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Abstract We introduce a new class of data-fitting energies
that couple image segmentation with image restoration.
These functionals model the image intensity using the sta-
tistical framework of generalized linear models. By dual-
ity, we establish an information-theoretic interpretation using
Bregman divergences. We demonstrate how this formulation
couples in a principled way image restoration tasks such as
denoising, deblurring (deconvolution), and inpainting with
segmentation. We present an alternating minimization algo-
rithm to solve the resulting composite photometric/geometric
inverse problem. We use Fisher scoring to solve the photo-
metric problem and to provide asymptotic uncertainty esti-
mates. We derive the shape gradient of our data-fitting energy
and investigate convex relaxation for the geometric problem.
We introduce a new alternating split-Bregman strategy to
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solve the resulting convex problem and present experiments
and comparisons on both synthetic and real-world images.
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1 Introduction

1.1 Image-Processing Tasks as Inverse Problems

Image-processing tasks are commonly formulated as inverse
problems aiming at reconstructing targeted features from a
set of observed images (Bertero and Boccacci 1998; Aubert
and Kornprobst 2006; Chan and Shen 2005; Vogel 2002;
Hansen et al. 2006, and references therein). The objectives
differ according to the nature of the features of interest. On
the one hand, image restoration is a low-level vision task
aiming at reconstructing photometric properties degraded by
the imaging process (Chan and Shen 2005). For example,
image denoising aims at filtering the stochastic fluctuations
intrinsic to the imaging process (Bovik 2005); image deblur-
ring consists in removing imaging imperfections due to lim-
itations of the optics (optical blur), motion (motion blur),
or medium-induced distortions; image interpolation (e.g.,
inpainting, zooming, super-resolution) aims at reconstruct-
ing image parts that are unresolved, missing, or deteriorated.
On the other hand, image segmentation bridges low- and
high-level tasks and is the first step to image analysis. It aims
at partitioning an image into “meaningful” regions defined
by priors about the properties of a region. Regions are fre-
quently defined through their intensity, color, texture, or
motion (Chan and Shen 2005; Cremers et al. 2007; Brox
et al. 2010).
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Inverse problems in image processing are often ill-posed
or ill-conditioned (Bertero et al. 1988). One principled way
of regularizing them is to use a Bayesian formulation (Geman
and Geman 1984; Mumford 1994; Zhu and Yuille 1996;
Kersten et al. 2004; Cremers et al. 2007). In this frame-
work, the image-processing task is formalized by the pos-
terior probability of the data. This has a clear modeling
advantage, because the posterior probability splits into two
terms: the image likelihood (or the probability of observing
the image data knowing the features) and the prior probabil-
ity of the features before having observed the image. The
image likelihood (data-fitting term) quantifies the consis-
tency between the observed image and a subset of candi-
date features. It is usually easier to model than the posterior
probability, because it can often be derived from a genera-
tive model (forward model) of the image-formation process.
The prior encodes expected properties of the solution of the
inverse problem. It acts as a regularizer by constraining the
set of admissible solutions, hence helping cope with missing
or low-quality data. This is the property of Bayesian formu-
lations that allows them to transform an initially ill-posed
problem into a well-posed one.

1.2 Data-Fitting Energies

The anti-logarithm of the posterior probability links the
Bayesian inverse problem to energy minimization (Geiger
and Yuille 1991; Mumford 1994; Zhu and Yuille 1996). The
objective functional is expressed as a linear combination of
a data-fitting energy and a prior energy, weighted by a reg-
ularization parameter tuning the trade-off between fidelity
and robustness of the reconstruction. For a given image-
processing task, one needs to design a “suitable” energy
functional. Over the past years, a wealth of energy function-
als have been proposed for different situations, and insights
have been gained into their rationales and implications. Nev-
ertheless, the link between a given data-fitting energy and
the likelihood function of the underlying statistical model
may remain unclear, as energy functionals are often designed
without basing them on a specific statistical model.

When a forward model for the image-formation process is
available, a data-fitting energy is straightforwardly designed
by introducing the anti-log-likelihood function of the under-
lying statistical model. For example, many detectors operate
in a regime where a Poisson noise model applies (Bovik
2005), such as in confocal microscopy (Dey et al. 2004;
Art 2006), emission tomography (Shepp and Vardi 1982),
or single-photon emission computed tomography (Hebert
and Leahy 1989). This results then in a Poisson anti-log-
likelihood functional. Similarly, Gamma distributions can be
used to model multiplicative noise, such as speckles (Aubert
and Aujol 2008). More generally, data-fitting energies can be
chosen from a large family of statistical models, such as the

exponential family (EF), introduced to the image-processing
community by Chesnaud et al. (1999).

Yet, data-fitting energies can also be devised without any
explicit link to a statistical model. One common choice is to
use a metric induced by a norm pertaining to a vector space.
The choice of data-fitting energy then relies on the fine struc-
ture of the underlying function space (see Aujol et al. 2006,
and references therein). However, in some instances a link
to an underlying statistical model can be established. For
example, the squared L2 norm is often used as a data-fitting
energy and corresponds to the classical least-squares crite-
rion. The statistical rationale is that this data-fitting energy is
(up to additive constants) the anti-log-likelihood of a linear
forward model with additive Gaussian noise. More recently,
it has been suggested to replace the L2 data-fitting term by
an L1 term in order to cope with outliers, such as in salt-
and-pepper denoising (Alliney 1997; Nikolova 2004). Sta-
tistically, using an L1 norm can be motivated by modeling
the noise with a Laplace distribution where the probability
of large deviations from the mean is not negligible compared
to a Gaussian model. Denoising using a L1 data-fidelity term
is robust against outliers, as the best estimate of the parame-
ter in this case amounts to a median filter known to remove
impulse noise (Bovik 2005).

To the best of our knowledge, a systematic study of the
link between the functional form of data-fitting energies and
the underlying statistical forward model is missing in the
literature. We can expect that being a metric is a requirement
too stringent to qualify a functional as a valid data-fitting
energy. For example, the Poisson anti-log-likelihood can be
identified with the Kullback-Leibler divergence, which is not
a metric (neither symmetry nor the triangle inequality are
satisfied).

1.3 Coupling Image Restoration and Segmentation

The difference between image restoration and segmentation
is that in the former the objects composing the scene are
implicitly assumed through their effect on the features of
the image (such as edges and object boundaries), whereas
in the latter objects are explicitly represented and the set of
object boundaries is an explicit argument of the inverse prob-
lem. In image restoration, the effects of objects are modeled
in the hypothesis one makes about the underlying mathe-
matical structures involved in the formulation of the image
model (Chan and Shen 2005). Since the work of Rudin et
al. (1992), the space of functions of bounded variation has
been known as a good model for images, since it implies a
balance between penalizing irregularities, often due to noise,
and respecting intrinsic image features like edges. In image
segmentation, the primary goal is to estimate the number,
positions, and boundaries of objects present in the imaged
scene.
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Edge-based (Kass et al. 1988; Caselles et al. 1997) algo-
rithms achieve image segmentation working with edge cues
only, and segmentation amounts to estimating the positions
of edges. These models only use local information and are
therefore sensitive to noise. Region-based approaches (Chan
and Vese 2001; Paragios and Deriche 2002) are based on the
observation that specifying an edge set is equivalent to spec-
ifying a partition of the image domain into regions. Apart
from their increased robustness to noise, region-based mod-
els have the advantage of explicitly modeling the photometric
properties of the regions, and the forward problem is there-
fore more flexible than in a purely edge-based approach.

However, the two approaches are not exclusive, and edge
information can also be integrated into region-based mod-
els (Zhu and Yuille 1996; Paragios and Deriche 2002; Bres-
son et al. 2007). The Mumford-Shah model (Mumford and
Shah 1989) is an example of a minimal model including both
region and edge information. Different other models can be
recovered by specializing it (Chan and Shen 2005). There-
fore, an image restoration task can potentially be turned into a
segmentation problem by explicitly representing the edge set
to be estimated. The resulting inverse problem is then com-
posite with two unknowns: the edge set of the region bound-
aries and the photometric properties within each region.
See Helmuth and Sbalzarini (2009); Helmuth et al. (2009),
and Jung et al. (2009) for instances of an image segmenta-
tion/deblurring coupling, and Leung and Osher (2005) for an
instance of an image inpainting/segmentation coupling.

1.4 Image Segmentation Algorithms

Once a well-posed formulation is found, its numerical solu-
tion by an efficient algorithm is crucial for practical usability.
These two aspects—the mathematical model and its algorith-
mic implementation—are to be considered concomitantly in
order to match the level of detail in the mathematical descrip-
tion with the algorithmic efficiency required by the applica-
tion.

Bayesian image models can be formulated either dis-
cretely or continuously. The formulation then directly defines
the class of algorithms that can be used to minimize the
associated energy. Different formulations can therefore lead
to optimization problems with qualitatively different prop-
erties. The ability of a given algorithm to find global
or local minima in reasonable time and with theoretical
guarantees is crucial for practical applications. In a dis-
crete setting, such as in Markov random fields, Geman
and Geman (1984) introduced Gibbs sampling and used
an annealing strategy to minimize discrete energies from
a Bayesian formulation of image restoration. Greig et al.
(1989) were the first to propose the use of graph cuts
to minimize exactly a two-label image model. This was
later extended to efficiently finding the exact minimum

of approximate energy functionals (Boykov et al. 2001).
More recently, Cardinale et al. (2012) introduced an effi-
cient particle-based algorithm to compute local minimizers
of complex discrete energies under topology constraints.

In continuous formulations, variational calculus can be
used to derive gradients or higher-order quantities necessary
for iterative minimization schemes such as gradient descent
or Newton’s method (see e.g., Hansen et al. 2006; Vogel
2002; Aubert and Kornprobst 2006; Chan and Shen 2005).
Active contours (Kass et al. 1988) and their level-set imple-
mentation (Caselles et al. 1993; Malladi et al. 1995; Osher
and Fedkiw 2003; Osher and Paragios 2003; Sethian 1999)
are popular algorithms to solve the resulting segmentation
problem. A continuous formulation allows accurately repre-
senting object boundaries (i.e., to sub-pixel resolution), but
suffers from the fact that the energy of the associated free-
surface problem is non-convex. Therefore, any local min-
imizer, such as gradient descent, will converge to a local
minimum, hence requiring careful initialization. Chan et al.
(2006) and Bresson et al. (2007) introduced an exact con-
vex relaxation of an extended version of the two-region
piecewise-constant Mumford-Shah model, also known as
the Chan-Vese model (Chan and Vese 2001), and for the
two-region piecewise-smooth Mumford-Shah model. This
new formulation enables using efficient convex optimization
algorithms, such as split-Bregman techniques (Goldstein and
Osher 2009; Goldstein et al. 2010; Paul et al. 2011), to solve
the segmentation problem in a fast and accurate way.

1.5 Scope and Contributions of the Present Work

Here we introduce a new class of data-fitting energy func-
tionals for two-region segmentation of scalar-valued images.
These energies are derived from a generalized linear model
(GLM) formulation of the photometric properties of the
image, extending energy functionals based on the exponen-
tial family (EF) as proposed by Lecellier et al. (2006, 2010).
We extend the EF image model by introducing (i) a linear
predictor accounting for transformations during the imaging
process and (ii) a possibly non-linear relationship between
the observed data and the linear predictor through a link func-
tion. We show that many known statistical models are spe-
cial cases of our energy functional, and we also demonstrate
how our formulation succeeds in coupling segmentation in a
principled way with image restoration tasks, such as denois-
ing, deconvolution, and TV-inpainting. We use the duality
between the regular exponential family (REF) of distribu-
tions and regular Bregman divergences in order to refor-
mulate our model in an information-theoretic framework,
where the data-fitting energy is written as the integral over
the image domain of a Bregman divergence. This clarifies
the link between an entire class of statistical forward mod-
els (GLMs) and an information-theoretic criterion (Bregman
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divergences). As a prior, we use the classical total variation
(TV) regularizer. Therefore, we call our new image model
GLM/Bregman-TV.

A second aspect of this work is the design of algorithms
for solving the composite photometric/geometric optimiza-
tion problem resulting from the present class of energies. We
propose a simple alternating minimization (AM) scheme,
solving sequentially the photometric and the geometric
inverse problems. This allows us to separately treat inverse
subproblems that could be reused also in other solvers.
Adapting results from the GLM literature, we show that a
variant of Newton’s method, the Fisher scoring algorithm,
can be used to solve the photometric estimation problem and
obtain information about the asymptotic estimation uncer-
tainty. For the geometric estimation, we derive the shape
gradient of our data-fitting energy, which can be used in any
level-set algorithm. Extending previous results (Chan et al.
2006; Bresson et al. 2007), we further show that if the image-
formation transformation is the identity one can obtain an
exact convex relaxation by thresholding of the solution of
the resulting optimization problem, whereas in the general
case this is not possible. For the general case, however, we
provide an upper bound on the energy difference between
the solution of the relaxed convex problem and the global
solution of the original non-convex problem. The relaxed
problem is solved using a novel formulation of the alternat-
ing split-Bregman (ASB) algorithm (Goldstein et al. 2010)
with a splitting strategy inspired by Setzer et al. (2010). We
assess the performance and quality of our approach on both
synthetic and real-world examples and compare it with exist-
ing state-of-the-art methods.

2 The GLM/Bregman-TV model

We extend the EF noise model introduced to image segmen-
tation by Chesnaud et al. (1999); Martin et al. (2004), and
Lecellier et al. (2010) by integrating image-restoration tasks,
such as TV-inpainting and deconvolution. We first present
the GLM formulation and show its flexibility in coupling
image segmentation and restoration. Then, we provide an
information-theoretic interpretation of our new class of ener-
gies.

2.1 Generalized Linear Models (GLM)

Nelder and Wedderburn (1972) introduced GLMs as a
flexible extension of linear regression that allows for differ-
ent stochastic data-generation processes and for a potentially
non-linear relationship between the explanatory variables of
the linear model and the response variable.

A GLM is composed of three components: a random
component, a systematic component (linear predictor), and a

parametric link function. The random component specifies
the probability density function (p.d.f.) p of the response
variable u0(x) (in our case the intensity at pixel x) as a mem-
ber of the EF. The corresponding log-likelihood is:

log p(u0 | x, θ) := u0(x)θ(x)− b(θ(x))
a(x, φ)

+ c(u0(x), φ), (1)

where a(·), b(·), and c(·) are known functions, φ is a known
scalar called the scale parameter (or dispersion), and θ is
called the natural parameter (McCullagh and Nelder 1989).
For an introduction to the EF in image segmentation, we refer
to the works of Goudail et al. (2003), Martin et al. (2004),
and Lecellier et al. (2010). The function a is a positive func-
tion called the dispersion function. It is directly related to
the variance of the p.d.f. (see Eq. 3). The function b/a is the
so-called cumulant generating function or log-partition func-
tion of the p.d.f. Here we assume that the natural parameter
space Θ = {θ : b(θ) <∞} is open, which entails that we
consider only regular exponential families (REF) of distrib-
utions.1 The function exp(c) is called the reference measure
and is independent of the parameters. It therefore plays no
role in the estimation, as φ is assumed known.

Lecellier et al. (2010) state results about the EF and derive
the corresponding data-fitting energies for region-based
active contours. We refer to their paper for theoretical results
in this context and for other noise models relevant to image
processing with EF members that we do not show in this
paper (cf. Table 1 in their article). The p.d.f. in Eq. (1) is a
special case of the general treatment of the EF by Lecellier
et al. (2010), in the sense that it is a one-parameter canoni-
cal EF with the identity function as its sufficient statistic (cf.
Lecellier et al. (2010) for the definition of the sufficient sta-
tistics vector). The parametrization of the p.d.f. (1), however,
is different from the one Lecellier et al. (2010) used, since
it introduces the dispersion a for image-modeling purposes.
The dispersion function a(x, φ) is usually decomposed as
a(x, φ) := φ/wd(x), where wd represents known a pri-
ori weights of the data, and φ is the scale parameter. When
coupled with a regularization prior, the scale parameter can
be absorbed into the regularization parameter. Therefore, we
set φ = 1 from now on without loss of generality.

In contrast to Lecellier et al. (2010), the natural parameter
θ is not of primary interest in a GLM. The objective rather is
to model the mean of the p.d.f. generating the data. To this
end, GLMs introduce two additional components: a linear
predictor and a parametric link function. The linear predictor
η models the systematic component as a linear function in β

as η(x,β) := XT (x)β. X is called the design matrix and β

the vector parameter. The link function g is a known, smooth,

1 For d-dimensional exponential families of distributions, regularity
requires additional conditions that are automatically satisfied for d = 1;
c.f. Banerjee et al. (2005).
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monotonic mapping that models the potentially non-linear
relationship between the mean μ of the p.d.f. and the linear
predictor as g(μ(x,β)) = η(x,β).

Together, the link function g and the linear predictor η
allow modeling the mean region intensity μ. In the next sec-
tion and in Table 1, we provide examples of how to instantiate
GLMs in order to systematically translate image-processing
tasks into data-fitting energies. In general, the interpretation
of the design matrix X and the vector parameter β depends
on the link function (McCullagh and Nelder 1989). In image
processing, however, it seems that the possible non-linearity
of g has not yet been exploited,2 and that g is implicitly
assumed to be the identity. In this case, β models the mean
image intensities.

We now list some properties of GLMs relevant for the
results of this work. The mean μ(x,β) and the variance
σ 2(x,β) of the response variable u0 are related to a and
b as:

μ(x,β) := E[u0] = b′(θ(x)) (2)

σ 2(x,β) := V[u0] = a(x, φ)b′′(θ(x)) = V (μ(x,β))
wd (x)

(3)

where V (·) := b′′(·) is the variance function (McCullagh
and Nelder 1989). The last parametrization decomposes the
different sources influencing the variance of the response
variable: a data-dependent term with priorly known weights
wd(x), and a term depending on the model only via the mean
μ(x,β) through the variance function V .

2.2 Whole-Image Anti-Log-Likelihood

Following Zhu and Yuille (1996), assuming the pixels within
a region to be statistically independent, and taking the limit
of a large number of pixels, we can define the whole-
image data-fitting energy EGLM

d of u0 over the image domain
ΩI as the integrated GLM anti-log-likelihood �(u0 |x, θ) :=
− log p(u0 |x, θ):

EGLM
d (β) :=

∫

ΩI

�(u0 |x, θ)dx. (4)

The integral term involving c (cf. Eq. 1) plays no role in the
estimation.

For the sake of simplicity, we consider a two-region
piecewise-constant image model. The image domain is parti-
tioned into a background regionΩ1 and a foreground region

2 The link function is part of the forward model and could serve different
purposes. A first one could be to linearize seemingly nonlinear regres-
sion problems in the spirit of an implicit Box-Cox transform without
actually transforming the data; g only acts on the mean of the p.d.f. A
second use could be to design g such as to map β into the natural
range of the mean parameter, hence avoiding range constraints during
parameter estimation.

Ω2. Each region is represented by a mask (indicator) func-
tion Mi (x) := 1Ωi (x) (i ∈ {1, 2}) that is 1 if x ∈ Ωi and
0 otherwise. The piecewise-constant model u can hence be
algebraically represented as:

u(x,β) =
[

M1(x)
M2(x)

]T [
β1

β2

]
:=MT(x)β, (5)

where β1 and β2 are the photometric constants of the back-
ground and the foreground, respectively.

We now show how the classical Chan-Vese model (Chan
and Vese 2001) can be formulated as a GLM. This model
expresses the data-fitting energy as the sum of a foreground
and a background mean squared energy:

Ed =
∫

Ω1

(u0(x)− β1)
2dx+

∫

Ω2

(u0(x)− β2)
2dx.

Due to the binary nature of the indicator functions, we can
rewrite this energy as:

Ed =
∫

ΩI

(u0(x)− u(x,β))2dx.

Introducing the design matrix X(x) = M(x), we recog-
nize this energy as the anti-log-likelihood of a Gaussian with
variance σ = 1 and mean μ(x,β) = XT (x)β. This statis-
tical interpretation of the Chan-Vese energy is well known
and it amounts to a GLM with θ = μ = XT β (the link
function g is the identity), b = 1/2μ, a = 1 (wd(·) = 1),
and c(u0, 1) = −1/2u2

0. This model is known in statistics
as a one-way ANOVA3 (see, e.g., McCullagh and Nelder
1989), which models a set of observations (i.e., the pixel
intensity values u0) as a mixture of two subpopulations (i.e.,
foreground and background as indexed by M) characterized
by their means (i.e., the mean intensity values β1 and β2)
observed after perturbation with additive and independent
Gaussian noise of variance σ .

Table 1 and Eq. (9) provide the necessary information
to formulate also many other GLM energies. Segmentation
is encoded in the piecewise-constant object model u(x,β)
(see Eq. 5 for N = 2 regions). Denoising is encoded in
the choice of the REF member, defined either via Eq. (1)
or via a Bregman divergence (9). As shown in Sect. 3, it
is sufficient to specify the variance function V in order to
identify a particular REF member when solving the inverse
problem. Inpainting is encoded4 by the prior weight wd .
Deconvolution is encoded in the design matrix X . Without
deconvolution, X is identical to the matrix of masks M, as
in the Chan-Vese example above. With deconvolution, the

3 ANalysis Of VAriance
4 Other possible uses of wd have been presented by Leung and Osher
(2005).
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point-spread function (PSF) K enters the design matrix5 as
X(x) = (K ∗ M) (x). Table 1 also shows how our new model
allows systematically constructing new data-fitting energies.
For example, coupling a N -region segmentation problem
with deconvolution and inpainting (over �′) results in the
energy:∫

ΩI

wd(x)
(

u0(x) log
u0(x)
μ(x,β)

+ μ(x,β)− u0(x)
)

dx,

with wd(x) = 1ΩI \Ω ′(x) and μ(x,β) = (K ∗ M)(x)T β.

2.3 Bregman Data-Fitting Energies

The p.d.f. in Eq. (1) is written in terms of the natural parame-
ter θ (“natural parametrization”), but the main intent of the
GLM is to model the mean of the p.d.f. For the regular expo-
nential family (REF), there is an alternative parametrization
of the p.d.f. (1) that directly uses the mean μ (“mean para-
metrization”). Barndorff-Nielsen (1978) pioneered the sys-
tematic study of this relationship. Following Banerjee et al.
(2005), we investigate the duality between the natural and
the mean parametrization using convex analysis in order to
establish connections between the REF and Bregman diver-
gences.

We recall the definition of the Bregman divergence Bψ
(· ‖ ·) associated with a continuously differentiable6, real-
valued, strictly convex function ψ : S → R defined on a
closed, convex set S. Then, for any pair of points (p, q) ∈ S2,

Bψ(p ‖ q) :=ψ(p)− ψ(q)− ψ ′(q)(p − q).

This can be interpreted as the difference between the function
ψ evaluated at p and its first-order Taylor approximation
around q, evaluated at p.

In the following, we use the concept of a saturated model.
In statistics, this is defined as a model having as many para-
meters as there are data points, using no regularization. In
image processing, this would mean reconstructing one inten-
sity value for each pixel. The saturated model hence repro-
duces the data and serves as a reference for any predictive
model. The purpose of statistical modeling is to capture the
essential features of the data in a reduced model (i.e., using
only one intensity value per region) using prior knowledge
(i.e., an appropriate regularizer), loosing as little fitting accu-
racy as possible. The saturated model has a higher likeli-
hood than any alternative model. Minimizing the difference
in anti-log-likelihood between the saturated model and the

5 Convolution ∗ operating on a vector or a matrix is meant component-
wise.
6 Generalized Bregman divergences relax this assumption to subdif-
ferentiable ψ . However, we restrict ourselves to continuously differen-
tiable ψ in order to be able to use the duality theorem with the REF
(Banerjee et al. 2005).

reduced model of interest thus amounts to achieving a trade-
off between a comprehensive model (i.e., foreground and
background parameters) and a model best fitting the data
(i.e., the saturated model).

We recall that the natural parameter θ and the mean para-
meter μ of the REF are in convex duality through b and
its convex conjugate function7 b
(μ). The following result
states that the difference in log-likelihood between any REF
model and the saturated model is given by a Bregman diver-
gence.

Result 1 Consider a one-dimensional REF model with nat-
ural parameter θ and mean parameter μ. Maximum like-
lihood estimators (MLE) under the saturated model are
marked with a tilde. We then have μ̃MLE = u0 and

w−1
d

(
�(θ)− �(θ̃MLE)

) = Bb(θ ‖ θ̃MLE) = Bb
 (u0 ‖ μ),
where all equalities are understood point-wise, and � is the
GLM anti-log-likelihood.

Proof The MLE equation for the natural parameter of the
saturated model is

∀x ∈ ΩI , u0(x) = b′(θ̃MLE(x)). (6)

Because θ̃MLE and μ̃MLE are in convex duality, they satisfy
μ̃MLE = b′(θ̃MLE). This shows that μ̃MLE = u0. More-
over, Eq. (1) allows writing the scaled difference in anti-log-
likelihood between any predictive model θ and the saturated
model θ̃MLE as:

w−1
d

(
�(θ)− �(θ̃MLE)

) = b(θ)− b(θ̃MLE)− u0 (θ − θ̃MLE).

Inserting Eq. (6), we directly recognize the definition of
a Bregman divergence on the right-hand side. Finally, the
duality between Bregman divergences, Bb(θ ‖ θ̃MLE) =
Bb
 (μ̃MLE ‖ μ), allows us to conclude by substituting μ̃MLE

with u0. 	

This result also illustrates the meaning of the saturated

model. First, the MLE of the average intensity is the image
itself, illustrating the interpolating nature of the saturated
model. Second, the saturated model normalizes the likeli-
hood: The Bregman divergence is positive and zero at the sat-
urated model parameter value θ̃MLE or μ̃MLE = u0. Finally,
the loss in fitting accuracy of the reduced model compared to
the saturated model is quantified by an information measure,
the Bregman divergence.

We can hence derive from EGLM
d (cf. Eq. 4) two equiva-

lent data-fitting energies EB
d based on Bregman divergences.

The likelihood of the saturated model acts as a normalization

7 b
(μ) := supθ∈dom(b)(θμ − b(θ)), where dom(b) is the effective
domain of b. For a precise statement of the duality in the REF, see
the online appendix.
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constant and will hence play no role in estimating the model
parameter. Therefore, we can define8:

EB
d :=

∫

ΩI

(
�(u0 |x, θ)− �(u0 |x, θ̃MLE)

)
dx. (7)

Result 1 allows us to rewrite this using a Bregman divergence,
either in the natural parameter form

EB
d (β) =

∫

ΩI

wd(x)Bb
(
θ(x,β) ‖ θ̃MLE(x)

)
dx, (8)

or in the mean parameter form

EB
d (β) =

∫

ΩI

wd(x)Bb
 (u0(x) ‖ μ(x,β))dx. (9)

The last expression is the most informative from a modeling
point of view, as the mean μ is the direct target of the GLM.
Table 1 shows the Bregman energy (9) for different noise
models. Due to the equivalence of the GLM and Bregman
energies, we omit from now on the superscript in the data-
fitting energy.

To summarize, we have shown that there exists a duality
between data-fitting energies derived from GLM statistical
forward models and the Bregman divergence information
criterion. This duality interprets the data-fitting energy as
quantifying the information compression between the pre-
dictive model defined by the linear predictor η and the non-
informative saturated model.

2.4 The GLM/Bregman-TVwb model

The previous subsections were devoted to designing and ana-
lyzing new data-fitting energies that combine several image-
processing tasks with image segmentation. As discussed in
the introduction, the model needs to be completed with a
regularizer. Regularization functionals are not the main topic
of this paper. We hence consider only geometric priors and
use one of the most frequently used regularizers for active
contours, the geodesic length penalty (Caselles et al. 1997).
It consists of a weighted length of the interface separating
the foreground from the background region. Bresson et al.
(2007) reformulated this prior using weighted total variation
semi-norms TVwb :

Er(Ω) :=TVwb (u = 1Ω) =
∫

Γ

wb(s)ds, (10)

where Γ is the (not necessarily connected) boundary of the
domain Ω and wb is a positive boundary weight function
known a priori and not to be confused with the data weights
wd .

8 Rigorously, we need that
∫
ΩI

∣∣�(u0 |x, θ̃MLE)
∣∣ dx <∞.

Combining the mean-parametrized Bregman divergence
data-fitting energy (9) with the geodesic length prior (10),
the full model considered here reads:

E(β,Ω) := Ed(β,Ω)+ λEr (Ω)

=
∫

ΩI

wd(x)Bb

(

u0(x) ‖ g−1(XT (x,Ω)β(Ω))
)

dx

+λTVwb (Ω). (11)

The scale parameter φ has been absorbed into the regu-
larization parameter λ. As this is a segmentation model,
both the foreground region Ω and the photometric parame-
ters β are explicit arguments of the energy functional. The
Ω-dependence enters Ed only through the linear predictor
η(x,Ω,β) = X(x,Ω)T β(Ω).

To summarize, we list the different ingredients of our
image model and indicate which terms can be used to couple
certain restoration task with segmentation. The REF noise
model is entirely determined by the function b
. The a pri-
ori given weights wd and wb can be used to incorporate
prior knowledge from a preprocessing step. The wd can be
used to indicate regions of the image were data are missing
or uncertain. They thus encode a (TV-)inpainting task. The
same weights can also be used to down-weight outliers identi-
fied by pre-filtering the image (Leung and Osher 2005). Simi-
larly,wb can be used to enhance edge detection by driving the
active contour to low-value regions of an edge map (Caselles
et al. 1997). The link function g is usually the identity and, to
the best of our knowledge, a possible non-linearity that has
not yet been considered in image segmentation. It could, how-
ever, be used to linearize a non-linear problem or to enforce
parameter constraints. The design matrix X can be used to
encode prior information about spatial correlations between
pixel values using a kernel K, as for example in the case of
deconvolution, where K is the PSF of the imaging system.

3 Inverse Problem Algorithms

In the previous section we have formulated a flexible for-
ward model that combines image restoration with piecewise-
constant segmentation. We now provide efficient algorithms
for solving the resulting inverse problems. We limit our-
selves to two regions only for the geometric inverse problem,
because the algorithms and the convex relaxation considera-
tions are qualitatively different when considering more than
two regions (see Paul et al. 2011, for an extension of the
geometric solver to multiple regions). The inverse problem
is solved by minimizing the energy (11). This is a compos-
ite minimization problem consisting of a vector optimization
problem for the photometric estimation and a geometric opti-
mization problem for the segmentation.
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3.1 Alternating Minimization

Alternating minimization (AM) is a classical and simple
scheme for solving composite minimization problems (see
e.g., Chan and Shen 2005). In image segmentation, this strat-
egy is often used to sequentially solve the photometric and the
geometric problem. In the following, we provide the details
of an algorithm that can be used to solve the inverse problem
associated with the present image model. The region statis-
tics solver (RSS) is described in Sect. 3.2, and the algorithms
used to solve the geometric inverse problem are described
in Sect. 3.3. We propose two different geometric solvers,
depending on the convexity of the problem.

3.2 Region Statistics Solver

We provide a unified way of solving the photometric inverse
problem using a modification of Newton’s method. This sec-
tion gathers results from the statistics literature and adapts
them to our image processing problem. For the reader’s con-
venience we provide in the online appendix detailed proofs
of the classical GLM results, which we adapted from the
statistics literature to our framework.

3.2.1 Score Vector, Fisher Information Matrix,
and the Maximum Likelihood Estimator β̂MLE

We first introduce the quantities involved in deriving the
Fisher scoring algorithm with the sign convention of an
energy formulation. The maximum likelihood estimator
(MLE) is the vector β̂MLE satisfying the Euler-Lagrange
equation for the log-likelihood. In statistics, the derivative
with respect to β of the log-likelihood is called the score vec-
tor s, and the associated Euler-Lagrange equation is called
the score equation:

s(β̂MLE) = 0. (12)

It is unaffected by sign changes, and we define here the score
as the gradient of the energy (11) with respect to β. This is the
same definition as used in the statistics literature, up to a sign
change. The score vector of a GLM is a well-known quan-
tity (Nelder and Wedderburn 1972; McCullagh and Nelder
1989). We derive the local score s(β, x) := ∂�

∂β
(x,β) and

extend it to the whole image under mild regularity condi-
tions. Specifically, we need � to be regular enough to be able
to swap derivation and integration.9

Result 2 The GLM local score function is:

s(β, x) = W (x,β)(μ(x,β)− u0(x))g′(μ(x,β))X(x), (13)

9 Examples of such conditions are: �(x,β) is ΩI -almost everywhere
β-differentiable and |s(x,β)| is ΩI -almost everywhere bounded by an
integrable function of x only.

with W (x,β) = (
σ 2(x,β)g′(μ(x,β))2

)−1
. Under mild reg-

ularity conditions the whole-image score is:

s(β) =
∫

ΩI

s(β, x)dx.

Proof It is a classical result for GLMs (McCullagh and
Nelder 1989) that

−s(β, x) = u0(x)− μ(x,β)
σ 2(x,β)g′(μ(x,β))2

g′(μ(x,β))X(x).

The regularity condition allows interchanging derivation and
integration, hence:

s(β) = d

dβ

∫

ΩI

�(x,β) dx =
∫

ΩI

∂

∂β
�(x,β) dx.

	

The RSS is based on the Fisher information matrix,

defined as the variance-covariance matrix I of the score vec-
tor s and calculated as shown in the following Result.

Result 3 The Fisher information matrix of the score vec-
tor (13) is:

I(β, x) := V[s(β, x)] = X(x)W (x,β)XT (x).

Similarly, under mild regularity conditions, the whole-image
Fisher information matrix is

I(β) =
∫

ΩI

I(β, x)dx. (14)

3.2.2 Fisher Scoring Algorithm

In GLMs (McCullagh and Nelder 1989), the score Eq. (12)
is solved numerically using an iterative algorithm based on
a modified Newton-Raphson method called Fisher scoring.
The modification consists in replacing the negative Hessian
of the score vector (called the observed information matrix)
by its average, the Fisher information matrix. After iteration
r , one Fisher scoring iteration then reads:

βr+1 = βr − I(βr )
−1s(βr ). (15)

The Fisher scoring algorithm is usually written as an Iter-
atively re-weighted least squares (IRWLS) algorithm. We
rephrase this result and explicitly show the iterations for a
two-region segmentation problem.

Result 4 The Fisher scoring iteration defined in (15) is
equivalent to:∫

ΩI

X(x)W (x,βr )X
T(x)dx βr+1

=
∫

ΩI

X(x)W (x,βr )Z(x,βr )dx, (16)
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where

Z(x,βr ) := g(x,βr )+ (u0(x)− μ(x, βr ))g
′(x,βr )

is called the adjusted dependent variable, i.e., the linearized
form of the link function at the data u0(x).

For a two-region segmentation problem with deconvolu-
tion (convolution operator being K), one IRWLS iteration
reads:

βr+1 = I−1(βr )

[
Ur

1
Ur

2

]
, (17)

where the inverse Fisher information matrix is

I−1(βr ) :=
1

Kr
11Kr

22 − (Kr
12)

2

[
Kr

22 −Kr
12

−Kr
12 Kr

11

]

and for i ∈ {1, 2}:

Ur
i =

∫

ΩI

W (x,βr )Z(x,βr )K[Mi ](x)dx

and for (i, j) ∈ {1, 2}:

Kr
i j =

∫

ΩI

W (x,βr )K [Mi ](x)K[M j ](x)dx.

At convergence, the inverse Fisher information matrix
provides a plug-in estimate of the asymptotic variance-
covariance matrix of the estimated parameters β̂MLE:

V̂
[
β̂MLE

] = I−1(β̂MLE). (18)

Formulating Fisher scoring as an IRWLS problem admits
a straightforward implementation of the RSS, requiring only
a least-squares solver for Eq. (16) at each iteration of the
IRWLS. For a two-region problem, the RSS is even simpler,
as we only need to iterate (17) until a stopping criterion is
met. The estimated variance-covariance matrix of β̂MLE (18)
gives asymptotic confidence intervals for the parameters and
enables inference about the photometric vector β.

One important case can be solved analytically and the
MLE is hence found in one iteration: the Chan-Vese model
with and without deconvolution with the identity link func-
tion. Without deconvolution, we recover the classical result
by Chan and Vese (2001) that β̂MLE contains the average
foreground and background intensities. With deconvolution,
we recover the result derived by Jung et al. (2009).

3.3 Geometric Solvers

The geometric inverse problem associated with the seg-
mentation task is addressed differently depending on the
convexity of the energy functional (11). If the energy is non-
convex, we use a steepest descent approach (Sethian 1999;
Osher and Fedkiw 2003). This requires deriving the shape
gradient of the energy (11). The main difficulty hereby is

that the regions are represented by masks amounting to hard
membership functions. Deriving a gradient requires defin-
ing a functional derivative with respect to a domain. The set
of image regions, however, does not have the structure of a
vector space, requiring us to resort to the concept of a shape
gradient (Aubert et al. 2003). This is then used to drive a sur-
face, the active contour, to a local minimum of the energy.
We choose a level-set representation of the active contour
in order to formulate an algorithm that works in both 2D
and 3D, and allows topology changes during contour evo-
lution (see e.g. Aubert et al. 2003; Burger and Osher 2005;
Osher and Fedkiw 2003; Sethian 1999). We derive the shape
gradient of our energy using basic shape-derivative tools,
introduced in image processing by Aubert et al. (2003). The
resulting speed function can then be used in any level-set
solver.

If the energy function (11) is convex, it has recently been
shown (Chan et al. 2006; Bresson et al. 2007) that also the
geometric inverse problem can be made convex by convex
relaxation of the solution space. The solution space here is
the set of binary functions (i.e., the masks), which is not
convex. Relaxing it to the set of soft membership functions
taking values in the interval [0 , 1], however, renders the
problem convex. Any convex optimizer can then be used
to solve the problem. What remains is to study the rela-
tionship between the solution of the original non-convex
problem and the convexified problem. For two-region seg-
mentation, it has been shown that the convex relaxation is
exact, in the sense that the globally optimal solution of the
original non-convex problem can be obtained from the solu-
tion of the convex problem by simple thresholding (Chan
and Esedoḡlu 2005; Burger and Hintermüller 2005; Chan
et al. 2006; Bresson et al. 2007). We extend this result in
two directions: First, we study in Sect. 3.3.2 the exactness
of the convex relaxation for linear kernels K. We show that
in general, the convex relaxation is not exact. Second, we
derive a simple a posteriori upper bound on the energy differ-
ence between the thresholded solution of the convex problem
and the global solution of the original non-convex problem.
As a convex optimization algorithm, we adapt and improve
the popular alternating split-Bregman (ASB) solver (Gold-
stein and Osher 2009; Goldstein et al. 2010; Setzer et al.
2010).

For the sake of simplicity, we consider in this sec-
tion only two-region segmentations with K representing a
convolution (see e.g. Chan and Shen 2005, for classical
mathematical hypotheses on convolution operators). The
extension to multiple regions of the ASB has been described
elsewhere (Paul et al. 2011). By convention we denote the
foreground region Ω :=Ω2 and its mask M(x) :=M2(x).
The piecewise-constant object model can therefore be writ-
ten as u(x) = (β2 − β1)M(x) + β1, such that for fixed β it
is a linear functional of M only.
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3.3.1 Shape Gradient of the GLM/Bregman Energy

Aubert et al. (2003) introduced shape gradients to image
processing as an analytical tool to derive speed functions
for gradient-based geometric solvers. The active contour is
then driven by a velocity field vd + λvr , where vd and vr

are derived from the data-fitting and the prior energy, respec-
tively. The velocity field vr for TV regularizers is classical
and not re-derived here (see e.g. Aubert et al. 2003).

Before stating the main result, we recall the Eulerian deriv-
ative of a domain functional and the shape derivative of
a function. In order to define a derivative with respect to
a domain, the speed method introduces a smooth auxiliary
velocity field V , driving the following initial-value problem:

∀t ∈ [0 , T [, dxt

dt
= V (t, xt ) and x0 = x.

The solution of this differential equation is a flow denoted
T (t, x). It transforms any initial point x in xt := T (t, x) and
any domainΩ inΩt := {xt | x ∈ Ω}. A perturbation ofΩ is
then formalized as the infinitesimal action of VonΩ around
t = 0, still denoted by V (x) := V (0, x) = ∂Tt

∂t

∣∣∣
t=0

.

Definition 1 The Eulerian (or Gâteaux) derivative of the
domain functional E(Ω) in direction V is:

〈E ′(Ω), V
〉 := lim

t↓0

E(Ωt )− E(Ω)
t

= d

dt
E(Ωt )

∣∣∣∣
0
.

The shape derivative of the function f (x,Ω) is:

fs(x,Ω; V ) := lim
t↓0

f (x,Ωt )− f (x,Ω)
t

= d

dt
f (x,Ωt )

∣∣∣∣
0
.

Result 5 Assume that �(x,Ω) is integrable10 and that the
velocity fields {V (t, ·)}t∈[0,T [ are regular11 enough to ren-
der the shape derivative �s(x,Ω; V ) and the functions x �→
�(x,Ωt ) integrable. Then, the Eulerian derivative in direc-
tion Vof the data-fitting energy (4) exists and is given by:〈E ′d(Ω,β), V

〉 = s(Ω,β; V )T β + s(Ω,β)T
〈
β ′(Ω), V

〉
,

where s(Ω,β; V ) := ∫
ΩI

ss(x,Ω; V )dx, the geometric score
vector ss(x,Ω; V ) being defined as:

W (x,Ω)(μ(x,�)− u0(x))g′(μ(x,�))Xs(x,Ω, V )T .

If the MLE estimator β̂MLE is used, this simplifies to:〈E ′d(Ω, β̂MLE), V
〉 = s(Ω, β̂MLE; V )T β̂MLE.

Proof To simplify notation, we introduce the shorthand
f (t) := �(x,Ωt ), where the dependence in x is implicit. Inte-
gration is always with respect to x, and we write

∫
f (t)

instead of
∫
ΩI
�(x,Ωt )dx.

10 i.e., belongs to L1(ΩI ).
11 See, e.g., Aubert et al. (2003) or Delfour and Zolésio (2011) for a
more technical reference.

The first step is to prove that

〈E ′d(Ω,β), V
〉 =

∫

ΩI

�s(x,Ω; V )dx. (19)

By assumption, the quantities f (t), f (0) := �(x,Ω), and
f ′(0) := �s(x,Ω; V ) exist and are integrable. We now intro-
duce a sequence tn > 0 in [0 , T [ converging to zero. In terms
of f , Eq. (19) amounts to proving that ∀ε > 0 there exists a
rank N such that ∀n ≥ N ,

∣∣∫ t−1( f (tn)− f (0))− f ′(0)
∣∣

is bounded by ε. The existence of f ′(0) implies that
for almost all x and all ε′ > 0, we can find N ′ after
which

∣∣t−1( f (tn)− f (0))− f ′(0)
∣∣ is uniformly bounded

in x by ε′. Picking ε′ = |ΩI |−1 ε, and integrating the
former bound, we can find a rank N = N ′ after which∫
ΩI

∣∣t−1( f (tn)− f (0))− f ′(0)
∣∣ is bounded by ε. To con-

clude, we use that for any tn ,∣∣∣∣
∫

f (tn)− f (0)

tn
− f ′(0)

∣∣∣∣ ≤
∫ ∣∣∣∣ f (tn)− f (0)

tn
− f ′(0)

∣∣∣∣ .
This shows (19).

Computing the Eulerian derivative amounts to comput-
ing �s(x,Ω; V ). We use the chain rule d

dt �(x,Ωt ) =
∂�(x,β)
∂η

dη(Ωt )
dt . We know from Eq. (13) that:

∂�(x,β)
∂η

= W (x,β)(μ(x,β) − u0(x))g′(μ(x,β)).

The chain rule again provides:

dη(Ωt )

dt
= dXT (x,Ωt )

dt
β(Ωt )+ XT(x,Ωt )

dβ(Ωt )

dt
.

Taking t → 0 and using Definition 1, this becomes:〈
η′(Ω), V

〉 =
Xs(x,Ω; V )T β(Ω)+ XT(x,Ω)

〈
β ′(Ω), V

〉
.

Combining the previous calculations and evaluating at t =
0, we obtain the first part of result 5. By definition of
β̂MLE, s(Ω, β̂MLE) = 0, and we obtain the second part of
result 5. 	


At this stage, the speed function vd is not explicit. We
now specialize the previous result to the case of two-region
segmentation with deconvolution.

Result 6 For a two-region segmentation problem with a con-
volution K,

〈E ′d(Ω, β̂MLE), V
〉

reduces to

−
∫

Γ

vd(x, β̂MLE) 〈V (x), N(x)〉 da(x),

where the speed function vd is

vd(x, β̂MLE) :=�β̂MLE g′(μ(x, β̂MLE))

KT [
W (·, β̂MLE)

(
μ(·, β̂MLE)− u0(·)

)]
(x).

�β̂MLE := (β̂2 − β̂1) is the photometric contrast between
foreground and background, and KT is the adjoint of K.
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Proof Under the stated assumptions, the design matrix is

X(x,Ω) = K ∗ 1Ω(x)
[
1, −1

]T + [
0, 1

]T
. Applying theo-

rem 5.5 of Aubert et al. (2003) to f (x,Ω) :=K ∗ 1Ω ,

fs(x,Ω, V ) = −
∫

Γ

K(x− y) 〈V ( y), N( y)〉 da(y),

we obtain XT
s (x,Ω, V )β = −(β2−β1) fs(x,Ω, V ). Using

result 5 and rearranging the order of the integrals, we obtain
the result. 	


For a Gaussian noise model, we recover the known speed
functions of the Chan-Vese model without (Chan and Vese
2001) and with (Jung et al. 2009) deconvolution.

3.3.2 Convex Relaxation

We study the convex relaxation of the set of binary functions
to the set of soft membership functions. This section is not
restricted to the class of data-fitting energies introduced in
Sect. 2. It is valid for all energies that are convex in the linear
predictor.

Exact convex relaxations of two-region segmentation (see
Chan and Esedoḡlu 2005; Burger and Hintermüller 2005;
Chan et al. 2006; Bresson et al. 2007) rely on the co-area
formula E(M) = ∫ 1

0 E(1M≥t )dt , relating the energy of the
mask M to the energy of its thresholded version 1M≥t . Such
a result holds for the total variation functional (10), and for
all linear functionals due to the layer-cake formula (Chan
and Shen 2005). In the class of energies we have introduced,
a lack of exact convex relaxation can only be due to the
data-fitting energy not being a linear functional in general.
The regularization energy satisfies the co-area formula. We
hence investigate the conditions under which a data-fitting
energy involving a linear operator K in the linear predictor
satisfies a co-area formula.

Since the kernel K defines a linear functional, the co-area
formula holds and we have that for all x in ΩI :

K [M](x) =
1∫

0

K
[
1M≥t

]
(x)dt.

This can be interpreted as the expectation of the random vari-
able K

[
1M≥T

]
(x), with T a continuous random variable in

[0 , 1]. The energy functional being convex by hypothesis,
Jensen’s inequality applies:

Ed

⎛
⎝

1∫

0

K
[
1M≥t

]
dt

⎞
⎠ ≤

1∫

0

Ed
(
K

[
1M≥t

])
dt,

or, written in M only:

Ed(M) ≤
1∫

0

Ed
(
1M≥t

)
dt. (20)

A generalized co-area formula would correspond to an equal-
ity. Hence, the conditions for an equality in Eq. (20) are also
the ones for a generalized co-area formula to hold: either
K

[
1M≥t

]
(x) is constant in t for almost all x ∈ ΩI , or Ed

is linear. This result shows that in general a (generalized)
co-area formula does not hold for two-region segmentation.
Therefore, an exact convex relaxation by thresholding does
not exist.

Convex relaxation hence is exact if the soft mask only
takes values in the set {0, 1} x-almost everywhere. Put dif-
ferently, if the mask resulting from the convex optimization
problem is actually binary, a generalized co-area formula
holds for the data-fitting energy and the global solution of
the original non-convex problem is recovered. If the smooth
mask is not binary, one can provide a rough error estimate in
energy between a thresholded solution of the convex prob-
lem, M
, and the global solution 1�
 of the original non-
convex problem. Here, �
 is the true segmentation. The set
of soft membership functions taking values in [0 , 1] is a
superset of the set of binary functions. This inclusion entails
that E(M
) ≤ E(1�
). In addition, any thresholded version
of M
 is a binary function, and hence E(1�
) ≤ E(1M
≥t ).
These two inequalities can be combined to an upper bound
in energy valid for any threshold t ∈ [0 , 1]:
∣∣E(1M
≥t )− E(1�
)

∣∣ ≤ ∣∣E(1M
≥t )− E(M
)
∣∣ . (21)

This bound is useful in two ways: First, it is an a posteri-
oricertificate of the exactness of the convex relaxation. Sec-
ond, it can be used to choose the threshold t as the one min-
imizing the upper bound on the relaxation error. The same
upper bound has also been derived by Pock et al. (2009) as
an error bound when the regularization energy fails to satisfy
a co-area formula.

The second case in which an exact convex relaxation exists
is for a linear energy. We now show that even for a non-convex
data-fitting energy in η, one can rewrite it prior to convex
relaxation as a linear energy if K is the identity. In this case, Ed

is an integral of a function E of the binary mask and the pho-
tometric constants only: E (x, (β2 − β1)M(x)+ β1). The
integrand hence is E(x, β1) if M(x) = 0 and E(x, β2) if
M(x) = 1. After regrouping terms and excluding the mask-
independent integral, we obtain a functional that is linear
in M :

Ed(M,β) =
∫

ΩI

(E(x, β2)− E(x, β1))M(x)dx. (22)

Therefore, one can always rewrite the data-fitting energy as
a linear functional if K is the identity, even for a non-convex
data-fitting energy. This reduces the problem to the classical
segmentation model with a linear data-fitting functional and
a total-variation regularizer, for which exact convex relax-
ations are known for two-region problems (see Burger and
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Hintermüller 2005; Chan et al. 2006; Bresson et al. 2007). We
summarize the previous discussion in the following result.

Result 7 Consider two-region segmentation formulated as a
geometric optimization problem over an energy written as the
sum of a data-fitting energy Ed and a regularization energy
Er. Assume that a generalized co-area formula holds for Er.

If K is the identity, we can always rewrite Ed as a linear
functional in M (22), for which an exact convex relaxation
always exists. If K is linear and Ed is convex in K[M], the
“generalized co-area inequality” (20) holds and an exact
convex relaxation by thresholding does not exist in general.
If a global solution M
 of the relaxed problem is binary, 1�

is a global solution of the original non-convex segmentation
problem. If M
 is not binary, the a posteriori upper bound
(21) holds for any threshold t.

3.3.3 A New ASB Scheme for Image Segmentation

In the previous section we discussed convex relaxation of
image segmentation tasks coupled to image restoration, and
we emphasized the role of the kernel K. In practice, an effi-
cient algorithm for solving the relaxed convex problem is
needed. While any convex optimization algorithm could be
used, we choose the alternating split-Bregman (ASB) method
as introduced for image segmentation by Goldstein et al.
(2010) as a prototype. The contribution of this section is two-
fold: First, we show how to rewrite the ASB algorithm in a
form that decouples even further the different energy terms in
the geometric optimization problem, as described in a more
general context by Esser (2009) and Setzer et al. (2010). The
second contribution is to provide a new algorithm based on
the ASB framework.

Goldstein et al. (2010) proposed the ASB method for the
globally convex active contour formulation of image seg-
mentation:

min
M∈[0,1]TVwb (M)+ λ 〈vd ,M〉L2(ΩI )

, (23)

where M is a soft membership function as explained in the
previous section, TVwb is the wb-weighted total variation
norm (10), and vd is the speed function of the data-fitting
energy.

Consider how ASB works for problems written as the
sum of two convex, lower semi-continuous (l.s.c.) and proper
energies coupled in their argument via an operator C:

min
M

E1(M)+ E2(CM). (24)

The first step of ASB is to introduce an auxiliary variablew in
order to transform the unconstrained problem (24) to a con-
strained problem with w = CM . The constraint is imposed
exactly by applying Bregman iterations (Goldstein and Osher
2009), so that one iteration of the ASB after iteration k reads:

(Mk+1, wk+1) = arg min
(M,w)

E1(M)+ E2(w)

+ 1

2γ

∥∥∥bk + CM − w
∥∥∥2

2
(25)

bk+1 = bk + CMk+1 − wk+1,

where b is called the Bregman variable and γ > 0 is the
step size (Setzer et al. 2010; Setzer 2011). The optimization
problem (25) is solved by alternating optimization, sequen-
tially solving for M and w. For convergence results about
the ASB method, and its connections with other well-known
convex optimization techniques, we refer to the works of
Esser (2009) and Setzer (2011), and the references therein.

Goldstein et al. (2010) apply ASB with:

E1(M) := 〈vd ,M〉L2(ΩI )
, E2(w) := ‖|w|‖1 , C :=∇,

where w is a vector field and ‖|w|‖1 is the L1 norm of the
Euclidean norm of w under the constraint that ∀x, M(x) ∈
[0 , 1]. This renders the subproblem associated with M a con-
strained optimization problem:

min
M∈[0,1] 〈vd ,M〉L2(ΩI )

+ 1

2γ

∥∥∥bk + ∇M − wk
∥∥∥ . (26)

Goldstein et al. (2010) propose to approximately solve this
subproblem by one modified Gauss-Seidel iteration, where
the constraint M ∈ [0 , 1] is handled within Gauss-Seidel.
This splitting hence results in a subproblem where two things
are done simultaneously: solving the M-subproblem and
handling the soft membership constraint.

Here we propose a different splitting of problem (23),
where the constraint is handled in a separate subproblem.
Therefore, we introduce the indicator functional of the set
of soft membership masks from convex analysis, ι[0,1](M),
as being 0 if M ∈ [0 , 1] everywhere and∞ otherwise. The
globally convex segmentation problem can then be written
as the unconstrained convex problem:

min
M

TVwb (M)+ λ 〈vd ,M〉L2(ΩI )
+ ι[0,1](M). (27)

The objective functional of (27) is a sum of convex, l.s.c.,
proper functionals coupled in their arguments. Setzer et al.
(2010) propose a splitting that results in split-Bregman iter-
ations with decoupled subproblems. Consider the sum of m
convex, l.s.c. and proper functionals {Fi }i=1,··· ,m , coupled
in their arguments by m operators {Ci }i=1,··· ,m : E(M) =∑m

i=1 Fi (Ci M). The ASB strategy is then applied to:

E1(M) := 〈0,M〉L2(ΩI )
= 0, E2(w) :=

m∑
i=1

Fi (wi ), and

CM := [
C1 · · · Cm

]T
M = w := [

w1 · · · wm
]T
,

where we have emphasized with a bold font that C and w are
stacked quantities. The advantage of this splitting is that the
M-subproblem is a least-squares one and the w-subproblem
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Algorithm 1 Geometric Solver based on ASB

Require: Image u0, β̂MLE,F1, M0, and γ
Ensure: Segmentation mask M

b0
1 ← 0, b0

2 ← 0, b0
3 ← 0

w0
1 ← K

[
M0

]
,w0

2 ← ∇M0, w0
3 ← M0

while a stopping criterion is false do

Mk+1 ← arg min
M

∥∥∥bk
1 + K [M]− wk

1

∥∥∥2

2

+
∥∥∥bk

2+∇M − wk
3

∥∥∥2

2
+

∥∥∥bk
3 + M − wk

3

∥∥∥2

2
(29)

wk+1
1 ← arg min

w1
F1(w1)

+ 1

2γ

∥∥∥bk
1 + K

[
Mk+1

]
− w1

∥∥∥2

2
(30)

wk+1
2 ← arg min

w2
λ ‖|w2|‖1

+ 1

2γ

∥∥∥bk
2 + ∇Mk+1 − w2

∥∥∥2

2
(31)

wk+1
3 ← arg min

w3
ι[0,1](w3)

+ 1

2γ

∥∥∥bk
3 + Mk+1 − w3

∥∥∥2

2
(32)

bk+1
1 ← bk

1 + K
[

Mk+1
]
− wk+1

1

bk+1
2 ← bk

2 + ∇Mk+1 − wk+1
2

bk+1
3 ← bk

3 + Mk+1 − wk+1
3

end while
return M ← Mk+1

decouples and can be solved independently. We refer to the
works of Esser (2009) and Setzer et al. (2010) for details in
a pure image-restoration context and show below the details
for joint segmentation/restoration.

The GLM/Bregman-TVwb energy (11) can be rewritten

with m = 3 and C := [
K, ∇, Id

]T
as:

min
M

Ed(M)︸ ︷︷ ︸
:=F1(K[M])

+ λTVwb (M)︸ ︷︷ ︸
:=F2(∇M)

+ ι[0,1](M)︸ ︷︷ ︸
:=F3(M)

. (28)

The convex functional F1 can be a GLM/Bregman data-
fitting energy as presented here, or any other convex energy,
such as a L1 fidelity term.

The geometric ASB solver for problem (28) is described
in Algorithm 1. The variables used to enforce the constraints
w1, w3, b1, and b3 are scalar fields, whereas w2 and b2 are d-
dimensional vector fields with d the dimension of the image.
All fields are discretized on the same pixel grid as the data
and the mask M . The two operators K and ∇ assume homo-
geneous Neumann boundary conditions. We follow Cham-
bolle (2004) for discretizing the gradient ∇, denoted D, and
its adjoint DT := −div. The discretized functional F2 is
F2(w2) = ‖|w2|‖1. It is thewb-weighted sum over the pixel
grid of the Euclidean norm of w2 at each pixel. The step
size γ is the only free parameter of the algorithm. We now
describe how each subproblem is solved.

Solution of subproblem (29)

The Euler-Lagrange equation of the least squares problem
(29) after regrouping the terms in M is:

AM = KT (wk
1 − bk

1)− div(wk
2 − bk

2)+ (wk
3 − bk

3),

with A = (KT K + DDT+ Id). This linear system can effi-
ciently be solved using a spectral solver, since the operator
A can be diagonalized with a fast discrete cosine transform
(DCT-II), as explained by Strang (1999) (see Tai and Wu
2009, for the introduction of an FFT-based method in the con-
text of split-Bregman algorithms). An implementation based
on fast Fourier transforms (FFT) can solve this system in
O(Np log Np) operations, where Np is the total number of
pixels.

Solution of subproblem (30)

The Euler-Lagrange equation for subproblem (30) is:

w1 + γ vd(w1)− bk
1 − K

[
Mk+1

]
= 0, (33)

where vd is the gradient of F1(w1). Equation 33 is in general
non-linear in w1, but solutions can be approximated numer-
ically. For the data-fitting energy presented here, its form is
similar to the speed function in result 6. Contrary to the shape
gradient approach, classical variational calculus allows find-
ing vd for the GLM energy. The derivation is similar to the
one for the shape gradient and we do not reproduce it there.
We simply state the result:

vGLM
d = −�β W (x,β) (u0(x)− μ(x,β)) g′(μ(x,β)),

which is similar to the formula in result 6, except that the
kernel K is not present, due to the splitting viaw1. This means
in particular that μ is defined as g(μ(x,β)) = �β w1(x)+
β1. For practically important cases, Eq. 33 can be solved
analytically. In the online appendix, we provide the analytical
solutions of (30) for Gaussian12, Poisson, and Bernoulli noise
models with an identity link function.

Solution of subproblem (31)

Subproblem (31) is a L1 − L2 optimization problem for
which the exact solution is known analytically. The solution
is found by coupled thresholding (see Goldstein and Osher
2009, and references therein):

wk+1
2 = c

|c| max (|c| − λγwb, 0) ,

with c = DMk+1 + bk
2 and |·| the Euclidean norm.

12 Here, wk+1
1 = γwd�β(u0−β1)+bk

1+K
[
Mk+1]

1+γ (�β)2wd
pointwise.

123



Int J Comput Vis (2013) 104:69–93 83

Solution of subproblem (32)

Subproblem (32) is the orthogonal projection of bk
3 +

Mk+1 onto the interval [0 , 1], whose solution is:

wk+1
3 = max

(
0,min

(
bk

3 + Mk+1, 1
))
.

4 Experimental Results

We define the signal-to-noise ratio (SNR) as used in
microscopy. For an object of mean intensityμ2 observed over
a background of mean intensityμ1 and distorted by centered
additive Gaussian noise of variance σ 2, the SNR is defined
as the ratio between the intensity contrast, μ2 − μ1, and
the standard deviation of the noise, σ . As we want to com-
pare different noise distributions, we measure the SNR in
a distribution-independent way. Following Goudail et al.
(2004), we base our definition13 on the Bhattacharyya dis-
tance B: SNR :=√8B.

4.1 GLM/Bregman Model Expressivity

We present a series of calibrated experiments that illustrate
both aspects of the present work: the forward model coupling
image segmentation with image restoration (Sect. 2) and the
associated inverse problem (Sect. 3). For the first set of exper-
iments, we use a synthetic noiseless (166×171 pixels) binary
image composed of four shapes known to be hard for image
segmentation: a ring creating local minima in the energy, a
U-shaped object where the concavity presents difficulties to
local iterative solvers, a square where the sharp corners are
difficult to reconstruct, and a triangle with edges not aligned
with the image axes, which is problematic for methods based
on anisotropic regularizers.

Different forward models are used to simulate different
perturbations to this noiseless binary image. We consider four
noise models from the REF: Gaussian, Poisson, Bernoulli,
and gamma noise. In addition, we consider Laplace noise,
which is not in the EF. Our choice of EF members is justi-
fied as follows: The Gaussian, Poisson, and Bernoulli mod-
els result in convex energies if the identity link function is
used, whereas the gamma noise model results in a non-convex
energy. Moreover, the variance functions scale differently for
these noise models, resulting in qualitatively different denois-
ing tasks. The variance functions are constant (Gaussian,
V (μ) = 1), linear (Poisson, V (μ) = μ), and quadratic
(Bernoulli V (μ) = μ(1− μ) and gamma V (μ) = μ2). The
SNR is fixed at SNR = 4 for all images, corresponding to
B = 2. The background intensityβ1 is fixed (see Fig. 1 for the

13 Goudail et al. (2004) use a Gaussian SNR, which is the square of
ours. Hence, our definition differs from theirs by a square root.

specific values) and the foreground intensityβ2 is determined
to match the prescribed SNR. The binary mask M is then
transformed into a piecewise-constant image using Eq. (5).

In order to illustrate the coupling of segmentation with
deconvolution and inpainting, we generate for each noise
model blurred images and images with missing data as given
by an inpainting mask. Blurring is done with an isotropic,
homogeneous Gaussian kernel K applied to the piecewise-
constant image u. Either u or its blurred version is then used
as the mean of the distribution for each noise. The values of
all arameters can be found in the caption of Fig. 1. A set of
noisy images is generated for each combination, resulting in
10 noisy images (columns 1 and 7 in Fig. 1). The inpainting
mask is the same for all experiments and is generated ran-
domly once. This results in another 10 noisy images (columns
4 and 10 in Fig. 1). Before solving the inverse problem, all
images are normalized between 0 and 1. For each image,
alternating minimization (AM) is used based on either a
level-set solver (LSS) or the alternating split-Bregman solver
(ASBS) given in Algorithm 1. The total number of iterations
allowed is 1500 in all cases. The algorithms stop before if the
relative decay in energy between consecutive iterations falls
below 10−6. During AM, each subproblem is solved exactly.
We hence fix the number of iterations before re-estimating
the photometric constants to a large value, here 150. For both
algorithms, the initial mask is a set of densely covering cir-
cles. The regularization parameters are found manually and
set to λ = 0.1 for all experiments, except for gamma and
Bernoulli noise (λgamma = 5 and λBernoulli = 3). The step
size γ for ASBS is set to γ = 0.1 for all experiments. For
each experiment, the final energy of the segmentation, E
,
along with the total number of iterations required to reach
it, N 


iter, is reported below the image showing the final joint
segmentation/restoration.

Figure 1 illustrates the expressivity of the model described
in Sect. 2. The results presented in Sect. 3 allow solving cou-
pled segmentation/restoration problems using either level-
set solvers (Sect.3.3.1) or convex relaxation with the ASB
scheme (Sects. 3.3.2 and 3.3.3). In all cases we observe that
the ASBS finds better solutions (in energy) in less iterations
than the LSS. Even though not all photometric/geometric
inverse problems are jointly convex (but at most separately
convex), we observe that the convex relaxation approach
yields solutions close to the ground truth. For example,
we observe that for most of the LSS results the inner cir-
cle is almost never found by the algorithm, whereas the
ASBS always finds it. Detailed optimization trajectories for
Fig. 1a4, a10 can be found in the online appendix.

4.2 Threshold Selection Using (21)

When an exact convex relaxation exists (see Sect. 3.3.2), the
thresholding parameter can be chosen quite arbitrarily, and
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Fig. 1 Coupling image
segmentation with image
restoration using the
GLM/Bregman-TVwb model.
Nuisance parameters are fixed
as follows: the scale parameter
of Gaussian and Laplace
distributions is 1. Gamma noise
is of order 15. The blurring
kernel K is a Gaussian of
standard deviation 2 pixels. The
inpainting mask is the same for
all images and corresponds to
removing ∼20 % of the pixels in
random disks. Final
segmentations from the level-set
solver (LSS) and the alternating
split-Bregman solver (ASBS)
are shown along with the
number of iterations N 


iter and
the final energy E
. Photometric
constants are re-estimated every
150 iterations until the relative
error in energy is below 10−6.
The maximum number of
iterations allowed is 1,500. Both
algorithms are always initialized
with the same binary mask, an
array of disks

is usually set to t = 0.5. In case the convex relaxation is not
exact, we propose to use the a posteriori upper bound (21)
to select the threshold.

To illustrate the effect of this selection procedure, we
design a second test case. The task is to segment a U shape
close (4 pixels separation) to a square of similar dimen-
sions (50× 50 pixels). The piecewise-constant ground-truth
image (Fig. 2a) is corrupted with Gaussian noise (SNR=4)

before (Fig. 2b) and after convolution with an isotropic,
homogeneous Gaussian kernel of standard deviation 2 pixels
(Fig. 2c).

Without deconvolution convex relaxation is exact, and the
result from the ASBS is almost binary (Fig. 2d). With decon-
volution, however, convex relaxation is not exact, and the
result from the ASBS is not binary (Fig. 2e, f). For each
mask 2d–f the a posteriori error bound (21) is shown as a
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Fig. 2 Threshold selection using the a posteriori error upper
bound (21). (a) Ground-truth image (β1 = 10 and β2 = 14). (b)
Ground-truth image (a) corrupted with additive Gaussian noise (SNR
= 4). (c) Blurred (isotropic Gaussian, standard deviation σ = 2 pix-
els) ground-truth image corrupted with additive Gaussian noise (SNR
= 4). (d–f) Final masks obtained from applying the ASBS to (b) with

λ = 0.1 (d), to (c) with λ = 0.075 (e), and to (c) with λ = 0.125
(f). Panels (g–i) show the error upper bound (solid blue line, left axis)
and the MCC (solid red line, right axis) as a function of the threshold
t . Gray shaded regions correspond to threshold values resulting in the
correct topology. Optimal (g2, h2, and i2) and suboptimal (g1,3, h1,3,
and i1,3) segmentations are shown below

function of the threshold t (Fig. 2g–i). Knowing the ground-
truth segmentation (Fig. 2a), we assess the quality of the
binary classification resulting from the segmentation for dif-
ferent thresholds. We use the Matthews correlation coeffi-
cient (MCC) (Matthews 1975; Baldi et al. 2000) (solid red
line) as quality measure. The MCC correlates the observed
classification to the predicted one, and is normalized between
0 and 1: a value close to 1 represents perfect classification
and a value close to 0 corresponds to an average random
prediction.

In the case of exact convex relaxation, the a posteriori
upper bound is relatively small for almost all thresholds
(Fig. 2g) and quite insensitive to the actual value of the
threshold. The optimal threshold (marked g2) and its asso-
ciated segmentation (Fig. 2g2) are shown along with seg-
mentations corresponding to an upper bound 1.5 times larger
than optimal (Fig. 2g1, g3). The two suboptimal segmenta-
tions g1 and g3 are very close to ground truth and differ from
it only by a few pixels; the topology is always correct. This
robustness is reflected in the MCC saturating at 1.

In the case of approximate convex relaxation (Fig. 2h–i),
the a posteriori upper bound is higher than for exact con-

vex relaxation (Fig. 2h, h2, i, i2). We observe that the MCC
is negatively correlated with the a posteriori upper bound,
and that the threshold corresponding to the minimum upper
bound corresponds to the maximum MCC. The difference
between Fig. 2h, i is the regularization parameter used. Simi-
larly to the exact convex relaxation case, we select suboptimal
segmentations (h1, h2, i1, and i2). For lower regularization
(λ = 0.075), the optimal segmentation (h2), lies in the gray
shaded region of correct topology (Fig. 2h, h2). Between the
suboptimal segmentation h1 and the optimal h2, we observe
a kink in the error bound, corresponding to the loss of sep-
aration between the two objects (compare h1 and h2), as
driven by the regularization energy. For a larger regulariza-
tion parameter (λ = 0.125), the kink appears to the right of
the optimal segmentation, between i2 and i3. In this case,
the optimal segmentation i2 does not reconstruct the correct
topology. It is important to note that this comes from the
model attributing more or less weight to the regularization
energy. This is reflected in the soft labeling functions, where
the values between the two objects are lower for the smaller
regularization coefficient (Fig. 2e) than for the larger one
(Fig. 2f).
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Fig. 3 Tradeoff between speed and accuracy in the ASBS. The main
plot shows the final energy E
 and the number of iterations N 


iter taken
to reach the stopping criterion (relative energy drop below machine pre-
cision) for various combinations of the step size γ and the photometric
re-estimation period τβ . Regions A–D corresponding to Table 2 are
shown. The inset figure shows the linear correlation between the step
size γ and the final energy for the data points in the shaded band around
N 


iter ≈ 100

4.3 Tradeoff Between Speed and Accuracy

We investigate the influence of the step size γ and the photo-
metric re-estimation period τβ on the final energy E
 and the
number of iterations N 


iter needed to reach a relative differ-
ence in energy below machine precision. We use the synthetic
image introduced in Sect. 4.1, blurred with a Gaussian kernel
of standard deviation 2 pixels and corrupted with Gaussian
noise of SNR = 4. The same inpainting mask as in Fig. 1
is used. We set the regularization parameter to λ = 0.1 as
in the previous experiments. We conduct 1435 independent
experiments with the step size γ ranging in [0.005 , 1] and
the photometric re-estimation period τβ in [1 , 50]. For each
experiment we report the final energy E
 after optimal thresh-
olding, the number of iterations N 


iter required for the relative
error to drop below machine precision, and the CPU time in
seconds. The algorithm is implemented in pure Matlab and
all experiments are performed on a 2.8 GHz Intel Xeon E5462
CPU. Across all experiments, we measure a median time per
iteration of 6.8× 10−2 s.

Figure 3 summarizes the results. We observe a tradeoff
between the final energy E
 and the number of iterations N 


iter .
The lower-left region C of the scatter plot contains parame-
ter combinations corresponding to optimal tradeoffs between
accuracy and speed. In order to get a qualitative feeling for
how the two parameters influence the tradeoff, the inset in
Fig. 3 shows the dependence of the final energy E
 on the step

Table 2 Median values of the ASBS parameters in the four regions
A–D indicated in Fig. 3

A : E
 > 324, N 

iter < 90 B: E
 > 324, N 


iter > 90

Median γ = 0.43 Median γ = 0.75

Median τβ = 5.00 Median τβ = 12.0

C : E
 < 324, N 

iter < 90 D : E
 < 324, N 


iter > 90

Median γ = 0.15 Median γ = 0.43

Median τβ = 8.00 Median τβ = 26.0

size γ for the points in the shaded band around N 

iter ≈ 100.

We observe a positive linear correlation between γ and N 

iter.

The influence of the photometric re-estimation period is triv-
ial and hence not shown: the longer the re-estimation period,
the larger the total number of iterations. For a more quanti-
tative picture, we report in Table 2 the median values of the
parameters of the ASBS in the four regions A–D indicated
in Fig. 3. We observe that both parameters are positively cor-
related with both E
 and N 


iter.

4.4 Comparison with Goldstein et al. (2010)

Goldstein et al. (2010) adapted the ASB algorithm to the
Chan-Vese model (Chan and Vese 2001). Our ASB formula-
tion uses a different splitting (see Sect. 3.3.3). We compare
the two algorithms using the “cameraman” image corrupted
with Gaussian noise of SNR=4 (Fig. 4a,b). The goal is not to
assess which formulation is better in general, but to empha-
size the influence of the splitting scheme on both solution
quality and algorithmic efficiency. In order to compare the
two algorithms we parametrize the ASB algorithm of Gold-
stein et al. (2010) in a way similar to our algorithm (see
Eq. 26) and implement it in our AM solver code.

For both algorithms we use a regularization parameter of
λ = 0.1, a step size of γ = 2, a photometric update period of
τβ = 15, and an Otsu-thresholded image as initialization.
The resulting segmentations from the two algorithms are
visually similar (Fig. 4c for Goldstein et al. (2010) and Fig. 4d
for the present algorithm). Also the final energies reached
by the two algorithms are comparable (Fig. 4e). However,
we observe that the present ASB formulation decreases the
energy faster than the one of Goldstein et al. (2010) and ter-
minates earlier. Moreover, it reaches a slightly lower energy,
resulting in minute differences in the segmentation, e.g.,
around the ear of the cameraman. Since a smaller step size
is expected to lead to lower-energy solutions (see Sect. 4.3),
we run both algorithms with a smaller γ and find that this
increases the discrepancy between the two algorithms: the
initial energy decrease of the present algorithm seems almost
unaffected by the step size, although it takes longer to con-
verge. In the formulation of Goldstein et al. (2010), a smaller
step size slows down the decay in energy.
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a b

c d

e

Fig. 4 Comparison of the ASB algorithm by Goldstein et al. (2010)
with Algorithm 1. The noiseless image (a) is corrupted with Gaussian
noise (SNR= 4) (b). We show the segmentations obtained with the ASB
of Goldstein et al. (2010) (c) and Algorithm 1 (d) for λ = 0.1, τβ = 15,
and γ = 2. Panel (e) shows the energy traces of Goldstein’s algorithm
(blue) and Algorithm 1 (red). The inset shows the energy traces for
γ = 0.2

We have included the reference ASB of Goldstein et al.
(2010) in our Matlab code in order to also compare the
CPU times of both algorithms. The present algorithm seg-
ments the cameraman image in 45 s. The ASB of Gold-
stein et al. (2010) finds a local minimum in 64 s. The
present ASBS requires 0.60 s per iteration, that of Goldstein
et al. (2010) only 0.33 s per iteration. The formulation of
Goldstein et al. (2010) requires storage for 2d+1 arrays of
the size of the d-dimensional image. The present formula-
tion requires 2d+5 arrays of the size of the image, due to the

two additional splittings. The different per-iteration times
can be explained as follows: Goldstein et al. (2010) exploit
the fact that solving the subproblems in an ASB scheme
approximately does not impair the convergence of the over-
all algorithm. They thus use only one iteration of a Gauss-
Seidel solver with projection to solve the M-subproblem.
We use an FFT-based spectral solver, which solves the sub-
problem exactly. One iteration of our ASBS is hence more
expensive, but exactly solving all subproblems decreases the
energy more rapidly. However, our original motivation for
deriving an alternative formulation of the ASB algorithm was
to be able to include deconvolution. In this case, the Euler-
Lagrange equation of the M-subproblem in the strategy of
Goldstein et al. (2010) would involve inverting the operator
∇T∇+KTK. We expect that using a Gauss-Seidel strategy in
that case reduces the average energy decrease per iteration.

4.5 2D Barcode Segmentation

Image segmentation can provide a bridge between image
processing and image analysis. Traditionally, corrupted
images are first restored and then analyzed to extract fea-
tures of interest. One such application is barcode decoding.
Choksi et al. (2011) applied a variational image-restoration
framework to denoise and deblur 2D barcodes. We show that
this problem can be reformulated and solved as a joint task.
The goal here is not to design an efficient model or algorithm
for 2D barcode analysis, but to illustrate how a real-world
problem can be formulated and solved within the present
framework.

Figure 5a shows a quick response (QR) code image
corrupted with Gaussian blur and additive Gaussian noise
(SNR = 16). Moreover, 16 % of all pixels are randomly
removed from the corrupted image (Fig. 5b). Otsu thresh-
olding is used to generate the initial mask (Fig. 5c). We use
three different image models solved using the present ASBS
with λ = 0.01, γ = 0.1, and τβ = 15. The first one is the
deconvolving Chan-Vese model (Fig. 5d). The second uses
the same data-fitting energy, but an anisotropic TV regular-
izer14, as proposed by Choksi et al. (2011) (Fig. 5e). In Algo-
rithm 1, we only need to modify the w2-subproblem: Instead
of a coupled soft shrinkage applied to w2, two soft shrinkages
are separately applied to each component15 of w2. The third
model follows closely Choksi et al. (2011), but explicitly
includes the inpainting problem: An L1 data-fitting energy
is used with wd encoding the inpainting combined with an
anisotroptic TV regularizer (Fig. 5f).

Figure 5b and its Otsu-thresholded version, Fig. 5c,
can not be decoded by a standard smartphone application,
whereas all three reconstructions can (Fig. 5d–f). The main

14 Defined in 2D as
∫
ΩI
|∂1 M(x)| + |∂2 M(x)| dx.

15 The derivation is straightforward and not shown here.
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Fig. 5 Segmentation of a noisy, blurred QR code with missing data.
(a) QR code of the GLM wikipedia page URL. (b) Noisy (Gaussian
noise, SNR = 16), blurred (Gaussian blur, standard deviation 2 pixels)
QR code with 16 % randomly missing pixels. (c) Otsu thresholding of
(b). (d–f) ASBS results for a two-region segmentation/deconvolution

(λ = 0.01, γ = 0.1, and τβ = 15). (d–f) GLM model based on a
Gaussian noise model, the true inpainting mask and the true blurring
kernel coupled with an isotropic (d) or anisotropic (e) TV regularizer.
(f) L1 data-fitting model with an anisotropic TV regularizer

difference between the three reconstructions is the quality of
square-like features. The first model uses an isotropic geo-
metric prior, causing rounded corners. The other two models
use an anisotropic geometric prior, favoring rectangles with
edges aligned with the image axes. This results in sharper cor-
ners and edges. The third model is known to yield contrast-
invariant energies and induce a geometric scale-space where
small features can be recovered robustly (see e.g., Chan and
Esedoḡlu 2005).

4.6 3D Segmentation of Confocal Microscopy Data

Confocal microscopy and recombinant protein technology
enable biologists to address questions from subcellular
dynamics in live cells to tissue formation. This requires
accurately reconstructing and quantifying structures from
noisy and blurred images. We illustrate the flexibility of our
framework by performing 3D reconstructions of a complex-
shaped subcellular structure—the endoplasmic reticulum
(ER)—and of a multi-cellular structure—the Drosophila
wing disc—from stacks of confocal images. For a biophysi-
cal application of ER reconstructions we refer to Sbalzarini
et al. (2005, 2006). The Drosophila wing data come from
Zartman et al. (2013).

Figure 6a,d show the maximum-intensity projections of
the raw images16 of the ER (325× 250× 16 pixels) and the
wing disc (512×512×12 pixels), respectively. We use model
(11) with a Poisson likelihood, λ = 0.04, a Gaussian model
PSF with standard deviations estimated from the data. The
present ASBS uses τβ = 15, γ = 0.05, and is initialized
with an Otsu-thresholded image. Fig. 6b,e shows the result-
ing segmentations. In both cases, the biological prior is that
these structures are connected. We thus highlight the largest
connected component in red.

16 We show inverted images for visual clarity.

Using these two examples, we compare our coupled
denoising/deconvolution/segmentation with the classical
way of first performing image restoration and then seg-
menting the restored image. Denoising and deconvolution
in the sequential approach are done using a TV-regularized
Richardson-Lucy (Dey et al. 2004) deconvolution algorithm,
which is adapted to Poisson statistics. The restored images
are then segmented using AM with a Chan-Vese model. The
geometric inverse problem is solved using graph-cuts, since
they provide good theoretical guarantees for two-region seg-
mentation. A visual comparison of the sequential and joint
approaches is shown in Fig. 6c, f. The joint approach yields
visually better results than the sequential one. We quantify
this using known ground-truth data. For both datasets, we
generate ground-truth segmentations using a discrete restora-
tion/segmentation algorithm with a piecewise smooth image
model (Cardinale et al. 2012). From the resulting segmen-
tation, we generate artificial data by blurring a piecewise-
constant model with the estimated PSF and adding Poisson
noise (ER: SNR ≈ 4, Wing: SNR ≈ 5.2), see Fig. 7a,
e. Our joint approach directly uses these images as input
(λ = 0.04, τβ = 15, γ = 0.05). For the sequential
approach, we tune the parameters such as to maximize17 the
signal-to-error ratio SER, see Vonesch and Unser (2008) in
each case.

We quantitatively compare the two approaches using the
MCC (cf. Sect. 4.2) and the gain (in dB), defined as the
SER difference between the estimated piecewise-constant
image and ground truth. For both datasets, the joint approach
outperforms the sequential one, both in MCC and in SER
gain. For the artificial ER, the joint approach achieves an
MCC of 0.8018 and a SER gain of 1.9290 dB, whereas the
sequential approach achieves MCCs of 0.6970 (λ = 0.01)
and 0.6974 (λ = 0.04), and SER gains of 1.1778 dB (λ =
0.01) and 1.1799 dB (λ = 0.04). For the artificial wing disc,
the joint approach achieves an MCC of 0.7763 and a SER

17 This may seem overly conservative, but avoids obvious failures of
the sequential approach due to unstable deconvolution.
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Fig. 6 Segmenting biological structures imaged with confocal
microscopy. (a, d) Maximum-intensity projections of the inverted
images of (a) an ER (Image: Helenius group, ETH Zürich) and (d)
a Drosophila wing disc (Image: Basler group, University of Zürich).
(b, e) ASBS two-region segmentation with a Poisson likelihood and
an estimated Gaussian PSF, using the a posteriori upper-bound (21)
(green). The largest connected component (LCC) is shown in red. (c, f)

Comparison of the LCC from joint deconvolution/segmentation (red)
and from the sequential approach (blue). (c) For the ER, the LCC from
the joint approach (transparent red) is larger and contains the LCC from
the sequential approach. (f) The LCC of the wing disc obtained by the
sequential approach (blue) fills the space in z and misses the embedding
of the tissue surface in 3D

gain of 4.1759 dB. The sequential approach achieves MCCs
of 0.3852 (λ = 0.01) and 0.2188 (λ = 0.04), and SER
gains of 1.6208 dB and 1.1369 dB. Even though we do not
see a big difference between the two approaches when pro-
jecting the reconstructed images (Fig. 7b,c), we observe that
the restored image in Fig. 7f displays enhanced structures
from adjacent z-slices. These spurious structures appear at
low regularization, since in a sequential approach the seg-
mentation is unaware of the restoration task (Fig. 7h). At
higher regularization, these artifacts reduce at the expense
of poorer segmentation accuracy (Fig. 7i). The difference
in quality between the joint and the sequential approach is
mainly caused by the deconvolution task, rather than the seg-
mentation algorithm used. When jointly performing decon-
volution and segmentation, the segmentation image model
provides qualitatively different regularization for the decon-
volution.

5 Discussion and Conclusion

We presented a framework in which image restoration and
segmentation can be jointly formulated. We have shown how
to encode many image restoration problems in the likeli-
hood of a Bayesian image model. While we did not analyze
this formulation in its full generality, we focused on a large
family of forward models, extending the exponential family
formulation of Lecellier et al. (2010) to regression using gen-
eralized linear models. This allowed incorporating image-
restoration tasks via the prior data weightswd and the design
matrix X . Another perspective is to see the joint formulation
as a way to regularize ill-posed variational image-restoration
problems by constraining the reconstructed image to be in
a segmentation model class, here a piecewise-constant two-
region model. This is illustrated numerically in our 3D real-
world experiments in Sect. 4.6.
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Fig. 7 Segmentation of synthetic wing discs. a–c Maximum-intensity
projections of (a) the synthetic noisy, blurred image, (b) the recon-
struction by joint deconvolution/segmentation (λ = 0.04), and (c)
the reconstruction from the sequential approach (λ = 0.01). (d–
i) show for the same central slice of the image stack: (d) ground

truth, (e) synthetic noisy, blurred image, (f) deconvolved image using
TV-regularized Richardson-Lucy deconvolution, (g) result from joint
deconvolution/segmentation. Results from the sequential approach are
shown in (h) λ = 0.01) and (i) (λ = 0.04)

We have restricted ourselves to four members of the expo-
nential family to explore the range of scaling in the mean of
the variance function, from constant (Gaussian) to quadratic
(Bernoulli and gamma). Other members of this family are
adapted to the noise model relevant to the data at hand (see
Lecellier et al. 2010, for other applications). However, the
EF restricts the range of denoising tasks amenable to this for-
mulation. Nevertheless, it allows linking to a general class
of information measures, the Bregman divergences. One can

thus view the joint segmentation/restoration problem in a
dual way made precise in this article, either as a spatially
regularized regression problem (the GLM perspective) or as
a spatially regularized clustering problem based on a Breg-
man divergence (the information-theoretic perspective). This
extends the work of Banerjee et al. (2005) and constitutes a
first contribution toward a systematic classification of the
likelihoods in Bayesian image models. The presented for-
mulation includes existing image-segmentation models and
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formulates several new ones. Some existing models, how-
ever, do not fit our formulation. An example is the L1 data-
fitting energy of Chan and Esedoḡlu (2005) corresponding to
a Laplace distribution, which is not a member of the exponen-
tial family. Hence, extending the classification of likelihoods
seems important.

The presented GLM formulation suggests new models
not present in literature. Most notably, via the link function
g the GLM framework allows for a non-linear relationship
between the linear predictor η and the expectation μ of the
noise model. As far as we know, this has so far not been
used in image processing. It is also possible to further extend
the range of restoration tasks amenable to the presented for-
mulation. For example, we only considered kernels K rep-
resenting convolutions. One could, however, also consider
down-sampling and zooming/super-resolution operations K
see, e.g., Marquina and Osher (2008).

The full image model uses an isotropic total variation
prior with weights wb. The regularization term was not the
main focus here, we did not study the possibility of dif-
ferent geometric priors. Nevertheless, as shown in the QR
barcode example, an anisotropic TV prior can be used with
little modification to the framework. The convex relaxation
results remain valid as long as the prior satisfies a co-area-
like formula. Considering other geometric priors could be
particularly beneficial for adapting the geometric prior to
the problem at hand, or for coupling image segmentation
other image restoration tasks. For example, we have only
considered the TV-inpainting model, whereas most of the
work on inpainting focuses on designing specialized pri-
ors for this task (Chan and Shen 2005; Aubert and Korn-
probst 2006). For the sake of simplicity we have restricted
our discussion to single scalar images for which a two-
region segmentation problem with piecewise-constant pho-
tometry is solved. An extension to vector-valued images can
be achieved using vector GLMs (see e.g., Song 2007).

Some of the inverse-problem results presented here are
specific to the GLM class of forward models. These are the
photometric estimation using Fisher scoring and the deriva-
tion of the shape gradient, extending the results of Lecellier
et al. (2010) from the REF to the GLM class. Generalizing
these results to more than two regions is straightforward.
We showed that a general coupling (i.e., a general K) of
image segmentation and restoration prohibits exact convex
relaxation by thresholding, even for a two-region problem.
This is in contrast to the literature on linear data-fitting ener-
gies, where a lack of exact convex relaxation comes from the
fact that the co-area formula for the TV regularizer does not
generalize to more than two regions. Techniques developed
to convexify multi-region problems, such as functional lift-
ing (see Pock et al. 2008), could potentially also be used in
our framework in order to obtain convex formulations of the
forward problem for general K and for non-convex likelihood

energies, such as gamma noise. The photometric/geometric
inverse problem is in general not jointly convex, due to the
bilinear form of the linear predictor η. Extending the results
of Brown et al. (2012) to our framework, however, would
allow a completely convex formulation of the joint inverse
problem.

Another contribution made here was the introduction of a
new splitting scheme for the alternating split-Bregman algo-
rithm as applied to image segmentation. This contribution
is also valid for data-fitting energies not in the GLM class
and for more general regularizers. This is shown in Sect. 4.5
where a Laplace data-fitting energy and an anisotropic TV
regularizer are used. We have extended our ASB to multi-
ple regions in Paul et al. (2011). We chose the ASB algo-
rithm as a prototypical convex solver adapted to inverse
problems in image processing. However, many aspects of
the present framework can also be used with other opti-
mization algorithms, such as those by Chambolle and Pock
(2011), Lellmann and Schnörr (2011) and Chambolle et al.
(2012).
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Bresson, X., Esedoḡlu, S., Vandergheynst, P., Thiran, J. P., & Osher, S.
(2007). Fast global minimization of the active contour/snake model.
Journal of Mathematical Imaging and Vision, 28, 151–167.

Brown, E., Chan, T., Bresson, X. (2012). Completely convex formu-
lation of the Chan-Vese image segmentation model. International
Journal of Computer Vision, 98(1), 103–121.

Brox, T., Rousson, M., Deriche, R., & Weickert, J. (2010). Colour,
texture, and motion in level-set based segmentation and tracking.
Image and Vision Computing, 28(3), 376–390.

Burger, M., & Hintermüller, M. (2005). Projected gradient flows for
BV/level-set relaxation. PAMM, 5(1), 11–14.

Burger, M., & Osher, S. (2005). A survey on level set methods for
inverse problems and optimal design. European Journal of Applied
Mathematics, 16(02), 263–301.

Cardinale, J., Paul, G., & Sbalzarini, I. (2012). Discrete region compe-
tition for unknown numbers of connected regions. Image Processing
IEEE Transactions, 21(8), 3531–3545.

Caselles, V., Catté, F., Coll, T., & Dibos, F. (1993). A geometric model
for active contours in image processing. Numerische Mathematik,
66, 1–31.

Caselles, V., Kimmel, R., & Sapiro, G. (1997). Geodesic active contours.
International Journal of Computer Vision, 22, 61–79.

Chambolle, A. (2004). An algorithm for total variation minimization
and applications. Journal of Mathematical Imaging and Vision, 20,
89–97.

Chambolle, A., & Pock, T. (2011). A first-order primal-dual algorithm
for convex problems with applications to imaging. Journal of Math-
ematical Imaging and Vision, 40, 120–145.

Chambolle, A., Cremers, D., & Pock, T. (2012). A convex approach to
minimal partitions. SIAM Journal on Imaging Sciences, 5(4), 1113–
1158.
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Chan, T. F., Esedoḡlu, S., & Nikolova, M. (2006). Algorithms for
finding global minimizers of image segmentation and denoising
models. SIAM Journal on Applied Mathematics, 66(5), 1632–
1648.

Chesnaud, C., Réfrégier, P., & Boulet, V. (1999). Statistical region
snake-based segmentation adapted to different physical noise mod-
els. Pattern Analysis and Machine Intelligence IEEE Transactions,
21(11), 1145–1157.

Choksi, R., van Gennip, Y., & Oberman, A. (2011). Anisotropic total
variation regularized L1 approximation and denoising/deblurring of
2D bar codes. Inverse Problems and Imaging, 5(3), 591–617.

Cremers, D., Rousson, M., & Deriche, R. (2007). A review of statisti-
cal approaches to level set segmentation: Integrating color, texture,
motion and shape. International Journal of Computer Vision, 72,
195–215.

Delfour, M., & Zolésio, J. (2011). Shapes and geometries: Metrics,
analysis, differential calculus, and optimization, (Vol. 22). Philadel-
phia: Society for Industrial Mathematics.

Dey, N., Blanc-Féraud, L., Zimmer, C., Kam, Z., Olivo-Marin, J.C.,
Zerubia, J. (2004). A deconvolution method for confocal microscopy
with total variation regularization. In: Biomedical imaging: Nano to
macro, 2004. IEEE International Symposium on, (Vol. 2) (pp 1223–
1226) . Arlington.

Esser, E. (2009). Applications of Lagrangian-based alternating direc-
tion methods and connections to split Bregman. Technical report
UCLA Computational and Applied Mathematics.

Geiger, D., & Yuille, A. (1991). A common framework for image seg-
mentation. International Journal of Computational Vision, 6, 227–
243.

Geman, S., & Geman, D. (1984). Stochastic relaxation, Gibbs distribu-
tions, and the Bayesian restoration of images. Pattern Analysis and
Machine Intelligence IEEE Transactions, 6(6), 721–741.

Goldstein, T., & Osher, S. (2009). The split Bregman method for
l1-regularized problems. SIAM Journal on Imaging Sciences, 2(2),
323–343.

Goldstein, T., Bresson, X., & Osher, S. (2010). Geometric applications
of the split Bregman method: Segmentation and surface reconstruc-
tion. Journal of Scientific Computing, 45, 272–293.

Goudail, F., Réfrégier, P., Ruch, O. (2003). Definition of a signal-
to-noise ratio for object segmentation using polygonal MDL-based
statistical snakes. In: Energy minimization methods in computer
vision and pattern recognition, Vol. 2683 (pp. 373–388). Berlin:
Springer.

Goudail, F., Réfrégier, P., & Delyon, G. (2004). Bhattacharyya distance
as a contrast parameter for statistical processing of noisy optical
images. Journal of the Optical Society of America A, 21(7), 1231–
1240.

Greig, D. M., Porteous, B. T., & Seheult, A. H. (1989). Exact maxi-
mum a posteriori estimation for binary images. Journal of the Royal
Statistical Society Series B (Methodological), 51(2), 271–279.

Hansen, P. C., Nagy, J. G., & O’Leary, D. P. (2006). Deblurring images:
Matrices, spectra, and filtering (fundamentals of algorithms 3) (fun-
damentals of algorithms). Philadelphia: Society for Industrial and
Applied Mathematics.

Hebert, T., & Leahy, R. (1989). A generalized EM algorithm for 3D
Bayesian reconstruction from Poisson data using Gibbs priors. Med-
ical Imaging IEEE Transactions, 8(2), 194–202.

Helmuth, J., Sbalzarini, I. (2009). Deconvolving active contours for
fluorescence microscopy images. In: Advances in visual xomputing,
lecture notes in computer science (Vol. 5875, pp. 544–553). Berlin:
Springer.

Helmuth, J., Burckhardt, C., Greber, U., & Sbalzarini, I. (2009). Shape
reconstruction of subcellular structures from live cell fluorescence
microscopy images. Journal of Structural Biology, 167(1), 1–10.

Jung, M., Chung, G., Sundaramoorthi, G., Vese, L., Yuille, A. (2009).
Sobolev gradients and joint variational image segmentation, denois-
ing and deblurring. In: SPIE Electronic Imaging Conference Pro-
ceedings, Computational Imaging VII, SPIE (Vol. 7246).

Kass, M., Witkin, A., & Terzopoulos, D. (1988). Snakes: Active contour
models. International Journal of Computer Vision, 1, 321–331.

Kersten, D., Mamassian, P., & Yuille, A. (2004). Object perception as
bayesian inference. Annual Review of Psychology, 55, 271–304.

Lecellier, F., Jehan-Besson, S., Fadili, J., Aubert, G., Revenu, M.
(2006). Statistical region-based active contours with exponen-
tial family observations. In: Proceedings of IEEE International
Acoustics, Speech and Signal Processing Conference ICASSP 2006
(Vol. 2).

123



Int J Comput Vis (2013) 104:69–93 93

Lecellier, F., Fadili, J., Jehan-Besson, S., Aubert, G., Revenu, M., &
Saloux, E. (2010). Region-based active contours with exponential
family observations. Journal of Mathematical Imaging and Vision,
36, 28–45.

Lellmann, J., & Schnörr, C. (2011). Continuous multiclass labeling
approaches and algorithms. SIAM Journal on Imaging Sciences, 4(4),
1049–1096.

Leung, S., Osher, S. (2005). Global minimization of the active contour
model with TV-inpainting and two-phase denoising. In: Variational,
geometric, and level set methods in computer vision (Vol. 3752, pp.
149–160). Springer: Berlin.

Malladi, R., Sethian, J., & Vemuri, B. (1995). Shape modeling with front
propagation: A level-set approach. Pattern Analysis and Machine
Intelligence IEEE Transactions, 17(2), 158–175.

Marquina, A., & Osher, S. (2008). Image super-resolution by
TV-regularization and Bregman iteration. Journal of Scientific Com-
puting, 37, 367–382.

Martin, P., Réfrégier, P., Goudail, F., & Guérault, F. (2004). Influence
of the noise model on level-set active contour segmentation. Pattern
Analysis and Machine Intelligence IEEE Transactions, 26(6), 799–
803.

Matthews, B. (1975). Comparison of the predicted and observed sec-
ondary structure of t4 phage lysozyme. Biochimica et Biophysica
Acta (BBA)—Protein Structure, 405(2), 442–451.

McCullagh, P., & Nelder, J. (1989). Generalized linear models, 2nd
edn. London: Chapman and Hall/CRC.

Mumford, D. (1994). The Bayesian rationale for energy functionals. In:
Geometry-driven diffusion in computer vision (pp. 141–153). Dor-
drecht: Kluwer Academic Publishers.

Mumford, D., & Shah, J. (1989). Optimal approximations by piecewise
smooth functions and associated variational problems. Communica-
tions on Pure and Applied Mathematics, 42(5), 577–685.

Nelder, J., & Wedderburn, R. (1972). Generalized linear models. Jour-
nal of the Royal Statistical Society Series A (General), 135(3), 370–
384.

Nikolova, M. (2004). A variational approach to remove outliers and
impulse noise. Journal of Mathematical Imaging and Vision, 20,
99–120.

Osher, S., & Fedkiw, R. (2003). Level set methods and dynamic implicit
surfaces, applied mathematical sciences (Vol. 153). New York:
Springer.

Osher, S., & Paragios, N. (2003). Geometric level set methods in imag-
ing, vision, and graphics. New York: Springer.

Paragios, N., & Deriche, R. (2002). Geodesic active regions: A new
framework to deal with frame partition problems in computer vision.
Journal of Visual Communication and Image Representation, 13(1–
2), 249–268.

Paul, G., Cardinale, J., Sbalzarini, I. (2011). An alternating split Breg-
man algorithm for multi-region segmentation. In: Signals, systems
and computers (ASILOMAR), 2011 Conference Record of the Forty
Fifth Asilomar Conference on, (pp. 426–430).

Pock, T., Schoenemann, T., Graber, G., Bischof, H., Cremers, D. (2008).
A convex formulation of continuous multi-label problems. In: Com-
puter vision-ECCV 2008 (Vol. 5304, pp 792–805). Berlin: Springer.

Pock, T., Chambolle, A., Cremers, D., Bischof, H. (2009). A convex
relaxation approach for computing minimal partitions. In: IEEE Con-
ference on Computer vision and pattern recognition, 2009. CVPR
2009 (pp. 810–817).

Rudin, L. I., Osher, S., & Fatemi, E. (1992). Nonlinear total variation
based noise removal algorithms. Physica D: Nonlinear Phenomena,
60(1–4), 259–268.

Sbalzarini, I. F., Mezzacasa, A., Helenius, A., & Koumoutsakos, P.
(2005). Effects of organelle shape on fluorescence recovery after
photobleaching. Biophysical Journal, 89(3), 1482–1492.

Sbalzarini, I. F., Hayer, A., Helenius, A., & Koumoutsakos, P. (2006).
Simulations of (an)isotropic diffusion on curved biological surfaces.
Biophysical Journal, 90(3), 878–885.

Sethian, J. (1999). Level set methods and fast marching methods:
Evolving interfaces in computational geometry, fluid mechanics,
computer vision, and material science. Cambridge: Cambridge Uni-
versity Press.

Setzer, S. (2011). Operator splittings, Bregman methods and frame
shrinkage in image processing. International Journal of Computer
Vision, 92, 265–280.

Setzer, S., Steidl, G., & Teuber, T. (2010). Deblurring Poissonian images
by split Bregman techniques. Journal of Visual Communication and
Image Representation, 21(3), 193–199.

Shepp, L. A., & Vardi, Y. (1982). Maximum likelihood reconstruction
for emission tomography. Medical Imaging IEEE Transactions, 1(2),
113–122.

Song, P.X.K. (2007). Vector generalized linear models. In: Correlated
data analysis: Modeling, analytics, and applications, Springer series
in statistics (pp. 121–155). New York: Springer.

Strang, G. (1999). The discrete cosine transform. SIAM Review, 41(1),
135–147.

Tai, X.C., Wu, C. (2009). Augmented lagrangian method, dual methods
and split bregman iteration for rof model. In: Scale space and varia-
tional methods in computer vision (Vol. 5567, pp. 502–513). Berlin:
Springer.

Vogel, C. R. (2002). Computational methods for inverse problems.
Philadelphia: Society for Industrial and Applied Mathematics.

Vonesch, C., & Unser, M. (2008). A fast thresholded Landweber
algorithm for wavelet-regularized multidimensional deconvolution.
IEEE Transactions on Image Processing, 17(4), 539–549.

Zartman, J., Restrepo, S., Basler, K. (2013). A high-throughput tem-
plate for optimizing Drosophila organ culture with response-surface
methods. Development, 143(3), 667–674.

Zhu, S., & Yuille, A. (1996). Region competition: Unifying snakes,
region growing, and Bayes/MDL for multiband image segmentation.
IEEE Transactions on Pattern Analysis and Machine Intelligence,
18(9), 884–900.

123


	Coupling Image Restoration and Segmentation: A Generalized Linear Model/Bregman Perspective
	Abstract 
	1 Introduction
	1.1 Image-Processing Tasks as Inverse Problems
	1.2 Data-Fitting Energies
	1.3 Coupling Image Restoration and Segmentation
	1.4 Image Segmentation Algorithms
	1.5 Scope and Contributions of the Present Work

	2 The GLM/Bregman-TV model
	2.1 Generalized Linear Models (GLM)
	2.2 Whole-Image Anti-Log-Likelihood
	2.3 Bregman Data-Fitting Energies
	2.4 The GLM/Bregman-TVwb model

	3 Inverse Problem Algorithms
	3.1 Alternating Minimization
	3.2 Region Statistics Solver
	3.2.1 Score Vector, Fisher Information Matrix,  and the Maximum Likelihood Estimator β"0362βMLE
	3.2.2 Fisher Scoring Algorithm

	3.3 Geometric Solvers
	3.3.1 Shape Gradient of the GLM/Bregman Energy
	3.3.2 Convex Relaxation
	3.3.3 A New ASB Scheme for Image Segmentation


	4 Experimental Results
	4.1 GLM/Bregman Model Expressivity
	4.2 Threshold Selection Using (21)
	4.3 Tradeoff Between Speed and Accuracy
	4.4 Comparison with citegoldsteinsps2010
	4.5 2D Barcode Segmentation
	4.6 3D Segmentation of Confocal Microscopy Data

	5 Discussion and Conclusion
	Acknowledgments
	References


