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ABSTRACT 
 

The spatio-temporal patterning of gene expression in early 

embryos is an important source of information for understanding 

the functions of genes involved in development. Most analyses to 

date rely on biologists' visual inspection of microscope images, 

which for large-scale datasets becomes impractical and subjective. 

In this paper, we introduce a new method for clustering 2D images 

of gene expression patterns in Drosophila melanogaster (fruit fly) 

embryos. These patterns, typically generated from in situ 

hybridization of mRNA probes, reveal when, where and how 

abundantly a target gene is expressed. Our method involves two 

steps. First, we use an eigen-embryo model to reduce noise and 

generate feature vectors that form a better basis for capturing the 

salient aspects of quantized embryo images. Second, we cluster 

these feature vectors by an efficient minimum-spanning-tree 

partition algorithm. We investigate this approach on fly embryo 

datasets that span the entire course of embryogenesis. The 

experimental results show that our clustering algorithm produces 

superior pattern clusters. We also find previously unobserved 

clusters of genes that share biologically interesting patterns of 

gene-expression. 

 

1. INTRODUCTION  
 

RNA in situ hybridization provides a powerful way to visualize 

gene-expression patterns directly. Projects are underway to 

systematically collect RNA in situ expression patterns for a large 

number of genes during development in several organisms 

including nematodes [4], fruit flies [8][1] and mice [11].  

The analysis of large-scale in situ datasets is by no means 

straightforward. Traditionally such images have been analyzed by 

direct inspection of microscope images, and several in situ 

databases record biologists' descriptions of expression patterns 

using a controlled vocabulary [8]. Automatic analyses are highly 

desired for annotation and many other applications. For example, 

identifying co-expressed genes from in situ expression data can 

dissect the gene expression networks that underlie development in 

multicellular organisms. 

There has been little earlier work on image clustering to produce 

groups of genes with similar spatial-temporal patterns. This paper 

presents an efficient method for identifying clusters of similar in 

situ mRNA expression patterns. We develop the method in the 

context of the developing Drosophila embryo, using data from the 

Berkeley Drosophila Genome Projects in situ Database [1]. 

There are two major challenges:  

 Variation in embryo morphology, expression pattern 

staining and image orientation. These factors often make 

the intrinsic cluster-structure obscure. 

 Large data dimensionality. Often, each pixel is taken as one 

dimension, thus the dimensionality of an image sample is 

the total number of pixels, which is often very large (at 

least around 100,000). High dimensional data not only 

presents a serious computational problem, but also contains 

lots of redundant information that needs to be removed in 

order to recover the intrinsic structures of the data 

distribution and its clusters. 

To effectively cluster such large-scale noisy image data, there 

are two complementary issues to consider. First, what is a good 

representation of features in an in situ gene expression pattern? 

Second, how does one efficiently cluster the chosen feature 

representation? In this paper, we consider an eigen-embyro scheme 

to extract a feature vector for each embryo image by mapping the 

image to a low-dimensional eigen-image space (Fig. 1). Then, we 

introduce a very efficient tree-partition algorithm called MSTCUT 

to cluster these low-dimensional feature vectors of image patterns. 

We have performed comprehensive experiments on clustering 

several sets of Drosophila embryo patterns that span the entire 

course of embryogenesis. We show that for our data this approach 

is more efficient and accurate than several methods including 

spectral clustering and can find meaningful image clusters.  

In the rest of the paper, we assume all the embryo images have 

been preprocessed using our earlier methods developed in [5]. The 

anterior-posterior axis of an embryo is horizontal (anterior always 

left, and dorsal always up). 

 

2. EIGEN-EMBRYO FEATURES 
 
The first step in our method is to generate feature vectors that 

characterize each image. Assume we have N images of in situ 

expression patterns I1, I2, …, IN, each having M pixels. What is a 

good way to describe their features? One possible way as proposed 

in [5] is to detect prominent traits or Gaussian "blobs" in every 

image. Since different images can have different traits, this 

approach does not provide a canonical feature space against which 

the distribution of all image-patterns can be measured. 

Accordingly, clustering performance is limited.  

An alternate approach is to decompose an image as a linear 

combination of a series of mutually orthogonal basis functions 

using the principal component analysis (PCA). This eigen-image 

analysis method, which was first applied to human-face 

recognition [9], uses the coordinates of an image in the eigen-

image space as a feature vector that represents the original image. 

For our embryo images, this approach can be called the eigen-

embryo analysis. 

Fig. 1 illustrates the basic scheme of eigen-embryo analysis. In 

the pool of input images, two clusters are mixed together. Each 

cluster has a dark image, a bright image, and an image that is 

neither very dark nor very bright. Although visually we can see 

these two clusters of images have different expression patterns, it is 

not easy for a computer clustering program to separate them in the 

space of the raw image because the pixel intensity is the most 

pronounced feature in these 6 images, which obscures the cluster 

boundary. By projecting these images to the subspace of the first 3 
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principal eigenvectors (i.e. eigen-images), we represent each image 

using a feature vector w, which is the coordinate of image patterns 

in the 3D subspace. The cluster structure becomes apparent in the 

subspace, as indicated by small triangles and circles among which 

the cluster boundary can be easily drawn. Note that in the first PC, 

the dark curved structure (ventral nerve cord and brain) and light 

two-blob structure (guts) indicate the most prominent features to 

distinguish these 6 image-patterns. 

 

 
 

Fig. 1. Schematic illustration of the feature-vector generation and 

clustering using eigen-embryo analysis. For better visualization, 

we use the eigen-embryo sizes to indicate the ordering of principal 

components (PCs).  

 

Mathematically, eigen-embryo analysis derives a short feature 

vector w to represent each image I, which is an M 1 vector. We 

first compute the centroid pattern of these N images, . Each input 

image then differs from this centroid pattern by Xk = Ik  . Let X 

= [X1, …, XN]. Then the co-variance matrix is C = XX
T
/M. The 

eigenvectors of the L largest eigenvalues of C form a subspace into 

which each image is projected by describing it as a weighted sum 

of these L eigen-embryos. This set of weights [w1, w2, …, wL]
T 

is a 

point in the L-dimensional eigen-embryo space and is called its 

feature vector. Denoting the ith eigenvector as vi, the ith coordinate 

of the feature vector for image I is, 

)(= Ivw T

ii  (1) 

By describing each image in terms of the L most significant 

eigen-embryos the major variation of the data distribution is 

preserved, noise and redundancy are largely eliminated, and the 

distances between the feature vectors can be viewed as the 

distances between points in an L-dimensional space. 

 

3. MSTCUT CLUSTERING  
 
With each image now represented by a feature vector in the eigen-

embryo subspace, we turn to describing a minimal spanning tree 

based clustering method called MSTCUT. We first construct a 

weighted, an undirected graph G = (V, E), where V denotes a set of 

nodes and E denotes the set of edges between any pair of nodes. 

Each node g  V (|V| = N) is the feature vector of an image, and the 

edge weight s between a pair of nodes is the similarity of the 

respective image feature vectors. When the edge weight is 0, we 

say two nodes are not connected. This graph can also be described 

as an N N similarity matrix, S, of all the N nodes.  

The image clustering problem can be defined as follows. Given 

N image data samples, we want to partition them into K pieces or 

clusters (K < N and generally K is unknown) so that (1) each 

piece/cluster is a single connected component, (2) within each 

cluster the total similarity of data samples is maximized, and (3) 

across clusters the total similarity of data samples is minimized. 

Denote the similarity between the ith and jth samples as sij, where 

1  i, j  N. Without loss of generality, we can assume the 

similarity score is between 0 and 1. Let S = [sij] which is 

symmetric, A1, A2, …, AK denote the K clusters, and Smn (1  m, n  

K) denote the sum of the similarity matrix values of samples in Am 

and An. Thus, the K-way clustering is to simultaneously optimize 

all conditions in Eq. (2), where K is unknown.  

 
=

jiKjiS

KiS

ij

ii

 ,,1  ,min

1,...,  ,max
 (2) 

The criterion Eq. (2) is called MinMaxPartition criterion. One 

way to combine the optimization conditions in Eq. (2) is to 

optimize Eq. (3), 

= =

+
K

i

K

ij
j jj

ij

ii

ij

S

S

S

S

1 1

min  (3) 

Generally, it is very difficult to solve the K-way partition 

exactly, mainly because it is highly combinatorial, the complexity 

of an exhaustive search is O(K
N
). An alternative method is to 

iteratively perform K 1 2-way cuts. At each step we solve the 

much simpler problem of optimizing Eq. (4), which maximizes the 

intra-cluster similarity and minimizes the inter-cluster similarity 

simultaneously. In this case, a brute force search for the best 

partition has the complexity O(2
N
).  

22

12

11

12min
S

S

S

S
+

 

(4) 

To be comprehensive we consider three widely used similarity 

scores, namely the L1, L2 Euclidean similarities and the correlation 

coefficient score. The L1 and L2 scores are computed from the 

respective Euclidean distance scores by applying a monotonically 

decreasing function to them. In this application, we use s = exp(–d), 

where d is the normalized Euclidean distance metric between two 

samples. This score tends to spread very similar points,  

 

3.1 MSTCUT Clustering Algorithm 

 

In the scenario of graph partition, a cluster of nodes is a 

connected component in the graph. Hence, for the fully connected 

graph G represented by the whole similarity matrix of all pairs of 

image samples, we can safely eliminate edges with the weakest 

similarity, while keeping the graph a connected component. 

Removing edges in increasing order of similarity or decreasing 

order of distance subject to not disconnecting the graph eventually 

leads to a minimum/maximum weight spanning tree (MST) 

depending on whether one considers distance or similarity, 

respectively, as the weight of an edge. An MST connects all nodes 

(image samples) in the graph, but has the minimum overall edge 

distance-scores. MST captures the basic cluster structures in the 

data, because the nodes that are more similar to each other are 

always connected in a shorter path in the tree.  
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An MST can be efficiently constructed using Prim's algorithm 

[2] that delivers a tree in O(|E|+NlnN) time when one uses a 

Fibonacci heap [2].  In our application the graph is not particularly 

sparse, i.e. |E| is O(N
2
). 

We propose a simple algorithm, called MSTCUT, to optimize 

the condition in Eq. (4). Because there are only N–1 edges in the 

tree graph and removal of one edge will bi-partition the graph, 

finding two clusters of nodes can be done by eliminating one edge 

in the tree. Since there are only N–1 different partition results, we 

can compare all of them to choose the best partition that minimizes 

Eq. (4) in O(N
2
) time.  

How to generate K clusters? One way is to extend the MSTCUT 

to find K clusters simultaneously, by minimizing Eq. (3). This can 

be done in a brute force way to search all combinations of the K–1 

edges dropped in the MST. The complexity is O( )(
1

1

K

N
N). 

Another more efficient way is to repeat the above bi-partition 

process on the sub-trees until K clusters are found. At each graph 

bi-partition step, we choose the cluster which has the smallest 

intra-cluster similarity for further partition. This cannot generate K 

clusters that are globally optimal, but the complexity is 

significantly reduced to O(KN
2
) time.  

With the same MinMaxPartition Criterion, a very interesting 

method is called spectral clustering, which was developed in recent 

years to convert the combinatorial search problem in Eq. (4) as a 

linear search problem [7][3]. We note that in the limit case, we can 

apply the spectral clustering on the MST, which is the sparsest 

connected graph [6]. In this case, the partition result will be exactly 

the same as that generated by our MSTCUT method, because both 

spectral clustering and MSTCUT optimize the same function in 

Eq. (4). However, MSTCUT is faster, because it does not involves 

extra-computation of eigenvectors. We will show quantitative 

comparison of MSTCUT and spectral clustering in §4.  

To evaluate the performance of clustering algorithm, we follow 

[6] and use the aggregated score of F-measures between the 

predicted clusters and the ground truth clusters. F-measure can be 

written in the form of precision P and recall R, which are widely 

used in information retrieval [10]. 

 

4. EXPERIMENT 1: COMPARISON OF 

DIFFERENT ALGORITHMS  
 
Before we apply our approach to real examples in §5, we 

quantitatively compare our method against a few others.  

For comparison, we selected several subsets of mRNA 

expression pattern images and determined the "ground truth" 

clusters of these images. Due to space limitation, here we only 

show results for one dataset, called P4Lateral, which corresponds 

to the lateral view of 167 embryos at the developmental stage 9-10 

(i.e. phase 4 in [5], or about 4.8 ~ 6 hours after fruitfly egg 

hatching). In P4Lateral, there are three clusters manually 

determined by two human subjects. The consensus is used as the 

ground truth clusters. These three clusters include: (c1) 64 samples 

of gene expression patterns in the primordium of embryonic 

ectoderm regions (including procephalic, anterior, posterior, 

ventral, dorsal ectoderms), nervous system (like ventral nerve 

cord), and guts (like external foregut and inclusive hindgut). (c2) 

44 samples of gene expression patterns only in the foregut and 

hindgut regions. (c3) 59 samples with artifact patterns that look 

like patterns in the ectoderm regions.  

Results in Table 1 show that the introduction of eigen-embryos 

and MSTCUT improves the cluster-prediction. We see that for all 

three similarities L1, L2, and CC, the improvements of the eigen-

image matching over the global matching, and those of MSTCUT 

over the spectral clustering, are significant. For example, the F-

scores of our method are always higher than or around 0.9, 

whereas the F-scores of the comparing methods are around 0.7. 

Also note that for both clustering methods, the overall results for 

the eigen-image matching are better than those for global image 

matching. We also show the average result of random clustering. 

The average F-score of our method (above 0.9) is much higher 

than that of the random clustering method and very close to 1, 

indicating our results are very close to the manually generated 

"ground truth" and our method succeeds in finding the meaningful 

clusters in this dataset. 

  

Table 1. F-measure scores of different clustering methods.  

 

Clustering methods 
Spectral  

clustering in [3] 
MSTCUT 

Similarity scores L1 L2 CC L1 L2 CC 

Global matching 0.69 0.69 0.57 0.69 0.70 0.74 

Eigen-embryo 

 Matching 
0.74 0.69 0.67 0.92 0.93 0.89 

Random  

clustering 
0.346±0.002 (based on 20 trials) 

 

 

 

 

(a) (b) (c) 

 

Fig. 2. Clustering results of P4Lateral dataset as three clusters in 

(a), (b) and (c). 

 

5. EXPERIMENT 2: APPLICATION IN 

DETECTING CO-EXPRESSED GENES  
 
It is known that co-expressed genes have similar spatial-temporal 

expression patterns over a range of embryo developmental stages. 

They might also be co-regulated in some modules in a genetic 

regulatory network. One way to detect co-expressed genes is to 

examine if several genes always have patterns that belong to the 

same cluster for multiple developmental stages. This is useful to 

infer if the respective genes share common regulators and how 

some genes are turned on/off under different conditions.  

We design the following method to detect groups of genes that 

have similar expression patterns. The 16 developmental stages of 

Drosophila embryogenesis can be categorized as 6 phases, i.e. 

stages 1-3, 4-6, 7-8, 9-10, 11-12, and 13-16 [1], which coincide 

with major developmental transitions, e.g. gastrulation. Thus, we 

check the image clustering results phase-by-phase for every gene. 

The genes which have patterns in the same cluster of any specified 

phases are taken as a co-expressed gene-group in which genes 

share common spatial expression patterns during the entire course 

of embryogenesis. We have studied a set of 463 genes, with more 

than 4000 images. We have found many interesting clusters. Due 
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to space limitation, here we can only show one example of 

predicted conditionally co-expressed genes.  

As shown in Fig. 3, three genes, Elongin-B (a transcriptional 

factor), Ngp (for GTP-binding) and CG17218, are found to share 

similar spatial patterns over the first 5 embryo development 

phases. We compared our prediction with the expert-annotations in 

the BDGP database [1], which have been listed besides the images 

in Fig. 3 (indicated by a " "). They also share a lot of common 

terms of image-ontology-annotation. However, for phase 6, the 

pattern of CG17218 is different from those of Elongin-B and Ngp. 

The respective expert-annotations for phase 6 are also different. 

This example shows that with our clustering method is able to 

detect these biologically interesting groups of gene clusters that 

might indicate the developmental-stage-specific co-expression/co-

regulation relationships among genes.  

As an ongoing work, we are currently investigating how to make 

use of these very useful gene phenotype clusters to detect sequence 

motifs of these genes. 
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Gene 
Phase 

Elongin-B 
(transcription elongation factor) 

Ngp 
(GTP binding) 

CG17218 

1 stage1-3 

 

 

 

maternal  

 

maternal  

2 stage4-6 

 

cellular blastoderm  

 

cellular blastoderm  

 

cellular blastoderm  

3 stage7-8 
 

head mesoderm anlage  

posterior endoderm anlage  

trunk mesoderm anlage  

anterior endoderm anlage  

 

 

head mesoderm anlage  

posterior endoderm anlage  

trunk mesoderm anlage  

hindgut anlage  

 

4 stage9-10 

 

trunk mesoderm primordium  

 

inclusive hindgut primordium 
salivary gland duct specific anlage 
salivary gland body specific anlage 

proventriculus primordium 
trunk mesoderm primordium  

 

 

5 stage11-12 
 

 

 

hindgut proper primordium  

posterior midgut primordium 
anterior midgut primordium 

salivary duct primordium 
salivary gland body primordium 
visceral muscle primordium 

 

hindgut proper primordium 
 

tracheal primordium 
dorsal epidermis primordium 
foregut primordium 

6 stage13-16 
 

embryonic/larval muscle system 
 

 

embryonic/larval visceral muscle  
embryonic/larval somatic muscle  

dorsal prothoracic pharyngeal 
muscle  

embryonic/larval muscle system  

embryonic Malpighian tubule  

 

hindgut 
visceral branch 

tracheal system 
dorsal pouch 

 

Fig. 3. A predicted group of three conditionally co-expressed genes Elongin-B. Ngp, and CG17218, which have similar spatio-temporal 

patterns for the first 5 phases but not for the last phase (Elongin-B and Ngp still have similar patterns for phase 6). A " " is used to mark 

the common annotations. 
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