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ABSTRACT 

 

C. elegans, a roundworm in soil, is widely used in studying  animal 

development and aging, cell differentiation, etc. Recently, high-

resolution fluorescence images of C. elegans have become avail-

able, introducing several new image analysis applications. One 

problem is that worm bodies usually curve greatly in images, thus 

it is highly desired to straighten worms so that they can be com-

pared easily under the same canonical coordinate system. We de-

velop a Worm Straightening Algorithm (WSA) using a cutting-

plane restacking method, which aggregates the linear rotation 

transforms of a continuous sequence of cutting lines/planes or-

thogonal to the "backbone" of a worm to best approximate the 

nonlinearly bended worm body. We formulate the backbone as a 

parametric form of cubic spline of a series of control points. We 

develop two minimum-spanning-tree based methods to automati-

cally determine the locations of control points. Our experimental 

methods show that our approach can effectively straighten both 2D 

and 3D worm images.  

 

1. INTRODUCTION  
 

Caenorhabditis elegans (C. elegans) is a nematode (roundworm), 

which lives in soil. As shown in the huge resource at [1], this ani-

mal has been used to study many biological problems such as ani-

mal development and aging. In recent years, high-resolution multi-

plex fluorescence 2D/3D images for the entire worm have been 

generated more and more routinely. Because worms usually have 

different curved shapes and other morphological features, an auto-

matic worm straightening technique is highly desired for both biol-

ogy and engineering reasons. Biologically it is easier to compare 

features of various worms if these worms are straight from anterior 

to the posterior. Practically, in term of the bounding box, a 

straightened worm (Fig. 1 (c)) usually occupies a far less image 

area/volume than the original curved worm in the raw image (Fig. 

1 (a)). Thus, worm straightening will usually shrink down the im-

age file size dramatically, saving a huge amount of storage space 

and I/O time in file accessing.  

Several characteristics of worm images complicate this problem. 

Two major challenges are the following.  

• First, because specific features of a worm will be measured 

in these images, the straightened worm should have the 

least possible deformation of cell morphology, intensity, 

and relative cell locations, compared to the original worm 

in the raw image.  

• Second, typically the fluorescence staining will light up 

only a selected set of cells instead of the entire worm. The 

skin/cuticle of the worm is usually unstained. This makes it 

difficult to estimate the bending parameters directly.  

The application of worm straightening per se is new. We have 

developed in the following a Worm Straightening Algorithm 

(WSA) to straighten both 2D and 3D worm images. WSA is cur-

rently one of the major image analysis tools in our project on digi-

tal worm cell atlas.  

 

2. OVERALL SCHEME OF WSA 
 
The ultimate goal of WSA is that it should minimize the loss of 

information in the geometrical transform in straightening. On top 

of this, it would be very useful to have an efficient algorithm to 

straighten a worm even its boundary is not well defined.  

In our approach, the crucial observation about the worm images 

is that a worm can be treated as a manifold, which is globally non-

linear (i.e. curved), but locally smooth. This is seen in Fig. 1 (a). 

Thus we achieve the above goals by stitching all local rigid rota-

tion transforms to approximate the globally nonlinear geometrical 

warping transform that curves the worm. As at any local point the 

transform is simply a rigid rotation without even scaling, the reso-

lution of the input image can be maximally preserved.  

The remaining question is how to pile up all these local linear 

transformations together. As shown in Fig. 1(b), we detect the 

backbone of a worm (§3), generate a series of 1-pixel-spaced cut-

ting planes/lines orthogonal to the backbone, and restacking all the 

re-sampled/interpolated data on these cutting-planes (Fig.1(c)). In 

this way, the error of the global nonlinear transform is the sum of 

errors of all local linear transforms. As every local transform is 

simply a rigid rotation, and the error is merely a function of the 

interpolation error when a straight line is rotated in space, the 

overall warping error is minimized naturally.  

Within the above framework, the key is how to detect the mean-

ingful backbone of a worm. We elaborate this in §3.  
 

  
(a) (b) 

 
(c) 

Fig. 1. Schematic illustration of WSA. (a) A curved worm image. (b) 
The detected backbone (red), the respective control points (red dots) 

and orthogonal cutting lines/planes (purple lines P1 and P2). Also 
shown is the worm boundary (two edges in blue and green), which is 
used in the BDB+ algorithm (§3) but is unnecessary for the BDB

–
 

algorithm (§3). (c) The straightened worm image.  

 

3. BACKBONE DETECTION  
 
We present two algorithms, BDB

–
 and BDB

+
, in the following to 

detect the backbone for a worm image without and with boundaries, 

respectively. It is natural to define the smooth backbone as a cubic-
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spline over a train of control points (i.e. red dots in Fig. 1(b)). 

Hence, the backbone detection problem is equivalent to determin-

ing the locations of control points. This parametric form also al-

lows marching along the backbone in any spacing (e.g. 1-pixel a 

step) to produce the entire sequence of orthogonal cutting 

lines/planes for restacking.  

 

3.1 BDB
–
: Backbone Detection without Worm Boundary  

 

For worm images where only cells are lit up using fluorescence 

labels, it is often hard to define clear worm boundary, except the 

several cases discussed in §3.2. The backbone detection problem is 

thus how to find a smooth mid-axis through the scattered worm 

cells. This problem is similar to detecting the principal curve of a 

set of scattered points. However, the existing principal curve detec-

tion methods (e.g. [2][4]) cannot be employed directly, because 

worm cells with various morphologies, intensities, and sizes can 

hardly be simplified using points such as cell centers.  

In our algorithm for backbone detection without worm boundary 

(BDB
–
), intuitively we define backbone control points as those 

span a smooth curve (i.e. the backbone) and have the least sum of 

distances to the nearest stained cells. In the following we address 

three issues: (1) how to give an ordering to these control points, (2) 

how to compute the distance between control points to worm body 

without cell segmentation, and (3) how to evolve the locations of 

control points.  

 

3.1.1 Initialization of Control Points  

 

In BDB
–
, we initialize the set of control points, denoted as , by 

randomly selecting a small group of pixel locations (e.g. 30 pixels) 

within the worm body region. This can be done by randomly se-

lecting pixels with high intensities.  

In an earlier work [3], we have considered the minimum weight 

spanning tree (MST) in image clustering, a data distribution explo-

ration problem. It can be noted that the longest path of an MST, i.e. 

the diameter, gives a rough approximation of the skeleton of data 

distribution. Hence in BDB
–
 we use the diameter of the MST to 

give an ordering to all control points from one end (e.g. anterior or 

posterior) of the worm body to the other end (e.g. posterior or ante-

rior). Each control point is a vertex of in the graph, and each edge 

linking two vertexes has a weight that is the distance between the 

two vertexes. Starting from a full graph of all control points, find-

ing the MST can be done in O(| |
2
) time and the diameter can be 

detected using two passes of the breadth-first-search [7]. Note 

some control points will be pruned if they fall in short MST 

branches. This feature makes our algorithm insensitive to the num-

ber of initial control points.  

 

3.1.2 Distance between Control Points and the Worm Body  

 

We consider an aggregation approach to compute the distance 

between control points and the worm body. In fluorescence images 

a cell is indicated by the group of photons recorded at the respec-

tive pixel locations of this cell. The whole worm is thus indicated 

by the photon distribution of the entire worm body region, includ-

ing all visible worm pixels in an image. Thus we define the dis-

tance between any control point Q   and the worm body as the 

sum of distances between Q and all photons that are closest to Q 

than any other control points. Because the number of photons at a 

pixel location J is apparently proportional to the pixel intensity, 

denoted as IJ, we define the distance between control point Q and a 

pixel J as the sum of Euclidean distances between Q and all pho-

tons at pixel J: 

D(Q,J) = IJ Q J    (1) 

Denote the entire set of worm body pixel as W, thus the distance 

of the control point set  and W is defined as the sum of distances 

of all individual Qk   (k = 1, …, | |) and the respective subsets 

(W, Qk)  W, called the influence-zone of Qk, which is the set of 

pixels in W that have Qk as their closest control point: 

D( ,W ) = D(Qk,W )k=1

| |
= D(Qk,J)

J (W ,Qk )
k=1

| |  (2) 

L(J) = argmin
k=1,...,| |

D(Qk,J)    (3) 

(W ,Qk ) = {L(J) = k | J W }  (4) 

 

3.1.3 Adjusting Control Points  

 

The objective function in Eq. (2) can be viewed as an external 

energy term. We can further constrain the algorithm to find a 

backbone that is as smooth and short as possible. These additional 

requirements can be formulated as internal energy terms defined by 

the distances between adjacent data points on the backbone. Due to 

space limitation, we omit the details of derivation; the formula to 

adjust the locations of control points is: 

Qk
new

1

Nk

(IJ J)
J (W ,Qk )
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+ 2 + 2

 (5)  

where Nk= IJ (J  (W,Qk)), and , ,  (typically =1, =0.5, 

=0.5) are three positive coefficients controlling the weights of the 

external energy and internal energy terms.  

 

3.1.4 BDB
– 

Algorithm  

 

The BDB
–
 algorithm works as follows: 

(a) Initialize control points using the MST method. 

(b) Find the influence-zones of control points using Eqs. (3) 

and (4). 

(c) Update the coordinates of control points using Eq. (5). 

(d) Check if control points have significant change or dis-

placement. If yes, go to step (b). Otherwise go to step (e). 

(e) Use cubic spline to generate a smooth backbone curve of 

the control points.  

 

The major advantage of BDB
–
 is it works for grayscale images 

without clear worm boundary. It also has a loose constraint of the 

initialization of control points. BDB
–
 can be applied to both 2D 

and 3D images. 

 

3.2 BDB
+
: Backbone Detection with Worm Boundary  

 

In a few cases it is possible to define a meaningful worm bound-

ary in images. For example, due to auto-fluorescence a worm body 

region may have higher intensity than the image background. The 

worm body may be more visible when all Z-sections in a 3D worm 

image stack are overlaid together. As C. elegans can only bend in 

the dorsal-ventral direction and is limited to bend in other direc-

tions, summing up all Z-sections simplifies 3D straightening as a 

2D problem. Worm boundary can also be extracted in many non-

fluorescence images of bright/dark fields, phase contrast, etc. They 

are often 2D. Thus we develop the following BDB
+
 algorithm for 

backbone detection with clear worm boundary.   
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We assume the 2D worm boundary is already extracted. The 

problem is how to find the best backbone given the worm bound-

ary. We define backbone control points as those have equal dis-

tances to the worm boundary and span a smooth curve. This is 

similar to the "morphological skeleton" of an elongated shape. This 

skeleton can be detected using a Blum's medial axis transform [6]. 

Image morphological operations such as thinning can generate 

similar results (for a review see [5]). However, the skeleton found 

in this way is often broken and needs post-processing such as 

skeleton linking.  

We follow the idea in §3.1, using the diameter of an MST to ini-

tialize all the control points of a backbone curve.  

 

3.2.1 Initialization of Control Points  

 

Let's consider a graph defined on image pixels. In a simple for-

mulation, we produce an undirected graph Gobject = (V, E), where 

the vertex set V = {all pixels in the worm region} and E denotes 

the set of edges between vertexes. A pair of pixel vertexes have an 

edge between them iff the shortest path (i.e. straight line segment) 

between them does not cross any non-worm-body pixel. It can be 

seen that the diameter of the MST of Gobject goes through the worm 

body from anterior to posterior. A smoothed diameter of this MST 

is a good approximation of the worm backbone. As Gobject is not 

very sparse, the complexity to find the MST is O(N
2
), where N=|V|. 

Note this complexity is very high due to the usually big N, the 

number of pixels in the worm body region.  

One way to reduce the complexity is to generate a sparse graph, 

called Gmesh, by only retaining edges of immediately adjacent pixel 

vertexes (i.e. they are within a 2 2 neighborhood) and dropping all 

other edges. This mesh graph covers the entire worm body. The 

complexity to finding the MST from Gmesh can be reduced to 

O(|E|+NlnN) [7]. Note this case is similar to image thinning. 

We consider a different way to accelerate the algorithm by using 

only a small portion of pixel vertexes randomly sampled from V. 

Assume it has rN pixels (e.g. r = 1%). The edge weight between 

them is defined as their Euclidean distance. Because the worm 

body forms a manifold in the space, it is possible that two pixel 

vertexes that are geodesically far away on the worm body could 

have small Euclidean distance. We disallow this situation by defin-

ing the distance of two pixel vertexes to be infinity if the straight 

line-segment between them intersects any non-worm-body pixels. 

We call the new graph Grandom, which is a random sub-graph of 

Gobject. Grandom is not necessary to be sparse, however, the complex-

ity to find its MST is O(r
2
N

2
), about 10,000 times smaller than the 

case of Gobject if r = 1%.  

 

3.2.2 Adjusting Control Points 

 

We repeatedly adjust the coordinates of control points. As we al-

ready detect the MST diameter, for each of its end points we search 

the closest boundary point. Thus we can find two boundary points 

that indicate two boundary segments BL and BR, to the left and right 

sides of the diameter, respectively. Let Q denote a control point. 

We seek for the nearest points in these two sets to Q: 

iL
*

= argmin
i=1,,,,|BL |

D(Q,bL
i )    (6) 

iR
*

= argmin
i=1,,,,|BR |

D(Q,bR
i )    (7) 

where iL
* 

and iR
* 

are the indexes of the respective best matching 

boundary pixels. We next adjust the x and y coordinates of the 

control point as the mean values of both matching pixels: 

Q* 1
2 [x(iL

* ) + x(iR
* )], 1

2 [y(iL
* ) + y(iR

* )]{ } (8) 

We iterate Eqs. (6), (7) and (8) until the location of Q converges. 

Typically this occurs very rapidly in several loops. 

Due to the random initialization, the above method may output 

unevenly spaced control points. We thus sort the control points 

using their orders on this line graph. Next, we delete a point that is 

too close to its intermediate anterior point, i.e. the distance is 

smaller than a preset threshold. Finally, for each pair of adjacent 

control points, we add one more control point in between them, 

with the initial coordinate being the average of these two points. 

The location is then best adjusted using the control point 

refinement algorithm above. In this way, we can generate a pretty 

much evenly spaced control points along the worm backbone.  

Every time after the backbone control points are adjusted, we 

can re-find the best left and right boundary segments BL and BR. As 

a result, BDB
+
 is able to detect the exact anterior and posterior 

ends of a worm body. In contrast, the morphological skeleton and 

thinning methods usually have imperfect results at these locations. 

 

4. EXPERIMENTS 
 

We evaluate WSA using both 2D and 3D images. In the following, 

we first compare results of several methods, then show the signifi-

cance in straightening 3D images using WSA. Due to space limita-

tion, we only show partial results. 

 

4.1 Comparison of Several Methods  

 

One key part of worm straightening is the detection of meaning-

ful backbone of a worm. Thus we show the comparison here. 

 

 (b) 

(a) 

 (c) 

Fig. 2. Backbone detection results using different methods. (a) Our 
WSA result, where the backbone (green curve and dots) evolves 
from the MST diameter (red line) produced for a random sub-graph, 

whose vertexes (150 blue and red dots) are randomly sampled from 
the entire set of pixel vertexes on the worm body (>80,000 pixels in 
this image). (b) Morphological image skeleton (c) Morphological 

image thinning for the image rotated 30°.  

 

Fig. 2 (a) shows the result of our WSA BDB
+
 method. We ini-

tialize the control points randomly and identify the longest path, 

i.e., diameter, of the MST that spans these points. Then the points 

on the diameter are adjusted rapidly to converge to a stable back-

bone. BDB
+
 is stable for various conditions such as randomly se-

lected initial control points and orientation of the worm body. Its 

computational complexity is proportional to the number of control 
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points used and the length (pixel number) of the worm body 

boundary.  

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 3. Straightening results on a 3D image. Only one Z-section is 

shown. (a) The original worm (25% of the real size) (b) The 
straighten worm (20% size) (c) Tail region of the original worm (80% 
size) (d) Tail region of the straightened worm (80% size). 

 

Fig. 2 also shows the comparison results of morphological image 

skeleton and thinning algorithms. Morphological operations will 

typically lead to skeletons that are branched (Fig. 2 (b) and (c)) or 

broken (not shown, as it is very not visually noticeable when dis-

played in small pictures like here). In addition, these morphologi-

cal procedures are often sensitive to the orientation of a worm 

body, as exemplified in Fig. 2 (c), and cannot generate consistent 

results for various conditions of the same worm body. For compu-

tational complexity, these methods are often linearly to the number 

of image pixels. Post-processing such as branches removal, major-

segment linking, etc, are usually needed to repair these results as 

meaningful backbones. Note that one possibility is to use the MST 

in BDB
+
 to refine the results of image morphological operations. 

Because BDB
–
 is the only method we are aware of that is able to 

detect the worm backbone without clear worm boundary, we com-

pare it against BDB
+
. Let's consider an image with clear boundary. 

If BDB
–
 works, then without considering the worm boundary it 

should generate a backbone reasonably close to the one produced 

by BDB
+
, which considers the boundary explicitly. Here we omit 

the respective results due to the limited space.  

 

4.2 Application of 3D Worm Image Straightening  

 
Table 1. Comparison of 3D image-stack file sizes (bytes) before and 
after straightening (without compression).  

Image # before after size reduction 
average 

size reduction 

1 358M 74M 79.33% 

2 352M 68M 80.68% 

3 393M 80M 79.64% 

4 412M 85M 79.37% 

79.76% 

 

As a real application, we apply WSA to straighten high-

resolution 3D fluorescence images.  

The effectiveness of our method can be seen by the minimal loss 

of image information in straightening, as shown in Fig. 3. The 

original data has three color-channels, each for a different set of 

cells. The blue channel is DAPI staining of nuclear DNA mole-

cules. The green is GFP and red is mCherry. It can be seen that the 

original worm body with scattered cells in Fig. 3 (a) can be suc-

cessfully straightened to a meaningful rod-shape in Fig. 3 (b). This 

indicates that WSA is able to detect the globally nonlinear mani-

fold and transform it into a canonical space. Because we use 1-

pixel spacing between all cutting-planes to restack the entire worm, 

the resolution is the same as the original image, although due to the 

sub-pixel level interpolation the straightened worm may look 

slightly smoother than the original worm. Overall the loss of in-

formation is minimal, which can be seen in the example of the tail 

region. Our biologist collaborators cannot find any visible distor-

tion of the signal such as the change of cell locations or intensity.  

We have applied WSA to our on-going digital worm cell atlas 

project, which routinely produces large 3D worm image stacks. 

Table 1 demonstrates several examples of the image file sizes be-

fore and after straightening. On average WSA reduces nearly 80% 

of the image file size, which we think is significant for our project 

that will eventually produce thousands of these images. 
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