
Efficient Local Alignment Discovery amongst Noisy Long Reads

Gene Myers1 myers@mpi-cbg.de ?

MPI for Molecular Cell Biology and Genetics, 01307 Dresden, GERMANY

Abstract. Long read sequencers portend the possibility of producing reference quality genomes not
only because the reads are long, but also because sequencing errors and read sampling are almost
perfectly random. However, the error rates are as high as 15%, necessitating an efficient algorithm for
finding local alignments between reads at a 30% difference rate, a level that current algorithm designs
cannot handle or handle inefficiently. In this paper we present a very efficient yet highly sensitive,
threaded filter, based on a novel sort and merge paradigm, that proposes seed points between pairs of
reads that are likely to have a significant local alignment passing through them. We also present a linear
expected-time heuristic based on the classic O(nd) difference algorithm [1] that finds a local alignment
passing through a seed point that is exceedingly sensitive, failing but once every billion base pairs.
These two results have been combined into a software program we call DALIGN that realizes the fastest
program to date for finding overlaps and local alignments in very noisy long read DNA sequencing data
sets and is thus a prelude to de novo long read assembly

1 Introduction & Summary

The PacBio RS II sequencer is the first operational “long read” DNA sequencer [2]. While its error rate is
relatively high (ε = 12-15% error), it has two incredibly powerful offsetting properties, namely, that (a) the
set of reads produced is a nearly Poisson sampling of the underlying genome, and (b) the location of errors
within reads is truly randomly distributed. Property (a), by the Poisson theory of Lander and Waterman
[3], implies that for any minimum target coverage level k, there exists a level of sequencing coverage c that
guarantees that every region of the underlying genome is covered k times. Property (b), from the early work
of Churchill and Waterman [4], implies that the accuracy of the consensus sequence of k such sequences is
O(εk) which goes to 0 as k increases. Therefore, provided the reads are long enough that repetitive genome
elements do not confound assembling them, then in principle a (near) perfect de novo reconstruction of a
genome at any level of accuracy is possible given enough coverage c.

These properties of the reads are in stark contrast to those of existing technologies where neither property
is true. All previous technologies make reproducible sequencing errors. A typical rate of occurrence for these
errors is about 10−4 implying at best a Q40 reconstruction is possible, whereas in principle any desired
reconstruction accuracy is possible with the long reads, e.g., a Q60 reconstruction has been demonstrated for
E. coli [5]. All earlier technologies also exhibit clear sampling biases, typically due to a biased amplification
or selection step, implying that many regions of a target genome are not sequenced. For example, some
PCR-based instruments often fail to sequence GC rich stretches. So because their error and sampling are
unbiased, the new long read technologies are poised to enable a dramatic shift in the state of the art of de
novo DNA sequencing.

The questions then are (a) what level of coverage c is required for great assembly, i.e. how cost-effectively
can one get near the theoretical ideal above, and (b) how does one build an assembler that works with such
high error rates and long reads? The second question is important because most current assemblers do not
work on such data as they assume much lower error rates and much shorter reads, e.g. error rates less than
2% and read lengths of 100-250bp. Moreover, the algorithms within these assemblers are specifically tuned
for these operating points and some approaches, such as the de-Bruijn graph [6] would catastrophically fail
at rates over 10%.

Finding overlaps is typically the first step in an overlap-layout-consensus (OLC) assembler design [7] and
is the efficiency bottleneck for such assemblers. In this paper, we develop an efficient algorithm and software
for finding all significant local alignments between reads in the presence of the high error rates of the long
reads. Finding local alignments is more general then finding overlaps, and we do so because it allows us
to find repeats, chimers, undetected vector sequence and other artifacts that must be detected in order to

? Supported by the Klaus Tschira Stiftung, Heidelberg, GERMANY

achieve near perfect assemblies. To this authors knowledge, the only previous algorithm and software that
can effectively accommodate the level of error in question is BLASR [8] which was original designed as a tool
to map long reads to a reference genome, but can also be used for the assembly problem. Empirically our
program, DALIGN, is more sensitive while being typically 20 to 40 times faster depending on the data set.

We make use of the same basic filtration concept as BLASR, but realize it with a series of highly optimized
threaded radix sorts (as opposed to a BWT index [9]). While we did not make a direct comparison here, we
believe the cache coherence and thread ability of the simpler sorting approach is more time efficient then
using a more sophisticated but cache incoherent data structure such as a Suffix Array or BWT index. But
the real challenge is improving the speed of finding local alignments at a 30-40% difference rate about a seed
hit from the filter, as this step consumes the majority of the time, e.g. 85% or more in the case of DALIGN.
To find overlaps about a seed hit, we use a novel method of adaptively computing furthest reaching waves of
the classic O(nd) algorithm [1] augmented with information that describes the match structure of the last p
columns of the alignment leading to a given furthest reaching point. Each wave on average contains a small
number of points, e.g. 8, so that in effect an alignment is detected in time linear in the number of columns
in the alignment.

In practice DALIGN achieved the following CPU and wall-clock times on 3 publicly available PacBio data
sets [10]. The 48X E coli data set can be compared against itself in less than 5.4 wall clock minutes on
a Macbook Pro with 16Gb of memory and a 4-core i7-processor. The 89X Arabadopsis data set can be
processed in 71 CPU hours or 10 wall-clock minutes on our modest 480 core HPC cluster, where each node
is a pair of 6-core Intel Xeon E5-2640’s at 2.5GHz with 128Gb (albeit only 50-60Gb is used per node).
Finally on the 54X human genome data set, 15,600 CPU hours or 32-33 wall-clock hours are needed. Thus
our algorithm and software enables the assembly of gigabase genomes in a “reasonable” amount of compute
time (e.g., compared to the 404,000 CPU hours reported for BLASR).

2 Preliminaries: Edit Graphs, Alignments, Paths, and F.R.-Waves

DALIGN takes as input a block A of M long reads A1, A2, . . . AM and another block B of N long reads
B1, B2, . . . BN over alphabet Σ = 4, and seeks read subset pairs P = (a, i, g)× (b, j, h) such that len(P) =
((g − i) + (h− j))/2 ≥ τ and the optimal alignment between Aa[i+ 1, g] and Bb[j + 1, h] has no more than
2ε · len(P) differences where a difference can be either an insertion, a deletion, or a substitution. Both τ and ε
are user settable parameters, where we call τ the minimum alignment length and ε the average error rate. We
further will speak of 1− 2ε as the correlation or percent identity of the alignment. It will also be convenient
throughout to introduce ΣA =

∑M
a=1 |Aa|, the total number of base pairs in A, and maxA = maxa |Aa| the

length of the longest read in A.
Most readers will recall that an edit graph for read A = a1a2 . . . am versus B = b1b2 . . . bn is a graph with

an (m+ 1)× (n+ 1) array of vertices (i, j) ε [0,M]× [0, N] and the following edges:

(a) deletion edges (i− 1, j)→ (i, j) with label
[
ai
-

]
if i > 0.

(b) insertion edges (i, j − 1)→ (i, j) with label
[

-
bj

]
if j > 0.

(c) diagonal edges (i− 1, j − 1)→ (i, j) with label
[
ai
bj

]
if i, j > 0

A simple exercise in induction reveals that the sequence of labels on a path from (i, j) to (g, h) in the edit
graph spells out an alignment between A[i + 1, g] and B[j + 1, h]. Let a match edge be a diagonal edge for
which ai = bj and otherwise call the diagonal edge a substitution edge. Then if match edges have weight 0
and all other edges have weight 1, it follows that the weight of a path is the number of differences in the
alignment it models. So our goal in edit graph terms is to find read subset pairs P such that len(P) ≥ τ and
the lowest scoring path between (i, j) and (g, h) in the edit graph of Aa versus Bb has cost no more than
2ε · len(P).

In 1986 we presented a simple O(nd) algorithm [1] for comparing two sequences that centered on the
idea of computing progressive “waves” of furthest reaching (f.r.) points. Starting from a point ρ = (i, j) in
diagonal κ = i− j of the edit graph of two sequences, the goal is to find the longest possible paths starting
at ρ, first with 0-differences, then with 1-differences, 2-differences, and so on. Note carefully that after d

differences, the possible paths can end in diagonals κ ± d. In each of these 2d + 1 diagonals we want to
know the furthest point on the diagonal that can be reached from ρ with exactly d differences which we
denote by Fρ(d, k). We call these points collectively the d-wave emanating from ρ and formally Wρ(d) =
{Fρ(d, κ− d), . . . Fρ(d, κ+ d)}. We will more briefly refer to Fρ(d, k) as the f.r. d-point on k where ρ will be
implicit understood from context. In the 1986 paper we proved that:

F (d, k) = Slide(k,max{F (d− 1, k − 1) + (1, 0), F (d− 1, k) + (1, 1), F (d− 1, k + 1) + (0, 1)} (1)

where Slide(k, (i, j)) = (i, j) + max{∆ : ai+1ai+2 . . . ai+∆ = bj+1bj+2 . . . bj+∆}. In words, the f.r. d-point
on k can be computed by first finding the furthest of (a) the f.r. (d − 1)-point on k − 1 followed by an
insertion, or (b) the f.r. (d − 1)-point on k followed by a substitution, or (c) the f.r. (d − 1)-point on k + 1
followed by a deletion, and thereafter progressing as far as possible along match edges (a “slide”). Formally
a point (i, j) is furthest if its anti-diagonal, i+ j, is greatest. Next, it follows easily that the best alignment
between A and B is the smallest d such that (m,n) ∈ W(0,0)(d) where m and n are the length of A and B,
respectively. So the O(nd) algorithm simply computes d-waves from (0, 0) in order of d until the goal point
(m,n) is reached in the dth wave. It can further be shown that the expected complexity is actually O(n+d2)
under the assumption that A and B are non-repetiitve sequences. In what follows we will be computing
waves adaptively and in both the forward direction, as just described, and in the reverse direction, which is
conceptually simply a matter of reversing the direction of the edges in the edit graph.

3 Rapid Seed Detection: Concept

Given blocks A and B of long, noisy reads, we seek to find local alignments between reads that are sufficiently
long (parameter τ) and sufficiently stringent (parameter ε). For our application ε is much larger than typically
contemplated in prior work, 10-15%, but the reads are very long, 10Kbp, so τ is large, 1 or 2Kbp. Here we
build a filter that eliminates read pairs that cannot possibly contain a local alignment of length τ or more, by
counting the number of conserved k-mers between the reads. A careful and detailed analysis of the statistics
of conserved k-mers in the operating range of ε and τ required by long read data, has previously been given
in the paper about the BLASR program [8]. So here we just illustrate the idea by giving a rough estimate
assuming all k-mer matches are independent events. Under this simplifying assumption, it follows that a
given k-mer is conserved with probability π = (1−2ε)k and the number of conserved k-mers in an alignment
of τ base pairs is roughly a Bernouilli distribution with rate π and thus an average of τ · π conserved k-mers
are expected between two reads that share a local alignment of length τ . As an example, if k = 14, ε = 15%,
and τ = 1500, then π ≈ .714 = .0067, we expect to have 10.0 14-mers conserved on average, and only .046%
of the sought read pairs have 1 or fewer hits between them and only .26% have 2 or fewer hits. Thus a filter
with expected sensitivity 99.74% examines only read pairs that have 3 or more conserved 14-mers. BLASR
and DALIGN effectively use this strategy where one controls sensitivity and specificity by selecting k and the
number of k-mers that must be found. Beyond this point our methods are completely different.

First, we improve specificity by (a) computing the number of conserved k-mers in bands of diagonals
of width 2s between two reads (as opposed to the entire reads) where a typical choice for s is 6, and (b)
thresholding a hit on the number of bases, h, in conserved k-mers (as opposed to the number of k-mers).
Condition (a) increases specificity as it limits the set of k-mers to be counted at a potentially slight loss of
sensitivity because an alignment can have an insertion or deletion bias and so can drift across bands rather
than staying in a single band. To understand condition (b) note that 3 consecutive matching k-mers involve
a total of k + 2 matching bases, whereas 3 disjoint matching k-mers involve a total of 3k matching bases.
Under our simplifying assumption the first situation happens with probability π1+2/k and the second with
probability π3, i.e. one is much more specific than the other. By counting the number of bases involved in
k-mer hits we ensure that all filters hits have roughly the same statistical frequency.

There are many ways to find matching k-mers over an alphabet Σ, specifically of size 4 in this work,
most involving indices such as Suffix Arrays [11] or BWT indices [9]. We have found in practice that a much
simpler series of highly optimized sorts can similarly deliver the number of bases in k-mers in a given diagonal
band between two reads. Given blocks A and B we proceed as follows:

1. Build the list ListA = {(kmer(Aa, i), a, i)}a,i of all k-mers of the A block and their positions, where
kmer(R, i) is the k-mer, R[i− k + 1, i].

2. Similarly build the list ListB = {(kmer(Bb, j), b, j)}b,j .
3. Sort both lists in order of their k-mers.
4. In a merge sweep of the two k-mer sorted lists build ListM = {(a, b, i, j) : kmer(Aa, i) = kmer(Bb, j)} of

read and position pairs that have the same k-mer.
5. Sort ListM lexicographically on a, b, and i where a is most significant and i least.

To keep the following analysis simple, let us assume that the sizes of the two blocks are both roughly the
same, say N . Steps 1 and 2 are easily seen to take O(N) time and space. The sorts of steps 3 and 5 are in
theory O(LlogL) where L is the list size. The only remaining complexity question is how large is ListM . First
note that there is a contribution (i) from k-mers that are purely random chance, and (ii) from conserved
k-mers that are due to the reads actually being correlated. The first term is N2/Σk as we expect to see
a given k-mer N/Σk times in each block. For case (ii), suppose that the data set is a c-fold covering of
an underlying genome, and, in the worst case, the A and B blocks are the same block and contain all the
data. The genome is then of size N/c and each position of the genome is covered by c reads by construction.
Because c/π k-mers are on average conserved amongst the c reads covering a given position, there are thus
N/c · (c/π)2 = (Nc/π2) matching k-mer pairs by non-random correlations. In most projects c is typically
50-100 whereas π is typically 1/100 (e.g. k = 14 and ε = 15%) implying somewhat counter-intuitively that
the non-random contribution is dominated by the random contributions! Thus ListM is O(N2/Σk) in size
and so in expectation the time for the entire procedure is dominated by Step 5 which takes O(N2logN/Σk).
Finally, suppose the total amount of data is M and we divide it into blocks of size Σk all of which are
compared against each other. Then the time for each block comparison is O(kΣk) using O(Σk) space, that is
linear time and space in the block size. Finally, there are M/Σk blocks implying the total time for comparing
all blocks is O(kM · (M/Σk)). So our filter, like all others, still has a quadratic component in terms of the
number of occurrences of a given k-mer in a data set. With linear times indices such as BWT’s the time can
theoretically be improved by a factor of k. However, in practice the k arises from a radix sort that actually
makes only k/4 passes and is so highly optimized, threaded, and cache coherent that we believe it likely
outperforms a BWT approach by a considerable margin. At the current time all we can say is that DALIGN
which includes alignment finding is 20-40 times faster than BLASR which uses a BWT (see Table 6).

For the sorted list ListM , note that all entries involving a given read pair (a, b) are in a single contiguous
segment of the list after the sort in Step 5. Given parameters h and s, for each pair in such a segment,
we place each entry (a, b, i, j) in both diagonal bands d = b(i − j)/2sc and d + 1, and then determine the
number of bases in the A-read covered by k-mers in each pair of bands diagonal band, i.e. Count(a, b, d) =
| ∪ {w(Aa, a, i) : (a, b, i, j) ∈ ListM and b(i − j)/2sc = d or d + 1}|. Doing so is easy in linear time in the
number of relevant entries as they are sorted on i. If Count(a, b, d) ≥ h then we have a hit and we call our
local alignment finding algorithm to be described, with each position (i, j) in the bucket d unless the position
i is already within the range of a local alignment found with an index pair searched before it. This completes
the description of our filtration strategy and we now turn to its efficient realization.

4 Rapid Seed Detection: Algorithm Engineering

Todays processors have multiple cores and typically a 3-level cache hierarchy implying memory fetch times
vary by up to 100 for L1 cache hits versus a miss at all three cache levels. We therefore seek a realization
of the algorithm above that is parallel over T threads and is cache coherent. Doing so is easy for steps 1, 2,
and 4 and we optimize the encoding of the lists by squeezing their elements into 64-bit integers. So the key
problem addressed in the remainder of this section is how to realize a threadable, memory coherent sort of
an array src[0..N − 1] of N 64-bit integers in steps 3 and 5.

We chose a radix sort [12] where each number is considered as a vector of P = dhbits/Be, B-bit digits,
(xP , xP−1, . . . , x1) and B is a free parameter to be optimally chosen empirically later. A radix sort sorts
the numbers by stably sorting the array on the first B-bit digit x1, then on the second x2, and so on to xP
in P sorting passes. Each B-bit sort is achieved with a bucket sort [12] with 2B buckets. Often this basic
sort is realized with a linked list, but a much better strategy sequentially moves the integers in src into
pre-computed segments, trg[bucket[b] .. bucket[b + 1] − 1] of an auxiliary array trg[0..N − 1] where, for the
pth pass, bucket[b] = {i : src[i]p < b} for each b ∈ [0, 2B − 1]. In code, the pth bucket sort is:

for i = 0 to N-1 do

{ b = src[i]_p

trg[bucket[b]] = src[i]

bucket[b] += 1

}

Asymptotically the algorithm takes O(P (N+2B)) time but B and P are fixed small numbers so the algorithm
is effectively O(N).

While papers on threaded sorts are abundant [13], we never the less present our pragmatic implementation
of a threaded radix sort, because it uses half the number of passes over the array that other methods
use, and accomplishing this is non-trivial as follows. In order to exploit the parallelism of T threads, we
let each thread sort a contiguous segment of size part = dN/T e of the array src into the appropriate
locations of trg. This requires that each thread t ∈ [0, T − 1] has its own bucket array bucket[t] where now
bucket[t][b] = {i : src[i] < b or src[i] = b and i/part < t}. In order to reduce the number of sweeps over
the arrays by half, we produce the bucket array for the next pass while performing the current pass. But
this is a bit complex because each thread must count the number of B-bit numbers in the next pass that
will be handled by not only itself but every other thread separately! That is, if the number at index i will
be at index j and bucket b in the next pass then the count in the current pass must be recorded not for
the thread i/part currently sorting the number, but for the thread j/part that will sort the number in the
next pass. To do so requires that we actually count the number of such events in next[j/part][i/part][b]
where now next is a T × T × 2B array. It remains to note that when src[i] is about to be moved in the
pth pass, then j = bucket[src[i]p] and b = src[i]p+1. The complete algorithm is presented below in C-style
pseudo-code where unbound variables are assumed to vary over the range of the variable. It is easily seen to
take O(N/T + T 2) time assuming B and P are fixed.

int64 MASK = 2^B-1

sort_thread(int t, int bit, int N, int64 *src, int64 *trg, int *bucket, int *next)

{ for i = t*N to (t+1)*N-1 do

{ c = src[i]

b = c >> bit

x = bucket[b & MASK] += 1

trg[x] = c

next[x/N][(b >> B) & MASK] += 1

}
}

int64 *radix_sort(int T, int N, int hbit, int64 src[0..N-1], int64 trg[0..N-1])

{ int bucket[0..T-1][0..2^B-1], next[0..T-1][0..T-1][0..2^B-1]

part = (N-1)/T + 1

for l = 0 to hbit-1 in steps of B do

{ if (l != lbit)

bucket[t,b] = Sum_t next[u,t,b]

else

bucket[t,b] = | { i : i/part == t and src[i] & MASK == b } |

bucket[t,b] = Sum_u,(c<b) bucket[u,c] + Sum_(u<t) bucket[u,b]

next[u,t,b] = 0

in parallel: sort_thread(t,l,part,src,trg,bucket[t],next[t]])

(src,trg) = (trg,src)

}
return src

}

We conclude by emphasizing why this approach to sorting is a particularly efficient realization of a very
large array sort. Each bucket sort involves two small arrays bucket and next that will typically fit in the
fastest L1 cache. Each bucket sort makes a single sweep through src while making 2B sweeps through the
bucket segments of trg. Thus 2B + 1 cache-coherent sweeps occur during each bucket sort pass. Each sweep

can be prefetched as long as their number does not exceed the interleaving of the cache architecture. So the
smaller B is the better the caching and prefetching behavior will be, but this is counter balanced by the
increasing number of passes hbit/B that are required. We found that on most processors, e.g. an Intel i7,
the minimum total time for our radix sort occurs with B = 8 which conveniently is the number of bits in a
byte.

The number of threads T to employ is a complex question despite the fact that there is no communication
or synchronization required between threads in our algorithm and the non-parallel overhead is only O(T 2).
The reason is that every thread does not have its own set of caches. They generally have an independent L1
cache, but then share the L2 and L3 caches. This means that the actual number of sweeps taking place is
T (2B + 1) which at the level of the L2 cache begins to induce interleaving interference. Nonetheless, speed
up is still very good. For example, on a 4-core Intel i7, the speedup achieved was 3.6 !

5 Rapid Local Alignment Discovery from a Seed

We now turn to finding local alignments of length τ or more and correlation 1− 2ε or better given a seed-hit
(i, j) between two reads A and B reported by the filter above. The basic idea is to compute f.r. waves in both
the forward and reverse direction from the seed point ρ = (i, j) (see Section 2). The problem of course is
that the d-wave from ρ spans 2d+1 diagonals, that is, waves become wider and wider as one progresses away
from ρ in each direction. We know that only one point in each wave will actually be in the local alignment
ultimately reported, but we only know these points after all the relevant waves have been computed. We use
several strategies to trim the span of a wave by removing f.r. points that are extremely unlikely to be in the
desired local alignment.

A key idea is that a desired local alignment should not over any reasonable segment have an exceedingly
low correlation. To this end imagine keeping a bit vector B(d, k) that actually models the last, say C = 60
columns, of the best path/alignment from ρ to a given f.r. point F (d, k) in the d-wave. That is a 0 will denote
a mismatch in a column of the alignment and a 1 will denote a match. This is actually relatively easy to
do: left-shift in a 0 when taking an indel or substitution edge and then left-shift in a 1 with each matching
edge of a snake. One can further keep track of exactly how many matches M(d, k) there are in the alignment
by observing the bit that gets shifted out when a new bit is shifted in. The pseudo-code below computes
Wρ(d+ 1)[low− 1, hgh+ 1] from Wρ(d)[low, hgh] assuming that [low, hgh] ⊆ [κ− d, κ+ d] is the interval of
Wρ(d) that we have decided to retain (to be described below). Note that the code computes the information
for each wave in place within the arrays W, B, and M where W simply records the B-coordinate, j, of each f.r.
point (i, j) as we know the diagonal k of the point, and hence that i = j + k.

MASKC = 1 << (C-1)

W[low-2] = W[hgh+2] = W[hgh+1] = y = yp = -1

for k = low-1 to hgh+1 do

{ (ym,y,yp) = (y,yp+1,W[d+1]+1)

if (ym = min(ym,y,yp))

(y,m,b) = (ym,M[k-1],B[k-1])

else if (yp = min(ym,y,yp)

(y,m,b) = (yp,M[k+1],B[k+1])

else

(y,m,b) = (y,M[k],B[k])

if (b & MASKC != 0)

m -= 1

b <<= 1

while (B[y] == A[y+k])

{ y += 1

if (b & MASKC == 0)

m += 1

b = (b << 1) | 1

}

(W[k],M[k],B[k]) = (y,m,b)

}

A very simple principle for trimming a wave is to remove f.r. points for which the last C columns of the
alignment have less than sayM matches, we call this the regional alignment quality. For example, if ε = .15
then one almost certainly does not want a local alignment that contains a C column segment for which
M[k] < .55C = 33 if C = 60. A second trimming principle is to keep only f.r. points which are within L anti-
diagonals of the maximal anti-diagonal reached by its wave. Intuitively, the f.r. point (i, j) on diagonal k?

on the desired path is on a greater anti-diagonal i+ j than those of the points on either side of it in the same
wave, and as one progresses away from diagonal k?, the anti-diagonal values of the wave recede rapidly, giving
the wave the appearance of an arrowhead. The higher the correlation rate of the alignment, the sharper the
arrow head becomes and the points far enough behind the tip of the arrow are almost certainly not points
on an optimal local alignment. So for each portion of a wave computed from the previous trimmed wave, we
trim away f.r. points from [low− 1, hgh+ 1] that either have M[j] <M or (2W[k?] + k?)− (2W[j] + j) > L. In
the experimental section we show that L = 30 is a universally good value for trimming.

While not a formal proof per se, the following argument explains why in the empirical results section
we see that the average wave size hgh − low is a constant for any fixed value of ε, and hence why the
alignment finding algorithm is linear expected time in the alignment length. Imagine the extension of an
f.r. point that is actually on the path of an alignment with correlation 1− 2ε or better. For the next wave,
this point jumps forward one difference and then ”slides” on average α = (1 − ε)2/(1 − (1 − ε)2) matching
diagonals. Contrast this to an f.r. point off the alignment path which jumps one difference and then only
slides β = 1/(Σ − 1) diagonals, assuming every base is equally likely. On average then, an entry d diagonals
away from the alignment path, has involved d jumps from f.r. points off the path, and hence is d(α − β)
behind the f.r. point on the alignment path in the same wave. Thus the average width of a wave trimmed
with lag cutoff L would be less than 2L/(α− β). This last step of the argument is incorrect as the statistics
of average random path length under the difference model is more complex then assuming all random steps
are the same, but there is a definite expected value of path length with d-differences, and therefore the basis
of the argument holds, albeit with a different value for β. Since α increases as ε decreases, it further explains
why the wave becomes more pointy and narrower as ε goes to zero.

The computation of successive waves eventually ends because either (a) the boundary of the edit graph
of A and B is reached, or (b) all the f.r. points fail the regional alignment quality criterion in which case one
can assume that the two reads no longer correlate with each other. In case (b), one should not report the
best point in the last wave, as the trimming criterion is overly permissive (e.g. the last 5 columns could all be
mismatches!) Because we seek alignments that have an average correlation rate of 1− 2ε, we choose to end
the path at a polished point with greatest anti-diagonal for which the last E ≤ C columns are such that every
suffix of the last E columns have a correlation of 1 − 2ε or better. We call such alignments suffix positive
(at rate ε) for reasons that will become obvious momentarily. We must then keep track of the polished f.r.
point with greatest anti-diagonal as the waves are computed, which in turns means that we must test the
alignment bit-vector of the leading f.r. point(s) for the suffix positive property in each wave.

One can in O(1) time determine if an alignment bit-vector e is suffix positive by building a 2E-element
table SP [e] as follows. Let Score(∈) = 0 and recursively let Score(1b) = Score(b) + α and Score(0b) =
Score(b) − β where α = 2ε and β = 1 − 2ε. Note that if bit-vector b has m matches and d differences, then
Score(b) = αm − βd and if this is non-negative then it implies that m/(m + d) ≥ 1 − 2ε, i.e. b’s alignment
has correlation 1−2ε or better. Let SP [e] = min{Score(b) : b is a suffix of e}. Clearly SP [e] ≥ 0 if and only
if e is suffix positive (at rate ε). By computing Score over the trie of all length E bit vectors and recording
the minimum along each path of the trie, the table SP can be built in linear time.

However if E is large, say 30 (as we generally prefer to set it), then the table gets too big. If so, then
pick a size D (say 15) for which the SP-table size is reasonable and consider an E-bit vector e to consist of
X = E/D, D-bit segments eX · eX−1 · . . . · e1. Precompute the table SP, but for only D bits, and a table SC
for bit-vectors of the same size where SC[b] = Score(b). Given these two 2D tables one can then determine if
the longer bit-vector e is suffix positive in O(X) time by calculating whether Polish(X) is true or not with
the following recurrences:

Score(x) =
{

Score(x−1) + SC[ex] if x ≥ 1
0 if x = 0

Polish(x) =
{

Polish(x−1) and Score(x−1) + SP [ex] ≥ 0 if x ≥ 1
true if x = 0

(2)

In summary, we compute waves of f.r. points keeping only those that are locally part of a good alignment
and not too far behind the leading f.r. point. The waves stop either when a boundary is reached, in which
case the boundary point is taken as the end of the alignment, or all possible points are eliminated, in which
case the furthest polished f.r. point is taken as the end of the alignment (in the given direction). The search
takes place both in the forward direction and the reverse direction from a seed tip ρ. The intervals of A and
B at which the forward and reverse searches end is reported as a local alignment if the alignment has length
τ or more.

Clearly the algorithm is heuristic: (a) it could fail to find an alignment by virtue of eliminating incorrectly
an f.r. point on the alignment, and (b) it could over report alignments whose correlation is less than 1−2ε as
local segments of worse quality are permitted depending on the setting ofM. We will examine the sensitivity
and specificity of the algorithm in the Empirical Performance section, but for the moment indicate that with
reasonable choices ofM and L the algorithm fails less, than once in a billion base pairs, i.e. (a) almost never
happens. It is our belief that this heuristic variation of the O(nd) algorithm is superior to any other filter
verification approach for local alignments in the case of identity matching over DNA while simultaneously
being extremely sensitive. Intuitively this is because the heuristic explores many fewer vertices of the edit
graph than dynamic programming based approaches because in expectation the span hgh− low of trimmed
waves is a small constant, that is, an alignment is found in linear expected time with near certainty.

6 Empirical Performance

All trials reported in this section were run on a Macbook Pro with a 2.7GHz Intel Core i7 and the code was
compiled with gcc version 4.2.1 with the -O4 level of optimization set.

For a given setting of ε, we ran trials to determine the sensitivity of the local alignment algorithm in terms
of the trimming parameters M and L. Each trial consisted of generating a 1Mbp random DNA sequence
(with every base equally likely) and then peppering in random differences at rate ε into two distinct copies.
The two perturbed copies were then given to the wave algorithm with seed point (0, 0). For various settings of
the trimming parameters and ε we ran 1000 trials and recorded (a) what fraction of the trials were successful
in that the entire 1Mbp alignment between the two copies was reported (Table 2), (b) the average wave span
(Table 3), and (c) the time taken.

Observed Effective
Perturbation (ε) Correlation Perturbation

15.0% 76.1% 12.45%
10.0% 82.8% 8.60%
5.0% 90.7% 4.35%
2.5% 95.2% 2.40%
1.0% 98.0% 1.00%

Table 1. Perturbation versus Observed Correlation and Effective Perturbation

The first thing we observed was that the perturbed copies of a sequence actually aligned with much better
correlation than 1 − 2ε and the larger ε the larger the relative improvement. We thus define the effective
perturbation as the value ε? such that 1 − 2ε? equals the observed correlation. Table 1 gives the observed
correlation and effective perturbation for a range of values of ε.

The success rate and wave span both increase monotonically as L increases and asM decreases. In Table
2, we observe that achieving a 100% success rate depends very crucially on M being small enough, e.g. M
must be 55% or less when the perturbation is ε = 15%, 60% or less for ε = 10%, and so on. But one should
further note in Table 3 that the average wave span is virtually independent of M and really depends only
on L, at least for the values ofM that are required to have a 100% success rate. One might then think that
only the lag threshold is important and trimming on M can be dropped, but one must remember that in
the general case, when two sequences stop aligning, it is regional alignment quality that stops the extension
beyond the end of the local alignment.

L
1− 2ε M 15 20 25 30 35 40 45 50

70%
55% 0.68 0.97 1.00 1.00 1.00 1.00 1.00 1.00
60% 0.27 0.66 0.74 0.74 0.74 0.74 0.73 0.72
65% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

80%

55% 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00
60% 0.96 1.00 1.00 1.00 1.00 1.00 1.00 1.00
65% 0.86 0.93 0.94 0.92 0.94 0.95 0.95 0.94
70% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

90%
70% 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
75% 0.91 0.92 0.92 0.92 0.94 0.94 0.94 0.94
80% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

95%
80% 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99
85% 0.25 0.25 0.27 0.28 0.27 0.26 0.27 0.27

98% 85% 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table 2. Success Rate of Heuristic on 1Mbp Alignments

L
1− 2ε M 15 20 25 30 35 40 45 50

70%
55% 6.4 7.9 9.5 11.1 12.8 14.3 15.9 17.5
60% 6.4 7.9 9.5 11.1 12.8 14.3 15.9 17.5
65% 6.4 7.9 9.5 11.1 12.8 14.3 15.9 17.5

80%

55% 4.4 5.5 6.5 7.5 8.6 9.6 10.7 11.7
60% 4.4 5.5 6.5 7.5 8.6 9.6 10.7 11.7
65% 4.4 5.5 6.5 7.5 8.6 9.6 10.7 11.7
70% 4.4 5.5 6.5 7.5 8.6 9.6 10.7 11.7

90%
70% 2.7 3.2 3.7 4.2 4.7 5.2 5.7 6.2
75% 2.7 3.2 3.7 4.2 4.7 5.2 5.7 6.2
80% 2.7 3.2 3.7 4.2 4.7 5.2 5.7 6.2

95%
80% 1.8 2.1 2.3 2.6 2.8 3.1 3.3 3.6
85% 1.8 2.1 2.3 2.6 2.8 3.1 3.3 3.6

98% 85% 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

Table 3. Average Wave Span While Finding An Alignment

So we then investigated how quickly the wave’s die off after the end of a local alignment with trials where
two sequences completely random with respect to each other were generated and then the wave algorithm
was called with seed point (0, 0). We recorded the number of waves traversed in each trial, the average span of
the waves, and the total number of furthest reaching (f.r.) points computed all together before the algorithm
quit. The results are presented in Table 4. Basically the total time to terminate grows quadratically in M
for large values but asM moves towards the rate at which two random DNA sequences will align (i.e. 48%)
the growth in time begins to become exponential going to infinity at 48%. One can begin to see this atM=
55% in the table.

We timed the local alignment algorithm on 15 operating points in Tables 2 and 3 for which the success
rate was 100% so that each measurement involved exactly 1billion aligned base pairs. The points covered ε
from 1% to 15% and L from 20 to 50. The structure of the algorithm implies that the time it takes should
be a linear function of (a) the number of waves, D, (b) the number of f.r. points computed, DW̄ where W̄
is the average span of a wave, and (c) the number of non-random aligned bases followed in snakes, a. But
D = ε?N and we know that i+ d+ 2s+ 2a = 2N where i, d, and s are the number of insertions, deletions,
and substitutions in the alignment found. The later implies a = N(1 − (1 + σ)/2ε?) were σ is the relative

Average Number Average Average Number
M of Waves Wave Span of F.R. Points

55% 38 24 910
60% 26 24 620
65% 23 22 510
70% 20 20 400
75% 17 17 290
80% 14 14 200
85% 11 11 120

Table 4. Termination Efficiency

portion of the alignment that is substitutions versus indels. Thus it follows that the time for the algorithm
should be the linear function:

N(α+ β · ε? + γ · ε?W̄) (3)

for some choice of α, β, and γ. A linear regression on our 15 timing values gave a correlation of .9995
with the fit:

N(61 + 185ε? + 32ε?W̄) nano seconds (4)

For example, with L = 30, the algorithm takes 194s for ε = 15%, 134s for ε = 10%, 91s for ε = 5%, 75s
for ε = 2.5%, and 66s for ε = 1%.

To time and estimate the sensitivity of the filtration algorithm we generated 40X coverage of an 10Mbp
synthetic genome. Every read was of length 10Kbp and perturbed by ε = 15% and we sought overlaps of
1Kbp or longer. In Table 5 we present a number of statistics and timings for a few operating points around
our preferred choice of (14, 35, 6) for the parameters k, h, and s. The table reveals that (a) the algorithm
is very sensitive missing 1 in 5000 overlaps at the standard operating point, (b) the false discovery rate
is generally low but does not have a large effect on the time taken by the filtration step, (c) the major
determiner of time taken is k, and (d) the time for the filter, e.g. 132 seconds, is small compared to the time
taken to find local alignments which was roughly 860 seconds.

Sensitivity False Discovery Filter Time Memory Total Time
(k, h, s) (TP/(FN+TP) (FP/(TP+FP) (sec.) (Gb) (sec.)

? (14,35,6) .020% 7.02% 132

11.92

995
(14,32,6) .014% 7.50% 132 1007
(14,30,6) .010% 9.51% 132 1014
(14,28,6) .006% 22.30% 139 1039

(14,35,5) .037% 6.87%

132 11.92

994
? (14,35,6) .020% 7.02% 995

(14,35,7) .015% 7.23% 996
(14,35,8) .013% 7.84% 998

(13,35,6) .004% 10.53% 341 12.85 1193
? (14,35,6) .020% 7.02% 132 11.92 995

(15,35,6) .109% 6.23% 90 8.22 933

Table 5. DALIGN performance on a synthetic 40X dataset as a function of k, h, and s

For all the runs in Table 5, the speedup with 4 threads was 3.88 on average, implying for example
that the wall clock time for the standard operating point was 256 seconds, or 4.25 minutes for comparing

two 400Mb blocks. The 40X synthetic data set constituted a single 400Mbp block in the trials, and when
compared against itself produced 1.23 million overlaps between the 37,000 reads in the data set. One should
note carefully, that for much bigger projects, the time for alignment is considerably less. For example, a 40X
dataset over a 1Gbp synthetic genome, would produce 100 400Mb blocks, but comparing each block against
itself would typically find only 12.3 thousand overlaps. Another way to look at it is that there will be 100
times more overlaps found, but the filter has to be run on roughly 5000 block pairs.

Real genomes are highly repetitive, implying that the number of overlaps found in practical situa-
tions is much higher. For example for the 218Mbp, 31,700 read E. coli data set produced by PacBio
found 1.44 million overlaps in 1256 total seconds (5.36 wall clock minutes). Moreover, to obtain this re-
sult overly frequent k-mers had to be suppressed and low-complexity intervals of reads had to be soft
masked. So while the synthetic results above characterize performance in a well understood situation, per-
formance on real data is harder to predict. As our last result, we show in Table 6 the results of tim-
ing BLASR and DALIGN on blocks of various sizes from the PacBio human data set. DALIGN was run with
(k, h, s) = (14, 35, 6) and k-mers occurring more than 20 times were suppressed. BLASR was run with
the parameters used by the PacBio team for their human genome assembly (private communication, J.
Chin) which were “−nCandidates 24−minMatch 14−maxLCPLength 15−bestn 12−minPctIdentity 70.0
−maxScore 1000 −nproc 4 noSplitSubreads”. Reads in the block were mapped to the human genome ref-
erence in order to obtain the sensitivity numbers. It is clear that DALIGN is much more sensitive (despite the
k-mer suppression) and 22 to 39 times faster depending on the block size. In the introduction we gave our
time, 15,600 core hours, for overlapping the 54X PacBio human genome dataset, which has been informally
reported as 404,000 core hours on the Google ”Exacycle” platform using BLASR with the parameters as above
except −bestn 1 and −minPctIdentity 75.0. This represents a substantial 25X reduction in compute time
and returns the problem to a manageable scale.

BLASR DALIGN

Block Size Sensitivity Time (sec.) Sensitivity Time (sec.)

100 87% 2463 98.7% 109
200 86% 5678 97.5% 222
400 85% 15334 97.3% 393

Table 6. DALIGN versus BLASR

7 Acknowledgments

I would like to acknowledge Sigfried Schloissnig, who is my partner in building a new assembler for long read
data. Also Sigfried’s postdoc Martin Pippel produced the timing numbers for the big runs on Arabidopsis
and Human, and his Ph.D. student Philip Kämpher produced the statistics for Table 6.

References

1. Myers,E.W. (1986) An O(ND) difference algorithm and its variations. Algorithmica, 1, 251-266.
2. Eid, R., Fehr, A., . . . (51 authors) . . . Korlach, J, and Turner, S.W. Real-Time DNA Sequencing from Single

Polymerase Molecules. Science, 323(5910), 133-138.
3. Lander, E.S. and Waterman, M.S. (1988) Genomic mapping by fingerprinting random clones: a mathematical

analysis. Genomics, 2(3), 231-239.
4. Churchill,G.A., and Waterman,W.S. (1992) The accuracy of DNA sequences: estimating sequence quality. Ge-

nomics, 14(1), 89-98.
5. Chin, C.S., Alexander, D.H., Marks, P., Klammer, A.A., Drake, J., Heiner, C., Clum, A., Copeland, A., Huddleston,

J., Eichler, E.E., Turner, S.W., and Korlach, J. (2013) Nonhybrid, finished microbial genome assemblies from long-
read SMRT sequencing data. Nature Methods, 10, 563-569.

6. Pevzner, P.A., Tang, H., Waterman, M.S. (2001). An Eulerian path approach to DNA fragment assembly. PNAS
98(17), 97489753.

7. Kececioglu,J., and Myers,E.W. (1995) Combinatorial algorithms for DNA sequence assembly. Algorithmica, 13,
7-51.

8. Chaisson, M.J., and Tesler, G. (2012) Mapping single molecule sequencing reads using basic local alignment with
successive refinement (BLASR): application and theory. BMC Bioinformatics 13, 238-245.

9. Burrows, M., and Wheeler, D.J. (1994) A block sorting lossless data compression algorithm. Technical Report 124,
Digital Equipment Corporation

10. https : //github.com/PacificBiosciences/DevNet/wiki/Datasets.
11. Manber, U., and Myers, E. (1993) Suffix Arrays: A New Method for On-Line String Searches. SIAM Journal on

Computing bf 22, 935-948.-
12. Cormen, T.H., Leiserson, C.E., Rivest, R.L., and Stein, C. (2009) Introduction to Algorithms (3rd. edition, MIT

Press), 197-204.
13. Yuan, W. http://projects.csail.mit.edu/wiki/pub/SuperTech/ParallelRadixSort/Fast Parallel Radix S

ort Algorithm.pdf

