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1. INTRODUCTION

Two key generic challenges of the bioprocess industries are
developing efficient production systems for protein synthesis
and expression, and the rational design and optimization of syn-
thetic pathways for the synthesis of commodities. Heterologous
protein synthesis starts by introducing an exogenous protein-
coding gene in the cell, so that this produces the corresponding
protein. Traditionally, for the design, optimization and control
of bioprocesses, the population of microorganisms has been
typically considered as an aggregate quantity characterized by
averaged properties (Carlquist et al., 2012). Yet, it is a fact
that even isogenic (i.e. with the same genetic content) micro-
bial populations have certain degree of heterogeneity. Indeed,
individual microorganisms, even if part of a clonal or isogenic
population, may differ greatly in terms of genetic composition,
physiology, biochemistry, or behavior (Elowitz et al., 2002;
Toni and Tidor, 2013; Picó et al., 2015). In particular, the phe-
nomenon of phenotypic noise is described as variation within
an isogenic population due to fluctuations in gene expression
of single cells (Toni and Tidor, 2013). This heterogeneity at
the population level has been shown to be one of the causes of
decrease in productivity when scaling-up to an industrial pro-
duction bioprocess (Fernandes et al., 2011). Characterization
and control of protein expression moments (mean and vari-
ance) across the cell population is, thus, a hot topic (Sánchez
and Kondev, 2008; Weber and Buceta, 2011; Vignoni et al.,
2013; Mélykúti et al., 2014; Oyarzu n et al., 2014) of relevance
also for synthesis of commodities through synthetic pathways
(Oyarzuun, 2011).

Dealing with the problems above requires both appropriate
dynamic predictive models, and designing dynamic controls
of the synthetic pathways and expression systems (Holtz and

� This research was partially funded by grant FEDER-CICYT DPI2014-
55276-C5-1-R. Yadira Boada thanks grant FPI/2013-3242 of the Universitat
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Keasling, 2010; Singh, 2011; Vignoni et al., 2013). An area
of particular relevance is the design of collective cell behav-
ior, whereby a prescribed population response results from the
interaction between individual cells. A common approach to
induce collective behavior is to use cell- to-cell communica-
tion mechanisms. These typically rely on the quorum sensing
machinery from V. fischeri, and have been used for diverse
purposes such as population synchronization (Nikolaev and
Sontag, 2015), cell density-based control of gene expression
(Williams et al., 2013), engineered cell social behavior Youk
and Lim (2014), etc. The effect of cell-to-cell communication
on noise regulation was also analyzed in (Tanouchi et al., 2008;
Weber and Buceta, 2011; Boada et al., 2015). Following this
line, in (Vignoni et al., 2013) we proposed a preliminary syn-
thetic gene circuit aimed at controlling the mean and variance
of protein expression across a cell population. The circuit uses
both an intracellular negative feedback loop, and an external
loop using quorum sensing as a means for cell-to-cell commu-
nication. Using a very simplified model we proved that the tra-
jectories of the cell states converge to a closed region, wherein
expressions for the mean and variance of the states could be
obtained, using a linearised model, when variability in a key
parameter of the circuit is present.

In this paper we consider a realistic model of the synthetic gene
circuit. Analysis of stability of the circuit cannot be addressed
using standard Lyapunov techniques, given the complexity of
the model. Provided the system has a stable equilibrium point,
a linearised model could be used to infer the effects of the
circuit both on intrinsic and extrinsic noise, using an approach
analogous to (Tanouchi et al., 2008; Vignoni et al., 2013). In
this work, using contraction theory methods derived in (Russo
and Di Bernardo, 2009; Russo et al., 2011; Margaliot et al.,
2016), and realistic values for the parameters of the circuit,
we derive the conditions under which the system has a stable
equilibrium point.
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Toni and Tidor, 2013; Picó et al., 2015). In particular, the phe-
nomenon of phenotypic noise is described as variation within
an isogenic population due to fluctuations in gene expression
of single cells (Toni and Tidor, 2013). This heterogeneity at
the population level has been shown to be one of the causes of
decrease in productivity when scaling-up to an industrial pro-
duction bioprocess (Fernandes et al., 2011). Characterization
and control of protein expression moments (mean and vari-
ance) across the cell population is, thus, a hot topic (Sánchez
and Kondev, 2008; Weber and Buceta, 2011; Vignoni et al.,
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The rest of the paper is organized as follows. In Section 2
we describe the gene synthetic circuit, and its mathematical
model. In section 3 we perform the contraction analysis and,
in section 4, its results for realistic values for the parameters
of the circuit are derived. Finally, some conclusions and future
work are drawn in the last section.

2. SYSTEM DESCRIPTION

Description of the synthetic gene network.

The proposed gene synthetic circuit, depicted in Fig. 1, com-
bines two engineered gene networks previously implemented
in E. coli: i) a cell-to-cell communication system via quo-
rum sensing (QS) (Fuqua et al., 2001) using the autoinducer
molecule acyl homoserine lactone AHL, and ii) a synthetic
repressible promoter (Egland and Greenberg, 2000; Vignoni
et al., 2013) implementing a negative feedback control over
the concentration of the protein LuxI, the synthase that pro-
duces AHL. The ultimate goal of the circuit is to control the
expression of an heterologous protein of interest which could
be encoded in the same coding sequence as LuxI. This way,
control of LuxI will be tantamount to that of the protein of
interest except for its translation step. Notice transcription has
been identified to be the protein expression step most affecting
variability (Guimaraes et al., 2014)

The internal feedback loop aims at reducing the variability
of LuxI at each individual cell. It consists of the gene luxR
constitutively producing the protein LuxR. On the other hand,
the protein LuxI synthesizes the autoinducer of the AHL inside
each cell. Then, AHL binds to LuxR creating the monomer
(LuxR ·AHL). In turn, two molecules dimerize producing
(LuxR ·AHL)2. This complex is a transcription factor for the
synthetic repressible promoter PluxR promoter, controlling the
expression of LuxI. Thus, the dimer (LuxR ·AHL)2 inhibits
the transcription of the gene luxI downstream the PluxR pro-
moter. Hence, the circuit internal loop has a negative feedback
loop between the intracellular AHL and LuxI.

The outer feedback loop accounts for the passive diffusion of
AHL across the cell membrane to the culture medium, thus
acting as communication signal within the population. This
signal can be used to induce coordination in the cell population.

For the circuit above, we consider the main biochemical re-
actions involved: the genes regulated transcription and trans-
lation processes, the hetero- and homodimerization reactions
involving the inducer, and diffusion of the inducer through
the cell membrane. We simplify transcription of genes luxI
and luxR by considering kmLuxI and kmLuxR as the effective
irreversible transcription rates. Besides, αmLuxI represents the
basal transcription of the repressor PluxR. We also model trans-
lation as an irreversible reaction with an average transcription
rate accounting for the fact that binding of ribosomes to the
ribosome binding site (RBS) is indeed reversible, and several
ribosomes may translate a single mRNA molecule simulta-
neously. Monomerization and dimerization are considered as
reversible reactions. The diffusion process of the inducer across
the cell membrane is modeled as a pseudo-reaction, where
Vc = Vcell/Vext is the ratio between the cell and the culture
volume, that allows to quantify the number of intracellular AHL
or extracellular AHLext molecules. With these simplifying as-
sumptions in mind, the resulting set of reactions is shown in
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Fig. 1. Synthetic gene circuit.

(1). For convenience, we denote by DNA the free promoter of
the gene luxI. The messenger RNAs of genes luxI and luxR are
denoted as mRNAluxI and mRNAluxR respectively.

DNA
kmLuxI→ DNA+mRNAluxI

kmLuxR−→ mRNAluxR

DNA(LuxR ·AHL)2
αmLuxIkmLuxI−→ DNA(LuxR ·AHL)2 +mRNAluxI
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(1)

Mathematical model.

The dynamical deterministic model corresponding to the bio-
chemical reactions (1) can be obtained using the mass-action
kinetics formalism (Chellaboina et al., 2009; Picó et al., 2015).
Due to the constitutive expression of gene luxR, we can assume
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kLuxI−→ mRNAluxI + LuxI

mRNAluxR
kLuxR−→ mRNAluxR + LuxR

LuxI
kA−→ AHL + LuxI

LuxR + AHL
k−
1
/kd1

�
k−
1

LuxR ·AHL

2(LuxR ·AHL)
k−
2
/kd2

�
k−
2

(LuxR ·AHL)2

(LuxR ·AHL)2 +DNA
k−
lux

/kdlux

�
k−
lux

DNA(LuxR ·AHL)2

AHL
D
�

DVc

AHLext

AHL
dA−→ ∅

AHLext
dAe−→ ∅

mRNAluxI
dmI−→ ∅

mRNAluxR
dmR−→ ∅

LuxI
dI−→ ∅

LuxR
dR−→ ∅

LuxR ·AHL
dRA−→ ∅

(LuxR ·AHL)2
dRA2−→ ∅

(1)

Mathematical model.

The dynamical deterministic model corresponding to the bio-
chemical reactions (1) can be obtained using the mass-action
kinetics formalism (Chellaboina et al., 2009; Picó et al., 2015).
Due to the constitutive expression of gene luxR, we can assume
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Table 1. Biochemical species for model (2).

State Biochemical species Name
n1 Messenger RNA of luxI mRNAluxI

n2 Messenger RNA of luxR mRNAluxR

n3 Protein LuxI LuxI

n4 Protein LuxR LuxR

n5 Monomer (LuxR ·AHL)

n6 Dimer (LuxR ·AHL)2
n7 Free promoter DNA

n8 Bound promoter DNA(LuxR ·AHL)2
n9 Intracellular autoinducer AHL

n10 Extracellular autoinducer AHLext

the number of molecules of protein LuxR is at steady state for
practical purposes. Besides, the sum of the free (DNA) and
bound (DNA(LuxR ·AHL)2) promoter remains invariant, and
equal to the gene copy number cn. Moreover, the dimerization
reaction is faster than the monomerization one, so the number
of molecules of dimer, n6, can be assumed to be at quasi-steady
state. Thus, we obtain the reduced model (2):

ṅi
1 = kmLuxIcn + kmLuxI (αmLuxI − 1)ni

8 − dmI
ni
1

ṅi
3 = kLuxIn

i
1 − dIn

i
3

ṅi
4 = kLuxR

kmLuxRcn
dmR

+ k−1 n
i
5 − dRn

i
4 −

k−1
kd1

ni
9n

i
4

ṅi
5 = 2k−2 n

i
6 +

k−1
kd1

ni
9n

i
4 −

(
k−1 + dRA + 2

k−2
kd2

ni
5

)
ni
5

ni
6 =

k−luxn
i
8 +

k−
2

kd2
(ni

5)
2

k−2 + dRA2
+

k−
lux

kdlux

(
cn − ni

8

) ≈
k−luxn

i
8 +

k−
2

kd2
(ni

5)
2

k−2 + dRA2

ṅi
8 = −k−luxn

i
8 +

k−lux
kdlux

ni
6

(
cn − ni

8

)

ṅi
9 = D

(
Vcell

Vext
n10 − ni

9

)
−
(
k−1
kd1

ni
4 + dA

)
ni
9

+ k−1 n
i
5 + kAn

i
3

ṅ10 = D

(
−N

Vcell

Vext
n10 +

N∑
i=1

ni
9

)
− dAe

n10

(2)
where the first nine are the states for each i-th cell in a popula-
tion of N cells. The 10th state corresponds to the extracellular
autoinducer molecule. The states are described in Table 1. No-
tice the free promoter n7 is not used, as n7+n8 = cn was used
as invariant for the model reduction.

A description of the parameters in model (2), and realistic
values for them is shown in Table 2.

3. CONTRACTION ANALYSIS

A system ẋ = f(x, t) is contractive within a region of the
state space if the jacobian ∂f/∂x is uniformly negative in
that region. Inttuitively it means within the contractive region
trajectories approach to each other and initial conditions are
forgotten. This result can be generalized using riemannian
metrics (Lohmiller and Slotine, 1998). A sufficient, and much
easier to prove, condition is given in (Russo and Di Bernardo,
2009; Russo et al., 2011) and we use it to infer if the system
(2), considering N cells, is contractive. First we must derive

Table 2. Parameters in model (2).
Parameter Description Value Reference
cn Plasmid copy number 17 plasmids/cell plasmid PBR322
kmLuxR Transcription rateluxR 4.4 min−1 estimated
dmR Degradation rate mRNALuxR 0.17 min−1 Milo and Phillips (2016)
kLuxR Translation rate luxR 55 min−1 estimated
dR Degradation rate of LuxR 0.1745 min−1 tagged LuxR
kmLuxI Transcription rate of luxI 2.5 min−1 estimated
αmLuxI Basal transcription factor for luxI 0.01 Weber et al. (2013)
dmI Degradation rate of mRNALuxI 0.3624 min−1 Roberts et al. (2006)
kLuxI Translation rate of LuxI 6.94 min−1 Boada et al. (2015)
dI Degradation rate of LuxI 0.0174min−1 cell half-life 40 min
k−1 Dissociation rate of LuxR to AHL 10 min−1 Weber et al. (2013)
kd1 Dissociation LuxR /AHL 150 molecules Urbanowski et al. (2004)
dRA Degradation rate of (LuxR ·AHL) 0.0174 min−1 cell half-life 40 min
k−2 Dissociation rate of (LuxR ·AHL)2 1 min−1 Weber et al. (2013)
kd2 Dissociation (LuxR ·AHL)2 35 molecules fitted
dRA2

Degradation rate of (LuxR ·AHL)2 0.0174 min−1 cell half-life 40 min
dA Degradation rate internal AHL 0.0164 min−1 Kaufmann et al. (2005)
dAe Degradation rate external AHL 0.004 min−1 Kaufmann et al. (2005)
D Diffusion rate AHL /cell membrane 2 min−1 Kaplan and Greenberg (1985)
kA Synthesis rate of AHL by LuxI 0.04 min−1 Garcia-Ojalvo et al. (2004)
klux Dissociation rate (LuxR ·AHL)2/PluxR 10 min−1 Weber et al. (2013)
kdlux Dissociation (LuxR ·AHL)2/promoter 140 molecules fitted

the Jacobian matrix. Notice that given the structure of (2), the
Jacobian for N cells will have the blocks structure (3):

JN =




J1
c 06×6 · · ·

05×1

D Vcell

Vext

06×6 J2
c · · ·

05×1

D Vcell

Vext

...
...

. . .
...

01×5 D 01×5 D · · · −ND Vcell

Vext
− dAe




(3)

where each subblock J i
c, for i = 1, . . . , N is the Jacobian w.r.t.

the states n1 to n9 for each cell. The detailed expression for J i
c

can be found in table 3. From the Jacobian, we obtain an adja-
cency matrix corresponding to an undirected associated graph
to the system Jacobian. The graph contains as many nodes as
states. Two nodes (p, q) are connected if either JN (p, q) �= 0
or JN (q, p) �= 0. The resulting adjacency matrix takes the form
(3)

AN =




A1
c 06×6 · · · 05×1

1

06×6 A2
c · · · 05×1

1
...

...
. . .

...
01×5 1 01×5 1 · · · 0




(4)

where, again, each sub-block Ai
c, for i = 1, . . . , N is the

adjacency matrix w.r.t. the states n1 to n9 for each cell:

Ai
c =




0 1 0 0 1 0
1 0 0 0 0 1
0 0 0 1 0 1
0 0 1 0 1 1
1 0 0 1 0 0
0 1 1 1 0 0




(5)

Contractiveness of the synthetic network is guaranteed if the
next conditions are fulfilled:

(1) All diagonal elements of the Jacobian matrix JN are
uniformly negative.

(2) Given, for any pair (p, q), the computed values αp,q =
|JN,p,q(t,n)|
|JN,p,p(t,n)| (m− n0p − 1), the conditions αp,qαq,p ≤ 1

must be met uniformly in t.
(3) The values of αp,q determine the directions in the as-

sociated graph to the adjacency matrix (3) (see (Russo
et al., 2011) for details). No closed cycles can exist in the
directed graph.
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Ji
c =




−dmI 0 0 0 kmLuxI (αmLuxI − 1) 0
kLuxI −dI 0 0 0 0

0 0 −dR − k−
1

kd1
ni
9 k−1 0 − k−

1
kd1

ni
4

0 0
k−
1

kd1
ni
9 −k−1 − dRA − 4

dRA2
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+k−

2
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2

kd2
ni
5 2k−2

k−
lux

dRA2
+k−

2

k−
1

kd1
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4

0 0 0
k−
lux
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2
k
−
2

kd2
n5

dRA2
+k−

2

(
cn − ni

8

)
−k−

lux
−

k−
lux

kdlux

k−
lux

dRA2
+k−

2

(
2ni

8 − cn +
k−
2

kd2

n
2,i
5

k−
lux

)
0

0 kA − k−
1

kd1
ni
9 0 0 −D − k−

1
kd1

ni
4 − dA




Table 3. Jacobian J i
c

Table 4. Expressions for αp,q .

α1,2 = 0 α2,1 = kLuxI
dI

α1,5 =
kmLuxI|αmLuxI−1|

dmI
α5,1 = 0

α2,6 = 0 α6,2 = 3kA

D+dA+
k
−
1

kd1
ni
4

α3,4 =
k−
1

dR+
k
−
1

kd1
ni
9

α4,3 =
2

k
−
1

kd1
ni
9

k−
1

+dRA+
4
dRA2

k
−
2

kd2
ni
5

k
−
2

+dRA2

α3,6 =

k
−
1

kd1
ni
4

dR+
k
−
1

kd1
ni
9

α6,3 =
3

k
−
1

kd1
ni
9

D+dA+
k
−
1

kd1
ni
4

α4,6 =
2

k
−
1

kd1
ni
4

k−
1

+dRA+
4
dRA2

k
−
2

kd2
ni
5

k
−
2

+dRA2

α6,4 = 0

α4,5 = α5,4 =

4k−
2

k
−
lux

k
−
2

+dRA2

k−
1

+dRA+
4
dRA2

k
−
2

kd2
ni
5

k
−
2

+dRA2

2
k
−
2

kd2
ni
5

dRA2
+k

−
2

(cn−ni
8)

kdlux+
k
−
lux

dRA2
+k

−
2

∣∣∣ k
−
2

n
2,i
5

kd2k
−
lux

+2ni
8
−cn

∣∣∣

α6,7 =
3D

Vcell
Vext

dA+D+
k
−
1

kd1
ni
4

α7,6 =
(N−1)D

ND
Vcell
Vext

+dAe

The first condition is clearly fulfilled, taking into account that
ni
j ≥ 0 ∀i = 1 · · ·N, j = 1 · · · 8, and the number of occupied

promoters in each cell fulfills ni
8 ≤ cn.

On the other hand, notice that for any row and column p, q of the
Jacobian JN we have that αp,q = 0 for any pair (p, q) such that
p ∈ J i

c and q ∈ Jj
c for i �= j. Therefore, the only terms αp,q that

matter are the ones corresponding to the subgraphs associated
to the interactions within each cell, and between each cell and
the external AHLe molecules. Therefore, it suffices considering
the Jacobian submatrix J i

c given in equation (3). Notice also
that the only values of αp,q that must be computed from the cell
Jacobian sub-matrix J i

c are the ones for which Ac(p, q) = 1.
This results in table 4

Since Vcell � Vext notice that α6,7 < 1 for any ni
4 ≥ 0, and

α7,6 ≥ 1 provided

N ≥ 1 +
dAe

D
(6)

where we approximated Vext−Vcell

Vext
≈ 1. Using the typical

values of dAe and D given in table 2, we see that α7,6 > 1
for N ≥ 2, i.e. whenever we have two or more cells.

4. RESULTS

Using the parameter values shown in Table 2 we simulated
100 cells starting from different initial conditions. After a short

transient, the values of the products αp,qαq,p ≤ 1, as shown in
figure 2.

Fig. 2. Time evolution of the products αp,qαq,p.

Figure 3 shows the graph associated to the synthetic gene
network for the values of α obtained for the nominal values
in table 2. It can be observed that no closed loop exists.

Fig. 3. Graph associated to the synthetic gene circuit.

Under this conditions, the genetic network is contractive. Thus,
all trajectories starting from different initial conditions will con-
verge to a common one. Provided the system has an equilibrium
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Table 3. Jacobian J i
c

Table 4. Expressions for αp,q .

α1,2 = 0 α2,1 = kLuxI
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α1,5 =
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The first condition is clearly fulfilled, taking into account that
ni
j ≥ 0 ∀i = 1 · · ·N, j = 1 · · · 8, and the number of occupied

promoters in each cell fulfills ni
8 ≤ cn.

On the other hand, notice that for any row and column p, q of the
Jacobian JN we have that αp,q = 0 for any pair (p, q) such that
p ∈ J i

c and q ∈ Jj
c for i �= j. Therefore, the only terms αp,q that

matter are the ones corresponding to the subgraphs associated
to the interactions within each cell, and between each cell and
the external AHLe molecules. Therefore, it suffices considering
the Jacobian submatrix J i

c given in equation (3). Notice also
that the only values of αp,q that must be computed from the cell
Jacobian sub-matrix J i

c are the ones for which Ac(p, q) = 1.
This results in table 4

Since Vcell � Vext notice that α6,7 < 1 for any ni
4 ≥ 0, and

α7,6 ≥ 1 provided

N ≥ 1 +
dAe

D
(6)

where we approximated Vext−Vcell

Vext
≈ 1. Using the typical

values of dAe and D given in table 2, we see that α7,6 > 1
for N ≥ 2, i.e. whenever we have two or more cells.

4. RESULTS

Using the parameter values shown in Table 2 we simulated
100 cells starting from different initial conditions. After a short

transient, the values of the products αp,qαq,p ≤ 1, as shown in
figure 2.

Fig. 2. Time evolution of the products αp,qαq,p.

Figure 3 shows the graph associated to the synthetic gene
network for the values of α obtained for the nominal values
in table 2. It can be observed that no closed loop exists.

Fig. 3. Graph associated to the synthetic gene circuit.

Under this conditions, the genetic network is contractive. Thus,
all trajectories starting from different initial conditions will con-
verge to a common one. Provided the system has an equilibrium
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within the state space region where it is contractive, the trajec-
tories will converge to it. In case the network is composed of
identical cells with different initial conditions, all will converge
to a common state, as seen in figure 4.

Fig. 4. Time evolution of LuxI , LuxR, AHLi and AHLe for
a network composed of N = 100 cells, each one with
different initial state.

5. DISCUSSION AND CONCLUSIONS

From table 4 and the results in figure 2 it can be seen that the
αp,qαq,p products that are critical to ensure sufficient conditions
for attractiveness of the circuit are α36α63 and, to a minor
extent, α34α43. This products are associated to the edges be-
tween the species n4-n9 (AHLi−LuxR) and n4-n5 (LuxR−
(LuxR · AHLi)) respectively (see figure 3). Thus, they are
related to the formation of the monomer LuxR · AHLi. Thus,
it seems that the relative abundances of intracellular AHLi,
LuxR, and the monomer LuxR · AHLi) are critical to ensure
contractivity of the circuit. Indeed, the mentioned α-products
are:

α3,4α4,3 = 2

k−
1

kd1
ni
9

dR +
k−
1

kd1
ni
9

k−1

k−1 + dRA +
4

dRA2
k
−
2

kd2
ni
5

k−
2 +dRA2

α3,6α6,3 = 3

k−
1

kd1
ni
9

dR +
k−
1

kd1
ni
9

k−
1

kd1
ni
4

D + dA +
k−
1

kd1
ni
4

(7)

For biologically realistic values of the circuit parameters, the
amount of free intracellular AHLi (ni

9) is very low (order of
magnitude of 1), while the amount of LuxR (ni

4) is several
orders of magnitude higher. This implies, that the key term
to achieve α3,6α6,3 ≤ 1 is the dynamics of LuxR. A large
degradation rate dR of LuxR will contribute to lower values of
α3,6α6,3. The same holds for α3,4α4,3. This result is consistent
with the findings in (Tanouchi et al., 2008; Boada et al., 2015),
where it was shown that a fast turnover of LuxR contributes
to higher robustness with respect to both extrinsic and intrinsic
noise respectively. Indeed, higher contraction rates protect from
noise (Tabareau et al., 2010). Yet, this effect will depend on the
amount of free AHLi, which depends on how much monomer
LuxR · AHLi forms. This can be regulated by means of the
RBS strength kLuxR. The lower the strength, the more free

AHLi in the cell. Thus, higher values of α3,6α6,3 will be
obtained, as seen in figure 5. Notice for weak low values of
kLuxR, condition α3,6α6,3 ≤ 1 does not hold. This justifies
the common approach of using strong constitutive promoters
and ribosome binding sites for LuxR, so it is in excess. Notice
also that as kLuxR increases, the transient required to ensure
α3,6α6,3 ≤ 1 becomes shorter. This is important, as allowing
small transients does not destroy the important asymptotic
properties of contractive systems like convergence to a unique
equilibrium point (Margaliot et al., 2016).

Fig. 5. Time evolution of α3,6α6,3 as a function of kLuxR. The
values of kLuxR vary from kLuxR = 20 to kLuxR =
55. These values roughly correspond to expression of luxR
(Bba C0062) under the RBS of different strength, assum-
ing translation rates [2.4, 4.8]min−1/Ribosome, 750 bps
length for LuxR, and ribosomes distributed approximately
each 65 nucleotides. The value of α3,6α6,3 decreases as
kLuxR increases.

In conclusion, we have ensured that the system is contractive
in a region where it has an equilibrium point. Therefore, this
equilibrium point is, locally, an asymptotic stable one. This
justifies the possibility of linearising the system around the
equilibrium point, and use the linearised model to analyze
the behavior of the genetic circuit with respect to extrinsic
noise, using an approach similar to (Tanouchi et al., 2008;
Vignoni et al., 2013). This analysis will give analytic clues
on the paper played by cell-to-cell communication. Indeed,
diffusion of AHL across the cell membrane, and the density
of the cell population, affects the equilibrium value of the
intracellular AHLi, thus affecting the rate of contraction. A
preliminary computational analysis has shown that the cell-
to-cell communication effectively contributes to decrease the
effect of intrinsic noise on LuxI . The analysis with respect to
extrinsic noise is computationally expensive. Thus an analytic
approach, even if approximated, will be of great use.
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