every contained read endpoint to the com-
arek internal vertices that comprise the chain of the composi'ee  posite edge or edges in which it would lie if it had been parthef
This path models an overlapping sequenck-pR reads that assem- original graph. Note carefully that all we need to do is aculate
ble together consistently. Suppose for the moment we knewite  the count with each edge in order to compute a more accurate
G of the genome so that we know the average spa€ifig expec-  statistic, the location of the end point in the compositeessighain
ted between reads. As we did for the Celera assembler we ean this jrrelevant. Also note that we state that a contained reapant
determine the log-odds ratio, gi-statistic, of the path representing can map to several edges. The reason for this becomes apparen
a unique sequence versus an overcollapsed repeat. we sketch the mapping procedure below.
A quick derivation of thed-statistic is as follows. The probability Consider the end of a contained reAd The treatment for the
that the path is single copy ié Z ) (%)k(G;GA)nfk which is posit_ion of th_e stgrt of aread i_s ;ymmetric and will not beegi_\#or
brevity. We first find the containing overlap= Og(f) for which
approximately((42)* /k!) e 2"/ inthe limit asG — co. By the the length of the overhand)e(f) = Hg(f, o), off that end off
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to the relevant end of the containing redds (f) is the smallest.
Formally,

o.g.len —o.g.end  if 0.g.beg < 0.g.end

Hp(f,0) = { 0.g.end otherwise
Or(f) = ost.Hg(f,o)issmallestover a for whicho.g
containsf ando.g is not itself contained
Va(f) Or(f).9.E if Or(f).g.beg < Op(f).g.end
= Or(f).g.B  otherwise
De(f) = Hzs(f,0=(f))

The computation o), V, D, for each contained read can clearly be
accomplished in time linear in the number of overlaps. Tdpemt

of contained reag belongsDg(f) base pairs upstream of the ver-
tex Ve (f) in the string graph. By upstream we mean in the direction
opposite to those for which the edges throdgh( f) are directed.
Algorithmically, we engage in a reaching computation thatves
Dg(f) base pairs along the reverse edges of the graph ¥fe(f).
While in most cases the graph does not branch during thelsaarc

some cases it may in which case we find all edges at which the end

point of f could lie. Formally, we comput®/ap(Ve(f), De(f))
as follows:

if len(w — v) < dthen
Map(w,d — len(w — v))
else
{w — v}

Map(v,d) = U

w—v

traverses each edgée) times. By minimizing the flow subject to
the bound constraints we are appealing to parsimony.

A reconstruction takes the form of a number of contiguous
sequences, the breaks between sequences being due taa tiailu
sample some regions by chance. Each of these is a distincou
typically these begin at a vertex with zero in degree and ¢ral a
vertex with zero out degree. However, a contig could begiarat
at a vertex with non-zero in/out-degree. So to correctly ehdlde
flow problem, we must adétlabeled meta-edges— v andv — s
into and out of every junction vertex from a special sourcdexe
s. There are no bounds on these edges and we now seek a cyclic
tour where in we understand there to be a contig break whereve
is traversed. We appeal to parsimony and seek a minimumraiteg
flow satisfying the edge bounds. Formally, a minimum cosivogt
flow problem (AMO93) is usually formulated as follows

Input: For each edge, an upper bound(e) > 0 on flow, and
a cost per unit flow (e). For each vertex, a supply (positive)
or demand (demand)v) for flow.

Output: A flow x(e) on each edge such thal.v(e)z(e) is
minimal subject taz(e) € [0, c(e)] andX,—,zx(u — v) +
b(v) = Xo—wz(v — w).

In these terms our problem is as follows where we have used
a known transformation to convert the lower bounds into s b
capturing them in the supply/demand values:

u(e) —I(e)
Yu—vl(u —v) —
1

le)+z(e)

Yo—wl(v — u)

If a contained read endpoint maps to a unique edge then the end

point is counted toward that edge-statistic. When an endpoint
maps to multiple locations we give each location a fractieoant
of 1/|Map(Ve(f), De(f))|- As an estimator of the mean popula-
tion this is sensible as the reads in such an ambiguousisituate
equally likely to be in one of the possible locations. Notat tihe A-
statistic as formulated above easily accommodates fratiedge
counts. Finally, if the number of possible locations exsesdme
threshold, say 100, the reaching computation is terminatecdthe
endpoint, which would contribute less than 1/100th of a ¢dan
any edge, is ignored. This guarantees that the mapping phiksse
a maximum ofO(n) time.

The particularly simple structure of our edge bounds +, > 1,
or > 0—leads to a particularly simple flow problem. Specifically, a
(= 1)-edges have(e) = 0 and all other edges havge) = oc. In
compensation the supply/demand valtigs) take on some integral
value.

Before invoking an existing algorithm (AMO93) for the flowgar
blem, whose worst case complexityG§ EV), there are a number
of simplifications that can take place. (1) For &ry 1)-edge, imp-
lying c(e) = 0, setz(e) = 0 and remove the edge. (2) If a vertex has
b(v) = 0 and either no in-edges or no-out edges then:éet = 0
for any edge: adjacent to the vertex and then remove the vertex and

In summary, containment endpoints are first mapped as aboviés adjacent edges. (3) If a vertexhas a single out-edge — w,

and then with these revised edge endpoint counts, the e&timat
genome size and edge traversal bounds described in thespciion
takes place.

6 MINIMUM COST NETWORK FLOW AND
SIMPLIFICATIONS

The last task is to decide on the traversal coufit) for each edge
in the string graph, given upper and lower bouris), u(e)] on
the edges from the previous phases of the construction. %/a bg
formulating the problem as a minimum cost network flow prable
where in we find the minimum traversal counts that satisfyeithge
bounds and preserve equality of in- and out-counts (flowsat 15,

if we think of the traversal counts as integral flows, thereif imflow
to a node equals net outflow, there is a generalized Euleaiarttiat

then setr(v — w) to b(v), resetb(w) to b(w) + b(v), and merge

v andw removing the edge. (4) If a vertaxhas a single in-edge
u — v, then sete(u — v) to —b(v) and reseb(u) to b(u) — b(v)
and mergev andu. While these transformations are all quite sim-
ple, it turns out that on practical problems they are vergafée in
reducing the size of the problem, in particular, the edgeoraris
and fusions turn the graph into a large collection of smatinzme-
ted components each of which is more efficiently solvabld wie
full, standard algorithms. For an example, see Figure 5 Wetea
edges that remain after the simplifications abaweatrivial edges
and the vertices that have non-zero supply demarshtisfied ver-
tices Basically, one needs to push flow between unsatisfied esrtic
in a minimal way. Flow pushing algorithms generally perfarmach
better than their worst case complexity in such scenarios.ah
example of the final string graph see Figure 6.
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7 PRELIMINARY RESULTS

Table 1. Computational Results on Three Simulated Shotgun Datasets

This paper is a preliminary algorithms piece. We are stilthe
process of producing a total solution that takes into accetin

the subtleties of real data, which does not satisfy key aptium
ons made at the outset of the paper. Specifically, vectoresegu
generally contaminates some percentage of the reads, ti@esa
genome DNA is not completely isogenic, and the error ratesacr
a purported high-quality interval determined using Phreates is
not always particularly accurate. We are working on a veradt
levels including preprocessing methods and extensioniseolbasic
approach presented here to address these realities. Oaimnodiest
goal here is to show that this approachrésytime and memory effi-
cient and under the stated assumptions produces the deiirggl
graph. The method will scale on current architectures tdlpros
of the scale of the human genome, something not possiblethéth
de Bruijn graph approach.

We consider simulated shotgun data sets of three targetggno
a 500Kbp synthetic genome with ten copies of a 300bp rep&dbat
variation (“Synthetic Alus”), the 1.64Mbp sequence of tleeteria
C. jejuni, and the first 13.9Mbp of the euchromatic sequence of arm
3R of D. melanogasterFor each genome we synthetically sampled
a 10X data set of reads of length chosen uniformly betweebb50

Synthetic Alus C. jejuni D. mel.3R

Genome Size(Mbp .500 1.641 13.919
Reads 7000 23,900 202,200

Overlaps 127K 462K 3,997K
Contained Read 41.4% 42.6% 43.1%
Relevant Overlapg 44K (41%) | 150K (43%) | 1,268K (43%)
Irreducible Edges 8,310 27,500 231,096
Junction Vertices| 33 75 756
Composite Edgeg 89 113 1294
Size Estimate (Mbp 499 1.626 13.765
(= 1)-edges 11 20 179
Nontrivial Edges 2 51 538
No. of Components 1 4 33
Unsatisfied Vertices 0 6 109
Time (sec) 3.7 13.1 113.6

Space (Mb) .53 1.81 15.28

and 850bp. Each read has errors introduced with probab8 a®0
its 5" end linearly ramping to .025 at its 3’ end. We used ¢hésim
simulator (Mye99).

In Table 1 we present a number of empirically measured parame
ters for these three genomes of increasing size. The firsgiose
the genome size. The next grouping gives the number of reads i
the input data set and the number of overlaps computed betwee
those reads. The third grouping gives the number of readsatha
contained by at least one other read and the number of (ré)eva
overlaps that are between non-contained reads. We notevkieat
read lengths are normally distributed, as opposed to tHeramidis-
tribution of our simulation, the percentage of containextiseis even
higher. That is, the savings from eliminating containediseat this
point is conservative compared to what we observe for raal dhe
fourth grouping gives the number of irreducible edges notawed
from the initial string graph, the number of junction nodasd the
number of composite edges that result when chains are selfap
Note that the graph is generally small compared to the nurober
reads and overlaps input. For example, for 3R we go from 202,0
reads to 756 junction vertices, and from 4 million overlap4 200
composite edges. The fifth grouping gives the genome siraast
ted after inserting contained read endpoints and the nucfleetges

that are with very high confidence deemed to be single copy DNA
i.e. (= 1)-edges. The sixth grouping characterizes the results o

the simplifications we apply before invoking general mirsicoet-
work flow algorithms. By non-trivial edges we mean those tiat
not get eliminated by the simplifications, and we give the hem
of connected components containing those edges. For ezampl
the case of 3R, the min-cost network flow algorithms are appli
to 33 components containing a total of 538 non-trivial eddes
an average of 16-17 edges per component. Also note that the nu
ber of unsatisfied vertices for whicéifv) # 0 is small. Finally, we
report the total computation time and space used. One séearbyc
linear increase in resources and very efficient times. Itiquaar
the amount of memory is slightly more than the size of thediarg
genome in Mb.

Table 2. Containment Mapping fob. mel.3R Dataset.

| Map|

Containment
Endpoints

173,399

642
173
70
18
6

5
22
3

©CoO~NOOOPr~WNPR

In Table 2 we illustrate the amount of ambiguity that occurs i
mapping containment endpoints by giving a histogram of e af
|Map| for the contained reads in tfi2 mel.3R dataset. The main
thing to observe is that most endpoints map to a unique lmtatith
an exponentially vanishing but somewhat irregular tail afitiple
location endpoints. In effect the mapping is linear in expddime
?nd very rapid.

We illustrate the shape and size of the string graph at vasteps
in the process with th€. jejunidata set as the automated graph dra-
wing program produces rather unaesthetic results for tigel88R
dataset. In Figure 4 we show the graph after transitive téstuand
chain collapsing. In Figure 5 we show the 4 subproblems thettm
be solved with min-cost network flow, and in Figure 6 we show th
final string graph. Note carefully that it is exactly what wesd
red to compute at the outset. The red edges are those that are t
be traversed multiple times. There are 72 possible tourseofihal
string graph. Seven PCR reactions would resolve the true tou
in a project with paired end reads, the correct tour wouldite®e
apparent.
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Fig. 4. C. jejuniString Graph Prior To Traversal Analysis.
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Fig. 5. C. JejuniString Graph Components Requiring Min Cost Network Flow @rjejuni We show the subgraph of non-trivial edges with unsatisfied
vertices drawn as solid purple vertices.

Fig. 6. The FinalC. jejuni String Graph with Traversal Counts. The red edges are tihaseéed to be traversed more than once.




