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Abstract Type 1 diabetes (T1D) results from genetic predis-
position and environmental factors leading to the autoimmune
destruction of pancreatic beta cells. Recently, a rapid increase
in the incidence of childhood T1D has been observed world-
wide; this is too fast to be explained by genetic factors alone,
pointing to the spreading of environmental factors linked to
the disease. Enteroviruses (EVs) are perhaps the most inves-
tigated environmental agents in relationship to the pathogen-
esis of T1D. While several studies point to the likelihood of
such correlation, epidemiological evidence in its support is
inconclusive or in some instances even against it. Hence, it
is still unknown if and how EVs are involved in the develop-
ment of T1D. Here we review recent findings concerning the
biology of EV in beta cells and the potential implications of
this knowledge for the understanding of beta cell dysfunction
and autoimmune destruction in T1D.
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Introduction

In type 1 diabetes (T1D), the insulin-producing pancreatic
beta cells are destroyed by misguided immune cells. The in-
cidence of childhood T1D has increased annually by ∼3 %,
worldwide, although regional differences exist [1, 2]. Genetic
as well as environmental factors affecting the immune system
and possibly beta cells contribute to the development of the
disease. More than 40 genetic loci associated with T1D have
been identified including those of insulin, cytotoxic T lym-
phocyte antigen 4 (CTLA-4), interleukin 2 receptor a
(IL2RA), tyrosine phosphatase PTPN22, and the viral
double-stranded RNA (dsRNA) sensor IFIH1 [3]. However,
human leukocyte antigen (HLA) loci, and in particular select-
ed HLA class II DR and DQ alleles, confer the strongest risk
being associated with ∼40 % of T1D cases, clearly indicating
that susceptibility for the disease is at least partially inherited
[4]. Furthermore, regional differences in the incidence of T1D
can be attributed, at least in part, to the varying frequencies of
HLA haplotypes among different populations [5]. On the oth-
er hand, studies conducted in several countries have revealed
that concordance for the disease among monozygotic twins
does not exceed 50 %, as it would be expected if T1D were
to be caused by genetic factors alone [6, 7]. Additionally,
migration studies have shown that children of immigrants,
who moved from an area with a low incidence to an area of
high incidence of T1D, increased their risk for developing the
disease compared to children in the area of origin [8, 9]. Taken
together, these data point to the contribution of environmental
factors toward the onset and/or progression of autoimmunity
directed against beta cells.
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Viruses as Agents for T1D

Several viruses, including cytomegalovirus [10], Epstein-Barr
virus [11], mumps virus [12, 13], rotavirus [14], and rubella
virus [15] are among the environmental factors thought to
foster the development of T1D. Above all, enteroviruses
(EVs), and especially coxsackievirus B (CVB), have been
linked to the disease.

Animal models for virus induction of diabetes exist since
1968, when it was first shown that infection of adult mice with
encephalomyocarditis virus resulted in persistent hyperglyce-
mia secondary to degranulation and focal necrosis of islet beta
cells [16]. Subsequent studies in the non-obese diabetic
(NOD) mouse, which spontaneously develops insulitis and
autoimmune diabetes, pointed to the ability of both CVB3
and CVB4, also picornaviruses, to accelerate the onset of
T1D in old prediabetic animals with established insulitis [17,
18]. On the other hand, infection of young NOD mice with
different strains of CVB3 and CVB4 reduced the incidence of
T1D onset [19]. From these data, one can conclude that the
timing of infection might play a major role. Nevertheless, also
various other factors such as the viral dose, the viral strain,
and/or the species infected by the virus might be of impor-
tance. Findings from animal models might not necessarily
reflect the conditions in human and, therefore, extrapolation
from one species to another should be evaluated carefully.

In 1969, Gamble and colleagues first reported the occur-
rence of higher titer of neutralizing antibodies against CVB4
in recently diagnosed T1D patients [20]. These authors also
noted a seasonal pattern of T1D onset with incidence increas-
ing in late fall and early winter following outbreaks of CVB
infection [21]. A decade later, Yoon and colleagues isolated
CVB4 from the pancreas of a child, who died from diabetic
ketoacidosis immediately after the onset of the disease, and
induced diabetes in mice infected with the isolated virus [22].
This was followed by further serological studies showing a
correlation between T1D and EV infection [23, 24]. However,
a meta-analysis including 26 serological case-control studies
found no convincing evidence for a correlation between CVB
serology and T1D [25]. Yet, blood samples from recent-onset
T1D patients were found positive for enteroviral RNA by
PCR [26, 27]. Moreover, enteroviral RNA and capsid protein
VP1 were detected in islets of pancreatic autopsy specimens
from patients with T1D [28–30]. In addition, another meta-
analysis of 24 retrospective and prospective studies found a
significant association between T1D-related autoimmunity
and EV infection, as detected by measuring enteroviral RNA
or protein in stool, blood, or tissue [31]. Conversely, next-
generation sequencing of plasma samples from children with
rapid-onset T1D did not provide evidence for correlation with
enteroviral infection [32]. More recently, Krogvold et al. re-
ported the expression of VP1 in <2 % of islets and low levels
of enteroviral RNA in pancreatic biopsies from seven T1D

subjects and thus postulated that a low-grade infection of islet
cells contributes to the development of the disease [33••]. On
the other hand, EV infection might be responsible for a fulmi-
nant form of T1D reported in Japan, which is characterized by
massive beta cell destruction in the absence of autoantibodies
against beta cell antigens [34, 35].

As in mice, some CVB strains may protect from the devel-
opment of T1D in humans. In Finnish children, the presence
of neutralizing antibodies against CVB1 was recently shown
to be associated with an increased risk of beta cell autoimmu-
nity, while neutralizing antibodies to CVB3 and CVB6 corre-
lated with a reduced risk for T1D [36••]. Due to the close
phylogenetic relatedness of these three CVB serotypes, the
authors suggested that CVB3/CVB6-specific T cells may in-
duce an immunological cross-protection against the diabeto-
genic effect of a later CVB1 infection. Similar findings were
also reported in a second study, which found the frequency of
antibodies against CVB1 to be higher in diabetic children
compared to controls [37•].

These discrepancies about the role of EVs in the develop-
ment of T1D in humans could reflect the different effects of
different strains in different populations and the limitations of
many studies (size of cohorts, types, timing, and frequency of
sampling). Most recently, a nationwide, population-based co-
hort study in Taiwan concluded that EV infection is associated
with an increased risk of childhood T1D [38]. Also, repeated
infections rather than a single event as well as the concomi-
tance of other predisposing environmental factors might be
needed for the development of the disease, which would make
more difficult to prove an association. Furthermore, laboratory
protocols have not been standardized and thus thresholds for
detection may vary considerably, while transient infections
may escape detection. Hence, despite the progressive applica-
tions of more sensitive and accurate methodologies, a consen-
sus about a link between viral infection and the onset of T1D
has yet to be reached. In light of this uncertainty, the acquisi-
tion of knowledge about the biology of viruses in beta cells
may be useful.

Enteroviruses

The genus of Enterovirus belongs to the family of
Picornaviridae and is grouped into 12 species named Entero-
virus A-J and Rhinovirus A-C, for a total of >100 serotypes
including poliovirus, echovirus, coxsackievirus A and B, and
others [39]. EVs are common in humans and infect billions of
people every year. Among them, CVB has been the most
frequently associated with T1D. CVB can cause acute inflam-
matory diseases like myocarditis, meningitis, and pancreatitis
but mostly induce milder symptoms such as fever, summer
cold, or rash, or is completely asymptomatic [40, 41]. They
are transmitted mainly via the fecal-oral route and replicate
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primarily in the intestine and secondary target organs like the
pancreas [22].

CVB seems to exhibit a specific tropism for the pancreas
and beta cells in particular. For example, CVB4 is able to
infect and replicate in human pancreatic islets in vitro [42].
As mentioned above, CVB3 RNA was detected in islet of
autopsy pancreata from T1D patients and children who died
from fulminant CV infection, but not in exocrine tissue [28].
Recently, this was corroborated by evidence of CVB5 repli-
cation exclusively in human endocrine islets, but not in exo-
crine clusters [43]. Additionally, VP1was observed in beta but
not alpha cells of islets from recent-onset T1D patients [29,
30]. A possible explanation for this observation is the ability
of alpha cells to mount a more efficient antiviral response to
CVB4 and B5 than beta cells and thus be better able to clear
viral infections [44•].

CVBs are small, non-enveloped, positive-stranded RNA
viruses containing an icosahedral capsid of ∼30 nm in diam-
eter that consist of four viral proteins (VP1-VP4) [40]. To
invade the host cell, they primarily use the coxsackievirus
and adenovirus receptor (CAR) [45] but also the decay-
accelerating factor (DAF) [46] (Table 1). CAR is expressed
in both alpha and beta cells of human pancreatic islets [47]
while DAF has not been detected in human islets [28]. Polio-
virus receptor (PVR) and integrin αvβ3 can also mediate
CVB entry, as antibodies against them protected human beta
cells from CVB4 and CVB5 infection [28] (Fig. 1).

Once the virus has adsorbed to the cell surface, its capsid
proteins undergo conformational changes that enable its RNA
genome to enter the cell, presumably through the formation of
a pore within the host plasma membrane. Additionally, intake
o f CVB by a combina t i on o f endocy tos i s and
macropinocytosis at tight junctions or lipid rafts has been
discussed [40] [48, 49]. However, the detailed process of entry
remains to be clarified. Upon genome translocation into the
host cell, the sense-strand viral RNA is translated and there-
after replicated in the cytosol by exploiting the protein ma-
chinery of the host due to the limited coding capacity of its
own genome. Being uncapped and lacking a poly-A tail, viral
RNAs are translated in a cap-independent fashion [50]
(Fig. 1). Their 5′-untranslated region, in particular, contains
internal ribosome entry sites (IRESs) for the binding of IRES-
transacting factors (ITAFs), such as polypyrimidine tract-
binding protein 1 (PTBP1, also referred to as PTB), which
promote the recruitment of ribosomes to the viral RNA for
translation [51]. The viral genome encodes a single polypep-
tide that is cleaved into several proteins by self-activated viral
proteases 2A and 3C [41]. Proteases 2A and 3C, in turn, shut
down the cap-dependent translation of host mRNAs by cleav-
ing eukaryotic translation initiation factors (eIFs) eIF4GI [52,
53] and eIF5B [54] as well as the poly(A)-binding protein
(PABP) [55, 56] (Table 1). In this way, EVs can exploit the
host translation machinery to their advantage.

Next, the four structural viral proteins VP1–VP4 self-
assemble into empty capsids, whereas non-structural proteins
mediate the transcription of the positive-strand RNA genome.
Through RNA encapsidation and conformational changes,
stable, infectious virions are generated [41]. The mechanism
of viral particle release from infected cells is still unknown,
and several possibilities have been postulated including
changes in cell membrane permeability, lysis, and apoptosis
[57, 58].

Dysfunction of EV-Infected Beta Cells

Beta Cell Death and Proliferation

EVs impair beta cell function and display different cytolytic
effects in pancreatic beta cells with some serotypes being
highly cytolytic while others replicating without apparently
destroying the cell [59]. Infection of beta cells with CVB5
induces cell death via activation of the viral sensor protein
kinase R (PKR), thereby reducing the expression of the
antiapoptotic protein myeloid leukemia cell sequence 1
(Mcl-1) [60] (Fig. 1). Concomitantly, the pro-apoptotic pro-
tein Bim is released and activates the caspase cascade of the
mitochondrial apoptosis pathway (Table 1). This was con-
firmed in VP1-positive beta cells of pancreatic islets from
T1D patients, in which PKR was upregulated and Mcl-1 de-
pleted [61•]. Alternatively, productive infection with CVB3,
CVB4, and CVB5 can induce beta cell death in human islets
with morphological changes characteristic for pyknosis, in the
absence of signs for apoptosis [62]. Likewise, murine
insulinoma cells infected with CVB5 died from necrosis, but
not apoptosis [63••]. Furthermore, gene expression profiling
of human islets infected with a lytic EV strain revealed an
upregulation of pro-inflammatory cytokines interleukin 1α
(IL-1α), IL-1β, and tumor necrosis factor α (TNF-α) with
coeval enhanced apoptosis and necrosis, the latter resulting
from the depletion of ATP concomitantly with the otherwise
pro-apoptotic action of the cytokines [64••] (Fig. 1).

The generation of double-stranded RNA (dsRNA) during
the process of viral replication elicits an innate immunity re-
sponse through the activation of dsRNA sensors, such as Toll-
like receptor 3 (TLRs), retinoic-acid-inducible gene I (RIG-I),
or melanoma differentiation associated protein 5 (MDA5, also
referred to as IFIH1, Table 1), all of which are indeed upreg-
ulated in human pancreatic islets upon CVB5 infection [64••,
65, 66] (Fig. 1). Activation of dsRNA sensors induces the
production and secretion of cytokines and thereby initiates
inflammation. Accordingly, pro-inflammatory cytokines IL-
1α, IL-1β, IL-6, IL-8, TNF-α, and type I interferons (IFNs)
IFN-α and IFN-β have been detected in human islets follow-
ing their infection with CVB3, CVB4, or CVB5 [47, 64••,
66–68]. Among other effects, type I IFNs upregulate the
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expression of major histocompatibility complex (MHC) class
I molecules, thus favoring the presentation of viral antigens at
the cell surface of infected beta cells and consequently their
death by activated cells of the immune system, including T
cells. Notably, several studies have documented the overex-
pression of MHC class I in islets of T1D patients [30, 33••,
69]. On the other hand, overexpression of MHC class I could
also enhance the recognition of beta cell autoantigens by
autoreactive CD8-positive cytotoxic T cells, which have been
found in pancreatic islets of T1D patients [70].

The modality of viral-induced cell death depends also on
the multiplicity of infection (MOI) [71]. HighMOI of isolated
beta cells and human islets with CVB5 resulted predominantly
in necrosis and transient apoptosis. Conversely, a low MOI
correlated with moderate necrosis while apoptosis increased
with time. Hence, apoptosis may not play a major role during
a productive infection but be more relevant in the case of viral
persistence in the tissue.

Intriguingly, there are also studies suggesting that EV in-
fection may stimulate beta cell proliferation. Specifically, beta
cells positive for the proliferation marker Ki67 were observed

in VP1-positive islets isolated from recent-onset T1D patients
[72]. However, both markers were not found within the same
cell. Therefore, it was suggested that factors associated with
viral replication might stimulate the proliferation of neighbor-
ing, non-infected beta cells. Additionally, infection of SJL
mice with a diabetogenic or with a non-diabetogenic CVB4
strain caused the acute destruction of exocrine pancreas, while
islets were largely spared [73]. In the longer term, however,
the infection with the non-diabetogenic strain was associated
with islet neogenesis, while in the case of the diabetogenic
strain, islets were also destroyed. Based on these observations,
lack of beta cell neogenesis upon viral infection could contrib-
ute to beta cell depletion in mice.

Insulin Production and Secretion

Infection of isolated human islets with either CVB3, CVB4, or
CVB5 reduced their insulin content and glucose-stimulated
insulin secretion [42, 62]. CVB4-infected human islets
transplanted in mice showed reduced insulin levels and hyper-
glycemia resulting in diabetes [74]. Accordingly, islets of T1D

Fig. 1 Impact of CVB infection on beta cell function and survival. CVB
binds to CAR, PVR, and/or integrinαvβ3 at the plasma membrane of the
beta cell. Upon entry and translocation into the cytoplasm, the sense-
stranded CVB RNA is translated in a PTBP1-mediated, IRES-
dependent fashion by the host machinery. Cap-dependent translation of
host cell proteins is inhibited through cleavage of eIF4G and PABP.
Glucose-stimulated translation of insulin secretory granule (SG) cargoes
is, however, unaffected being itself cap-independent and reliant on
PTBP1, which in CVB-infected cells undergoes a massive nucleo-
cytoplasmic translocation. Insulin secretion is nevertheless impaired and

granule stores are depleted due to the targeting of their cargo proteins to
intracellular disposal. Recognition of viral dsRNA by dsRNA sensors
activates the antiviral response with production and secretion of pro-
inflammatory cytokines and upregulation of MHC class I molecules.
Additionally, dsRNA activates PKR with inhibition of the antiapoptotic
Mcl-1 and thereby release of pro-apoptotic Bim and activation of the
mitochondrial caspase cascade leading to apoptosis. Apoptosis can be
further induced by pro-inflammatory cytokines and switch to necrosis
in case of concomitant ATP depletion
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patients positive for CVB4 displayed also lower insulin re-
lease [29]. Gene expression profiling suggests that CVB in-
fection downregulates factors involved in intracellular Ca2+

homeostasis and membrane potential as cause for impaired
insulin secretion [64••]. In addition to insulin, other mature
granule cargoes were depleted in CVB5-infected mouse islet
and insulinoma cells, albeit glucose-stimulated translation of
their precursor species, such as proinsulin, was unaffected
[63••]. This is still possible because transcripts for most insu-
lin granule cargoes, unlike those for most other beta cell pro-
teins, but similar to the EV genome, are translated in a PTBP1-
dependent, cap-independent fashion (Fig. 1). Massive reloca-
tion of PTBP1 from the nucleus to the cytosol of CVB-
infected beta cells accounts for the availability of PTBP1 in
amounts sufficient to support simultaneously the translation of
both viral and granule cargo transcripts. The depletion of ma-
ture granule cargoes in infected cells indicated that CVB is
nevertheless able to divert the traffic of these proteins along
the secretory pathway and destine them to degradation prior to
secretion, which is inhibited. In some other instances, howev-
er, CVB infection could also increase the levels of released
insulin, possibly due to discharge of the hormone upon beta
cell damage [42].

Virus-Induced Pathogenesis in T1D

While we have acquired substantial knowledge on how EVs
can directly exert a detrimental impact on beta cell function
and viability, we still lack a mechanistic explanation for how
this infection could also trigger or aggravate the loss of self-
tolerance toward beta cells. To account for these scenarios,
several hypotheses have been proposed.

According to one hypothesis, viral-induced damage of in-
fected beta cells and inflammation enhance the presentation of
released beta cell peptides by professional antigen-presenting
cells [75]. Concomitantly, infected beta cells upregulate their
expression of MHC class I molecules in order to facilitate the
presentation of viral peptides, and thus their recognition and
destruction by T cells and the clearance of the virus. This
process, however, might also enhance the antigen presentation
of peptides derived from secretory granule cargoes, which in
infected cells are still being translated but also massively de-
graded [63••]. Whether and how such skewed presentation of
granule-derived peptides accounts for the preferential loss of
tolerance in T1D toward the granule cargoes proinsulin, insu-
lin, IA-2/ICA512, IA-2β/phogrin, and Znt8/SLC30A8 re-
mains to be investigated.

The related “bystander hypothesis” envisions that the re-
lease of pro-inflammatory cytokines and nitric oxide leading
to insulitis and beta cell death could also follow the infection
of neighboring pancreatic cells [76, 77]. In particular, there is
evidence that enhanced release of islet autoantigens upon

CVB4 infection stimulates pre-existing autoreactive T cells
and accelerates the onset of T1D in NOD mice carrying an
islet-autoantigen-specific T cell receptor transgene [78]. How-
ever, this mechanism has been challenged in view of the high
number of pre-existing autoreactive T cells required to foster
disease progression [17]. Additionally, cytokines secreted by
infected cells or inflammatory cells are unlikely alone to break
self-tolerance [79, 80].

An alternative mechanism known as “molecular mimic-
ry” implies that loss of self-tolerance may occur due to
short sequence similarities between viral proteins and en-
dogenous proteins of beta cells. Potential T cell cross-
reactivity has been documented between the P2-C protein
of CVB4 and glutamic acid decarboxylase 65 (GAD65), a
major autoantigen in T1D [81]. This hypothesis has been
challenged due to experimental evidence indicating that
neither autoantibodies nor autoreactive T cell clones isolat-
ed from T1D patients and specific for GAD65 epitopes
cross-reacted with the CVB4 P2-C antigen [82, 83]. Mo-
lecular mimicry has also been proposed to occur between
the rotavirus VP7 protein and IA-2/ICA512, an intrinsic
protein of insulin granules and another major target of
autoimmunity in T1D [84]. For instance, IA-2-restricted
T cells were shown to proliferate upon exposure to a
VP7 peptide and vice versa [85]. Additionally, IA-2 and
its paralogue IA-2β/phogrin, also a T1D autoantigen, dis-
play sequence similarities with the enteroviral VP1 and
VP0 precursor proteins with humoral cross-reactivities also
occurring in both directions [86].

Prolonged inflammation due to viral persistence, replica-
tion, and antigenic stimulation has also been suggested as a
potential mechanism leading to autoimmunity. For instance,
some CVB strains have been reported to persist in human
pancreatic islets [42, 47], presumably because of amino acid
substitutions located at the surface of VP1 close to the predict-
ed receptor binding canyon [87] or due to 5′ terminal deletions
of the genome, which were shown to result in slower viral
replication and loss of cytopathic effect [88]. Moreover, en-
teroviral RNA and VP1 have been detected in autopsy
pancreata of T1D patients even beyond the stage of acute
infection [28, 30]. EV can also persist in the intestine [89,
90] and blood cells [91]. These tissues may therefore represent
chronic reservoirs from which EV propagates to other organs,
such as the pancreas, leading overtime to beta cell autoimmu-
nity. Loss of tolerance of autoreactive T cells against beta cell
antigens may also result from deficits in central tolerance sec-
ondary to persistent viral infection of thymic cells. CVB4 has
been shown to replicate and persist in fetal thymus organ
cultures and thymic epithelial cells, thereby impairing T cell
maturation and differentiation [92] and thus decreasing the
production of insulin-like growth factor 2 (IGF-2), which
might be involved in the establishment of central tolerance
toward insulin [93].
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Conclusions

In recent years, increasing knowledge has been acquired on
how viruses, and especially EVs, can infect beta cells and thus
promote insulitis, impair insulin secretion, and trigger beta cell
death. However, we still lack mechanistic insight into how a
self-limiting acute viral infection, or even a latent virus-
induced insulitis, may occasionally evolve into autoimmunity
toward beta cells and thus cause T1D. So far, none of the
hypotheses accounting for virus-induced beta cell autoimmu-
nity has been supported by stringent evidence in humans, and
the involvement of several mechanisms rather than just one is
also plausible. Hence, further studies on the potential link
between EV infections and T1D are warranted before strate-
gies such as vaccines or antiviral drugs may be pursued as a
means to prevent or halt the development of the disease.
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