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ABSTRACT Particle methods are a widely used class of algorithms for computer simulation of complex phe-
nomena in various fields, such as fluid dynamics, plasma physics, molecular chemistry, and granular flows,
using diverse simulation methods, including Smoothed Particle Hydrodynamics (SPH), Particle-in-Cell (PIC)
methods, Molecular Dynamics (MD), and Discrete Element Methods (DEM). Despite the increasing use
of particle methods driven by improved computing performance, the relation between these algorithms
remains formally unclear, and a unifying formal definition of particle methods is lacking. Here, we present a
rigorous mathematical definition of particle methods and demonstrate its importance by applying it to various
canonical and non-canonical algorithms, using it to prove a theorem about multi-core parallelizability, and
designing a principled scientific computing software based on it. We anticipate that our formal definition will
facilitate the solution of complex computational problems and the implementation of understandable and
maintainable software frameworks for computer simulation.

INDEX TERMS Algorithmics, formal definition, mesh-free methods, particle methods, simulation algo-
rithms, parallelization, software engineering.

I. INTRODUCTION
Particle methods are a classic and widespread class of al-
gorithms for computer simulation, with applications ranging
from computational plasma physics [19] to computational
fluid dynamics [11]. Historically, some of the first computer
simulations in these domains used particle methods [8], [37],
and the field is still under active development [6], [9]. A key
advantage of particle methods is their versatility, as they can
simulate both discrete and continuous phenomena stochasti-
cally or deterministically.

In simulations of discrete models, particles naturally rep-
resent the discrete entities of the model, such as atoms
in molecular dynamics simulations [2], cars in simulations
of road traffic [28], or grains of sand in discrete-element
simulations of granular flows [38]. When simulating contin-
uous models or numerically solving differential equations,
particles represent mathematical collocation or Lagrangian

tracer points of the discretization of the continuous fields [10],
[32]. The evaluation of differential operators on these fields
can directly be approximated on the particles using nu-
merical methods such as Smoothed Particle Hydrodynam-
ics (SPH) [16], [30], Reproducing Kernel Particle Methods
(RKPM) [27], Particle Strength Exchange (PSE) [12], [14],
and Discretization-Corrected PSE (DC-PSE) [4], [36]. Also,
simulations of hybrid discrete-continuous models are possi-
ble, as often done in plasma physics, where discrete point
charges are coupled with continuous electric and magnetic
fields [19]. In addition to their versatility, particle methods can
efficiently be parallelized on shared- and distributed-memory
computers [20], [21], [22], [33], [35]. Furthermore, they
simplify simulations in complex [34] and time-varying [3] ge-
ometries, as no computational mesh needs to be generated and
maintained. Beyond the field of simulations, structurally sim-
ilar algorithms have been developed, such as particle-based
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image processing methods [1], [7], point-based computer
graphics [17], and computational optimization algorithms us-
ing point samples [18], [31].

Even though all these methods share structural similari-
ties, a formal description of those similarities is missing. The
current understanding of particle methods mainly relies on
qualitative and loose notions, such as “particles” and their “in-
teraction” and “evolution,” which have not yet been rigorously
described and rationalized as standalone concepts or together
to formally define particle methods as an algorithmic class.

Formal mathematical descriptions, models, or definitions
provide a rigorous way of formulating concepts and form
the basis for well-founded scientific discussions in computer
science. They allow more profound insights into the described
subject based on mathematical theorems that are incontro-
vertible under the given definition. Mathematical theorems in
computer science are extremely valuable, for example, to rep-
resent and query knowledge with the rigorous mathematical
structure of answer set programming [15], [25], or for runtime
complexity studies of algorithms in automata theory [5].

Despite their broad use, a formal mathematical definition of
particle methods that covers all structural similarities of these
algorithms from different fields is lacking. Hence, what con-
stitutes a particle method, and what does not, remains unclear,
hindering potential development in various research areas.

Here, we fill this knowledge gap by presenting a formal
definition that unifies all particle methods and enables the
design of novel particle methods also for non-canonical prob-
lems. We showcase this by formulating various algorithms as
particle methods, ranging from classic SPH over molecular
dynamics to Gaussian elimination. Furthermore, we use our
definition for a theoretical analysis of the parallelizability
of particle methods on multi-core computer systems and for
designing and implementing a principled software framework
for particle methods.

The presented definition of particle methods and its appli-
cations open up a new way of investigating and developing
computer simulation algorithms and software systems based
on these principles.

II. NOMENCLATURE AND NOTATION
We introduce the notation and nomenclature used and define
the underlying mathematical concepts. We use, bold symbols
for tuples of arbitrary length, e.g. p ∈ P∗, regular symbols
with subscript indices for the elements of these tuples, e.g.
p = (p1, . . ., pn), vertical bars around a tuple is the number
of elements it contains, e.g., |p| := n ∈ N, regular symbols
for tuples of determined length with specific element names,
e.g., p = (a, b, c) ∈ A× B×C, an indexed tuple of deter-
mined length with named elements, e.g. p j = (a j, b j, c j ),
underline for vectors, e.g. v ∈ An, and the length of a vector

if A = R, |v| :=
√

v2
1 +. . .+ v2

n .

Definition 1: The Kleene star A∗ is the set of all tuples of
elements of a set A, including the empty tuple (). It is defined

using the Cartesian product as follows:

A0 := {()}, A1 := A, An+1 := An×A for n ∈ N>0 (1)

A∗ :=
∞⋃
j=0

A j . (2)

Definition 2: The composition operator ∗h of a binary
function h:

Be h : A× B→ A then ∗h : A× B∗ → A is recursively de-
fined as:

a ∗h () := a (3)

a ∗h (b1, b2, . . ., bn) := h(a, b1) ∗h (b2, . . ., bn). (4)

Definition 3: The concatenation ◦ : A∗ × A∗ → A∗ of tu-
ples (a1, . . ., an), (b1, .., bm ) ∈ A∗ is defined as:

(a1, . . ., an) ◦ (b1, .., bm ) := (a1, . . ., an, b1, .., bm ) . (5)

Definition 4: We define the construction of a subtu-
ple b ∈ A∗ of a ∈ A∗. Be f : A∗ ×N → {�,⊥} (� = true,
⊥ = f alse) the condition for an element a j of the tuple a to be
in b. b = (a j ∈ a : f (a, j)) defines a subtuple of a as follows:

b = (a j ∈ a : f (a, j)) := (a j1, . . ., a jn )

⇔ a = (a1, . . ., a j1 , . . ., a j2 , . . ., a jn , . . ., am)

∧ ∀k ∈ {1, .., n} : f (a, jk ) = �. (6)

Definition 5: Be α = (a1, . . .., an) ∈ A1 × . . .× An a po-
tentially inhomogeneous tuple of length n, and being
j1, . . ., jm ∈ {1, 2, . . ., n} then

〈α〉( j1, j2,..., jm ) := (a j1, a j2 , . . ., a jm ). (7)

III. DEFINITION OF PARTICLE METHODS
To develop a formal definition of the algorithmic class of
particle methods, we choose the specific formulation that
naturally relates to the structural elements of practical imple-
mentations, i.e., to the methods and subroutines often found in
particle methods-related literature and software. More specifi-
cally, our definition is based on observing and analyzing many
existing particle methods and distilling their structural com-
monalities. The structural commonalities are also reflected in
the terminology. “Particles” or “points” are the basic objects
that get manipulated throughout the algorithms [1], [11], [17],
[19], [31], [32], [37], [38]. “Particles” carry algorithm specific
attributes or properties. These “particles” can “interact” [17],
[28], [32], [37], [38] with each other within a “neighborhood,”
“surrounding,” or “sampling radius” [1], [17], [19], [28], [31],
[32], [37], [38]. In addition “Particles” can “evolve” [1], [17],
[31], [32], [38]. The term “evolve” is used inconsistently. It
is referred to as the change of a single “particle” depending
only on its properties or the change of the whole system of
“particles”. The change of the whole system is more often
called “step,” “time step” or “state transition” [11], [17], [19],
[28], [31], [32], [37], [38].

Using some of these terms and their underlying concepts,
we subdivide our definition of particle methods into three
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parts: First, the definition of the general particle method algo-
rithm structure, including structural components, namely data
structures and functions. Second, the definition of a particle
method instance. A particle method instance describes a spe-
cific problem or setting, which can then be solved or simulated
using the particle method algorithm. Third, the definition of
the particle state transition function. The state transition func-
tion describes how a particle method instance proceeds from
the first state to the last using the data structures and functions
from the particle method algorithm. In summary, we present a
definition of particle methods in the most general, sequential
form. For deeper explanations and examples, the reader is
referred to the supplementary material SM1.

A. PARTICLE METHOD ALGORITHM
The definition of a particle method algorithm encapsulates the
structural elements of its implementation in a small set of data
structures and functions that need to be specified at the onset.
This approach follows a similar logic as some definitions of
Turing machines [24]. Both concepts describe state-transition
systems working on discrete objects.

Definition 6: A particle method algorithm is a 7-tuple
(P, G, u, f , i, e, e̊), consisting of the two data structures

P := A1 × A2 × . . .× An the particle space, (8)

G := B1 × B2 × . . .× Bm the global variable space, (9)

such that [G× P∗] is the state space of the particle method,
and five functions:

u : [G× P∗]×N → N∗ the neighborhood function,
(10)

f : G→ {�,⊥} the stopping condition, (11)

i : G× P × P→ P × P the interact function, (12)

e : G× P→ G× P∗ the evolve function, (13)

e̊ : G→ G the evolve function of the

global variable. (14)

These are the only objects to be defined by the user to
specify a particle method algorithm.

B. PARTICLE METHOD INSTANCE
Using the above definitions of the particle method algorithm
and its data structures and functions, we define an instance of
a particle method as a specific realization.

Definition 7: An initial state defines a particle
method instance for a given particle method algorithm
(P, G, u, f , i, e, e̊):

[
g1, p1] ∈ [G× P∗]. (15)

The instance consists of an initial value for the global variable
g1 ∈ G and an initial tuple of particles p1 ∈ P∗.

C. PARTICLE STATE TRANSITION FUNCTION
In a specific particle method, the elements of the tuple
(P, G, u, f , i, e, e̊) (8)–(14) need to be specified. Given a
specific starting point defined by an instance, the algorithm
proceeds in iterations. Each iteration corresponds to one state
transition step that advances the current state of the particle
method [gt , pt ] to the next state [gt+1, pt+1], starting at the
initial state [g1, p1]. The state transition uses the functions
u, i, e, e̊ to determine the next state. The state transition func-
tion S generates a series of these state transition steps until
the stopping function f is true. The so-calculated final state is
the result of the state transition function. The state transition
function is the same for every particle method and does not
need to be defined by the user.

Definition 8: We define the state transition function

S : [G× P∗]→ [G× P∗] (16)

with three interact sub-functions (ιI, ιI×U, ιN×U), two evolve
sub-functions (εI, εN) and the state transition step (s). These
functions build upon each other. The interact sup-functions
manipulate only a particle tuple p and ultimately compute all
interactions of each particle with all its neighbors.

The first interact sup-function ιI calculates one interaction
and results, therefore, in the change of two particles in the
particle tuple p = (p1, . . ., p|p|),

ιI(g, j)(p, k) := (
p1, .., p j−1, pj, p j+1, . . ., pk−1, pk, pk+1,

. . ., p|p|
)
, for

(
pj, pk

)
:= i

(
g, p j, pk

)
.

(17)

The second interact sup-function ιI×U builds on ιI and cal-
culates for one particle the interaction with all its neighbors
given by the neighborhood function u. The result is a potential
change of all involved particles in the particle tuple p,

ιI×U
g (p, j) := p ∗ιI(g, j)

u([g, p], j) (18)

The third interact sup-function ιN×U complements the inter-
action. It uses ιI×U to calculate the interactions for all particles
with their respective neighbors, leading to a change of p in
potentially every particle,

ιN×U([g, p]) := p ∗
ιI×U
g

(1, .., |p|) (19)

The first evolution sup-function εI calculates the evolution
of one particle. The result is stored in the global variable and
an intermediate particle tuple q,

εI
p ([g, q], j) := [g, q ◦ q

]
for (g, q) := e(g, p j ). (20)

The second evolution sup-function εN calculates for all
particles the evolution. The result is returned in the global
variable and a new particle tuple,

εN ([g, p]) := [g, ()
] ∗εI

p
(1, .., |p|) (21)
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FIGURE 1. Nassi-Shneiderman diagram of the state transition function S
with annotated sub-functions.

The state transition step s brings all sup-functions together
and advances the particle simulation by one iteration,

s ([g, p]) := [e̊(g), p
]

for
[
g, p

]
:= εN ([g, ιN×U([g, p])]

)
.

(22)

Finally, the state transition function S advances the particle
method instance to the final state,

S
([

g1, p1]) = [gT , pT ] ⇐⇒ f
(
gT ) = � ∧

∀t ∈ {2, . . ., T } :

[gt , pt ] = s
([

gt−1, pt−1]) ∧ f
(
gt−1) = ⊥.

(23)

We illustrate the state transition function and its sub-
functions with the Nassi-Shneiderman diagram in Fig. 1.

This is the most generic form of the state transition function
without further constraints and for sequential computing. Fur-
ther constraints can be imposed, leading to more specific state
transition functions valid for a subset of particle methods.

IV. APPLICATIONS OF THE DEFINITION OF PARTICLE
METHODS
After having defined particle methods, a pivotal question
arises: How can we leverage this mathematical definition in
practice? To address this question, we focus on three main
applications of this definition: First, we illustrate how several
canonical and non-canonical particle methods can be formal-
ized in the notational framework of the definition. Second, we
use our definition to prove a theorem about the parallelization
of particle methods formally. Third, we show the practical
applicability of our definition by using it for designing and
implementing scientific computing software.

A. KNOWN ALGORITHMS AS PARTICLE METHODS
We demonstrate how our definition provides a unifying nota-
tion for various canonical and non-canonical particle methods.

1q is an intermediate result.
2q is an intermediate result.

Here, we present a three-dimensional simulation of the contin-
uum diffusion equation (24).

We refer the reader to the supplementary material for
more examples. As canonical particle methods, we present
there an n-dimensional perfectly elastic collision simulation
(SM2.1), a three-dimensional Smoothed Particle Hydrody-
namics (SPH) [16], [29] fluid simulation (SM2.2), and a one-
dimensional Lennard-Jones [26] molecular dynamics (MD)
simulation (SM2.3). As non-canonical examples, we present
there how triangulation refinement (SM2.4) and Gaussian
elimination (SM2.5) can be formulated as particle methods.
We thereby illustrate the unifying nature of the presented
definition.

Particle Strength Exchange (PSE) is a classic particle
method that numerically solves partial differential equations
in time and space [12], [13], [14], [36]. It provides a general
framework for numerically approximating differential opera-
tors over sets of irregularly placed collocation points called
particles. Here, we consider the example of using PSE to
numerically solve the isotropic, homogeneous, and normal
diffusion equation in three dimensions:

∂w(x, t )

∂t
= D �w(x, t ) (24)

for the continuous and sufficiently smooth function
w(x, t ) : R4 → R. We use the explicit Euler method for time
integration and PSE for space discretization on equidistant
points with spacing h. PSE approximates the Laplace operator
�w, a second-order differential operator in space, at location
x j using the surrounding particles at positions xk as [13]:

�w (x j ) ≈
h3

ε2

N∑
k=1

(
w(xk )− w(x j )

)
ηε (x j − xk ). (25)

Using PSE theory, we determine the operator kernel ηε such
as to yield an approximation error that converges with the
square of the kernel width ε:

ηε (x) = 15

ε3π2

1( |x|
ε

)10 + 1
. (26)

The kernel’s support is [−∞,∞]. However, the exponential
quickly drops below the machine precision of a digital com-
puter, so it is custom to introduce a cut-off radius rc to limit
particle interactions to non-trivial computations. The approx-
imation of the Laplace operator then is:

�w (x j ) ≈
15 h3

ε3π2

∑
xk : 0<|xk−x j |≤rc

w(xk )− w(x j )( |xk−x j |
ε

)10 + 1
. (27)

The explicit Euler method allows the approximation of the
continuous time derivative ∂w

∂t at discrete points in time tn,
n ∈ N with time step size �t := tn+1 − tn:

∂w

∂t
(tn) ≈ w(tn+1)− w(tn)

�t
. (28)
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Hence, the above differential equation is discretized as:

w(x j, tn+1) (29)

≈ w(x j, tn)+ D �t �w(x j ) (30)

≈ w(x j, tn)+ 15 h3D�t
ε3π2

∑
xk :0<|xk−x j |≤rc

w(xk ,tn )−w(x j ,tn )( |xk−x j |
ε

)10

+1

.

(31)

To numerically solve (24), this expression is evaluated over
the particles at locations x j with property w j at time points tn.
For simplicity, we consider a free-space simulation without
boundary conditions. Hence, we assume that an instance of
this particle method has enough particles with no or low con-
centration w j around the region of interest in the initial tuple
of particles. We further assume that the particles are regularly
spaced with inter-particle spacing h such that h

ε
≤ 1. This

is a theoretical requirement in PSE known as the “overlap
condition”. Without it, the numerical method is not consistent.
This defines the particle method algorithm data structures:

p := (
x,w,�w

)
for p ∈ P := R3 ×R×R, (32)

g := (D, h, ε, rc,�t, tend , t ) for g ∈ R7, (33)

and functions:

u([g, p], j) := (k ∈ (1, . . ., |p|) : pk, p j ∈ p

∧ |xk − x j | ∈ (1, rc]),
(34)

f (g) := (t > tend ) , (35)

i
(
g, p j, pk

)
:=

⎛
⎜⎝
⎛
⎜⎝

x j
w j

�w j + wk−w j( |xk−x j |
ε

)10

+1

⎞
⎟⎠

T

, pk

⎞
⎟⎠, (36)

e
(
g, p j

)
:=

⎛
⎜⎝g,

⎛
⎜⎝
⎛
⎜⎝

x j

w j +�t 15Dh3

ε5π2 �w j

0

⎞
⎟⎠

T⎞
⎟⎠
⎞
⎟⎠, (37)

e̊(g) := (D, h, ε, rc,�t, tend , t +�t ) . (38)

Each particle p represents a collocation point of the numerical
scheme. It is a collection of three properties, each of which is
a real vector/number: the position x, the concentration w, and
the accumulator variable �w that collects the concentration
in the interact function i. An accumulator variable is required
here to render the computation result independent of the in-
dexing order of the particles.

The global variable g is a collection of seven real-valued
properties that are accessible throughout the whole calcula-
tion: the diffusion constant D, the spacing between particles
h, the kernel width ε, the cut-off radius rc, the time step size
�t , the end time of the simulation tend , and the current time t .

The neighborhood function u returns the surrounding par-
ticles no further away than the cut-off radius rc and different

from the query particle itself. The stopping condition f is true
(�) if the current time t exceeds the end time tend . Then the
simulation halts.

The interact function i evaluates the sum in the PSE approx-
imation (27). Each particle p j accumulates its concentration
change in �w j during the interactions with the other particles.
In the present example, we choose an asymmetric/pull inter-
act function i, just changing particle p j . The neighborhood
function u accounts for this. However, this is unnecessary, and
symmetric formulations of PSE are also possible.

The evolve function e uses the accumulated change �w j to
update the concentration w j of particle p j using the explicit
Euler method (31). For that, it also uses D, h, ε, and �t from
the global variable g. In addition, the evolve function e resets
the accumulator �w j to 0. In this example, the evolve func-
tion does not change the global variable g. That is exclusively
done in e̊, which updates the current time t by adding the time
step size �t .

We need to fix the parameters and the initial condition to
define a specific instance of this particle method. We choose a
box where w = 0 for all particles except for the center, where
we place a concentration peak.

g1 :=
⎛
⎝0.01︸︷︷︸
=D

, 0.02︸︷︷︸
=h

, 0.02︸︷︷︸
=ε

, 0.06︸︷︷︸
=rc

, 0.005︸ ︷︷ ︸
=�t

, 0.5︸︷︷︸
=tend

, 0︸︷︷︸
=t

⎞
⎠ (39)

p1 := (p1, . . ., p513 ), p j := (x j,w j,�w j ) (40)

For j ∈ {1, . . ., 513
} \{ 513+1

2 } we can uniquely represent j
as j = j1 + j251+ j3512 where j1, j2, j3 ∈ {0, . . ., 50}, then
we set p j as

p j := ((h( j1 − 25), h( j2 − 25), h( j3 − 25)) , 0, 0) , (41)

and we set

p 513+1
2

:= ((0, 0, 0), h−3, 0
)
. (42)

The result of executing this instance is visualized for time
t = 0.5 in the Figs. 4(b) and 2.

B. THEORY ABOUT PARTICLE METHODS
In addition to formalizing algorithms, our definition can
also be used to prove theorems about particle methods. We
demonstrate this by proving that one can parallelize the state
transition function on a shared memory system under five
conditions. After verifying that a particle method fulfills these
conditions, we know directly if it is parallelizable in principle
with this parallelization scheme. We exemplify this on the
particle methods application for the simulation of the three-
dimensional diffusion (Section IV-A).

We assume that parallel reading from one storage location
is possible but not parallel writing for a shared memory sys-
tem. Hence, we need to ensure that the calculations can be
done in parallel and that we do not have race conditions while
writing. Therefore, we need the five conditions:
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FIGURE 2. Particle Strength Exchange (PSE) simulation of diffusion in
three dimensions, compared with the analytical solution at time t = 0.5.
See main text for problem description. The plot shows the concentration
values along the x-axis.

FIGURE 3. Nassi-Shneiderman diagram of the parallelized state-transition
function for shared-memory systems. The dashed lines enclose the parallel
part.

condition one, pull-interaction

i(g, p j, pk ) = (pj, pk ), (43)

where the first particle p j is changed while the second pk stays
the same.

Condition two, interaction independence of previous inter-
actions

1ig(p j, 1ig(pk, pk′ )) = 1ig(p j, pk )

for 1ig(p j, pk ) := 〈i(g, p j, pk )〉1, (44)

condition three, neighborhood independence of previous in-
teractions

u([g, p], j) = u

([
g, p ∗ιI

(g,k′ )
(k′′)

]
, j

)
, (45)

condition four, constant number of particles

e(g, p) = (g, (p)), (46)

condition five, global variable independence of particles

e(g, p) = (g, q). (47)

The parallel section of the Nassi-Shneiderman diagram
(Fig. 3), hence the difference to the sequential state tran-
sition can be translated to formulas step by step. The entry
[k j ← u([g, p], j)] (line 3) translates to

k j = u([g, p], j), (48)

and [for l j ← 1..|kk |] together with [p j ← 1ig(p j, pk j,l j
)]

(lines 4, 5) to

pj = p j ∗1ig

(
p〈k j〉1 , . . ., p〈k j〉|k j |

)
. (49)

FIGURE 4. Experiments with the prototype software.

Combining (48) with (49) for all particles results in the tuple(
p1 ∗1ig 〈p〉u(g,p,1), . . ., p|p| ∗1ig 〈p〉u(g,p,|p|)

)
. (50)

All particles are constantly overwritten at that part of the
scheme. Also the next part [p1 ← 〈2e(g, p1)〉1] (line 6) over-
writes each particle. Hence, inside these parts are potential
writing conflicts, but not between them because they are par-
allel. Therefore, we can take them together to get(〈

2e
(
p1 ∗1ig 〈p〉u(g,p,1)

)〉
1
, . . .,

〈
2e
(
p|p| ∗1ig 〈p〉u(g,p,|p|)

)〉
1

)
.

(51)

Adding to this, the evolution of the global variable function
results in a parallelized step of the particle method state tran-
sition function. The rest of the state transition is identical
to the sequential state transition. Hence, to prove that the
Nassi-Shneiderman diagrams (Figs. 1 and 3) have the same
result, it is sufficient to prove the statement

∀[g, p] ∈ [G, P∗] : s ([g, p])

=
[
◦
e(g),

(〈
2e
(
p1 ∗1ig 〈p〉u(g,p,1)

)〉
1
,

. . .,
〈
2e
(
p|p| ∗1ig 〈p〉u(g,p,|p|)

)〉
1

) ]
. (52)
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The proof relies on the five lemmas.
Lemma 1: If the interaction is a pull interaction, all interac-

tions of a particle with its neighbors do not change any particle
besides the particle itself.

∀p j, pk ∈ P, g ∈ G : i(g, p j, pk ) = (pj, pk )

=⇒ p ∗ιI(g, j)
(k1, . . ., kn)

= (p1, . . ., p j ∗1ig (pk1, . . ., pkn ) , . . ., p|p|
)
, (53)

Proof:

∀p j, pk ∈ P, g ∈ G : i(g, p j, pk ) = (pj, pk ) (54)

=⇒
p ∗ιI(g, j)

(k1, . . ., kn) (55)

= (p1, . . ., 1i(g, p j, pk1 ), . . ., p|p|
) ∗ιI(g, j)

(k2, . . ., kn) (56)

= (p1, . . ., 1ig
(

1ig(p j, pk1 ), pk2

)
, . . ., p|p|

)
∗ιI(g, j)

(k3, . . ., kn) (57)

= (p1, . . ., p j ∗1ig (pk1 , pk2 ) , . . ., p|p|
)

∗ιI(g, j)
(k3, . . ., kn) (58)

= (p1, . . ., p j ∗1ig (pk1 , . . ., pkn ) , . . ., p|p|
) ∗ιI(g, j)

() (59)

= (p1, . . ., p j ∗1ig (pk1, . . ., pkn ) , . . ., p|p|
)
. (60)

�
Lemma 2: If the result of the interact function is inde-

pendent of an interaction of the second particle, then it is
independent of all its previous interactions.

∀p j, pk, pk′ ∈ P, g ∈ G : 1ig(p j, 1ig(pk, pk′ )) = 1ig(p j, pk )

=⇒ 1ig
(

p j, pk ∗1ig

(
pk′1 , . . ., pk′n

))
= 1ig

(
p j, pk

)
(61)

Proof:

∀p j, pk, pk′ ∈P, g∈G : 1ig
(
p j, 1ig(pk, pk′ )

) = 1ig(p j, pk )

(62)

=⇒ 1ig
(

p j, pk ∗1ig

(
pk′1 , . . ., pk′n

))
(63)

= 1ig
(

p j,
(

pk ∗1ig

(
pk′1 , . . ., pk′n−1

))
∗1ig (pk′n )

)
(64)

= 1ig
(

p j, 1ig
(

pk ∗1ig

(
pk′1 , . . ., pk′n−1

)
, pk′n

))
(65)

= 1ig
(

p j, pk ∗1ig

(
pk′1 , . . ., pk′n−1

))
(66)

...

= 1ig
(
p j, pk ∗1ig ()

)
(67)

= 1ig
(
p j, pk

)
. (68)

�

Lemma 3: The neighborhood needs to be interaction-
independent, so the neighbors on the processors do not leak
a possibly changed particle.

∀ j, k,′ k′ ∈ {1, . . ., |p|}, [g, p] ∈ [G× P∗] :

u([g, p], j) = u([g, p ∗ιI
(g,k′ )

(k′′)], j)

=⇒ u([g, p ∗ιI(g,l1)
(k1,1, . . ., k1,n1 ) ∗ιI(g,l2 )

. . .∗ιI(g,lm )

(km,1, . . ., km,n1 )], j)

= u([g, p], j) (69)

Proof:

∀ j, k,′ k′ ∈ {1, . . ., |p|}, [g, p] ∈ [G× P∗] :

u([g, p], j) = u([g, p ∗ιI
(g,k′ )

(k′′)], j) =⇒

u([g,p ∗ιI(g,l1)
(k1,1, . . ., k1,n1)∗ιI(g,l2 )

. . .︸ ︷︷ ︸
=:q

∗ιI(g,lm )
(km,1, . . ., km,n1)], j)

(70)

= u([g, q ∗ιI(g,lm )
(km,1, . . .,︸ ︷︷ ︸
=:q

km,n1 )], j) (71)

= u([g, q ∗ιI(g,lm )
(km,n1 )], j) (72)

= u([g, p], j). (73)

�
Lemma 4: Under the constraints that the interact function

i is a pull-interaction (43) and is independent of the previ-
ous interactions (44) and the neighborhood is independent of
previous interactions (45), the outer interaction loop is paral-
lelizable. In our notation:

∀[g, p] ∈ [G, P∗] : ιN×U ([g, p]) = (p1 ∗1ig 〈p〉u(g,p,1), . . .,

p|p| ∗1ig 〈p〉u(g,p,|p|)
)
. (74)

Proof:

ιN×U ([g, p]) (75)

= p ∗
ιI×U
g

(1, . . ., |p|) (76)

=
(

p ∗ιI(g,1)
u(g, p, 1)

)
∗

ιI×U
g

(2, . . ., |p|) (77)

Lemma 1=

⎛
⎜⎝p1 ∗1ig〈p〉u(g,p,1)︸ ︷︷ ︸

p1

, p2, . . ., p|p|

⎞
⎟⎠

︸ ︷︷ ︸
=: 1p

∗
ιI×U
g

(2, . . ., |p|)

(78)

=
(

1p ∗ιI(g,2)
u(g, 1p, 2)

)
∗

ιI×U
g

(3, . . ., |p|) (79)
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Lemma 1=
(

p1, p2 ∗1ig〈1p〉u(g,1p,2)︸ ︷︷ ︸
p2

, p3, . . ., p|p|
)

︸ ︷︷ ︸
=: 2p

∗
ιI×U
g

(3, . . ., |p|)

(80)

...

=
(

j−1p ∗ιI(g, j)
u(g, j−1p, j)

)
∗

ιI×U
g

( j + 1, . . ., |p|) (81)

Lemma 1=
(

p1, p2, . . ., p j∗1ig〈 j−1p〉u(g, j−1p, j), . . ., p|p|
)

(82)

∗
ιI×U
g

( j + 1, . . ., |p|)
Lemma 3= (p1, p2, . . ., p j ∗1ig 〈 j−1p〉u(g,p, j), . . ., p|p|

)
∗

ιI×U
g

( j + 1, . . ., |p|) (83)

Lemma 2= (p1, p2, . . ., p j ∗1ig 〈p〉u(g,p, j), . . ., p|p|
)

∗
ιI×U
g

( j + 1, . . ., |p|) (84)

= (p1 ∗1ig 〈p〉u(g,p,1), p2 ∗1ig 〈p〉u(g,p,2), . . .,

p j ∗1ig 〈p〉u(g,p, j), . . ., p|p|
) ∗

ιI×U
g

( j + 1, . . ., |p|) (85)

= (p1 ∗1ig 〈p〉u(g,p,1), . . . p|p| ∗1ig 〈p〉u(g,p,|p|)
)

(86)

�
Lemma 5: Under the constraints that the number of parti-

cles stays constant (46) and the global variable is independent
of all particles (47), the evolve loop is parallelizable. In our
notation:

εN ([g, p]) = [g, (〈 2e(p1)〉1 , . . .,
〈

2e(p|p|)
〉
1

)]
(87)

Proof: Under the constraints (46) and (47), we can rewrite
the first evolution sub-function (20) to

eI ([g, p], q, j) = [g, q ◦ (〈 2e(g, p j )
〉
1

)]
. (88)

Using this result, we can rewrite the second evolution sub-
function (21) to

εN([g, p]
)

(89)

= [g, ()
] ∗εI

p
(1, .., |p|) (90)

= εI ([g, p], (), 1) ∗εI
p

(2, . . ., |p|) (91)

= [g, () ◦ (〈 2e(g, p1)〉1
)] ∗εI

p
(2, . . ., |p|) (92)

= εI ([g, p],
(〈 2e(g, p1)〉1

)
, 2
) ∗εI

p
(3, . . ., |p|) (93)

= [g, (〈 2e(g, p1)〉1
) ◦ (〈 2e(g, p2)〉1

)] ∗εI
p

(3, . . ., |p|) (94)

= [g, (〈 2e(g, p1)〉1 , 〈 2e(g, p2)〉1
)] ∗εI

p
(3, . . ., |p|) (95)

...

= [g, (〈 2e(p1)〉1 , . . .,
〈

2e(p|p|)
〉
1

)]
(96)

�

Using these interim results, we can prove that the paral-
lelization scheme in Fig. 3 produces identical results to the
sequential state transition function.

Proof: Therefore, we need to prove (52). We use Lemma 4
and Lemma 5 to prove it. We insert (87) and (74) into (22) and
get directly (52).

B. TIME COMPLEXITY
The time complexity of an algorithm describes the asymptotic
behavior of the run-time as a function of the input size. In
the case of the state transition function, the input size is the
length of the initial particle tuple p1, assuming that a constant
bounds the size of the global variable and the particles. The
condition that the evolve function does not change the number
of particles (46) restricts the number of particles to be constant
over all state transition steps

∀t ∈ {1, . . ., T } :
∣∣pt
∣∣ = ∣∣p1

∣∣ . (97)

We assume a maximum time complexity τ for each function
for all state transition steps. We indicate the corresponding
function with a subscript, τi, τe, τ◦

e
, τ f , τu. We also assume a

maximum size of the neighborhood ςu for each particle and all
steps. We assume further that the maximum time complexities
are independent of the particle method instance [g1, p1] except
for the neighborhood. This is true for many canonical particle
methods. We indicate the neighborhood function’s possible
dependency on p1 with a superscript. Using these maxima of
the time complexities, we can derive an upper bound for the
time complexity of the sequential state transition function

τS([g1,p1]) ≤ T
(∣∣p1

∣∣ (ςp1

u τi + τp1

u + τe)+ τ f + τ◦e

)
, (98)

and for the time complexity of the parallelized state transition
function on nCPU processors with shared memory

τnCPU,S||([g1,p1])≤T
( |p1|

nCPU
(ςp1

u τi +τp1

u +τe)+τ f +τ◦e

)
.

(99)

B. APPLICATION TO THE EXAMPLES
We can now use the theorem to check if we can parallelize the
particle method from Section III-A.

The three-dimensional diffusion application based on PSE
and Euler integration is formulated with a pull interaction.
To change particle properties, the interact function uses only
properties that are not changed by it. Hence, it is impossible
to transfer the result of an interaction through an interaction to
another particle. Meaning the interact function is independent
of previous interactions. The same argumentation holds for
the neighborhood function. The interact function does not
change any property used by the neighborhood function. We
formally check these conditions. Independence of the interact
function from previous interactions:

104 VOLUME 4, 2023



1ig(p j,1 ig(pk, pk′ )) (100)

= 1ig

⎛
⎜⎝p j,

⎛
⎜⎝xk, wk, �wk + (wk′ − wk )( |xk′−xk |

ε

)10 + 1

⎞
⎟⎠
⎞
⎟⎠ (101)

=

⎛
⎜⎝x j, w j, �w j + (wk − w j )( |xk−x j |

ε

)10 + 1

⎞
⎟⎠ (102)

=1 ig(p j, pk ) (103)

Independence of the neighborhood function from previous
interactions.

u([g, p ∗ιI
(g,k′ )

(k′′)], j) (104)

= u([g, (p1, . . ..,1 ig(pk′ , pk′′ ), . . ., p|p|)], j) (105)

= u

⎛
⎜⎜⎝
⎡
⎢⎢⎣g,

⎛
⎜⎜⎝p1, . . .,

⎛
⎜⎜⎝

xk′
wk′

�wk′ + (wk′′−wk′ )( |xk′′ −xk′ |
ε

)10
+1

⎞
⎟⎟⎠

T

, . . ., p|p|

⎞
⎟⎟⎠
⎤
⎥⎥⎦, j

⎞
⎟⎟⎠

(106)

= (k ∈ (1, . . ., |p|) : pk, p j ∈ p ∧ 0 < |xk − x j | ≤ rc)
(107)

= u([g, p], j) (108)

Note that the interaction of particle pk′ with pk′′ does not
change the position of pk′ . Hence, the neighborhood function
is not influenced by the interaction.

The other two conditions are directly matched by the evolve
method. There is a constant number of particles, and the
global variable is independent of all particles.

Therefore, the diffusion example is parallelizable with the
shared memory scheme.

C. A BASIS FOR SCIENTIFIC SOFTWARE ENGINEERING
Our definition can be leveraged to implement scientific com-
puting software where the particle method algorithm and
instance are used as an interface. This allows hiding all
generic parts of a particle method from the user, such as find-
ing the neighborhood and running the state transition function.
Such software could potentially also encapsulate theoretical
results, such as the result from Section III-B. We showcase
the hiding of the neighbor search and the state transition
function by designing a software prototype where we imple-
ment fast neighbor access for arbitrary-dimensional meshes
and free particles for one-sided and two-sided interactions,
as well as the state transition in its most general and hence,
sequential form. We demonstrate the use of our prototype
exemplarily for SPH (Fig. 4(a)), 3D diffusion (Fig. 4(b)),
and the n-dimensional perfectly elastic collision (Fig. 4(c))
algorithms, but the prototype is not limited to these three
examples. In addition, we validated the software, particularly
the runtime complexity concerning the fast neighbor access

FIGURE 5. UML class diagram of the structure of the software prototype
(“Base”) and its application to the 3D PSE diffusion simulation example as
a client application (“Diffusion_3D”).

methods and the correctness of the results. The source code is
available at: https://git.mpi-cbg.de/mosaic/prototype-particle-
methods-defintion-as-an-interface.

The fundamental design of the prototype is illustrated in
Fig. 5 as a UML class diagram. We encapsulated the data
structures and functions in the namespace Base. The two
templated classes GlobalVariable_Method and Par-
ticle define the data structures and are mostly empty except
for the position in Particle, which is necessary for the
fast neighbor access algorithms. The templated class Par-
ticle_Method carries the bare bones of the five functions
of the particle method algorithm and all hidden functional-
ity. The hidden functionality is orchestrated by the run()
method. It calls the appropriate fast neighbor access methods
and chooses the correct state transition implementation. The
function handles the neighbor search differently, whether ALL
particles are neighbors or just those in a cutoff radius, whether
there are free particles or mesh particles.

The uses of this prototype are then done in separate
namespaces. We chose as an example the three-dimensional
diffusion again. The user has to create three new classes
that inherit from the three base classes. In the data struc-
ture classes, the user adds the necessary properties. In the
Particle_Method class, the user has to overwrite the
functions evolve(), interact(), evolveGlobal-
Variable(), neighborhood(), and stop() exactly
as described in the particle method algorithm except for
neighborhood() due to the neighborhood access opti-
mizations. Suppose the user decides not to overwrite certain
functions. In that case, the prototype accounts for that and
treats them respectively as identity functions, empty neigh-
borhood, or stop after only one state transition step. The user
needs to define the instance in addition to that separately and
executes the particle method by calling the run() method on
the instance.
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FIGURE 6. Validation and runtime measurements of the example PSE application client with the proposed formal software prototype.

We have tested the software to make sure it works as ex-
pected. Therefore we compared our prototype to native C++
implementations, did a convergence study, and conducted two
run-time evaluations.

For the comparison to native C++, we implemented the
perfectly elastic collision (Section SM2.1) and the 3D PSE
application in native C++. Then we calculated the difference
to our particle methods implementation. The results are iden-
tical. Note that we simulated an example with three balls that
do not interact simultaneously (i.e., no three-way collisions).
This is to ensure the result is independent of the indexing
order of the particles, which is not preserved in a fast neighbor
search algorithm. Since we use the native C++ implemen-
tation to validate the correctness of our implementation, we
deliberately kept it as simple as possible to exclude implemen-
tation mistakes. Therefore, it does not use any fast neighbor
search acceleration. The native C++ implementation without
fast neighbor search acceleration also serves as a baseline for
the time complexity test to show that our fast neighbor search
implementation accelerates the computation.

For the convergence study, we tested the PSE
(Section IV-A) approximation of the second derivative of
a sine function in 1D using a second-order accurate kernel
function. The analytical solution of the second derivative of
sin(x) is − sin(x). We tested for different grid (or particle)
spacings. Then, using the analytical solution, we plotted the
error. The solution converges with decreasing inter-particle
spacing with a second order to the analytical solution until
the errors from finite-precision arithmetic start to dominate at
around 10−8, as expected [36].

The run-time evaluations consider the 3D diffusion and
the perfectly elastic collision implementations from our
prototype and native C++. We see for the implementation
in our prototype that we have a linear run-time complexity
concerning the number of particles, while it is quadratic for
the native C++ implementation without fast neighbor search,
as expected. All tests can be found in the source code.

V. DISCUSSION
Particle methods are used in a wide range of fields such
as plasma physics [19], computational fluid dynamics [8],
[11], image processing [1], [7], computer graphics [17], and
computational optimization [18], [31]. Formulation of what
constitutes a particle method demands a generalized view.
Here, we presented a general definition and showed its appli-
cability in developing a common interface for this important
class of algorithms.

The proposed definition highlights the algorithmic com-
monalities across applications, enabling a sharp classification
of particle methods. Furthermore, the presented definition
unifies all particle methods and allows the formulation of
particle methods for non-canonical problems. In addition, this
formulation enables theoretical analyses of particle methods
and provides a rigorously defined structure for implementing
software frameworks for particle methods.

We formulated the presented definition in the most gen-
eral way to encompass everything called a “particle method”.
However, most practical instances do not exploit the full gen-
erality of the definition. For example, one would frequently
restrict a particle method to be order-independent, i.e., to
produce results independent of the particle’s indexing order.

Such restrictions are frequently needed to parallelize parti-
cle methods on multi-processor computer architectures, such
as computer clusters or GPUs. We have shown how such def-
inition restrictions can lead to a parallelizable state transition
function, whereas it is sequential in its most general form in
the definition.

Even though the presented definition is general and easily
applicable to, e.g., SPH, MD, and PSE, a particle method
could potentially have a worse time and space complexity
than a non-particle algorithm, especially for non-canonical
problems. Further, our definition is limited by its monolithic
nature. An algorithm composed of smaller algorithms, such as
a solver for the incompressible Navier-Stokes equation, would
become very large and complex with several nested cases
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when explicitly formulated in our definition. Importantly, our
definition is not unique. Alternative, possibly more compact,
but equivalent definitions are possible. However, we chose
the presented formulation for its similarities to practical im-
plementations, as we showcased in our software framework
prototype. The prototype interface is almost the same as the
particle method algorithm structure. Hence, it takes advantage
of the structure of the definition and hides more complex algo-
rithms from the user,e.g., the state transition function and fast
neighbor search. Although we investigated the parallelization
of the state transition, this is not implemented in our software
prototype. The presented parallelization scheme is not imple-
mented in the software. Therefore, its value lies not in its di-
rect applicability in software but in its theoretical significance.

Notwithstanding these limitations, the present definition es-
tablishes a rigorous algorithmic class that contrasts the so far
loose empirical notion of particle methods. This rigorousness
paves the way for future research both in the theoretical and
algorithmic foundations of particle methods and the engineer-
ing of their software implementation.

Future theoretical work could define standard classes of
particle methods by formulating class-specific restrictions to
our definition. Such restrictions enable classifying particle
methods concerning their parallelizability, algorithmic com-
plexity, and computational power. The presented paralleliza-
tion scheme for particle methods restricted to pull interactions
on shared memory systems requires minor constraints. Hence,
we expect that the presented proof for this scheme will be the
foundation of proofs for the parallelizability of push(-pull)
interaction schemes for shared and distributed memory. It
seems intuitive that the presented definition of particle meth-
ods is Turing-powerful since one could use a single particle to
implement a universal Turing machine in the evolve method.
However, this trivial reduction offers no insight into the al-
gorithmic structure and computational power. Studying the
computational power of certain classes of particle methods
could provide exciting insights into what is possible with
different amounts of computational resources. Other possible
directions of theoretical research include the derivation of
complexity bounds for certain classes of particle methods.

On the engineering side, future work can leverage the
presented definition to better structure software frame-
works for particle methods, such as the PPM Library [35],
OpenFPM [20], POOMA [33], or FDPS [21]. This would
render them more accessible and maintainable, as the formal
definition provides a common vocabulary. The present defini-
tion also enables the classification and comparison of software
frameworks concerning their expressiveness, coverage of the
definition, or optimization toward specific classes of particle
methods.

Future work could also develop a less monolithic definition
that allows modular combinations of different particle
methods. While this could lead to a formulation that can
potentially be exploited directly in software engineering or
the design of domain-specific programming languages for
particle methods [22], [23], one would first need to solve some

theoretical problems: How can different types of particles
from different methods interact, e.g., during interpolating
stored values from one set of particles to another? How can
access be restricted to a particle subset, e.g., for boundary
conditions? Solving these problems might lead to additional
data structures or functions in the presented definition.

VI. CONCLUSION
Mathematical definitions reveal the concepts upon which a
method is founded, and they render it possible to rationalize
the fundamental characteristics of a method. After defin-
ing what constitutes a particle method, we leveraged this
knowledge to formalize canonical and non-canonical parti-
cle methods algorithms and to design and implement new
computer software to simulate various physical systems, from
fluid dynamics to elastic collision and diffusion.

The presented formal definition of particle methods is a
necessary first step toward a sound and formal understanding
of what particle methods are, what they can do, and how
efficient and powerful they can be. It also provides practical
software implementation guidance and enables comparative
evaluation on common grounds. We therefore hope that the
present work will generate downstream investigation and
studies in branches of science developing or using particle
methods.

The source code of the prototype generic software frame-
work is available at: https://git.mpi-cbg.de/mosaic/prototype-
particle-methods-defintion-as-an-interface.
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