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Abstract

The growing number of sequenced genomes allows us now to address a key question in genetics and evolutionary biology:
which genomic changes underlie particular phenotypic changes between species? Previously, we developed a computa-
tional framework called Forward Genomics that associates phenotypic to genomic differences by focusing on phenotypes
that are independently lost in different lineages. However, our previous implementation had three main limitations.
Here, we present two new Forward Genomics methods that overcome these limitations by (1) directly controlling for
phylogenetic relatedness, (2) controlling for differences in evolutionary rates, and (3) computing a statistical significance.
We demonstrate on large-scale simulated data and on real data that both new methods substantially improve the
sensitivity to detect associations between phenotypic and genomic differences. We applied these new methods to detect
genomic differences involved in the loss of vision in the blind mole rat and the cape golden mole, two independent
subterranean mammals. Forward Genomics identified several genes that are enriched in functions related to eye devel-
opment and the perception of light, as well as genes involved in the circadian rhythm. These new Forward Genomics
methods represent a significant advance in our ability to discover the genomic basis underlying phenotypic differences
between species.
Source code: https://github.com/hillerlab/ForwardGenomics/
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Introduction
Evolution has led to a striking diversity of phenotypes be-
tween species. Many phenotypic differences between species
are due to differences in their DNA. Today hundreds of an-
imals have sequenced genomes and many more will be se-
quenced in future by projects like Genome-10K (Haussler
et al. 2009), i5K (Robinson et al. 2011), and individual labs.
These genomes provide an unprecedented opportunity to
uncover the genomic changes that underlie phenotypic
changes between species, which is a key question in genetics
and evolutionary biology (Wray 2013; Dunn and Ryan 2015).

Some examples of genomic changes that are involved in
phenotypic changes between species have already been dis-
covered. For example, amino acid and cis-regulatory differ-
ences in Foxp2 are likely involved in the evolution of human
speech (Enard et al. 2009; Maricic et al. 2013). Several hearing
genes show convergent amino acid changes in echolocating
bats and cetaceans (Li et al. 2008; Liu et al. 2010; Shen et al.
2012), and experiments showed that convergent changes in
the prestin gene underlie high-frequency hearing in these
echolocating lineages (Liu et al. 2014). Furthermore, losses
of ancestral genes have been associated with phenotypic
changes (Stedman et al. 2004; Cheng and Detrich 3rd 2007;

Meredith et al. 2014). Apart from changes affecting genes,
comparative genomics uncovered prominent differences in
the noncoding portion of the genome. For example, genomic
screens detected noncoding regions that are conserved in
chimpanzee and other mammals but have accelerated sub-
stitution rates in human or are completely deleted in the
human lineage (Pollard et al. 2006a, b; Prabhakar et al. 2006;
McLean et al. 2011; Hubisz and Pollard 2014). Experiments
provided compelling evidence that some of these human-
specific genomic changes are involved in human-specific phe-
notypes related to specific features of the brain and limb or
the loss of penile spines (Pollard et al. 2006b; Prabhakar et al.
2008; McLean et al. 2011; Capra et al. 2013). However, despite
this progress, we still know little about which genomic differ-
ences are associated with particular phenotypic differences
between species. To detect such associations without relying
on experiments, computational approaches are helpful, but
are challenged by the fact that even closely related species
exhibit numerous genomic and phenotypic differences.

To predict associations between phenotypic and genomic
differences, we previously developed a computational ap-
proach called Forward Genomics that focuses on phenotypes
that are independently lost in different species (Hiller et al.

A
rticle

� The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License
(http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any
medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com Open Access
Mol. Biol. Evol. doi:10.1093/molbev/msw098 Advance Access publication May 24, 2016 1

 MBE Advance Access published June 22, 2016
 by guest on July 6, 2016

http://m
be.oxfordjournals.org/

D
ow

nloaded from
 

https://github.com/hillerlab/ForwardGenomics/
Deleted Text: -
Deleted Text: -
http://mbe.oxfordjournals.org/


2012b). Forward Genomics relies on two main concepts. First,
the genetic information for an ancestral phenotype is often
conserved in the descendant species in which this phenotype
is maintained due to purifying selection. If the phenotype is
lost in a descendant species, this genetic information will
evolve neutrally. Thus, genomic regions that only contain
information for this phenotype will diverge faster and, over
time, will be lost in the trait-loss lineages. This principle is
exemplified by the loss of olfactory receptors in whales and
dolphins (Kishida et al. 2007; McGowen et al. 2008), the loss of
egg yolk genes in placental mammals (Brawand et al. 2008), or
the loss of enamel-related genes in birds and other toothless
species (Meredith et al. 2011, 2014). Second, the repeated loss
of a phenotype will result in a specific genomic signature
where those genomic regions that only contain information
for this phenotype are conserved in the trait-preserving line-
ages and are diverged or completely lost in the trait-loss lin-
eages. Forward Genomics uses this specific independent
divergence signature to obtain specificity in a genome-wide
search for genomic regions involved in the loss of a given
phenotype. As a proof of concept, by applying Forward
Genomics to the trait “synthesis of vitamin C”, which is in-
dependently lost in primates, guinea pigs, and many bats, we
detected higher sequence divergence in the Gulo gene, which
encodes the vitamin C synthesizing enzyme (Hiller et al.
2012b). Applied to another phenotype, the absence of phos-
pholipids in the bile of guinea pigs and horses, Forward
Genomics detected the loss of the Abcb4 gene, which en-
codes a phospholipid-secreting transporter (Hiller et al.
2012b). Forward Genomics has also been used together
with transcriptional profiling to detect noncoding genes
that might play a role in the evolution of folded brains by
searching for noncoding RNAs that are conserved among
gyrencephalic mammals and diverged in lissencephalic mam-
mals (Johnson et al. 2015). Finally, the power of matching
independent phenotypic changes with independent genomic
divergence was further demonstrated in a recent study by
Marcovitz, et al. (2016) who successfully detected numerous
associations between conserved noncoding regions and mor-
phological and physiological phenotypic changes.

Our previous Forward Genomics implementation quanti-
fied sequence divergence for each species by reconstructing
the likely ancestral DNA sequence of a given genomic region
(Hiller et al. 2012b). We defined sequence divergence between
an extant species and the common ancestor of all species of
interest as the percent of identical bases: %id¼ id/
(idþ subsþ insþ del) * 100, where id, subs, ins, and del are
the numbers of identical bases, substitutions, inserted bases,
and deleted bases, respectively. Here, we refer to this value as
the global %id value, because divergence is measured be-
tween the common ancestor and an extant species
(fig. 1A). Although sequence divergence in a trait-loss lineage
is likely the result of neutral evolution, %id values alone can-
not distinguish between divergence caused by neutral or non-
neutral processes (supplementary fig. 1, Supplementary
Material online). To associate specific genomic regions to
the given phenotype, our previous implementation searches
for a region where all trait-loss species have a lower global %id

value (higher sequence divergence) compared with all trait-
preserving species (fig. 1B). This method is called “perfect-
match”.

The perfect-match method has three main limitations,
however. First, the phylogenetic relatedness between species
is not taken into account. Instead, perfect-match simply
matches a phenotypic presence/absence profile to a genomic
divergence profile. Second, perfect-match does not control
for differences in evolutionary rates (proportional to the
branch lengths in fig. 1), which influence the global %id values.
Third, perfect-match can only rank candidate loci but it can-
not compute the significance of this association.

Given that independent losses of phenotypes are frequent
(McGhee 2011; Hiller et al. 2012b) and given the growing
number of sequenced genomes, Forward Genomics has
broad applicability to predict genomic loci involved in phe-
notypic changes between species. It is therefore worthwhile
to increase the sensitivity to detect such phenotype–geno-
type associations. Here, we present two new Forward
Genomics methods that overcome the three above-
mentioned limitations of the perfect-match method by (1)
directly controlling for phylogenetic relatedness, (2) control-
ling for differences in evolutionary rates, and (3) computing a
statistical significance. We systematically compare these
methods on 32 simulated datasets and on real data and
show that both new methods provide a significant advance
over the previous perfect-match method. We further used
these new methods to detect genomic differences involved in
the loss of vision in blind subterranean mammals. This
genome-wide screen detected many genes with a function
in eye development and the perception of light, as well as
genes involved in the circadian rhythm. An implementation
of the new methods is available at https://github.com/hiller
lab/ForwardGenomics/.

Results

Two New Forward Genomics Methods Control for
Phylogenetic Relatedness and Differences in
Evolutionary Rates
Both new Forward Genomics methods require a phylogenetic
tree with branch lengths proportional to the number of sub-
stitutions per neutral site. Since Forward Genomics only con-
siders species with sequenced genomes, we can safely assume
that this tree is available or can be inferred from genomic
sequence data. Our first new Forward Genomics method
makes use of the global %id values of a given genomic region,
computed between all extant species of interest and their
common ancestor (fig. 1A). To address the three limitations
described above, we first control for the phylogenetic relat-
edness between species by converting relatedness into a co-
variance matrix, which is a well-known method from
phylogenetic comparisons (Grafen 1989; Martins and
Hansen 1997; Pagel 1997, 1999). The covariance between
two species is the sum of the length of all branches that
are shared by these two species, as illustrated in figure 1C.
Second, since global %id values are influenced by the total
branch length (L) from the common ancestor to an extant
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FIG. 1. Overview of three Forward Genomics methods. (A) Global %id values are computed by comparing the reconstructed sequence of the
common ancestor of the species of interest (blue circle) to the sequence of an extant species. Local %id values are computed between the
sequences at the start and end of each branch, which is either a reconstructed ancestral sequence (blue or green circle) or the sequence of an extant
species. The branches in the phylogenetic tree are proportional to the number of substitutions per neutral site. Outgroup species are used to
reconstruct the common ancestor. (B) The perfect-match method (Hiller et al. 2012b) assumes that the given phenotypic presence/absence
(checkmark/cross) vector includes trait-losses in independent lineages and conducts a genome-wide search for genomic regions where all trait-
loss species have a lower global %id value (higher sequence divergence) compared with all trait-preserving species. This is illustrated by a positive
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species, we control for differences in the evolutionary rates
between species by normalizing global %id values as
%idnorm ¼ ð%id� 100Þ=L. As shown in supplementary fig
ure 2, Supplementary Material online, this removes the influ-
ence of differences in evolutionary rates. Third, to compute
the significance of the association between %idnorm and the
phenotype, we use a phylogenetic Generalized Least Square
(GLS) approach (Grafen 1989; Martins and Hansen 1997;
Pagel 1997, 1999) and compute the significance of a positive
slope of the linear regression line. This Forward Genomics
method is referred to as GLS.

Unlike perfect-match and GLS that use global %id values,
the second new method relies on sequence divergence mea-
sured for every branch, and is called “branch method”. This
method first uses parsimony to classify branches into two
groups: branches where the trait is lost and branches where
the trait is preserved (fig. 1D). Then, for a given genomic
element, we test if the trait-loss branches tend to have higher
sequence divergence compared with the trait-preserving
branches. To this end, we compute a local %id value for every
branch in the tree by comparing the sequence at the start and
end of a branch (fig. 1A). In contrast to the global %id values,
local %id values are independent of each other, as every
branch in the phylogenetic tree represents independent evo-
lution. Thus, the branch method does not need to further
control for phylogenetic relatedness. However, local %id val-
ues are influenced by the length of the respective branch,
similar to global %id values that are influenced by the total
distance to the common ancestor (supplementary fig. 2,
Supplementary Material online). To compare local %id values
between the trait-loss and trait-preserving branches, we re-
move the influence of the branch length by calculating the
difference between a given local %id value and the expected
value for a branch of the same length evolving under purifying
selection. These expected values are pre-computed from sim-
ulated data (see Methods). Thus, normalized local %id val-
ues>0 or around 0 indicate conservation of ancestral
sequence along this branch, while values<0 indicate neutral
evolution. To test if trait-loss branches are associated with
lower normalized local %id values, we compute the signifi-
cance of a positive Pearson correlation coefficient (fig. 1D).
Like GLS, the branch method controls for phylogenetic relat-
edness and differences in evolutionary rates, and computes
the significance of the association between phenotypic loss
and sequence divergence.

Simulating Genome Evolution and Trait Loss Shows
That Both New Methods Outperform the Perfect-
Match Method
To compare the three Forward Genomics methods (fig. 1),
one needs to know which genomic regions are involved in the
given phenotypic change (positives) and which genomic re-
gions are not involved (negatives). Since we lack comprehen-
sive knowledge of real phenotypic changes, we created
datasets by simulating whole genome evolution and indepen-
dent trait loss with parameters as realistic as possible. In brief,
we evolved an ancestral genome along the placental mammal
phylogeny (fig. 2A left, supplementary fig. 3, Supplementary
Material online) to obtain 30 simulated genomes of placental
mammals. These genomes contain a total of 368,767 func-
tional elements (147,776 coding exons, 220,991 nonexonic
elements) that evolve under selection. To assure that simu-
lated data are statistically similar to the real data, we anno-
tated our ancestral genome such that the functional elements
in the evolved simulated genomes match the length, nucle-
otide composition and %id distribution of real genomes (see
Methods). In order to simulate independent trait loss, we
randomly selected a small subset of 210 functional elements
(111 coding exons from 10 genes, and 99 nonexonic ele-
ments) that are involved in the loss of this trait (positives)
and let them evolve neutrally after trait loss. Thus, 99.94% of
all functional elements evolve under selection in all lineages
and are considered as negatives. Then, we computed global
and local %id values for all functional elements and compared
how well the three Forward Genomics methods can distin-
guish positives from negatives, based solely on sequence
divergence.

To comprehensively compare the performance of the
three methods, we tested a total of 32 trait-loss scenarios
(supplementary table 1, Supplementary Material online)
that differ in the age of the trait loss (0.025, 0.05, 0.075, or
0.1 substitutions per neutral site ago), the number of inde-
pendent trait-loss lineages (between 2 and 4) and the evolu-
tionary rate of the trait-loss lineages (low, medium, and high
evolutionary rates, see supplementary fig. 3, Supplementary
Material online). Given that the vast majority of functional
elements are negatives, receiver operating characteristics
plots that compare sensitivity and specificity are not suitable
on such highly imbalanced datasets (Saito and Rehmsmeier
2015). The reason is that Forward Genomics achieves a high
specificity (a high proportion of genomic regions that are not

grey margin that separates the global %id values of both groups of species. (C) The GLS Forward Genomics method derives a covariance matrix that
captures the phylogenetic relatedness between species. As illustrated for the first two species, the covariance between two species is the summed
length of the branches that are shared between both species (highlighted in orange). The variance of a species is the summed length of all branches
from the common ancestor to this species. Lower case letters indicate the length of the branches in the phylogenetic tree. A phylogenetic GLS
approach (Grafen 1989) is used to compute a linear regression between the transformed normalized global %id values and the phenotypic pattern.
The significance of a positive slope of the regression line is used as the significance of the association between phenotype and genotype. (D) The
Branch method uses Dollo parsimony to estimate ancestral phenotypic states given the presence/absence pattern of the trait in the extant species.
Each branch is then classified as trait-loss (red) or trait-preserving (blue). Local %id values are normalized by the expected value of a branch of the
same length. If a genomic region is involved in the trait-loss, we expect that trait-loss branches are associated with lower normalized local %id
values. The significance of a positive Pearson correlation coefficient is used as the significance for the association between phenotype and
genotype.
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FIG. 2. Performance of the three Forward Genomics methods on simulated data shown by precision-sensitivity plots (right) for three of the 32 trait-
loss scenarios (left). Trait losses occurred at the red crosses in the phylogeny, and following trait loss the 210 trait-involved genomic regions evolved
neutrally along the parts of the branches shown in red. The red cross in the precision-sensitivity plot for the perfect-match method marks its
performance when we consider only genomic regions where all trait-loss species have a lower global %id value compared with all trait-preserving
species. The other 29 trait loss scenarios are shown in supplementary figures 5–33, Supplementary Material online.
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involved in the trait loss are correctly identified as such) ir-
respective of the total number of negatives (supplementary
fig. 4, Supplementary Material online). However, the primary
goal of Forward Genomics is not to achieve a high specificity;
instead we aim at achieving a high precision (also called pos-
itive predictive value; Saito and Rehmsmeier 2015), which is
defined as the proportion of elements that are involved in the
loss of this trait (positives) out of all elements predicted to be
involved in the trait loss. For this reason, we compare the
sensitivity that is achieved at a certain precision, which de-
pends on the total number of negatives (supplementary fig. 4,
Supplementary Material online), and plotted the precision–
sensitivity curve for each scenario. The results for three trait
loss scenarios are shown in figure 2; the results for the other
29 scenarios are shown in supplementary figures 5–33,
Supplementary Material online.

To systematically compare the perfect-match, GLS, and
branch method across all 32 scenarios, we used the sensitivity
that was achieved for a high precision of 90%. Compared with
the perfect-match method, the GLS method achieved the
same sensitivity for 3 and a higher sensitivity for 27 scenarios
(fig. 3A, supplementary table 1, Supplementary Material on-
line). The branch method achieved a higher sensitivity for all
32 scenarios compared with the perfect-match method.
Furthermore, the branch method often outperformed GLS,
especially if trait-loss occurred in species with low evolution-
ary rates.

The GLS and Branch Method Outperform the Perfect-
Match Method Regardless of the Properties of the
Trait-Loss Scenarios or the Properties of Trait-Involved
Genomic Regions
Next, we compared how differences in the trait-loss scenarios
affect the performance of the three Forward Genomics meth-
ods. To this end, we averaged the sensitivity at a precision of
90% considering only those scenarios (1) where trait-loss hap-
pened 0.025, 0.05, 0.075, or 0.1 substitutions per neutral site
ago, (2) where 2, 3, or 4 independent trait-losses happened,
and (3) where trait-loss happened in lineages with low, me-
dium, or high evolutionary rates (supplementary fig. 3,
Supplementary Material online). To assure a fair comparison,
we averaged the performance of equivalent trait-loss scenar-
ios (supplementary table 1, Supplementary Material online).

First, all three methods performed substantially better if
the trait-loss occurred long ago (fig. 3B). The reason is that
neutral evolution over longer evolutionary times will result in
higher sequence divergence, which is easier to distinguish
from purifying selection. Second, the GLS and branch method
performed better for a higher number of independent losses
(fig. 3C), which was not the case for the perfect-match
method. Third, while the sensitivity of the GLS method varies
slightly with differences in the evolutionary rates in the trait
loss lineages, the branch and perfect-match method have
increased sensitivity if the trait loss includes lineages with
low evolutionary rates (fig. 3D).

We further compared how differences in the trait-involved
regions affect the performance of each method. For all

scenarios where the trait-loss happened 0.05 substitutions
per neutral site ago, we averaged the sensitivity at 90% pre-
cision separately considering trait-involved elements (1) that
differ in length and (2) that are under weak, medium, or
strong selection (supplementary table 1, Supplementary
Material online). First, we found that the GLS and branch
method have increased sensitivity to detect longer elements
(fig. 3E). The likely reason is that longer, neutrally evolving
elements accumulate mutations more evenly over time. In
contrast, shorter, neutrally evolving elements may not accu-
mulate mutations over short timescales simply by chance,
which makes them harder to identify. Second, while the sen-
sitivity of the branch method does not depend on the
strength of selection, the GLS and perfect-match method
have a higher sensitivity to detect trait-involved elements
evolving under high constraint (fig. 3F).

Importantly, regardless of the differences in the trait-loss
scenarios or differences in the trait-involved elements, the
GLS and branch method consistently outperform the
perfect-match method. This shows that controlling for phy-
logenetic relatedness and differences in evolutionary rates
improves the sensitivity to detect genomic regions that are
involved in phenotypic differences.

The GLS and Branch Method Are Robust to
Uncertainties in the Phylogeny
Next, we investigated how robust are the two new methods
with respect to precise knowledge of the topology of the
phylogenetic tree. While the placental mammalian phylogeny
is overall well resolved, there are three conflicting hypothesis
for the base of the placental mammals (Morgan et al. 2013;
Romiguier et al. 2013). Our simulated genomes evolved along
a tree that represents the Atlantogenata hypothesis, where
afrotherians and xenarthrans are sister lineages. To test ro-
bustness to the tree topology, we used the same simulated
data but ran Forward Genomics with trees representing the
Epitheria (afrotherians and boreoeutherians are sister line-
ages) and the Exafroplacentalia (xenarthrans and boreoeu-
therians are sister lineages) hypothesis (supplementary fig.
34A, Supplementary Material online). We found that the sen-
sitivity that was achieved for a precision of 90% is typically
only slightly affected by the uncertainty of the topology at the
placental mammal base (fig. 4A).

Next, we tested how uncertainties in the branch lengths
affect the results. To this end, we added random noise to each
branch length by sampling from a normal distribution with a
standard deviation of 0.025. Repeating this three times re-
sulted in three trees where the branch lengths changed on
average 0.019 (maximum 0.078) substitutions per neutral site
(supplementary fig. 34B, Supplementary Material online). We
found that the sensitivity at 90% precision varies depending
on the scenario and the tree, however we observed both
increases and decreases compared with the sensitivity ob-
tained with the true branch lengths (fig. 4B). Importantly,
despite these changes in the topology and the branch lengths,
the GLS and the branch method still achieve a higher sensi-
tivity than the perfect-match method for the majority of the
32 trait loss scenarios (fig. 4).
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FIG. 3. Performance of the three Forward Genomics methods on 32 trait-loss scenarios. (A) The sensitivity at 90% precision is plotted for 32
different trait-loss scenarios. Consistently, the GLS and branch method improve the sensitivity compared with the perfect-match method. (B–F)
Properties of the trait-loss scenarios and properties of the trait-involved genomic regions influence the performance: (B) Age of the trait loss,
measured by how long the trait-involved elements evolved neutrally; (C) number of independent trait-losses; (D) evolutionary rate in the trait-loss
lineages; (E) length of trait-involved elements; and (F) strength of selection on trait-involved elements in the branches where they evolve under
selection. Weak, medium, or strong refers to genomic regions that accept mutations with an average probability of> 0.66, 0.33–0.66, <0.33,
respectively.
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Both the GLS and Branch Method Outperform
Perfect-Match for the Trait “Loss of Vitamin C
Synthesis”
To test if the GLS and the branch method also have increased
sensitivity on real data, we used the independent loss of
Vitamin C synthesis in Haplorrhini primates, in guinea pigs,

in many microchiroptera families, and in the megachiroptera
Pteropus vampyrus as a test case. Since it is well known that
the loss of the Gulo gene is responsible for this trait loss (Hiller
et al. 2012b), we considered all exons of the Gulo gene as trait-
involved regions and all other 184,723 conserved coding re-
gions as negatives.
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FIG. 4. Robustness of the new Forward Genomics methods to uncertainties in the phylogenetic tree. The sensitivity at a precision of 90% of all 32
trait loss scenarios is shown for (A) the Epitheria and the Exafroplacentalia tree topology (supplementary fig. 34A, Supplementary Material online)
and (B) three trees where random noise was added to each branch length (supplementary fig. 34B, Supplementary Material online). Solid lines
show the results using the phylogeny that was used to produce the simulated data (reproduced from fig. 3A for comparison). Please note that the
perfect-match method considers neither topology nor branch lengths, thus always gives the same results. The number of scenarios where the
achieved sensitivity is higher than the sensitivity of the perfect-match method is shown in the legend.
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Previous results from the perfect-match method using a
genome alignment with less species (Hiller et al. 2012b) found
only one conserved coding region, which corresponded to
Gulo exon 2, with lower (not-normalized) global %id values
for all trait-loss species compared with all trait-preserving
species (positive margin, as illustrated in fig. 1B). Consistent
with this, the perfect-match and both new methods detected
Gulo exon 2 as the top hit (fig. 5A) using a newer alignment
with more species (Methods). To compare how well the three
Forward Genomics methods can identify the conserved cod-
ing regions that correspond to the 11 coding exons of Gulo,
we ranked each coding region. As shown in figure 5A, the 11
Gulo exons are ranked much higher with the GLS and, in
particular, with the branch method, where all 11 exons are
within the top 164 hits. This shows that GLS and the branch
method outperform perfect-match on real data and that
both new methods have increased sensitivity to detect geno-
mic regions involved in the loss of vitamin C synthesis
phenotype.

Among the four nonvitamin C synthesizing lineages, the
megabat (P. vampyrus) has lost this trait most recently, as
closely related bats are able to synthesize vitamin C and the
Gulo gene is intact in other species of the Pteropus genus (Cui
et al. 2011a, b). Since our simulations showed that there is
lower sensitivity to detect genotype–phenotype associations
for recent trait losses, we tested if excluding P. vampyrus from
the list of trait-loss lineages would increase the sensitivity to
detect Gulo exons. Indeed, the significance of most Gulo exons
increased for all three Forward Genomics methods (fig. 5B),
which makes the Gulo genomic locus to stand out even more
in a genome-wide screen (supplementary figure 35,
Supplementary Material online). This supports our findings
based on simulated data and suggests a strategy that com-
bines results from two Forward Genomics searches: one
search that includes all trait loss species and a second search
that may detect additional associations by excluding lineages
with a recent trait loss.

The GLS and Branch Method Detect Numerous Genes
Associated with the Loss of Vision in Blind Mammals
We applied our new methods to detect genes involved in the
loss of vision in two blind mammals, the blind mole rat and
the cape golden mole (Fang et al. 2014). Both species live in a
subterranean environment, have rudimentary eyes com-
pletely covered by skin, and a degenerated visual system
(Cooper et al. 1993). We built a genome alignment of these
two and 17 other mammals and three nonmammalian out-
group species, and computed local and global %id values of
184,412 conserved coding regions (see Methods). We ranked
each gene by the P-value and number of exons, which
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FIG. 5. The GLS and branch method outperform the perfect-match
method on the trait “loss of vitamin C synthesis”. (A) Gulo exons are
ranked higher with the GLS and the branch method than with per-
fect-match. For GLS and the branch method, each conserved coding
region was ranked by its P-value. For perfect-match, we used the size
of the margin for ranking, which is the difference between the lowest
%id value of a trait-preserving species and the highest %id value of a
trait-loss species. Gulo exon 2 is ranked first for all three methods. (B)
The significance of most Gulo exons increases if the megabat P. vam-
pyrus is excluded from the list of trait loss species. The trait loss in P.
vampyrus happened more recently than in Haplorrhini primates,
guinea pig, and the microbat M. lucifugus. We computed the differ-
ence between the margin (perfect-match) and the log P-value (GLS

and branch method) between the screen that used all nonvitamin C
synthesizing species and the screen where P. vampyrus was excluded.
Positive differences indicate a better match to the trait loss. The
significance of Gulo exons 9 and 10 decreases because both exons
are deleted in P. vampyrus. Gulo exon 1, which only encodes the start
codon, is excluded.
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resulted in a set of 208 genes detected by the GLS and/or
branch method.

We found that this set is enriched for genes known to be
involved in eye development and perception of light, and
genes expressed in the retina and lens (fig. 6, table 1).
Furthermore, knockout or mutations in these genes are asso-
ciated with abnormal eye phenotypes in mouse or eye dis-
eases in human. Among these 208 genes are six crystalline
genes that are involved in the formation of the lens and
maintenance of its transparency and refractive index.
Several other genes code for structural components of the
lens, the retina and the cornea, or are involved in the trans-
duction of light stimulus (table 1). The complete list of
36 genes with a function in eye development and vision is
given in supplementary table 2, Supplementary Material on-
line. Overall, this shows that the new Forward Genomics
methods can detect many genes that are likely involved in
the degeneration of the visual system in these two subterra-
nean species.

Apart from genes related to vision, Forward Genomics
detected divergence in genes involved in the transduction
of light stimulus and regulation of the circadian clock: three
gamma-aminobutyric acid (GABA) C receptors (Gabrr1,
Gabrr2, Gabrr3) and the melatonin receptor 1b (Mtnr1b).
These three GABA receptors are primarily found in the retina
and are involved in inhibition of light-evoked synaptic cur-
rents from retinal neurons (Lukasiewicz et al. 2004). Removal
of this inhibition is potentially an adaptation to the low light
levels in the burrows, resulting in an increased sensitivity to
light which, in turn, might allow for regulating the circadian
clock. Mtnr1b is also expressed primarily in the retina. This
gene is inactivated in the blind mole rat (as shown previously

by Fang et al. 2014) as well as in the cape golden mole due to
stop codon and frameshift mutations in exon 1 and the de-
letion of exon 2 (supplementary fig. 36, Supplementary
Material online). Furthermore, the naked mole rat, another
independent subterranean lineage, has also lost Mtnr1b (Kim
et al. 2011). Melatonin is a hormone that is produced at night,
in response to the absence of light stimulus from the retina,
and is the major regulator of the daily biological rhythm of
animals. The two blind species analyzed here live in a subter-
ranean, constantly dark environment where minimal light
propagates into the burrows (Kott et al. 2014), however,
they still have an intrinsic rhythmicity, which can be mea-
sured by their thermoregulatory capacity (Haim et al. 1983;
Pevet et al. 1984). Melatonin is also known for its role as a
potent antioxidant and free radical scavenger (Hardeland
et al. 1995). Blind mole rats produce melatonin in the greatly
developed Harderian gland, which has high levels of the
melatonin-synthesizing enzyme (Balemans et al. 1980) and
this was suggested to contribute to protection against higher
levels of reactive oxygen species produced by oxidative stress
that the animals are subjected to in their hypoxic subterra-
nean environment (Caballero et al. 2006). Given that sus-
tained melatonin levels interfere with the circadian clock
(Pevet et al. 1984), the loss of one melatonin receptor might
be a way of overcoming potentially deleterious effects on the
circadian clock.

Discussion
The growing number of sequenced genomes provides an
unprecedented opportunity to use computational
approaches to discover which genomic changes underlie

FIG. 6. The GLS and branch method detects several conserved coding regions that are diverged in two blind mammals, the blind mole rat, and the
cape golden mole. Manhattan plots show the genomic location of 184,412 conserved coding regions and their associated P-values computed by
the GLS (A) and branch method (B). All conserved coding regions that correspond to exons of the genes with a function in eye development and
perception of light (supplementary table 2, Supplementary Material online) are shown in red.
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particular phenotypic changes between species. While this is
challenging due to the large number of genomic and pheno-
typic differences, computational methods can detect statisti-
cal signals for the subset of phenotypic differences that
comprise independent losses (Hiller et al. 2012b; Marcovitz
et al. 2016). Our previously developed Forward Genomics
method searched for matches between a phenotypic pres-
ence/absence pattern and a genomic divergence profile, and
thus did not account for the phylogenetic relatedness be-
tween species. Here, we present two new methods that di-
rectly control for phylogenetic relatedness and compute the
statistical significance of the associations. Both methods also
control for differences in evolutionary rates, which influences
sequence divergence. We showed that both methods have
substantially improved sensitivity in detecting associations
between phenotypic and genomic differences.

Forward Genomics is more effective the older the inde-
pendent trait losses are, because old losses give enough time
for neutral evolution to leave a clearly detectable sequence
divergence signal in those genomic regions that are involved

in the trait. If trait-loss is known to be recent in some lineages,
but older in at least two other independent lineages, it can be
advantageous to run a second Forward Genomics search that
excludes those lineages where the trait was lost more recently.
This second search may detect additional associations that
were missed in a first search where all trait loss species were
included (fig. 5B). Two sources can be used to estimate when
a trait was lost. First, dated fossils can provide information
when a trait was still present and when it was lost along one
lineage. Second, species divergence times give upper and
lower boundaries for when a trait was lost. If a sister lineage
to a trait-loss species has also lost the trait, we would assume
by parsimony that the loss is as old as the common ancestor.
In contrast, if sister species possess this trait, the loss is youn-
ger than the split of these species. The latter is illustrated for
vitamin C synthesis: it is known that R. leschenaultia, a sister
species to the nonvitamin C synthesizing bat P. vampyrus can
synthesize this vitamin (Cui et al. 2011a, b). Both species split
around 23 Ma (Hedges et al. 2006), which gives an upper
bound for the age of this trait loss. Ideally, one would like

Table 1. Functional Enrichments of the 208 Genes for Which the GLS and Branch Method Detected Increased Divergence in Blind Mammals.

Ontology Adjusted
P-value

Genes

GO biological process
Sensory perception of light stimulus

(GO:0050953)
2.3E�09 CRYBB1;ABCA4;CRYBB3;CRYBA1;KRT12;CRYBB2;CRYBA4;CACNA1F;

ARR3;GUCY2F;USH2A;GABRR2;BFSP2;OPN1MW;RDH5;GJA8;RGR;IMPG1
Visual perception (GO:0007601) 2.3E�09
Sensory perception (GO:0007600) 8.8E�05 CRYBB1;ABCA4;CRYBB3;CRYBA1;CRYBB2;KRT12;CRYBA4;TAAR3;ARR3;

CACNA1F;GUCY2F;USH2A;GABRR2;BFSP2;OPN1MW;RDH5;GJA8;
RGR;IMPG1

Lens development in camera-type eye
(GO:0002088)

0.008 LIM2;CRYBA2;CRYBA1;GJA8;GJE1

Detection of light stimulus (GO:0009583) 0.011 OPN1MW;GJA10;ABCA4;RDH5;CACNA2D4;CACNA1F;RGR;GUCY2F
Detection of visible light (GO:0009584) 0.026 OPN1MW;GJA10;ABCA4;RDH5;CACNA2D4;CACNA1F;GUCY2F

GO molecular function
Structural constituent of eye lens (GO:0005212) 1.5E�09 LIM2;BFSP2;BFSP1;CRYBB1;CRYBB3;CRYBA2;CRYBB2;CRYBA1;CRYBA4

MGI mammalian phenotype
MP0005551_abnormal_eye_electrophysiology 7.8E�08 ABCA4;CACNA2D4;CACNA1F;ARR3;USH2A;GUCY2F;GABRR1;

GJA10;RDH5;SLC16A8;GJA8;RGS11;RGR
MP0002697_abnormal_eye_size 0.020 LIM2;HECTD1;HSF4;CRYBA1;CRYBB2;GJA8;GJE1
MP0005193_abnormal_anterior_eye 0.018 LIM2;BFSP2;BFSP1;HSF4;KRT12;CRYBB2;CRYBA1;GJA8;LYST;GJE1
MP0003787_abnormal_imprinting 0.032 SNRPN;ARID4A;ARID4B
MP0008877_abnormal_DNA_methylation 0.040
MP0005253_abnormal_eye_physiology 0.040 BFSP2;ABCA4;RDH5;GJA8;RGR

Human phenotype ontology
Zonular cataract (HP:0010920) 2.6E�07 BFSP1;CRYBB1;HSF4;CRYBB3;CRYBA1;CRYBB2;CRYBA4;GJA8
Corneal dystrophy (HP:0001131) 0.007 OPN1MW;CRYBB1;CRYBB2;KRT12;CRYBA4;GJA8
Nuclear cataract (HP:0100018) 0.004 CRYBB1;HSF4;CRYBB3;GJA8

OMIM
Cataract 4.6E�09 LIM2;BFSP2;BFSP1;CRYBB1;CRYBB3;HSF4;CRYBA1;CRYBB2;

CRYBA4;GJA8
Human gene atlas

Retina 0.009 CH25H;ABCA4;RDH5;CRYBB2;SLC16A8;RGR;ARR3;IMPG1;TNS1
Mouse gene atlas

Lens 0.044 TKTL1;LIM2;UHRF2;CRYBB1;CYP3A44;CRYBB3;CRYBA2;CRYBA1;
CRYBB2;CRYBA4;GJE1;BFSP2;BFSP1;EWSR1;GJA10;CAPRIN2;HSF4;
PCNX;GJA8;BIRC7;AGFG1

Retina 0.044 PPM1N;ABCA4;BRAF;CACNA2D4;ARR3;USH2A;GABRR2;GABRR1;
PIK3CA;OPN1MW;BC030499;UBN2;FBXL5;IMPG1;DRD4;SERINC4

Pfam InterPro domains
Crystallin 5.8E�05 CRYBB1;CRYBA2;CRYBA1;CRYBB2;CRYBA4

Enrichments were computed by Enrichr (Chen et al. 2013).
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to estimate how much sequence divergence can be expected
in a lineage after trait-loss. This requires a phylogenetic tree
where branch lengths correspond to substitutions per neutral
site. The increasing availability of species with sequenced ge-
nomes will facilitate reliably estimating such molecular
phylogenies.

While more and more genomes are sequenced, there is still
a substantial mismatch between the number of species with
sequenced genomes and the number of species for which
phenotypic data are available. For example, out of 46 mam-
mals included in a very large phenotype dataset (O’Leary et al.
2013), only 20 have sequenced genomes (Marcovitz et al.
2016). To effectively utilize the present and future genomes
to associate phenotypic differences and genomic differences,
comprehensive phenotypic knowledge of the sequenced spe-
cies must be accessible to computers (Deans et al. 2012,
2015), as opposed to free text descriptions in which the ma-
jority of our phenotypic knowledge is still described.
Phenotype databases such as Morphobank (O’Leary and
Kaufman 2011) that provide phenotypic character matrices
have been successfully used to associate phenotypic and ge-
nomic differences (Marcovitz et al. 2016). However, in order
to reuse, search, and compare phenotypic data, it is necessary
to use ontologies that provide a defined vocabulary of ana-
tomical features and relationships between them. The
Phenoscape Knowledgebase uses ontologies to describe phe-
notypes of natural species and phenotypes of model organ-
ism mutants (Dahdul et al. 2010), which allows deriving
hypotheses which genes may be involved in phenotypic dif-
ferences between natural species (Manda et al. 2015). For
example, candidate genes for the loss of the tongue and scales
in the catfish lineage were detected by comparing natural and
mutant phenotypes, and indeed, these genes have different
expression patterns in the channel catfish that are consistent
with their involvement in these phenotypic losses (Edmunds
et al. 2016). Another advantage of computer-interpretable
phenotype data is that missing data, which is common in
phenotypic character matrices, can be drastically reduced by
using machine reasoning to infer presence/absence states
(Dececchi et al. 2015), which in turn will broaden the appli-
cability of approaches like Forward Genomics.

The two new methods presented here represent a signif-
icant advance in our ability to discover the genomic basis
underlying phenotypic differences between species. With
the increasing number of sequenced genomes and with an
increasing accessibility of phenotypic knowledge, these
Forward Genomics methods will contribute to our under-
standing of how nature’s phenotypic diversity has evolved.

Methods

GLS
In the GLS method, we control for the phylogenetic related-
ness between species by computing the covariance matrix
based on a phylogenetic tree. Given a tree with n species, the
elements in the n� n covariance matrix R are defined as Rii

¼ Li and Rij ¼ Lij where Li is the total branch length from the
common ancestor to species i and Lij is the total branch

length shared by species i and j (fig. 1C). Then, we use a
phylogenetic GLSs approach (Grafen 1989), implemented in
the R package caper (https://cran.r-project.org/web/pack
ages/caper/), to compute a linear regression between the
normalized %id values and the phenotype. The P-value of a
positive slope of the regression line is used as the significance
of the association between the genomic and phenotypic
difference.

Branch Method
The branch method computes a local %id value, which cor-
responds to the divergence between the sequence at the start
and end of a given branch (fig. 1C). To remove the influence of
the branch length on the local %id value, we pre-computed
the expected local %id value of a branch of length b that
evolves under selection. To this end, we simulated genome
evolution for b substitutions per neutral site (see below) and
averaged the local %id value of all functional elements.
Supplementary table 3, Supplementary Material online,
shows the expected local %id values for branch lengths vary-
ing from 0.01 to 1.0 substitutions per neutral site in steps of 0.
01. Then, we obtained a normalized local %id value by calcu-
lating the difference between the given local %id value and
the local %id value that is expected for a branch of the same
length evolving under selection.

To classify branches as trait-loss or trait-preserving, we
used Dollo parsimony, which allows for an unambiguous re-
construction of ancestral character states by assuming that
lost traits cannot be regained. Alternatively, one could use
maximum likelihood to reconstruct ancestral character
states, which allows lost traits to be regained. Branches where
a trait was likely regained should then be excluded, as they
might not fully preserve the ancestral trait information, which
would confound the analysis. It should be noted that for all
our simulated scenarios, for the loss of vitamin C synthesis,
and for the loss of vision, both maximum likelihood and Dollo
parsimony lead to the same branch classification.

Individual branches in a tree can be very short. On such
short branches, it is more likely that not enough random
mutations occur such that the sequence divergence of a neu-
trally evolving element can be distinguished from an element
that evolves under selection. Therefore, we assigned a branch-
length-dependent weight to each branch that is proportional
to the power to detect neutral evolution along this branch.
To compute the weight for a branch of length b, we first
obtained the local %id distribution for elements evolving
neutrally and elements evolving under selection by simulating
genome evolution for b substitutions per site. Then, we define
fðv; neutralÞ and f v; selectionð Þ as the fraction of the neu-
tral and selection distribution below the %id value v: The
weight of a branch of length b is then
maxv ðf v; neutralð Þ � fðv; selectionÞÞ. Thus, if the two
distributions are nonoverlapping, the weight will be �1. If
the two distributions are similar as it is expected for short
branches, the weight will be<1. Because the average con-
straint differs between coding regions and nonexonic ele-
ments, weights and expected local %id values were
computed separately for these two groups (supplementary
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fig. 37 and supplementary table 4, Supplementary Material
online). These weights are used to calculate a weighted
Pearson correlation between the normalized local %id values
of the trait-loss and the trait-preserving branches.

Annotating the Ancestral Genome for Simulating
Genome Evolution
We used Evolver (http://www.drive5.com/evolver/) to simu-
late the evolution of an entire ancestral genome along a phy-
logeny. Evolver models genome evolution including
substitutions, insertions, and deletions, transposon insertions,
and tandem repeat expansion and contraction. Important for
our purpose is that Evolver uses an ancestral genome, where
genes (untranslated and coding regions, start and stop co-
dons, and splice sites) and nonexonic functional elements are
explicitly annotated and the bases in functional regions evolve
under a specified level of constraint. Evolver has an explicit
model of protein evolution and maintains the gene structure
for genes under selection.

Evolver requires an ancestral genome, where the type, po-
sition, and constraint of functional elements are annotated,
and a phylogeny along which the genome will evolve. To
assure that we compare the different Forward Genomics
methods on realistic data, we created an ancestral genome
annotation such that the functional elements in the simu-
lated evolved genomes match the length, nucleotide compo-
sition and %id distribution of real genomes. We chose the
mouse genome as our ancestral genome because it is well
assembled and well annotated. First, we replaced N’s by ran-
dom bases in chromosome 1–19 of the mouse mm10 assem-
bly using Evolver’s “evo –findns”. Second, we assigned the
position of functional elements to this genome. To annotate
the position of 50 and 30 untranslated regions and coding
regions of genes, we used the longest isoform of
knownGenes from the UCSC genome browser
(Rosenbloom et al. 2015). To annotate the position of con-
served nonexonic elements in the ancestral genome, we used
PhastCons elements (Siepel et al. 2005) from the UCSC
mouse mm10 60way alignment (Rosenbloom et al. 2015)
that are longer than 70 bp and that do not overlap exons.
This results in a length and nucleotide composition distribu-
tion that is comparable to real data. Third, we needed to
adjust the evolutionary constraint in the ancestral genome
such that simulating genome evolution produces a distribu-
tion of global %id values that matches the real %id values.
While we use the global %id value as a proxy for constraint,
Evolver uses an “acceptance probability” that specifies the
probability of a base to accept a mutation. Therefore, we
created a map between global %id values and mean accep-
tance probability. To this end, in a first pass, we evolved a
genome with randomly assigned mean acceptance probabil-
ities for 0.19 substitutions per neutral site, which is the dis-
tance of human to the placental mammal ancestor, and
measured the global %id value of all functional elements.
Then we grouped all elements according to their %id value
into bins of width 2%. Thus, for each %id value bin, we get the
distribution of mean acceptance probabilities that resulted in
evolved elements with this %id value. Second, we used this

map to assign mean acceptance probabilities to each func-
tional element in the ancestral genome based on the real
human %id value. Specifically, we iterated over each func-
tional element, obtained the real human %id value and
then sampled from the mean acceptance probability distri-
bution of the respective bin. Given the mean acceptance
probability of an element, we used Evolver’s “evo –assprobs”
to assign base-wise acceptance probabilities to each base in
this functional element. We excluded functional elements
that are shorter than 70 bp, which results 147,776 coding
exons and 220,991 nonexonic elements (368,767 elements
in total) in the final ancestral genome.

Simulating Genome Evolution and 32 Different Trait-
Loss Scenarios
Simulating the entire phylogeny for all 19 chromosomes re-
quires 1.1 TB disk space and over 65 CPU days, which is not
feasible for testing many different trait-loss scenarios. To re-
duce runtime and disk space, we selected the 210 trait-
involved elements only from chromosome 1. Then we simu-
lated the evolution of chromosome 1 for each trait-loss sce-
nario and extracted the %id values of the 210 trait-involved
elements (positives). To obtain the %id values of all negative
elements, we simulated the evolution of chromosome 1–19
only once, evolving all 368,767 functional elements under
selection in all lineages. The %id values of these negatives
were used in all trait-loss scenarios.

To assure comparability between scenarios, we used a fixed
set of trait-involved elements for all scenarios. This set com-
prises a total of 210 randomly selected elements (111 coding
exons, 99 nonexonic elements) that are a representative sam-
ple as they closely match the length and mean acceptance
probability distribution of all functional elements (supplemen
tary fig. 38, Supplementary Material online).

For each scenario, we evolved chromosome 1 of the an-
cestral genome along the placental mammal phylogeny. The
phylogenetic tree of placental mammals with branch length
values corresponding to substitutions per neutral site was
downloaded from http://hgdownload.soe.ucsc.edu/
goldenPath/mm10/multiz60way/. To simulate independent
trait-loss, we stopped the simulation 0.025, 0.05, 0.075, or 0.
1 substitutions per site before reaching the endpoint of a
branch leading to a trait-loss species. Then, we removed
any constraint on the 210 trait-involved regions by setting
the probability of accepting a mutation to 1 and restarted the
simulation. Global and local %id values were computed for all
elements and used for Forward Genomics.

Applying Forward Genomics to the Loss of Vitamin C
Synthesis
We used the UCSC 60way genome alignment where 59 ver-
tebrates are aligned to the mouse mm10 assembly
(Rosenbloom et al. 2015). To detect conserved regions in
this alignment, we used PhastCons (Siepel et al. 2005) with
the parameters expected-length¼ 45, target-coverage¼ 0.3
and rho¼ 0.3, and GERP (Davydov et al. 2010) with default
parameters. Then, we extracted conserved coding regions by
intersecting conserved elements with coding exons from the
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Ensembl, RefSeq, and UCSC knownGenes annotation. We
required that each conserved coding region is at least
30 bp. This resulted in 184,723 conserved coding regions cov-
ering 27.1 Mb (1.03% of the mm10 assembly). Percent identity
values were computed by reconstructing ancestral sequences
as described in Hiller et al. (2012b). Bases with a low-quality
score (>1% error rate) for the assemblies where quality scores
are available were ignored in the %id calculation. Similarly,
unaligning regions that map to assembly gaps were ignored
and not counted as lost ancestral sequence (Hiller et al.
2012a). To screen for regions associated with the loss of vita-
min C, we applied our R implementation of the three
Forward Genomics methods (https://github.com/hillerlab/
ForwardGenomics/) using the following species as trait-loss
species: microbat (myoLuc2), megabat (pteVam1), tarsier
(tarSyr1), squirrel monkey (saiBol1), marmoset (calJac3), ba-
boon (papHam1), rhesus macaque (rheMac3), gibbon
(nomLeu2), orangutan (ponAbe2), gorilla (gorGor3), chim-
panzee (panTro4), human (hg19), and guinea pig (cavPor3).

Applying Forward Genomics to the Loss of Vision in
Blind Mammals
To analyze the loss of vision in the blind mole rat and cape
golden mole, we first build a genome alignment with mouse
as the reference species that included both blind species.
Specifically, we used the UCSC lastz/chain/net pipeline
(Kent et al. 2003) to build pairwise genome alignments be-
tween mouse (mm10 assembly) and the following species: rat
(rn5), guinea pig (cavPor3), pika (ochPri3), rabbit (oryCun2),
prairie vole (micOch1), blind mole rat (nanGal1), squirrel
(speTri2), human (hg19), crab-eating macaque (macFas5),
bushbaby (otoGar3), cow (bosTau7), dog (canFam3), horse
(equCab2), cat (felCat5), elephant (loxAfr3), manatee
(triMan1), cape golden mole (chrAsi1), opossum
(monDom5), Anolis lizard (anoCar2), chicken (galGal4), and
frog (xenTro7). For all species, we used lastz (Schwartz et al.
2003) version 1.03.54 with the parameters H¼ 2,000
Y¼ 3,000 L¼ 3,000 K¼ 2,400, and the HoxD55 scoring ma-
trix, and kept all local alignment that have at least
one�30 bp region with�60% sequence identity and�1.8
bits entropy as described in Hiller et al. (2013). For all
nonmammalian species, we additionally used highly-
sensitive local alignments (Hiller et al. 2013) with lastz param-
eters W¼ 5, L¼ 2,700, and K¼ 2,000. For mammals, we kept
only alignment chains with a score of�70,000 that
span�9,000 bp in both genomes. In order to keep also chains
with very strong alignments spanning only a shorter region,
we also kept chains with a score of �150,000 that
span�6,000 bp in both genomes. For nonmammals, we
kept only alignment chains with a score of�15,000. All other
chains are discarded as they typically do not represent strong
syntenic alignments. Chains were ‘netted’ using chainNet
(Kent et al. 2003). The pairwise syntenic alignment nets are
the input to MULTIZ (Blanchette et al. 2004) to build a mul-
tiple alignment. The neutral distances between all species
were determined using phyloFit (Siepel et al. 2005) and
4-fold degenerate sites. The tree with branch lengths measur-
ing substitutions per neutral site is given in supplementary

figure 39, Supplementary Material online. As above, we used
PhastCons and GERP to obtain 184,412 conserved coding
regions covering (27.4 Mb, 1.04% of the mm10 assembly).
After applying the GLS and branch method to all conserved
coding regions, we selected those multi-exon genes where at
least two exons are in the top 1,000 of the most significant
hits and selected those single exon genes that are in the same
top 1,000 hits. This resulted in a list of 141 (124 multi-exon
and 17 single exon) genes for the GLS method and 164 (132
multi-exon and 32 single exon) genes for the branch method.
The union of both lists comprises 208 genes. We used Enrichr
(Chen et al. 2013) to detect functional enrichments of these
208 genes (table 1). Similar enrichments related to eye and
vision were also found for the individual sets of 141 and 164
genes, however the 164 genes detected by the branch method
have additional functional enrichments (supplementary table
5, Supplementary Material online).

Data Availability
The following data are available at http://bds.mpi-cbg.de/hill
erlab/ForwardGenomics/: data of all 32 simulated trait loss
scenarios (%id values, output of the Forward Genomics im-
plementation, all scripts to reproduce the results), phastCons
and GERP conservation scores (bigWig format) and the con-
served elements (bed format), the conserved coding regions
(bed format) and their local and global %id values that we
used for the loss of vitamin C and loss of vision phenotype,
and the genome alignment (maf format, 9.5 GB) that includes
the blind mammals and the associated phylogenetic tree. An
R implementation of the three Forward Genomics methods is
available at https://github.com/hillerlab/ForwardGenomics/.

Supplementary Material
Supplementary tables 1–5 and figures 1–39 are available at
Molecular Biology and Evolution online (http://www.mbe.
oxfordjournals.org/).
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