
What’s Behind Blast

Gene Myers

MPI for Cellular Molecular Biology and Genetics, 01307 Dresden, DE
myers@mpi-cbg.de

Abstract. The BLAST search engine was published and released in
1990. It is a heuristic that uses the idea of a neighborhood to find seed
matches that are then extended. This approach came from work that this
author was doing to lever these ideas to arrive at a deterministic algo-
rithm with a characterized and superior time complexity. The resulting
O(enpow(e/p)logn) expected-time algorithm for finding all e-matches to
a string of length p in a text of length n was completed in 1991. The
function pow(ε) is 0 for ε = 0 and concave increasing, so the algorithm
is truly sublinear in that its running time is O(nc) for c < 1 for ε suf-
ficiently small. This paper reviews the history and the unfolding of the
basic concepts, and it attempts to intuitively describe the deeper re-
sult whose time-complexity, to this authors knowledge, has yet to be
improved upon.

1 The Meeting

The 1980’s were an active decade for basic advances in sequence comparison al-
gorithms. Michael Waterman, Temple Smith, Esko Ukkonen, Webb Miller, Gad
Landau, David Lipman, Bill Pearson, and myself, among others, were all very
active in this period of time and were working out the basic algorithms for
comparing sequences, approximate pattern matching, and database searching
(e.g. [1,2,3,4,5,6]). During this time, the BLAST heuristic was developed and
deployed at the National Library of Medicine in 1990 and the paper that de-
scribed it became one of the most highly cited papers in science [7]. This paper is
about how the design for the algorithm came about, from my point of view, and
its relationship to the theoretical underpinnings of sequence comparison that
I was exploring at the time that ultimately lead to an efficient, deterministic,
expected-time algorithm for finding approximate matches using a precomputed
index [8].

In 1988, Webb Miller and I organized a small bioinformatics meeting in
Bethesda, Maryland that included such notable figures as David Sankoff, Michael
Waterman, Temple Smith, Eric Lander, Zvi Galil, Esko Ukkonen, David Lipman
and other great investigators of that time. At the meeting Zvi Galil gave a talk
about suffix trees [9] and raised two questions that ultimately were answered:

1. Can suffix trees be built in a way that is independent of alphabet size s?

2. Can a precomputed index such as a suffix tree of a large text be used to
speed up searches for approximate matches to a string?

To understand the first question, one must recall that one can either use an
s-element array in each suffix tree node to permit a search for a string of length
p in a text of length n in O(p) time but requiring O(ns) space for the suffix tree,
or one can use only O(n) space by using binary trees to decide which edge to
follow out of a node, but resulting in O(plogs) time for the search. This question
ultimately led Udi Manber and I to develop suffix arrays in late 1990 [10], where
a suffix array occupies O(n) space, independent of s, and takes O(p+ logn) time
to search for a string, again independent of s. This data structure in turn enables
the Burroughs-Wheeler Transform or BWT [11], that is now greatly in vogue
for next-gen sequencing (NGS) applications [12], to be computed in O(n) time.

2 Filters and Neighborhoods

But it was the second question on the use of an index, such as a suffix tree, to
speed searches for approximate matches that captured my attention immediately
after the meeting. Most algorithmicists work on deterministic search algorithms
meaning that the method finds exactly the set of locations in the text where a
query approximately matches within some specified threshold, whereas a heuris-
tic is an algorithm that finds most of the matches sought, but may miss a few,
called a false negative, and may further report a few locations where a match
doesn’t actually occur, called a false positive. In between these two types of algo-
rithms, a filter is an algorithm that has no false negatives but may produce false
positives. That is, it produces a superset of the instances sought, or equivalently
it filters out most of the locations where matches do not occur. A filter can
be the first step of a deterministic algorithm simply by running a deterministic
checking algorithm on the subset of locations reported by the filter. If the filter
is much more efficient than the deterministic checker, then one ends up with a
much more efficient search.

At the time, there were surprisingly no published methods using the simple
idea of finding exact matches to k-mers (strings of length k) from the query string
[13,14] even though this was fairly obvious and had been used in the heuristic
method of FASTA. Shortly after the Bethesda meeting, I had the first and most
important idea of looking for exact matches to strings in the neighborhood of
k-mers selected from the query string. Let δ be a sequence comparison measure
that given two strings v and w returns a numeric measure δ(v, w) of the degree to
which they differ (e.g. the generalized Levenshtein metric). Given a string w the
τ -neighborhood of w with respect to δ, ℵδτ (w) is the set of all strings v whose best
alignment with w under scoring scheme δ is less than τ , i.e. {v : δ(v, w) ≤ τ}.

For this paper, except where mentioned otherwise, we are focusing on the ap-
proximate match problem where δ is the simple Levenshtein metric, which is the
minimum number of insertions, deletions, and substitutions possible in an align-
ment between the two strings in question. That is, we seek matches of a query
of length p to a text of length n, where up to e differences are allowed. Another
way to phrase this, which we will use interchangeably, is that we seek ε-matches
where ε = e/p is the length relative fraction of differences allowed. To illus-
trate the idea of a neighborhood under this metric, the 1-neighborhood of abba

(or 25%-neighborhood) is ℵ1(abba) = {aaba, aabba, abaa, aba, abaa, ababa, abba,
abbaa, abbab, abb,abbb, abbba, babba, bba, bbba}.

For the example above, notice that wherever one finds abaa one will also
finds aba as it is a prefix of the former. So to find all matches to neighbor-
hood strings it suffices to look up in an index only those that are not an
extension of a shorter string in the same neighborhood. Let the condensed
τ -neighborhood of w be the subset of these strings, i.e. ℵ̄δτ (w) = {v : v ∈
ℵδτ (w) and @u ∈ ℵδτ (w) such that u is a prefix of v}. For our example, the con-
densed 1-neighborhood of abba is ℵ̄1(abba) = {aaba, aabba, aba, abb, babba, bba,
bbba}, a considerably smaller set of strings.

To illustrate the advantage of using (condensed) neighborhoods, consider
looking for a match with 9 differences to a query of length say 100. If one parti-
tions the query into 10 strings of length 10, then by the Pigeon Hole principle,
one of the 10 strings must exactly match in the database. So one can filter the
text by looking for one of these 10 strings of length 10. But if one partitions the
query into 5 strings of length 20, then by the Pigeon Hole principle, a string in
the 1-neighborhoods of the 5 query parts must exactly match in the database.
A rough estimate for the number of strings in the condensed e-neighborhood of
a string of length k is ℵ̄e(k) =

(
k
e

)
(2s)e. Thus in our example we can filter the

text by looking for one of 800 strings of length 20. Which filter is better? The
probability of a random false positive for the k-mer filter is 10/s10 and for the
neighborhood filter it is 800/s20. Thus the later filter produces s10/80 fewer false
positives. If s is 4 (e.g. the DNA alphabet) and n is 3× 109 (e.g. the size of the
human genome) then the neighborhood filter produces 13, 000 times fewer false
positives, and reports in expectation 2.18 false positive, whereas the k-mer filter
reports over 28, 600 !

3 Version 0.1

For every true positive location, i.e. an approximate match is present, one must
spend time proportional to the best algorithm available for aligning one sequence
to another. While there are some quite sophisticated algorithms, in practice, one
of the best is still the O(pe) algorithm discovered by Ukkonen [2] and a year
later by myself [6], where I further proved that the algorithm runs in O(p+ e2)
expected time, and can be modified with a suffix tree and O(1) lca-finding [15]
to take this much time in the worst-case. If a search results in h true hits, we will
assume for simplicity that O(hep) time will be taken to confirm and report all the
matches and their alignments. The goal of a filter is to deliver the hits efficiently
and to waste as little time as possible on false positives. That is, the goal is to
optimize the time a filter would take on a random text that in expectation has
no hits to the query. The initial simple idea that I was working with in early
1989 was as follows:

1. Partition the query into p/k k-mers.
2. Generate every string in the (εk)-neighborhood of the query k-mers and find

all the exact matches to these strings using an index.
3. Check each location reported above with the O(ep) algorithm.

The question is what k-mer size leads to the best expected-time performance of
the filter over a random text? Roughly, the number of neighborhood strings is
(p/k)ℵ̄εk(k) and the time spent looking up each is O(k) excluding the time to
check hits for each. Thus the lookup phase takes O(pℵ̄εk(k)) time. The expected
number of hits is (p/k)ℵ̄εk(k)(n/sk) and thus the expected-time for checking
proposed locations is O((εp3/k)ℵ̄εk(k)(n/sk)). Thus the total expected time for
the filter is:

O(pℵ̄εk(k)(1 +
εp2n

ksk
)) (1)

I was unable to produce an analytic formula for the value of k that as a function
of n, p, and ε gives the minimum time. However, using Stirling’s Approximation,
I was able to demonstrate (unpublished) that the best value of k is always bigger
than logsn and less than (1+α)logsn where α becomes increasingly closer to 0 as
n/p goes to infinity. For typical values of the parameters, and especially when n
is much larger than p, α is quite quite close to zero. Thus one instinctively knows
that the k-mer size should be on the order of logsn. We will use this observation
later on.

4 BLAST

In May of 1989, I spent 2 weeks at the National Center for Biotechnology Infor-
mation (NCBI) with David Lipman. I was a smoker at the time and was having
a cigarette outside when David came out and showed me an article in Science
in which Lee Hood was extolling the virtues of a new systolic array chip built
by TRW called the Fast Data Finder (FDF) [16]. I proceeded, as a firm believer
that special hardware is not the way to solve problems, to explain to David my
new ideas for approximate search and how I thought we could do such searches
just as well in software rather than spend money on relatively expensive hard-
ware. David had previously developed FASTA with Bill Pearson [5], which at the
time was the best heuristic for searching protein databases. David listened care-
fully and started to think about how the ideas could be used in a heuristic and
efficient way to search for significant locally aligned regions of a protein query
against a protein database under a general scoring scheme such as the PAM or
BLOSSUM metrics. In short order we had the following heuristic adaption of
my first filter:

1. Consider the p−k+1 overlapping k-mers of the query (to increase the chance
of not missing a true hit).

2. Generate every string in the τ -neighborhood of the query k-mers under a
similarity-based protein metric δ and find all the exact matches to these
strings by some means (an index may not be in practice the fastest way to
do this).

3. Extend each seed match into a local alignment of significance by some means,
and report it if its score is sufficiently high.

Over the next several months a number of versions of codes based on the above
template were developed by myself, Webb Miller, and Warren Gish.

Webb tried a simple index for the look up and reported that it was quite slow.
In hindsight this was just at the time when the mismatch in speed between mem-
ory access and processor speed was becoming severe enough that being aware of
cache-coherence was becoming essential for good performance. I still wonder if
a better design of an index and the order of lookups within it, e.g. sorting the
strings to be looked up, would not lead to a much speedier implementation. The
other idea and faster implementation was to generate a finite automaton of the
neighborhood strings and in an O(n) scan of the text with the automaton find
all potential match locations. Each state of the automaton had an s-array table
of transitions. Gish realized that if a Mealy machine [17] was used instead of
a Moore machine [18] (i.e. report hits on transitions rather than on states), a
factor of s is saved in space. Given that s is 20 for protein alphabets this was a
significant space saving.

For the extension step we tried simply extending forward and backward with
no indels. I proposed the idea that an extension step stop when the score of the
extension dropped too far below the best score seen (the X-factor). I also wrote
a version that extended with indels, again observing the X-factor, but Lipman
deemed that it was too slow and not worth the additional computer time. He later
reversed his position in 1999 with a second release and publication of BLAST
[19], albeit with Miller reinventing the gapped extension strategy.

Warren also wrote all the code for practical matters such as low-complexity
sequence filtering and he built the initial web server [20]. Altschul, the first au-
thor, added the calculation of the significance of each match based on work he
and Sam Karlin had published earlier in the year [21]. He also tested the sen-
sitivity and performance of the method and wrote the paper. An unfortunate
consequence of this was that the algorithm was inadequately described and led
to much confusion about what the the BLAST algorithm was over the ensu-
ing years. However, the use of the match statistics was a great advance and
enhanced the popularity of the engine, as previously there had been much op-
timistic reporting of statistically insignificant matches in the formal molecular
biology literature.

5 Doubling Extension of logs n Seeds

While BLAST was being developed, I continued to pursue the quest for a prov-
ably efficient deterministic algorithm. The simple seed and test strategy hadn’t
yielded an analytic expected time complexity, but it did suggest that k = logs n
might be a good seed size. Indeed, I liked immediately that since slogsn = n, a
simple 2n integer index of all the k-mers in the text permits O(p+ h) expected-
time lookup of all h exact matches to a string of length p in the text. Later I was
further able to give an analytic estimate for the size of neighborhoods of strings
of this special size, but at the time I was focused on the extension step, as it was
the aspect that was not yielding an analytic bound. Later I would prove it, but
at the time I intuited that if ε is small enough, then the probability, Pr(p, ε),

of a random ε-match to a string of length p is less than 1/αp for some fixed
α > 1 that is a function of ε (just as an exact match has probability 1/sp). If
this is true, then as shown below, the time for an extension strategy based on
progressively doubling and checking seed hits telescopes for false hits.

The basic ”double and check” idea is as follows. Suppose a k-mer of the query,
s0, ε-matches a substring t0 of the database. The idea of doubling and checking,
is to try a 2k-mer s1 of the query that spans s0 and check with the customary
zone-based dynamic programming algorithm if there is a string t1 spanning t0
that ε-matches s1. If not, then one can, under the right doubling protocol to be
given shortly, conclude that an ε-match to the query does not exist that spans
t0. Otherwise, a match to the query is still possible, so one proceeds to double
s1 to a substring s2 of the query of length 4k and then check for an ε-match to it
spanning t1. And so on, until either there is a failure to match at some doubling
stage, or until all of the query is found to match a string spanning the seed hit
t0.

Returning to the complexity claim, if one assumes Pr(p, ε) < 1/αp for some
α, then one starts with h = (p/k)(n/αk) expected random k-mer seed matches.
The idea is to check if these can be extended to ε-matches of length 2k, and
then to ε-matches of length 4k, and so on. For a text that is random with
respect to the query, the extensions that survive diminish hyper-geometrically.
Specifically, there are n(p/k)/α2x−1k surviving hits at doubling stage x and it
takes O(ε(2xk)2) time to check each implying that the total expected time to
eliminate all of these random seeds is:

n(p/k)
log2p/k∑
x=1

ε(2xk)2/α2x−1k = nek/αk
log2p/k∑
x=1

4x/α(2x−1−1)k = O(nek/αk) (2)

But how are the doublings of the seeds arranged? To keep it simple, suppose
k divides p, and p/k = 2π is a power of 2. If a query w of length p has an ε-match
to a substring v of the text, then by the Pigeon Hole principle either the first or
second half of w, defined as w0 and w1, ε-matches a prefix v0 or suffix v1 of v,
respectively, where v0v1 = v. Inductively if wx has an ε-match to a string vx, then
by the Pigeon Hole principle either the first or second half of wx, defined as wx0
and wx1, ε-matches a prefix vx0 or suffix vx1 of v, respectively, where vx0vx1 = vx.
In other words, if there is an ε-match to the query w, then there is at least one
binary string α of length π such that wβ has an ε-match to a string vβ for all
prefixes β of α where it is further true that vβx is a prefix or suffix of vβ according
to whether x is 0 or 1, respectively. So now reverse the logic and imagine one
has found a seed ε-match to a piece wα of the query where α = a1a2 . . . aπ. To
determine if w has a match involving this seed match, one considers checking for
ε-matches to the doubling sequence of strings w(a0a1...aπ−1), w(a0a1...aπ−2), . . .,
w(a0a1), w(a0), w(ε) = w, discovering the prefix and/or suffixes vβ at each level,
until either w is confirmed or a check fails. This strategy is deterministic as it
never misses a match, yet the expected time spent on a false positive seed is
O(εk2).

When there is a match present, the time spent confirming the match is:

π∑
x=1

ε(2xk)2 = εk2
π∑
x=1

4x = εk2

(
4π+1/3− 1

)
< 4/3εp2 = O(ep) (3)

So in the case that there are exactly h real matches to the query, the extension
and reporting phase of an algorithm using this strategy takes expected-time:

O(nek/αk + hep) (4)

When in particular k is chosen to be logsn, then αk = nlogsα and so the extension
step takes O(en1−logsαlogn+ hep) time. This is exciting because as long as α is
greater than 1 (how much so depends on ε), then the time is O(nc) for c < 1
and hence truly sublinear in n. In the next section, we will confirm that indeed
Pr(k, ε) < 1/αk for an α that is a function of ε, and thus that the complexity
of this section holds.

6 Neighborhood Size

I was fairly confident I could come up with a good algorithm for generating
neighborhoods that was proportional to the size of the condensed neighborhood,
but I was less certain about arriving at an analytic upper bound for the size of
a condensed d-neighborhood of a string of length k, ℵ̄kd. In the introduction I
(inaccurately) estimated it as

(
k
d

)
(2s)d and in the previous section I guessed such

a bound would have the form α(ε)k where α depends on ε = d/k. I embarked on
developing recurrences for counting the number of sequences of d distinct edits
that one could perform on a string of length k. Rather than consider induction
over the sequence of edits, I thought about an induction along the characters of
the string from left to right. At each character one can either leave it alone, delete
it, insert some number of symbols after it, or substitute a different symbol for it
and optionally insert symbols after it. Note carefully that redundant possibilities,
such as deleting the symbol and then inserting a character after it, or substituting
a symbol and then deleting it, need not be counted. While I took some care to
produce tight recurrences at the time, I recently noted that I could improve the
recurrences but interestingly I could not prove a better complexity bound than
with the original recurrence. We will present the new recurrence with the idea
that another investigator might prove a better bound.

Suppose one has k symbols left in the query, and needs to introduce d dif-
ferences into this string of remaining characters where insertions before the first
symbol are not allowed. Let S(k, d) be the number of such d-edit scripts. The
new lemma is:

Lemma: If k ≤ d or d = 0 then S(k, d) = ℵ̄d(k) = 1. Otherwise,

S(k, d) = S(k−1, d) + (s−1)S(k−1, d−1) + (s−1)
∑d−1
j=0 s

jS(k−2, d−1−j)
+(s−1)2

∑d−2
j=0 s

jS(k−2, d−2−j) +
∑d−1
j=0 S(k−2−j, d−1−j)

ℵ̄d(k) ≤ S(k, d) +
∑d
j=1 s

jS(k−1, d−j)

Proof: The new recurrences begins with the observations that (a) a deletion
followed by an insertion is the same as a substitution, (b) a deletion followed
by a substitution is the same as a substitution followed by a deletion, (c) an
insertion followed by a substitution is the same as a substitution followed by
an insertion, and (d) an insertion followed by a deletion is the same as doing
nothing. Therefore we need only consider scripts in which deletions can only be
followed by deletions or an unchanged character, and in which insertions can
only be followed by other insertions or an unchanged character. A substitution
or unchanged character can be followed by any edit (or no edit). Furthermore,
it is redundant to substitute a character for itself implying there are only s−1
choices for a substitution at a given position. Moreover, an insertion following an
unchanged or substituted character is redundant if the inserted character is equal
to the one behind it, because the net effect is the same as inserting the given
character before the symbol it follows. So there are only s−1 non-redundant
characters for the first insert in a sequence of inserts. Finally, we need only
produce condensed neighborhoods, so when t ≤ d the number of scripts is 1 as
the null string is in the neighborhood and hence the condensed neighborhood
contains only this string. Thus it is clear that S(k, d) = 1 when either k ≤ d or
d = 0. For all other values of k and d it follows from the ”rules” above that:

S(k, d) = S(k−1, d)+(s−1)(S(k−1, d−1)+I(k−1, d−1))
+(s− 1)2I(k − 1, d− 2) +D(k − 1, d− 1)

where I(k, d) is the number of d edit scripts that immediately follow one or more
inserts after the k + 1st symbol in the query string, and D(k, d) is the number
of d edit scripts that immediately follow a deletion of the k + 1st symbol in the
query string. It follows from the ”rules” that:

I(k, d) = sI(k, d− 1) + S(k − 1, d)

D(k, d) = D(k − 1, d− 1) + S(k − 1, d)

Solving the recurrences for I and D in terms of S and substituting these back
into the recurrence for S gives the final recurrence of the lemma for S, and the
bound for ℵ̄d(k) simply considers that one can have one or more inserts before
the first character of the query.

A simple but tedious exercise in induction reveals that for any value c ≥ 1,
S(k, d) ≤ B(k, d, c) and ℵd(k) ≤ c

c−1B(k, d, c) where B(k, d, c) = (c+1
c−1)kcdsd. It

further follows that B(k, d, c) is minimized for c = c? = ε−1 +
√

1 + ε−2 where
ε = d/k. Given that ε ∈ [0, 1], it follows that c? ∈ [1 +

√
2,∞] implying c? is

always larger than 1 and that c
c−1 is always less than 1 +

√
.5. Therefore,

S(k, d) ≤ B(k, d, c?) and ℵd(k) ≤ 1.708B(k, d, c?) (5)

As in the original paper, one can similarly and easily develop recurrences
for the probability Pr(k, ε) of an ε-match to a string of length k in a uniformly

random text and show that the recurrence is bounded by c
c−1B(k, d, c)/sk where

d = dεke. Therefore:

Pr(k, ε) ≤ 1.708/α(ε)k where α(ε) = (
c? − 1
c? + 1

)c?−εs1−ε (6)

proving that the bound used in Section 5, and hence also the complexity of the
extension step of the algorithm derived in that section.

Now consider the function pow(ε) = logs
c?+1
c?−1 + ε logs c? + ε. A little algebra

and the bounds in Equations (5) and (6) allow us to conclude the following
rather striking bounds:

ℵε(k) = O((spow(ε))k) and α(ε) = O(s1−pow(ε)) (7)

The first bound effectively says that one can think of each position in the string
as have a certain ”flex factor” at a given rate ε, namely spow(ε), so that the
neighborhood size is the kth power of the flex factor. The second bound effectively
says that the ”match specificity” of each position in the set of neighborhood
strings is s(1−pow(ε)), so that the probability of matching any string in the ε-
neighborhood of a string of length k is 1 over the kth power of this match
specificity.

While quite complex in form, note that pow(ε) is monotone increasing and
concave in ε and pow(0) = 0. The last fact implies ℵ0(k) = 1 and α(0) = s as
expected. It rises to the value of 1 before ε becomes 1, and does so at a point
that depends on the size s of the alphabet. We plot it below in Figure 1 for
several value of s. Finally, note that if k = logsn then ℵε(k) = O(npow(ε)).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6

P
ow

er

Mismatch Rate

16
.6

%
 (s

=2
)

33
.0

%
 (s

=4)

45.4% (s
=8)

56.7% (s
=20)

Fig. 1. Pow(ε) plotted for several values of s. For each curve the percentage mismatch
at which Pow becomes 1 is given.

7 Generating Condensed Neighborhoods

With the analysis of complexity in hand, the only remaining problem was to
efficiently generate all the strings in a condensed d-neighborhood of a string w
of length k. The basic idea is to explore the trie of all strings over the underlying
alphabet, computing row by row the dynamic programming matrix of w versus
the string on the current path in the trie. That is, given the last row, Lv,w,
of the dynamic programming matrix for w versus a string v, one computes, in
O(k)-time, the last row of the dynamic program matrix for w versus va for every
letter a in the alphabet. For the simple Levenshtein measure, the smallest value
in a row is monotonically increasing and therefore once a row R has a minimum
value, min(R), greater than d, one can certainly eliminate the current string and
all extensions of it as belong to the condensed neighborhood. Conversely, once
a row is reached that has d as its last entry, then a string in the condensed
neighborhood has been reached and one should report the current string and
then backtrack. In pseudo code, one calls Search(ε,[012 . . . k]), where Search is
the routine:

Search(v,R)
if R[k] = d then

Report v
else if min(R) ≤ d then

for a ∈ Σ do
Compute S = Lva,w from R
Search(va,R)

The big problem above is that too much time is taken visiting words that are
not in the condensed neighborhood. As soon as min(R) is d, we know that the
only possible words in the condensed neighborhood are those that are extended
by the suffix wx for each x such that R[x] = d, where wx is the suffix of w
consisting of its last k − x symbols. This gives us the algorithm:

Search(v,R)
1. if min(R) = d then
2. for each x s.t. R[x] = d do
3. Report v · wx
4. else # min(R) < d #
5. for a ∈ Σ do
6. Compute S = Lva,w from R
7. Search(va,S)

Now the number of terminal strings visited (i.e., those for which no further recur-
sion is pursued) is less than the number of words in the condensed neighborhood
as at least one member is reported in lines 2 and 3. Moreover, the number of in-

terior strings is also less than the number of terminal strings as the recursion tree
is an s-ary complete tree. Thus the total number of calls to Search is O(ℵ̄d(k))
and each call takes O(k) time.

Next, immediately note that one need only compute the 2d+ 1 values of the
dynamic programming matrix that are in the band between diagonals −d and
d as one can easily show that any value outside this band must be greater than
d. Thus the relevant part of each row is computed in O(d) time. But then how
does one look up v · wx in an index in less than O(k) time given that |wx| can
be on the order of k?

The answer comes from the fact that k = logsN and thus we can build a
very simple index based on directly encoding every k-mer w as an s-ary number,
code(w), in the range [0, sk − 1] = [0, n− 1]. It is an easy exercise (and shown in
the earlier paper [8]) that with two n-vectors of integers, one can build an index
that for each k-mer code delivers the positions, in the underlying text (of length
n), at which that k-mer occurs. So with such a simple structure, reporting a
string in the neighborhood requires only delivering its code. First note that one
can incrementally compute code(va) = code(v) · s + code(a) in O(1) time, and
second, that one can precompute code(wz) and power(z) = code(sz) for every
z in a relatively minuscule O(k) time before starting the search. So during the
generation of neighborhoods, one gets the code for v · wx in O(1) time by way
of the fact that code(v · x) = code(v) · power(k − x) + code(wx).

The careful reader will note that there is one remaining problem. Namely,
that in line 2 of Search there could be two or more entries in R, say x and
z > x such that R[x] = R[z] = e and it could be that v · wx is not in the
condensed neighborhood because wz is a prefix of wx! To me it was fascinating
that the answer lies in the failure function, φ, of the Knuth-Morris-Pratt (KMP)
algorithm for finding matches to a string in a linear time scan of a text. Recall
that for a string v = a1a2 . . . ak that φ(x) is the maximum y such that a1a2 . . . ay
is a suffix of a1a2 . . . ax. A table of φ[x] for all x was shown by KMP to be
constructible in O(k) time. Building φ on the reverse of w gives us exactly the
relationships we want. That is, φ(x) is the maximum y such that wy is a prefix
of wx. To test in the general case that wz is a prefix of wx, we test if φk(x) = z
for some number of application k of φ. Since only 2e+ 1 contiguous suffixes will
be considered at the most, using the failure function to test if any one is a prefix
of another takes O(e) time with a simple marking strategy.

Thus, we have an O(dℵd(k)) algorithm for generating all the words in the
condensed d neighborhood of a string w of length k. Given seed size k, there are
p/k seeds and so generating the strings in the condensed neighborhoods of all of
them takes O(p/k · εk ℵε(k)) = O(eℵε(k)) time.

8 Total Running Time

Putting the time complexities of Section 7 for the generation of neighborhoods
and Section 5 for the extension of seed matches, we have as a function of seed
size k:

O(eℵε(k) + nek/α(ε)k + hep) (8)

Using Equation (7) from Section 6, the complexity excluding the O(hep) true
positive term is:

O(e(spow(ε)k + nek/s(1−pow(ε))k) = O(e(sk)pow(ε)(1 + k
n

sk
)) (9)

When one chooses k = logsn as the seed size, then sk = n and we formally arrive
at the expected time complexity for the entire algorithm given in the following
theorem.

Theorem: Using a simpleO(n) precomputed index, one can search for ε-matches
to a query of length p in a text of length n, in:

O(enpow(ε)logn+ hep) expected time (10)

where pow(ε) = logs
c?+1
c?−1 + ε logs c? + ε and c? = ε−1 +

√
1 + ε−2.

9 Final Remarks and Open Problems

In a hopefully intuitive style, the reader has been introduced to a fairly involved
set of theoretical ideas that underlie the BLAST heuristic and that give a de-
terministic, expected-time algorithm that is provably sublinear in the size of the
text for suitably small ε. That is the algorithm’s running time is O(nc) for c < 1
(and not O(cn) for c < 1 as in a ”sublinear” method such as the Boyer-Moore
exact match algorithm). Interestingly, the author is not aware of any work that
builds on this approach or another that has a superior time complexity.

There are at least two interesting questions. The first involves the analysis
of neighborhood sizes. Is there a tighter bound to the recurrences formulated
here and/or are there better recurrences? Such bounds would give a tighter
characterization of the running time of the algorithm. The second question is a
bit harder to formulate, but the essence of it is whether or not this algorithm
can be shown to be a lower bound on the time required to find all ε-matches. In
other words, one wonders whether the idea of using a logsn seed size and then
carefully doubling such hits is essential for ruling out false positive locations.
That is, must one spend this amount of time eliminating a near miss? If true, it
would also explain why a better result of its kind has not been forthcoming in
the last 20 years since the first publication of this result.

References

1. T. F. Smith and M. S. Waterman. Identification of common molecular subse-
quences. J. Mol. Biol., 147(1):195–197, 1981.

2. E. Ukkonen. Algorithms for approximate string matching. Information and Con-
trol, 64:100-119, 1985.

3. E. Myers and W. Miller. Optimal alignments in linear space. CABIOS, 4(1):11-17,
1988.

4. G. Landau and U. Vishkin. Efficient string matching with k mismatches. Theoret-
ical Computer Science, 43:239-249, 1986.

5. W. R. Pearson and D. J. Lipman. Improved tools for biological sequence compar-
ison. Proc. Natl. Acad. Sci USA, 85:2444–2448, 1988.

6. E. Myers. An O(ND) difference algorithm and its variations. Algorithmica,
1(2):251-266, 1986.

7. S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. Basic local
alignment search tool. J. Mol. Biol., 215(3):403–410, 1990.

8. E. Myers. A sublinear algorithm for approximate keyword searching. Algorithmica,
12(4/5):345–374, 1994.

9. P. Weiner. Linear pattern matching algorithm. 14th Annual IEEE Symposium on
Switching and Automata Theory:111, 1973.

10. U. Manber and E. Myers. Suffix arrays: a new method for on-line searches. Proc.
1st ACM-SIAM Symp. on Discrete Algorithms:319-327, 1990.

11. M. Burrows and D. Wheeler. A block sorting lossless data compression algorithm.
Technical Report 124, Digital Equipment Corporation, 1994.

12. H. Li, J. Ruan, and R. Durbin. Mapping short DNA sequencing reads and calling
variants using mapping quality scores. Genome Research, 18(11):18511858, 2008.

13. P. Jokinen and E. Ukkonen. Two algorithms for approximate string matching in
static texts. In Proc. of MFCS’91, volume 520 of LNCS, pages 240–248, 1991.

14. E. Ukkonen. Approximate string-matching with q-grams and maximal matches.
Theor. Comput. Sci., 92(1):191-211, 1992.

15. D. Harel and R.E. Tarjan. Fast Algorithms for Finding Nearest Common Ances-
tors. SIAM J. Computing, 13(2): 338-355, 1984.

16. L. Roberts. New chip may speed genome analysis. Science, 244:655-656, 1989.
17. G. Mealy. A Method for Synthesizing Sequential Circuits. Bell Systems Technical

Journal, 34:10451079, 1955.
18. E. Moore. Gedanken-experiments on Sequential Machines. Automata Studies,

Annals of Mathematical Studies Princeton University Press, 34:129153, 1956.
19. S. F. Altschul, T. L. Madden, A. A. Schäffer, J. Zhang, Z. Zhang, W. Miller, and

D. J. Lipman. Gapped BLAST and PSI-BLAST: a new generation of protein
database search programs. Nucleic Acids Res., 25(17):3389–3402, 1997.

20. http://blast.ncbi.nlm.nih.gov/Blast.cgi.
21. S. Karlin, S. Altschul. Methods for assessing the statistical significance of molecular

sequence features by using general scoring schemes. Proc. Natl. Acad. Sci. USA
87:2264-2268, 1990.

