BIGMAC II:

A FORTRAN LANGUAGE AUGMENTATION TOOL*

Eugene W. Myers, Jr. and Leon J. Osterweil

Department of Computer Science
University of Colorado at Boulder
Boulder, Colorado 80309

ABSTRACT

This paper describes the motivation, design,
implementation, and some preliminary performance
characteristics of BIGMAC II, a macro definition ca-
pability for creating language enhancers and trans-
lators. BIGMAC II enables the user to specify trans-
formations through STREX, a FORTRAN-1ike language,
which enables the specification of macros which are
then used to interpretively alter incoming programs.
BIGMAC II is specially adapted to the processing of
FORTRAN programs. This paper shows how it can be
used as a deprocedurizer (or flattener), a dialect-
to-dialect translator, a portability and version
control aid, and a device for creating language en-
hancements as sophisticated as new control struc-
tures and abstract data types.

BACKGROUND AND MOTIVATION FOR PRODUCING BIGMAC 11

Over the past several years a significant num-
ber of software analysis tools have been produced
by the University of Colorado Software Validation
Group. These tools have at least initially been
largely directed towards the needs of the Mathemat-
ical Software community. Hence they have been de-
signed to be portable over a wide range of machines
and to analyze programs written in FORTRAN. These
two considerations have led us to code our tools in
FORTRAN. As a result we have 1) had good success
in readily rehosting our tools on a variety of ma-
chines and 2) been able to use our tools to analyze
themselves, thereby increasing our confidence in
them.

Through this considerable experience with
FORTRAN, we have come to deeply understand some of
the significant shortcomings of this language. As
tool implementors we have chafed at the absence of
such features as flexible control constructs and
powerful data aggregation capabilities. Yet as cre-
ators of portable tools for producing mathematical
software we felt a deep commitment to FORTRAN, the
lingua franca of that community. In addition we be-
[Teve that FORTRAN 1s, perhaps with the exception
of COBOL, the most widely available, most nearly
standardized of all high level languages, thereby
giving it the best prospects as a basis for porting
programs. We also found that newer languages, such

*This work supported in part by U.S. Army Research
Office grant #DAAG29-80-C-0094 and National Science
Foundation grant #MCS77-02194.

410

CH1627-9/81/0000/0410$00.75 © 1981 IEEE

as Pascal, which offered superior control and data

aggregation facilities usually had drawbacks of

their own. For example, Pascal's block structure
is an obstacle to independent recompilation of sub-

procedures. This is a serious problem during the

%eve}opment of large tools such as our DAVE system
1,2].

Pulled by these conflicting considerations we
have chosen a course taken by many others before us
— namely to enhance the FORTRAN language in the ways
necessary to facilitate our work. A large number
of FORTRAN preprocessors have been built to enhance
FORTRAN by the creation of more powerful control
constructs. We were concerned more with the need
for flexibly defining and accessing powerful data
aggregates. Because the preprocessors we studied
did not offer significant capabilities of this sort,
we constructed a system of our own [3], This capa-
bility enabled us to define a rather limited class
of structured data types and access them from our
standard FORTRAN source text. The implementation
details of these data objects were hidden by our
data structuring capability, thus enabling us to
alter our data structures without the need to alter
the source text which accessed them. This capa-
bility proved most useful, enabling us to construct
our prototype DAVE tool with a minimum amount of
trauma.

A serious weakness of this capability is that
it conceals the implementation details of the data
structures through the use of layers of subroutines.
Although quite effective in concealing details, this
technique proves quite costly in execution time,
necessitating the invocation of numerous subroutines
for each data access.

Because of this difficulty we turned to the
consideration of a macro capability. Our first
goal was to build a capability which could depro-
cedurize or "flatten" our code by substituting in-
line the texts of subroutines in place of the sub-
routine invocations. We conceived of the subroutine
text as being a sort of macro definition and the
subroutine call as being a parameterized macro in-
vocation. We produced a prototype capability of
this sort and successfully used it to flatten the
source code for our DAVE system [4].

According to our measurements we gained an im-
provement in execution time of up to 50% by flatten-
ing only a small number of frequently executed

subprogram invocations. We then turned our atten-
tion to building a more general macro processor tc
enable substantial, flexible enhancements to FORTRAN.
The key to doing this was allowing the user to de-
fine new source language statements by declarations
in the macro language. Thus, for example, superior
control flow constructs such as CASE, IF THEN ELSU,
and DO WHILE can readily be added to FORTRAN by de-
claring them to be new statements whose semantics
are established by means of the text of the macros
which define them.

The macro processor we created is called
BIGMAC Il for historical and humorous reasons.
Perhaps the most important capability which BIGMAT
offers is the capability for creating and accessinc
powerful data aggregates while hiding their imple-
mentation details, thereby adding to FORTRAN true
abstract data type capabilities. This is achieved
Ly considering data structure declaration state-
ments to be Fortran language augmentations and da.a
structure accessing constructs to be new language
operators. The definitions of the declaration and
accessing constructs are made through macro defini-
tions. As shall be shown these definitions can
(indeed must) share implementation details among
themselves. These details remain invisible to the
source code. Thus there is complete freedom to cre-
ate and alter the implementations of data aggregates
beyond the sight and control of the FORTRAN source
language coder. This inability to see or access in-
plementation details qualifies this data aggregate
capability as an abstract data type definition facil-
ity in the classical sense [5].

BIGMAC also facilitates the porting of FORTRAW
programs, an important consideration for tool de-
velopers. Although, as already noted, FORTRAN is a
widespread, standardized language, it is not entire-
1y free of portability problems. Numerous dialects
of the language exist, offering a variety of capa-
bilities for handling such constructs as text
strings, and multiple precision numeric quantities.
These differences are particularly vexing to the
writer of analytic tools for mathematical software,
as he must be concerned with both the manipulation
of source text and the correct analysis of code
dealing with all possible numeric data types. A
possible, but unsatisfactory, solution is to create
a family of versions of the tool program, each in-
tended for a different host compiler. The diffi-
culty here is that each must be maintained and, un-
less extraordinary care is taken, each assumes a
character of its own and incompatibilities between
different versions arise. The usual strategy is to
write the preponderant majority of the program in a
portable subset of FORTRAN, such as PFORT[6] and
auarantine compiler dependencies to a very small
body of code which must then be recoded for every
new host compiler. This approach has been widely
used with success but still has its drawbacks. The
compiler dependent code is usually written as a set
of Tow level subroutines. Hence it usually is fre-
quently invoked, always at the undesirable cost of
subroutine invocations. In addition it still neces-
sitates the creation and maintenance of a family of
programs with the attendant multiplication of effort
and potential for drift.

411

Through the use of BIGMAC, a single master copy
of program text can be maintained and targeted for
the different host machines by translating it with
different sets of macros designed to adapt the
master copy to the idiosyncrasies of the different
host compilers. This approach has been pursued in
a Timited way [7] with good success. Our intention
is to use BIGMAC to combine this notion with the
capabilities for creating advanced data and control
constructs, thereby enabling us to code in a very
powerful, highlevel FORTRAN-Tike language, yet still
maintain a set of completely consistent FORTRAN-
source languaqe versions merely by performing macro
expansions (see Figure 1)

tanguage
Expansion

Macros FORTRAN
& | Program
Adaptation in Host 1's
Macros Dialect
for
Host 1
Language
/// Expansion
High-Level Macros FORTRAN
FORTRAN-Like & } Program
Source Text Adaptatfon in Host 2's
Macros Dialect
T for
®
[
l .
Al °
Program
Modifications ®
[
Language []
Expansion
Macros FORTRAN
] Program
Adaptatian in Host N's
Macros Diatect
for
Host N

FIGURE 1: BIGMC as A PorTING MeCHANISM

The remainder of this paper discusses the partic-
ular macro capabilities which we have implemented
in BIGMAC. The salient features of these capabil-
ities are flexibility, power, and the ease with
which BIGMAC can be used by FORTRAN programmers.
Much of the flexibility of BIGMAC derives solely
from the fact that it is a macro capability. The
user is free to declare any macros and define them
in any way he chooses. Hence new statement types
can be added to the language and arbitrary sub-
routines can be expanded as in-line code in an
arbitrary way. Additional flexibility derives from
the fact that existing statements from standard
FORTRAN can be redefined according to the dictates
of user specified macros. Thus, for example, the
syntax and semantics of existing FORTRAN statements
can be expanded to encompass new operators. Ex-
amples of this will be shown in the following
section.

The power of BIGMAC derives in large measure
from the fact that it provides for more than a

straightforward in situ text insertion capability.
Macro definitions are parameterized, and source

text lines are considered to consist of the macro
identifier and an argument string. Macro definition
bodies can be constructed to analyze the argument
strings and to use them as the basis for the con-
struction of appropriate object text. Thus, the
object text produced may vary considerably from

one invocation to the next. In addition a macro
definition body is capabie of creating object texi
and specifying its insertion in any of three places,
corresponding to the site of the macro invocation,

a Tocation within the deciaration block of the in-
voking program unit, and a location completely out-
side of the invoking program unit. Hence a macro
invocation can cause the creation of entire utilit~
routines and FORTRAN declarations, as well as exe-
cutable code. This is the primary vehicle for cre
ating and hiding the implementation of powerful

data aggregates.

Finally, it is important to note that care has
been taken to assure that the macro definition pro-
cess is not beyond the grasp of FORTRAN programmers.
Macros are themselves defined by means of code
written in STREX, a string extended FORTRAN dialect.
Thus it is expected that FORTRAN programmers could
readily learn to produce their own macros.

BIGMAC TECHNICAL DESCRIPTION

BIGMAC Capabilities

BIGMAC is a general purpose translation system
for FORTRAN software. The key theoretical concepts
behind BIGMAC are those of syntax directed transla-
tion and tree transducers [8,9]. To configure a
specific translator, one submits a context free
grammar {107 and a set of tree macros to the BIGMAC
system. The rewrite rules of the grammar determine
the language that the translator will accept as in-
put. The tree macros are programs that accomplish
the desired transiation by modifying the derivation
tree [10] of the input. Each rewrite rule in the
grammar is coupled with a tree macro. The grammar
and tree macros that configure a transiator are
termed a translation specification.

Once a translator has been configured, it will
transform a segment of text as follows. If the sub-
mitted text is not in the language generated by the
translator's grammar then errors are issued where
appropriate and the text is output unmodified.
Otherwise a derivation tree for the text is built
where each vertex in the tree corresponds to a re-
write rule and hence a tree macro. These tree
macros are invoked when their associated vertices
are reached in a traversal of the derivation tree.
This activity results in a modification of the der-
jvation tree. The string derived by this modified
tree is then output as the desired translation.

It is important to note that the idea of pro-
ducing a source code transformation system is not
new with this effort. Boyle has produced a system,
TAMPR {7], based on the notion of supporting user
specified, correctness-preserving tree transforma-
tions. Our own work differs from TAMPR most strik-
ingly in that it is specially adapted to the needs

412

of the FORTRAN community. Thus the user specifies
translations in STREX, a language comfortably close
to FORTRAN. In addition, many primitives are sup-
plied to facilitate the transformation of FORTRAN
programs. We conjecture that these primitives

also give to the BIGMAC system more power than is
available through TAMPR.

BIGMAC has a built-in FORTRAN grammar. Thus
BIGMAC translators will always accept FORTRAN soft-
ware as input. This built-in grammar can be aug-
mented at the statement and operator levels by the
placement of additional rewrite rules in a trans-
lation specification. Tree macros must accompany
these additional rewrite rules but their presence
is optional for the built-in FORTRAN rewrite rules.
Whenever a tree macro is not present in a transla-
tion specification it is assumed to be the null
program. Thus the translator configured from the
empty translation specification will accept FORTRAN
code as input and return the same code as output.
This augmentation approach to translation specifi-
cations is in keeping with BIGMAC's role as a
FORTRAN software tool. BIGMAC translators will
accept a specified superset of FORTRAN as input
and perform a translation based on a selected sub-
set of the rewrite rules.

The target or output code of a BIGMAC transia-
tion is expected to be FORTRAN, although any other
language (e.g., assembler, Pascal) could be output.
To facilitate the production of FORTRAN as output,
there are a number of special primitives available
to the tree macro writer for this purpose. The
efficiency of translated code is dependent on the
coding effort put into the tree macros. Good but
not optimal results can usually be obtained with
1ittle effort.

As already noted, the BIGMAC system can be
used to configure translators for a variety of
tasks. In the paragraphs below, we describe in a
general way how BIGMAC can be used to create some
of these different types of translators.

At the hiaghest level BIGMAC can be used as a
compiler-compiler [10]. In order to do so, one
must compose a translation specification encompas-
sing the desired language and transformation. In
this case, the built-in FORTRAN grammar is ignored.
As an exampie of this, BIGMAC is currently being
used to build a compiler for a PASCAL-1ike language
which produces FORTRAN as target code.

BIGMAC can be used to extend the FORTRAN lan-
guage in several ways. For example, new data ab-
stractions [11,5] such as a STRING or BIT VECTOR
data type can be added to the ianguage. This re-
quires the introduction of at least one new declar-
ative statement and a number of operators and ex-
ecutable statements for manipulating the data type.
The rewrite rules for these new forms and tree
macros which translate them into standard FORTRAN
are all that is needed to accomplish the extension.
New control structures such as IF _THEN ELSE and
DO WHILE can be added by the introduction of re-
write rules and tree macros for these new state-
ments. The tree programs necessary for these forms

are particularly simpie and_thus a preprocessor hav-
ing the power of IFTRAN [12], for example, can
readily be configured.

The need for a program flattener for a program
coded in FORTRAN has already been discussed. A
BIGMAC transiator for performing this flattening
can be configured simply by specifying the appropri-
ate tree programs for those FORTRAN rewrite rules
which correspond to the subroutine calls and func-

tion references which are to be flattened.

The utility of a macro processor as a port-
ability aid has also been discussed. The use of
BIGMAC to accomplish this will be discussed in de-
tail shortly.

The Use of BIGMAC

The design of BIGMAC envisions two classes of
users. A small group of BIGMAC experts, called
macro writers, are responsible for configuring
translators. Only macro writers need to know how to
compose translation spgcifications. The second
user class is called the using community and consists
of those groups that use any of the translators pro-
vided by the macro writers. The members of the
software using community need only know how to pro-
gram code which utilizes any of a translator's en-
hancements.

The structure of BIGMAC is depicted in Figure
2. The system consists of a translation compiler

Translation
Specification

Translation
Compiler

Translation
Module

FIGRE 2: BIGWC STRUCTURE

and an expander. A transiation specification is
submitted to the translation compiler which results
in the creation of a translation module. This mod-
ule consists of parsing Tables and object modules
for the tree macros. The expander when coupled with
a translation module, forms a translator which takes
a user's input and transforms it accordingly.

The translation specification and the input
have been separated in the BIGMAC system to

413

accomodate the distinction between macro writers

and the using community. Furthermore, a translation
specification is compiled because it is expected to
be used repeatedly. To 1 terpret complex specifi-
cations for each translation would be extremely in-
efficient.

Consider as an example the approach to porting
i1lustrated in Figure 1. This approach can be im-
plemented by using BIGMAC as follows. A group of
macro writers must first compose a translation spec-
ification to support a high-level FORTRAN dialect
as requested by the using community. They also
write specifications that configure porting trans-
lators for host machines 1, 2, and 3. Call these
specifications HLF-TS, P1 TS, P2-TS, and PS-TS
respectively. Using the BIGMAC translation compiler,
the macro writers form the translation modules HLF-
™, P1-TM, P2-TM, and P3-TM as follows.*

Trans]ation_ﬁompi]er(S=HLF-TS,M=HLF—TM)

Trans]ation_Compi]er(S=Pi—TS,M=P1-TM)
for i = 1, 2, 3.

Now suppose that a development group in the
using community has written code for an application
system in the Fortran dialect they specified pre-
viously. Call the code SC-HLF. To run this code
on the local machine requires invoking the appropri-
ate BIGMAC translator and compiling the result with
the local FORTRAN compiler. This procedure is ex-

pressed in functional notation as:
Expander(I=SC-HLF,M=HLF-TM,0=SC-FOR)
Fortran_pompiler(I=SC-FOR,0=SC—BIN)

Once the development group's software is ready for
porting to machine i the appropriate porting trans-
lator is used.

Expander(I=SC-FOR,M=P1-TM,0=SC-FOR1)

The output, SC-FORi, is then sent to host machine
i, where it is subsequently compiled by that ma-
chine's FORTRAN compiler. Thus by writing the four
translation specifications above, the macro writers
have created an environment for the software using
community in which a high-level FORTRAN can be em-
ployed and in which porting to three additional ma-
chines is automatic.

Implementation of BIGMAC

In Figure 3, the structure and interaction of
a transiation module and the BIGMAC expander are
shown in detail. The expander performs a transla-
tion in three passes. In the first pass, the front-

N
*The functional notation, "Translation_Compiler

(S=<file >,M=<filez>)' denotes an application of the
trans1at%on compiler, where the translation specifi-
cation is <file}> and the resulting translation mod-
ule is <filez>. Similarly, in the statement
'Expander(I=<file >,M=<fi1e2>,0=<f11e3>)',<f11e1>

js the input, <file2> the translation module, and
<filey> the resulting output.

Transtation Module

Expander

FIGURE 3: BIGMAC TransLator 1N DeTAIL

end builds a derivation tree of the input by con-
sulting the syntax tables of the translation module.
This derivation tree is output as the first image.
In the second pass, the evaluator traverses the der-
ivation tree calling the tree macros of the transla-
tion module when appropriate. This activity results
in a modification of the derivation tree which con-
stitutes the second image. In the last pass, the
formatter produces as the final output the string
yielded by the modified derivation tree.

Up to this point a rather abstract model of
BIGMAC's operation has been given. BIGMAC's be-
havior has been described in terms of context-free
grammars,derivation trees, and tree programs. A
system which tries to embrace the full generality
of these concepts, would undoubtedly be highly in-
efficient. One of the main design aims of BIGMAC
was to simplify these concepts in such a way that
they still provide a powerful translation capability
for which an efficient implementation is, neverthe-
Tess, possible. These simplifications are described
in the paragraphs below.

Front End & Syntax Tables

A grave space problem arises if one attempts
to build a derivation tree for the entire input
stream in a straightforward manner. The BIGMAC Sys-
tem simplifies matters by processing the input text
and inter-pass images in sequential forward scans,
one statement at a time. A statement is defined in
the FORTRAN sense of the word, that is, as a 72-
character line, optionally followed by up to nine-
teen 66-character continuation lines. There are
assumed to be four types of statements — header,
specification, executable, and tail — which must be
grouped into program units according to the follow-
ing syntax.

<Input> « <Program Unit>*

<Program_Unit> « <Header> <Specifications>*
<Executable>* <Tail>
There is also a neutral type statement whose occur-

rence in the input is unrestricted. This organiza-
tion supports the FORTRAN notion of program units

414

or modules, but other organizations are possible by
declaring all statements to be neutral and placing
the burden of sequence checking on the tree programs.

The range of syntactic augmentation allowed in
a translation specification is restricted to the ex-
tent that a simple LL-parsing [10] scheme suffices
in syntactically decomposing the input. In this
scheme, look-ahead is very rarely required and usu-
ally involves the scanning of just one or two char-
acters. The front-end builds a derivation tree for
each statement and outputs these in sequence. The
front-end also detects any syntactic errors.

For each program unit, the front-end builds a
symbol table of the labels and identifiers that
occur in the unit. The front-end also builds a
global symbol table of all those identifiers whose
context determines that their scope is global (e.q.,
subroutine names, common block name, etc.). These
tables are used to generate unique identifiers and
labels by the tree macros in the evaluation pass.
They are also used for associating attributes or
descriptors with each identifier.

Evaluator

The BIGMAC evaluator processes the derivation
tree of each statement in a postorder traversal.
As each vertex is traversed, its associated tree
macro, if present, is invoked. Conceptually, tree
macros can be thought to transform the derivation
tree directly. However, in the BIGMAC system the
mechanisms for text generation (modification) are
quite simple. A tree macro can append statements,
semantic error messages, and comments to the text
stream at several strategic locations. In this way,
a tree macro can generate side effects, document
them, and report semantic errors. A tree macro can
also modify the derivation tree containing the in-
voking vertex, v, as follows. The tree macro can
replace the string currently yielded by v in the
derivation tree by any string it chooses to produce.
The tree macro receives as arguments, the strings
currently yielded by each son of v in the derivation
tree. Figure 4 gives an example of this text sub-
stitution process. In Figure 4, the operator sub-
scripts are shown to indicate the order of evalua-

8ofore Evaluation:

Tree Macros -- +, Fun

The evaluation order is givan
5y the operator subscripts.

4

(Id]

T4

L ~—m-em e eean

—
l A

After Fun

1 Y
[;.]0(a2y 'a--.<ruha('Fuu'.'A','z-)>)> I.] 8

FiGURE 4: TexT SusstiTuTion PROCESS

tion followed. Also note only the operators Fun
and + have defining tree macros. The other oper-
ators are evaluated according to the usual rules of
FORTRAN.

Since the simple text substitution scheme em-
ployed in the BIGMAC system deals only with the
strings yielded by derivation tree vertices, a der-
ivation tree need never be built. A simple text
substitution algorithm used in many of the older
macro processors [13] suffices to perform the de-
sired transformation and only requires the post-
order sequence of invoking vertices. This algorithm
provides increased space and time efficiency espe-
cially when the translation only operates on a small
subset of the grammar rewrite rules.

Tree Macros

In BIGMAC translation specifications, a tree
macro is a program unit written in an extension of
FORTRAN called STREX (String Extended) FORTRAN. A
compiler for this extension of FORTRAN was produced
by a bootstrap of the BIGMAC utility. The STREX
language supports a subset of FORTRAN and has the
following additional features —

1. A STRING data type.
2. A HEAP data type.

415

3. Text generation primitives.
4. Symbol table primitives.

5. Global and local macro communication primi-
tives.

STREX FORTRAN supports all FORTRAN constructs ex-
cept for those involving I/0 or Hollerith, Real,
Double Precision, or Complex data types [14]. The
additional features are described below.

STREX supports the notion of a string data
type in full generality [15]. Simple variables,
arrays, and functions can all be declared to be of
type string. The value of a string variable may
vary arbitrarily in length at runtime. At the ex-
pression level strings can be concatenated, sub-
strings can be selected, the current length can be
queried, and strings can be tested for equality.
String constants are denoted by a sequence of char-
acters enclosed in dollar-signs($). At the state-
ment level string variables can be assigned (by
value) and the replacement of a substring of a
string variable is also possible. Strings are used
in features 3, 4, and 5.

The STREX heap data type is a vector of storage
of arbitrary length. The elements of the vector
may be any data type including heap. In this way,
recursive structures such as lists and trees can be
readily implemented. The type of a vector element
is latent; that is, it may vary at runtime. Whereas
assignment is by value for all other data types,
assignment to a heap variable changes the vector
the variable refers to. Thus an assignment between
two heap variables, say Hl = H2, causes Hl to refer
to the vector referred to by H2, and H2 becomes un-
defined. There are primitives to determine the
length of a variable's vector and whether a variable
is undefined. There are also statements for creat-
jng and freeing heap vectors. Heap variables are
used in features 4 and 5.

STREX language contains several statements
which append strings to the output text stream at
any of three locations. The string expressions
used in these primitives are assumed to represent
either statements, comments, labels, or error mes-
sages depending on the primitive. The three loca-
tions at which a string may be appended are:

a/ immediately before the statement currently
being scanned,

b/ immediately before the first executable
statement of the program unit currently
being scanned,

¢/ immediately before the first statement of
the current program unit.)

These locations allow one to generate side-effects,
additional specification statements, and additional
program units, respectively. There are expression
level primitives for generating identifiers and la-
bels which are unique with respect to either the
global symbol table or the local symbol table of
the current program unit. These primitives re-
turn the labels and identifiers as strings and are used
in constructing branches and tempory variables.

The symbol tables produced by BIGMAC's front
end are available to the macro writer. A heap vari-
able, presumably containing a descriptor, is asso-
ciated with each symbol. One can look up a symbol,
thereby accessing the symbol's heap variable. This
variable may be accessed or modified according to
the intentions of the macro writer. New symbaols
may be added dynamically.

Tree macros can communicate to each other in
one of two ways. Common blocks can be included in
any tree macro. The extents of the variables in
such a common block are global to the evaluation
process. In this way, global communication is
possible — any tree macro may modify or access
these global variables. In the event that a son of
an invoking vertex is also an invoking vertex, the
tree macro associated with the son may pass a heap
vector to the tree macro of its father. This local
communication mechanism is accomplished with a pair
of "pass-catch" primitives. This mechanism allows
for the bottom-up propagation of synthesized attrib-
utes (heap vectors) [16].

Formatter

The BIGMAC formatter preserves the spacing and
indentation found in the input stream. This for-
matter has two output ports. The primary output
contains the transformed text less any comments or
error messages. The other port is to the printer.
This output contains the comments and error messages
and in addition contains summaries of the tree
macros' activities.

SOME SIMPLE BIGMAC EXAMPLES

Two BIGMAC examples are given in the following
paragraphs. For each example the BIGMAC translation
specification is listed and discussed first. The
discussion is then followed by a sample translation.

The first example generates in-1line code for
the following function which computes the sum of the
elements of an array.

REAL FUNCTION SUM(A,N)

REAL A(N)
SUM = 0.
DO 10T = 1,N
10 SUM = SUM + A(I)
RETURN
END

The translation specification which will perform
this in-Tining consists of one tree macro —

1. REFERENCE B = SUM(A,N)

2. STRING IL, I, L

3. B = .GENR.

4. IL = .GENI.

5. I = .GENI.

6. L = .GENL.

7. EXECUTE B*$=0.%

8. EXECUTE IL*$=$*N

9. EXECUTE $DO $*L*$ $*I*§=1,$*IL
10. LABEL L

T1. EXECUTE § $*B*§ = $*B*§+$*A*§($%1*$)$

416

12.
13.

RETURN
END

The header of the tree macro (1ine 1) indicates
that the macro is to be activated for every refer-
ence to SUM which has two arguments. The variables
B, A, and N in this statement are implicitly STRING
variables. The value of B when the macro returns
is the string which replaces the reference. The
variables A and N are passed to the macro on entry
and their values are the strings representing the
two arguments to SUM. Line 2 declares the variables
IL, I, and L to be of type STRING.

In line 3, the value of B is assigned to an im-
plicitly real identifier which is unique with re-
spect to the current program unit. Lines 4, 5, and
6 have the same effect except that implicit integer
identifiers (lines 4 and 5) and labels {(6) are gen-
erated. Lines 7 through 11 generate code for the
function SUM's side-effect and place it immediately
before the current statement. Each of these 1ines
consist of the keyword EXECUTE or LABEL followed by
a string expression. The characters between $-signs
are string constants and * denotes string concatena-
tion.

Suppose one submitted the following input to
the translator configured from the above translation
specification.

REAL A(15), B(20), T(5), Sum
READ (INPUT) (A(I),I=1,15)
READ (INPUT) (B(I),I=1,20)
0 101=1,5 .
10 IF(I.NE.5) T(I) = SUM(A,3*I) + SUM(B,20)
WRITE (OUTPUT) (T(1),I=1,4)
STOP
END

The output would be as follows

REAL A(15), B(20)
READ (INPUT) (A(I
READ (QUTPUT) (B(
D010 =1,5
IF(.NOT. (I.NE.5)) GOTO 10
A00000 = 0.
100000 = 3*]
DA 10000 100001 = I,100000

10000 AD0000 = A0GO00 + A(100001)
ADOOOL = 0.
100002 = 20
DO 10001 100003 = 1,100002
10001 A00001 = A00001 + B(100003)
T(I1) = AO0000 + AD00O1
10 CONTINUE
WRITE (QUTPUT) (T(I),I=1,4)
STOP
END

Note that the meaning of the DO label 10 was pre-
served. The BIGMAC front-end automatically precon-
ditions the input code so that the meaning of labels
is preserved. It also splits the logical if state-
ment so that any text placed "immediately" before
the second clause of the. IF statement is guaranteed
to be executed just before-the execution of this

clause.

The code produced is not optimai. A

slightly more sophisticated tree macro would not
generate 100001 or 100003 or the assignment to

100001.

The second example iliustrates the addition of

an IF-THEN-ELSE contro
Tanguage.
statements with the sy

<statement> <«

+

A

The proper nesting of

An ELSE-statement refe
statement. The transi
of four tree macros an

1 structure to the FORTRAN

This requires the addition of three

ntax —

'IF' <expression> 'THEN'
'ELSE'
"ENDIF'

these statements is enforced.

rs to the most recent 1F-
ation specification consists
d a global block.

1. GLOBAL PSHDWN

2. HEAP LABSTK

3. END

4, STATEMENT/E/ IF-.EXP./A-$THENS
5. INCLUDE PSHDWN

6. HEAP H

7. STRING LAB

8. LAB = .GENL.

9. EXECUTE $IF (.NOT.($*A*$)) GOTO $*LAB
10. NEW H(2)

11. H(1,.HEP.) = LABSTK

12. H(2,.STR.) = LAB

13. LABSTK = H

14. RETURN

15. END

16. STATEMENT/E/ $ELSE$

17. INCLUDE PSHDWN

18. STRING LAB

19. IF (.UNDEF.LABSTK) GOTO 10
20. LAB = .GENL.

21. EXECUTE $GOTO$ * LAB
22. LABEL LABSTK(2,.STR.)
23. LABSTK(2,.STR.) = LAB
24. RETURN

25. 10 ERROR $IMPROPER NESTING$
26. RETURN

27. END

28. STATEMENT/E/ END-IF

29, INCLUDE PSHDWN

30. IF (.UNDEF.LABSTK) GOTO 10
31. LABEL LABSTK(2,.STR.)
32. LABSTK = LABSTK(1,.HEP.)
33. RETURN

34. 10 ERROR $IMPROPER NESTINGS
35. RETURN

36. END

37. END OF UNIT

38. INCLUDE PSHDWN

39. IF(.UNDEF.LABSTK) RETURN
40. ERROR $IMPROPER NESTING$
41, FREE LABSTK

42. RETURN

43. END

In lines 1 through 3 a global biock cailed

PSHDWN is deciared to
variable LABSTK.

consist of the single HEAP

LABSTK will be used to 1mp1ement

a pushdown stack of the labels being used in the

transformation.

The INCLUDE statements (lines 5,

17, 29, and 38) in each of the tree macros indicate
that the variabies in the PSHDWN global block are
to be used by these macros.

The first tree macro (lines 4 to 15) corre-
sponds to the IF-THEN statement. In lines 8 and 9
the appropriate conditional branch is generated.
The label used in this branch is pushed onto the
LABSTK push down stack in iines 10 through 13.

The ELSE tree macro (iines 16 to 27) checks
the nesting of statements (line 19) and produces an
error message if appropriate {1ine 25). If the
nesting is correct then a branch is generated to
tie off the IF-THEN clause and this clause's target
label is appended to output (Tines 20-22). The ELSE
Jabel replaces the IF-THEN iabel in the top element
of the push-down stack (Tine 23).

The END-IF tree macro (Iines 28-36) also checks
the nesting of statements (line 30). If there are
no errors then the current target label is appended
to the output and the push-down stack is popped
(Tines 31 and 32).

The last tree macro (lines 37 to 43) is a
special macro which is activated whenever the end
of a program unit is reached. This macro checks
the nesting of statements and frees the push-down
stack.

Suppose one submitted the foliowing input to
the translator configured from this transiation
specification.

IF I.NE.® THEN
IF J.NE. B THEN

=A+ 1+
ELSE
A=A+1
ENDIF
ELSE
IF J.NE.® THEN
A=A+
ENDIF
ENDIF

The output wouid be as fnliaws —

IF (.NOT.(I.NE.@)) GOTO 10000
IF(.NOT.(J.NE.@)) GOTO 10001
A=A+1+1J
GOTO 10002
10001 A=A+1
10002 GOTO 10003
10000 IF (.NOT.(J.NE.@)) GOTO 10004
A=A+
10004 CONTINUE

10003 .

Once again the semantics of the transformation
is correct but not optimal. The use of .NOT. could
be folded in the three IF statements. The statement
"GOTO 10003" is spurious. A more sophisticated
translation specification could avoid these failings.

This concludes the technical description of
BIGMAC. The reader interested in an example illus-
trating the addition of a new data type is referred
to Appendix A which describes an ambitious trans-
lator for a bit vector data type. [17].

EXPERIENCES AND FUTURE WORK

BIGMAC is written in a portable subset of
FORTRAN 66, in which dependencies have been quaran-
tined to a small set of subprograms. BIGMAC con-
sists of 10,000 lines of source text. The system
requires 45K words of memory plus whatever space the
macros of a particular translation specification

require. The following timing figures were obtained
on a CDC 6400.

Front-end 70 source lines/sec.

Evaluator : 90 "

Formatter 90 !

Total

Throughput : 27 B

These times were obtained with the empty transla-
tion specification (identity translator) and thus
provide an upper bound on the performance of BIGMAC.

As indicated earlier, we produced the STREX comp-
iler module of BIGMAC by a bootstrapping operation
utilizing a Prototype version of BIGMAC. The trans-
lation specification needed for this bootstrap in-
volved a macro for every operator and statement in
the language and required 1000 Tines of STREX code.
The timing figures for the STREX compiler on the
CDC 6400 are as follows —

Front-end 60
Evaluator : 50
Formatter 90
Total

Throughput
Expansion Factor :
Macro Rate

source lines/sec.
n

object lines/sec.

17

2.2
75

source lines/sec.
object lines/source line
macros/sec.

The STREX compiler is an example of a heavily en-
hanced FORTRAN dialect. Thus the above figures pro-
vide an approximate lower bound on BIGMAC's per-
formance, although more complex enhancements are
conceivable,

One of the nice features of BIGMAC is illus-
trated by the STREX compiler. The utilization of a
complete set of macros allowed us to write macros
that perform a complete semantic check of STREX
code. Coupled with BIGMAC's inherent syntactic
checking, this means that the FORTRAN object code
produced by STREX is guaranteed to be compileable
FORTRAN. Thus error reporting is confined to the
source level, a feature not found in many pre-
processing systems.

We are currently in the late stages of using
BIGMAC to define a translator capable of accepting

418

as input essentially a large subset of PASCAL and
producing as output essentially FORTRAN 66. Simul-
taneously, we are using BIGMAC to write macro sets
which will allow us to port this FORTRAN code to a
modest range of host compilers. The completion of
these translators will mark the beginning of our
efforts to use BIGMAC as a production tool. We ex-
pect to use these translators to simultaneously
target a large PASCAL Program to a range of host
FORTRAN compilers. This attempt will do much to
help us evaluate the practicality of this macro
approach as a portability and version control aid.

ACKNOWLEDGMENTS

We wish to thank our colieagues Lloyd Fosdick,
Dan Ruegg, Becky Jones, and Randy Levine for their
substantial contributions to the design and imple-
mentation of the system described here. In addition
we gratefully acknowledge the support of the U. §.
Army Research Office through grant DAAG 29-80-C-0094
and National Science Foundation grant MCS 77-02194,

REFERENCES

[1] Osterweil, L.J. and Fosdick, L.D. "DAVE — A
Validation Error and Detection and Documenta-
tion System for Fortran Programs," Software
Software-Practice and Experience 6, pp. 473-
486 .

Fosdick, L.D. and Osterweil L.J. '"pata Flow
Analysis in Software Reliability," ACM Comput-

ing Surveys 8, pp. 305-330. '
Osterweil, L.J., Clarke, L.A. and Smith, D.W.

"A Data Base System Designed for Flexibility

and Usability for Fortran," Tech. Rep. CU-CS-

072-75, Dept. of Computer Science, Univ. of

Colo. at Boulder, Boulder, Colo., July 1975,

Myers, E.W. "The BIGMAC User's Manual," Tech.
Rep. CU-CS-145-78, Dept. of Computer Science,
Univ. of Colo. at Boulder, Boulder, Colo.,
Nov. 1978,

Liskov, B.H. and Zilles, S.N. "Specification 1
Techniques for Data Abstractions," IEEE Trans- €
actions on Software Engineering SE-T, pp.7-19,
(19757,

Ryder, B.G. "The PFORT Verifier," Software-
Practice and Experience 4, Pp. 359-377,71974.

Boyle, J. and Matz, M. "Automating Multiple
Program Realizations." MRI Conf. Rec. XXIV

Szmg. on Com&uter Software, PoTytechnic Press
1 s 421-456,

Baker, B.S. "Generalized Syntax Directed
Translation, Tree Tranducers, and Linear Space."
Siam J. Computing 7, 3 (1978), pp. 376-39].

Krishnaswamy, R. and Pyster, A.B. "On the
Correctness of Semantic-Syntax-Directed Trans-
lations." J. ACM 27, 2 (1980), pp. 338-355.

Aho, A.V. and Ullman, J.D. The Theory of Pars-

ing, Translation, and Comgi1ing! VoTume 1:
arsing. rentice-Ha 1 3

(2]

(3]

(4]

(5]

(6]
(7]

o

(el

(9]

(10]

i

Morris, J.B. "Data Abstraction: A Static
Implementation Strategy," Conf. Rec. SIGPLAN
Symp. on Compiler Construction, (1979],1-7.

Melton, R.A. "Automatically Translating
Fortran to IFTRAN," Proc. 8th Annual Symp.

on Interface, UCLA Health Sci. Comp.Facility,
pp. 291-297, (1975).

Cole, A.J. Macro Processors.
University Press (1976).

American National Standards Institute,
FORTRAN, ANSIX3.9 (1966).

Elson, M. Concepts of Programming Languages,
Science Research Associates, Inc. (19/3).

[11]

(12]

[13]
(14]

Cambridge

- [15]

[16] Knuth, D.E. "Semantics of Context-Free Lan-
guages," Math Systems Theory 2, 2 (1968},
pp. 127-145,

[17] Myers, E.W. "An Introduction to FLAT," Tech.

Rep. CU-CS-179-80, Dept. of Computer Science,
Univ. of Colo. at Boulder, Boulder, Colo.
June 1980.

APPENDIX A

A BIGMAC TRANSLATOR FOR A BIT-VECTOR DATA TYPE

Many algorithms employ the notion of a set whose
underlying implementation is assumed to utilize bit
vectors. This provides the motivation for extend-
ing the FORTRAN language to incorporate a BIT VECTOR
data type via a BIGMAC translator. Such an exten-
sion is described in this appendix.

We begin by informally describing the syntax
and semantics of the augmentation. Simple variables
and arrays may be declared to be of type BIT VECTOR.
For example, the statement 'BIT VECTOR(180) A,B(10)'
declares A to be a bit vector of 180 bits, and B to
be a 10 element array whose elements are bit vectors
of 180 bits. Bit vector variables may be formal
parameters but not function names. It was also
thought to be convenient to allow one to declare
integer constants. For instance,

CONSTANT NPROC
CONSTANT NVAR

100
1000

declares NVAR to be the constant 1000 and NPROC to
be the constant 100. These statements can occur
anywhere within the input and apply in all sub-
sequent code. For example,

BIT VECTOR(NVAR) LOCAL(NPROC)

declares LOCAL to be a 100 element array of 1000
bit bit vectors.

Bit vector arithmetic is performed with the aid
of a number of binary, unary, and nullary operators
with which one can build expressions. These bit
vector operations are sketched in the table below.

419

Op Precedence Type of Result Meaning
A.NE.B 400(1owest) LOGICAL A =8B
A.EQ.B 400 LOGICAL A=8
A.UNION.B 300 BIT VECTOR AusB
A.INTER.B 200 BIT VECTOR AnB
A.DIFF.B 100(highest) BIT VECTOR A-B

.COMP.A - BIT VECTOR v A

LEMPTY. - BIT VECTOR]

LUNIV. - BIT VECTOR P

For all binary operators, the arguments must be bit
vectors of the same lenath, Additional operators
can be supported as needed by adding to the trans-
lation specification which supports this extension
A specific bit of a bit vector may be tested by
referencing the bit's position. For example, the
expression '(A.INTER.B(1))(I*3)"' returns a Jogical
value which is true if and only if the I*3th bits
of both A and B(1) are set. Bit vector expressions
may be actual arguments to a procedure invocation.

Assignment is extended to include the BIT VECTOR
data type. For example, the statement 'B(3) =
.COMP.A' assigns the bit vector value of the ex-
pression .COMP.A to the variable B(3). In addition,
individual bits can also be assigned. For example,
'B(3)(2) = .TRUE.' sets the second bit of B(3)} and
*B(3)(2) = A(2)' assigns the second bit of B(3) to
the value of the second bit of A.

The translation specification which supports
this extension is quite lengthy (approximately 400
lines) and thus will not be discussed in detail.
Instead, the nature of the transformation this
translation specification performs will be discussed
using the sample translation in Figure A as an
example.

A11 occurrences of a constant identifier are
replaced with the constant assigned to the iden-
tifier. For example, in Figure A, 'COMMON /LIST/
LLST, LARR(NVAR)' becomes 'COMMON /LIST/ LLST,
LARR(1000)'. A1l bit vector variables are turned
into integer arrays by the addition of an extra
dimension. The size of this dimension is the num-
ber of words required by a bit vector. The speci-
fication in Figure A is for a CDC 6600 which has
60 bit words. Thus the declaration,

'BIT VECTOR(NVAR) TV' becomes 'INTEGER TV(17)'
where 17 equals (NVAR-1)/60+1.

Any reference to a bit vector variable within
the executable part of a program unit, is trans-
formed into an augmented array reference where the
extra dimension is a unique free variable. For
example, a reference to 'TP' becomes 'TP(100000)'
and a reference to 'AT(SN)' becomes 'AT(I00000,SN)'.
The free variable, 100000, is used as required by
the context of the reference. For example, the
assignment 'AT(SN) = TP' is transformed into the
two lines of code —

DO 10004 100000 = 1,2

10004 AT(100000,SN) = TP(100000)

By constructing a do loop in which the free vari-
able is the index, the assignment takes place word
by word. As another example of the context sensi-
tive usage of the free variable, consider the code
generated for the bit selection in the statement
TP(P) = .TRUE. —

100000 = (P-1)/60+1
100000 = P-(100000-1)*60
TP(100000) = TP(100000).0R.100000(I000001)

The free variable pair (100000,1000001) determine
the word and index within the word of the selected
bit P. 100002(100001) is a constant word whose
100001th bit is set in the block data unit initial-
izing 100002.

The free variable is not bound, however, when
forming bit vector expressions. For example, the
expression 'LOCAL(P).DIFF.FORMAL(P),INTER.OPT(P)"
is transformed into 'LOCAL(I00000,P).AND..NOT.

FORMAL (100000,P).AND.OPT(1I00000,P)’. The free
variable is not bound until a context 1ike the ones
above is reached. In Figure A, the expression is
passed by value to the subroutine LIST in the state-
ment 'CALL LIST(LOCAL(P).DIFF.FORMAL(P).INTER.OPT(P),
NVAR)'. The code generated for this statement is —

DO 10003 100000 = 1,17

10003 100003(100000) = LOCAL(I100000,P).AND. .NOT.
* FORMAL (100000,P) . AND.OPT(100000,P)

CALL LIST(I00003,1000)

a0 0 n o o

an

A unique bit vector variable 100003 is generated
and the value of the expression is assigned to it.
100003 is then passed to LIST as an actual argument.

Some features of the translator are not illus-
trated in Figure A. The constants .EMPTY. and
.UNIV. are folded whenever possible. That is, an
expression Tike (A.INTER..EMPTY.).DIFF.B s simpli-
fied to '.COMP.B'. Semantic errors such as type
incompatibilities are detected and reported. For
example, the expression 'TP(SNP)(P).AND.AT' is
transformed into '**ERROR** AND,**ERROR**' a5
TP(SNP) is not a bit vector expression and AT is
not a logical expression.

The code generated is quite efficient but not
optimal. In Figure A, only one temporary vari-
able is generated and occupied only 17 words of
storage. A small amount of superfluous code is
present. For example, the word-index pair for bit
position V is computed twice in the sequence of
statements —

TV(V) = .TRUE.
CALL LIST(LOCAL(P).DIFF,FORMAL(P).INTER.OPT(P),NVAR)
TV(V) = .FALSE.

when it only needed to be computed once.

420

20
3n

FIGURE A: SAMPLE TRANSFORMATION

INPUT:

CONSTANT NPROC = 100
CONSTANT NVAR = 1000

CONSTANT NSET e 3000

SUBROUTINE ALIAS(LOCAL,PORMAL,OPT,NUMP, AT)

BIT VECTOR(NVAR) LOCAL({NPROC),PORMAL(NPROC),OPT(NPROC)
BIT VECTOR(NPROC) AT(NSET)

BIT VECTOR(NVAR) TV

BIT VECTOR(NPROC) TP

COMMON /LIST/ LLST,LARR({NVAR)

INTEGER V,P,
-«

SN, HASH,
WKP, WLIST(NSET)

CALL INTHSH
WKP=0
TPm.EMPTY.
TVs, EMPTY.
DO 30 P=1,NUMP
TP(P)=. TRUE.
CALL LIST{LOCAL(P).DIFF.FORMAL(P).INTER.OPT(P),NVAR)
DO 20 I=],LLST
V=LARR(I)
TV(V)=.TRUE
SN=HASH(TV, SET, NUMS)
TV(V)=.PALSE.
AT(SN)=TP
WKP=WKP+1
WLIST(WKP)agN
TP(P)=. FALSE.

END

10000

FIGURE A: {continued)

anno

BLOCKD DATA A0ODNOL
COMMON {5000005 100000(60)
DATA 100000(1)/40000000000000000000B/,100000(2) /2060000000000000

*0000B/, 100000(3)/100000000000000000008/

DATA I00000(58)/00000000000000000004B/,100000(59)/00000000000000
*000000B/ , 100000(60) /000000000000000N00N1B/
END

SUBROUTINE ALIAS(LOCAL, FORMAL,OPT,NUMP, AT)
INTEGER LOCAL(17,100),FORMAL(17,100),0PT(17,100)
INTEGER AT(2.3000)

INTEGER TV{17)

INTEGER TP{2)

COMMON /LIST/ LLST,LARR(1000)

INTEGER V, P,

* SN, HASH,
* WKP,WLIST(3000)

COMMON_/A00000/ 100002(60)
INTEGER I00003(17)

CALL INTHSH

WKP=0

DO 10000 I000N0=]1,2
TP{I00000)=000000000000000000008

10001

10003

10004

20
30

40002
(3

DO _10001 I00000=1,17
TV (100000)=000000000000000000008B
DO 10002 P=1,NUMP
=(p- 0+
I100001=P-(I00000-1)*60
TP(I00000)=TP{IN0N0N).0R.I000N02(I00001)
DO 10003 I00000=1,17
100003{100000)=LOCAL(100000,P).AND. .NOT.FORMAL(I00Q000,P) .AND.
. OPT (100000, P)
CALL LIST{IN0N03,1000)
DO 20 I=1,LLST
V=LARR(I)
100000=(V-1)/60+1
100001=V~-(I00000=-1)*60
Tv{100000)=TV(I00000).0R.I1I00002(I00001)
SN=HASH(TV, SET, NUMS)
100000=(V~1)/60+1
100001=V~-(100000-1)*60
TV(INN0N0)=TV(I00000).AND. .NOT.I00002(I00001)
DO 10004 100000=),2
AT(100000,SN)=TP{I0000N)
WKP=WKP+1
WLIST(WKP)=SN
100N00=(P-1)/60+1
100001=P-(I00000-1)*60
TPLlﬂﬂOOn):Tp(Innnnnj.AND..qu.lnnnnZannnnll

END

421

