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ABSTRACT 

Motivation: C. elegans, a roundworm found in soil, is a widely stud-

ied model organism with about 1000 cells in the adult.  Producing 

high-resolution fluorescence images of C. elegans to reveal biologi-

cal insights is becoming routine, motivating the development of ad-

vanced computational tools for analyzing the resulting image stacks. 

For example worm bodies usually curve significantly in images.  

Thus one must “straighten” the worms if they are to be compared 

under a canonical coordinate system. 

Results: We develop a worm straightening algorithm (WSA) that 

restacks cutting planes orthogonal to a "backbone" that models the 

anterior-posterior axis of the worm.  We formulate the backbone as a 

parametric cubic spline defined by a series of control points. We 

develop two methods for automatically determining the locations of 

the control points. Our experimental methods show that our ap-

proaches effectively straighten both 2D and 3D worm images. 

Supplementary Information: The example data sets and programs 

are available upon request.  

Contact: pengh@janelia.hhmi.org  

1. INTRODUCTION 

Fluorescence image analysis is one of the most important tools for 

studying various biological questions, especially in the nematode 

Caenorhabditis elegans, which has a small, transparent body.  

More strikingly, C. elegans has essentially invariable cell lineages 

and cell fates, providing a unique chance to investigate biological 

processes at the level of single cells. High-resolution multiplex 

fluorescence 2D/3D images of the entire worm are being generated 

more and more routinely in the course of these studies. Because 

worms usually have different curved shapes and other morphologi-

cal features, an automatic worm straightening technique is desired 

for both biological and engineering reasons. Biologically it is eas-

ier to compare features of various worms if these worms are 

straight with respect to their anterior/posterior axes. Practically, the 

bounding box of a straightened worm (Fig. 1c) is on average 80% 

smaller than the bounding box of the original curved worm in the 

raw image (Fig. 1a). Thus, worm straightening reduces the image 

file size significantly, saving a great deal of storage space and I/O 

time during file access.  

 

Several characteristics of worm images complicate our problem as 

follows: 

 

o First, because specific features of a worm are to be measured in 

these images, the straightened worm should have the least pos-
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sible deformation of cell morphology, intensity, and relative cell 

locations, compared to the original worm in the raw image. 

o Second, the fluorescent “stain” typically lights up only the nu-

clei of the worm instead of its entire body. Thus, the skin, or cu-

ticle, of the worm is usually unstained. This makes it difficult to 

estimate the bending parameters directly. 

 

The application of worm straightening per se is new. Given the 

stereotypic location of cells, registering two worms after straight-

ening is a simple matter of a rigid transformation followed by scal-

ing.  The worm straightening algorithm (WSA) presented here can 

be applied to various C. elegans strains such as PHA4, UNC54, 

etc., and is one of several major tools in our project to build a digi-

tal worm cell atlas (Long et al, 2007).  

2. METHODS 

2.1 Overall scheme of WSA 

  
(a) (b) 

 
(c) 

Fig. 1. Schematic illustration of WSA. (a) A curved worm image. (b) 
The detected backbone (red), the respective control points (red dots) 
and orthogonal cutting lines/planes (purple lines P1 and P2). Also 

shown is the worm boundary (blue), which is not used in the BDB
–
 

algorithm (§3.1) but is used in the faster BDB+ algorithm (§3.2). (c) 
The straightened worm image.  

 

The crucial observation about worm images (Fig. 1a) is that a 

worm is globally nonlinear (i.e. curved), but locally smooth with a 

very gentle curl.  That is, the worm can be viewed as a manifold 

where the local space about any point is to first approximation a 

rectilinear Euclidean space.  The goal can then be considered to 

chart the manifold from the pixel intensities of the image. We re-

duce this to a one-dimensional problem by seeking the principal 

curve or “backbone” (Fig. 1b) that represents the anterior/posterior 

(A/P) line that passes from head to tail through the center of a per-

fectly straightened worm.   That is, this curve is the 1D manifold 
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for the A/P axis of the worm.  We use it to chart the entire worm 

manifold by generating a series of 1-pixel separated planes or-

thogonal to the backbone and then restacking these along a straight 

A/P line (Fig. 1c). Because each local transform is a rigid rotation, 

the resolution of the straightened image is merely a function of the 

sub-pixel interpolation error when a straight line is rotated in 

space. Thus the overall warping inaccuracy is minimized naturally, 

meeting our design goal. This approach is much simpler than de-

formation models, such as non-rigid 3D image registration based 

on the identification and matching of landmark-points and the gen-

eration of a deformation field such as a thin-plate-spline based on 

the matching. In over 100 samples tested thus far our cutting-plane 

based method always involves locally small displacements and 

produces biologically sensible results, obviating the need for such 

complex and computationally intensive methods. 

 

Within this framework, the key problem is how to find the back-

bone of a worm. We present two algorithms, BDB
–
 and BDB

+
, to 

detect the worm backbone under different scenarios. The algorithm 

BDB
– 

detects the backbone for a worm when the outer boundary of 

the worm is hard to detect precisely, whereas the algorithm BDB
+
 

works only when a worm image has a clear boundary. 

 

There are many related image analysis techniques such as tracing 

or analyzing a curved or tree-like structure in images of blood ves-

sels, neurons, and even Arabidopsis (e.g. Sun, 1989; Al-Kofahi, et 

al, 2002; Mace, et al, 2006). However, these methods do not di-

rectly solve our problem due to its different properties such as the 

lack of contour information (for the BDB
–
 case).  On the other 

hand, similar to our nuclear staining and image analysis platform 

for the worm, we note that there was another recent image analysis 

study of fly embryos (Luengo Hendrikes, et al, 2006).  

 

2.2 Worm strain and DAPI staining 

The worm strain PD4251 was provided by Andrew Fire.  This 

strain produces GFP in all body wall muscle nuclei in the L1 stage 

larvae (Fire et. al., 1998). For DAPI staining, worms were first 

frozen by liquid nitrogen, thawed in 20 °C acetone and then fixed 

in 80 mM KCl, 20 mM NaCl, 10 mM EGTA, 5 mM spermidine-

HCl, 15 mM
 
Na-mM piperazine-N,N'-bis[2-ethanesulfonic acid], 

pH 7.4) and 2.5% formaldehyde for 30 min and stained with 5 

ng/!l DAPI in 0.5" M9. 

 

2.3 Microscopy 

We used a Leica SP2 AOBS confocal microscope with a 405-nm 

UV
 

laser to record fluorescence from DAPI-stained L1 stage 

worms mounted in 50% glycerol. To reduce random noise,
 
we used 

a scan speed of 8 and averaged over two scans. To maximize reso-

lution, we used a 63x oil objective lens with N.A. = 1.40 and 

scanned each 2D plane at 2048 x 2048 pixels. 

3. BACKBONE DETECTION 

It is natural to define a smooth curve as a cubic spline through a 

train of control points (i.e. the red dots in Fig. 1b). The backbone 

detection problem is then equivalent to determining the location of 

a sequence of control points. This parametric representation allows 

us to march along the backbone at any desired spacing interval 

(e.g. 1-pixel per step) to produce the sequence of orthogonal cut-

ting planes for restacking.  

 

 

3.1 BDB
–
: Backbone Detection without the Worm Boundary  

For worm images where only the nuclei of cells are lit up using 

fluorescent labels, it is often hard to detect a clear worm boundary, 

except for the cases to be discussed in §3.2. The general backbone 

detection problem is thus how to find a smooth mid-axis through 

the set of scattered worm nuclei.  

 

This problem is related to detecting the "principal curve" of a set of 

scattered points (Hastie, 1994). However, the existing principal 

curve detection methods (e.g. Hastie, 1994, Kegl et al, 2000) can-

not be employed directly, because worm cells have varying mor-

phologies, intensities, and sizes, and so cannot be simplified to a 

set of points such as the nuclei centers.  In effect, we must general-

ize the problem to consider an intensity weighted set of pixels. 

 

In our algorithm for backbone detection without the worm bound-

ary (BDB
–
), our intuition is to define the backbone control points 

as those that form a sufficiently smooth curve and minimize the 

sum of the distances from the backbone to the nearest stained cells.  

To this end we define W as all the pixels whose intensity is more 

than one standard deviation above the mean of the distribution of 

pixel values in the image.  The algorithm computes a backbone 

with respect to W.  While in some sense W is an estimate of the 

portion of the image that is worm versus background, the algorithm 

is not sensitive to the precise definition of W.  Moreover, because 

the cell positions in C. elegans are highly stereotyped, even if the 

curve produced is not precisely the A/P axis, the algorithm pro-

duces consistently the same relative curve in space across different 

worms because it is a function of the light intensity distribution. 

 

3.1.1 Initialization of Control Points 

In BDB
–
, we initialize the set of control points, denoted as #, by 

randomly selecting a small set of pixel locations (e.g. 50) from W.  

We then compute the minimum spanning tree (MST) of the com-

plete graph of the selected points where each edge is weighted with 

the distance between the points.  Doing so takes O(|#|
2
lg|#|) time 

(Corman, et al, 2001). We next compute the longest path, or di-

ameter, of the MST to give us an ordered sequence of control 

points that will constitute the start point for the energy minimiza-

tion procedure in the next subsection. The diameter can be com-

puted using two breadth-first-search passes (Corman, et al, 2001) 

over the MST. Note carefully that the initial points not on the di-

ameter are removed from #, and they usually fall in short MST 

branches. 

 

3.1.2 Energy Minimizing Deformable Backbone Model 

We consider an energy function minimization approach to find the 

best locations for the final backbone control points. Like many 

other deformable models such as snakes and active contours (Kass 

et al, 1987; Xu and Prince, 1998), we define an energy model for a 

curve and seek the curve that minimizes energy.  The energy model 

consists of an external or image energy term, and two internal en-

ergy terms that constrain the backbone curve to be smooth and 

succinct.  

 

Consider the external energy first. A nucleus is indicated by the 

photons recorded at the pixels covering this nucleus most of which 

are bright and so in W. Thus, the worm is reasonably indicated by 

the photon distribution across W.  So we define the distance be-
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tween a control point c ! # and W as the sum of distances squared 

between c and all photons that are closer to c than to any other 

control point. Because the number of photons at a pixel location p 

is proportional to the pixel intensity, denoted as I(p), we define the 

distance between the control point c and a pixel p as the sum of 

squared Euclidean distances between c and each unit of pixel in-

tensity at pixel p: 

 

! 

D(c, p) = I(p) " c # p
2
   (1) 

 

Consider the Voronoi decomposition of W with respect to the 

points in #.  Let "(ck) be the Voronoi region of ck, that is the set of 

pixels in W that are closer to ck than to any other control point.  We 

define the external energy Eimage as the sum of the average dis-

tance-squared between ck and the photons in its Voronoi region.  

Formally, 

! 

Eimage =
1

Nk

D(ck, p)
p"#(c

k
)

$
k=1

|%|

$   (2) 

! 

Nk = I(p)
p"#(c

k
)

$     (3) 

! 

"(ck ) = { p#W :$j ck % p & c j % p } (4) 

 

For the internal energy, we have two constraints on a worm back-

bone: 

(a) It should have the shortest possible length while still spanning 

the entire worm. 

(b) It should be as smooth as possible. 

For constraint (a), we define the energy term Elength in Eq. (5) be-

low, which is the sum of the squared distances between the all the 

consecutive pairs of control points. 

 

! 

Elength = ck " ck+1

2

k=1

|#|"1

$    (5) 

 

For constraint (b), we define the energy term Esmoothness,  

 

! 

E
smoothness

= c
k
" 1

2
(c

k"1 + c
k+1)

2

k= 2

|#|"1

$   (6) 

 

When ck = (ck–1+ck+1)/2 for every k then Esmoothness is 0, its smallest 

possible value. This occurs when ck is midway on the straight line-

segment between ck–1 and ck+1, for each k, implying the control 

points are evenly spaced on a straight line. Intuitively, a curve 

cannot be any smoother.  Note that this energy term favors evenly 

spaced control points. 

 

The overall energy function E that the BDB
–
 algorithm minimizes 

has the following form, 

 

! 

E =" Eimage + # Elength + $ Esmoothness
  (7) 

 

where #, $, % are three positive coefficients selected to control the 

relative contribution of each energy term to the final curve. 

 

3.1.3 Adjusting Control Points  

In a classic snake/active contour formulation for a deformable 

model, the Euler-Lagrange equation from the calculus of variations 

is usually used to minimize the energy function (Kass et al, 1987; 

Xu and Prince, 1998). In that case, the external energy term can be 

often pre-calculated once before the deformable model evolves. 

However our situation is different in that every time we update the 

control points, the respective external energy term also changes 

because the Voronoi decomposition changes. Thus we consider the 

direct and simpler energy minimization condition that when E is 

minimal, the respective derivatives at the locations of control 

points must be 0:   

 

! 

"E

"ck
=#

"Eimage

"ck
+ $

"Elength

"ck
+ %

"Esmoothness

"ck
= 0  (8) 

 

Based on Eqs. (2), (5) and (6), for any k !{3,…,|&|'2}, Eq. (8) is 

equivalent to  

! 

0 =" ck #
1

Nk

(I(p) $ p)
p%&(c

k
)

'
( 

) 

* 
* 

+ 

, 

- 
- 

+ . 2ck # ck#1 # ck+1( )

+/ 2ck #
3

2
ck#1 #

3

2
ck+1 + 1

2
ck+2 + 1

2
ck#2( )

  (9) 

 

Eq. (9) suggests one way to minimize the objective function in Eq. 

(7) is to iteratively adjust the locations of the control points by 

solving Eq. (9) for ck:  

 

! 

ck
new "

#
1

Nk

(I(p) $ p)
p%&(c

k
)

'
( 

) 

* 
* 

+ 

, 

- 
- 

+ . ck/1 + ck+1( ) + 0 3

2
ck/1 + 3

2
ck+1 /

1

2
ck+2 /

1

2
ck/2( )

# + 2. + 20

 (10) 

 

To make the denominator of Eq. (10) simple, we chose #, $, % as 1, 

0.5, 0.5, respectively. Other choices around these values make little 

difference to the final results. 

 

For the boundary cases k !{1,2,|&|'1,|&|}, we similarly derive 

iteration formulas, which are each slightly different.  We omit them 

as their derivation is straightforward and their statement lengthy. 

 

Computing each new set of control points with Eq. (10) takes 

O(|W|) time, the dominant term being to compute the sum in the #-

term.  Given this, we do not employ a sophisticated Voronoi region 

algorithm to compute "(ck), but simply do so using a breadth-first 

pixel-based search from all the control points simultaneously. 

 

3.1.4 BDB
– 

Algorithm  

The BDB
–
 algorithm is summarized as follows: 

 

1. Initialize the control points as the diameter of the MST of the 

complete distance graph whose vertices are bright pixels ran-
domly selected on the worm body. 

2. Find the Voronoi region of each control point in O(|W|) time. 

3. Update the control points using Eq. (10) in O(|W|) time. 

4. Check whether or not the control points have shifted signifi-
cantly.  If yes, go to Step 2. Otherwise go to Step 5. 

5. Use the spline function to generate a smooth parametric back-

bone curve of the control points. 

 

It is possible to add some further minor changes to the above algo-

rithm, such as increasing or decreasing the number of control 

points in order to get a spacing in the final result. However for the 

cases we tested, these variations do not change the results dramati-
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cally. Moreover, if even more speed were required one could in-

crementally compute the Eimage with respect to the changes in "(ck) 

observing that these changes get smaller with each iteration.  How-

ever, we did not find this necessary and we report in the experi-

ments in Section 4 only results for the basic BDB
– 

scheme given 

above. 

 

The major advantage of BDB
–
 is it works even for grayscale im-

ages without a clear worm boundary. It also requires only a very 

“loose” initialization of the control points.  BDB
–
 can be applied to 

both 2D and 3D images. 

 

3.2 BDB
+
: Backbone Detection with Worm Boundary  

In some cases it is possible to find a meaningful worm boundary in 

an image. For example, due to auto-fluorescence the worm body 

region may have reliably higher intensity than the image back-

ground. The worm body may be even more visible when all Z-

sections in a 3D worm image stack are overlaid together. As bio-

logically C. elegans can only bend along the dorsal-ventral direc-

tion except at the tip of the head, a worm often lies laterally on a 

slide. Therefore, summing up all z-sections is a reasonable simpli-

fication of the 3D straightening problem to a 2D problem. Worm 

boundaries can also be extracted in bright-field, Nomarski, and 

other imaging modalities. Thus we develop an algorithm, BDB
+,

 

for backbone detection with a clear worm boundary for 2D images. 

 

We assume the 2D worm boundary has already been extracted, and 

the problem is how to find the best backbone given this boundary. 

The desired backbone control points are those having equal dis-

tances to the left and right worm boundaries with a regular spacing 

between them. 

 

Note that our definition is similar to the "morphological skeleton" 

of an elongated shape. A morphological skeleton can be detected 

using the medial axis transform (Blum, 1964). Image morphologi-

cal operations such as thinning can also generate similar results 

(for a review see Jain, 1989). However, the skeleton found in this 

way is often broken or branched and needs post-processing such as 

skeleton linking to rectify these artifacts.  

 

We start with the idea of subsection 3.1, using the diameter of an 

MST of a randomly selected set of points to initialize all the con-

trol points of a backbone curve, and then develop the iterative pro-

cedure below that refines the control points to be equidistant from 

the left and right boundaries.  The one difference in the initializa-

tion step is that W is now defined as the region within the supplied 

boundary B. 

 

We seek to refine the control points so that they are equidistant 

from the left and right boundaries and well spaced along the length 

of the worm. But first, in order to do so, we must divide the sup-

plied boundary B into a left and right half, BL and BR, respectively. 

Initially, this is done crudely by using the points on the boundary B 

that are closest to the first and last control points as the division 

points between the left and right halves. Then the first and last 

control points are removed as you will see shortly that they would 

not properly adjust in the next step given this crude division. 

 

Let BL(c) be the closest point to c on the left boundary and let BR(c) 

be the closest point to c on the boundary. For each control point c 

we adjust its position to be midway between BL(c) and BR(c): 

 

! 

c
new

"
1

2
(B

L
(c) + B

R
(c))    (11) 

 

We iterate Eq. (11) for each control point until the position of the 

control point stabilizes. Typically this occurs very rapidly, in 3-6 

rounds. 

 

Now that the control points are positioned properly, we recompute 

BL and BR, this time using the point midway between BL(c) and 

BR(c) along the perimeter of B, with c being the first control point 

and the last control point, respectively. These two midway division 

points are then added as two control points, corresponding to the 

anterior and posterior tips of a worm. 

 

Due to the random initialization, the initial spacing of the control 

points is generally not uniform. We first remove one of any pair of 

points that are too close together, arbitrarily picking the point to 

discard.  With the remaining sequence we add a control point mid-

way between each pair and then iteratively refine its position with 

Eq. (11). 

 

The BDB
+
 algorithm is summarized as follows: 

 

1. Initialize the control points as the diameter of the MST of the 

complete distance graph whose vertices are randomly se-
lected from within the supplied boundary B. 

2. Divide B into BL and BR using the closest points to the first and 

last control point as the division points.  Remove the two con-
trol points. 

3. Update each control points using Eq. (11). 

4. Divide B into BL and BR using the points midway along B be-

tween BL(c) and BR(c) as the division points, where c is the 
first and last control point, respectively. 

5. Delete points that are too close together.  Insert a control point 

mid-way between each consecutive pair of control points and 
refine with Eq. (11) 

 

Given an accurate boundary B, the algorithm, although admittedly 

heuristic, is fast and produces an accurate A/P axis. Indeed, this 

was the first algorithm we designed for the problem. However, 

because the tail is faint, the boundary estimation there is wrong 

about 10% of the time and one ends up truncating the tail. Moreo-

ver, the head does move in the dorsal-ventral axis so a 3D ap-

proach is preferred. These two problems, ultimately lead to our 

developing the slower but more robust BDB
–
 algorithm. 

4. EXPERIMENTS AND DISCUSSIONS 

We evaluate WSA using both 2D and 3D images. In the following, 

we first compare the performance of several methods, and then 

show the significance in straightening 3D images using WSA.  

 

4.1 Evaluation of BDB
–
 

 

For BDB
–
, we are not aware of other existing methods that operate 

under the same conditions, so we investigated the significance of 

the three energy terms in Eq. (7) and compared the performance 

against backbones drawn manually by human experts. 

 

Fig. 2 shows the comparison of the initial backbone, and the results 

with various combinations of energy terms included in the total 

energy. For better visualization of these results, instead of drawing 
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the resulting cubic splines, we just draw straight lines between 

consecutive control points.  

 

Fig. 2a illustrates the contribution of the energy terms for BDB
–
. 

The initial backbone that is the diameter of the MST of randomly 

selected bright pixels is shown in yellow. It has the overall trend of 

the backbone, but deviates significantly from the mid-axis of the 

worm. The green line, which is the result obtained if only the Eimage 

term is minimized, is reasonably meaningful for the top-left portion 

of the worm, but is not correct for the remainder. The major reason 

is that there is no constraint on the backbone length. With the 

length term added in, the cyan curve, the backbone becomes quite 

reasonable. It is refined further by the addition of the smoothness 

term giving the red line. In some cases just the length or smooth-

ness term alone gives a good curve, but across multiple trials we 

observed empirically that both were necessary to get a consistently 

acceptable result. One example is shown in Fig. 3 that demon-

strates that using all energy terms leads to a better result than using 

Eimage and Elength, but leaving out Esmoothness.  

 

While visually the BDB
–
 result obtained using all three energy 

terms is reasonable, it is interesting to ask how well it coincides 

with what a human observer would consider to be the medial axis. 

So we compared the BDB
–
 result against backbones manually 

drawn by human subjects. With 10 different random initializations, 

we produce 10 BDB
–
 backbones and asked two human subjects to 

each draw 10 backbones manually. We overlaid all 30 backbone 

curves in Fig. 2b. It is apparent that the BDB
–
 backbones agree 

well with the manual drawings.   

 

 

  
(a) (b) 

Fig. 2. Backbone detection using BDB
–
. Different energy terms (plotted in different colors) are used for comparison. (a) Comparison with dif-

ferent energy terms. (b) Results of 10 BDB
– 
backbones (obtained based on 10 random initializations) overlaid together with 20 manually drawn 

backbones (produced by two subjects). 

 

Because the BDB
–
 backbones vary between runs on the same im-

age due to the random initialization, we sought to measure how 

much variation there was from run to run on the same data.  Due to 

the fact that different runs also generate backbones with different 

numbers of control points, it is hard to compare them in curve-

space. Instead we used the backbones to straighten the worm, and 

then computed the maximal cross-correlation (Haralick and 

Shapiro, 1992) between each pair of straightened worm images. As 

summarized in Table 1, the average cross-correlation of pair-wise 

BDB
– 

backbones is 0.944±0.037, which is higher than those for the 

two human subjects, i.e. 0.828±0.052 and 0.911±0.020. One would 

expect that a computer algorithm would be more consistent and 

have less variation, and this is confirmed when one computes the 

same statistics for the manually drawn backbones. In addition, 

cross-correlation between the BDB
–
 and the human subject results 

(i.e. 0.838±0.047 and 0.834±0.032) are higher than the correlation 

between the two subjects (i.e. 0.822±0.045), indicating our com-

puter program can generate results that better agree with, or at least 

are comparable to, the manual work of different subjects. 

 



H. Peng, F. Long, X. Liu, S. Kim, and E.W. Myers. 

6 

Table 1. Average normalized cross-correlation of straightened im-
ages of the same input worm image. As the matrix is symmetrical, 

the unnecessary entries are replaced using "—". 
 

Score BDB 
–
 Subject 1 Subject 2 

BDB- 0.944±0.037 0.838±0.047 0.834±0.032 

Subject 1 -- 0.828±0.052 0.822±0.045 

Subject 2 -- -- 0.911±0.020 

 

We also tested the robustness of BDB
–
 for perturbed image data, 

similar to the case of sampling variation during image acquisition 

using a microscope. We randomly set 10% and 20% of the image 

pixels to have 0 intensity, and for each case we produced 10 inde-

pendently perturbed images, which we then straightened. We com-

puted the pair-wise maximal cross-correlation between each case 

and the 10 trial results produced using the original data. As shown 

in Table 2, the average pair-wise correlation among these different 

sets of straightened images is consistently high, i.e. 0.945±0.031 

and 0.945±0.033, indicating the BDB
–
 method is very robust. 

 
Table 2. Statistics of cross-correlation of straightened images for 
perturbed input image via randomly setting the intensity of 10% or 
20% image pixels to 0. For each case, the statistics was drawn 

based on 10 independent trials, and thus 100 pair-wise maximal 
cross-correlation values between this case and the 10 independent 
trials for the original image.  

 

Score 10% 20% 

Original image 0.945±0.031 0.945±0.033 

 

 

 
 

Fig. 3. Comparison of backbones detected with and without the smoothness energy term. The less satisfactory regions of the backbone curve 
are labeled using purple arrows in the zoom-in box.  

 

 

4.2 Evaluation of BDB
+
 

 

Fig. 4a shows the result of our WSA BDB
+
 method applied to 2D 

images obtained by projecting the sum of pixel intensities along the 

z-axis. We initialize the control points randomly (blue and red 

dots) and identify the diameter of the MST (red line) spanning 

these points. The points on the diameter are then adjusted with Eq. 

(11) till they converge to the stable backbone shown in green. 

BDB
+
 is stable with respect to the random selection of initial con-

trol points and the orientation of the worm body. Its computational 

complexity is proportional to the number of control points used and 

the length (in pixels) of the worm body boundary.  

 

Fig. 4 also shows the comparison results of morphological image 

skeleton (Fig. 4b) and thinning (Fig. 4c) algorithms. Morphological 

operations typically lead to skeletons that are branched as seen in 

the figures or less frequently have small breaks that are not notice-

able at the scale drawn here. In addition, these morphological pro-

cedures are often sensitive to the orientation of a worm body, as 

exemplified by Fig. 4c. In regards to computational complexity, 

these methods are linear in the number of image pixels. Post-

processing such as branch removal and major-segment linking, are 

usually needed to transform their initial results into meaningful 

backbones. Note that one possibility is to use the MST of BDB
+
 to 

refine the results of image morphological operations. 
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Fig. 4d shows the backbone produced by BDB
–
 for the same im-

age, without using the worm boundary information. This example 

demonstrates both BDB
–
 and BDB

+
 generate reasonable backbones 

that are also close to each other.  
 

  
(a) (b) 

 

 
(c) (d) 

 
Fig. 4. Backbone detection results using different methods. (a) Our BDB

+
 result, where the backbone (green curve and dots) evolves from the 

MST diameter (red line) produced for a random sub-graph, whose vertexes (150 blue and red dots) are randomly sampled from the entire set 
of pixel vertexes on the worm body (>80,000 pixels in this image). (b) Morphological image skeleton (c) Morphological image thinning for the 
image rotated 30°. (d) The backbone detected using BDB

–
 (red) overlaid with the BDB

+
 backbone (green).  

 

4.3 Application to 3D Worm Image Straightening  

 

We now discuss the application of WSA to its intended target, 

straightening high-resolution 3D fluorescence images of worms. 

 

First, there is a minimal loss of image information in straightening, 

as shown in Fig. 5. The original data has three color-channels, each 

for a different set of cells. The blue channel is the DAPI staining of 

nuclear DNA in every cell. The green channel is nuclear-localized 

GFP in the 81 body wall muscle cells, and the red channel is 

mCherry in a subset of target cells of biological interest. It can be 

seen that the original worm body in Fig. 5a is straightened into a 

rod-shape in Fig. 5b. The blow-up views of the tail region in Fig.s 

5c and 5d allow inspection of the details.  Because we use 1-pixel 

spacing between all cutting-planes to restack the worm, the resolu-

tion in the straightened image is the same as the original image, 

although the straightened worm may look slightly smoother due to 

sub-pixel interpolation. The overall loss of information is minimal, 

as can be seen in the example of the tail region of Fig.s 5c and 5d.  

We have not observed any visible distortion of nuclear features 

(e.g. intensity) in any of the stacks generated to date.  

 

We quantitatively measured four features of randomly selected 

image objects (e.g. a single nucleus or a group of touching nuclei, - 

the latter was also considered for generality) before and after 

straightening: (1) size (number of voxels), (2) mean pixel intensity, 

(3) surface area, and (4) circularity (quotient of the length of long 

axis against that of the short axis of an image object). Table 3 gives 

examples of these quantities. It can be seen that the differences 

between image object features before and after straightening, mani-

fested by the respective "ratio of difference" values, are consis-

tently small, i.e. around or less than 2-3% for all four types of fea-

tures.  
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We have applied WSA to our on-going digital worm cell atlas 

project (Long et al, 2007), which routinely produces large 3D 

worm image stacks.  Table 4 gives several examples of image file 

sizes before and after straightening. For these examples WSA re-

duces the image file size by nearly 80% on average, which is sig-

nificant for our project as it involves thousands of such images.  

Obviously, one could achieve the same space savings by sparsely 

encoding the relevant pixels in an unstraightened worm, but this is 

considerably more complicated than keeping the rectilinear image 

stack after straightening. 

 

With a straightened worm body, it is easy to measure morphologi-

cal features of a worm.  For example, we measured the length of 31 

straightened first larval stage worms that are synchronized to be 

within 2 hours after hatching. On average their length is 

212.75±19.11!m. 

 
Table 3. Examples of features of corresponding image objects (a 
single nucleus or a group of nuclei) that were independently ex-

tracted from images before and after straightening. For the second 
column, "type of information", we showed the features before and 
after the straightening, as well as the absolute value of the differ-

ence, and the ratio defined as difference/(0.5*(before+after)). Also 
showed are the overall statistics of 24 image objects randomly se-
lected from 3D images of three C. elegans individuals and measured 

in the same way. 
 

Image object Type of info. Size 
Mean 

intensity 

Surface 

area 
Circularity 

Before 8010 39.643 2138.801 1.161 

After 8080 39.065 2179.074 1.184 

Abs. Diff. 70 0.579 40.272 0.023 
A 

Ratio 0.009 0.015 0.019 0.019 

Before 13799 42.868 4018.091 1.736 

After 13229 42.688 3908.548 1.737 

Abs. Diff. 570 0.180 109.543 0.001 
B 

Ratio 0.042 0.004 0.028 0.001 

Before 16846 41.149 3952.034 1.387 

After 16770 40.321 3910.396 1.371 

Abs. Diff. 76 0.8287 41.638 0.0157 
C 

Ratio 0.0045 0.0203 0.0106 0.0114 

Average ratio of 24 objects 0.0285 0.0089 0.0233 0.0091 

 
Table 4. 3D image-stack file sizes before and after straightening.  
 

Image # before after size reduction 
average 
size reduction 

1 358Mb 74Mb 79.33% 

2 352Mb 68Mb 80.68% 

3 393Mb 80Mb 79.64% 

4 412Mb 85Mb 79.37% 

79.76% 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 5. Straightening results on a 3D image. Only one Z-section is 
shown. (a) The original worm (25% of the real size) (b) The 

straighten worm (20% size) (c) Tail region of the original worm (80% 
size) (d) Tail region of the straightened worm (80% size). 
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