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ABSTRACT
Automatic segmentation and tracking of biological objects from

dynamic microscopy data is of great interest for quantitative biol-
ogy. A successful framework for this task are active contours, curves
that iteratively minimize a cost function, which contains both data-
attachment terms and regularization constraints reflecting prior knowl-
edge on the contour geometry. However the choice of these latter
terms and of their weights is largely arbitrary, thus requiring time-
consuming empirical parameter tuning and leading to sub-optimal
results. Here, we report on a first attempt to use regularization terms
based on known biophysical properties of cellular membranes. The
present study is restricted to 2D images and cells with a simple cy-
toskeletal cortex underlying the membrane. We describe our new
active contour model and its implementation, and show a first ap-
plication to real biological images. The obtained segmentation is
slightly better than standard active contours, however the main ad-
vantage lies in the self-consistent and automated determination of the
weights of regularization terms. This encouraging result will lead us
to extend the approach to 3D and more complex cells.

Index Terms— Biophysics, Image segmentation, Biomedical
image processing

1. INTRODUCTION

Current biological research increasingly relies on quantitative stud-
ies of large data sets, an important part of which are in the form of
images obtained with various modern microscopy techniques. Ded-
icated image processing methods able to extract and characterize bi-
ological objects are of great interest to ensure a level of speed and
reproducibility beyond the reach of a purely human analysis.

The present work is motivated by the goal to track and outline
moving cells from videomicroscopy image sequences. For this pur-
pose, we and others have adopted the framework of active contours
and deformable models (see [1] for a review). Active contours [2]
are curves that evolve in the image domain to iteratively minimize
a suitably defined cost function, or energy. The equilibrium state
of the contour provides a segmentation of the object, and tracking is
achieved by repeating the process on consecutive frames of an image
sequence. The energy to be minimized contains image-dependent
terms designed to be minimal when the curve follows the object
boundaries, and image-independent terms that act as regularizers in
ill posed problems and are needed to reduce the effect of image noise
on the computed segmentation.

These image-independent terms represent a priori information
on the contour in the form of a penalty on specific characteristics
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of the curve, such as its smoothness, length, area or similarity to a
reference shape. For example, the widely used regularization en-
ergy of [2] is the integral of the squared first and second derivatives
of the curve position with respect to the curve parameter. These
two terms can be interpreted as tension and rigidity energies, re-
spectively. However, no physical justification has been given for
using these terms. The model [2] is thus applied to a variety of
images without considering the physical properties of the objects to
be extracted. This is an important limitation of most active contour
approaches. Indeed, one must expect sub-optimal segmentations for
most images, since the image-independent energy will always favour
the same shapes (e.g. a curve vanishing to a point in the model of
[2]) irrespective of the objects of interest. Furthermore, individual
terms in the regularization energy are weighted by arbitrary coeffi-
cients (hyperparameters), which in practice must be fine-tuned by
the users, often in a laborious trial and error process.

To overcome these limitations, it seems natural to seek energies
based on known physical properties of the objects to be extracted.
One can thus expect to develop active contours with fewer arbitrary
parameters and improved performances on specific classes of objects
and images, perhaps at the price of loosing some applicative gener-
ality.

Although there have been efforts to introduce physical properties
in deformable models for medical imaging applications, no compa-
rable work has been done for biological imaging. Here, focusing on
cell imaging, we report our first attempt to develop a new active con-
tour model with regularization energies based on biophysical prop-
erties of cell membranes. Section 2 briefly recalls the classical active
contour model of [2], and describes our new active contour model
with biophysical energy. Section 3 gives details of our implemen-
tation. Section 4 provides experimental results and discussion, and
section 5 the conclusion.

2. A BIOPHYSICAL ACTIVE CONTOUR MODEL

2.1. Representation of the contour
In this first attempt, and for simplicity, we have chosen to work on
2D images. The contour will be represented by a curve C with coor-
dinates (x(p, τ, t), y(p, τ, t)), where p ∈ [0, 1] is a space parametri-
sation, τ is a virtual time and t is the physical time corresponding
to the frame number in a temporal image sequence. The physical
time is needed here, in contrast to almost all active contour methods,
to account for "memory" effects (see below). Independent variables
will now be implicit when obvious.

The level set technique [3, 4], (in which curves are represented
implicitly as the zero level set of a scalar function defined on the im-
age) is a popular alternative to the parametric representation. How-
ever, only purely geometric characteristics of the curves can be ex-
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pressed in this representation. Although this is generally consid-
ered an advantage because it makes curve evolution independent
of change in parametrization, it is not adapted here, because we
will need to express a tension/stretching energy, which depends on
the changes in distance between material points (see below). Ap-
proximation of that term in order to obtain a non parametrization-
dependant term will be investigated in further work to use the level-
sets formalism.

2.2. Standard active contour energy
As a basis for comparisons, we consider active contours minimizing
the following cost function (energy), previously introduced in [5]:

E = EI + ES
R (1)

EI = λO
outside(C)

(I − c2)
2 dx dy + λI

inside(C)

(I − c1)
2 dx dy(2)

ES
R =

1
2

1

0

α
∂C
∂p

2

+ β
∂2C
∂p2

2

dp (3)

Here I = I(x, y) is the intensity of the image at the point (x, y),
cI and cO are the average intensity respectively inside and outside
the contour, λI , λO , α and β are the hyperparameters. This model
combines the data attachment term from [6] and the standard regu-
larization terms of [2], and is well suited to segmenting deformable
fluorescent cells [5].

We stress again, however, that the regularization energy ES
R is

not based on the physical properties of the cell membranes.

2.3. Biophysically motivated active contour energy
We now propose to replace the regularization energy ES

R with the
following energy:

EP
R =

1

0

σ
dl
dp

− dl
dp 0

+ κc2 dl
dp

dp (4)

In the following, we will define the notations and give physical jus-
tifications for this energy and for ranges of values of the associated
parameters, and provide explicit expressions allowing us to compute
contour evolution.

2.3.1. Tension energy

The first term in (4) is the tension energy due to stretching of the
cell membrane. The tension term was first proposed in soft matter
thermodynamics to account for the energy due to the interface. More
precisely, one unit of surface of interface has an energetical cost σ.
In the case of a cell membrane, the tension is due to the bilayer of
lipids, which are amphilic molecules [7, 8]. The tension value σ is
estimated to be in the range of 10−7−10−4 J/m2 under non extreme
conditions [9].

Another contribution to the tension energy comes from the cy-
toskeleton, a network of actin and tubulin polymers and intermediate
filaments that exerts mechanical forces within the cell. Here, we will
only consider the cortex of actin underlying the membrane; other cy-
toskeletal components are usually embedded deeply inside the cell
[10] and thus negligible for relatively small cell deformations. The
energetic cost of stretching the actin cortex can however also be ig-
nored, because elongation in one direction is almost exactly com-
pensated by contraction in the perpendicular direction (Poisson ratio
in 2D for an actin layer is very close to ν2D # 1 since ν3D # 0.5
from 3D measurements [11, 12]. Experiments [9, 13] support also
this result.

We note that the main contribution of the cytoskeleton to the en-
ergy is associated with the shear stress [14], estimated for red blood
cells at µ # 1.5 × 10−2 J.m−2 [11], however we cannot include it
since we are only considering the cell contour in 2D.

For a 3D membrane S, the tension energy (due to the strech-
ing of the membrane) is

S
σ |dS − dS0|, where dS is the current

surface element and dS0 the corresponding surface element in the
reference shape S0. Since dS and dS0 must refer to the very same
piece of surface material, they contain the same Lagrangian points.
The reference shape S0 is defined as the zero stress shape [7, 8]. In
the 2D setting of this work, we simply express the tension energy
as

C
σ |dl − dl0| = 1

0
dl
dp − dl

dp
0

dp with dl = dl
dp dp =

∂C
∂p dp the contour length element and dl0 the elementary length at

the same material point in the reference shape.
The reference shape introduces a memory effect in the model,

that is not present in standard active contours [2, 3, 6]. This reference
shape is not fixed, but dominated by the more recent configurations,
as the cytoskeleton progressively reorganizes to relax stresses [10].
Here, we make the simple assumption that the shape memory decays
exponentially with time:

dl
dp 0

(t) =
t

−∞

1
T

dl
dp

(t1) exp
t1 − t

T
dt1 (5)

where T is a characteristic time scale on the order of minutes [10].

2.3.2. Bending energy

The bending term in (4) is due to the curvature c of the membrane.
In lipid bilayers, the shape of individual lipids combined with the
lipidic composition of each leaflet result in a preferred, so called
spontaneous curvature c0 [7, 8]. However, c0 has typical values of
only co ∼ 10 m−1 [15], which is negligible compared to typical
membrane curvatures c # 105m−1 for cells with typical sizes of
∼ 10µm.

The weight κ in (4) is the bending modulus. Typical values are
κ # 2×10−19 J for red blood cells (with a cytoskeleton of spectrin)
[16], and 2 × 10−20 − 3 × 10−19 J for lipids [9].

Classically, in the Area Difference Elasticity (ADE) model [17,
18], three contributions are identified for the curvature energy: the
energy due to the mean curvature, the gaussian curvature and the
global curvature. We will only keep the former energy, since the
integrals over the closed 2D contour C of the gaussian curvature
and the global curvature are both constants according to the Gauss-
Bonnet and the "turning tangent" theorems, respectively [19].

Thus the curvature energy of interest here reduces to:

C

κc2 dl =
1

0

κc2 dC
dp

dp

where the curvature is given by c = ∂2y
∂p2

∂x
∂p − ∂2x

∂p2
∂y
∂p / ∂C

∂p

3
.

3. IMPLEMENTATION OF CONTOUR EVOLUTION

We now wish to compute the evolution of C that minimizes the new
energy E = EI + EP

R from (2) and (4).

3.1. Modification of tension term

The tension term in (4) contains a modulus that has no derivative
when dl

dp = dl
dp

0
. To remedy this, we replace the tension term by
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the following expression:

1
2
σ ∆l erf

∆l
ξ

+
ξ√
π

e
−∆l2

ξ2 with ∆l =
dl
dp

− dl
dp 0

With ξ = 0.5 , we have a quadratic behaviour around dl
dp = dl

dp
0

and far from this point a linear behaviour as desired.

3.2. Reference shape initialization

The initial reference shape of a cell needed to compute (5) and (4) is
not known at the onset of an image sequence. However, because of
the finite memory time T (see section 2.3.1), a reference shape can
be built from the first M = T ∗ fps frames of the series of images,
where fps is the frame rate. In order to do this, we progressively
increase the tension energy by replacing σ in (4) by an effective
tension σe = j

M σ for each frame j (j ≤ M).

3.3. Evolution equation

We follow the standard gradient descent approach [2, 3, 6], to mini-
mize the energy EI +ER by letting the contour evolve until conver-
gence according to:

∂C
∂τ

= −δ (EI + λER)
δC

(6)

The explicit evolution equations for ER = ES
R were given in [5].

For ER = EP
R , unfortunately, the explicit form of (6) is too com-

plex to be shown here1. We automatically generated it from (2) and
(4) using the symbolic calculator Mathematica (Wolfram Research).
This expression was then discretized and introduced in an iterative
numerical scheme written in Matlab (The Mathworks).

4. EXPERIMENTAL RESULTS

4.1. Procedure

We now report a first test of our approach on a time series of real
biological cell images shown in Fig. 1. This series shows a one cell
embryo of the nematod Caenorhabditis elegans observed with fluo-
rescence microscopy 2. We wish to compare our biophysically mo-
tivated active contour model defined by (4), (2) and (6) to the more
standard non physical active contour model [5] defined by (3), (2)
and (6).

4.1.1. Segmentation quality criterion

In order to quantify the quality of segmentations obtained with stan-
dard active contours and the present model, we use a manually drawn
curve C0 around the cell of Fig. 1 as a ground truth. We then define
a measure of segmentation error Q as the integral of the distance of
each contour point C(p) to the ground truth curve C0. The lower Q,
the better the segmentation. Q is always non-negative and Q = 0
indicates a perfect segmentation. For each segmentation C, Q is
computed numerically using an interpolation scheme.

1Here, λ is a constant coefficient needed to convert physical quantities
into non-dimensional quantities: λ = 9.2 × 1010 for the biophysical active
contours and λ = 1 for the standard active contours

2We used β-tubulin protein labelled with Green Fluorescent Protein
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Fig. 1. Segmentation of a fluorescent C. elegans cell by the proposed
method. A. the sequence of 6 frames used for the initialization of
shape memory and segmentation. B. Segmentation of frame # 1.

4.1.2. Processing the image series

Although the segmentations will be evaluated only on frame #1, the
biophysical active contours were run sequentially on frames # -4
through # 1. This is necessary to initialize the shape memory (see
section 3.2 above). For computation of the reference shape by (5),
we use an estimated memory time based on known cell division time
of T = 150s. The standard active contours, which contain no mem-
ory term, were run only on frame # 1.

4.1.3. Screening for the best parameters

A meaningful comparison of the two active contour models requires
setting the hyperparameters to adequate non-arbitrary values. For
this purpose, we vary the hyperparameters logarithmically over wide
ranges of values and choose the set of parameters that minimizes the
error Q.

Since this work is concerned with the regularization energy and
not primarily with the data attachment terms (which are identical
in both models), we can set λO = λI = 1.4 in all experiments
and only vary the regularization hyperparameters. For the standard
model, the ranges of the hyperparameters tested are as follows: α =
4×10−4 to 102 and β = 6.4×10−5 to 10. This range of parameters
spans 6-7 orders of magnitudes around values providing empirically
reasonable segmentations.

For the biophysical active contours, the range of tested hyper-
parameters are κ = 2 × 10−22 − 2 × 10−13 J and σ = 5 ×
10−10 − 5 × 10−1 J.m−2. Note that both ranges cover 9 orders
of magnitude, whereas the physically predicted values for κ and σ
span only about 2 and 3 orders of magnitude, respectively (see sec-
tions 2.3.1 and 2.3.2). Therefore, an important test of the validity
of our approach is to determine if hyperparameters that achieve good
segmentations are also inside the physically realistic range.

4.2. Results
4.2.1. Segmentation quality

Fig. 1 shows the segmentation obtained by our biophysical active
contours with the empirically obtained best set of parameters (see
section 4.1.3). The obtained error Q was 5 % smaller than for the
best segmentation obtained with the standard active contours. This
improvement may seem marginal, but note that Q is only a global
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Fig. 2. Detail of Fig. 1 segmented by the biophysical active contours
(solid curve). For comparison, see the result of segmentation by
standard active contours [5] (dotted curve) and the manual ground-
truth segmentation (dashed curve).

measure averaged over the entire cell shape. Fig. 2 shows that our
algorithm performs notably better than standard active contours in
detecting small structures of the cell membrane shape. This result
suggests that curvature and tension are more suited as regularization
energies for cell image segmentation than first and second deriva-
tives [2, 5]. This is not surprising since the new regularization en-
ergies introduced here are the very same energies that control the
shape of the real membrane.

4.2.2. Hyperparameter prediction

A second, perhaps more important result pertains to the hyperpara-
meters achieving the best segmentations. With our model, we obtain
an optimal parameter ratio σ

κ = 2.5 × 1012 m−2. This number
falls nicely within the range 3 × 1011 − 5 × 1015 m−2 predicted
by physics (see sections 2.3.1 and 2.3.2), although, as mentioned
above, this range is much smaller than the range of tested parameters.
This is an encouraging confirmation that biophysical considerations
are successful at predicting ranges of hyperparameters that contain
the optimal values for cell image segmentations.

5. CONCLUSION

We have presented a new regularization energy for active contours
based on biophysical knowledge of cell membrane properties. We
showed on a real image that this model can give slightly better seg-
mentations than active contours with standard regularization terms.
However the main advantage of the presented method is its ability to
predict (or significantly narrow down) the range of hyperparameters
for the regularization terms. This considerably reduces the need for
time-consuming empirical tuning of the hyperparameters.

This is the first step in our effort to integrate biophysical knowl-
edge in cell segmentation algorithms by active contours and the re-
ported results are encouraging. We plan to pursue this approach in
two main directions : (i) extend the model to the more realistic 3D
case, and (ii) take into account other important cell features such
as pseudopods, filopods and adhesive focal points. Among other
possible extensions are the handling of topological changes and the
modeling of image formation to also predict the hyperparameters of
the data attachment energy.
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