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Stochastic reaction-diffusion systems frequently exhibit behavior that is not predicted by determin-
istic simulation models. Stochastic simulation methods, however, are computationally expensive.
We present a more efficient stochastic reaction-diffusion simulation algorithm that samples realiza-
tions from the exact solution of the reaction-diffusion master equation. The present algorithm, called
partial-propensity stochastic reaction-diffusion (PSRD) method, uses an on-lattice discretization of
the reaction-diffusion system and relies on partial-propensity methods for computational efficiency.
We describe the algorithm in detail, provide a theoretical analysis of its computational cost, and
demonstrate its computational performance in benchmarks. We then illustrate the application of
PSRD to two- and three-dimensional pattern-forming Gray-Scott systems, highlighting the role of
intrinsic noise in these systems. © 2011 American Institute of Physics. [doi:10.1063/1.3666988]

I. INTRODUCTION

Chemically reactive systems exhibiting spatial het-
erogeneity are often modeled using reaction-diffusion
equations.1–10 Reaction-diffusion models explicitly capture
spatial variations of the concentration fields, accounting for
diffusive transport of reactants and products to and from reac-
tion sites. Spatial heterogeneity is sustained when diffusion of
chemicals is slower than reactions between them. In the limit
of large numbers of molecules, reaction-diffusion processes
can be modeled continuously as systems of coupled partial
differential equations (frequently called reaction-diffusion
equations or Fisher-KPP equations1, 2) governing the spa-
tiotemporal evolution of the smooth concentration fields of
all chemical species. Continuum reaction-diffusion models
can exhibit nontrivial spatiotemporal dynamics, such as trav-
eling concentration fronts11 and inhomogeneous stationary
concentration distributions (“Turing patterns”).3, 12–14 These
phenomena have been successful in explaining a number of
experimental observations, including localization of cell divi-
sion sites in E. coli15 and “black eyes” patterns in the chlorite-
iodide-malonic acid reaction.16–18 For low molecular copy
numbers, however, continuum models fail to provide an accu-
rate description of the spatiotemporal dynamics of reaction-
diffusion systems. In particular, intrinsic noise from the
apparent molecular discreteness, leading to stochasticity of
chemical reactions, alters front propagation dynamics19 and
Turing patterns5, 6 in a nontrivial way. This is because fluctua-
tions in the molecule populations may no longer be negligible,
and correlated fluctuations may lead to deviations from de-
terministic behavior.5, 6, 8, 20, 21 These effects can be accounted
for by stochastic reaction diffusion (SRD) simulations.

a)Electronic mail: rajeshr@ethz.ch.
b)Author to whom correspondence should be addressed. Electronic mail:

ivos@ethz.ch.

There are mainly two types of SRD simulations: on-
lattice (or compartment-based) simulations and off-lattice (or
particle-based) simulations. On-lattice simulations include
the next subvolume method (NSM) (Ref. 5), whereas Greens-
function reaction dynamics (GFRD) (Ref. 22) and Brow-
nian dynamics (BD) (Ref. 23) are examples of off-lattice
schemes. On-lattice SRD simulations5, 24–29 are based on di-
viding (discretizing) the computational domain into subvol-
umes, in each of which the chemical reaction system is as-
sumed to be well mixed (spatially homogeneous). It is further
postulated that only molecules within the same subvolume
can react with each other, effectively treating molecules of the
same chemical in different subvolumes as different species.
Diffusion is modeled as unimolecular “diffusion reac-
tions” representing jumps of molecules between neighbor-
ing subvolumes. The on-lattice approach hence describes the
reaction-diffusion system as a large chemical reaction net-
work with the number of species proportional to the prod-
uct of the actual number of chemical species and the num-
ber of subvolumes used to discretize space. The kinetics
of this enlarged reaction network can be mathematically
described by the on-lattice reaction-diffusion master equa-
tion (RDME), analogous to the chemical master equation
(CME).30 Off-lattice SRD simulations22, 23, 31, 32 are based on
computational particles mimicking the Brownian motion of
molecules, whereby the molecules involved in a bimolecu-
lar reaction react with a certain probability when the dis-
tance between them is smaller than a pre-defined reaction
radius.

Here, we focus on-lattice SRD simulations in order
to avoid computationally expensive collision detection and
time-step adaptation mechanisms.33 Since on-lattice SRD is
described by a system of chemical reactions modeled by the
RDME, it can be exactly simulated using Gillespie’s stochas-
tic simulation algorithm (SSA).30, 34 SSA samples trajectories
from the exact solution of the master equation by sampling
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the index of the next reaction, the time to the next reaction,
and updating the reaction probability rates (called “propen-
sities”). Different SSA formulations are available that use
different sampling and update algorithms, including the
direct method (DM),34, 35 the first reaction method
(FRM),34, 35 the next reaction method (NRM),36 the op-
timized direct method (ODM),37 the sorting direct method
(SDM),38 the SSA with composition-rejection sampling
(SSA-CR),39 and partial-propensity methods40 such as the
partial-propensity direct method (PDM),41 the sorting PDM
(SPDM),41 and the partial-propensity SSA with composition-
rejection sampling (PSSA-CR).42 Directly using any of these
SSA formulations for the RDME, without adapting it to the
specifics of on-lattice SRD simulations, would be correct, but
computationally and/or memory inefficient since the number
of species and the number of reactions increase linearly with
the number of subvolumes. A more efficient way of perform-
ing on-lattice SRD simulation is to first sample the subvolume
in which the next reaction will happen and then sample the
index of the reaction within that subvolume. This is, for exam-
ple, done in NSM5 as implemented in the MesoRD software
package.24 NSM uses NRM for sampling the subvolume and
DM for sampling the reaction within that subvolume.5, 24 For
a chemical reaction network with N species and M reactions,
the computational cost (here formalized using the Bachmann-
Landau “big-O” notation) of NSM to perform an on-lattice
SRD simulation in a three-dimensional (3D) computational
domain divided into Nv subvolumes is O(log2 Nv + Mfr
+ 6N(1 − fr)),5, 24 where fr is the fraction of firings accounted
for by “real” reactions and (1 − fr) the fraction of firings of
“diffusion reactions.” This is composed of the O(log2 Nv)
cost for maintaining the subvolume priority queue and the
O(Mfr + 6N(1 − fr)) cost for sampling the next reaction. M +
6N is the number of reactions in each subvolume, composed
of the M “real” chemical reactions and the 6N “diffusion
reactions” to the 6 face-connected neighboring subvol-
umes in a uniform Cartesian 3D mesh (in 2D this would
be 4N).

If the molecular population increases, the time step of
exact SSAs decreases, increasing the runtime of the simula-
tions. This can be alleviated by approximate SSAs that use
a fixed time step to sample trajectories from an approximate
solution of the master equation. In this spirit, on-lattice SRD
simulations involving larger population sizes can be acceler-
ated using approximate SSAs.25–29 Here, we focus on exact
on-lattice SRD formulations since they are parameter free and
do not require prescription of a time step size or a target error
level.

We propose a novel exact on-lattice SRD simulation
method, called PSRD, using partial propensities. Partial-
propensity methods are exact SSAs with a computational cost
that scales at most linearly with the number of species in
the reaction network.40–42 For weakly coupled reaction net-
works, where the number of reactions influenced by any other
reaction is asymptotically independent of system size, the
computational cost of partial-propensity methods is bounded
by a constant.42 This is particularly advantageous for on-
lattice SRD simulations, where the number of neighboring
subvolumes influenced by any subvolume is constant (6 in

3D, 4 in 2D), independent of the total number of subvol-
umes used to discretize space. PSRD hence uses composition-
rejection sampling to find the next subvolume with an O(Ga)
cost, and then uses SPDM inside that subvolume to sam-
ple the next reaction with a cost of O(N). Ga is the log-
arithm of the ratio of the maximum to the minimum non-
zero subvolume propensities, which is at most O(log2 Nv).
PSRD thus has an overall computational cost of O(Ga + N),
which is asymptotically bounded from above by O(log2 Nv

+ N) and independent of the ratio between “real” and “diffu-
sion” reactions. This is achieved by restricting the method to
elementary chemical reactions, under the premise that any
non-elementary reactions can be equivalently decomposed
into elementary reactions30, 43, 44 at the expense of a linear
(in the order of the highest non-elementary reaction) increase
in network size. We demonstrate the scaling of the computa-
tional cost of PSRD on two types of reaction networks: one in
which the number of reactions M increases super-linearly with
the number of species N (a strongly coupled network), and a
second in which M is proportional to N (a weakly coupled
network). Finally, we demonstrate the application of PSRD
to pattern-forming stochastic Gray-Scott systems,3, 45–48 high-
lighting the effect of intrinsic noise on the resulting Turing
patterns.

II. ON-LATTICE STOCHASTIC REACTION-DIFFUSION

We recall the concept of on-lattice SRD simulations us-
ing an example reaction network. In the benchmarks pre-
sented below we assume that the boundary of the compu-
tational domain is reflective (no-flux boundary condition),
except for the showcases in Sec. V, where we use peri-
odic boundary conditions. Other boundary conditions can be
treated as described by Erban and Chapman (2007)49 (see
Sec. 2 in their article). The scaling of the computational cost
of on-lattice SRD simulations, however, is independent of the
type of the boundary condition.

A. General concept

Consider the example of the following trimerization re-
action in a 3D cuboidal reactor of dimension Lx × Ly × Lz

and volume � = LxLyLz:

Reaction 1 : Ø
k1→ S1

Reaction 2 : S1 + S1
k2→ S2

Reaction 3 : S1 + S2
k3→ S3

Reaction 4 : S3
k4→ Ø.

(1)

The k’s are the macroscopic reaction-rate constants. This re-
action network has N = 3 species and M = 4 reactions. We
choose this reaction network as an example since it contains
all types of elementary reactions: reaction 1 is a source re-
action, reaction 2 a bimolecular reaction between the same
species (homo-bimolecular reaction), reaction 3 a bimolecu-
lar reaction between two different species (hetero-bimolecular
reaction), and reaction 4 is a unimolecular reaction. Any non-
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FIG. 1. Partitioning of the computation domain into subvolumes. (A–C) Different possibilities of a subdiving a box-shaped computational domain in one,
two, and three dimensions, respectively. Lx, Ly, and Lz are the edge lengths of the computational domain in each direction. Kx, Ky, and Kz are the numbers of
subvolumes of edge length h in each direction. (D) Diffusion is modeled as jump “reactions” to face-connected subvolumes. The same chemical in different
subvolumes is treated as a different species. Unimolecular “diffusion reactions” convert species as shown.

elementary reaction involving r > 2 reactants can be bro-
ken down to a set of 2r − 3 elementary reactions by intro-
ducing r − 2 additional species.43, 44 The reaction-propensity
aμ of reaction μ is defined as the probability rate of firing
of that reaction. Each aμ is computed as the product of the
reaction degeneracy and the specific probability rate cμ of
that reaction. The reaction degeneracy is the number of dis-
tinct combinations (collision pairs) of reactant molecules that
can be formed, and the specific probability rate is the prob-
ability rate of the reaction when only one molecule of each
reactant is present. According to these definitions, the reac-
tion propensities for the reaction network in Eq. (1) are as
follows:

aμ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

cμ, cμ = k1�, if μ = 1
1
2n1(n1 − 1)cμ, cμ = 2k2�

−1, if μ = 2

n1n2cμ, cμ = k3�
−1, if μ = 3

n3cμ, cμ = k4, if μ = 4 ,

(2)

where ni denotes the population of species Si, i.e., the number
of molecules of Si present in the system.

If the characteristic time of diffusion of the species is
comparable to or larger than the characteristic time of reac-
tion, the system will exhibit spatial inhomogeneities and dif-
fusion of the species in the reaction network needs to be ex-
plicitly accounted for. In on-lattice SRD methods, this is done
by dividing the computational domain into subvolumes within
which the system is assumed to be well mixed. The chemical

species in each subvolume can (i) react with each other in bi-
molecular reactions, (ii) undergo unimolecular reactions, or
(iii) appear from source reactions. In all cases, the products
are formed in the same subvolume and species from differ-
ent subvolumes can not react with each other. Diffusion of
molecules is modeled as a jump process from a subvolume to
any of the face-connected neighboring subvolumes.

Assume that we divide the 3D computational domain
into Nv = KxKyKz equisized cubic subvolumes of edge
length h = Lx/Kx = Ly/Ky = Lz/Kz and volume �c = h3 (see
Fig. 1(c); the one- and two-dimensional cases are illustrated
in Figs. 1(a) and 1(b), respectively). The subvolumes are
indexed by their Cartesian mesh coordinates over the set50

Iall = {(l, m, n) | l, m, n are integers such that

1 ≤ l ≤ Kx ; 1 ≤ m ≤ Ky ; 1 ≤ n ≤ Kz } (3)

and the set of face-connected neighbors of a subvolume with
index (l, m, n) is

Cl,m,n = {(l, m, n) + δ | (l, m, n) + δ ∈ Iall} (4)

such that δ ∈ E = {(1, 0, 0), (−1, 0, 0), (0, 1, 0), (0,−1, 0),
(0, 0, 1), (0, 0,−1)}. Hence, the on-lattice reaction-diffusion
system of the reaction network in Eq. (1) can be written as
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Ø
k

(l,m,n)
1−−−−→ S(l,m,n)

1 , a
(l,m,n)
1

S(l,m,n)
1 + S(l,m,n)

1

k
(l,m,n)
2−−−−→ S(l,m,n)

2 , a
(l,m,n)
2

S(l,m,n)
1 + S(l,m,n)

2

k
(l,m,n)
3−−−−→ S(l,m,n)

3 , a
(l,m,n)
3

S(l,m,n)
3

k
(l,m,n)
4−−−−→ Ø, a

(l,m,n)
4

S(l,m,n)
1

D1/h2

−−−−→ Sc
1, a

(l,m,n)
5

S(l,m,n)
2

D2/h2

−−−−→ Sc
2, a

(l,m,n)
6

S(l,m,n)
3

D3/h2

−−−−→ Sc
3, a

(l,m,n)
7

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

∀(l, m, n) ∈ Iall, c ∈ Cl,m,n, (5)

where S(l,m,n)
i denotes species Si in subvolume (l, m, n), the

k’s the macroscopic reaction rates, and the a’s the corre-
sponding propensities. In general, the k’s can be different in
different subvolumes, which is explicitly shown in Eq. (5)
by indexing them with the subvolume index. Diffusion of
species Si with diffusion constant Di is modeled as jumps
to face-connected neighboring subvolumes as illustrated in
Fig. 1(d). Equation (5) models the on-lattice reaction-
diffusion system as a system of chemical reactions composed
of 3KxKyKz = 3Nv species and 22KxKyKz − 6(KxKy

+ KyKz + KxKz) = 22Nv − 6Nv( 1
Kx

+ 1
Ky

+ 1
Kz

) reactions
(4KxKyKz “real” reactions and 3(6KxKyKz − 6(KxKy + KyKz

+ KxKz)) “diffusion reactions”, accounting for the missing
neighboring subvolumes at the domain boundary). In general,
the 3D SRD dynamics of N species and M reactions in a

computational domain with reflective boundaries and Kx

× Ky × Kz subvolumes can be modeled by a chemical
reaction network consisting of NKxKyKz = NNv species
and (M + 6N )KxKyKz − 2(KxKy + KyKz + KxKz)N
= (M + 6N )Nv − 2( 1

Kx
+ 1

Ky
+ 1

Kz
)NvN reactions. For

other boundary conditions, the number of reactions is (M
+ 6N)Nv, accounting for the diffusive fluxes across the
boundary.

For inhomogeneous diffusion, Di additionally depends
on the subvolume index (l, m, n). For anisotropic diffusion,
Di depends on the direction of the jump reaction. These ex-
tensions are straightforward to include in any on-lattice SRD
framework.

The propensities of the reactions in Eq. (5) are as
follows:

a(l,m,n)
μ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c(l,m,n)
μ , c(l,m,n)

μ = k
(l,m,n)
1 �c, if μ = 1

1
2n

(l,m,n)
1 (n(l,m,n)

1 − 1)c(l,m,n)
μ , c(l,m,n)

μ = 2k
(l,m,n)
2 �−1

c , if μ = 2

n
(l,m,n)
1 n

(l,m,n)
2 c(l,m,n)

μ , c(l,m,n)
μ = k

(l,m,n)
3 �−1

c , if μ = 3

n
(l,m,n)
3 c(l,m,n)

μ , c(l,m,n)
μ = k

(l,m,n)
4 , if μ = 4

n
(l,m,n)
1 c(l,m,n)

μ , c(l,m,n)
μ = D1h

−2, if μ = 5

n
(l,m,n)
2 c(l,m,n)

μ , c(l,m,n)
μ = D2h

−2, if μ = 6

n
(l,m,n)
3 c(l,m,n)

μ , c(l,m,n)
μ = D3h

−2, if μ = 7 ,

(6)

where n
(l,m,n)
i is the population of species S(l,m,n)

i (i.e., species
Si in subvolume (l, m, n)) and c(l,m,n)

μ is the specific probability
rate of reaction μ in subvolume (l, m, n). These formulations
for the propensities directly follow from the same argument
as the propensities in Eq. (2) for the reaction system given in
Eq. (1). The rates of the “diffusion reactions” always scale as
h−2, irrespective of the dimension of the subvolumes.

B. Discretization-corrected propensities

The propensity formulations in Eq. (6) may lead
to artifacts in the kinetics introduced by the spatial
discretization.33, 50 This is due to the subdivision of the re-
action space into disjoint subvolumes. This subdivision is
fundamentally different from the one used in spatial dis-
cretization of continuum models (e.g., finite-difference or
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finite-volume methods). While in discretizing continuum
models more resolution (smaller subvolumes) is always bet-
ter, this is not necessarily the case in SRD simulations. This
is because in SRD simulations the subvolumes introduce spu-
rious physical boundaries; molecules in one subvolume can-
not react with molecules in a neighboring subvolume, even
though for molecules close to a subvolume boundary the clos-
est collision partner could be in a neighboring subvolume. The
subvolumes thus define closed, well-mixed reaction spaces of
volume �c � �. In order for the reaction system to be well
mixed within each subvolume, the subvolume edge lengths
have to be much smaller than the Kuramoto length,51 hence

h � hmax =
√

2dDtr , (7)

where d is the dimension of the subvolume. The characteristic
time tr of the fastest reactions in the system can be estimated
from the time-autocorrelation function of species populations
simulated using an exact SSA. While tr depends on the re-
actor volume �, an estimate for it can be obtained from the
linear-noise approximation of the CME.52 On length scales
larger than hmax the subvolumes are no longer spatially ho-
mogeneous (well mixed).

In addition to this upper bound on h, there may also
be a lower bound. It is, for example, known that chemi-
cal kinetics in small volumes is quantitatively and qualita-
tively altered.52, 53 It has further been shown that the RDME
has different solutions depending on the level of spatial dis-
cretization of the computational domain.50 If the discretiza-
tion becomes too fine, the RDME even yields unphysical
results.33, 50 These artifacts are introduced by the artificial
subdivision of space, which causes the propensities in the
RDME to become inconsistent with Smoluchowski’s micro-
scopic reaction-diffusion framework.33, 54 The propensities in
on-lattice SRD simulations hence need to be corrected for the
spatial discretization.

At present, there are two strategies toward deriving
discretization-corrected propensities. The first is based on the
premise that for a well-stirred system of reactions the kinet-
ics of the reaction-diffusion process should not depend on the
resolution of the spatial discretization.50 In this strategy, only
the propensities of bimolecular reactions need to be corrected.
This discretization-correction framework has only been de-
rived for 3D reactors subdivided into an equal number of cu-
bic subvolumes along each dimension, and it imposes a lower
bound on the admissible subvolume size, given by the con-
straint that the corrected reaction propensities have to be non-
negative.50

The second strategy derives discretization-corrected
propensities such that the RDME becomes consistent
with Smoluchowski’s microscopic reaction-diffusion
framework.33, 54 In this strategy, the discretization-corrected
propensities depend on the populations of reactant molecules
in the neighboring subvolumes, rendering the correction
non-local and reaction-dependent. This approach is valid
also for non-cubic computational domains and non-3D
simulations, and it does not impose any lower bound on the
subvolume size h. It has been shown to provide a seamless
transition between Smoluchowski’s microscopic framework
and that of on-lattice SRD as based on the RDME.33, 54

We use the discretization-corrected propensities of
Erban and Chapman (2009) wherever applicable. Extending
the present on-lattice SRD method to the framework proposed
by Fange et al. (2010)33 should also be possible. The scaling
of the computational cost of on-lattice SRD methods, how-
ever, is independent of the formulation used for the propensi-
ties.

We note that similar corrections are also necessary in off-
lattice SRD simulations, where the artificial spatial discretiza-
tion is introduced by the reaction radius.50 Moreover, off-
lattice simulation methods frequently use a fixed time step,
which renders them more related to approximate SSAs than
to exact ones and potentially hampers convergence toward the
correct dynamics as the time-step size is reduced.55

C. The next subvolume method (NSM) for on-lattice
stochastic reaction-diffusion simulations

NSM simulates the on-lattice SRD system by sampling
from the conditional joint probability distribution function
(PDF) for the time τ to the next reaction, the index μ of the
next reaction, and the subvolume (l, m, n) containing the next
reaction, given the current population n(t) at time t. This joint
PDF results from the on-lattice RDME and is given by

p(τ, μ, l,m, n | n(t)) = p(τ ) p(l, m, n) p(μ | l, m, n) .

(8)

Here, p(τ ) is the continuous PDF for the time to the next re-
action, τ , given by

p(τ ) = aeaτ , (9)

where a is the total propensity of the system. The discrete
PDF p(l, m, n) for the subvolume (l, m, n) of the next reaction
is given by

p(l, m, n) = a(l,m,n)

a
, (10)

where a(l, m, n) is the propensity of subvolume (l, m, n). The
discrete PDF p(μ | l, m, n) for the next reaction μ within sub-
volume (l, m, n) is given by

p(μ | l, m, n) = a(l,m,n)
μ

a(l,m,n)
, (11)

a(l,m,n)
μ the propensity of reaction μ in subvolume (l, m, n).

Formally, n(t) = [n(1,1,1)
1 , . . . , n

(1,1,1)
N , . . . , n

(Kx,Ky,Kz)
1 ,

. . . , n
(Kx,Ky,Kz)
N ](t), where n

(l,m,n)
i (t) is the population

of species Si in subvolume (l, m, n) at time t, a(l,m,n)

= ∑
μ a(l,m,n)

μ the total propensity of all reactions in subvol-

ume (l, m, n), and a = ∑Kx

l=1

∑Ky

m=1

∑Kz

n=1 a(l,m,n) the total
propensity of all reactions across all subvolumes.

NSM (Ref. 5) is a popular and efficient algorithm for
sampling trajectories of n(t) from the above PDF, which is
the exact solution of the RDME. In NSM, the subvolume (l,
m, n) in which the next reaction will occur is sampled first ac-
cording to Eq. (10) and subsequently one of the reactions μ in
that subvolume is sampled according to Eq. (11). The latter is
done by first deciding whether the next reaction is a “real” or a
“diffusion” reaction and then using linear search only over the
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corresponding reaction group.24 The algorithm used in NSM
to sample the next subvolume is inspired by the indexed pri-
ority queues used in the next reaction method.36 Sampling a
reaction within a subvolume is done using linear search as in
Gillespie’s original direct method.34, 35 The time to the next
reaction is calculated from Eq. (9). After the chosen reaction
fired, the population and the propensities of some of the reac-
tions need to be updated. In NSM, the population is updated
using a sparse representation of the stoichiometry matrix,41

and the propensities are updated using a dependency graph.36

The computational cost of NSM is as follows: (i) O(1)
for sampling the subvolume; (ii) O(Mfr + 6N(1 − fr)) for
sampling the next reaction within that subvolume, where M is
the number of “real” reactions, 6N the number of “diffusion
reactions” (4N in 2D), and fr the fraction of reaction firings
accounted for by “real” reactions; (iii) O(1) for updating the
population; (iv) at most O(M) for updating the propensities
within a subvolume; (v) O(log2 Nv) for updating the subvol-
ume priority queue, where Nv is the number of subvolumes.
The overall computational cost of NSM thus is O(log2 Nv

+ Mfr + 6N(1 − fr)). The fraction fr of “real” reaction
firings decreases with increasing Nv. For small Nv, almost
all reactions are “real” and the computational cost of NSM
is O(log2 Nv + M). In particular, for Nv = 1 the fraction
fr = 1 and the computational cost of NSM is O(M), as for
Gillespie’s DM.34, 35 For large Nv, the computational cost of
NSM is O(log2 Nv + 6N) since fr � 1 and almost all reaction
events pertain to “diffusion reactions.”

III. THE PARTIAL-PROPENSITY STOCHASTIC
REACTION-DIFFUSION METHOD

Combining ideas from NSM and partial-propensity
SSAs,41 we introduce a novel on-lattice SRD simulation
method, the partial-propensity stochastic reaction-diffusion
method (PSRD). PSRD is based on the idea of binning
the subvolumes and determining the next subvolume using
composition-rejection sampling.39, 42, 56 Then, we use the con-
cept of partial propensities40–42 to sample the index of the next
reaction within the selected subvolume.

A. General concept of PSRD

We summarize the general concepts of binned
composition-rejection sampling and partial propensities.
For a more detailed description, we refer to Sec. III B and to
the corresponding original publications.39–42

1. Composition-rejection sampling to select
the subvolume

Composition-rejection sampling56–59 is an efficient algo-
rithm to sample realizations of a random variable according
to a given discrete probability distribution. In on-lattice SRD
simulations, the discrete PDF for the subvolume index (l, m,
n) is p(l, m, n) (see Eq. (10)). The sampling process starts
by binning the a(l, m, n) according to their values and then pro-
ceeds in two steps: The composition step is used to identify
the bin by linear search, and the rejection step is used to iden-

tify the a(l, m, n), and hence the index of the subvolume (l, m,
n), inside that bin.

2. Partial propensities to sample the next reaction
within a subvolume

Partial propensities: The partial propensity of a reac-
tion is defined as the propensity per molecule of one of its
reactants.41 For example, the partial propensity π (l,m,n);(i)

μ of
reaction μ within a subvolume (l, m, n) with respect to (per-
haps the only) reactant S(l,m,n)

i is a(l,m,n)
μ /n

(l,m,n)
i , where a(l,m,n)

μ

is the propensity of reaction μ in subvolume (l, m, n) and
n

(l,m,n)
i the population of S(l,m,n)

i (i.e., the number of molecules
of species Si in subvolume (l, m, n)). The partial propensities
of the three elementary reaction types within each subvolume
(l, m, n) are:

� Bimolecular reactions S(l,m,n)
i + S(l,m,n)

j

c(l,m,n)
μ−−−→ Prod-

ucts: a(l,m,n)
μ = n

(l,m,n)
i n

(l,m,n)
j c(l,m,n)

μ and π (l,m,n);(i)
μ

= n
(l,m,n)
j c(l,m,n)

μ , π
(l,m,n);(j )
μ = n

(l,m,n)
i c(l,m,n)

μ . If both

reactants are of the same species, i.e., S(l,m,n)
i

= S(l,m,n)
j , only one partial propensity exists, π (l,m,n);(i)

μ

= 1/2(n(l,m,n)
i − 1)c(l,m,n)

μ , because the reaction de-

generacy is 1/2n
(l,m,n)
i (n(l,m,n)

i − 1).

� Unimolecular reactions S(l,m,n)
i

c(l,m,n)
μ−−−→ Products:

a(l,m,n)
μ = n

(l,m,n)
i c(l,m,n)

μ and π (l,m,n);(i)
μ = c(l,m,n)

μ .
The “diffusion reactions” representing the jumps from
a subvolume to one of its neighbors fall into this
category.

� Source reactions Ø
c(l,m,n)
μ−−−→ Products: a(l,m,n)

μ = c(l,m,n)
μ

and π (l,m,n);(0)
μ = c(l,m,n)

μ .

We use the specific probability rates given in Eq. (6).
In cases where the 3D computational domain is cubic with
equal numbers of subvolumes in each dimension, we use the
discretization-corrected specific probability rates as given by
Erban and Chapman (2009)50 for the bimolecular reactions.
The computational cost and the formalism of PSRD, however,
are independent of the formulation used for the specific prob-
ability rates.

We consider only elementary reactions under the premise
that any reaction with three or more reactants can be decom-
posed into a set of elementary reactions.30, 43, 44

Sampling using partial propensities: Within the selected
subvolume we use partial propensity methods to sample the
next reaction according to Eq. (11). We group the partial
propensities of all reactions within each subvolume accord-
ing to the index of the factored-out reactant.40–42 This results
in at most N + 1 groups of size O(N). Every reaction in a
subvolume, and its corresponding partial propensity, are then
identifiable by two indices: a group index and an element in-
dex. The group index identifies the partial-propensity group
to which a reaction belongs and the element index identifies
the position of the reaction inside that group. Determining the
index of the next reaction is thus done by first sampling its
group index and then the element index.
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An intuitive way of interpreting this sampling scheme is
to imagine the group index as the index of the first reactant
of the next reaction (0 for source reactions) and the element
index as the index of the second reactant, i.e., the reaction
partner (none for unimolecular reactions). Partial-propensity
methods hence sample reaction partners (group index: “what
species is going to react next?” element index: “what species
is it going to react with?”) rather than reactions. This changes
their computational cost from O(M) to O(N), which amounts
to a cost reduction as M is usually larger than N. This is par-
ticularly true for strongly coupled networks, where M grows
super-linearly with N.41

After the selected reaction has fired and the populations
of the involved species have been updated according to the
reaction stoichiometry, the affected partial propensities are
updated using a dependency graph over species.41 This de-
pendency graph points to all partial propensities within the
subvolume that need to be updated due to the change in pop-
ulation. If the executed reaction was a “diffusion reaction”
modeling the jump of a molecule from a subvolume to one of
its neighbours, we additionally update the population of that
species in the corresponding neighboring subvolume and up-
date the affected partial-propensities in the neighboring sub-
volume using the respective dependency over species. Since
any partial propensity is a function of the population of at
most one species, the number of updates is at most O(N).

B. Detailed description of the PSRD algorithm

We provide a detailed description of the algorithms and
data structures used in PSRD. The workflow of the algorithm
is summarized in Table I.

1. Data structures

The population of species in each subvolume (l, m, n)
is stored in an array n(l, m, n). The partial propensities of
the reactions within each subvolume (l, m, n) are stored
in “partial-propensity structures” �(l,m,n) = {�(l,m,n)

i }Ni=0 as
one-dimensional arrays of one-dimensional arrays �

(l,m,n)
i .

Each array �
(l,m,n)
i contains the partial propensities belong-

ing to group i in subvolume (l, m, n). The partial propensities
of source reactions are stored as consecutive entries of the 0th

array �
(l,m,n)
0 . The partial propensities of all reactions in sub-

volume (l, m, n) that have species S(l,m,n)
1 as the factored-out

reactant are stored as consecutive entries of �
(l,m,n)
1 . In gen-

eral, the i th array �
(l,m,n)
i contains the partial propensities of

all reactions in subvolume (l, m, n) that have S(l,m,n)
i as the

common factored-out reactant, provided these reactions have
not yet been included in any of the previous �

(l,m,n)
j<i . That is,

out of the two partial propensities of a bimolecular reaction
with S(l,m,n)

i and S(l,m,n)
j as its reactants and i < j, π (l,m,n); (i)

μ

is part of �
(l,m,n)
i , and π

(l,m,n); (j )
μ is not stored anywhere. In

order to save memory, we lump the “diffusion reactions” of
each species within a subvolume into one reaction with no
products. The specific probability rate of the lumped reaction
is the sum of the specific probability rates of all “diffusion
reactions” in that subvolume. Therefore, instead of storing 6
partial propensities in 3D (4 in 2D), we only store 1 partial
propensity for the “diffusion reactions” of each species. This
reduces the total number of reactions per subvolume from M
+ 6N in 3D (M + 4N in 2D) to M + N. For convenience, we
define all reactions μ ≤ M as “real” reactions and the reac-
tion with index μ = M + i as the lumped “diffusion reaction”
of species S(l,m,n)

i . See Sec. III B 2 for how the direction of a

TABLE I. The detailed algorithm of PSRD.

0. For a reaction network with N species and M reactions: Divide the computational box into Nv = KxKyKz cubic subvolumes of edge length h. Formulate
the reaction network modeling the reaction-diffusion system by including the jump reactions. The resulting reaction network for the reaction-diffusion
system has at most M + 6N reactions and N species in each subvolume. Lump the “diffusion reactions” of each species in each subvolume into one
reaction with no products, such that number of reactions in each subvolume is M + N. Make sure that the reaction index of the lumped “diffusion
reactions” is >M and that reaction μ = M + i is the lumped “diffusion reaction” of species i.

1. Set time t ← 0. Initialize the data structures in each subvolume (l, m, n): the partial-propensity structure �(l,m,n), the group-sum array �(l,m,n), �(l,m,n),
the population n(l,m,n), the specific probability rates c(l,m,n), and the total propensity in the subvolume, a(l, m, n). Also initialize the data structures global
to all subvolumes containing the same reaction network: the look-up table L, the sparse representation of the stoichiometry matrix U(1) and U(2), the
dependency graph over species U(3), and the total propensity of all subvolumes a. Bin the a(l, m, n) into Ga bins as described in Sec. III B 2.

2. While t < tf, repeat:
2.1. Compute the time to the next reaction τ ← a−1ln (r−1), where a is the total propensity of all subvolumes and r a uniformly distributed random

number in [0, 1).
2.2. Use composition-rejection sampling to determine the subvolume (l, m, n) containing the next reaction. Use linear search (Eq. (12)) in the

composition step to locate the bin containing a(l, m, n) and use the rejection step to locate a(l, m, n) inside that bin.
2.3. Sample the next reaction μ in subvolume (l, m, n) by sampling its group and element indices. Sample the group index I using linear search over

�(l,m,n) (Eq. (13)). Subsequently, sample the element index J using linear search over �
(l,m,n)
I (Eq. (14)). The reaction index μ is then identified

from the look-up table as μ = LI, J.
2.4. Update the internal data structures in subvolume (l, m, n) and the total propensity a using U(1), U(2), and U(3).
2.5. Increase the number of bins Ga if necessary and update the bin membership of a(l, m, n).
2.6. If μ > M (i.e., the sampled reaction is a lumped “diffusion reaction,”) compute the index of the diffusing species as i = μ − M. Resolve the

diffusion event to identify the neighboring target subvolume (l′, m′, n′) to which one molecule of species Si from subvolume (l, m, n) is diffusing.
Increment the population of species Si in the target subvolume. Subsequently, update the other internal data structures of the target subvolume and
the total propensity a using U(3)

i . Increase the number of bins Ga if necessary and update the bin membership of a(l′,m′,n′).
2.7. Advance time: t ← t + τ .

3. Stop.
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“diffusion jump” is resolved when a lumped “diffusion reac-
tion” has been selected.

The reaction indices of the partial propensities in �(l,m,n)

are stored in a look-up table L = {Li}Ni=0, which is also an
array of arrays. For subvolumes containing the same reac-
tion network, we store the look-up table only once. In case
the reaction network is the same in all subvolumes, only a
single, global look-up table is needed. Subvolumes that host
different reaction networks have different look-up tables. The
look-up table renders every reaction within each subvolume
identifiable by a unique pair of indices, a group index I and an
element index J, such that the partial propensity of reaction
μ = LI, J is stored in �

(l,m,n)
I,J for subvolume (l, m, n).

The “group-sum array” �(l,m,n) stores the sums of the
partial propensities in each group �

(l,m,n)
i , i.e., �

(l,m,n)
i

= ∑
j �

(l,m,n)
i,j . We also store the total propen-

sity of each group in an array �, computed as
�

(l,m,n)
i = n

(l,m,n)
i �

(l,m,n)
i , i = 1, . . . , N , and �

(l,m,n)
0

= �
(l,m,n)
0 .41 The total propensity of the reac-

tions in subvolume (l, m, n) is then a(l,m,n)

= ∑N
i=0 �

(l,m,n)
i . The total propensity of all reactions across

all subvolumes is stored in a = ∑Kx

l=1

∑Ky

m=1

∑Kz

n=1 a(l,m,n)

and is used to calculate the time to the next reaction accord-
ing to Eq. (9) as τ = −a−1log r0, where r0 is a uniformly
distributed random number in [0, 1).

2. Algorithms

In PSRD, like in NSM, the subvolume containing
the next reaction is sampled first. To this end, the total
propensities a(l, m, n) of all subvolumes are sorted into Ga

= log2(amax/amin) + 1 bins, such that bin b contains all a(l, m, n)

in the interval 2b − 1amin ≤ a(l, m, n) < 2bamin. The bounds amin

and amax are the smallest non-zero and the largest value that
any of the a(l, m, n) can assume during the simulation. They are
determined as follows: The lower bound amin is the minimum
propensity of any reaction in any subvolume when the number
of molecules of all reactants is one (minimum non-zero pop-
ulation). For elementary reactions, this is the smallest specific
probability rate across all subvolumes. The largest possible
value of a(l, m, n) may be ascertained using physical reason-
ing or prior knowledge about the reaction-diffusion system.
In cases where this cannot be evaluated a priori, PSRD ini-
tially sets amax to the maximum a(l, m, n). If during the course
of the simulation the maximum a(l, m, n) increases, PSRD up-
dates amax and Ga, and the corresponding data structures are
dynamically enlarged.

PSRD uses composition-rejection sampling to determine
the subvolume of the next reaction in two steps: (i) composi-
tion step to find the bin b and (ii) rejection step to find a(l, m, n)

inside that bin. The composition step uses linear search to de-
termine

b = min

[
b′ : r1a <

b′∑
i=1

αi

]
, (12)

where r1 is a uniform random number in [0, 1) and αi is the
total propensity in bin i computed by summing up the a(l, m, n)

FIG. 2. Illustration of the binning of the total propensities of the subvolumes
used for composition-rejection sampling of the next subvolume. The illustra-
tion shows a computational domain divided into 4 subvolumes. Points A and
B refer to the example in main text used to explain rejection sampling.

in that bin. The rejection step samples the subvolume (l, m, n)
among the entries in the selected bin b. For this, we first gen-
erate a uniformly distributed random number r2 in [0, 2bamin)
and a uniformly distributed random integer r3 between 1 and
the number of entries in bin b. If the r3-th element in bin b
is greater than or equal to r2, the corresponding subvolume
is selected. If the inequality is not satisfied, the rejection step
is repeated. This procedure is illustrated in Fig. 2 for a com-
putational domain divided into 4 subvolumes with indices (1,
1, 1), (2, 1, 1), (1, 2, 1) and (2, 2, 1). Assume that the com-
position step has chosen bin 1 as the bin containing the next
subvolume. The rejection step then samples uniformly ran-
dom points inside the rectangle defining the range of this bin
(bold rectangle). A sample is accepted if it falls inside one of
the shaded bars representing the a(l, m, n)’s. If the first sample
(point A in Fig. 2 with r3 = 2 and r2 > a(1, 2, 1)) is rejected,
sampling is repeated until the point falls inside one of the
shaded bars (point B in Fig. 2 with r3 = 1 and r2 < a(2, 1, 1)).
By binning the a(l, m, n) as described above, it is guaranteed that
the area covered by the a(l, m, n) bars in each bin is at least 50%
of the bin’s total area. This ensures that the expected number
of rejection steps required is ≤2. The probability of needing
more than k rejection steps is ≤2−k and hence exponentially
small.

Once the subvolume (l, m, n) containing the next reaction
has been chosen, PSRD samples the index of the next reac-
tion μ within that subvolume in two steps: (i) perform linear
search for the group index I such that

I = min

[
I ′ : r4a

(l,m,n) <

I ′∑
i=0

�
(l,m,n)
i

]
(13)

and (ii) perform linear search for the element index J inside
group �

(l,m,n)
I such that

J = min

⎡
⎣J ′ : r4a

(l,m,n) <

J ′∑
j=1

n
(l,m,n)
I �

(l,m,n)
I,j

+
(

I∑
i=0

�
(l,m,n)
i

)
− �

(l,m,n)
I

]
, (14)
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where r4 is a uniform random number in [0,1). The indices
I and J are then translated to the reaction index μ in sub-
volume (l, m, n) using the look-up table L, thus μ = LI, J.
It has earlier been shown that sampling the reaction accord-
ing to Eqs. (13) and (14) is algebraically equivalent to the lin-
ear search over propensities used in Gillespie’s original di-
rect method,41 i.e., for the same random number stream the
two methods produce the exact same sequence of reaction fir-
ings provided the reactions are indexed in the same order in
both methods. In order to reduce the average search depth, the
group and element indices are dynamically rearranged such
that frequent reactions accumulate at the beginning of the list,
i.e., have low index values. This is done by dynamically bub-
bling up a reaction whenever it fires by performing a single
iteration of a bubble-sort algorithm. The permutation lists for
the reordered indices in each subvolume are stored in an ar-
ray for the I’s, and one-dimensional array of one-dimensional
arrays of the size of �(l,m,n) for the J’s. PSRD thus uses the
sorting partial-propensity direct method (SPDM) to sample
the next reaction within a subvolume. This renders the sam-
pling procedure more efficient (in the sense that it reduces the
prefactor in the scaling of the computational cost) when the
reaction network in a subvolume is multi-scale (stiff), without
compromising on the efficiency in non-stiff cases.41 In SRD
simulations the reaction networks inside the subvolumes tend
to be stiff since the specific probability rates of bimolecular
reactions scale as h−3 (in 3D subvolumes) whereas those of
source reactions scale as h3 (see Eq. (6)). Using SPDM in-
stead of PDM may hence lead to significant computational
savings.

Once a reaction has been executed, n(l, m, n), �(l,m,n),
�(l,m,n), and �(l,m,n) need to be updated. This is efficiently
done using three update structures. If the reaction network is
the same in each subvolume, the same update structures can
be used for all subvolumes and they do not have to be stored
separately for different subvolumes. Subvolumes containing
different reaction networks have different update structures.

U(1) is an array of M arrays, where the i th array contains
the indices of all species involved in the i th “real” reac-
tion. The index of the species involved in the i th lumped
“diffusion reaction” does not need to be stored as it is
simply i itself.

U(2) is a array of M arrays containing the correspond-
ing stoichiometries (the change in population of each
species upon reaction) of the species stored in U(1).
The stoichiometries of the “diffusion reactions” are not
stored since they are all −1.

U(3) is a array of N arrays, where the i th array contains
the indices of all entries in the �(l,m,n)’s that depend on
n

(l,m,n)
i .

When a reaction is executed in subvolume (l, m, n), the
populations of the species involved in this reaction change.
Hence, all entries in �(l,m,n) that depend on these populations
need to be updated. After each reaction, we use U(1) to de-
termine the indices of all species involved in this reaction.
The stoichiometry is then looked up in U(2) and the popula-
tion n(l, m, n) is updated. Subsequently, U(3) is used to locate
the affected entries in �(l,m,n) and recompute them. The two

data structures U(1) and U(2) hence amount to a sparse rep-
resentation of the stoichiometry matrix; U(3) represents the
dependency graph over species. Since the partial propensi-
ties of unimolecular and source reactions are constant and
never need to be updated, U(3) only contains the indices of
the partial propensities of bimolecular reactions. Along with
updating the partial propensities in subvolume (l, m, n), the
change in the total propensity of that subvolume is also calcu-
lated and incrementally applied to a(l, m, n). This may require
the bin membership of a(l, m, n) to be updated, for which the
current bin assignment of a(l, m, n) must be known. We imple-
ment this by storing two additional integers for every a(l, m, n):
one for the bin membership and the other for the location in-
side that bin. Depending on its new value, a(l, m, n) may remain
in the same bin or move to a different one. Removal of an
element from a bin is done by replacing it with the last ele-
ment in that bin and reducing the bin size by one. Addition
of an element into a bin is done by appending it at end of
the bin. The computational cost of both of these operations is
O(1).39, 42

If the index of the next reaction is greater than M, then
the sampled reaction is a lumped “diffusion reaction” and ad-
ditional steps need to be taken to resolve the direction of the
jump as follows: First, the index of the species undergoing dif-
fusion is computed as i = μ − M. Second, a uniform random
number between 0 and the lumped specific probability rate
of the lumped “diffusion reaction” is generated. Third, lin-
ear search over the specific probability rates of individual di-
rectional diffusion events is used to determine the target sub-
volume of the jump. The jump is executed by increasing the
population of species Si in the target subvolume by 1 (the re-
duction in the source subvolume has already been done above)
and updating the entries in the partial propensity structure of
the target subvolume as given by the indices in U(3)

i . Finally,
the total propensity of the target subvolume and its bin mem-
bership are updated.

Figure 3 summarizes the data structures used in PSRD
for the example reaction network given in Eq. (1). The com-
plete algorithm is given in Table I. The computational cost of
PSRD to sample the subvolume is O(1) if the ratio of maxi-
mum to minimum non-zero total propensity in each subvol-
ume is independent of the number of subvolumes and of the
size of the reaction network. In cases where this ratio is not
bounded by a constant, the computational cost to sample the
subvolume is O(Ga), where the total number of bins Ga de-
pends on the logarithmic span of the subvolume propensi-
ties as Ga = log2(amax/amin) + 1. The computational cost of
sampling the index of the next reaction within a subvolume
is O(N).41 The overall computational cost of PSRD hence is
O(Ga + N), which is at most O(log2 Nv + N). The mem-
ory requirement of PSRD is O((M + N)Nv). For more details
on the computational cost and the memory requirement, see
Appendix.

IV. BENCHMARKS

We analyze the computational cost of PSRD as quantified
by the average simulation (CPU) time 	 taken per reaction
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FIG. 3. The data structures in PSRD. The contents of the data structures shown corresponds to the example reaction network in Eq. (1) with 3 species and
4 reactions. We assume that the computational domain is divided into 4 subvolumes. In the illustration, c

(2,2,1)
5 , c

(2,2,1)
6 , and c

(2,2,1)
7 are the lumped specific

probability rates of the “diffusion reactions” of species 1, 2, and 3 respectively. See main text for details.

event of the chemical reaction model of a reaction-diffusion
system. We compare it to the time expected from the theoret-
ical cost analysis (see Sec. III B) for two different types of
reaction networks: (i) an aggregation model where the num-
ber of reactions increases super-linearly with the number of
species and (ii) a linear chain model where the number of
reactions is almost the same as the number of species. We
simulate the corresponding reaction-diffusion processes in a
three-dimensional cubic computational domain (reactor) of
dimensions L × L × L and volume � = L3 from a initial
time t = 0 until a final time t = tf. For simulating the reaction-
diffusion process we divide the computational domain into Nv

= K3 equi-sized cubic subvolumes of edge length h = L/K,
such that K is the number of subvolumes along each spatial
dimension.

For each of these networks we report 	 as a function of
the number of subvolumes Nv for a fixed size of the reaction
network and as a function of the reaction network size for a
fixed number of subvolumes. We use the number of species N
in the reaction network to quantify the size of the network. All
timings are compared to those obtained on the same systems
and the same computer using NSM.

Both PSRD and NSM were implemented in C++
using the random number generator of the GSL library and
compiled using the Intel C++ compiler version 12.0.2 with

the O3 optimization flag. NSM is implemented according to
the details provided on the MesoRD webpage (Algorithm 7 in
Ref. 60). All timings were measured on a Linux 2.6 worksta-
tion with a 2.8 GHz quad-core Intel Xeon E5462 processor,
8 GB of memory and 4 MB L2 cache. For all test cases,
we simulate until a final time tf and report the average CPU
time 	 per reaction event. The time 	 does not include the
initialization of the data structures as this is done only once.
We explain the measurements by least-squares fits of 	(Nv,
N) with the corresponding theoretical cost models. For PSRD
and NSM, we hence fit 	 with α1log2 Nv + α2N and α1log2

Nv + α2frM + α3(1 − fr)6N, respectively. Before fitting,
we estimate the functional dependence of fr on Nv or N by
performing simulations. Subsequently, we fit 	 to determine
the coefficients αi.

All simulations are run without any a priori estimate of
the maximum total propensity amax across all subvolumes. In-
stead, amax is constantly updated during a simulation and the
number of bins Ga is dynamically increased when required
(see Sec. III B 2).

A. Colloidal aggregation model

We consider the non-equilibrium colloidal aggregation
model as a prototype of a strongly coupled reaction network
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in which the number of reactions increases super-linearly with
the number of species:

Ø
k0−→ S1

Si + Sj

ki,j−→ Si+j i + j = 2, . . . , N

Si+j

k̄i,j−→ Si + Sj i + j = 2, . . . , N

Si

ki−→ Ø i = 1, . . . , N.

(15)

The k’s are the macroscopic reaction rates. This system of
reactions models the influx of monomers (S1) into a reactor
where multimers (Si) fuse with each other to form larger mul-
timers. Multimers in the reactor also break to form smaller

units in all possible combinations, and all of the multimers can
leave the reactor. Such a system of reactions models driven
colloidal aggregation and is relevant for a variety of phe-
nomena of practical importance, e.g., nano-particle clustering
and colloidal crystallization (nanotechnology), emulsification
and emulsion stabilization in porous media (oil industry),
and oligomerization of proteins (biochemistry). For N chem-
ical species, the aggregation reaction network consists of M
= 	N2/2
 + N + 1 reactions.

We divide the cubic computational domain (reactor)
into Nv = K3 subvolumes, such that the on-lattice reaction-
diffusion process with reflective boundary conditions is de-
scribed by the following set of “reactions”:

Ø
k0−→ S(l,m,n)

1

S(l,m,n)
i + S(l,m,n)

j

ki,j−→ S(l,m,n)
i+j i + j = 2, . . . , N

S(l,m,n)
i+j

k̄i,j−→ S(l,m,n)
i + S(l,m,n)

j i + j = 2, . . . , N

S(l,m,n)
i

ki−→ Ø i = 1, . . . , N

S(l,m,n)
i

Di/h2

−−→ Sc
i i = 1, . . . , N

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

∀ (l, m, n) ∈ Iall, c ∈ Cl,m,n, (16)

where Di is the diffusion constant of species Si and h
the edge length of the cubic subvolumes. The propen-
sities of these reactions are computed as described in
Sec. II. For all bimolecular reactions, we use discretization-
corrected propensities.50 The above network consists of
NK3 = NNv species and MK3 + N (6K3 − 6K2) = (	N2/2

+ 1)Nv + N (7Nv − 6N

2/3
v ) reactions.

For the present benchmarks, we set the macroscopic reac-
tion rates ki, i = 0.5, all other rates and all diffusion constants
to 1, and the reactor volume to � = 10. At time t = 0, the pop-
ulations of all species in all subvolumes, i.e., all n

(l,m,n)
i , are

set to 0. From this initial condition we simulate the reaction-
diffusion system until tf = 100.

Figure 4(a) shows the computational cost 	 as a func-
tion of the number of subvolumes Nv using PSRD and NSM
for two fixed-size aggregation networks with N = 10 and N
= 100, respectively. The corresponding numbers of reactions
M are 61 and 5101, respectively. In both cases we estimate fr
and use it for fitting 	. We observe that fr decreases as N−0.34

v
with increasing Nv. For PSRD, 	(Nv, N = 10) ≈ 0.02861
log Nv at large Nv. This scaling of 	 is caused by the dynamic
increase in the number of bins Ga. For NSM, 	(Nv, N = 10)
≈ 0.1095 log Nv at large Nv. For the larger network with N
= 100, we find for PSRD 	(Nv, N = 100) ≈ 0.04401 log Nv

at large Nv. For NSM, 	(Nv, N = 100) ≈ 0.288 log Nv at large
Nv. For smaller 1 ≤ Nv < 512, 	 of NSM decreases with in-
creasing Nv. This is mediated by the decrease in fr. At Nv = 1,
fr = 1 and the cost is dominated by that of sampling the next
“real” reaction. As Nv increases, fr decreases. This decrease
in fr progressively reduces the cost of sampling a reaction in
a subvolume from being linear in M to linear in 6N. At large-

enough Nv, the cost of sampling a reaction in a subvolume is
dominated by the cost of sampling “diffusion reactions.” For
a fixed network size, the increase in 	(Nv, N = 100) at large
Nv is thus primarily due to the increasing cost to sample the
next subvolume. In summary, the scaling of the computational
cost of PSRD with respect to the number of subvolumes Nv is
O(log2 Nv). This scaling is asymptotically (for large Nv) the
same as that of NSM, but with a smaller prefactor.

Figure 4(b) shows the computational cost 	 as a func-
tion of the size N of the aggregation reaction network using
PSRD and NSM with Nv = 512 and Nv = 1000 subvolumes.
We observe that for both Nv the ratio fr does not depend on
the size N of network. For Nv = 512, fr = 0.04, decreasing
to fr = 0.02 for Nv = 1000. For PSRD, 	(Nv = 512, N)
≈ 0.002258 N, confirming the linear dependence on N pre-
dicted by the theoretical cost analysis. For NSM, 	(Nv

= 1000, N) ≈ 0.00011M + 0.0152N. For the larger number
subvolumes, Nv = 1000, 	(Nv = 1000, N) ≈ 0.002777N for
PSRD. For NSM, 	(Nv = 1000, N) ≈ 0.000055M + 0.0186N.
In summary, the scaling of the computational cost of PSRD
with respect to the size N of the reaction network is O(N).

B. Linear chain model

As a prototypical reaction network in which the number
of reactions is almost the same as the number of species, we
consider the non-equilibrium linear chain model:

Ø
k0−→ S1

Si

ki−→ Si+1 i = 1, . . . , N − 1

SN

kN−→ Ø.

(17)
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FIG. 4. Computational cost of PSRD and NSM for the aggregation model (Eq. (15)). (A) Computational cost 	 of PSRD (squares) and NSM (circles) as a
function of the number of subvolumes Nv with the size of the reaction network fixed to N = 10 (filled symbols) and N = 100 (empty symbols), respectively.
The solid lines show the corresponding least-squares fits of the theoretical cost models: For N = 10, 	PSRD ≈ 0.02861 log Nv + 0.03925 N, 	NSM ≈ 0.1095
log Nv + 0.00581 frM + 0.00481(1 − fr)6N; for N = 100, 	PSRD ≈ 0.04401 log Nv + 0.003579 N, 	NSM ≈ 0.288 log Nv + 0.001375 frM + 0.001418(1
− fr)6N. We estimate fr ≈ 1.096N−0.3353

v − 0.08263 for N = 10 and fr = 1.097N−0.3372
v − 0.0825 for N = 100. (B) Computational cost 	 of PSRD (squares)

and NSM (circles) as a function of the number of species N in the reaction network with the number of subvolumes fixed to Nv = 512 (filled symbols) and Nv
= 1000 (empty symbols), respectively. The solid lines show the corresponding least-squares fits of the theoretical cost models: For Nv = 512, 	PSRD ≈ 0.07559
log Nv + 0.002258 N, 	NSM ≈ 0.1356 log Nv + 0.002784 fr(	N2/2
 + N + 1) + 0.002633(1 − fr)6N; for Nv = 1000, 	PSRD ≈ 0.07205 log Nv + 0.002777
N, 	NSM ≈ 0.1198 log Nv + 0.002762 fr(	N2/2
 + N + 1) + 0.003163(1 − fr)6N. The fraction fr = 0.04 for Nv = 512 and fr = 0.02 for Nv = 1000.

Again, the k’s are the macroscopic reaction rates. This linear
chain of reactions can, e.g., be used to model signal trans-
duction pathways in biological cells.61, 62 For N species, this
network contains M = N + 1 reactions.

Again dividing the cubic computational domain
into Nv = K3 subvolumes, the resulting reaction-
diffusion system with reflective boundary conditions is
given by:

Ø
k0−→ S(l,m,n)

1

S(l,m,n)
i

ki−→ S(l,m,n)
i+1 i = 1, . . . , N − 1

S(l,m,n)
N

kN−→ Ø

S(l,m,n)
i

Di/h2

−−→ Sc
i i = 1, . . . , N

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

∀ (l, m, n) ∈ Iall, c ∈ Cl,m,n, (18)

where Di is the diffusion constant of species Si and h is
the edge length of the cubic subvolumes. The propensities
of these reactions are computed as described in Sec. II.
There are no bimolecular reactions in this network, and we
do not use discretization-corrected propensities.50 This sys-
tem of reactions modeling the reaction-diffusion process con-
tains NK3 = NNv species and MK3 + N (6K3 − 6K2) = (7N

+ 1)Nv − 6NN
2/3
v reactions.

For the benchmarks we set all macroscopic reactions
rates and all diffusion constants Di to 1, and the volume of
the reactor to � = 100. At time t = 0, the populations of all
species in all subvolumes are 0, and the simulation is run until
tf = 100.

Figure 5(a) shows the computational cost 	 as a func-
tion of the number of subvolumes Nv using PSRD and
NSM for two fixed-size linear chain networks with N
= 10 and N = 100. The corresponding numbers of reac-
tions M are 11 and 101, respectively. In both cases we esti-
mate fr and use it for fitting 	. We observe that fr decreases
as N−0.22

v with increasing Nv. For PSRD, 	(Nv, N = 10)
≈ 0.03312 log Nv. This scaling of 	 is caused by the
increase in the number of bins Ga. For NSM, 	(Nv, N
= 10) ≈ 0.08256 log Nv. For the larger network with N
= 100, the computational cost of PSRD is 	(Nv, N = 100)
≈ 0.04842 log Nv for Nv � 512 and 	(Nv, N = 100) ≈ 0.2923
log Nv for Nv � 512. For NSM, 	(Nv, N = 100) ≈ 0.1428
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FIG. 5. Computational cost of PSRD and NSM for the linear chain model (Eq. (17)). (A) Computational cost 	 of PSRD (squares) and NSM (circles) as a
function of the number of subvolumes Nv with the size of the reaction network fixed to N = 10 (filled symbols) and N = 100 (empty symbols), respectively.
The solid lines show the corresponding least-squares fits of the theoretical cost models: For N = 10, 	PSRD ≈ 0.03312 log Nv + 0.03703N, 	NSM ≈ 0.08256
log Nv + 0.02504 frM + 0.002615(1 − fr)6N; for N = 100, 	PSRD ≈ 0.04842 log Nv + 0.003786N, 	NSM ≈ 0.1428 log Nv + 0.002934 frM + 0.0001978(1
− fr)6N for Nv � 512 and 	PSRD ≈ 0.2923 log Nv − 0.01199N, 	NSM ≈ 0.5929 log Nv + 0.0000008 frM − 0.004924(1 − fr)6N for Nv � 512. We estimate
fr ≈ 1.281N−0.2121

v − 0.2505 for N = 10 and fr ≈ 1.241N−0.2291
v − 0.2138 for N = 100. (B) Computational cost 	 of PSRD (squares) and NSM (circles) as a

function of the number of species N in the reaction network with the number of subvolumes fixed to Nv = 512 (filled symbols) and Nv = 1728 (empty symbols),
respectively. The solid lines show the corresponding least-squares fits of the theoretical cost models: For Nv = 512, 	PSRD ≈ 0.03051 log N + 0.5291, 	NSM

≈ 0.07885 log N + 0.5458; for Nv = 1728, 	PSRD ≈ 0.08479 log N + 0.5073, 	NSM ≈ 0.1642 log N + 0.5561. The fraction fr = 0.06 for Nv = 512 and fr
= 0.03 for Nv = 1728.

log Nv for Nv � 512 and 	(Nv, N = 100) ≈ 0.5929 log Nv for
Nv � 512. The abrupt increase in the prefactor of the scaling
around Nv ≈ 512 is likely caused by cache-memory effects. In
summary, the scaling of the computational cost of PSRD with
respect to the number of subvolumes Nv is O(log2 Nv). Again,
this is the same scaling as that of NSM, but with a smaller
prefactor.

Figure 5(b) shows the computational cost 	 as a func-
tion of the size N of the linear chain network using PSRD and
NSM with Nv = 512 and Nv = 1728 subvolumes. We observe
that for both Nv the ratio fr is independent of the size N of
the network. For Nv = 512, fr = 0.06, decreasing to fr = 0.03
for Nv = 1728. We observe that the scaling of 	 is slower
than predicted by the theoretical cost analysis. This is not a
violation of the theory since the theoretical analysis only pro-
vides an upper bound for the scaling. The slower scaling in
the present case is specific to the particular reaction network.
We obtain reasonable fits with a function linear in log N. The
asymptotic plateau is due to “diffusion reactions” of species
S1 accounting for the majority of all reaction firings. Since
this reaction is on top of the list (species index 1), it is found
in O(1) time. For PSRD, 	(Nv = 512, N) ≈ 0.03051 log N.
For NSM, 	(Nv = 512, N) ≈ 0.07885 log N. For the larger
number subvolumes Nv = 1728, 	 of PSRD is 	(Nv = 1728,
N) ≈ 0.08479 log N. For NSM, 	(Nv = 1728, N) ≈ 0.1642
log N. In summary, the scaling of the computational cost of
PSRD with respect to the size N of the reaction network is
O(N), since log N ∈ O(N).

V. TWO- AND THREE-DIMENSIONAL SRD
SIMULATIONS USING PSRD

As an example application we use PSRD for two- and
three-dimensional SRD simulations of the Gray-Scott reac-

tion system,3, 45–48 given by:

Ø
Fk1u

3

−−→ S1

S1
Fk1u

2

−−→ Ø

S1 + 2S2
k1−→ 3S2

S2
kk1u

2

−−→ Ø

S2
Fk1u

2

−−→ Ø.

(19)

This system is widely used to study the formation of Turing
patterns12 in reaction-diffusion systems.3 The trivial steady
state of the system is n1 = u� and n2 = 0, where � is the
volume of the reactor. For a fixed reactor volume, a larger
u hence corresponds to a larger number of molecules in the
reactor, reducing the effect of noise. In the limit of very large
u, the kinetics of the stochastic system tends to that of the
deterministic one.

The third reaction in the system is not elementary since
it involves three reactant molecules. We therefore extend
PSRD to also handle tri-molecular reactions by using a three-
dimensional partial-propensity structure and factoring out
two other reactants. We choose this strategy over expand-
ing the network into elementary reactions in order to ren-
der the parameters k and F comparable to the deterministic
limit case. We do not use discretization-corrected propensities
since no theoretical framework is available for tri-molecular
reactions.33

For the simulations we fix the dimensionless constants
such that F = 0.04 and k = 0.06, and we choose the macro-
scopic rate k1 = 1. In 2D we simulate the reaction-diffusion
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system in a computational domain of area � = 0.642, divided
into K2 = 642 subvolumes (or subareas) of edge length h
= 0.01. At the boundary of the computational domain,

periodic boundary conditions are used for the jump re-
actions. The resulting reaction-diffusion system in 2D
thus is:

Ø
Fk1u

3

−−→ S(l,m)
1

S(l,m)
1

Fk1u
2

−−→ Ø

S(l,m)
1 + 2S(l,m)

2
k1−→ 3S(l,m)

2

S(l,m)
2

kk1u
2

−−→ Ø

S(l,m)
2

Fk1u
2

−−→ Ø

S(l,m)
1

D1/h2

−−→ S(l′,m′)
1

S(l,m)
2

D2/h2

−−→ S(l′,m′)
2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

∀ (l, m) ∈ Iall , (20)

where Iall is the set of all possible subvolume indices in 2D and (l′, m′) are the neighboring subvolumes of
(l, m) taking into account the periodic boundary conditions, hence l′ ∈ {[((l − 1) ± 1 + 2K)mod K] + 1} and m′

∈ {[((m − 1) ± 1 + 2K)mod K] + 1}. At t = 0, the initial population is:

n
(l,m)
1 =

{
uh2

2 + 	0.04(r − 0.5)uh2 + 0.5
, for 24 ≤ l, m ≤ 40

uh2, otherwise.

n
(l,m)
2 =

{
uh2

4 + 	0.02(r − 0.5)uh2 + 0.5
, for 24 ≤ l, m ≤ 40

0, otherwise,
(21)

where r is a uniform random number in [0, 1) that acts as
an initial perturbation. We use the diffusion constants D1

= 2 × 10−5 and D2 = D1/2.
Figure 6 shows the 2D simulation results from PSRD and

from a deterministic simulation. It shows the spatial concen-
tration distribution of species S1, normalized with u, at time

FIG. 6. Normalized spatial concentration distribution of species S1 in
the two-dimensional Gray-Scott reaction-diffusion system (Eq. (20)) for F
= 0.04, k = 0.06, k1 = 1, and D1 = 2D2 = 2 × 10−5 in a square computa-
tional domain of area 0.642, divided into Nv = 642 subvolumes (or subareas)
of edge length h = 0.01. The concentration in each subvolume is shown as a
color ranging from blue (concentration zero) to red (concentration one). (A,
B) Concentration distributions, normalized by u, obtained using PSRD for
u = 106 (A) and u = 107 (B), respectively. (C) Normalized concentration
distribution obtained from a deterministic simulation using the same parame-
ters, simulated using second-order finite differences. All snapshots are taken
at final time tf = 2000/(k1u2).

tf = 2000/(k1u2). Figures 6(a) and 6(b) show the normalized
concentration distributions for u = 106 and 107, respectively,
as obtained using PSRD. The maximum number of molecules
of S1 in any subvolume is on the order of h2u = 0.01u. For
u = 106, approximately 0.3 × 109 reaction events are simu-
lated until tf with fr ≈ 0.12 and a total runtime (CPU time)
of 157 s for PSRD and 200 s for NSM. For u = 107, the
number of reaction events happening during the simulation
increases to ≈3 × 109 with fr ≈ 0.14 and a total runtime of
1854 s for PSRD and 2290 s for NSM. All timings were done
on the same computer and using the same software as those
presented in Sec. IV

Increasing u increases the total number of molecules
in the reactor and hence decreases the noise in the system.
The normalized concentration distribution obtained from a
deterministic simulation is independent of u and is shown
in Fig. 6(c). The deterministic simulation is done using the
same numerical scheme as Pearson3 in order to render the
results comparable. This is a second-order finite-difference
discretization of the Laplacian for the diffusion part and
a first-order explicit Euler scheme with time-step size 
t
= 1.125 for time stepping. The results show that as the num-
ber of molecules in the reactor increases with increasing u, the
stochastic spatial pattern tends toward the deterministic one.
The intrinsic noise in the stochastic system, however, breaks
the symmetry of the pattern.
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We also simulate the reaction-diffusion system in
Eq. (20) in 3D (using triplet indices for the subvolumes) in
a computational domain of volume � = 0.643, divided into

K3 = 643 subvolumes of edge length h = 0.01. We use pe-
riodic boundary conditions in all three dimensions. At t = 0,
the initial population is:

n
(l,m,n)
1 =

{
uh3

2 + 	0.04(r − 0.5)uh3 + 0.5
, for 24 ≤ l, m, n ≤ 40

uh3, otherwise.

n
(l,m,n)
2 =

{
uh3

4 + 	0.02(r − 0.5)uh3 + 0.5
, for 24 ≤ l, m, n ≤ 40

0, otherwise,
(22)

where r is a uniform random number in [0, 1) that acts as an
initial perturbation. We use the same diffusion constants as in
the 2D case above.

Figure 7 shows the 3D concentration distribution of
species S1 at time tf = 2000/(k1u2), normalized with u = 108.
For these parameters, the maximum number of molecules of
species S1 in any subvolume is uh3 = 100 and hence the in-
trinsic noise breaks the symmetry of the Turing pattern. Ap-
proximately 36 × 109 reaction events are simulated until tf
with fr ≈ 0.1. The total runtime (CPU time) for PSRD is
77 413 s, for NSM it is 100 636 s (extrapolated).

FIG. 7. Normalized spatial concentration distribution of species S1 in
the three-dimensional Gray-Scott reaction-diffusion system for F = 0.04,
k = 0.06, k1 = 1, and D1 = 2D2 = 2 × 10−5 in a cubic computational domain
of volume 0.643, divided into Nv = 643 subvolumes of edge length h = 0.01.
The concentration in each subvolume, normalized by u = 108, is shown as a
color ranging from blue (concentration zero) to red (concentration one). The
snapshot is taken at final time tf = 2000/(k1u2).

VI. CONCLUSIONS AND DISCUSSION

We have introduced the on-lattice partial-propensity
stochastic reaction-diffusion (PSRD) method. PSRD pro-
ceeds by dividing the computational domain into Nv subvol-
umes. The chemical reaction system in each subvolume is
assumed to be well mixed and it is imposed that molecules
can only react with partners within the same subvolume.
Diffusion is modeled by jump “reactions” between neigh-
boring subvolumes. PSRD combines composition-rejection
sampling39, 42, 56 with the concept of partial propensities.41

Computational efficiency is achieved by binning the subvol-
umes and using partial propensities to group the reactions
within each subvolume.

PSRD samples trajectories from the exact solution of
the reaction-diffusion master equation for on-lattice reaction-
diffusion systems, provided the subvolume sizes are within
admissible bounds.33, 50, 51 This is done by first sampling the
subvolume using composition-rejection sampling, and then
sampling the index of the next reaction within that subvol-
ume using linear search over the dynamically grouped partial
propensities, analogous to the sorting partial-propensity direct
method (SPDM).41 The computational cost of PSRD to sam-
ple the next subvolume is O(Ga), where the number of bins is
Ga = log2(amax/amin) + 1, amax is the maximum total propen-
sity in any subvolume, and amin is the smallest non-zero total
propensity in any subvolume. In any simulation, the number
Ga scales at most as O(log2 Nv). If the logarithmic span of the
propensities can bea prioribounded by a constant, the cost
of sampling the subvolume reduces to O(1).39 The compu-
tational cost to sample the index of the next reaction within
a subvolume is O(N), where N is the number of species in
the reaction network. Thus, the overall computational cost of
PSRD is O(Ga + N), which is bounded in the worst case by
O(log2 Nv + N). This cost of PSRD is independent of whether
the SRD simulation is dominated by “real” reactions or by
“diffusion reactions.” We demonstrated this scaling of the
computational cost using prototypical benchmark cases for
both types of reaction networks: strongly coupled and weakly
coupled. For the former, the number of reactions scales
super-linearly with the number of species. For the latter, the
number of reactions is almost the same as the number of
species.
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PSRD inherits the limitations of partial-propensity
methods.40–42 It is hence limited to reaction networks com-
prising only elementary reactions. Non-elementary reactions
can be broken down into sets of elementary ones at the
expense of an increased network size.30, 43, 44 For spatiotem-
poral reaction-diffusion simulations, however, including
non-elementary reactions is of questionable value since no
kinetic-theoretical framework exists for them.33, 54 It is hence
unclear how the propensity functions of non-elementary
reactions should be correctly formulated in a discretized
space.33

Due to the more complex data structures used in partial-
propensity methods, we do not expect PSRD to offer signif-
icant speed-ups for small (N � 10) chemical reaction net-
works. In these cases, the next subvolume method (NSM)5, 24

can be as efficient or faster than PSRD. The data structures
of PSRD also have a larger memory footprint than those of
NSM, even though the scaling of the memory usage with
problem size is the same for the two methods when not us-
ing a dependency graph in NSM (see Appendix). In addi-
tion, PSRD is restricted to chemical reaction networks that
do not involve time delays. This could be overcome by using
dPDM (delay PDM)63 instead of SPDM inside each subvol-
ume in PSRD. Our current software implementation of PSRD
is moreover limited to rectangular computational domains.
This limitation, however, is not inherent to the method as such
and future developments will consider extending the method
to computational domains of arbitrary shape,64, 65 e.g., using
unstructured meshes.66

While we have described the basic version of PSRD
for simplicity and conciseness of the presentation, the al-
gorithm can be further improved in efficiency using stan-
dard techniques. Using a binary tree search instead of lin-
ear search over subvolume bins,36 the computational cost of
sampling the next subvolume can, for example, be reduced
to O(log2 Ga), rendering the overall computational cost of
such a variant of PSRD O(log2 Ga + N) and in the worst-
case O(log2log2 Nv + N). Moreover, for weakly coupled re-
action networks41, 42 the computational cost of sampling the
next reaction within a subvolume can be reduced to O(Gr) us-
ing the partial-propensity method with composition-rejection
sampling (PSSA-CR) within each subvolume. Gr is the loga-
rithmic span of non-zero propensities within the subvolume.
In summary, the computational cost of PSRD can be reduced
to O(log2 Ga + N) or even O(log2 Ga + log2 Gr) for certain
classes of reaction networks and when using a binary search
tree also within PSSA-CR. These improvements can be real-
ized at the expense of larger memory requirements, which is
why we did not include them in the presentation here. Their
implementation, however, is straightforward and they will be
included in future versions of the PSRD software package.

PSRD uses dynamic bubble sort for the reactions within
each subvolume. This is inspired by the sorting direct method
(SDM)38 and its partial-propensity variant SPDM.41 Sorting
SSAs have been shown to be particularly efficient on multi-
scale (stiff) reaction networks where the propensities of differ-
ent reactions are orders of magnitude apart. This means that
a small fraction of reactions can potentially account for the
majority of reaction events. The dynamic “bubbling up” of

these reactions in the reaction list reduces the average search
depth when sampling the next reaction as it accumulates the
most frequent reactions at the top of the list. Using a sorting
SSA inside each subvolume of an on-lattice SRD simulation
is particularly advantageous since the propensities of differ-
ent reaction types scale differently with subvolume size (see
Eq. (2)). While the propensities of bimolecular reactions scale
as �−1

c , those of source reactions scale as �c, and the propen-
sities of unimolecular reactions are independent of �c. The
propensities of “diffusion reactions” scale as h−2. Reducing
the grid spacing h thus renders the reaction network increas-
ingly multi-scale with the propensity ratio between the fastest
and slowest reactions scaling at most as h6 in 3D subvolumes
(h4 in 2D subvolumes).

Taken together, PSRD offers an improved scaling of
the computational cost for exact on-lattice SRD simula-
tions. This can lead to significant performance improve-
ments when simulating strongly coupled spatiotemporal
processes, such as colloidal aggregation and scale-free bio-
chemical networks.61, 62, 67, 68

A C++ software implementation of PSRD and its
efficiency-improved variants, including delay-reaction ver-
sions thereof, will be made available as open source on the
web page of the authors. We hope they will provide a useful
tool for stochastic reaction-diffusion simulations in various
disciplines, including chemical physics, chemical engineer-
ing, and systems biology.

ACKNOWLEDGMENTS

R.R. was funded by a grant from the Swiss SystemsX.ch
initiative, grant WingX, evaluated by the Swiss National Sci-
ence Foundation. This project was also supported with a
grant from the Swiss SystemsX.ch initiative, grant LipidX-
2008/011, to I.F.S.

APPENDIX: COMPUTATIONAL COST OF PSRD

The steps that define the scaling of the computational cost
of PSRD are the sampling of the subvolume containing the
next reaction, the sampling of the next reaction within that
subvolume, and the update of the data structures after firing
the sampled reaction.

The computational cost of the composition-rejection
sampling of the next subvolume is O(Ga). This is because
(i) the composition step is a linear search over Ga bins, and
(ii) the rejection step is O(1) since the average number of it-
erations for this step is bounded by a constant thanks to the
dyadic binning.39, 42

The computational cost for sampling the next reaction
within the selected subvolume (l, m, n) is O(N). This step in-
volves sampling the group index I and the element index J of
the next reaction in the partial-propensity structure. Sampling
the group index involves a linear search over the at most N
+ 1 elements of �(l,m,n) and hence has a computational cost
of O(N). Sampling the element index involves a linear search
over the O(N) elements of �

(l,m,n)
I and hence has a computa-

tional cost of O(N) as well.
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The computational cost for updating the data structures
within a subvolume is at most O(N). Assuming that the num-
ber of distinct species involved in any one chemical reaction
is O(1) (i.e., does not increase beyond a constant bound as
the number of species in the network increases), the cost of
updating the population of species is O(1). Under the same
assumption, the number of entries in �(l,m,n) that need to be
updated after any reaction has fired is at most O(N).41, 42 By
the same argument, the cost of updating the partial-propensity
structure of any neighboring subvolume upon firing of a “dif-
fusion reaction” is at most O(N).

Overall, the computational cost of PSRD thus is O(Ga

+ N), irrespective of the fraction fr of “real” reaction firings.
The asymptotically (for large Nv) worst case for PSRD is
when half of the subvolumes contain bimolecular reactions
and the other half source reactions. In 3D subvolumes, the
propensity of the bimolecular reactions is proportional to h−3

whereas that of the source reactions is proportional to h3,
where h is the edge length of the subvolumes. As Nv increases,
the logarithmic span of the propensities in the system hence
increases. This leads to an increase in the number of bins Ga

that is proportional to log2 h−6 = 2log2 Nv − 2log2�, where
� is the (constant) volume of the reactor. Therefore, Ga ∈
O(log2 Nv), rendering the computational cost of PSRD O(log2

Nv + N) in the worst case, independent of fr. This worst-
case scaling of PSRD’s computational cost can be reduced
to O(log2log2 Nv + N) by using a tree search36 to sample b in
Eq. (12).

The data structures of PSRD require O(M + N) memory
per subvolume. Therefore, the total memory requirement of
PSRD is O((M + N)Nv).
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