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Introduction
Cell polarization studies have unveiled many of the molecular 

pathways by which cells can break symmetry in response to 

asymmetric stimuli. The stimuli can be either intracellular, like 

during cytokinesis, in which the mitotic spindle induces the 

position of the cleavage furrow (Burgess and Chang, 2005), 

or extracellular, such as chemical gradients during chemotaxis 

(Chung et al., 2001). Interestingly, cells conserve the ability to 

polarize even in the absence of an asymmetric signal (Devreotes 

and Zigmond, 1988). Such spontaneous polarization could be 

caused by a biochemical instability generated by the amplifi ca-

tion of small stochastic variations in polarity protein concentra-

tions (Sohrmann and Peter, 2003; Wedlich-Soldner and Li, 

2003). In many cases, however, symmetry breaking and polar-

ization seem to be driven by a mechanical instability of the acto-

myosin cytoskeleton.

The cell membrane is supported by a thin cortical layer 

between 100 nm and 1 μm thick that consists of cross-linked 

actin fi laments, myosin motors, and actin-binding proteins, the 

spatial organization and dynamics of which are only beginning 

to be resolved (Medalia et al., 2002; Bretschneider et al., 2004; 

Morone et al., 2006). The motors present in the cortex generate 

a contractile tension in the actin network (Dai et al., 1999) that 

can be relaxed if the cortex ruptures (Fig. 1 d). Local relaxation 

of the cortical tension can trigger polarization events such as 

global cortex fl ows (Bray and White, 1988; Munro et al., 2004) 

or the growth of membrane protrusions called blebs (Keller 

et al., 2002; Charras et al., 2005; Paluch et al., 2005). Similarly, 

during early neuronal differentiation, breaking of the neuronal 

sphere and sprouting of neurites seem to require local relax-

ations of the cortical actin meshwork, although, in this case, the 

role of myosin motors is unclear (Da Silva and Dotti, 2002). 

Polarization induced by a release of mechanical tension is also 

observed in simpler systems, such as in actin networks growing 

on beads that mimic Listeria monocytogenes motility. In this 

paper, we compare the biochemistry and the mechanics of po-

larization in cells and around beads, and we argue that the bead 

system can serve as a simple model system to study mechani-

cally driven polarization in cells. Furthermore, we argue that 

both actin gels around beads and the actomyosin cortex in cells 

are close to an instability threshold. Instability can be triggered 

by an intracellular or extracellular signal or can occur spontane-

ously when a fl uctuation exceeds the mechanical threshold. 

Finally, we discuss the likelihood that polarization, by locally 

overcoming a mechanical threshold, could apply more gener-

ally to a variety of biological systems.

Symmetry breaking around beads: 
an example of mechanically driven polarization
The mechanism by which cortical tension relaxes in cells is dif-

fi cult to characterize because of the complexity of the cell. 

Mimicking the phenomenon under simplifi ed conditions pro-

vides an alternative experimental way to study the mechanism 

of cortex breakage. An actin network that is mechanically com-

parable with the cell cortex is the actin gel that grows from 

the surface of a bead coated with an activator of actin polymer-

ization (van der Gucht et al., 2005). Such beads have been 

used widely in the last 10 yr as a model system for studying 

 actin-based movement of intracellular objects and lamellipo-

dium extension (for review see Plastino and Sykes, 2005; 

Mogilner, 2006).

Beads (radii of 1–10 μm) are fi rst covered with an activa-

tor of actin polymerization and are placed in cell extracts or in a 

mixture of purifi ed proteins that reconstitutes the dynamics of 

actin-based movement observed for the bacterium L. monocyto-
genes (Bernheim-Groswasser et al., 2002). Actin polymeriza-

tion is activated at the surface of the bead, and an actin gel 

grows outward in spherical geometry. During gel growth, new 
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The shape of animal cells is, to a large extent, determined 

by the cortical actin network that underlies the cell 

membrane. Because of the presence of myosin motors, the 

actin cortex is under tension, and local relaxation of this 

tension can result in cortical fl ows that lead to deformation 

and polarization of the cell. Cortex relaxation is often 

regulated by polarizing signals, but the cortex can also 

rupture and relax spontaneously. A similar tension-

 induced polarization is observed in actin gels growing 

around beads, and we propose that a common mecha-

nism governs actin gel rupture in both systems.
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monomers are incorporated at the bead surface underneath the 

preexisting gel, which is thus pushed outward and stretched as 

a result of the curved surface (Noireaux et al., 2000). As a conse-

quence, stresses build up, and the actin shell is under tension 

(Fig. 1 a). When this tension exceeds the maximum tension that 

the actin network can bear, the actin shell breaks, and the actin 

gel develops into a comet tail (Fig. 1 b; Sekimoto et al., 2004; 

van der Gucht et al., 2005). The gel rupture is most likely to take 

place in a region where the actin network is locally weaker. 

Interestingly, symmetry breaking does not necessarily occur at 

a single point in the actin gel; for large beads, under conditions 

in which gel growth is slow (e.g., at low gelsolin concentration), 

the gel may rupture at multiple locations, giving rise to several 

comets (Fig. 1 c; and unpublished data).

In some cases, the gel stops growing before the rupture 

threshold is reached. The stress in the gel is then below the criti-

cal value, and symmetry breaking is delayed. However, symme-

try breaking may still occur if a local perturbation is induced in 

the gel or, for example, if a spontaneous fl uctuation in the cross-

linker density is large enough to bring the system over the 

threshold (van der Gucht et al., 2005).

Cortex instability and cell polarization
Like the actin layer that grows around beads, the cell cortex is 

a cross-linked actin meshwork under tension. Indeed, myosin 

motors exert contractile forces on the actin network (Dai et al., 

1999). At a microscopic scale, the actin gels around the bead 

and the cell cortex appear to differ in several ways: the origin of 

the tension is different in the two systems, and the orientation of 

the actin fi laments and the direction of network growth differ as 

well. However, at a mesoscopic scale, the two networks are very 

similar: both are cross-linked actin meshworks in which stresses 

develop tangentially to the actin layer (Fig. 1, a and d). Several 

aspects of the behavior of the gels growing around beads may 

therefore be reproduced in the cell cortex. Indeed, it has been 

proposed that just like the gel around beads, the cell cortex can 

rupture to relax the tension (Paluch et al., 2005). The relaxed re-

gion then expands as a result of pulling forces from the adjacent 

regions, which may lead to large cortical reorganizations and 

cell polarization (Fig. 1 d). By adding a bias with intracellular 

or extracellular cues, cells can use this cortical instability and 

the associated cortical fl ows in several ways.

For example, fl ows of the actomyosin cortex have been 

observed in various cell lines at the onset of cytokinesis, where 

they presumably contribute to cleavage furrow formation (Cao 

and Wang, 1990; DeBiasio et al., 1996). One mechanism that 

has been proposed to cause these cortical fl ows is a local relax-

ation of the cortex at the cell poles by astral microtubules (Fig. 

2 a; Bray and White, 1988). However, this hypothesis remains 

controversial, as several experiments have shown that myosin 

can be recruited and activated in the equatorial zone even in the 

absence of cortex fl ows (Straight et al., 2003; Bement et al., 

2005; Dean et al., 2005). It is well possible that the cell uses 

several redundant mechanisms and that direct myosin recruit-

ment mediated by the spindle midzone and aster-triggered cor-

tex fl ows both contribute to furrow positioning (Wang et al., 

1993; Bringmann and Hyman, 2005). Another process that is 

thought to depend on local cortex relaxation is the polarization 

of the one-cell Caenorhabditis elegans embryo. Here, the sperm 

provides the external cue: after fertilization, the sperm centro-

some moves toward the point of sperm entry, where it locally 

relaxes cortical contractility (Cowan and Hyman, 2004). As 

during cytokinesis, the cortex fl ows away from the relaxed re-

gion, transporting polarity proteins and shaping the pseudo-

cleavage furrow (Fig. 2 b; Munro et al., 2004). Polarization by 

cortex relaxation may also precede cell migration in some cells 

(Paluch et al., 2006; Yoshida and Soldati, 2006).

In the aforementioned examples, cortex instabilities and 

polarization are triggered by a spatial cue that presumably re-

laxes the cortex locally. However, like the tension in actin gels 

grown around beads, the cortical tension can also relax sponta-

neously. For example, this is observed in cell blebbing (Fig. 1, 

e and f). Blebs are spherical bare membrane protrusions that are 

commonly observed during apoptosis (Mills et al., 1998), cell 

division (Burton and Taylor, 1997), cell migration (Sahai and 

Marshall, 2003; Yoshida and Soldati, 2006), and spreading 

(Bereiter-Hahn et al., 1990). Bleb formation is driven by the 

Figure 1. Analogy of the tension state in an actin gel growing from a 
bead surface and in the cell cortex. (a–c) Growing from a bead surface; 
(d–f) in the cell cortex. (a and d) Schematic view of the symmetry breaking 
of an actin gel growing from the surface of a bead (a) or the breakage of 
the cell cortex (d). Blue rods, actin fi laments; red dumbbells, myosin fi bers; 
green patches, membrane attachments; orange circles, actin polymeriza-
tion activators. In both cases, a tension (T) builds up because of polymeri-
zation in curved geometry for the gel on the bead and because of the 
presence of myosin motors in the cortex. Rupture of the gel leads to actin 
shell or cortical movement (curved arrows). (b) Time lapse of a symmetry-
breaking event (arrowhead) preceding the actin-based movement of a 
bead (epifl uorescence microscopy with actin-AlexaFluor594). The fi rst 
three images were taken 21, 24, and 40 min after the start of incubation, 
respectively. The last image shows the comet that develops eventually. 
Images are reprinted from van der Gucht et al. (2005) with permission from 
Proc. Natl. Acad. Sci. USA. (c) Phase-contrast images of beads of different 
diameters (1 μm for the left image and 2.8 μm for the three other images) 
at low gelsolin concentration. Images were provided by M. Courtois (Institut 
Curie, Paris, France). (e) Time lapse of cortex breakage (arrowhead) and 
bleb growth in an L929 fi broblast fragment expressing actin-GFP. Fluores-
cence images are projections from a three-dimension reconstruction (time 
between images is 20 s). Images are reprinted from Paluch et al. (2005) 
with permission from Biophys. J. (f) Time lapse of a cell displaying multiple 
blebs. Confocal images of an L929 fi broblast expressing actin-GFP 
were taken at 0, 25, and 35 s. Images were provided by J.-Y. Tinevez 
(Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, 
Germany). Bars (b and c), 10 μm; (e and f), 5 μm.

 on January 26, 2007 
w

w
w

.jcb.org
D

ow
nloaded from

 

http://www.jcb.org


SYMMETRY BREAKING IN CELLULAR SYSTEMS • PALUCH ET AL. 689

pressure generated by contraction of the actomyosin cortex and 

occurs in regions where the actin cortex is weakened. Blebs are 

thought to be initiated by rupture of the actomyosin cortex 

(Jungbluth et al., 1994; Keller et al., 2002; Paluch et al., 2005) 

or by detachment of the membrane from the cortex (Fig. 2 c; 

Charras et al., 2005; Sheetz et al., 2006). Interestingly, blebbing 

cells can form one single large bleb (Fig. 1 e; Paluch et al., 2005; 

Yoshida and Soldati, 2006) or multiple smaller blebs over the 

cell surface (Fig. 1 f; Cunningham, 1995; Charras et al., 2005).

A closer look at conditions under which 
symmetry breaks in cells or around beads
Symmetry breaking in gels around beads and cell polarization 

caused by cortex breakage or relaxation are both driven by a re-

lease of mechanical tension in the actin gel. Spontaneous rup-

ture of the actin network occurs when the tension in the gel 

exceeds a threshold value that is determined by the strength of 

the network. If the tension is just below the threshold, symmetry 

breaking may still occur if a spontaneous fl uctuation in the den-

sity of actin, myosin, or cross-linkers, for example, is able to 

bring the system locally over the threshold. This implies that 

symmetry breaking can be enhanced either by lowering the 

threshold (the strength of the network) or by increasing the 

global tension (the driving force). Observations of symmetry 

breaking in both the bead system and the cell cortex support 

this idea.

In both systems, the instability threshold can be lowered 

by lowering the density of cross-linkers in the actin gel, like 

fi lamin or α-actinin, which leads to a softer and weaker 

network. Indeed, the depletion of fi lamin or degradation of 

α-actinin in cells enhances blebbing, probably as a result of 

cortical breakage, or at least a local release in the cortical ten-

sion (Cunningham, 1995; Miyoshi et al., 1996). Conversely, 

shell breakage in the bead system is slowed down by the pres-

ence of fi lamin or α-actinin (van der Gucht et al., 2005). In both 

systems, actin gel rupture is thus facilitated by the depletion of 

cross-linkers.

The driving force for cortex breakage in cells can be en-

hanced by increasing the activity of myosin II, leading to an in-

creased contractility of the cortex and a larger cortical tension. 

Indeed, blebbing in cells is enhanced when the global contrac-

tility of the cortex is increased (Sahai and Marshall, 2003), and, 

conversely, blebbing is reduced when contractility is decreased 

(Mills et al., 1998). In the bead system, the tension is related to 

the thickness of the gel layer. Thus, the analogous effect of de-

creased contractility (leading to a lower tension) in the bead 

system is a decrease in gel thickness. For example, this can be 

achieved by adding actin-depolymerizing factor/cofi lin, which 

enhances the depolymerization of fi laments in the outer regions 

of the actin gel. Indeed, at high actin-depolymerizing factor/

cofi lin concentrations, the gel thickness remains small, and no 

symmetry breaking is observed, indicating that the threshold 

tension for gel rupture can never be reached (van der Gucht 

et al., 2005).

A growing actin shell in spherical geometry can break 

spontaneously and form a propelling comet at the opposite side 

of the breakage point, although the original breakage and, thus, 

direction of the comet is random. If gel growth stops before the 

instability threshold is reached, symmetry breaking can still be 

triggered by an external perturbation (for example, by a local 

disruption of the actin network by photodamage; van der Gucht 

et al., 2005). Likewise, a local alteration of the actin cortex in 

cells, either by locally applying drugs that affect actin or by in-

creasing the local stress mechanically, induces cortex rupture 

and bleb formation (Paluch et al., 2005).

We can compare the forces necessary for shell breakage 

around beads and for cortex breakage in cells. The stresses in 

the gel around beads can be estimated from the elastic modulus 

of the actin gel and the thickness of the gel (Noireaux et al., 

2000). This produces a value of 103–104 Pa for the critical ten-

sile stress for gel rupture (van der Gucht et al., 2005). The cell 

cortical tension has been estimated in different cell types and is 

on the order of 10−3 N/m for Dictyostelium discoideum (Pasternak 

et al., 1989; Dai et al., 1999), lymphocytes (Pasternak and 

Elson, 1985), or fi broblasts (Matzke et al., 2001), whereas it is 

�20–30 times smaller for neutrophils (Evans and Yeung, 1989). 

With a cortical thickness of a few hundred nm, this provides a 

value of 103–104 Pa for the tensile stress in the cortex, which is 

very similar to the stress in the bead system. Interestingly, in 

D. discoideum, the deletion of either myosin II or of two myosins I 

Figure 2. Scheme for different cases of cortex relaxation in cellular 
events. Blue rods, actin fi laments; red dumbbells, myosin fi bers; green 
patches, membrane attachments; brown rods, microtubules; brown dots, 
centrosomes. Curved arrows indicate the direction of cortex fl ows. (a) At 
the onset of cytokinesis, spindle microtubules have been proposed to cause 
cortex relaxation at the poles of the cell. The relaxed regions expand, lead-
ing to cleavage furrow formation. (b) In the C. elegans embryo, shortly 
after meiosis II, the sperm centrosome moves toward the site of sperm entry, 
where it triggers cortex relaxation. The cortex then fl ows away from the re-
laxed region, leading to polarity protein segregation and pseudocleavage 
furrow formation. (c) Blebs form at sites of local detachment of the mem-
brane from the cortex (top) or at sites of local cortex rupture (bottom). Cortex 
detachment from the membrane is sometimes followed by local cortex dis-
assembly at the base of the bleb (Charras et al., 2005). Note that under 
certain conditions, multiple blebs can form (see Discussion).
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leads to a decrease of the tension by �50%, suggesting that 

most of the cortex tension is caused by myosin motors (Dai 

et al., 1999). Note that the cortical tension is very close to the 

threshold for cortex breakage, as breakage can be induced by 

applying pressures as small as 100 Pa, which is only 10% of the 

cortical stress (Paluch et al., 2005).

Symmetry can break from one point 
or from multiple points
Cortex instabilities can occur at multiple sites along the cell pe-

riphery, leading to multiple blebs, or it can be a single event 

leading to a global polarization of the cell (as during polariza-

tion of the C. elegans embryo or the formation of large blebs; 

Fig. 1, e and f). Similarly, the gel growing around a bead can 

rupture once, leading to the formation of a single comet tail, or 

it can break at multiple sites, leading to several comets (Fig. 1, 

b and c). The factors that determine whether a rupture leads to a 

global or to a local symmetry breaking are not well understood, 

but an analogy with polymerization reactions in chemistry or 

biology that proceed by nucleation and growth may provide in-

sight. In such reactions, many short chains form if the genera-

tion of new polymer nuclei is fast compared with the growth of 

the polymers, whereas only a few very long chains are obtained 

if nucleation is slow compared with growth (Domb and Lebowitz, 

1983). Similarly, if the nucleation of new holes in the stressed 

actin shell is fast compared with the growth of existing holes, 

the actin network is likely to break at multiple sites. In contrast, 

if nucleation is slow compared with the growth of a hole, the 

formation of a single hole will probably lead to global polariza-

tion. Indeed, multiple comet tails around beads are observed 

when gel growth proceeds slowly (e.g., at low gelsolin concen-

tration; unpublished data) because there is more time for new 

holes to appear in the gel. The biochemical factors that regulate 

the nucleation and growth rates of holes in the cell cortex re-

main to be explored, but we can nevertheless speculate about 

factors that affect these rates. The nucleation rate in cells de-

pends on how far the cortical tension is from the instability 

threshold. Obviously, in cases in which the spontaneous nucle-

ation of instabilities does not occur but needs to be induced, 

there is usually only one rupture. On the other hand, in blebbing 

cells, nucleation is faster, and blebs form spontaneously and 

rapidly. Multiple blebs tend to form when cells adhere to the 

substrate (Cunningham, 1995; Sahai and Marshall, 2003), 

whereas one single large bleb is formed when cells are in sus-

pension (Paluch et al., 2005). This might indicate that adhesion 

to the substrate could restrict membrane extension and, thus, 

bleb growth.

Stress-induced polarization 
in other systems
The concept of polarization driven by a global driving force that 

can locally exceed a mechanical threshold is not restricted to 

actin gels under tension but can be applied more generally. For 

example, in plant cells, fungi, or bacteria, the force that drives 

cell deformation and growth comes from the internal osmotic 

pressure, whereas the mechanical strength that resists deforma-

tion is provided by the cell wall. Because the pressure in the cell 

is homogeneous, the polarized growth of walled cells requires 

an inhomogeneous extensibility of the cell wall (Cosgrove, 

2005). For example, root hairs and pollen tubes in plants and 

buds in budding yeast are all initiated as small bulges growing 

at the cell periphery in regions where the cell wall is locally 

softened (Harold, 2002). To achieve such a local wall softening, 

a cell needs to direct vesicles that contain cell wall–loosening 

enzymes to specifi c sites at the cell periphery. This directed 

transport requires a polarized cytoskeleton, which may, in turn, 

be achieved by a biochemical instability (Wedlich-Soldner and 

Li, 2003). Similarly, neuritogenesis starts by the growth of small 

buds at the initially spherical neuron surface. Buds are thought 

to result from pushing forces exerted by microtubules at spots 

where the actin network underlying the membrane is locally 

relaxed (Da Silva and Dotti, 2002). This relaxation could be 

tension driven because activation of the Rho–ROCK pathway, 

which activates myosin II, has been reported previously 

(Da Silva et al., 2003). It could also result from some other kind 

of instability triggered by external signals (Da Silva and 

Dotti, 2002).

On a larger scale, a mechanical instability has been pro-

posed to explain the shape and size of oscillations observed dur-

ing the regeneration of fresh water polyp Hydra vulgaris. At the 

initial stages, H. vulgaris cells form a hollow sphere consisting 

of a cell bilayer. This sphere infl ates by the uptake of fl uid and 

builds up pressure as a result of stretching of the cells, which is 

analogous to the accumulation of stress in the actin gel growing 

around a bead. It has been proposed that this stress is released 

by rupture of the cell layer followed by rapid shrinkage of the 

cell ball (Fütterer et al., 2003). Repeated cycles of growth fol-

lowed by rupture and rapid shrinkage might be important for the 

fi rst polarization step in H. vulgaris morphogenesis.

Concluding remarks
We have argued that the mechanical states of the actomyosin 

cell cortex and of actin gels growing from beads are comparable. 

Both actin networks are under tension, which can be released by 

breaking symmetry in answer to a cue or spontaneously. Both 

systems appear to be operating close to a mechanical threshold, 

which would increase their sensitivity to small stimuli but would 

also make the system sensitive to fl uctuations.

Highly reactive systems operating close to instability 

thresholds may be frequently found in biology. A similar, al-

though not mechanical, threshold mechanism is observed in 

budding yeast, for example, where Cdc42, a small GTPase, is 

required for bud formation. The expression of a constitutively 

active Cdc42 results in spontaneous polarization with random 

orientation (Lechler et al., 2001; Wedlich-Soldner et al., 2003). 

It is possible that the enhanced activity of Cdc42 brings the sys-

tem closer to a chemical threshold, where it becomes sensitive 

to random fl uctuations (Wedlich-Soldner and Li, 2003).

Comparing the forces necessary for rupture and the ef-

fects of various proteins on symmetry breaking suggests that 

the mechanisms of polarization of the cell cortex and of the 

rupture of gels growing around beads are very similar. As a 

consequence, understanding symmetry breaking in biomimetic 

systems may provide essential insight into spontaneous cortex 
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rupture in cells. There are many open questions as to how ex-

actly polarizing signals trigger the mechanical instability lead-

ing to cortex rupture. The centrosome–microtubule system 

plays an essential role here, but, to a large extent, the pathways 

by which it controls the cortex mechanics are still unknown.
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