
Diplomarbeit

Piecewise smooth deconvolving
segmentation

Katharina Philipp

11. April 2013

Technische Universität Dresden
Fakultät Informatik

Institut für Künstliche Intelligenz
Professur Intelligente Systeme

Max-Planck-Institut für molekulare Zellbiologie und Genetik

Betreuender Hochschullehrer: Dr. Dmitrij Schlesinger
Betreuer: Dr. Ivo Sbalzarini

Dr. Janick Cardinale





Erklärung
Hiermit erkläre ich, dass ich diese Arbeit selbstständig erstellt und keine anderen als die
angegebenen Hilfsmittel benutzt habe.

Dresden, den 11. April 2013

Katharina Philipp





Thanks and Acknowledgements

First of all, I want to thank my supervisors, Dr. Schlesinger, Dr. Sbalzarini and Dr.
Cardinale.
I am very grateful to Dr. Schlesinger for filling in as an associate professor in the

Intelligent Systems group and thus giving me the opportunity to study in the field of
image processing. I enjoyed his lectures as they helped me further my understanding of
image segmentation.
Without Dr. Sbalzarini and Dr. Cardinale, this work would not exist. I will always be

grateful to Dr. Sbalzarini for answering my request for an interesting topic so quickly.
Thanks to him, I was able to work on this research topic, visit Zurich, take part in my
very first conference, and meet the wonderful MOSAIC group. I thank Janick Cardinale,
who was always available for advice and encouragement and quickly answered when I
had problems. His knowledge and insight in image segmentation in general and the
Region Competition Framework in detail helped me a lot. I also want to thank the
MPI-CBG for giving me the opportunity to work in their institute and to meet so many
people from all around the world. I greatly enjoyed my foray into the world of science. A
thank you also goes toward the MOSAIC group for welcoming me so warmly. I enjoyed
the opportunity to work alongside you.
Furthermore, I want to thank my parents for always supporting me, not just financially

but also morally when I was at my wit’s end. Much of my thanks also goes to my
friends, especially Annegret and Maria. They all listened patiently when I had troubles
and reminded me that I also had a life outside the diploma thesis.
Above all, I want to thank Marcus, who helped me out in so many ways, as an admin-

istrator when something did not work, as a fellow programmer when I could not find a
bug, and, last but not least, eased my work load by doing a lot of my chores.

Thank you.

V





Contents

1 Introduction 3

2 Theoretical Background 5
2.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Region Competition framework . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Piecewise Smooth Segmentation . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Deconvolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5 Piecewise Smooth Deconvolving Segmentation . . . . . . . . . . . . . . . 13
2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Implementation 15
3.1 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Intensity Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2.1 Adding Piecewise Smoothness . . . . . . . . . . . . . . . . . . . . 18
3.2.2 Calculation of Correction Factors . . . . . . . . . . . . . . . . . . 18
3.2.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3 General Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4 Modifications of the Region Competition framework . . . . . . . . . . . 25
3.5 Performance Modifications . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4 Evaluation 31
4.1 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2 Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2.1 Image Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2.2 Image Restoration . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.3 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5 Conclusion and Future Work 43
5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

A Simulation Results 45

B Evaluation Results 53

C CD Content 63

Bibliography 65

VII





List of Figures

1.1 Microscopy example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Topology example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Illustration of convolution effects. . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Segmentation results of Figure 2.2(b). . . . . . . . . . . . . . . . . . . . 13

3.1 1D image used in simulations. . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Illustration of the support areas of each part of the intensity estimation. 23
3.3 Example of the support’s overlap for three particles. . . . . . . . . . . . 24
3.4 Example in which global similarity measure fails. . . . . . . . . . . . . . 25
3.5 Quality evaluation of using interpolation. . . . . . . . . . . . . . . . . . 27
3.6 Time proportions of each part of the intensity estimation. . . . . . . . . 28
3.7 Illustration of the mean area’s differences between neighboring pixels. . 28
3.8 Evaluation of skipping imagewise intensity estimation every few iterations. 30

4.1 Artificial example images. . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.2 Bar plots showing the percentage of mislabeled pixels. . . . . . . . . . . 35
4.3 Segmentation results of endosomes. . . . . . . . . . . . . . . . . . . . . . 36
4.4 Image segmentation results of embryos. . . . . . . . . . . . . . . . . . . 37
4.5 Segmentation results of restored embryos. . . . . . . . . . . . . . . . . . 37
4.6 Image restoration results of embryos. . . . . . . . . . . . . . . . . . . . . 38
4.7 Image restoration results of endosomes. . . . . . . . . . . . . . . . . . . 39
4.8 Performance results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

A.1 Results showing background influence. . . . . . . . . . . . . . . . . . . . 46
A.2 Comparison of different correction factor calculations. . . . . . . . . . . 47
A.3 Comparison of different correction factor calculations. . . . . . . . . . . 48
A.4 Comparison of different correction factor calculations. . . . . . . . . . . 49
A.5 Comparison of different intensity estimation algorithms using mean(I −

(J − I−1
est)). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

A.6 Comparison of different intensity estimation algorithms usingmedian(I/J). 51

B.1 Image segmentation results of the circle example image. . . . . . . . . . 54
B.2 Image restoration results of the circle example image. . . . . . . . . . . 55
B.3 Image segmentation results of the lines example image. . . . . . . . . . . 56
B.4 Image restoration results of the lines example image. . . . . . . . . . . . 57
B.5 Image segmentation results of the overlapping circles example image. . . 58
B.6 Image restoration results of the overlapping circles example image. . . . 59

IX



List of Figures

B.7 Image segmentation results of the overturned U example image. . . . . . 60
B.8 Image restoration results of the overturned U example image. . . . . . . 61

1





1 Introduction

Image segmentation is a computer vision technique to separate an input image into sev-
eral non–overlapping regions. The pixels within a region belong semantically together.
For example, in a microscopy image each region might represent a cell.
With the result of a segmentation, each pixel can be assigned to a region. In a discrete

setting that result is a label image which identifies each region by a number. This
labeling is then used to further analyze the image. For instance, in cell classification,
shape and mean color of each region can be used for cell–type classification.
Therefore, the result depends not only on the segmentation algorithm but also on the

definition that declares which pixels belong together. Such a model might declare that
neighboring pixels are in one region if they have a similar gray value. Or it might not
depend on the image at all and declare that the region’s boundaries should be as smooth
as possible. There are many different kinds of models. In this work I describe and imple-
ment a piecewise smooth deconvolving model for the Region Competition framework
[CPS12].
A piecewise smooth deconvolving model combines image segmentation with image

restoration. The interaction between both improves the result of each process. Image
restoration increases the quality of an image by reducing noise and blur. The latter
originates from out–of–focus light and light scattering during the image acquisition
process. In microscopy, this effect leads to seemingly thicker objects and vague shapes
as depicted in Figure 1.1. A piecewise smooth segmentation without deconvolution fails
to correctly delineate the true objects. Therefore, in this work, I combine both.
I estimate the true image by restoring the image. This restoration is done with the

help of the label image and the image model. Unlike piecewise constant deconvolution,
in which the intensities are constant within one region, piecewise smooth deconvolution
allows smooth intensity variations in the regions. With the estimated true image, I
simulate the image formation in the microscope and compare the result to the input
image. The comparison gives an estimation how well the current estimated image fits
the true image. Additionally, I can also see how well the current label image matches
the image’s objects because the estimated image is calculated from the label image.
Image segmentation tasks are often formulated as optimization tasks in which the

image–formation model is incorporated into an energy function. In mathematical opti-
mization, the energy function represents the energy of the system modeled and we want
to know the parameters that minimize or maximize this function. In image segmenta-
tion the labeling is one such parameter and the energy function describes how well the
current regions and the image model fit the input image.
The Region Competition framework also regards segmentation as an optimization

task. It is a discrete segmentation algorithm that separates the energy function from
the optimization. The energy model is not explicitly implemented but can be chosen

3



1 Introduction

Figure 1.1: Example of a convolved fluorescence microscopy image showing endosomes in live
HER911 cells. A piecewise constant deconvolution has difficulties with the piece-
wise smooth background that in some areas the background is brighter than some
of the endosomes. The figure has been inverted for illustration purposes. Source:
Prof. Urs Greber, University of Zurich, and Dr. Christoph Burckhardt, Harvard
University

as an argument for the algorithm. Several energy terms are already available, e.g.,
piecewise constant with different noise models, piecewise smooth with different noise
models, piecewise constant deconvolution, cut metrics, Kybic–Kratky curvature flow,
moment based shape priors [Car13]. In this work, I add another energy model —
piecewise smooth deconvolution.
The remainder of this thesis is structured as follows. In Chapter 2, I describe the

existing framework and the theoretical background of the different energy models I refer
to. In Chapter 3, I first explain the theory of my approach and then my implementation
within the Region Competition framework. In the evaluation chapter I compare my
model to other existing ones. I conclude this work with a summary and suggestions for
future work and improvements.

4



2 Theoretical Background

In this chapter I describe the background in which this thesis is set. I start with a
brief literature overview to position this work. Afterwards, I explain the theoretical
background of a piecewise smooth deconvolving energy model. In order to give an idea
on the features the model should have I explain the Region Competition framework
before I focus on the model itself. In Section 2.3 and 2.4, I concentrate on piecewise
smooth segmentation and deconvolution separately and in Section 2.5 I detail their
combination. I conclude this chapter with the design decisions that I inferred from the
previous analyses.

2.1 Related Work

In this thesis, I explore the combination of image segmentation and restoration in a
piecewise smooth setting. Especially microscopy images can be so blurred that both
tasks are needed to achieve proper results in which the cells or often also their inner
structure have been correctly segmented. However, both processes are actually closely
related to each other and the result of one would improve the other. Paul et al. reflected
on their similarities in [CPS13]. Whereas in image segmentation, the objects are explic-
itly modeled and expressed through their boundaries, image restoration assumes the
effect of the image’s objects in the underlying mathematical structures. If the object’s
position and boundary were known, an image restoration algorithm could better account
for the intensity jumps that occur at objects’ edges. On the other hand, a segmentation
algorithm cannot segment the objects correctly if they are blurred. The image would
have to be restored first by inverting the blur. In order to use both effects, a piecewise
smooth convolved model combines both.
Image segmentation separates an input image into several non–overlapping regions to

further process the result, for example, for object classification. In order to segment an
image we need the object’s description — the model — and an algorithm. The model is
a mathematical, abstract description of the image’s objects. It is often formulated into
an energy functional, whose minimum is then the energy state in which the boundaries
represent the optimal partition of the image.
The Mumford–Shah functional [MS88] and Bayes’ theorem [GG84] and their varia-

tions are primarily used to describe objects. Mumford and Shah assumed that within
the objects, intensities only vary slightly. Edges, however, are indicated by intensity
jumps. Hence, they use piecewise smooth functions to describe the image.
Geman and Geman solve the segmentation problem statistically [GG84]. In order to

find the correct edge set C given the input image I, they try to maximize the posterior
probability p(C|I). Brox and Cremers showed that both approaches are closely related

5



2 Theoretical Background

and that the Mumford–Shah functional is an approximation of the Bayesian posterior
maximization in the case of local statistics [BC07].

There are many variations of the two models. One example is the addition of prior
knowledge about the objects’ shape by Cremers et al [CKS02]. Restricting the piecewise
smooth functions of the Mumford–Shah functional to be piecewise constant is called the
Cartoon Limit and was introduced by Mumford and Shah [MS88]. If the Cartoon Limit
is additionally constrained to two regions, it is known as the Chan–Vese model [CV01].
Sandberg et al. further extend it to account for texture [SCV02].

There have been several approaches to combine the Cartoon Limit with image restora-
tion. Jung et al. use the level set to solve the resulting functional and study the effect
of Sobolev gradients [JCS+09]. Helmuth et al. view the combination from the other
perspective and integrate piecewise constant segmentation into Constrained Iterative
algorithms that are often used in image restoration [HS09]. Paul et al. introduce a
model based on generalized linear models and Bregman divergences [CPS13]. They use
piecewise constant image segmentation and restoration as an example application. All
these works are based on a piecewise constant model in which the intensities do not
change within the objects. However, microscopy images are often heterogeneous and
require a piecewise smooth segmentation.

In this thesis, I extend the piecewise smooth Mumford–Shah functional to account for
blurring. In [KTCW02], Kim et al. first introduced a convolution with a blur kernel
into the piecewise smooth Mumford–Shah functional. In their work, the blur kernel has
to be known. Later, Bar et al. and Zheng et al. included additional terms to learn the
blur kernel during the joint segmentation / restoration [BSK04] [ZH06]. They all use
variational algorithms to solve their energy models.

Kim et al. use level sets to represent the boundaries. A level set separates the image
into a region above and a region below the level set. The topology, however, is not
fixed. Therefore, as long as regions do not touch, it is possible to segment an arbitrary
number of similar objects. But in many images, that is not a safe assumption since
objects often touch. Using log2(M) level sets, it is possible to segment up to M regions
[VC02]. In this case, an upper bound for the number of regions has to be defined initially.
Furthermore, it leaves empty region statistically undefined even though these regions
are still considered in the overall system of equations [BW04]. The Region Competition
framework restricts the topology and defines regions as face–connected components. In
return, the framework does not make any assumptions on the number of regions and
their characteristics as it dynamically updates both.

Bar et al. and Zheng et al. do not actually segment an image, but rather follow
Mumford and Shah’s original idea and produce an edge map. In a segmentation, the
edges surround the regions, thus, regions cannot overlap. Mumford and Shah’s edge
map, however, does not have this constraint on edges. It is possible for edges to just
end in a region without hitting another edge. Their algorithms are primarily used for
image restoration.

6



2.2 Region Competition framework

2.2 Region Competition framework

The Region Competition framework by Cardinale et al. [CPS12] is a discrete algorithm
that regards segmentation as an optimization task. It tries to minimize the following
functional:

E = Edata + λElength + αEmerge. (2.1)

The first two terms are the standard formulation of an energy term used in image
segmentation. They are derived from the Bayesian Model:

p(C, θ|I) = p(I|C, θ) · p(C, θ)
p(I) . (2.2)

From the image I we want to retrieve the image’s objects that are described by their
contour C and their description given by the parameter set θ. That is most often done
by maximizing the posterior p(C, θ|I). Instead of solving the maximization problem, it
is preferred to turn it into a minimization problem and solve the negative logarithm of
Equation 2.2. The logarithm transforms above multiplication of likelihood p(I|C, θ) and
prior p(C, θ) into the addition of energy terms seen in Equation 2.1.
The data term Edata, also called external energy, is derived from the likelihood. It rep-

resents the probability that image I is recorded from a scene with the objects described
by C and θ. It is often characterized by a distance between the image I and an image
estimated from C and θ.
The probability of the segmentation a–priori is given by the prior p(C, θ). It fulfills

the same role as the length term that is also called internal energy. Both introduce prior
knowledge about the image objects into the overall energy. For instance, it might be
used to punish curvature to ensure that the objects do not have sharp corners.
The evidence p(I) is omitted because it does not affect the segmentation of the objects.

In Equation 2.2, it is used only for normalization purposes.
The third term, the merge term Emerge, allows two adjacent region i and j to merge

if they are similar enough. The similarity is measured with the Kullback–Leibler diver-
gence of the empirical distributions of the regions and their merging:

Emerge =
∑

(i,j)>0:Xi∼Xj

H
[
DKL(PXi ||PXi∪Xj ) +DKL(PXj ||PXi∪Xj )− θ

]
. (2.3)

H(·) is the Heaviside distribution that restricts the calculations to the regions involved.
Xi and Xj are the adjacent foreground regions that want to merge. The adjacency is
indicated by Xi ∼ Xj . In the equation, PX is the empirical intensity distribution of X;
that is PXi is the empirical distribution of region i, while PXi∪Xj is the distribution for
the merged region. The parameter θ is used to quantify similarity. The merge term is
only favorable to the overall energy if both regions are similar enough to their merged
region so that the sum is smaller than θ.
The main feature of the framework is that the number of regions and their character-

istics are unknown beforehand. Because the number of regions has to be estimated in
addition to their characteristics and boundaries, further regularization is needed in order

7



2 Theoretical Background

to identify the desired regions. For example, additional information is needed to decide
whether two regions at different positions in the image but with identical statistics are
actually one region or not. Since the algorithm is designed to work locally rather than
globally, these two regions should get different labels.
Cardinale et al. use the discrete mesh topology of the image by defining that fore-

ground regions are face–connected components using a 4–neighborhood in 2D and a
6–neighborhood in 3D. The background region has no topological restrictions. Due to
the definition, region A and C in Figure 2.1 are different regions even if they would have
the same statistical properties. The algorithm could merge these two regions only if the
label of pixel 2d or 3c switches to either A or C.

Figure 2.1: Example of a label image with three foreground regions A, B, C and a white back-
ground region. The particles are tagged with ×. The arrows symbolize possible
contour movements. Source: [CPS12]

In order to reach a local minimum, the algorithm iterates through the following steps
after initialization:

• Calculate the energy difference of the current pixel for the case that it would
belong to another region. Only regions in the immediate neighborhood of the
corresponding pixel are candidates.

• Decide how to move the boundaries in this iteration, so that the overall energy
of the image is minimized. However, not all moves can be performed. Only valid
moves are executed in order to prevent violations of the topological constraint that
regions are face–connected components.

• Detect and execute changes in the topology, such as merges, splits or the creation
of holes. These changes occur only in foreground regions since the background
region has no constraints on its topology.

Label changes can occur only on the region boundaries. In order to speed up the
calculations the energy is evaluated and, if possible, calculated only at these boundaries.

8



2.3 Piecewise Smooth Segmentation

This inner contour is represented by particles. A particle is a zero–dimensional and
indivisible object that stores several properties, such as position, label, energy, and
relevant neighborhood information. Hence, if I use the term particles, I refer to the
pixels on the inner contour whose labels can change. The term pixels refers to the
actual pixels of the whole image.
Cardinale et al. designed this framework to efficiently segment images. Therefore,

they heavily depend on local methods to calculate the different energy terms. FOr
most energy models implemented, that is possible and, therefore, disconnects the time–
complexity of the algorithm from the image size. In the case of piecewise constant
deconvolution that is not possible as an imagewide convolution is required each iteration.
Furthermore, the local approach allows the particles to be processed in parallel.

Because much of the current performance gain in computing is due to parallel cores,
parallelized computations would further increase the algorithm’s performance. There-
fore, an implementation of a piecewise smooth deconvolving energy model in the Region
Competition framework should use only local information and refrain from writing global
variables.

2.3 Piecewise Smooth Segmentation
The principal idea of piecewise smooth segmentation is that the gray values do not
change abruptly within an object but only do so at the object’s boundaries. Mumford
and Shah [MS88] developed a functional based upon this assumption, originally with
the intent to use it for image denoising. In order to estimate the restored image Iest(~x)
of an image function I(~x), they solve the following minimization task:

FMS(Iest, C) =
∫

Ω
(Iest(~x)− I(~x))2 d~x︸ ︷︷ ︸

fidelity

+µ

∫
Ω\C

(∇Iest(~x))2 d~x︸ ︷︷ ︸
smoothness

+λ · length(C)︸ ︷︷ ︸
internal

→ min
Iest,C

.

(2.4)
The Mumford–Shah functional has the same background as the first two energy terms
in Equation 2.1. The fidelity and the smoothness term from Equation 2.4 represent the
likelihood; the internal term is the prior.
The first term in Equation 2.4 forces the restored image Iest to be as similar as possible

to I by computing a L2–norm between both images. The term is minimal if both images
are equal. The second term only influences the values within the regions and not at
the borders. It punishes large intensity variations and is used to enforce the piecewise
smooth feature of the model. Taken alone, these two terms would segment the image
into many small homogeneous regions, possibly one region for each pixel. Therefore, the
third term is used to regularize this functional by penalizing the length of the contours.
The parameters λ and µ are used to tune the influence of each term.
The Mumford–Shah functional is solvable but it is difficult to solve it efficiently.

Trying to minimize the functional with variational methods leads to numerical errors
at the boundaries C because the integral of the smoothing term is restricted to a part
of the image. Therefore, Ambrosio and Tortorelli [AT90] suggest to replace the contour
set with an indicator function that becomes 1 at the boundary and drops to 0 with

9



2 Theoretical Background

increasing distance. After replacing C in Equation 2.4 with the indicator function and
restructuring it into a system of elliptical equations, the Mumford–Shah functional can
then be solved, for instance, by an alternating minimization scheme [CS05].
Other authors (e. g., in [TYW01] and [VC02]) follow a similar idea by using a Heaviside

function to indicate regions and a Dirac function to indicate the contour. The equation
is then solved numerically with level sets. However, level sets are restricted to only two
regions – foreground and background. In order to overcome this restriction, multiple
level sets can be used, but this is computationally expensive. Furthermore, it leaves
empty region statistically undefined even though these regions are still considered in
the overall system of equations [BW04].
In both cases, large systems of equations have to be solved, usually |Ω| × |Ω| sys-

tems with |Ω| being the number of pixels in the image. As one of the features of the
Region Competition framework is that the energy calculations are only required locally,
a solution with variational methods is computationally too expensive.
Furthermore, only a part of the Mumford–Shah functional needs to be solved, because

the piecewise smooth energy model is supposed to be part of the Region Competition
framework. A comparison of Equation 2.1 and 2.4 shows the similarity between them.
However, the Region Competition framework evaluates each term in Equation 2.1 sep-
arately. The internal term of the Mumford–Shah functional is the same as Elength.
Therefore, the internal term can be omitted. Additionally, the energy term is evaluated
in every iteration during which the contour is fixed. Hence, within an iteration, I only
need to minimize with regard to the true image Iest and not the contour C as well. For
this framework, Equation 2.4 can thus be simplified to:

Edata(Iest) =
∫

Ω
(Iest(~x)− I(~x))2 d~x+ µ

∫
Ω\C

(∇Iest(~x))2 d~x. (2.5)

To avoid solving the problem over the entire image, I concentrated on local solutions.
Brox and Cremers studied the connection between minimizing the Mumford–Shah func-
tional and methods based on Bayesian statistics in [BC07]. They found that it is possi-
ble to approximate Equation 2.5 with a maximum a-posteriori estimation in a Bayesian
setting based on a local Gaussian kernel function with a fixed standard deviation of
σ =

√
0.5 and a radius of ρ =

√
2λ. In [CPS12], Cardinale et al. further approxi-

mate this solution by cutting the low–energy part of the Gaussian kernel. Additionally,
they replace the high–energy part with a local mean and thereby neglect the Gaussian
weights for a faster calculation. Following from this, the external energy in the Region
Competition framework is the squared distance between the gray value at the current
pixel ~x and the local mean:

EP S
data =

M−1∑
i=0

∑
~x∈Xi

 ∑
~y∈Xi∩Srmean

~x

I(~y)
|Xi ∩ Srmean

~x |
− I(~x)


2

. (2.6)

The mean is calculated over a hypersphere S that has a radius rmean and is centered
at ~x. The local mean takes only pixels with the same label i into account. It resembles

10



2.4 Deconvolution

(a) artificial scene (b) convolution of the
scene in Figure (a)

Figure 2.2: An example of how the distortion of a microscope effects a scene. The intensities
were reverted for illustration purposes.

the nearest neighbor smoother called Running Mean that is used in regression [FKL07]
with the exception that it respects the region’s boundaries.
Another possibility would be to approximate the image with locally defined smooth

functions. There are a number of different bases that can be used like radial basis
functions or splines [FKL07]. Buhmann analyzed the usage and properties for inter-
polation and approximation using radial basis functions [Buh03]. The basis function’s
values are defined by their distance to their node. The combination of all bases form a
smoothed function of I. For piecewise smoothness, the behavior at the borders has to
be decided. For instance, just like in the Running Mean implementation from Cardinale
et al., it is possible to only use the nodes with the same label in order to get piecewise
smooth functions. The smoothness is then defined by the number of nodes used. How-
ever, Buhmann postulates that they are better used for scattered data and recommends
using tensorproduct B–Splines for meshed data, which is the data class images belong
to.
B–Splines have a simple univariate form and, more importantly, a small compact sup-

port [dB90]. Just like with radial basis functions, a boundary behavior has to be defined.
Contrary to radial basis functions, all pixels are used as nodes and the overall smooth-
ness is defined by the basis function’s smoothness. However, they are computationally
more expensive than the previously mentioned Running Mean.

2.4 Deconvolution
According to the pinhole camera model, a sharp image means that the picture has to be
shot using a infinitely small hole. In practice, however, an infinitely small hole would
lead to black images. In real cameras, lenses are used to focus the light as a compromise
between the need for light and sharp images, but that still leads to aberrations at the
boundaries of objects. The same occurs in microscopes where lenses are additionally used
to magnify small objects. Figure 2.2 shows an example of the effect of this distortion.
Mathematically, this blurring is the result of a convolution with a kernel function:

Itrue ∗ PSF + ε = Iseen (2.7)

11



2 Theoretical Background

In fluorescence microscopy, this kernel is commonly called point spread function (PSF )
and I will use this designation for the remainder of this thesis.
Deconvolution is the inverse process to get the true image Itrue from the seen image

Iseen. Unfortunately, this is not a well–posed problem. Well–posedness was defined by
Jacques Hadamard [Had02] and means that a unique solution exists which does not
change much if the initial condition varies slightly. If a problem is not well–posed (or
ill–posed) then the problem is either not defined well enough and no unique solution
exists or the problem is very sensitive to noise.
Deconvolution is either blind or non–blind. In blind deconvolution the kernel is

unknown. This introduces an additional difficulty, namely, it is unclear whether a gray
value change is part of the actual scene or because of the acquisition process. Therefore,
additional restrictions and assumptions have to be made.
Knowing the point spread function makes the problem significantly easier. But it still

remains ill–posed. Convolution is a multiplication in Fourier space, hence deconvolution
is a division in Fourier space. However, this amplifies the noise ε because the kernel
has frequencies close to zero. Therefore, a deconvolution with known kernel is still
an ill–posed problem, because just a small addition of noise can lead to very different
results.
When the PSF is known, we have the advantage of knowing when the true image is

found. Because, in the absence of noise, the convolved true image is the same as the
seen image. This is used by Constrained Iterative algorithms [Jan05] [WSSB13]. These
algorithms commonly start with a first estimation of the true image, often the seen
image itself, and then iterate through the following steps:

• Calculate an error criterion by comparing the convolved estimated image to the
seen image, e. g., (Iest ∗ PSF − Iseen)2.

• Improve the estimated image by calculating a correction with the help of the error
criterion.

Due to the ill–posedness of the problem, the estimation step is constrained to produce
semantically possible images.
In [HS09], Helmuth and Sbalzarini suggest to use the model information and the

resulting label image from segmentation to stabilize the deconvolution. In addition,
this improves the segmentation results as further knowledge about the image–formation
process is included. The Deconvolving Active Contours algorithm [HS09] is a Con-
strained Iterative algorithm with restrictions that expect piecewise constant objects and
limit oscillating edges. The true intensities of the objects are estimated with the label
image from the previous iteration. Because of that, a classical deconvolution can be
avoided. Solely convolution is used in the forward model Iest ∗ PSF that simulates
the image acquisition process. The piecewise constant deconvolution model, which is
already implemented in the Region Competition framework, uses the same concept.

12



2.5 Piecewise Smooth Deconvolving Segmentation

(a) piecewise smooth segmentation (b) piecewise constant deconvolution

Figure 2.3: Segmentation results of a piecewise smooth segmentation (λ = 0.005, α = 0.1,
β = 0.002†, rmean = 3) and a piecewise constant deconvolution (λ = 0.047,
α = 0.1, β = 0.1†). Additionally to the columns, result (a) also segments the
blurring and discounts low intensity regions as background whereas the piecewise
constant deconvolution result in Figure (b) inverts the blur but splits due to the
gradually changing intensities. The thinnest line is difficult to detect due to length
regularization. This line is also the darkest, because it is most effected by the
convolution.

2.5 Piecewise Smooth Deconvolving Segmentation

Both of the implemented models — piecewise smooth without deconvolution and piece-
wise constant deconvolution — have their shortcomings. The piecewise smooth seg-
mentation without deconvolution fails at heavily distorted images that often occur in
microscopy images because it interprets the blur as part of the object. Furthermore, it
has problems segmenting low intensity objects in which the convolution causes an addi-
tional intensity flux and further dims the object. The piecewise constant deconvolution
model on the other hand interprets all blur as part of the image–formation process and
reverses some of it. But due to the varying intensities within the object, a piecewise
constant model may split the object into several regions. Figure 2.3 shows exemplary
segmentation results of the image shown in Figure 2.2(b) to illustrate the problems of
the two models. In order to improve results in blurred microscopy images I combine
piecewise smooth segmentation with deconvolution.
Kim et al., Bar et al., and Zheng et al. have combined these two before in [KTCW02],

[BSK04], and [ZH06] respectively. All of them extend the Mumford–Shah functional by
convolving the approximation with the point spread function PSF before comparing it

†β is a parameter weighting an outward balloon flow. This balloon flow presses the contour outwards
according the gray values in the input image I. Cardinale et al. added it to realize a greater flexibility
in regard to the initial label image [CPS12].

13



2 Theoretical Background

to the image:

FMS(Iest, C) =
∫

Ω
(PSF∗Iest(~x)−I(~x))2 d~x+λ

∫
Ω\C

(∇Iest(~x))2 d~x+µ·length(C)→ min
Iest,C

.

(2.8)
Deconvolution alone is ill–posed. However, the smoothing of the Mumford–Shah func-
tional works just like a Tikhonov [TA77] or a Total Variation [ROF92] regularization,
hence no further adjustments have to be made in order to ensure the solution’s stability.
Initially, Kim et al. introduced this equation and solved it using level sets. While Kim

et al. assumes the kernel function to be known, Bar et al. and Zheng et al. enhance the
approach from Kim et al. to also cover blind deconvolution and to make the solution
more robust with regard to the initialization. They use the concept presented in [AT90]
to represent the edge image and to solve Equation 2.4. But just like before for the
Mumford–Shah functional alone, they solve a large system of equations in each iteration
in order to minimize 2.8.
Because I prefer a solution that works locally, and thus avoids unnecessary energy

difference computations, I propose to use the same approach as it is used in [HS09].
However, unlike the algorithm by Helmuth et al., the Constrained Iterative algorithm
assumes that the image objects are piecewise smooth instead of piecewise constant.

2.6 Summary
All in all, I follow the idea of the already existing piecewise constant deconvolution for
the algorithm in order to achieve a piecewise smooth deconvolving model. It is also a
Constrained Iterative algorithm and I use the following external energy term as an error
criterion that will be minimized:

εP SDec
data =

∑
~x∈Ω

(Iest(~x) ∗ PSF − I(~x))2 . (2.9)

Iest is a piecewise smooth estimation of the true image Itrue from Equation 2.7. There
are several ways to compute Iest from I as I explained in section 2.3. To avoid cal-
culating huge systems of equations, I decided for the Gaussian approach by Brox and
Cremers [BC07] with the additional approximations from Cardinale et al. [CPS12].
While approximation with locally defined functions would have also been a solution,
they are computationally more expensive and less founded.
Therefore, at first the algorithm starts with an initial label image. From then on, each

iteration starts by calculating Iest. With that image, the Region Competition framework
will evaluate each energy term from Equation 2.1 separately and then decide how to
move the boundaries C. At the end, the algorithm stops in a local optimum. The label
image is the segmentation result that returns the indicated objects. The image Iest

shows the deconvolution result, that is the restored version of the input image I.

14



3 Implementation

In this chapter, I further detail the algorithm and how I implemented it. In Section 3.2
I concentrate on the generation of the piecewise smooth function Iest from Equation 2.9
as it influenced many of the design decisions later on. In Section 3.3 I explain the general
structure of the implementation and in the following section I describe the changes I
made to the the already existing framework. From the beginning, the main problem
had not been just whether a piecewise smooth deconvolving model is possible, but also
if it is possible in an efficient way. Hence, at the end of this chapter, I describe the
additions I made for performance reasons.

3.1 Goals
Before I started designing the implementation of the energy model I wrote a list of goals:

1. quality of the results

2. performance

3. adherence to the characteristics of the Region Competition framework

4. simple expandability and adaptability

This list aided me when I faced design decisions and also later when I evaluated my
results.
At the end, I want to segment blurred microscopy images with the help of this energy

model. My result should be a label image, in which the image objects are accurately
tagged, and a restored image that shows me the actual scene. Intensity changes within
objects should not change the segmentation result. Intensity changes due to blurring,
on the other hand, should be discarded during the estimation of the restored image Iest.
That is my primary goal.
However, speed is a factor that I cannot dismiss completely. The already implemented

energy models are very fast. Hence, a speed loss is only acceptable if I equally gain
something in quality. But sometimes, much can be gained by risking a slight quality
loss if the performance win is very high. Therefore, the performance goal follows right
after quality. During implementation, I often needed to weight these two goals against
each other.
The Region Competition framework was implemented without a specific energy model

in mind. The data term and the length term of Equation 2.1 can be chosen with an
argument. The framework works locally on particles and, thus, a large part of the
image can be ignored. Furthermore, the framework was built with parallel computing

15



3 Implementation

in mind. Much of the current performance gain in computing is due to parallel cores,
hence processing the particles in parallel can give the Region Competition framework
quite a performance boost. I designed the algorithm with these features in mind.
Simple adaptability is a goal that should be set as a priority for every program.

No non–trivial program is perfect and this one is not likely to be an exception. The
implementation has to be understandable either to myself at a later time or to other
developers by following coding style standards and documenting the code. The Region
Competition framework uses the Insight Segmentation and Registration Toolkit [ITK02].
Therefore, I follow the ITK coding style that the main ITK developers ask of other
developers to adhere to [ITK05].

3.2 Intensity Estimation
In order to calculate the error criterion in Equation 2.9, I need to estimate the true
image Itrue from Equation 2.7. In 2.9, this estimated image is referred to as Iest. I
continue to use this notation in this chapter.
Per definition, Iest has to be a piecewise smooth function. However, it is not possible

to simply approximate the given image I by solving the Mumford–Shah functional or
its shortened form from Equation 2.5. The convolution leads to an intensity flux from
high–intensity to low–intensity regions. A simple approximation would not show the
same intensity differences that were in the original scene Itrue. Therefore, aside from
calculating a piecewise smooth function, I also have to estimate the true intensities.
My goal is to estimate an unknown piecewise smooth function Iest from a known func-

tion I. The unknown function Iest should equal the true scene Itrue from Equation 2.7 in
the case of a correctly labeled image. Therefore, I want to minimize (Iest ∗ PSF − I)2.
That can be done by iteratively modifying Iest until convergence is reached. But, for
performance reasons, I prefer to just iterate once. The general intensity estimation is
thus structured as follows:

1. Generate a first estimation of Iest, which for easier understanding I name I−1
est .

2. Calculate correction factors with the aid of the original image I, the beforehand
calculated estimated image I−1

est and its convolution.

3. Apply the correction factors to calculate Iest that then can be used in Equation
2.9.

The two remaining questions are where to introduce the piecewise smoothness and how
to calculate the correction factors. As decision aid, I simulated the intensity estimation
process with each possibility on the region shown in Figure 3.1. I varied the region’s
intensities, its intensity gradient and its size. The results I show in Appendix A are
exemplary for the overall results.
I simulated the segmentation process of a smaller initial region growing outwards,

which represents a standard case in the Region Competition framework. A frequently
used initialization process assumes the foreground regions to be brighter than the back-
ground and places the initial foreground regions at the brightest spots. During the
segmentation, these regions then grow outwards.

16



3.2 Intensity Estimation

10 20 30 40 50 60 70 80

10

15

20

25

30

35

pixel

in
te
ns
ity

true scene
input image
FG region

Figure 3.1: Illustration of the 1D image I use in the following simulations. I varied the region’s
intensities, its intensity gradient and its size.

The original image is blurred with a Gaussian kernel with a diameter of 13 pixels and
a variance of 2. Furthermore, I added a Gaussian noise using a signal–to–noise ratio
from 2 to 15. The distance between the true boundary and the current one is marked
with offset. Depending on the region size, I chose a maximal offset between -3 to -10.
A negative offset means I assume the current region to be within the real foreground
region.

I do not evaluate the difference over the whole foreground region. Instead I concentrate
on the particles at the region’s border because within the Region Competition framework,
the energy difference is also evaluated only at the region’s boundaries.

With the offset I simulate a segmentation process in which I start with a smaller region
that slowly grows outwards. This growth stops at the true region’s boundaries. The
main reason is that outside the true region, the estimated intensity would be compared
to the background intensity. As the estimation is influenced by its neighbors, it would
be higher than the background intensity and there would be a significant difference.

However, that difference is not unwanted. If the estimation process would perfectly
fit the true intensities regardless of a correct segmentation, then the segmentation pro-
cess would be stopped while the boundaries are at a wrong position. Furthermore,
the piecewise smooth deconvolving model overcomes intensity jumps by smoothing the
underlying intensities according to its smoothing parameter rmean.

Therefore, if the boundary overshoots the true segmentation, I do not want the esti-
mated intensity to be as close as possible to the true intensity. Instead, there should be
an error akin to the smoothing I want. However, the error that I want there to be is
difficult to quantify. Therefore, during the simulation, I only use negative offsets.

At the end of each simulation, I evaluate at each particle how well each option min-
imizes (Iest − Itrue)2. In the result figures A.1 to A.6, the left column shows the mean
of the squared distance, while the right column shows the standard deviation.

17



3 Implementation

3.2.1 Adding Piecewise Smoothness

There are several options with which the piecewise smooth characteristic of the resulting
function can be ensured:

• Generate a piecewise smooth first estimation I−1
est . In that case, the piecewise

smoothness has to be guaranteed during the other steps of the intensity estima-
tion. Calculating the correction factors and applying them must not destroy this
characteristic.

• Add the piecewise smooth characteristic afterwards by approximating the finished
estimated image Iest depending on the label image.

• Adapt the whole process and use piecewise constant patches similar to the piece-
wise smooth segmentation in the Region Competition framework. There, for each
particle the mean from each region is estimated in a local patch around it. The
entirety of these patches make the piecewise smooth approximation. It assumes
that within each patch the intensities are constant. Instead of having to estimate
intensity values for each pixel around the particle, I just need to calculate a few
intensities depending on the number of regions in the patch. Thus, this estimation
procedure requires a smaller support than the other two solutions.

3.2.2 Calculation of Correction Factors

In order to calculate the correction factors I use the following relationships:
I know that the input image I is the convolved and noisy version of Itrue. The latter

is unknown. I want to calculate an image Iest that is to be as similar as possible to Itrue.
In addition, I know the effect of a convolution with the known PSF from my first

estimation I−1
est and its convolution J = I−1

est ∗ PSF . Thus, I can infer the relationship
between the first intensity estimation I−1

est and the corrected intensity estimation Iest

from their convolved versions J and I. The standard way to analyze such a relationship
is regression.
In linear regression, the relationship is defined by two correction factors α and β

[FKL07]:
I = α+ β · J → Iest = α+ β · I−1

est (3.1)

However, the relationship is described very general and does not use further informa-
tion about the image’s layout. To also consider the regions, a multidimensional linear
regression can be used. A multidimensional regression has one parameter per region
stored in the correction vector ~w [FKL07]:

~I = ~J · ~w → ~Iest = ~I−1
est · ~w (3.2)

The vectors ~I, ~J , ~Itrue and ~Iest contain the pixels surrounding the current particle sorted
by their region. For instance if two regions are present, then ~I = (I0, I1)T with I0 being
all the pixels belonging to the background region 0 and I1 being all the pixels from

18



3.2 Intensity Estimation

Region 1. The correction vector can then be estimated with the following equation:

~w = (JT · J)−1 · JT · I (3.3)

According to the Gauss–Markov theorem, this estimator is unbiased and matches the
expectations with a minimum of variance [FKL07].
An alternative to using regression are the methods Cardinale applied to calculate

the region intensities in his piecewise constant deconvolving model [Car13]. For the
background region, he uses the difference introduced by the blurring to estimate the
intensities:

Iest = median(I − (J − I−1
est)) (3.4)

Because the intensities are needed in a piecewise constant scenario in which just one
intensity value per region is required, he uses the median to extract one value from all
the region’s pixels. At the same time, the median discards outliers that can occur due
to incorrect region estimation.
For the foreground regions, he uses the following ratio:

I

J
= Iest

I−1
est

(3.5)

For further stability, he subtracts the beforehand calculated background intensity from
each value. However, as can be seen in Figure A.1, it does not have the same influence
in a piecewise smooth setting. He uses the median of the ratio I

J for the same reasons
that I explained previously. In a piecewise smooth setting, the median is not neces-
sarily required. It is possible to estimate the intensity pixelwise, with the mean of the
correction factors, and with the median of the correction factors.

3.2.3 Simulation Results

All of the following simulation results are presented in Appendix A.
I started with the calculation of the correction factors. As a general structure, I used

the first option proposed in Section 3.2.1: First, the algorithm calculates a piecewise
smooth approximation of I as a first approximation of the intensities. Then, these
intensities are corrected.
In Figure A.4, I show the results of these methods. Additionally, I also compare

Equation 3.4 and 3.5 using a pixelwise correction, the mean and the median of the
surrounding correction factors in Figure A.2 and A.3. In each case, the radius of the
hypersphere for the Running Mean from Equation 2.6 is used as the neighborhood in
which the mean or median is calculated.
All in all, aside from using the correction factors pixelwise, all the options are similar.

Using Equation 3.4 with a mean instead of a median showed the best results during the
simulations.
Using this result, I continue to decide the general structure, that is when and how

introduce the piecewise smooth characteristic. Figure A.5 compares the various options
presented in Section 3.2.1 using mean(I − (J − I−1

est)) to estimate the intensity.

19



3 Implementation

ps psDec with mean(I − (J − I−1
est)) psDec with median

(
I
J

)
Circle 1.03% 1.29% 0.1%
4 Lines 3.01% 3.75% 1.64%

Table 3.1: Comparison of three segmentations using the Region Competition framework with
a piecewise smooth non–deconvolving and two versions of the piecewise smooth
deconvolving energy model. The table shows the percentage of wrongly labeled pix-
els. For the experiments I used the setting described in Section 4.1. The piecewise
smooth segmentation without deconvolution and the piecewise smooth deconvolu-
tion with median(I/J) use the parameters given in the evaluation section. For the
piecewise smooth deconvolution using the mean(I − (J − I−1

est)), I use the follow-
ing parameters. Circle: λ = 0.00009, α = 0.1, β = 0.0002†, rmean = 5; 4 Lines:
λ = 0.003, α = 0.1, β = 0.00003†, rmean = 3.

The third option — constant region intensities in patches around the particles —
fails because J is calculated from an image with less difference between the regions. The
convolution is done over a small patch, in which one half is the foreground mean and the
other is the background mean. However, the wrongly labeled foreground pixel raise the
background’s mean higher, while in the other methods, the function would eventually
drop to the actual background. Furthermore, the convolution is only done over a small
patch, whereas in the other methods, the convolution also considers all the pixel that
influence the convolution.
The other two options are very similar, so I compared their complexity. If I calculate a

piecewise smooth approximation beforehand, the intensity estimation will first calculate
a Running Mean and then calculate mean(I − (J − I−1

est)) for the particle.
On the other hand, if I estimate the intensities first, I use the input image I as

a first estimation for the image’s intensities. The true intensities are calculated with
mean(I − (J − I)). Afterwards, the piecewise smooth feature is added. However, I do
not need to add the piecewise smoothness separately because it is already a part of the
intensity estimation process as the mean of the correction factors is directly used as
intensity.
However, when I implemented it in the Region Competition framework, the results

were unsatisfactory. It has troubles segmenting areas with a low intensity and mislabels
more pixels than a piecewise smooth segmentation. Table 3.1 shows the number of
wrongly labeled pixels for two example images for the piecewise smooth model without
deconvolution and two versions of the piecewise smooth deconvolving energy model.
While the median of the ratio showed less promise during the simulations, it gave better
results in the Region Competition framework.
I corrupted the convolved true scene with Gaussian noise. However, as can be seen

in Figure A.3, both the mean and the median of the ratio sufficiently smooth the noise.
While the mean is better in very noisy images, the median deals better with outliers.
The latter is especially helpful, when the boundary moves outside the actual fore-
†β is a parameter weighting an outward balloon flow. This balloon flow presses the contour outwards
according the gray values in the input image I. Cardinale et al. added it to realize a greater flexibility
in regard to the initial label image [CPS12].

20



3.3 General Structure

ground region, which is a case I did not cover during the simulation. In this case, I
want the estimated intensities to be different from the true intensities. Outside the true
foreground region, the mean is more strongly influenced by the low intensities of the
background than the median is. Hence, I decided to use the median of the ratio as a
correction factor and estimate the intensities thusly:

Iest = I−1
est ·median

(
I

J

)
(3.6)

Figure A.6 are the results of the general structure simulation using the median of
the ratio as a correction factor. Of all three options, the first is the best, provided the
piecewise smooth characteristic can be ensured. The second suffers a little bit from the
added approximation and underestimates the true intensities. Therefore, I decided for
the first option and, first, approximate the input image I according the label image to
get a piecewise smooth approximation from I. From the approximation, I then estimate
the true intensities.
Using this algorithm, I need to ensure that the piecewise smoothness does not get lost

and that each operation passes it along. The division might lead to numerical errors if
a pixel in J is zero. In this case I divide through the smallest, non–negative number
above zero instead of zero. I use the itk::DivideImageFilter to quickly calculate the
correction factors elementwise and this filter already implements exactly the solutions I
suggested above. Therefore, the resulting function is piecewise smooth.
The median operates only within the regions and, therefore, on smooth functions.

Furthermore, it can be used as a smoother [FKL07]. The piecewise smooth character-
istic is thus passed on to the elementwise multiplication. This operation also ensures
piecewise smoothness as long as its factors are piecewise smooth.
In summary, I calculate the intensities Iest from Equation 2.9 with the following

algorithm:

1. Calculate a piecewise smooth approximation of the input image I using the Run-
ning Mean from Cardinale et al. [CPS12] that I described in Section 2.3.

2. Convolve the previously calculated first estimation to get J .

3. Use both intermediate results to solve Equation 3.6 for each pixel.

3.3 General Structure

The Region Competition framework uses interfaces to ensure a standard communication
between the main algorithm and the different energy models. The interfaces defines the
following methods:

• EvaluateEnergyDifference(): This function is called for each particle with its
current label and a possible candidate label. The function returns the particle’s
energy difference that a label switch would cause. It also evaluates Emerge and
returns whether or not the two involved regions are similar.

21



3 Implementation

• PrepareEnergyCalculation(): This function is invoked once in the beginning of
the algorithm and then never again. It can be used to initialize member variables
for later use. These preparations cannot be done in the constructor of an energy
class, because at that time, the input image I and the label image are not yet
initialized.

• PrepareEnergyCalculationForEachIteration(): Unlike the previous function,
this function is called once in the beginning of every iteration. It can be used for
actions that have to be done once in every iteration or that should be done over
the whole image. An example is the intensity estimation in a piecewise constant
setting because the model is based on the statistics of the entire regions.

• AddPoint(), DeletePoint(): These functions are called if a pixel is added to or
removed from a region. It is used to update global region statistics. For instance,
the framework uses them if two regions merge or split.

• SwitchPoint(): This function is very similar to the previous ones except that it
is called if a particle’s label is switched. Unlike AddPoint() and DeletePoint()
it knows both labels — its previous and its new one. Therefore, this class can
be used to update local statistics at a particle. AddPoint() and DeletePoint()
have to be used more carefully, because they claim that the current particle either
belonged or belongs to the background, even if that is not the case.

If a function is not implemented, then its default from the interface is called. The
interface also gives access to the input image I, the current label image and some global
statistics like the region mean, but not, for instance, to a list with all the current
particles.

EvaluateEnergyDifference() has to return two pieces of information: the current
particle’s energy difference and whether the two regions should merge or not.
When a particle switches its label, not only its own intensity will change, but also all

the intensities and convolved intensities within the support of the point spread function
PSF . Hence, the energy is not just evaluated at the particle, but also within the
PSF support, and EvaluateEnergyDifference() returns the result of the following
equation:

∆EP SDec
data =

∑
~y∈S

rP SF
~x

Enew(~y)− Eold(~y)

Eold(~y) = (Ji(~y)− I(~y))2 (3.7)

Enew(~y) =
(
(Ji(~y)− (Iesti(~x)− Iestj (~x))) ∗ PSF − I(~y)

)2
.

Similar to Srmean
~x from Equation 2.6. SrP SF

~x is a hypersphere around the current particle
~x with the radius rP SF that equals the radius of the PSF support. i and j are region
labels and the particle switches from region i to region j. To calculate the energy differ-
ence, I need the intensity at the particle ~x for both possible regions and the convolved
intensities within the support of the kernel function PSF of the current state.
I detail the process to compute the intensities in Section 3.2. The following algorithm

extends it to include the calculation of the convolved intensities Ji(~y):

22



3.3 General Structure

Figure 3.2: Illustration showing the support areas in which the intensity estimation process
needs intermediate information. Nearly each previous result needs to be calculated
in a slightly larger area to ensure accuracy. For instance, the Running Mean
has to be calculated in an area around the current particle x with the radius
3 · rP SF + rmedian.

1. Calculate the piecewise smooth estimation of I within the area with the radius of
3 · rP SF + rmedian around the particle

2. Convolve the piecewise smooth estimation within the same area, which gives a
correct convolution in the area with the radius 2 · rP SF + rmedian

3. Calculate the correction factors as was described in Section 3.2.2. As a Running
Median is executed, the correction factors are accurate within a radius of 2 · rP SF .

4. Calculate the intensities using the median–filtered correction factors and the first
piecewise smooth estimation.

5. Convolve the intensities. Because a convolution adds and multiplies values within
the kernel support, the result is now only correct within the hypersphere SrP SF

~x .

As one can see, nearly each previous result needs to be calculated in a slightly larger
area to ensure accuracy. Figure 3.2 shows an example that illustrates this problem.
For the recalculation of the intensity, this issue is only slightly smaller. I just need one
intensity value, but that erases only the last convolution step. The overall complexity
and area size remains.
This large area provides quite a problem in designing an algorithm. At first, I wanted

to present an algorithm that is completely parallelizable and only works locally. How-
ever, if each particle is evaluated separately, a lot of data is calculated over and over
again because of the overlap that I illustrate in Figure 3.3.

23



3 Implementation

Figure 3.3: Example showing three particles and the maximal support area in which they need
to calculate the Running Mean. The areas overlap strongly. The darker the gray
color, the more often the mean at this pixel has to be calculated.

Therefore, I tried to reuse as much as possible by storing current information. While
I retained the local character of the algorithm, it cost me the parallelization capability.
With a hash set, I remember which information is still accurate. When a particle
changes its label, I update it. However, a label switch inevitably affects all the pixels
that previously depended on it for their values. The effect is small especially for the
pixels further away. But particles are clustered border pixels that move along a line
together. Therefore, the affected areas of the different particles most likely overlap over
many pixels, leading to error accumulation. This error also grows in each iteration.
In its sum, the error cannot be ignored, so the affected pixels have to be recalculated
eventually.
There are two possibilities to address this. One option is to just remove the indices

of the affected pixels and to recalculate the values if they are needed again. However,
that would lead to the same overlap problem mentioned previously. I would gain a lot
in complexity and little in speed in comparison to the first proposed algorithm.
The other possibility is to use SwitchPoint() to not just update the current particle

but also its surrounding pixels. At the end of the iteration, this approach will ensure
that all of the intermediate results are completely up–to–date again. It also removes
the need for the hash set and the correctness checks. Unlike the hashset–solution,
this algorithm continues to be semi–parallelizable. During the evaluation step, the
algorithm is parallelizable but not in the update stage. In comparison to the first
proposed algorithm, this version mostly gains speed because it calculates the area only
around changes and not at every evaluated particle. It usually lowers the number of
particles calculated to half or more, even at the start when most particles change.
However, many pixels’ values are still calculated repeatedly.
The one possibility to completely avoid all the overlap is to avoid the particlewise

calculations and instead make all computations over the entire image. It means to give
up the local character. But for instance, for Figure 1.1, which is a 512×386 image, it is

24



3.4 Modifications of the Region Competition framework

(a) artificial scene (b) convolution of the
scene in Figure (a)

Figure 3.4: An example in which the global similarity measure from Equation 2.3 fails to
keep the two regions separated. Globally, their statistics are similar, but locally
they are not. Thus, the similarity has to be calculated locally. Figure (b) shows
the convolved scene. Due to the convolution with the point spread function, an
intensity flux further lessens the differences between the regions.
The intensities were inverted for illustration purposes.

about twice as fast as updating per particle.
All in all, each possibility has its disadvantage. Updating using SwitchPoint() fails

at the early iterations, because many information are recalculated time after time. How-
ever, updating at the beginning of every iteration using PrepareEnergyCalculation-
ForEachIteration() is very slow at the end when only a small number of particles
change.
Therefore, for the sake of speed, I combine both. When many particles change or

when regions merge or split, I update every iteration. At later iterations, when the sum
of the possible overlapping pixels is smaller than the image, I update at each particle.

3.4 Modifications of the Region Competition framework
In order to accommodate above algorithm within the Region Competition framework,
only a few changes had to be made to the framework. The energy class is handled
alongside the others, likewise the parameters for the energy class. I extended the
energy_ext_name parameter that decides which external energy term is used. psDec
has to be chosen if the framework should use this piecewise smooth deconvolving energy
model. I have not added a new parameter for the median radius. Instead I use the same
radius as the mean.
I also adapted the merge term Emerge. Originally, the Kullback–Leibler divergences are

calculated over the whole region as I explained in Equation 2.3. However, that would fail
in case of piecewise smooth energy models. Figure 3.4(a) shows two overlapping circles
with slowly changing intensities. Globally, both region statistics are similar, but locally
they are not. For their own piecewise smooth energy model, Cardinale et al. suggest to
solve Equation 2.3 not over the global regions, but only over the parts covered by the
hypersphere Srmean

~x [CPS12]. This is the area in which the local mean is computed.
I propose the same for the piecewise smooth convolved energy model. However, the

25



3 Implementation

convolution evens out the intensity differences at the border as a comparison between
3.4(a) and its convolved version in Figure 3.4(b) shows. As a result, instead of calculating
the Kullback–Leibler divergences on the input image I, I calculate it on the intensity
image Iest. The intensity image is an estimation of the true scene before the image was
blurred and the intensity differences are reinforced.

3.5 Performance Modifications

The current implementation needs about 22 seconds for an image 100× 100 pixels. The
time was averaged over the segmentations of the example images shown in Figure 4.1
using the setting and the parameters described in Section 4.1. As a comparison, a piece-
wise smooth segmentation without deconvolution in the Region Competition framework
needs in average 0.3 seconds and a piecewise constant deconvolution needs about 1.6
seconds. For a 100 × 100 image, the current implementation is about 14 times slower
than the piecewise constant deconvolution and about 80 times slower than the piecewise
smooth model without deconvolution. In this section, I evaluate some ideas to enhance
the performance.
The most complex operation is the estimation of the intensities and their convolution.

These calculations are done once in every iteration for every pixel. The intensity is
also recalculated with nearly the same procedure once for every particle per iteration.
While the image–wide calculation becomes very expensive for larger images, my first
implementation still needed about 1000 milliseconds to recalculate the intensity for a
particle.
In order to avoid this recalculation altogether, I propose to interpolate the intensities

from the surrounding values. During the calculation of Iestj (~x), all the intensities of
the current state are known. For the interpolation, I look at each neighbor and gather
the intensities whose pixel belong the region j. Then, I take the median of them to
reduce the numbers of intensities to one. I use the median instead of the mean for the
same reason as during the calculation of the correction factors in Section 3.2.2. It is
possible to extend the neighborhood, if better quality is desired. However, I use this
modification primarily to enhance the performance and, therefore, I decided to infer
Iestj (~x) only from its immediate face–connected neighbors. The error that is intro-
duced by this simple interpolation does not have a huge influence on the overall result
because it is just a temporary result. Figure 3.5 shows the difference between a correctly
estimated intensity and an interpolated intensity using the simulation setting from Sec-
tion 3.2. Unlike the other simulations, in which I compared the estimated intensities
to the true intensities, I now compare two estimated intensities. Therefore, I do not
restrict myself to the area within the object. Once the boundaries grow outside the
true region, however, the effect that the estimated intensities drops to the background
intensity can be seen. There is only a noticable difference in this area. The inter-
polation uses old intensity values and, thus, drops slower to the background intensity
than explicitely calculating does. Within the Region Competition framework, this dif-
ference shows up as two wrongly labeled pixels when using interpolation. The number
was averaged over all example images. In one example, using interpolation actually

26



3.5 Performance Modifications

2 4 6 8 10 12 14

−4

−2

0

2

4

SNR

off
se
t

mean of squared dist.

5 · 10−2 0.1 0.15

2 4 6 8 10 12 14

−4

−2

0

2

4

SNR

off
se
t

std of squared dist.

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Figure 3.5: Quality evaluation of using interpolation. Using the simulation setting from Sec-
tion 3.2, I compare using interpolation against explicitely calculating the intensity
at the particle using the candidate label. The shown results were made on a 50
pixel image. The foreground region starts at a gray value of 30. The foreground’s
gray values change with a gradient of 0.1.

showed a slightly better result. However, using interpolation enhances the performance.
Previously, EvaluateEnergyDifference() needed about 1000 milliseconds per particle.
Using interpolation, this reduces to under 10 milliseconds per particle.
With growing image size, the image–wide calculations become more and more expen-

sive. Figure 3.6 shows how much each step approximately needs of the overall time.
The proportions may change depending on the mean / median radius, the kernel size
and the image size.
The function that calculates the local median first collects all correction factors within

the median radius. Then, it retrieves the median using std::nth_element. This func-
tion returns the n–th element as if the entire list was sorted without actually sorting
it. Each step has a time–complexity of O

(
|Ω| · rd

median

)
with |Ω| being the number of

pixels in the image and d being the image’s dimension. There is not much that can be
done to speed up this step.
The mean calculations also have a time–complexity of O

(
|Ω| · rd

mean

)
. They can be

sped up using the information of the pixel’s neighbors. If the neighbor belongs to the
same region, then the mean is computed over nearly the same area as its neighbor’s.
These two areas differ only at time pixels that lie further away. Only these differences
need to be added or subtracted to the neighbor’s mean. I illustrate this in Figure
3.7. The difference masks can be calculated a–priori, which reduces the overall time–
complexity of the mean calculations to O (|Ω|). However, experiments showed that it is
not fast but actually twice slower independently of image size and mean radius. For the
implementation, I use the itk::NeighborhoodIterator to iterate over the whole image,

27



3 Implementation

b) conv. means
19%

a) Running Mean

22%

e) conv. intensities

19%

d) Running Median

39%

c) correction factors

1%

Figure 3.6: Pie chart showing the proportion of each part of the intensity estimation process.
The entire process calculated over the whole image needs about 0.05 seconds for
a 100× 100 image.

Figure 3.7: Illustration showing the mean areas of two neighboring pixels. They are nearly
identical with the exception of some pixels at the edge of the areas. These differ-
ences are indicated by − and +. The current particle is x. The mean is stored
by the sum of gray values and the number of pixels that lie in the mean area and
share the same label. In order to calculate its mean, it is possible to take the
values from the neighbor n, provided they share the same label. Then, only the
pixels indicated by − have to be subtracted, while the new pixels indicated by +
have to be added.

while simultaneously having access to the neighbors. I assume that the performance loss
results from the implementation of the NeighborhoodIterator.
The local mean is also computed during the intensity recalculation. There, I assume

that the current particle belongs to a neighboring region instead. If I recalculate the
changed local means from scratch, the time–complexity is O

(
r2d

mean

)
. However, I know

the surrounding values and I can reuse these results. I traverse the hypersphere and
update each pixel according to its label by adding or subtracting the current particle.
Thus, I only need to calculate the local mean for the particle itself and not for every
surrounding pixel as well. I also use this process when I update the intensities at every
changed particle using SwitchPoint(). In both cases, the time–complexity reduces to
O
(
rd

mean

)
.

For the convolutions, it is faster to multiply the kernel in the Fourier Space. Instead of
a time–complexity of O

(
|Ω| · r2

P SF

)
, a convolution using the Fast Fourier transformation

has a complexity of O (|Ω|log|Ω|). However, this only helps the performance if it is used

28



3.5 Performance Modifications

on large areas because the transformation to Fourier Space needs time as well. Therefore,
updating the values on the particles and the intensity recalculation still use the original
convolution.
Just like during the energy evaluation, it would be nice if I could avoid some or all

of the steps in Figure 3.6. I cannot use the interpolation again, because the intensity
values are not temporary during the update stage of the algorithm. The interpolation
error would accumulate with each iteration.
Cardinale et al. reuse the old intensities and their convolution to calculate the inten-

sities of the current iteration instead of always starting at the beginning as I do [CPS12].
With the same method, I would avoid the Running Mean and its convolution. However,
their algorithm is a piecewise constant deconvolution. The mean value and the inten-
sity are valid for an entire region and an error has less influence. In a piecewise smooth
setting, in which I evaluate the intensities at each pixel, I cannot simply reuse the old
values. If a particle changes its label, it would continue to use the old intensity value to
calculate its current intensity. The label switch would not affect the correction factor
so much, because I use the median over the whole area. However, it changes I−1

est from
Equation 3.6. The resulting intensity would always be too high or too low depending
on the intensity difference between the two regions in the area. Furthermore, the error
accumulates over time. In the end, I decided to refrain from recycling the old intensities
and instead always estimate the intensities from scratch.
In segmentation algorithms that span many iterations, it is a standard procedure to

enhance performance by skipping calculation steps and move the borders for a while
first.
The question is when to skip and when not to. In its standard setting, the algorithm

initializes its regions with small circles on bright spots. Therefore, at first the region
border has to be moved into the rough vicinity of where the actual boundaries are. It
is a general movement in the right direction, so skipping a few iterations is possible.
At the end of the algorithm, however, the details for the boundaries are calculated. In
order to ensure quality, it is better to calculate all the required values.
This can be realized with Simulated Annealing [RN03]. In Simulated Annealing, an

energy level slowly sinks with time. I use the energy as the probability with which an
iteration is skipped. I do not need to implement my own version of Simulated Annealing
as the Region Competition framework already uses it to lessen the amount of particles
that are allowed to change bit by bit. Instead I count the number of evaluated and
changed particles and use its ratio as an energy for the Simulated Annealing. For further
control, I parameterized it with energy_psdec_intensity_rate. If it is set to 0, then
the intensities and their convolution are calculated in every iteration.
As I explain in Section 3.3, I switch to updating only on changed particles if that

is faster. This switch occurs at the end, when only a few particles still change their
labels. At this point, my algorithm primarily adapts to details in the image or oscillates
between two possible states. In order to get the details, I need an exact estimation of
the intensities. Therefore, I do not just rely on the Simulated Annealing to lower the
energy, but completely stop skipping iterations when I update particlewise.
From these suggestions, I implemented all but the reuse of old intensities. Updating

the mean using old values or calculating the convolutions using the Fast Fourier Trans-

29



3 Implementation

formations speed up the program without any cost to the quality. Interpolation and
skipping iterations changes the result though. For interpolation, the error is only slight,
because the error is very small and does not accumulate over time.

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

energy_psdec_intensity_rate

tim
e
in

s

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

energy_psdec_intensity_rate
w
ro
ng

ly
la
be

le
d
pi
xe
ls

in
%

Circle; Lines; Overlapping circles

Figure 3.8: Evaluation of skipping imagewise intensity estimation every few iterations. The
different colors represent the different example images shown in Figure 4.1. The
dashed lines represent the time and the quality when all values are updated at
every iteration.
All results were calculated on 200×200 images without noise. I used the following
parameters. Circle: λ = 0.00005, α = 0.1, β = 0.007†, rmean = 10; Lines:
λ = 0.0003, α = 0.1, β = 0.00006†, rmean = 6; Overlapping Circles: λ = 0.01,
α = 0.1, β = 0.07†, rmean = 10

However, it is very difficult to quantify the overall gain or loss if I skip the intensity
calculations a few iterations. Figure 3.8 compares the performance and the quality
while I skip the intensity calculations in more and more iterations. If the intensities
are calculated less, then the blurring due to the convolution is not correctly inverted
but rather shown as a piecewise smooth change in the intensity image. The algorithm
tries to correct this in the later iterations, but the border is often not close enough to
the true border. Furthermore, the Simulated Annealing energy is too low to still allow
that much change. This effort also increases the amount of iterations and, therefore, the
overall time. All in all, this idea is not stable enough to easily evaluate the parameter’s
influence, so I did not use it for my further results.
Using the modifications proposed in this section, the implementation of the piecewise

smooth deconvolving model is six times faster than the original version. A more detailed
evaluation can be found in Section 4.3.

†β is a parameter weighting an outward balloon flow. This balloon flow presses the contour outwards
according the gray values in the input image I. Cardinale et al. added it to realize a greater flexibility
in regard to the initial label image [CPS12].

30



4 Evaluation
In this chapter, I evaluate my implementation of a piecewise smooth deconvolving energy
model. At first, I describe the setting I used for the evaluation. I evaluate the energy
model and its implementation with regard to the goals I set in Section 3.1. In order to
assess the quality of the results, I examine image segmentation and image restoration
separately. In Section 4.3, I evaluate the performance using the modifications I explain
in Section 3.5 Performance Modifications. At last, I take a look at the implementation
itself and analyze how well the implementation of the piecewise smooth deconvolving
energy model fits into the Region Competition framework.
To assess the quality of an implementation of an energy model, it is usually compared

with other implementations of the same model. Unfortunately, that was not possible as
I had no copy of the programs from Kim et al. [KTCW02], Bar et al. [BSK04], or Zheng
et al. [ZH06]. Their respective papers also showed little quantitative data to which I
could compare my implementation and the authors did not respond to my inquiries for
source code. A complete reimplementation would have been outside of the scope of this
thesis.
Therefore, I compared the piecewise smooth deconvolving energy model with the

models it is composed of. For the image segmentation, I use the implementations from
the Region Competition framework. For further comparisons of the Region Competition
framework to other algorithms using the same models, I refer to [CPS12] and [Car13].
The reconstructed images I attain with a piecewise smooth energy model cannot be

used for comparison in image restoration. It sees the blurring as a smooth change and
not as something that should be reversed. Therefore, for image restoration, I compare
the resulting intensity images to the results of the piecewise constant deconvolution.
Additionally, I also compare it to the results of the Wiener Deconvolution Filter, which
is a standard deconvolution method used in Image Processing. I use the ITK class
itk::WienerDeconvolutionFilter.

4.1 Design
For the quality evaluation, the label images and the reconstructed images are calculated
from artificial 100 × 100 pixel images that can be seen in Figure 4.1. Additionally, I
distorted the images with Gaussian noise using the SNR levels 2, 5, 10, and 15. The
signal–to–noise ratio is described by:

SNR = σsignal

σnoise
(4.1)

For the algorithms that are part of the Region Competition framework, I choose the
optimal parameters for the input images without noise. In this evaluation, optimal

31



4 Evaluation

(a) Circle (b) Lines (c) Overlapping
Circles (d) Overturned U

Figure 4.1: Artificial example images. I used a different point spread function for each image
that can be seen in Table 4.1. The intensities were inverted for illustration pur-
poses.

diameter in pixel σ

Circle 11 5
Lines 7 3
Overlapping Circles 7 3
Overturned U 13 6

Table 4.1: Table showing the different parameters for the Gaussian kernel I used as a point
spread function.

means a minimum of wrongly labeled pixels. I reuse the parameters for the noisy
images as the energy difference is calculated as a squared distance. In image processing,
the squared distance is usually used to counterbalance Gaussian noise. For the Wiener
Deconvolution Filter I can set the noise variance. I calculate it at the same time I add
the noise during the image’s creation.
More than 20 parameters can be set to adjust the Region Competition framework.

The whole list is described in [Car13]. I only vary three:

• λ (energy_coeff_length): This parameter is used to weight the length term
Elength (see Equation 2.1). I used the same length term from Kybic and Krátký
[KK09] for all experiments. The higher the parameter, the smoother I want the
boundary to be. However, it also shortens the boundary and therefore shrinks the
region.

• β (energy_coeff_balloon): This parameter sets the influence of an outward bal-
loon flow. This additional energy is used by Cardinale et al. to counteract the
length term for local algorithms.
Initially, the Region Competition framework starts with many small regions at the
brightest spots and the border should move outwards to cover the whole object.
However, in large objects, the initial local data term for piecewise smooth algo-
rithms is close to zero. At the beginning, the length term drives the segmentation
and the region shrinks. In these cases, β has to be set higher than λ to enlarge
the region until the region’s borders come close to the true boundaries in which
the data term starts to have an influence.

32



4.1 Design

psDec ps pcDec
Circle λ = 0.0003,

β = 0.0008,
rmean = 5

λ = 0.005,
β = 0.05,
rmean = 7

λ = 0.06,
β = 0.78

Lines λ = 0.002,
β = 0.0005,
rmean = 3

λ = 0.005,
β = 0.002,
rmean = 3

λ = 0.047,
β = 0.1

Overlapping Circles λ = 0.004,
β = 0.02,
rmean = 3

λ = 0.0007,
β = 0.01,
rmean = 3

λ = 0.5,
β = 0.9

Overturned U λ = 0.001,
β = 0.02,
rmean = 6

λ = 0.004,
β = 0.02,
rmean = 6

λ = 0.2,
β = 0.3

Embryos λ = 0.4,
β = 0.5,
rmean = 17

λ = 0.09,
β = 0.1,
rmean = 17

λ = 0.1,
β = 0

Endosomes λ = 0.005,
β = 0,
rmean = 8

λ = 0.007,
β = 0,
rmean = 8

λ = 0.08,
β = 0

Table 4.2: Table showing the different parameters I used for the results shown in Appendix B.

A positive β moves the border along high–intensity regions of I while a negative
β does the reverse. A negative β moves the boundary outwards if the intensities
in I are dark.

• rmean (energy_local_window_radius): This is the radius of the hypersphere in
which I calculate the Running Mean for the first piecewise smooth estimation I−1

est

(see Equation 2.6) and the Running Median of the correction factors (see Equation
3.6). It directly influences the smoothness of the estimated intensity function and
its convolution. A large radius causes both to be more stiff and, therefore, filters
more details.
The radius rmean should have at least the same value as rP SF . Due to the convo-
lution with the PSF , the intensities average out and detail information gets lost.
If the radius rmean is smaller than rP SF , then the intensity estimation process
does not have enough information to recover good approximation values.

Table 4.2 shows the optimal parameters I used for the quality evaluation. For all images,
I used 0.1 as the merging parameter α, except if otherwise stated.
To show the usability in real images, I also segmented two microscopy images. How-

ever, no ground truth exists for these. Therefore it is hard to quantify how good the
different algorithms perform in comparison and I use them primarily as examples.
In order to evaluate the second goal – speed – I use the same artificial images as

before. However, this time I do not vary the noise but rather the image’s size. The
convolution kernel grows in proportion and, therefore, also the radius of the mean and

33



4 Evaluation

the median for the piecewise smooth energy models.
As I am not interested in the segmentation results here, I do not calculate an optimal

set of parameters again but instead settle for a local optimum.
The overall runtime heavily depends on the number of iterations the algorithm needs

until convergence. Therefore, it is not enough just to give an overall time. Instead
in addition to the maximum number of iterations, I use time

iterations to get the average
time an iteration needed to compare the speed of the different algorithms for energy
evaluation. Since the Wiener Deconvolution Filter is not an iterative algorithm, it will
not be compared with the others.
For all computations I use an Intel Core i7-3770 with 8 cores at 3.4 GHz with 8MB L3

cache. The Region Competition framework itself is single–threaded, so I only used one
core at a time. It is possible to run the framework using the GPU in order to parallelize
the particle’s processing but I did not use this feature.

4.2 Quality

4.2.1 Image Segmentation
Figure 4.2 shows the percentage of wrongly labeled pixels per image and noise levels.
In most cases, the piecewise smooth deconvolving model leads to a better segmentation
than the piecewise smooth non–deconvolving and the piecewise constant deconvolving
model.
Without deconvolution, the piecewise smooth energy model has trouble dealing with

the blurring. The segmentation overshoots the true boundaries. Additionally, as the
object’s corners are blurred as well, it is unable to segment sharp corners in convolved
images. That is further limited by the high length term that is needed to constrain the
segmentation to the actual foreground.
The piecewise smooth energy model also has more problems to distinguish two close,

blurred objects. At the boundaries, they are locally similar and, thus, the algorithm
merges the two regions. The third column of Figure B.5 shows the piecewise smooth
non–deconvolving segmentation of such a case.
In addition, the piecewise smooth energy model struggles with noise. For a high noise

level, such as SNR = 2, the region splinters into many small regions, sometimes even
in the background. However, the origin of this problem lies with the evaluation design I
described in Section 4.1. I set the smoothing parameter rmean by minimizing the error
in an image without noise. It is possible to attain a better segmentation with a higher
smoothing parameter that would counteract the noise more strongly.
The piecewise constant deconvolution inverts the blur. However, it assumes regions

to have a constant intensity. Unlike the piecewise smooth models, it does not calculate
the energy difference using local informations, but rather estimates an intensity for each
region. The model is less affected by the noise due to this global character. However, it
is also the main source of its shortcomings.
A piecewise constant segmentation, regardless of deconvolution or not, fails to distin-

guish the overlapping circles in Figure B.5 as the circles share similar global statistics.
Even worse, a segmentation of a inhomogeneous image leads to fragmented regions if it

34



4.2 Quality

0 15 10 5 2
0

10

20

30

SNR

er
ro
r
in

%
Circle

0 15 10 5 2
0

10

20

30

SNR

er
ro
r
in

%

Lines

0 15 10 5 2
0

10

20

30

SNR

er
ro
r
in

%

Overlapping Circles

0 15 10 5 2
0

10

20

30

SNR

er
ro
r
in

%

Overturned U

psDec; ps; pcDec

Figure 4.2: Bar plots showing the percentage of mislabeled pixels over the per example image
and noise level. For the segmentation, I used the parameters from Table 4.2. The
resulting label images can be seen in Appendix B.

depends on global statistics. A good example of this can be seen in Figure B.3. However,
the latter can be countered with the balloon flow energy. While the piecewise constant
deconvolving energy model does not require the balloon flow for its actual purpose, it
helps with the segmentation nonetheless. A high balloon flow pushes the boundaries
outwards and, thus, keeps the region together. For the piecewise constant deconvolving
model, the balloon flow parameter β is especially high in example images with wide
regions, such as the images containing circles.
The piecewise smooth deconvolving energy model inverts the blur, just as the piece-

wise constant deconvolution, but uses local information to calculate the energy differ-
ence. Hence, it is able to deal with inhomogeneous objects. The mislabeled pixels
mostly occur in regions with sharp borders, where the curvature energy has a larger
influence, and in regions with low intensities. Especially, the latter is amplified by
noise. The reason has nothing to do with the low intensity, but rather its similarity to

35



4 Evaluation

the background.
Similar to the piecewise smooth non–deconvolving model, the problem with the noise

also originates from the evaluation design. A higher smoothing parameter would seg-
ment the noisy images better. Nevertheless, it is less affected than its non–deconvolving
counterpart, because the energy difference is calculated over the convolved intensities
and not just the local mean. The intensity estimation contains several smoothing oper-
ations, such as the Running Mean, the Running Median and the convolutions, and each
operation further reduces the noise.

(a) input image (b) psDec (c) ps (d) pcDec

Figure 4.3: Segmentation results of endosomes. This example is extracted from the introduc-
tory example from Figure 1.1. The parameters I used can be found in Table 4.2.
The figures has been inverted for illustration purposes.

Figure 4.3 shows the segmentation results of a part of the introductory example.
It shows a large number of endosomes that lie closely together. Due to the blurring,
it is difficult not only to separate which endosomes belong together, but also how the
endosomes actually look like. I have no ground truth for this and not enough microscopy
experience, so I am not sure what the best segmentation is and how many endosomes
there are.
The piecewise constant deconvolution is troubled by the piecewise smooth character

of the background. In the areas, where the background is brighter (e.g., close to the
top of the image), the algorithm segments the endosomes more loosely. In other areas,
on the other hand, where the foreground objects are rather dark and not significantly
brighter than the bright background area, the piecewise constant deconvolution is unable
to segment these objects. If the parameter were set in order to label these objects as
well, then it would also segment the bright background area.
Similar to its problem with the overlapping circles, the piecewise smooth segmentation

without deconvolution cannot separate the various endosomes. However, it finds the
darker endosomes that the piecewise constant deconvolution missed.
In pure numbers, the piecewise smooth deconvolution counted the most endosomes.

However, especially for the endosomes in the upper part of the image, I assume that
there are even more objects than the seven my implementation counts.
Figure 4.4 shows another real–life example. It shows three embryos that lie closely

together. Originally, the image was not blurred. I convolved it with the estimated point
spread function from the previous example. For a human, it is still easy to see the three
different embryos. However, due to the blurring, the embryos seem very similar in those
areas where they touch.

36



4.2 Quality

(a) conv. input
image (b) psDec (c) ps (d) pcDec

Figure 4.4: Image segmentation results of embryos. The original image did not contain any
blurring. I convolved it with the PSF from the endosome example. The parameters
I used can be found in Table 4.2. Source: Fiji Sample Image Embryos [Fij]

The piecewise smooth segmentation completely fails for this example. The embryos
always merge. Changing the merge parameter α does not help either as it prevents,
for instance, the initial left region of the embryo to merge with the right region. Only
forbidding merging and setting the initial regions appropriately might solve the problem.
The piecewise constant deconvolving model can separate the different regions, but

has problems with the inner, darker part. However, setting the balloon flow higher in
order to segment the inner part as well, merges the embryos again.
The piecewise deconvolving model can completely segment all three embryos.

(a) input image (b) deconvolution (c) segmentation

Figure 4.5: Segmentation results of restored embryos. For this segmentation, I first recon-
structed the image using a Wiener Deconvolution Filter and then segmented the
result with a piecewise smooth non–deconvolving energy model. Nonetheless, the
framework was unable to discern the three embryos.

This example is perfect to test whether a deconvolution followed by a segmentation
shows the same results as the combined version, because the Wiener Deconvolution Filter
inverts the blur without amplifying noise. Therefore, I first reconstruct the image using
a Wiener Deconvolution Filter and then segment the result with the piecewise smooth
non–deconvolving energy model. The results can be seen in Figure 4.5. Nonetheless, I
was still unable to separate the three embryos without splitting them in many regions
or segmenting the artifacts introduced by the Wiener Deconvolution Filter.

37



4 Evaluation

4.2.2 Image Restoration

The restored images from the artificial example images can be found in Appendix B.
While for non–noisy images, the Wiener Deconvolution is indisputable better, it

clearly fails once noise is involved. All Wiener deconvolutions were made with the ground
truth noise variance. Nonetheless, the noise is amplified so much that the underlying
objects are nearly invisible as Figure B.2, B.4, B.6, and B.8 show.
For the deconvolving models of the Region Competition framework, I optimized the

parameters with regard to the segmentation. An optimization that minimizes the
squared distance between the reconstructed image and the ground truth might result in
a better reconstruction of the input image. This is especially true for the piecewise con-
stant images because it uses the same intensity over the whole region. An optimization
geared to reconstruction would split the objects into many small regions that in sum
would be the reconstructed piecewise smooth object.
Regarding the piecewise smooth deconvolving model, the optimization would show a

similar result for the artificial example images irrespective of its focus. The quality of
the restoration results crucially depend on the segmentation as the restored images of
the overturned U show in Figure B.8. In this example, the segmentation fails. In the
same areas, where pixels are mislabeled, the intensities are also not enough restored.
However, for the other images, it even accounts for the noise surprisingly well. The
accuracy of the segmentation shows a greater influence than the noise.

(a) original,
non–blurred
image

(b) psDec (c) Wiener (d) pcDec

Figure 4.6: Image restoration results of embryos. The original image did not contain any
blurring. I convolved it with the PSF from the endosome example. The parameters
I used can be found in Table 4.2. Source: Fiji Sample Image Embryos [Fij]

Figure 4.6 shows the restored results of the embryo image. The Wiener Deconvolution
Filter gives the best results for this example. It only introduces some ringing artifacts
but otherwise sharpens the boundary and the inner structures of the embryos.
Since the objects are inhomogeneous, the piecewise constant deconvolution is unable

to recover the inner structure. A large number of constant patches are needed to invert
the blur. The segmentation mislabeled the inner structure of the embryos. Therefore,
they share the same intensity as the background.
During the segmentation evaluation, the piecewise smooth algorithm labeled each

38



4.3 Performance

embryo correctly. However, while this helps to accurately invert the blur at the edges,
it has the opposite effect on the structures inside the embryos. They are smoothed even
further. If the inner structure is the area of interest, then the parameter should be
chosen with regard to segmenting the inner structure correct.

(a) input image (b) psDec (c) Wiener (d) pcDec

Figure 4.7: Image restoration results of endosomes. This example is extracted from the intro-
ductory example from Figure 1.1. The parameters I used can be found in Table
4.2. The figures has been inverted for illustration purposes.

Figure 4.7 shows the restored images of the previously introduced endosomes example.
As before during the segmentation, I do not have a ground truth and little experience
in microscopy, which makes a comparison difficult.
The endosomes seem to have little internal structure. Therefore, both convolving

energy models of the Region Competition framework have the same chance to restore the
input image accurately. It also means that each restoration capability solely depends on
the intensity estimation capability and the segmentation result. The piecewise smooth
deconvolution gives a better estimation of the true scene because the segmentation
process captured more of the endosomes than the piecewise constant deconvolution.
In this example, the Wiener Deconvolution Filter fails completely. For some reason,

probably underlying noise, the Wiener Deconvolution Filter introduces strong artifacts
in form of a chess pattern. An iterative algorithm that would prevent the intensity
values from becoming negative would fair better.

4.3 Performance

For the performance evaluation, I use the modifications I propose in Section 3.5 with
two exceptions. I do not calculate the mean via its neighbors as it turns out to be twice
slower than the original implementation. I also do not skip any iterations to avoid the
error in quality even though it would lower the mean time of each iteration.
Figure 4.8 shows how long each iteration needs in average as well how often the frame-

work iterated until convergence. While the number of iterations grow uniformly with the
image size, the mean time per iteration, unfortunately, does not. I also ran calculations
over 800 × 800 images and they showed the same trend that can already be seen for
the sizes in Figure 4.8: the piecewise smooth non–deconvolving model need about 0.2
seconds per iteration, the piecewise smooth deconvolution 0.6 and the piecewise smooth
deconvolution 20s. Because of the large number, I decided against portraying the last

39



4 Evaluation

0 100 200 300 400 500
0

0.5

1

1.5

2

2.5

image size (one dimension)

tim
e
in

s

0 100 200 300 400 500
0

200

400

600

800

1,000

image size (one dimension)

nu
m
be

r
of

ite
ra
tio

ns

psDec; ps; pcDec

Figure 4.8: Performance results. The left image shows the mean time each iterations needs,
whereas the right image shows the maximum number of iterations. The results
were measured on the example images shown in Figure 4.1 and then averaged over
them.

values in Figure 4.8.

The performance loss for higher images can be explained with the implementation’s
time–complexity. The current implementation of the piecewise smooth deconvolution
has a time–complexity ofO

(
|Ω| · rd

median + |Γ| · rd
P SF

)
with with |Γ| being the number of

particles. However, that is an overly simplified version. Alongside the Running Median,
the intensity estimation also requires the local mean of each pixel and two convolutions.
The complexity is more like O

(
|Ω| · (rd

mean + 2|Ω|log|Ω|+ 2rd
median) + |Γ|rd

P SF

)
. For

the piecewise smooth deconvolution, the growth in complexity from the 100×100 to the
400× 400 image is not just 4d but rather 4d · 4d, because the radii of the mean, median
and the PSF grew alongside the image.

As a comparison, the piecewise smooth segmentation without deconvolution only
runs its own version of the Running Mean [CPS12], which has a time–complexity of
O
(
|Γ| · rd

mean

)
. The piecewise constant deconvolution also convolves globally, however,

the mean and the median operations it applies to estimate the intensities are performed
once per region and not once per pixel. The piecewise constant deconvolution has a
complexity of O

(
|Ω|log|Ω|+ |Γ| · rd

P SF

)
Therefore, the performance cannot be really compared to the other two energy mod-

els. It is impossible to attain the same performance as the other two energy models
due to the sheer number of operations that are needed to estimate the true scene. A
performance comparison with another piecewise smooth deconvolving model would be
more appropriate but was, unfortunately, not possible as I explained in the beginning
of this chapter.

40



4.4 Implementation

4.4 Implementation
In this section, I analyze the implementation itself with regard to the third goal I set in
Section 3.1. In order to fully realize its potential, the implementation should make use
of the features of the Region Competition framework.
The Region Competition framework evaluates the energy terms from Equation 2.1

locally at the particles. Thus, the energy should also be calculated locally in order
to disconnect the time–complexity from the image size. However, as I explained in
Section 3.3, the calculation of accurate intensities and its convolutions requires a large
support area. These areas severely overlap and many intermediate values are calculated
repeatedly. Therefore, all of the values are computed globally after all. While this is
faster when many particles are changed, it looses its advantage if only a few particles
are changed. Then, I switch back to the local approach and update at every changed
particle.
Another advantage of the framework’s particle approach is its parallelization capa-

bility. If the energy is implemented accordingly, it is possible to process each particle
in parallel. However, the current algorithm is only semi–parallelizable. I estimate the
intensities and their convolution during the update phase. This data is later needed to
calculate the energy difference, hence I store them in images. However, the writing step
induces serialization.
The evaluation phase, on the other hand, only reads information and does not write

anything. Each particle can be processed in parallel. Originally, this would have been a
huge gain as it is rather expensive to calculate the altered intensity of a label switch for
every particle at every iteration. However, I was able to cut the time cost by interpo-
lating the new intensity, so the overall gain would not be that high. For example, in a
200× 200 image, the evaluation stage needed approximately 0.02 seconds per iteration,
while the update stage required around 0.55 seconds per iteration.

41





5 Conclusion and Future Work

5.1 Conclusion

As I have shown in the previous chapters, it is possible to combine piecewise smooth
segmentation with image restoration. With this energy model, it is possible to segment
inhomogeneous, blurred images that often occur in biology and medicine. The algorithm
is able to deal with different levels of Gaussian noise.
However, while the quality looks promising, the algorithm is very slow, especially if

either the point spread function or the image grows. In practice, the quality gain has to
be weighted against this performance loss, especially in consideration of the parameter
search. A global minimum with a piecewise smooth segmentation or a piecewise constant
deconvolution might show better results as the local minimum of the piecewise smooth
deconvolution.
But, while with the right parameter, the segmentation might cover the object correctly

by chance, both approaches will fail with blurred objects that lie closely together or even
overlap each other. As the embryo example from Figure 4.5 showed, even a previous
deconvolution with another algorithm might not help.
Regarding the image restoration, the quality of the result depends crucially on the

intensity estimation capability and the segmentation result. As the results in Figure
4.6 shows, the inner structures are not restored. Therefore, the model is not suited as
an image restoration algorithm, because only the segmented object’s edges will be well
restored. The rest is even more blurred. The algorithms from Bar et al. and Zheng et al.
that use edge maps instead of regions show better results regarding image restoration
[BSK04] [ZH06].

5.2 Future Work

As I discussed in the previous chapters, the current algorithm is far from perfect. There
are several topics and implementation ideas that would be interesting to analyze further
but were outside of the scope for this thesis.
At the moment, the energy difference is calculated by the squared distance of the con-

volved intensity image and the input image. In image processing, the squared distance
is used to counteract Gaussian noise. However, there are other noise types as well, such
as Poisson noise. Within the Region Competition framework, Cardinale et al. usually
covered the Gaussian noise, using a more refined model that also includes the variance,
and Poisson noise. For real–life application, the variations for these two noise models
should also be implemented.
This algorithm expects the point spread function to be known. In practice, that

43



5 Conclusion and Future Work

is usually not the case. While it is possible to estimate the convolution kernel from
small, known structures, the resulting point spread function is then only an estimation
and, therefore, another possible source of error. For most of my experiments, I blurred
the images by myself and, thus, knew the correct kernel. A more detailed analysis of
the effect of a wrong point spread functions on the image restoration and the image
segmentation should be done.
In Section 3.2, the intensity estimation using the the mean(I − (J − I) showed better

results than the median(I/J). However, implemented within the Region Competition
framework, the latter showed better results, even though mean(I − (J − I) estimates
the true intensities more accurately. I do not know the cause for this yet.
It is possible that the simulations were not sufficient enough. They only covered the

segmentation process within the region. But at the boundaries, it is possible that the
region’s border is pushed further. An algorithm using an intensity estimation process
that adapts the intensity too quickly would think that the local estimation fits very well
to the true image and stop at the wrong position.
In addition, the simulations were done on a 1D image. I did not analyze the effect

that an additional dimension can have on the intensity estimation. Furthermore, the
intensity estimation is just one part within the entire Region Competition framework. It
is difficult to estimate the effect of the other energies or the interpolation of the intensity
in case of a switched label.
All in all, an implementation using the mean(I−(J−I) is less complex and therefore,

much faster. The correction factors can be calculated a prior and the mean of the
correction factors automatically add a piecewise smooth characteristic. Hence, each
iteration one convolution and the Running median can be omitted. A deeper analysis
of the cause for this discrepancy might be beneficial to improve the performance of the
current implementation.
Furthermore, while writing this thesis, I had another idea on how the convolving

piecewise constant patches could be implemented as well. Instead of calculating the
mean per region in the patch, it is better to compute the correction factors on the
patch’s pixels directly. Then, in order to downsize the number of intensities to one, it is
possible to take the median or mean of the patch’s intensities. Unlike before, however,
that is only done once per region in the patch and not once per pixel in the patch.
The piecewise smooth characteristic is realized with the entirety of all the patches.

Therefore, no prior smoothing has to be done. The intensities can be directly estimated
from the input image I and its convolution. The correction factors for the whole image
can be calculated during the initialization phase.
For the comparison the the input image, the convolved intensities are calculated over

a small patch of the size of the convolution kernel. If the radius of the patch, i.e., the
smoothness parameter rmean, is twice as large as the radius of the convolution kernel,
then the small support of the convolution will have no effect on the accuracy of the result.
However, in most experiments, the radii of the convolution kernel and the Running Mean
were similar, so the small support might introduce an additional error. Unlike the other
algorithms, this approach calculates everything on the small patch. Therefore, a local
and fully parallelizable approach would be possible. A further study of the gain and
loss of this approach might be interesting.

44



Appendix A

Simulation Results

The following chapter contains the simulation results from Section 3.2:

45



Appendix A Simulation Results

2 4 6 8 10 12 14
−10

−8

−6

−4

−2

0

SNR

off
se
t

Iest = I−1
est ·median

(
I
J

)

2 4 6 8 10 12 14
−10

−8

−6

−4

−2

0

SNR

off
se
t

Iest = I−1
est ·median

(
I−mean(I0)
J−mean(I0)

)

0 0.1 0.2 0.3 0.4 0.5

(a) mean of (Iest − Itrue)2

2 4 6 8 10 12 14
−10

−8

−6

−4

−2

0

SNR
off

se
t

Iest = I−1
est ·median

(
I
J

)

2 4 6 8 10 12 14
−10

−8

−6

−4

−2

0

SNR

off
se
t

Iest = I−1
est ·median

(
I−mean(I0)
J−mean(I0)

)

0 1 2 3 4 5

(b) standard deviation of (Iest − Itrue)2

Figure A.1: Results showing the background influence. The median of the correction factors
was chosen to estimate the intensities. The corresponding equation can be seen in
Equation 3.6. The shown results were made on a 30 pixel image. The foreground
region starts at a gray value of 20, while the background has a constant intensity
of 10. The foreground’s gray values change with a gradient of 0.5. This is just
an exemplary result but using other correction factors or other variables showed
similar results.

46



2 4 6 8 10 12 14
−10

−8

−6

−4

−2

0

SNR

off
se
t

Iest = I − (J − I−1
est)

2 4 6 8 10 12 14
−10

−8

−6

−4

−2

0

SNR

off
se
t

Iest = mean(I − (J − I−1
est))

2 4 6 8 10 12 14
−10

−8

−6

−4

−2

0

SNR

off
se
t

Iest = median(I − (J − I−1
est))

0 0.2 0.4 0.6 0.8 1

(a) mean of (Iest − Itrue)2

2 4 6 8 10 12 14
−10

−8

−6

−4

−2

0

SNR

off
se
t

I − (J − I−1
est)

2 4 6 8 10 12 14
−10

−8

−6

−4

−2

0

SNR

off
se
t

mean(I − (J − I−1
est))

2 4 6 8 10 12 14
−10

−8

−6

−4

−2

0

SNR

off
se
t

median(I − (J − I−1
est))

0 5 10 15 20

(b) standard deviation of (Iest − Itrue)2

Figure A.2: Simulation results using three different variations of Equation 3.4 to estimate the
intensities. For each pixel, the correction factor I− (J− I−1

est) is calculated. Then,
the first variation uses each of these correction factors directly as a new intensity.
The second uses the mean and the third the median of the surrounding pixel’s
correction factors.
The shown results were made on a 50 pixel image. The foreground region starts
at a gray value of 30. The foreground’s gray values change with a gradient of 0.1.

47



Appendix A Simulation Results

2 4 6 8 10 12 14
−10

−8

−6

−4

−2

0

SNR

off
se
t

Iest = I−1
est · I

J

2 4 6 8 10 12 14
−10

−8

−6

−4

−2

0

SNR

off
se
t

Iest = I−1
est ·mean

(
I
J

)

2 4 6 8 10 12 14
−10

−8

−6

−4

−2

0

SNR

off
se
t

Iest = I−1
est ·median

(
I
J

)

0 0.2 0.4 0.6 0.8 1

(a) mean of (Iest − Itrue)2

2 4 6 8 10 12 14
−10

−8

−6

−4

−2

0

SNR

off
se
t

Iest = I−1
est · I

J

2 4 6 8 10 12 14
−10

−8

−6

−4

−2

0

SNR

off
se
t

Iest = I−1
est ·mean

(
I
J

)

2 4 6 8 10 12 14
−10

−8

−6

−4

−2

0

SNR

off
se
t

Iest = I−1
est ·median

(
I
J

)

0 5 10 15 20

(b) standard deviation of (Iest − Itrue)2

Figure A.3: Simulation results using three different variations of Equation 3.5 to estimate the
intensities. For each pixel, the correction factor I/J is calculated. The ratio is
then multiplied by the first intensity estimation I−1

est . The first variation calculates
the multiplication pixelwise. The second and third use the surrounding correction
factors to estimate a more robust intensity. The second row calculates the mean
over the surrounding correction factors while the thir row uses the median.
The shown results were made on a 50 pixel image. The foreground region starts
at a gray value of 30. The foreground’s gray values change with a gradient of 0.1.

48



2 4 6 8 10 12 14
−10

−8

−6

−4

−2

0

SNR

off
se
t

~Iest = ~I−1
est · ~w

2 4 6 8 10 12 14
−10

−8

−6

−4

−2

0

SNR

off
se
t

Iest = mean(I − (J − I−1
est))

2 4 6 8 10 12 14
−10

−8

−6

−4

−2

0

SNR

off
se
t

Iest = I−1
est ·mean

(
I
J

)

0 0.2 0.4 0.6 0.8 1

(a) mean of (Iest − Itrue)2

2 4 6 8 10 12 14
−10

−8

−6

−4

−2

0

SNR

off
se
t

~Iest = ~I−1
est · ~w

2 4 6 8 10 12 14
−10

−8

−6

−4

−2

0

SNR

off
se
t

Iest = mean(I − (J − I−1
est))

2 4 6 8 10 12 14
−10

−8

−6

−4

−2

0

SNR

off
se
t

Iest = I−1
est ·mean

(
I
J

)

0 5 10 15 20

(b) standard deviation of (Iest − Itrue)2

Figure A.4: Simulation result comparing the three options detailed in Section 3.2.2. The first
row shows the result of the multidimensional regression. The second and third
results were already shown in Figure A.2 and A.3. The results in the second
row were made using I − (J − I−1

est) as a correction factor whereas the third row
shows the results with the ratio I/J . As there are several variations of these two
methods, I picked the best of each option to compare it to each other. In both
cases, it is the mean of the correction factors.
The shown results were made on a 50 pixel image. The foreground region starts
at a gray value of 30. The foreground’s gray values change with a gradient of 0.1.

49



Appendix A Simulation Results

2 4 6 8 10 12 14
−10

−8

−6

−4

−2

0

SNR

off
se
t

Run. Mean + est. intensities

2 4 6 8 10 12 14
−10

−8

−6

−4

−2

0

SNR

off
se
t

est. intensities + Run. Mean

2 4 6 8 10 12 14
−10

−8

−6

−4

−2

0

SNR

off
se
t

conv. pc patches

0 0.2 0.4 0.6 0.8 1

(a) mean of (Iest − Itrue)2

2 4 6 8 10 12 14
−10

−8

−6

−4

−2

0

SNR

off
se
t

Run. Mean + est. intensities

2 4 6 8 10 12 14
−10

−8

−6

−4

−2

0

SNR

off
se
t

est. intensities + Run. Mean

2 4 6 8 10 12 14
−10

−8

−6

−4

−2

0

SNR

off
se
t

conv. pc patches

0 2 4 6 8 10 12 14 16

(b) standard deviation of
(Iest − Itrue)2

Figure A.5: Comparison of the three different intensity estimation algorithms I explained in
Section 3.2.1. The current results were made on a 30 pixel image. The foreground
region starts at a gray value of 20. Its gradient is 0.5. The intensities were
estimated with the local mean of I − (J − I−1

est). The further details are described
in Section 3.2.
The first row shows how well the intensities are reconstructed if the piecewise
smooth approximation is calculated prior to the intensity estimation. The second
row shows the reverse case, that is, if the intensities are first estimated and upon
the result the piecewise smoothness is added. As the addition of the piecewise
smoothness is the last step of the intensity estimation, I leave out the additional
smoothing. The third option is the piecewise constant patch. It assumes that
piecewise smoothness is created by a large number of smaller constant patches. In
order to reconstruct a piecewise constant intensity on the patch, I first calculate
the mean of each region within the patch and then use the region’s mean to
estimate the true intensity of each region.

50



2 4 6 8 10 12 14
−10

−8

−6

−4

−2

0

SNR

off
se
t

Run. Mean + est. intensities

2 4 6 8 10 12 14
−10

−8

−6

−4

−2

0

SNR

off
se
t

est. intensities + Run. Mean

2 4 6 8 10 12 14
−10

−8

−6

−4

−2

0

SNR

off
se
t

conv. pc patches

0 0.2 0.4 0.6 0.8 1

(a) mean of (Iest − Itrue)2

2 4 6 8 10 12 14
−10

−8

−6

−4

−2

0

SNR

off
se
t

Run. Mean + est. intensities

2 4 6 8 10 12 14
−10

−8

−6

−4

−2

0

SNR

off
se
t

est. intensities + Run. Mean

2 4 6 8 10 12 14
−10

−8

−6

−4

−2

0

SNR

off
se
t

conv. pc patches

0 2 4 6 8 10 12 14 16

(b) standard deviation of
(Iest − Itrue)2

Figure A.6: Comparison of the three different intensity estimation algorithms I explained in
Section 3.2.1. The current results were made on a 30 pixel image. The foreground
region starts at a gray value of 20. Its gradient is 0.5. The intensities were
estimated with the local mean of Iest = I−1

est ·median(I/J). The further details
are described in Section 3.2.
The first row shows how well the intensities are reconstructed if the piecewise
smooth approximation is calculated prior to the intensity estimation. The second
row shows the reverse case, that is, if the intensities are first estimated and upon
the result the piecewise smoothness is added. The third option is the piecewise
constant patch. It assumes that piecewise smoothness is created by a large number
of smaller constant patches. In order to reconstruct a piecewise constant intensity
on the patch, I first calculate the mean of each region within the patch and then
use the region’s mean to estimate the true intensity of each region.

51





Appendix B

Evaluation Results

This chapter contains the segmentation and image restoration results from Chapter 4.
They are sorted by image.

53



Appendix B Evaluation Results

(q) input (r) psDec (s) ps (t) pcDec

Figure B.1: Image segmentation results of the circle example image. The Gaussian noise is
amplified from top to bottom. The input image shown in the first row contains
no noise. The one in the the second row has a SNR of 2, and so on. I used the
following noise levels: 0, 15, 10, 5, and 2.
Some of the figures has been inverted for illustration purposes.

54



(q) input (r) psDec (s) Wiener (t) pcDec

Figure B.2: Image restoration results of the circle example image. The Gaussian noise is
amplified from top to bottom. The input image shown in the first row contains
no noise. The one in the the second row has a SNR of 2, and so on. I used the
following noise levels: 0, 15, 10, 5, and 2.
Some of the figures has been inverted for illustration purposes.

55



Appendix B Evaluation Results

(q) input (r) psDec (s) ps (t) pcDec

Figure B.3: Image segmentation results of the lines example image. The Gaussian noise is
amplified from top to bottom. The input image shown in the first row contains
no noise. The one in the the second row has a SNR of 2, and so on. I used the
following noise levels: 0, 15, 10, 5, and 2.
Some of the figures has been inverted for illustration purposes.

56



(q) input (r) psDec (s) Wiener (t) pcDec

Figure B.4: Image restoration results of the lines example image. The Gaussian noise is ampli-
fied from top to bottom. The input image shown in the first row contains no noise.
The one in the the second row has a SNR of 2, and so on. I used the following
noise levels: 0, 15, 10, 5, and 2.
Some of the figures has been inverted for illustration purposes.

57



Appendix B Evaluation Results

(q) input (r) psDec (s) ps (t) pcDec

Figure B.5: Image segmentation results of the overlapping circles example image. The Gaus-
sian noise is amplified from top to bottom. The input image shown in the first
row contains no noise. The one in the the second row has a SNR of 2, and so on.
I used the following noise levels: 0, 15, 10, 5, and 2.
Some of the figures has been inverted for illustration purposes.

58



(q) input (r) psDec (s) Wiener (t) pcDec

Figure B.6: Image restoration results of the overlapping circles example image. The Gaussian
noise is amplified from top to bottom. The input image shown in the first row
contains no noise. The one in the the second row has a SNR of 2, and so on. I
used the following noise levels: 0, 15, 10, 5, and 2.
Some of the figures has been inverted for illustration purposes.

59



Appendix B Evaluation Results

(q) input (r) psDec (s) ps (t) pcDec

Figure B.7: Image segmentation results of the overturned U example image. The Gaussian
noise is amplified from top to bottom. The input image shown in the first row
contains no noise. The one in the the second row has a SNR of 2, and so on. I
used the following noise levels: 0, 15, 10, 5, and 2.
Some of the figures has been inverted for illustration purposes.

60



(q) input (r) psDec (s) Wiener (t) pcDec

Figure B.8: Image restoration results of the overturned U example image. The Gaussian noise
is amplified from top to bottom. The input image shown in the first row contains
no noise. The one in the the second row has a SNR of 2, and so on. I used the
following noise levels: 0, 15, 10, 5, and 2.
Some of the figures has been inverted for illustration purposes.

61





Appendix C

CD Content

The enclosed CD contains the following:

• Region Competition framework containing the herein described piecewise smooth
deconvolving energy model

• an implementation of the other piecewise smooth deconvolving energy model using
mean(I − (J − I)) that was shortly described in Section 3.2

• diploma thesis

• Octave scripts used for the simulation described in Section 3.2

• example images

• results made with the Region Competition framework using the piecewise smooth
non–deconvolving energy model (ps), the piecewise constant deconvolving energy
model (pcDec), and the herein described piecewise smooth deconvolving energy
model (psDec)

• image restoration results made with the Wiener Deconvolution Filter

The implemented energy model can also be found in the MPI-CBG GIT repository of
the Region Competition framework in the branch PSDeconvolution. The alternative
version using mean(I − (J − I)) is in the branch PSDeconvolution_UsingMeanOf-
SubtractChange.
I will hand in another CD at my defense, which will, in addition to above content,

also contain the slides used during the defense.

63





Bibliography

[AT90] Luigi Ambrosio and Vincenzo Maria Tortorelli. Approximation of functional
depending on jumps by elliptic functional via Γ–convergence. Comm. on
Pure and Applied Math., 43(8):999–1036, 1990.

[BC07] Thomas Brox and Daniel Cremers. On the statistical interpretation of the
piecewise smooth Mumford-Shah functional. In Proceedings of the 1st inter-
national conference on Scale space and variational methods in computer
vision, SSVM’07, pages 203–213, Berlin, Heidelberg, 2007. Springer-Verlag.

[BSK04] Leah Bar, Nir Sochen, and Nahum Kiryati. Variational Pairing of Image
Segmentation and Blind Restoration. In Proc. ECCV’ 2004, Prague, Czech
Republic, Part II: LNCS #3022, pages 166–177. Springer, 2004.

[Buh03] Martin D. Buhmann. Radial Basis Functions. Cambridge University Press,
New York, NY, USA, 2003.

[BW04] Thomas Brox and Joachim Weickert. Level Set Based Image Segmentation
with Multiple Regions. In Proceedings of 26th DAGM, pages 415–423, 2004.

[Car13] Janick Cardinale. Unsupervised Segmentation and Shape Posterior Esti-
mation under Bayesian Image Models. PhD thesis, ETH Zürich, February
2013.

[CKS02] Daniel Cremers, Timo Kohlberger, and Christoph Schnörr. Nonlinear Shape
Statistics in Mumford-Shah Based Segmentation. In In European Confer-
ence on Computer Vision, pages 93–108. Springer, 2002.

[CPS12] J. Cardinale, G. Paul, and I.F. Sbalzarini. Discrete Region Competition
for Unknown Numbers of Connected Regions. Image Processing, IEEE
Transactions on, 21(8):3531 –3545, August 2012.

[CPS13] J. Cardinale, G. Paul, and I.F. Sbalzarini. Coupling image restoration and
segmentation – A generalized linear model/Bregman perspective. Interna-
tional Journal of Computer Vision, 2013. accepted.

[CS05] Tony F. Chan and Jianhong Shen. Image Processing And Analysis: Vari-
ational, Pde, Wavelet, And Stochastic Methods. Society for Industrial and
Applied Mathematics, Philadelphia, PA, USA, 2005.

[CV01] Tony F. Chan and Luminita A. Vese. Active contours without edges. IEEE
Transactions on Image Processing, 10(2):266–277, 2001.

65



Bibliography

[dB90] Carl de Boor. Splinefunktionen. Lectures in Mathematics, ETH Zürich.
Birkhäuser, Basel, 1990.

[Fij] Fiji Is Just ImageJ. http://fiji.sc. [Online; accessed 13-March-2013].

[FKL07] L. Fahrmeir, T. Kneib, and S.M. Lang. Regression. Modelle, Methoden und
Anwendungen. Statistik und ihre Anwendungen. Springer London, Limited,
2007.

[GG84] Stuart Geman and Donald Geman. Stochastic Relaxation, Gibbs Distri-
butions, and the Bayesian Restoration of Images. Pattern Analysis and
Machine Intelligence, IEEE Transactions on, PAMI-6(6):721–741, 1984.

[Had02] Jacques Hadamard. Sur les problèmes aux dérivés partielles et leur signifi-
cation physique. Princeton University Bulletin, 13:49–52, 1902.

[HS09] Jo A. Helmuth and Ivo F. Sbalzarini. Deconvolving Active Contours for
Fluorescence Microscopy Images. In Proceedings of the 5th International
Symposium on Advances in Visual Computing: Part I, ISVC ’09, pages
544–553, Berlin, Heidelberg, 2009. Springer-Verlag.

[ITK02] ITK. The Insight Segmentation and Registration Toolkit. www.itk.org/,
2002. [Online; accessed 13-March-2013].

[ITK05] ITK/Coding Style Guide. www.vtk.org/Wiki/ITK/Coding_Style_Guide,
2005. [Online; accessed 17-March-2013].

[Jan05] Jiri Jan. Medical Image Processing, Reconstruction and Restoration: Con-
cepts and Methods (Signal Processing and Communications). CRC, 1 edi-
tion, November 2005.

[JCS+09] Miyoun Jung, Ginmo Chung, Ganesh Sundaramoorthi, Luminita A. Vese,
and Alan L. Yuille. Sobolev gradients and joint variational image segmen-
tation, denoising, and deblurring. pages 72460I–72460I–13, 2009.

[KK09] Jan Kybic and Jakub Krátký. Discrete curvature calculation for fast level
set segmentation. In Proceedings of the 16th IEEE international conference
on Image processing, ICIP’09, pages 2981–2984, Piscataway, NJ, USA, 2009.
IEEE Press.

[KTCW02] Junmo Kim, Andy Tsai, Mujdat Cetin, and Alan S. Willsky. A curve
evolution-based variational approach to simultaneous image restoration and
segmentation. In Proc. IEEE ICIP, pages 109–112, 2002.

[MS88] David Mumford and Jayant Shah. Optimal Approximations by Piecewise
Smooth Functions and Variational Problems. Comm. on Pure and Applied
Math., XLII(5):577–685, 1988.

[RN03] Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern
Approach. Pearson Education, 2003.

66

http://fiji.sc
www.itk.org/
www.vtk.org/Wiki/ITK/Coding_Style_Guide


Bibliography

[ROF92] Leonid I. Rudin, Stanley Osher, and Emad Fatemi. Nonlinear total variation
based noise removal algorithms. Physica D: Nonlinear Phenomena, 60(1-
4):259–268, November 1992.

[SCV02] Berta Sandberg, Tony F. Chan, and Luminita A. Vese. A Level-Set and
Gabor-based Active Contour Algorithm for Segmenting Textured Images.
Technical report, UCLA Department of Mathematics CAM report, 2002.

[TA77] A. N. Tikhonov and V. Y. Arsenin. Solutions of Ill-Posed Problems. V. H.
Winston & Sons, Washington, D.C.: John Wiley & Sons, New York„ 1977.

[TYW01] Andy Tsai, Anthony Yezzi, Jr., and Alan S. Willsky. Curve Evolution
Implementation of the Mumford–Shah Functional for Image Segmentation,
Denoising, Interpolation, and Magnification. Trans. Img. Proc., 10(8):1169–
1186, August 2001.

[VC02] Luminita A. Vese and Tony F. Chan. A Multiphase Level Set Framework for
Image Segmentation Using the Mumford and Shah Model. Int. J. Comput.
Vision, 50(3):271–293, December 2002.

[WSSB13] Wes Wallace, Lutz H. Schaefer, Jason R. Swedlow, and David Biggs. Decon-
volution in Optical Microscopy. http://micro.magnet.fsu.edu/primer/
digitalimaging/deconvolution/deconalgorithms.html, 2013. [Online;
accessed 27-February-2013].

[ZH06] Hongwei Zheng and Olaf Hellwich. Extended mumford-shah regularization
in bayesian estimation for blind image deconvolution and segmentation. In
Proceedings of the 11th international conference on Combinatorial Image
Analysis, IWCIA’06, pages 144–158, Berlin, Heidelberg, 2006. Springer-
Verlag.

67

http://micro.magnet.fsu.edu/primer/digitalimaging/deconvolution/deconalgorithms.html
http://micro.magnet.fsu.edu/primer/digitalimaging/deconvolution/deconalgorithms.html

	Introduction
	Theoretical Background
	Related Work
	Region Competition framework
	Piecewise Smooth Segmentation
	Deconvolution
	Piecewise Smooth Deconvolving Segmentation
	Summary

	Implementation
	Goals
	Intensity Estimation
	Adding Piecewise Smoothness
	Calculation of Correction Factors
	Simulation Results

	General Structure
	Modifications of the Region Competition framework
	Performance Modifications

	Evaluation
	Design
	Quality
	Image Segmentation
	Image Restoration

	Performance
	Implementation

	Conclusion and Future Work
	Conclusion
	Future Work

	Simulation Results
	Evaluation Results
	CD Content
	Bibliography

