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Abstract

Chemical reactions are fundamental processes in nature. They are conventionally modeled
using reaction rate equations (RRE), which are ordinary differential equations describing the
rate of change of the concentrations of species in a well-mixed system. RRE, however, are
a macroscopic description that is only valid in the order of Avogadro’s number of molecules
of all reactants. It is well known that when the population of reactant species is small,
fluctuations due to intrinsic noise can lead to non-trivial chemical kinetics. This intrinsic
noise is accounted for by the chemical master master (CME). Using newly developed stochastic
simulation algorithms (SSA) we describe novel qualitative and quantitative effects of intrinsic
noise on chemical kinetics in small populations.

We propose a quantity called partial propensity and use it to construct a family of novel
SSA formulations. Introducing a topological property of reaction networks, called the degree of
coupling , we classify networks into weakly coupled and strongly coupled ones. We demonstrate
that the computational cost of SSA depends on the coupling class of the network simulated.
For strongly coupled networks, the computational cost of partial-propensity SSA is at most
proportional to the number of species in the chemical reaction network. For weakly coupled
networks, the cost can be independent of network size. We benchmark the partial-propensity
SSA formulations on prototypical test cases and derive an upper bound for the scaling of their
computational cost with increasing network size. We further show that all partial-propensity
formulations can be composed from a set of common algorithmic building blocks, which we
implemented in a modular software package.

We apply partial-propensity SSA to study the effects of intrinsic noise on the steady-state
mean concentrations in nonequilibrium monostable reaction networks. Assuming that the
molecular population is proportional to the reactor volume, intrinsic noise due to apparent
molecular discreteness increases with decreasing reactor volume. We show that there exists
a critical reactor volume (or, equivalently, population size) below which the CME predicts a
different ordering of the steady-state mean concentrations than the RRE. We present a gen-
eral theory that explains this discreteness-induced inversion effect and predicts the critical
volume in good agreement with exact SSA simulations. Subsequently, we study the finger-
prints of intrinsic and extrinsic noise on the relaxation kinetics of fluctuations in mesoscopic
reaction networks. We show that intrinsic and extrinsic noise affect the derivatives of the
time-autocorrelation function of the fluctuations in opposite ways, allowing us to separate
these two noise sources. In oscillatory mesoscopic reaction systems, we find that intrinsic
noise systematically alters the frequency spectrum of the oscillations.

For spatially inhomogeneous reaction–diffusion systems we use the idea of partial propen-
sities to develop a new algorithm for spatiotemporal stochastic reaction-diffusion simulations.
Spatial heterogeneity is sustained when the diffusion of species is slower that the reactions
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between them. In such cases, the CME is not valid. Conceptually dividing the reactor
into well-mixed subvolumes with jump reactions between them modeling diffusion, stochastic
reaction–diffusion is modeled using the on-lattice reaction-diffusion master equation (RDME).
The computational cost of the presented simulation algorithm is at most logarithmic in the
number of subvolumes and at most linear in the number of chemical species.

As a possible application of the presented algorithms and results we consider the problem
of identifying the unknown parameters of a stochastic reaction network from a single, noisy
population trajectory. This constitutes an inverse problem for which we use the fingerprints
of noise-induced effects as additional regularization. We propose a method that combines
partial-propensity formulations for sampling trajectories from the exact solution of the CME
with an adaptive Monte Carlo sampling technique — called Gaussian adaptation — to search
the parameter space. We benchmark the method on synthetic test cases using simulated
trajectories.
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Zusammenfassung

Chemische Reaktionen sind fundamentale Prozesse in der Natur. Sie werden meistens mit-
tels Reaktionsratengleichungen (RRG) beschrieben, gewöhnliche Differentialgleichungen für
die Stoffkonzentrationen der beteiligten Substanzen in homogenen Reaktoren. RRG sind je-
doch nur in makroskopischen Systemen gültig in denen die Teilchenzahlen aller Reaktanden-
moleküle in der Grössenordnung der Avogadrozahl sind. Für kleine Reaktandenpopulationen
ist es bekannt dass intrinsische Fluktuationen zu nicht-trivialer Kinetik führen können. Diese
intrinsischen Fluktuationen werden von der chemischen Mastergleichung (CMG) beschrieben.
Wir entwickelten neue stochastische Simulationsalgorithmen (SSA) und benutzen diese zur
Beschreibung neuer qualitativer und quantitativer Effekte von Fluktuationen auf die chemis-
che Kinetik in kleinen Molekülpopulationen.

Wir führen dazu eine neue, partial propensity genannte Grösse ein und benutzen diese
um eine neue Familie von stochastischen Simulationsalgorithmen (SSA) zu konstruieren.
Basierend auf dem Kopplungsgrad als topologische Grösse unterscheiden wir stark gekoppelte
und schwach gekoppelte Reaktionsnetzwerke. Wir zeigen dass der Rechenaufwand von SSA
vom Kopplungsgrad des simulierten Netzwerks abhängt. Für stark gekoppelte Netzwerke ist
der Rechenaufwand von partial-propensity SSA höchstens linear proportional zur Anzahl der
chemischen Verbindungen (Reaktanden und Produkte) im Reaktionsnetzwerk. Für schwach
gekoppelte Netzwerke kann der Rechenaufwand gar unabhängig von der Netzwerkgrösse sein.
Wir messen die Rechenzeiten von partial-propensity SSA anhand prototypischer Testfälle und
leiten eine obere Schranke für den Rechenaufwand in Funktion der Netzwerkgrösse her. Wir
zeigen auch dass alle partial-propensity SSA aus einem gemeinsamen Satz algorithmischer
Bausteine aufgebaut werden können, welche wir in einer modularen Software implementiert
haben.

Wir verwenden partial-propensity SSA um den Einfluss intrinsischer Fluktuationen auf
die stationären Ungleichgewichtskonzentrationsmittelwerte in monostabilen Reaktionsnetzw-
erken zu studieren. Wenn die Molekülpopulation proportional zum Reaktorvolumen ist, dann
nehmen die intrinsischen Fluktuationen mit abnehmendem Reaktorvolumen zu. Wir zeigen
die Existenz eines kritischen Reaktorvolumens (oder äquivalent einer kritischen Molekülpop-
ulation) unterhalb dessen die CMG eine andere Rangfolge der stationären Konzentrations-
mittelwerte vorhersagt als die RRG. Wir präsentieren eine allgemeine Theorie welche diesen
fluktuationsinduzierten Inversionseffekt erklärt und kritische Volumina in guter Übereinstim-
mung mit exakten SSA-Simulationen vorhersagen kann. Dann studieren wir wie sich die
intrinsischen Fluktuationen auf die Relaxationskinetik mesoskopischer Reaktionsnetzwerke
auswirken. Wir zeigen dass intrinsische und extrinsische Fluktuationen die Ableitungen der
Zeitautokorrelationsfunktion der Molekülpopulation in entgegengesetzter Weise beeinflussen.
Dies erlaubt es uns, die beiden Fluktuationsquellen zu unterscheiden. Zudem verändern die
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intrinsichen Fluktuationen systematisch das Frequenzspektrum oszillierender mesoskopischer
Reaktionssysteme.

Auch für räumlich heterogene Reaktions-Diffusions-Systeme verwenden wir die Idee der par-
tial propensities um einen neuen Simulationsalgorithmus herzuleiten. Räumliche Heterogenität
tritt auf wenn die Diffusion der Moleküle langsamer ist als die Reaktionen zwischen ihnen. In
diesen Fällen ist die CMG ungültig. Der Reaktor wird dann gedanklich in homogene Teilvo-
lumina unterteilt und Diffusion von Molekülen als Sprungreaktionen in benachbarte Teilvolu-
mina modelliert, was zur gitterbasierten Reaktions-Diffusions-Mastergleichung (RDMG) führt.
Der Rechenaufwand des vorgestellten Simulationsverfahrens ist höchstens logarithmisch in der
Anzahl der Teilvolumina und höchstens linear in der Anzahl der chemischen Verbindungen.

Als mögliche Anwendung der vorgestellten Algorithmen und Resultate betrachten wir das
Problem der Schätzung der unbekannten Parameter eines stochastischen Reaktionsnetzwerks
aus einer einzigen, verrauschten Populationstrajektorie. Dies ist ein inverses Problem für
das wir die Fingerabdrücke der Fluktuationseffekte als zusätzliche Regularisierung verwenden.
Wir schlagen eine Methode vor welche partial-propensity SSA zur Simulation von Population-
strajektorien von der CMG mit einem adaptiven Monte Carlo Sampler — genannt “Gaussian
Adaptation” — zum Absuchen des Parameterraums verbindet. Wir testen die neue Methode
auf synthetischen Testfällen mit simulierten Populationstrajektorien.
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Introduction

“I do not know anything, but I do know that everything is interesting if you
go into it deeply enough.”
– Richard P. Feynman

Chemical reactions are processes where atoms constituting molecules are rearranged to form
molecules with different properties. The substances that are consumed in a chemical reaction
are called reactants and those that are produced are called products. A chemical reaction can
be spontaneous, leading to the conversion of reactants to products without any input of energy.
In other cases, the reactants need to be supplied with some form of energy in order to get
converted to products. Reactions can be conceptualized as reactants in a certain energy state
being converted to products in a different energy state. If there is an energy barrier between
the reactant and the products, energy input is required. Hence, reactions convert mass from
one form to another by consuming or releasing energy.

We ourselves perform chemical reactions routinely. The whitening of egg yolk upon heating
is the result of denaturation of a protein called albumin. Also, chemical reactions are used
extensively in pharmaceutical, chemical and food processing industries. Examples include syn-
thesis of the antibiotic azithromycin from erythromycin, synthesis of fertilizers from ammonia
and the fermentation of lactose to produce yoghurt. Plants use photosynthesis to convert
carbon-dioxide and water to sugar and oxygen in the presence of light. A series of chemi-
cal reactions in our body converts carbohydrates to glucose and subsequently to adenosine
triphosphate (ATP), the primary energy source of a biological cell. Using ATP, the cells host
a phenomenal variety of chemical reactions that are essential for life. For instance, the process
of transcription and translation to produce proteins from deoxyribonucleic acid (DNA).

Chemical reactions have been a key driver in the development of nonequilibrium thermo-
dynamics, starting with the work of Belousov and Zhabotinsky and inspired by Belousov’s
experimental observation of an oscillating chemical reaction (Belousov, 1959; Zhabotinsky,
1964; Belousov, 1985; Zhabotinsky, 1991). Alan Turing proposed chemical reactions involving
diffusing morphogens as the basis for morphogenesis (Turing, 1952) after discovering their
potential of yielding concentration profiles that appeared similar to animal coat patterns.
Chemical reactions are thus so fundamental that they can be considered a key cog in the
wheel of the universe and of life.

Being so fundamental, chemical reactions and the famous law of mass action—due to the
works of Guldberg, Waage, van’t Hoff and Berthollet—are taught in every school. Using the
law of mass action, chemical kinetics, which describes the rate of change of the concentrations
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of molecules involved in a reaction, is formulated as a system of coupled ordinary differential
equations, the reaction rate equation (RRE). This description has been experimentally shown
to be a good model for chemical kinetics. RREs, however, are a mean-field description where
the concentration of molecules is a continuous quantity and reaction rates are quantified using
macroscopic rate constants. Therefore, RREs do not always provide an accurate description.
This is for instance the case when the number of molecules of a chemical species (also called
the “population”) is much smaller than Avogadro’s number (McQuarrie, 1967; Kurtz, 1972;
Gardiner et al., 1976; Gillespie, 1976). At low population, the molecular discreteness of the
reactant molecules becomes apparent, leading to fluctuations in the concentrations. This in-
trinsic noise stems from the discrete change in the number of molecules when a reaction occurs
and its random character is imparted by the contact of the system with a heat bath (Gillespie,
1992, 2007). At low population, the number of molecules is not large enough for averaging
out the fluctuations due to intrinsic noise. These fluctuations then play an important role
in leading to non-trivial chemical kinetics (McAdams and Arkin, 1997; Arkin et al., 1998;
Elowitz and Leibler, 2000; Barkai and Leibler, 2000; Berg et al., 2000; McClintock, 1999; Qian
et al., 2002; Elf and Ehrenberg, 2004). This is for example the case in biological cells, where
biochemical reactions proceed in sub-micron compartments, the total number of molecules
is in the range of one to several thousand per compartment (Ghaemmaghami et al., 2003;
Ishihama et al., 2008) and intrinsic noise is expected to play an important functional role in
biochemical circuits (McAdams and Arkin, 1997; Arkin et al., 1998; McClintock, 1999; Elowitz
and Leibler, 2000; Barkai and Leibler, 2000; Berg et al., 2000; Elf and Ehrenberg, 2004; Eldar
and Elowitz, 2010). Fluctuations due to low copy numbers or molecular discreteness have
been implicated as an essential player in several observations. Intrinsic noise has been used to
explain the fraction of cells choosing the lysis or lysogenic pathway in bacterio-phage λ infec-
tion (Arkin et al., 1998), the emergence of oscillations in biochemical clocks and also in their
loss of synchrony (Barkai and Leibler, 2000; Elowitz and Leibler, 2000), reduction of cell signal
precision (Berg et al., 2000), spontaneous separation of biomolecules into spatial domains in
the mitogen activated protein kinase (MAPK) phosphorylation-dephosphorylation system (Elf
and Ehrenberg, 2004), and modulation of the response of the MAPK pathway (Takahashi
et al., 2010). In all of these examples and many others, correlation in the fluctuations lead to
observations (Springer and Paulsson, 2006) that cannot be explained by the RREs.

Intrinsic noise can be accounted for by stochastic kinetic models. An approach that has be-
come canonical is the chemical master equation (CME) (Gillespie, 1976, 1977, 1992), a Markov-
chain model obeying the fundamental Chapman-Kolmogorov equation (Gillespie, 1991). The
CME is an exact mesoscopic description for any well-stirred and thermally equilibrated gas-
phase chemical system (Gillespie, 1992), and for chemical reactions in well-stirred dilute so-
lutions (Gillespie, 2009). Its high dimensionality, however, renders analytical approaches in-
tractable. The analytical intractability is overcome by using numerical methods to sample
population trajectories of the chemical species from the CME using a kinetic Monte Carlo
approach (Doob, 1942, 1945; Kendall, 1949; Barlett, 1953; Bortz et al., 1975; Gillespie, 1976,
1977, 1992). The canonical kinetic Monte Carlo approach for sampling population trajectories
from the exact solution of the CME is Gillespie’s stochastic simulation algorithm (SSA) (Gille-
spie, 1976, 1977, 1992). The first SSA formulations proposed by Gillespie himself are the first
reaction method (FRM) and the direct method (DM) (Gillespie, 1976, 1977). The popularity
of these methods coincides with an increasing availability of experimental observations that
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could not be explained by RREs.

In this thesis, we review the computational cost of exact SSA formulations and propose
a new class of potentially more efficient exact SSAs based on the novel concept of partial
propensities. In addition, the thesis aims to further understand the role of noise in mesoscopic
chemical systems, where low populations at small reactor volumes may deviate stochastic
kinetics from its deterministic counterpart. We provide fingerprints of these deviations and
conditions for when they are significant. Finally, we apply the presented algorithms and
results to stochastic simulations of spatiotemporal reaction-diffusion processes and to global
parameter identification in stochastic reaction networks. The thesis is structured as follows:

Chapter 1: Stochastic chemical kinetics

We provide the theoretical background and the necessary definitions for this thesis by re-
capitulating the derivation of the chemical master equation (CME) from the fundamental
assumption of any Markov process as described by the Chapman-Kolmogorov equation. We
then present the derivation of Gillespie’s stochastic simulation algorithm (SSA) that samples
population trajectories from the exact solution of the CME. We present the systematic ap-
proximations of the CME that lead to the chemical Kramer-Moyal equation and show that
truncating the Kramer-Moyal equation leads to the nonlinear Fokker-Planck equation, whose
equation of motion is the chemical Langevin equation. At very large populations, we show
the emergence of the classical reaction rate equation (RRE). Finally, making use of Gillespie’s
SSA, we demonstrate the effect of intrinsic noise due to low population at small reactor volume
on different types of chemical reaction networks.

Chapter 2: Formulations of the stochastic simulation
algorithm for chemical reaction networks

We define the state of the art by reviewing existing exact SSAs and analyzing their compu-
tational costs. The computational cost of SSAs depends on the properties of the simulated
reaction networks and of the algorithms used in the SSA formulation. We present the cost-
determining topological properties of chemical reaction networks and use them to classify
reaction networks into strongly coupled and weakly coupled networks. We review existing
SSAs and their computational costs as a function of the coupling class of the reaction net-
work. Quantifying computational cost as the CPU time per reaction event, we show that the
computational costs of exact SSAs are functions of the number of chemical reactions in the
network. We further show that the computational cost of existing SSAs has been reduced to
constant time for weakly coupled networks. For strongly coupled networks, however, we show
that the computational cost of exact SSAs is at best linear in the number of reactions. We
also briefly review the general concept of approximate SSAs and their potential in offering
superior computational performance for large reactor volumes (or large populations, assum-
ing that population increases linearly with reactor volume). Parts of this chapter have been
presented in (Ramaswamy et al., 2009).
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Chapter 3: Partial-propensity formulations of the stochastic
simulation algorithm.

As a first key contribution of this thesis, we present a novel class of exact SSAs whose compu-
tational cost scales at most linearly with the number of species in the reaction network. This
is based on the novel concept of partial propensities. We introduce the partial propensity of a
reaction with respect to a reactant as its propensity per molecule of that reactant. Limiting
ourselves to elementary reactions, we propose the class of partial-propensity SSAs whose com-
putational cost is at most linear in the number of chemical species, rather than the number
of chemical reactions. Since the number of chemical species in a reaction network is expected
to be much smaller than the number of chemical reactions, partial propensity SSAs can po-
tentially offer superior computational performance, especially for strongly coupled and large
reaction networks. For weakly coupled reaction networks, we further reduce computational
cost of partial-propensity formulations to constant time. We also use partial propensities to
formulate SSAs for chemical reaction networks with delays. Finally, we show that partial-
propensity SSAs constitute a family of exact SSAs with algorithmic building blocks that can
be modified to obtain different formulations. Parts of this chapter have been presented in (Ra-
maswamy et al., 2009; Ramaswamy and Sbalzarini, 2010b,a, 2011c). The concept of partial
propensities has later also been proposed by Indurkhya and Beal (Indurkhya and Beal, 2010).
Here, however, we present an entire family of partial-propensity SSAs and provide a compre-
hensive analysis of the computational cost as a function of the coupling class of the reaction
network.

Chapter 4: Discreteness-induced concentration inversion in
mesoscopic chemical reaction systems

We apply the presented partial-propensity methods to study the effects of noise in mesoscopic
reaction networks. The results constitute the second key contribution of this thesis. We start
by studying static properties at a nonequilibrium steady state, which leads to the discovery of
a novel inversion effect. Assuming that a decrease in reactor volume decreases the population
of all species, apparent molecular discreteness increases at small reactor volumes. In addition,
many reactors are exposed to extrinsic noise, originating from outside the reactor. Modulating
the magnitude of intrinsic noise by the reactor volume and that of extrinsic noise by burst input
of a reactant species, we demonstrate the effect of molecular discreteness on the nonequilibrium
steady-state mean concentrations in mesoscopic chemical reaction systems. We show that due
to noise, the steady-state mean concentration prediction of the RRE and the linear noise
approximation (LNA) of the CME are qualitatively correct only for systems above a newly
identified critical reactor volume. For sub-critical volumes the ordering of steady-state mean
concentrations of species changes. This concentration inversion is not captured by the RRE
and the LNA. We hence call this change in ordering of steady-state mean concentrations
discreteness-induced concentration inversion. We present a predictive theory based on van
Kampen’s system-size expansion to explain this novel effect and to predict the values of the
critical volumes for a given reaction network. Parts of this chapter have been presented
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in (Ramaswamy et al., 2012).

Chapter 5: Effect of noise on the relaxation kinetics of
mesoscopic chemical systems

Next, we study noise-induced modulations of the dynamic properties of monostable reaction
networks around a nonequilibrium steady state. We therefore quantify the relaxation kinet-
ics of the fluctuations around a nonequilibrium steady state of mesoscopic chemical systems.
We investigate the effect of an increasing magnitude of intrinsic noise due to decreasing re-
actor volume, and of an increase in the magnitude of extrinsic noise due to increasing burst
size of a reactant fed to the reactor. We show that the lifetimes of fluctuations of species,
which we define as the normalized power-spectral density of the concentration fluctuations
at zero frequency, increase or decrease with increasing burst size. The lifetimes of all species
involved as a reactant in a nonlinear reaction increase with decreasing reactor volume. We
also show that the two sources of noise affect the derivative of the time-autocorrelation func-
tion in opposite ways, allowing us to differentiate between them. In addition, we show that
for mesoscopic oscillatory systems, the peak frequency of the oscillation decreases and the
bandwidth increases with decreasing reactor volume. This systematic change in the peak os-
cillation frequency and the bandwidth corroborates with the increase in lifetime observed in
the non-oscillating mesoscopic reaction networks. We believe that understanding the change
in the fluctuation characteristics at a nonequilibrium steady state might help estimate reaction
rates by accounting for the effects of noise when using fluctuation trajectories from fluores-
cence correlation spectroscopy. In addition, it might help understand the effects of noise on
stochastic chemical kinetics. Parts of this chapter have been presented in (Ramaswamy et al.,
2011; Ramaswamy and Sbalzarini, 2011b).

Chapter 6: Exact on-lattice stochastic reaction-diffusion
simulations using partial-propensity methods

We use the algorithms and results presented so far in two applications. The first one considers
spatiotemporal stochastic simulations of reaction-diffusion processes. The CME assumes that
the chemical system is well stirred and hence spatially homogeneous. The implicit assump-
tion behind spatial homogeneity is that diffusion is much faster than reactions. Frequently,
however, this condition is not met and hence the chemical systems are spatial heterogeneous.
Spatial heterogeneity can be accounted for by the on-lattice reaction diffusion master equa-
tion (RDME). The RDME is analogous to the CME and models spatially heterogeneity by
dividing the reactor into subvolumes, in each of which the reactions are assumed to be well
mixed. Diffusion between subvolumes is modeled as jump reactions. Sampling trajectories
from the RDME is computationally expensive. We propose a novel efficient algorithm based
on partial propensities to sample trajectories from the exact solution of the RDME. The algo-
rithm combines composition-rejection sampling to find the index of the subvolume with partial
propensities to sample the index of the next reaction inside the subvolume. The computational
cost of the algorithm is at most logarithmic in the total number of subvolumes and linear in
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the number of chemical species. Parts of this chapter have been presented in (Ramaswamy
and Sbalzarini, 2011a).

Chapter 7: Global parameter identification for stochastic
reaction networks from single trajectories

The second application considers the problem of identifying the unknown parameters of a
stochastic reaction network from a single, noisy measurement. This constitutes a classical
inverse problem. Inverse problems are commonplace in systems biology (Engl et al., 2009).
They arise when constructing biochemical networks and when estimating the parameters of
a biochemical network from experimental time series of species populations. The former is
related to systems identification, while the latter amounts to parameter identification. We
focus on parameter identification assuming that the underlying biochemical network is known.
In biological systems, where many reactions are influenced by intrinsic and extrinsic noise,
even an ideal experimental measurement of a population trajectory will be noisy due to the
inherent fluctuations associated with stochastic chemical kinetics. Assuming that single-cell
experimental trajectories from a known biochemical network are available, we propose a novel
methodology to identify the parameters of the reaction network, namely the reaction rates
and the volume of the reactor. The methodology combines partial-propensity methods for
simulating the CME with an adaptive Monte Carlo sampling technique, called Gaussian adap-
tation (Kjellström and Taxen, 1992; Müller and Sbalzarini, 2010b,a; Müller, 2010), to search
the parameter space. Gaussian adaptation iteratively proposes candidate parameters for which
partial-propensity methods are then used to sample a trajectory from the CME. Subsequently,
we quantify the distance between the simulated and the experimental trajectory using an ob-
jective function that includes the fingerprints of noise-induced modulations of the network
dynamics as presented in previous chapters. This distance is then used by Gaussian adapta-
ton to propose new candidate parameters. In addition to estimating reaction rates and the
reactor volume, the present method also provides an ellipsoidal volume estimate of the viable
parameter space, thus quantifying uncertainty of the produced solutions. Parts of this chapter
have been presented in (Müller et al., 2012).
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1
Stochastic chemical kinetics

“The actual science of logic is conversant at present only with things either
certain, impossible, or entirely doubtful, none of which (fortunately) we have
to reason on. Therefore the true logic for this world is the calculus of
Probabilities, which takes account of the magnitude of the probability which
is, or ought to be, in a reasonable man’s mind.”
– James C. Maxwell

We recapitulate the derivation of the chemical master equation (CME) in Sec. 1.1 and the
systematic approximations leading to the chemical Kramer-Moyal equation and the nonlinear
chemical Fokker-Planck equation in Sec. 1.2. Further, we show the emergence of the determin-
istic reaction rate equation (RRE) at very large population in Sec. 1.2.2. In Sec. 1.3, we will
present Gillespie’s stochastic simulation algorithm (SSA). We then demonstrate the effect of
intrinsic noise on simple model systems in Sec. 1.4, using analytical and numerical approaches.

1.1 The chemical master equation (CME)

In general, a system of chemical reactions can be considered to comprise N species and M
reactions, such that

N∑

i=1

ν−i,µSi
kµ−−−−−→

N∑

i=1

ν+
i,µSi, µ = 1, . . . ,M. (1.1)

Here, ν− = [ν−i,µ] and ν+ = [ν+
i,µ] are the stoichiometry matrices of the reactants and products,

respectively. Both of these matrices are of size N ×M . The overall stoichiometry matrix ν of

1



1 Stochastic chemical kinetics

the reaction network is given by ν = ν+ − ν−. The elements of ν− and ν+ are non-negative
integers, while those of ν can be positive, negative or zero. We denote by νµ the µth column
of ν. Si is the i-th species in the reaction network and ni(t) is its population (molecular copy
number) at time t. The population vector n(t) = [n1, . . . , nN ]T(t) is the state of the system.
The reactions occur in a reactor of volume Ω, and the macroscopic reaction rate of reaction µ
is kµ. See Fig. 1.1 for an illustration.

Figure 1.1: Illustration of molecules in a reactor. The reactor boundary is represented by the gray
surface enclosing the molecules. The color of the molecules is used to encode the species.
The molecules in the reactor posses kinetic energy and move around. Upon collision
they may react to form molecules of a different species. Single molecules can also get
transformed into a new species, or decay. The left panel of shows a reactor with two
molecules of different species in contact in the lower left corner. The right panel shows
the formation of a molecule of a new species appearing in the place of the two molecules
that are in contact in the left panel. This illustrates the occurrence of a reaction event.

It is custom to define a variable cµ, called the specific probability rate of reaction µ (Gillespie,
1976, 1992), such that

cµdt = Probability of reaction µ firing in the next infinitesimal time interval

[t, t+ dt) with ν−i,µ molecules of Si i = 1, . . . , N. (1.2)

This makes cµ the smallest non-zero probability rate of reaction µ. The specific probability
rate cµ is related to the macroscopic reaction rate kµ (Gillespie, 1976) as

cµ =
kµ

(∏N
i=1 ν

−
i,µ!
)

Ω(
∑N
i=1 ν

−
i,µ)−1

. (1.3)

The reaction degeneracy hµ of reaction µ is defined as (Gillespie, 1976, 1992):

hµ(n) = Number of distinct combinations by which the reactants of reaction µ can

react to form products. (1.4)
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1.1 The chemical master equation (CME)

Therefore

hµ =

N∏

i=1

(
ni

ν−i,µ

)
, (1.5)

where
(

ni

ν−i,µ

)
=

ni!

ν−i,µ!(ni − ν−i,µ)!
=

(ni − ν−i,µ + 1)(ni − ν−i,µ + 2) . . . (ni − 1)ni

ν−i,µ!
. (1.6)

From Eqs. 1.2 and 1.4 the probability rate or the propensity aµ of reaction µ becomes

aµ(n)dt = cµhµ(n)dt = Probability of reaction µ firing in the next infinitesimal time

interval [t, t+ dt) with ni molecules of Si, i = 1, . . . , N. (1.7)

Note that aµ = cµ when n = ν−µ .
The state probability distribution function is defined as

P (n, t | n0, t0) = Probability that the population of species is n at time t,

given a population n0 at time t0. (1.8)

Using the Chapman-Kolmogorov equation (Chapman, 1928; Kolmogorov, 1931; Feller, 1940,
1957) describing the time evolution of P for a Markov process

P (n, t+ dt | n0, t0) =
∑

n1

P (n, t+ dt | n1, t) P (n1, t | n0, t0), (1.9)

t0 ≤ t ≤ t+ dt. (1.10)

For the chemical reaction defined in Eq. 1.1 the above equation can be equivalently written as

P (n, t+ dt | n0, t0) =

M∑

µ=1

P (n, t+ dt | n− νµ, t) P (n− νµ, t | n0, t0)

+ P (n, t+ dt | n, t) P (n, t | n0, t0), (1.11)

where νµ is the vector of stoichiometries of reaction µ, and P (n, t + dt | n − νµ, t) is the
probability distribution Π(νµ | dt ; n, t) of the Markov propagator such that the equation of
motion for the states (population) can be written as

n(t+ dt) = n(t) + Ξ(νµ | dt ; n, t), (1.12)

where Ξ(νµ | dt ; n, t) is a random variable, called the Markov propagator, distributed such
that Ξ(νµ | dt ; n, t) ∼ Π(νµ | dt ; n, t).

Simplifying the notation, Eq. 1.11 reads

P (n, t+ dt)

=

M∑

µ=1

P (n− νµ, t) Prob{Reaction µ fires once in [t, t+ dt) given n− νµ at t}(1.13)

+ P (n, t) Prob{No reaction in [t, t+ dt) given n at t}. (1.14)
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1 Stochastic chemical kinetics

The reasoning behind this equation is as follows: The first summand on the right-hand side
is the probability that the chemical reaction system moves from a population state n− νµ at
time t to the population state n at time t + dt. The second term is the probability that the
system is at state n at time t and stays at the same state at time t + dt. The sum of these
two terms is therefore the probability of the system being in state n at time t+ dt.

The probability of reaction µ firing once in the time interval [t, t+ dt) is the product of the
probability that one combination of its reactant molecules reacts to form products, and the
probability that all other combinations do not react. Therefore,

Prob{Reaction µ fires once in [t, t+ dt) given n at t} = P (n, t+ dt | n− νµ, t)
= Π(νµ | dt ; n, t)

= cµdt(1− cµdt)hν(n)−1

= cµhµ(n)dt+O(dt2)

= aµ(n)dt+O(dt2), (1.15)

where O(dt2) is the Bachmann-Landau big-O symbol∗ such that limdt→0
O(dtα)

dt = 0 for α > 1.
It hence follows that the probability that no reactions occur in [t, t+ dt) is given by

Prob{No reaction in [t, t+ dt) given n at t} = P (n, t+ dt | n, t)

= 1−
M∑

1

aµ(n)dt+O(dt2)

= 1− a(n)dt+O(dt2), (1.16)

where the total propensity a(n) =
∑M
µ=1 aµ(n). Equation 1.14 can therefore be written as

P (n, t+ dt) =

M∑

µ=1

P (n− νµ, t)
[
aµ(n− νµ)dt+O(dt2)

]

+ P (n, t)

[
1−

M∑

1

aµ(n)dt+O(dt2)

]
, (1.17)

i.e.,

P (n, t+ dt)− P (n, t)

dt
=

M∑

µ=1

[
aµ(n− νµ) +

O(dt2)

dt

]
P (n− νµ, t)

− P (n, t)

[
M∑

µ=1

aµ(n)dt+
O(dt2)

dt

]
. (1.18)

Taking the limit limdt→0 we obtain the chemical master equation (CME) (McQuarrie, 1967;

∗f(x) ∈ O(g(x)), or f(x) is O(g(x)), implies that f(x) is asymptotically bounded from above by g(x), i.e.,
∃ε > 0, x0 : ∀x > x0, |f(x) ≤ εg(x)|
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1.2 Approximating the CME

Gillespie, 1992) as

∂P (n, t)

∂t
=

M∑

µ=1

aµ(n− νµ) P (n− νµ, t)− P (n, t) a(n). (1.19)

The CME is the forward equation of a discrete-state jump Markov process obtained as a
direct consequence of the Chapman-Kolmogorov equation (Chapman, 1928; Kolmogorov, 1931;
Feller, 1940, 1957). The CME can also be written as

∂P (n, t)

∂t
=

M∑

µ=1

(
E−νµ − 1

)
aµ(n)P (n, t), (1.20)

where E is the step operator such that Eaf(n) = f(n + a). The solution of the CME can
therefore be written as

P (n, t) = et[
∑M
µ=1(E

−νµ−1)aµ(n)]P (n, 0). (1.21)

The initial condition is given by

P (n, t = 0) = δ(n− n0), (1.22)

where n0 is the population at time t = 0 and δ(·) is the Kronecker delta or the unit impulse
function.

1.2 Approximating the CME

We define the concentration vector of species in a volume Ω as

φ = Ω−1n. (1.23)

In terms of the concentration φ, the propensity aµ can be written as

aµ(φ) = aµ(n)

=

(
N∏

i=1

(ni − ν−i,µ + 1)(ni − ν−i,µ + 2) . . . (ni − 1)ni

ν−i,µ!

)(
kµ
∏N
i=1 ν

−
i,µ!

Ω(
∑N
i=1 ν

−
i,µ)−1

)

=




N∏

i=1

(φi −
ν−i,µ−1

Ω )(φi −
ν−i,µ−2

Ω ) . . . (φi − 1
Ω )φi

ν−i,µ!



(
kµ

N∏

i=1

ν−i,µ!

)
Ω

= Tµ(φ) Ω. (1.24)

Rewriting Eq. 1.19 in terms of the concentration φ, we get

∂P (φ, t)

∂t
= Ω

[
M∑

µ=1

Tµ(φ− Ω−1νµ) P (φ− Ω−1νµ, t)− P (φ, t)

M∑

µ=1

Tµ(φ)

]
. (1.25)
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1 Stochastic chemical kinetics

1.2.1 The chemical Kramer-Moyal equation and the nonlinear chemical
Fokker-Planck equation

Assuming that the population n increases proportionally with reactor volume Ω, such that the
concentration φ is constant, we can treat φ as a continuous random variable for a sufficiently
large Ω. Performing a Taylor series expansion of the right-hand side of Eq. 1.25, we get

∂P (φ, t)

∂t
=





∞∑

m=1

(−1)mΩ−(m−1)
∑

i1,...,iN
i1+...+iN=m

1

i1! . . . iN !

∂m

∂i1φ1 . . . ∂iNφN



M∑

µ=1

N∏

j=1

ν
ij
j,µTµ(φ)





 P (φ, t) (1.26)

=





∞∑

m=1

(−1)m

Ω(m−1)

∑

i1,...,iN
i1+...+iN=m

1

i1! . . . iN !

∂m

∂i1φ1 . . . ∂iNφN
bk ; i1,...,iN




P (φ, t), (1.27)

where bk ; i1,...,iN is given by

bk ; i1,...,iN =



M∑

µ=1

N∏

j=1

ν
ij
j,µTµ(φ)


 i1 + . . .+ iN = k. (1.28)

Eq. 1.27 is the chemical Kramer-Moyal equation (Kramers, 1940; Feller, 1940; Moyal, 1949;
Feller, 1957; Gillespie, 2000) describing the time evolution of the state probability function of
a continuous-state jump Markov process. Its solution is given by

P (φ, t) = e

t
∑∞

m=1
(−1)m

Ω(m−1)

∑
i1,...,iN

i1+...+iN=m

1
i1!...iN !

∂m

∂i1φ1...∂
iN φN

bk ; i1,...,iN


P (φ, 0), (1.29)
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1.2 Approximating the CME

where P (φ, 0) is the initial condition. The bk ; i1,...,iN are related to the kth jump moments
Bk ; i1,...,iN of the Markov propagator probability distribution Π(νµ | dt ; n, t) as

Bk ; i1,...,iN = lim
dt→0

1

dt

M∑

µ=1

N∏

j=1

ν
ij
j,µΠ(νµ | dt ; n, t) (1.30)

= lim
dt→0

1

dt

M∑

µ=1

N∏

j=1

ν
ij
j,µ[aµ(n)dt+O(dt2)]

=

M∑

µ=1

N∏

j=1

ν
ij
j,µaµ(n)

= Ω

M∑

µ=1

N∏

j=1

ν
ij
j,µTµ(φ)

= Ω bk ; i1,...,iN . (1.31)

Ignoring all terms with m > 2 in Eq. 1.27 yields the nonlinear chemical Fokker-Planck
equation, also known as the generalized diffusion equation (Chandrasekhar, 1943; Haken, 1975;
Bedeaux, 1977; Gillespie, 1996a,b, 2000; van Kampen, 2001). This equation appropriately
describes stochastic chemical kinetics at large-enough Ω (i.e., at large population n), where
the jump moments Bk ; i1,...,iN = 0 for k > 2. The Markov propagator probability distribution
then becomes Gaussian. This truncation transforms the continuous-state jump Markov process
describing chemical kinetics at large Ω into a continuous Markov process at even larger Ω.
We will show later in Chapter 2 under Section 2.4 that the nonlinear chemical Fokker-Planck
equation is not just a result of arbitrary truncation of the chemical Kramer-Moyal equation, but
is substantiated by physical reasoning (Horsthemke and Brenig, 1977; Gillespie, 2000, 2001).
The nonlinear chemical Fokker-Planck equation is an anisotropic inhomogeneous diffusion
equation with drift for the probabilities in concentration space. It can be written as

∂P (φ, t)

∂t
= ∇ ·

[
(2Ω)−1D(φ)∇P (φ, t)− F (φ)P (φ, t)

]
(1.32)

where ∇ =
[
∂
∂φ1

, . . . , ∂
∂φN

]T
. The drift F is the vector of first moments b1 ; i1,...,iN

F (φ) = νT (φ) (1.33)

where T (φ) = [T1(φ, . . . , TM (φ)]
T

. The diffusion tensor D is the matrix of second moments
b2 ; i1,...,iN (see Eqs. 1.31 and 1.30) (Elf and Ehrenberg, 2003)

D(φ) = ν diag(T (φ)) νT, (1.34)

where

diag(T (φ)) =




T1(φ) 0 . . . 0

0 T2(φ) . . . 0
...

...
...

...

0 0 . . . TM (φ)



. (1.35)
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1 Stochastic chemical kinetics

Under this approximation, the equation of motion of the Markov process can be written as

φ(t+ dt) = φ(t) + Ξ(dt ; φ, t), (1.36)

where Ξ is a random variable distributed as Ξ(dt ; φ, t) ∼ Π(∆φ | dt ; φ, t) with Π(∆φ | dt ; φ, t)
the Gaussian distribution N (F (φ)dt,Ω−1D(φ)dt) (Gillespie, 1996a,b). Here N (m,Σ) de-
notes a multivariate Gaussian distribution with mean vector m and covariance matrix Σ.
Eq. 1.36 is called the chemical Langevin equation (CLE) (Gillespie, 2000). According to
the CLE, φ can be considered the coordinate of an overdamped particle moving in the N -
dimensional concentration space under the influence of a force F (φ) (drift) and an anisotropic
zero-mean Gaussian perturbation with covariance Ω−1D(φ) (diffusion) (Qian et al., 2002;
Qian, 2006).

1.2.2 The macroscopic reaction rate equation (RRE)

The function Tµ(φ) (Eq. 1.24) explicitly depends on φ and Ω. These dependences can be
separated by expanding Tµ(φ)

Tµ(φ) =

∞∑

i=0

Ω−iTµ,i(φ), (1.37)

where the Tµ,i’s only depend on φ and not explicitly on Ω. The moments bk ; i1,...,iN

(Eq. 1.31), the drift vector F (φ) and the diffusion D(φ) in the nonlinear Fokker-Planck
equation (Eqs. 1.32, 1.33 and 1.34) can therefore be written as:

bk ; i1,...,iN =

∞∑

i=0

b
(i)
k ; i1,...,iN

Ω−i, (1.38)

F (φ) =

∞∑

i=0

F (i)(φ)Ω−i (1.39)

and

D(φ) =

∞∑

i=0

D(i)(φ)Ω−i. (1.40)

The first few Tµ,i’s are:

Tµ,0(φ) = kµ

N∏

i=1

φ
ν−i,µ
i , (1.41)

Tµ,1(φ) = −kµ
(

N∏

i=1

φ
ν−i,µ
i

)

N∑

j=1

ν−j,µ(ν−j,µ − 1)

2φj


 = −

N∑

i=1

φi
2

∂2Tµ,0(φ)

∂φ2
i

(1.42)
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1.3 Kinetic Monte Carlo: The stochastic simulation algorithm (SSA)

and

Tµ,2(φ) = kµ

(
N∏

i=1

φ
ν−i,µ
i

)[
N−1∑

p=1

N∑

q=p+1

ν−p,µν
−
q,µ(ν−p,µ − 1)(ν−q,µ − 1)

2φpφq

]

+ kµ

(
N∏

i=1

φ
ν−i,µ
i

)

N∑

j=1

ν−j,µ(ν−j,µ − 1)(ν−j,µ − 2)(3ν−j,µ − 1)

12φ2
j


 . (1.43)

Substituting Eq. 1.37 in Eq. 1.26 and grouping the terms according to powers of Ω, we get

∂P (φ, t)

∂t
= Ω0 [−(νµ ·∇)Tµ,0(φ)]

+
Ω−1

2

[
(νµ ·∇)2Tµ,0(φ)− 2(νµ ·∇)Tµ,1(φ)

]
P (φ, t)

+ O(Ω−2) (1.44)

Taking the limit limΩ→∞ we get

∂P (φ, t)

∂t
= − [(νµ ·∇)Tµ,0(φ)] . (1.45)

This equation further reduces the continuous-state Markov process described by the chemical
nonlinear Fokker-Planck equation to a Liouville process. Its solution for P (φ′, t) is the Kro-
necker delta function δ(φ′ − φ) where the concentration φ with unit probability is given by
the solution of the ordinary differential equation

dφ

dt
= νT0(φ). (1.46)

Here T0(φ) = [T1,0(φ), . . . , TM,0(φ)]T. Eq. 1.46 is the classical reaction rate equation (RRE),
which can be independently derived from statistical mechanics. The initial condition for the
RRE is given by

φ(t = 0) = φ0 = Ω−1n0, (1.47)

where n0 is the initial population (see Eq. 1.22). In some parts of the literature Tµ,0 is referred
to as the rate function or the flux of reaction µ since it describes the flux of converting the
reactants of reaction µ into the corresponding products.

1.3 Kinetic Monte Carlo: The stochastic simulation
algorithm (SSA)

The CME provides an exact description of the kinetics of mesoscopic chemical reaction systems
that are well stirred and thermally equilibrated (Gillespie, 1992). The CME incorporates the
effects of fluctuations due to low copy numbers of species by describing the effect of discrete
nature of molecules involved in chemical reactions. At larger Ω, when the population n
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1 Stochastic chemical kinetics

increases, the effect of intrinsic noise becomes progressively smaller. As seen in Sec. 1.2.2, for
very large reactor volumes Ω (or large population n under the assumption that n increases
proportionally with Ω), the CME reduces to the classical RRE (see Eq. 1.46). For intermediate
values of Ω, the CME leads to the chemical Kramer-Moyal equation and to the nonlinear
Fokker-Planck equation (See Sec. 1.2.1).

Solving the CME, however, is riddled with problems. Analytically, the CME is generally
intractable, except for networks of unimolecular reactions (i.e., when

∑N
i=1 ν

−
i,µ ≤ 1 ∀µ in

Eq. 1.1). Such networks are called linear reaction networks since the propensities are linear
in the population. For networks with even a single bimolecular or higher order reaction (i.e.,

if
∑N
i=1 ν

−
i,µ > 1 for at least one reaction in Eq. 1.1), the solution of the CME is analytically

not accessible, except in special cases. Such networks are called nonlinear reaction networks
since at least one of the propensities is nonlinear in the population.

Numerically simulating the CME using, for example, finite differences is also infeasible
for large networks due to the high dimensionality of the domain of the probability distribu-
tion P (n, t), which leads to an exponential increase in computational and memory cost with
network size. These problems, however, can be circumvented using Gillespie’s stochastic sim-
ulation algorithm (SSA), a kinetic Monte Carlo scheme (Doob, 1942, 1945; Kendall, 1949;
Barlett, 1953; Bortz et al., 1975; Gillespie, 1976, 1977, 1992). In SSA, the probability P (n, t)
whose time evolution is given by the CME is replaced by the joint probability of a reaction
event p(τ, µ | n(t)), defined as

p(τ, µ | n(t))dτ = Probability that the next reaction is µ and it fires in

[t+ τ, t+ τ + dτ) given n at time t. (1.48)

This probability p is derived as follows: Consider that the time interval [t, t+τ ] is divided into
k equal intervals of length τ

k plus a last interval (k+ 1) of length dτ (Fig. 1.2). The definition

Figure 1.2: Division of the time interval [t, t + τ + dτ) into k + 1 intervals. Here, t represents the
current time. The only reaction firing is reaction µ in the (k + 1)th infinitesimally small
time interval [t+ τ, t+ τ + dτ).

(Eq. 1.48) of p(τ, µ | n(t)) dictates that no reactions occur in each of the first k intervals and
that reaction µ fires once in the last interval. Therefore, using Eqs. 1.15 and 1.16

p(τ, µ | n(t))dτ =

[
1− a(n)

τ

k
+O

(
τ2

k2

)]k [
aµ(n)dτ +O

(
dτ2
)]
.

Dividing both sides of the equation by dτ and taking the limit limdτ→0 we obtain

p(τ, µ | n(t)) =

[
1− a(n)

τ

k
+O

(
τ2

k2

)]k
aµ(n).
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1.4 The effect of intrinsic noise on chemical kinetics

Taking the limit limk→∞, and noting that limk→∞O
(
τ2

k2

)
= 0, we get

p(τ, µ | n(t)) = e−a(n)τaµ(n). (1.49)

Summing Eq. 1.49 over all reactions (summing over µ) we get the marginal probability density
function of τ as

p(τ | n(t)) =

M∑

µ=1

aµ(n)e−a(n)τ

= a(n)e−a(n)τ . (1.50)

Similarly, integrating Eq. 1.49 over τ ’s we get the marginal probability distribution function
of µ as

p(µ | n(t)) =

∫ ∞

0

aµ(n)e−a(n)τdτ

=
aµ(n)

a(n)
. (1.51)

From Eqs. 1.49, 1.50 and 1.51 we observe that

p(τ, µ | n(t)) = p(τ | n(t)) p(µ | n(t)) (1.52)

thus inferring that µ and τ are statistically independent random variables.
Sampling from Eq. 1.49 constitutes a stochastic simulation of the underlying chemical reac-

tion network. By sampling a reaction event and propagating the simulation in time according
to Eq. 1.49, we obtain exact, time resolved trajectories of the population n as governed by the
CME. The SSA, however, is a Monte Carlo scheme and hence several independent runs need
to performed in order to obtain a stable representation of the probability function P (n, t). In
Chapter 2 we describe the different implementations or formulations of the SSA used to simu-
late chemical kinetics, and we review their computational costs. Subsequently, in Chapter 3 we
will present a more efficient class of SSA formulations called partial-propensity methods that
use a novel quantity called partial propensity instead of the conventional reaction propensities.

1.4 The effect of intrinsic noise on chemical kinetics

When the population n increases proportionally with Ω such that the total mass density of
species is constant, decreasing Ω leads to an increase in intrinsic noise. Intrinsic noise does not
only play the role of adding uncertainty to the various statistical estimates of n, but it also has
been shown to alter chemical kinetics in a non-trivial way (Kendall, 1949; van Kampen, 1963;
McQuarrie, 1967; Gillespie, 1992; McAdams and Arkin, 1997; Arkin et al., 1998; McClintock,
1999; Elowitz and Leibler, 2000; Barkai and Leibler, 2000; Berg et al., 2000; van Kampen,
2001; Qian et al., 2002; Elf and Ehrenberg, 2003; Eldar and Elowitz, 2010). As a consequence,
intrinsic noise may lead to a probability function P (φ, t) whose mean is not the same as the
concentration φ predicted by the RRE, but they can be qualitatively different. We illustrate
the effect of intrinsic noise on different types of nonequilibrium reaction networks:

11



1 Stochastic chemical kinetics

1. Monostable reaction networks: linear and nonlinear,

2. An oscillatory reaction network (exhibiting limit-cycle oscillations),

3. A multistable reaction network.

These three different types of reaction networks should be sufficient to understand the qualita-
tive effect of intrinsic noise since they span a large spectrum of dynamics exhibited by chemical
reaction networks.

1.4.1 Monostable, linear reaction networks

Linear reaction networks are defined as those in which the sum of the stoichiometries of all
reactants is less than 2 in every reaction. Consider the following reaction network as an
example of a linear reaction network occurring in a reactor of volume Ω:

Ø
k1−→ S1

S1
k2−→ Ø.

(1.53)

The RRE for this reaction network is

dφ1

dt
= k1 − k2φ1, (1.54)

where φ1 is the concentration of species S1. The fixed point of the RRE is φ1,ss = k1

k2
. This

sole fixed point is stable irrespective of the values of k1 and k2, the system is monostable.
The CME of this reaction network is

∂P (n1, t)

∂t
= k1ΩP (n1 − 1, t) + (n1 + 1)k2P (n1 + 1, t)− (k1Ω + n1k2)P (n1, t), (1.55)

where n1 is the population of species S1. Describing a linear chemical reaction system, the
CME can be solved analytically. The steady-state or stationary probability function is

Pss(n1) =
e−(k1Ω/k2)(k1Ω/k2)n1

n1!
. (1.56)

Denoting stochastic variables with an asterisk, the steady-state mean concentration becomes

〈φ∗1〉ss =
〈n1〉ss

Ω
=
k1

k2
. (1.57)

The mean steady-state concentration hence is the same as the steady-state concentration
predicted by the deterministic RRE, for all Ω. This is generally true for linear reaction
networks.

The steady-state variance of the concentration is

(〈φ∗12〉 − 〈φ∗1〉2)ss =
k1

k2Ω
. (1.58)
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1.4 The effect of intrinsic noise on chemical kinetics

This shows that the steady-state concentration variance decrease as Ω−1 with increase in Ω.
This is also generally true for all linear reaction systems.

We set the initial concentration of S1 to 10, the rates k1 = 5 and k2 = 10. Using these
parameters we report trajectories and the steady-state probability function obtained using
SSA. Figure 1.3A shows the time evolution of the concentration of species S1 from a single
SSA run for different Ω’s, and from the RRE. It can be seen that the fluctuations increase with
decreasing Ω. This is also apparent in Fig. 1.3B showing Pss(φ

∗
1), which is a Kronecker delta

for the deterministic RRE and becomes increasing broader for smaller Ω’s. The variance of
Pss(φ

∗
1) is shown in Fig. 1.10 for different Ω. As expected from the analytical result (Eq. 1.58),

the variance scales with Ω−1.

In summary, for any monostable linear reaction network, the mean of the concentration
probability function P (φ, t) is equal to the deterministic concentration φ(t) from RRE. The
intrinsic noise in the CME provides zero-mean fluctuations about the deterministic concentra-
tions. Further, for monostable linear reaction networks the variance of concentration decrease
as Ω−1 with increasing Ω.

Figure 1.3: (A) Time evolution of the concentration and (B) steady-state concentration probability
distribution of species S1 in the monostable, linear reaction network of Eq. 1.53. The
results are obtained using the stochastic simulation algorithm (SSA) for different reactor
volumes Ω, and using the deterministic reaction rate equation (RRE). The rates used for
the simulation are: k1 = 5 and k2 = 10.
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1.4.2 Monostable, nonlinear reaction networks

Any reaction network having at least one reaction in which the sum of the stoichiometries of
the reactants is greater than 1 is a nonlinear reaction network. As an example consider:

Ø
k1−→ S1

S1 + S1
k2−→ Ø.

(1.59)

The corresponding RRE is

dφ1

dt
= k1 − 2k1φ

2
1 (1.60)

where φ1 is the concentration of species S1. The fixed point of the RRE is φ1,ss =
√

k1

2 k2
. This

fixed point is stable and hence the system is monostable.
The CME of this reaction network is

∂P (n1, t)

∂t
= k1ΩP (n1 − 1, t) + (n1 + 2)(n1 + 1)

k2

Ω
P (n1 + 2, t)

−
[
k1Ω + n1(n1 − 1)

k2

Ω

]
P (n1, t), (1.61)

where n1 is the population of species S1. This is one of the very few nonlinear reaction
networks for which the steady-state mean concentration can be obtained analytically using
moment generating functions (Engblom, 2006) (see Appendix A1 for the derivation). It is
given by

〈φ∗1〉ss =
1

4Ω
+ φ1,ss

I ′1 (4φ1,ssΩ)

I1 (4φ1,ssΩ)
, (1.62)

where Ia(b) is the modified Bessel function of the first kind and I ′a(b) = dIa(x)
dx |x=b. We see

that 〈φ∗1〉ss tends to φ1,ss as Ω tends to infinity (see Eq. A1.11 and A1.12). For finite Ω, there
is a non-zero difference between the steady-state mean concentration obtained from the CME
and the steady-state concentration from the RRE. In general, this difference always persists
for nonlinear reaction networks at finite Ω.

Using k1 = 5, k2 = 10 and the initial concentration of S1 set to 10, we see that the steady-
state concentration variance scales with Ω−1 as shown in Fig. 1.10. Figure 1.4A shows the
the time evolution of the concentration of species S1 obtained from a single SSA run for
different Ω’s, and from the RRE. It can be seen that the fluctuations increase with decreasing
Ω, evident from the broadening of Pss(φ

∗
1) in Fig. 1.4B in agreement with the scaling of the

variance observed in Fig. 1.10. The steady-state mean concentrations are 0.5130, 0.5012 and
0.5001 for Ω = 10, 100 and 1000, respectively. The steady-state concentration φ1,ss from the
RRE is 1/2. This shows that even at a small volume of Ω = 10, the difference between φ1,ss

and 〈φ∗1〉ss is just about 2.6%. This small difference is specific to the particular system and in
general the difference need not so small for other monostable nonlinear reaction networks.

In summary, for any monostable nonlinear reaction network, the mean of the concentration
probability function P (φ, t) is not equal to the deterministic concentration φ(t) obtained
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1.4 The effect of intrinsic noise on chemical kinetics

from the RRE. The intrinsic noise in the CME deviates the mean concentration from the
deterministic concentration. The variance of the concentrations, however, decrease as Ω−1 with
increasing Ω. This results in the mean concentration of P (φ, t) approaching the deterministic
concentration with the difference becoming increasingly smaller at larger Ω. In Chapter 4
we will show that for monostable nonlinear reaction networks with multiple species intrinsic
noise in the CME can even lead to qualitative difference in the steady-state of the system.
Specifically, we will show that intrinsic noise leads to an ordering in steady-state that is
different from the RRE prediction, and we will present a theory that is in good agreement
with the CME prediction.

Figure 1.4: (A) Time evolution of the concentration and (B) steady-state concentration probability
distribution of species S1 in the monostable, nonlinear reaction network of Eq. 1.59. The
results are obtained using the stochastic simulation algorithm (SSA) for different reactor
volumes Ω, and using the deterministic reaction rate equation (RRE). The rates used for
the simulation are: k1 = 5 and k2 = 10.

1.4.3 Brusselator: an oscillatory reaction network

The Brusselator (Nicolis and Prigogine, 1977; Prigogine, 1980) is a widely used model system
for studying oscillatory reaction networks. It is a model system for autocatalytic reactions.
Examples of autocatalytic reaction systems include the Belousov-Zhabotinsky reaction and
autophosphorylation reactions ubiquitous in biology. Oscillatory reaction networks are also
used to model biological rhythms, such as the circadian clock (Barkai and Leibler, 2000; Tomita
et al., 2005; Nakajima et al., 2005; van Zon et al., 2007; Zwicker et al., 2010) and the glycolytic
cycle (Prigogine, 1980; Chandra et al., 2011). The Brusselator reaction network involves two
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species and is given by

Ø
k1−→ S1

S1
k2−→ Ø

S1
k3−→ S2

2S1 + S2
k4−→ 3S1.

(1.63)

The corresponding RRE is

dφ1

dt
= k1 − k2φ1 − k3φ1 + k4φ

2
1φ2

dφ2

dt
= k3φ1 − k4φ

2
1φ2, (1.64)

where φ1 and φ2 are the concentrations of S1 and S2, respectively. For simplicity, we set k2 = 1
and k4 = 1. Under these conditions, the fixed point of the deterministic RRE (Eq. 1.64) is
given by φ1,ss = k1 and φ2,ss = k3/k1. This fixed point is stable if k3 < k2

1 + 1, undergoes a
Hopf bifurcation at k3 = k2

1 + 1 and is unstable if k3 ≥ k2
1 + 1. In the latter case, φ1(t) and

φ2(t) exhibit limit-cycle oscillations.
The CME of the reaction network is

∂P (n1, n2, t)

∂t
= k1ΩP (n1 − 1, n2, t) + (n1 + 1)k2P (n1 + 1, n2, t)

+(n1 + 1)k3P (n1 + 1, n2 − 1, t)

+(n1 − 1)(n1 − 2)(n2 + 1)
k4

Ω2
P (n1 − 1, n2 + 1, t)

−
[
k1Ω + n1k2 + n1k3 + n1(n1 − 1)n2

k4

Ω2

]
P (n1, n2, t), (1.65)

where n1 and n2 are the populations of species S1 and S2, respectively. This CME cannot be
solved analytically and hence we rely on SSA simulations.

For the simulation, we set k1 = 1 and k3 = 1. For these parameters the fixed point of
the RRE is stable and the deterministic solution does not exhibit limit-cycle oscillations. We
set the initial concentration of the system to its fixed point, i.e., the initial concentrations
of both S1 and S2 are set to 1. As expected Fig. 1.5, shows that the deterministic RRE
trajectory stays at the fixed point. As Ω is decreased, the SSA simulations display increasing
fluctuations. Already at a volume of Ω = 1000 the SSA trajectory shows oscillations, even
though the deterministic RRE doesn’t show any oscillatory behavior. This is evident from the
closed-loop phase-space (φ∗2(t) versus φ∗1(t)) trajectory shown in Fig. 1.6.

Figure 1.7 shows the bivariate steady-state probability function Pss(φ
∗
1, φ
∗
2) for Ω = 10,

Ω = 100 and Ω = 1000. As expected, the probability function broadens with decreasing Ω.
The steady-state concentration variance of species S1 scales with Ω−1 (see Fig. 1.10). When
the fixed point is unstable (k1 = 1, k3 = 4), however, this scaling doesn’t hold (See Fig. 1.10)
and the variance decreases only slowly with increasing Ω (variance ∼ Ω−α where α � 1.
α ≈ 0.08 in the present case).
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1.4 The effect of intrinsic noise on chemical kinetics

The emergence of oscillations due to intrinsic noise can be understood as an interplay be-
tween the drift term and the diffusion term in the CLE (Eq. 1.36), which can make the particle
undergo a circular motion analogous to that of the limit cycle in the deterministic case. As the
magnitude of intrinsic noise decreases, the noisy diffusion term becomes weaker until, at very
large Ω, the motion is dominated by the deterministic drift (Liouville process, see Eq. 1.45).
This interplay between drift and noise have been studied in chemical reaction systems and it
has been found to be the reason for oscillations in the stochastic trajectory (Qian et al., 2002;
Baxendale and Greenwood, 2011).

In summary, intrinsic noise can lead to oscillations even when the corresponding RRE does
not exhibit any. In Chapter 5, we will show that intrinsic noise can not only be a reason for the
emergence of oscillations, but that it can also lead to a systematic modulation of the frequency
spectrum of the oscillations. The scaling of the variance of the concentration with Ω, however,
depends on the stability of the fixed point of the RRE. If the fixed point is stable, such that
the RRE does not exhibit oscillations, the variance decrease as Ω−1 with increasing Ω. If
the fixed point is unstable, such that the RRE exhibits limit-cycle oscillations, the variance
decreases much slower with increasing Ω.

Figure 1.5: Time evolution of the concentration of species S1 in the Brusselator reaction network of
Eq. 1.63. The results are obtained using the stochastic simulation algorithm (SSA) for
different reactor volumes Ω, and using the deterministic reaction rate equation (RRE).
The rates used for the simulation are: k1 = 1, k2 = 1, k3 = 1 and k4 = 1. The initial
concentrations of species S1 and S2 are set to 1, the fixed point of the RRE.
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1 Stochastic chemical kinetics

Figure 1.6: Steady-state concentration trajectory in the phase space of the Brusselator reaction net-
work of Eq. 1.63, obtained using the stochastic simulation algorithm (SSA) with a reactor
volume of Ω = 1000. The rates used for the simulation are: k1 = 1, k2 = 1, k3 = 1 and
k4 = 1. The initial concentrations of species S1 and S2 are set to 1, the fixed point of the
RRE (circle). The squares mark the implicit time of the stochastic trajectory in phase
space such that ti+1 > ti. The time stamps help visualize a clockwise oscillatory behavior.
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1.4 The effect of intrinsic noise on chemical kinetics

Figure 1.7: Steady-state bivariate probability func-
tion of the concetrations of species S1

and S2 in the Brusselator reaction net-
work of Eq. 1.63. The results are ob-
tained using the stochastic simulation
algorithm (SSA) for different reactor
volumes Ω. The rates used for the sim-
ulation are: k1 = 1, k2 = 1, k3 = 1
and k4 = 1. The initial concentration
of species S1 and S2 is set to 1, the fixed
point of the RRE.
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1 Stochastic chemical kinetics

1.4.4 Schlogl model: a bistable reaction network

The Schlogl model (Schlogl, 1972) is a popular model system for multistable reaction networks.
Multistability has also been observed in several biological systems, including the bacterial
phenotypic expression (Henderson et al., 1999), lactose utilization network (Ozbudak et al.,
2004), the cell cycle regulation network (Pomerening et al., 2003) and in synthetic genetic
switches (Gardner et al., 2000). The Schlogl model is given by

2S1
k1−→ 3S1

3S1
k2−→ 2S1

Ø
k3−→ S1

S1
k4−→ Ø

(1.66)

and it has the RRE

dφ1

dt
= k1φ

2
1 − k2φ

3
1 + k3 − k4φ1, (1.67)

where φ1 is the concentration of species S1. The rates are set to k1 = 18, k1 = 2.5, k3 = 22
and k4 = 37.5. For this parameter set, the RRE has 3 fixed points φ1,ss = 1, φ1,ss = 4 and
φ1,ss = 2.2. The first two are stable, the third is unstable.

The CME of this system is

∂P (n1, t)

∂t
= (n1 − 1)(n1 − 2)

k1

Ω
ΩP (n1 − 1, t) + (n1 + 1)n1(n1 − 1)

k2

Ω2
P (n1 + 1, t)

+k3ΩP (n1 − 1, t) + (n1 + 1)k4P (n1 + 1, t)

−
[
n1(n1 − 1)

k1

Ω

+n1(n1 − 1)(n1 − 2)
k2

Ω2
+ k3Ω + n1k4

]
P (n1, t) (1.68)

and analytically intractable. We set the initial concentration of species S1 to 1, which is one
of the stable fixed points of the RRE.

Figure 1.8 shows that in the deterministic case the concentration of species S1 remains un-
changed from the initial concentration at the stable fixed point of the system. Using SSA, we
see that for Ω = 1000 the stochastic trajectory shows small fluctuations around the determin-
istic RRE (Fig. 1.8). This can also be seen from the steady-state probability function Pss(φ

∗
1)

(Fig. 1.9C) which is a symmetric, narrow and unimodal distribution with its mean very close
to the stable fixed point φ1,ss = 1 of the RRE. For Ω = 100 the stochastic trajectories switch
(jump) back and forth between the neighborhoods of the two stable fixed points (Fig. 1.8).
This can also be seen in the steady-state probability function Pss(φ

∗
1) (Fig. 1.9B) becoming bi-

modal with maxima close to the two stable fixed points (φ1,ss = 1, φ1,ss = 4) of the RRE, and a
minimum close to the unstable fixed point φ1,ss = 2.2 of the RRE. At Ω = 10, the fluctuations
of the stochastic trajectory become even larger (Fig. 1.8). The corresponding steady-state
probability function Pss(φ

∗
1) (Fig. 1.9A) is again unimodal, but asymmetric with a long tail.

Because of these changes in the qualitative properties of the steady-state probability function,
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1.4 The effect of intrinsic noise on chemical kinetics

the scaling of the steady-state concentration variance falls in two regimes (Fig. 1.10). At low
intrinsic noise or large Ω when Pss(φ

∗
1) is symmetric, the variance scales with Ω−1. At large

intrinsic noise or small Ω when Pss(φ
∗
1) is asymmetric or bimodal, the variance scales with Ω−α

where α� 1. In the present case, we estimated this exponent α to be approximately 0.12. In
addition, the large Ω regime is Ω ≥ 500 and small Ω regime is Ω ≤ 400 in the present case.
The sudden jump observed in the scaling of the variance from the large Ω regime to the small
Ω regime is brought about by the change in Pss(φ

∗
1) from being a sharp unimodal distribution

at Ω = 500 to a bimodal distribution at Ω = 400. This change in Pss(φ
∗
1) is effected by the

fluctuations becoming large enough that the concentration reaches the neighborhood of the
unstable fixed point, from where the concentration is then probabilistically shuttled to the
neighborhood of the other stable fixed point.

In summary, intrinsic noise in a multistable reaction network can lead to switching behavior
between the neighborhoods of the multiple stable fixed points. Due to the associated qualita-
tive change in the steady-state concentration probability function, the variance scales as Ω−α

with α� 1 for small Ω. For large enough Ω the variance scales with Ω−1.

Figure 1.8: Time evolution of the concentration of species S1 in the Schlogl model of Eq. 1.66. The
results are obtained using the stochastic simulation algorithm (SSA) for different reactor
volumes Ω, and using the deterministic reaction rate equation (RRE). The rates used for
the simulation are: k1 = 18, k1 = 2.5, k3 = 22 and k4 = 37.5. The initial concentration of
species S1 is set to 1, which is one of the stable fixed points of the RRE.
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1 Stochastic chemical kinetics

Figure 1.9: Steady-state probability function for
the concentration of species S1 in the
Schlogl model of Eq. 1.66. The results
are obtained using the stochastic simu-
lation algorithm (SSA) for different re-
actor volumes Ω, and using the deter-
ministic reaction rate equation (RRE).
The rates used for the simulation are:
k1 = 18, k1 = 2.5, k3 = 22 and
k4 = 37.5. The initial concentration of
species S1 is set to 1, one of the stable
fixed points of the RRE.
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1.5 Summary

Figure 1.10: Scaling of the steady-state concentration variance of species S1 with the reactor volume Ω
for four different types of reaction networks: monostable linear (Sec. 1.4.1), monostable
nonlinear (Sec. 1.4.2), non-oscillatory Brusselator, oscillatory Brusselator (Sec. 1.4.3)
and the Bistable Schlogl (Sec. 1.4.4) models. All results are obtained using the stochastic
simulation algorithm (SSA). The parameters used for the simulations are given in the
corresponding sections that introduce these reaction networks.

1.5 Summary

We revisited the chemical master equation (CME) that describes stochastic chemical kinetics as
a discrete-state jump Markov process taking into account intrinsic noise due to the discreteness
of the reactant molecules. Assuming that the population of a species increases linearly with
the reactor volume Ω we showed that when the concentration vector φ can be considered as
a continuous random variable, the discrete-state jump Markov process becomes a continuous-
state jump Markov process described by the chemical Kramer-Moyal equation. At even larger
Ω, the continuous state jump Markov process becomes a continuous-state Markov process
yielding the nonlinear chemical Fokker-Planck equation, whose equation of motion is given
by the chemical Langevin equation (CLE). Subsequently, at very large Ω the continuous-state
Markov process becomes a Liouville process, leading to the classical reaction rate equation
(RRE).

We illustrated the effect on intrinsic noise on different types of chemical reaction networks
and showed the potential emergence of non-trivial chemical kinetics.

23





2
Formulations of the stochastic simulation
algorithm for chemical reaction networks

“God made the integers; all else is the work of man.”
– Leopold Kronecker

Gillespie’s stochastic simulation algorithm (SSA) presented in Chapter 1 (see Sec. 1.3) de-
fines a kinetic Monte Carlo scheme to simulate stochastic chemical kinetics by sampling pop-
ulation trajectories from the exact solution of the chemical master equation (CME). There
are several implementations or formulations of SSA with varying computational cost. This
variation comes from the topological properties of the chemical reaction networks and the
algorithms used in the SSA formulations. In this chapter, we will present the topological
properties of chemical reaction networks that dictate the computational cost of SSA formula-
tions in Sec. 2.1. In Sec. 2.1.3 we classify chemical reaction networks into two classes—strongly
coupled and weakly coupled—based on topological properties derived from a dependency graph
representation (Gibson and Bruck, 2000) of the reaction network. In Sec. 2.3 we present differ-
ent exact SSA formulations and analyze their computational cost with regard to the coupling
class of the reaction network. In Sec. 2.4 we review the general concept of approximate SSAs
that improve on the computational performance of exact SSAs by sampling from an approxi-
mated probability function.
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2 Formulations of the stochastic simulation algorithm for chemical reaction networks

2.1 Topology of chemical reaction networks

Consider the general chemical reaction network described in Chapter 1 with N species and M
reactions:

N∑

i=1

ν−i,µSi −−−−→
N∑

i=1

ν+
i,µSi, µ = 1, . . . ,M. (2.1)

The reactant stoichiometry matrix is ν− and the product stoichiometry matrix is ν+. The
overall stoichiometry matrix is

ν = ν+ − ν−. (2.2)

All the stoichiometry matrices are of size N ×M . All elements of ν+ and ν− are non-negative
whereas those of ν can be negative, zero or positive. Chemical kinetics in the deterministic
approximation (see Eq. 1.46) is described by the reaction rate equation (RRE) given by

dφ

dt
= νT0(φ), (2.3)

where T0(φ) is the flux vector of all the M reactions and φ the concentration vector.
Some of the physical properties of the chemical reaction network can be defined by the

following subspaces of ν:

1. The null space of ν is defined as the space of all flux vectors f for which

νf = 0. (2.4)

This space defines the relationships between the steady-state fluxes of the individual
reactions in the network, since Eq. 2.4 implies dφ

dt = 0 (see Eq. 2.3).

2. The left null space of ν is defined as the space of all vectors l for which

νTl = 0. (2.5)

To understand the physical meaning of these vectors l, we multiply Eq. 2.3 on both sides
with lT:

lT
dφ

dt
= lTνT0(φ), (2.6)

i.e.,

dφTl

dt
= T0(φ)TνTl. (2.7)

Now, Eq. 2.5 implies that

φTl = constant. (2.8)

The left null space thus defines the conservation relations among the species in the
reaction network.
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2.1 Topology of chemical reaction networks

2.1.1 Representation of chemical reaction networks

The stoichiometry matrix can also be used to represent the topology of the chemical reaction
network by constructing a dependency graph (Gibson and Bruck, 2000). The dependency
graph of a reaction network is a directed graph with nodes representing reactions and directed
edges indicating the couplings between the reactions of the network. A directed edge is drawn
from node p to node q if any of the reactants or products of reaction p are involved as a
reactant in reaction q (Fig. 2.1). More formally, a directed edge is drawn from node p to

Figure 2.1: Illustration of the dependency graph representation of a chemical reaction network. The
nodes in a dependency graph represent reactions. The directed edges (arrows) between the
nodes represent the dependencies or the couplings between the reactions in the network.
In the left panel, a directed edge is drawn from node p to node q because species Sm is a
product of reaction p and a reactant in reaction q. In the right panel, no edge is drawn
from node p to node q since none of reactants or products of reaction p are involved as a
reactant in reaction q. In both panels, no directed edge is drawn from node q to node p.

node q if the vector obtained by performing an elementwise logical-and operation between the
binarized overall stoichiometry vector ν̂p and the binarized reactant stoichiometry vector ν̂−q
contains non-zero elements. Binarization is defined as:

ν̂i,p = 0 if νi,p = 0

ν̂i,p = 1 if νi,p 6= 0 (2.9)

and

ν̂−i,q = 0 if ν−i,q = 0

ν̂−i,q = 1 if ν−i,q > 0. (2.10)

2.1.2 Degree of coupling of a reaction network

The out-degree dµ of a node µ in a directed graph is the number of directed edges leaving
that node. In a dependency graph of a chemical reaction network, it indicates the number of
reaction propensities that change upon firing of the reaction represented by the node. We define
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2 Formulations of the stochastic simulation algorithm for chemical reaction networks

the degree of coupling dc of a reaction network as the maximum out-degree of its dependency
graph, i.e.,

dc = max{d1, . . . , dM}. (2.11)

The degree of coupling dc is equal to the maximum number of propensities that change upon
any reaction firing event. The out-degree dµ of reaction µ in the general chemical reaction
system (Eq. 2.1) is

dµ =
M∑

µ′=1

∑N
i=1(ν̂i,µ ∧ ν̂−i,µ′)

δ
(∑N

i=1(ν̂i,µ ∧ ν̂−i,µ′)
)

+
∑N
i=1(ν̂i,µ ∧ ν̂−i,µ′)

(2.12)

where δ(·) is the unit impulse function.

2.1.3 Classification of reaction networks

Based on their degree of coupling , we classify reaction networks into weakly coupled and strongly
coupled networks. Weakly coupled networks have a degree of coupling dc that is bounded by
a constant with increasing network size. Formally, in weakly coupled networks dc is O(1).
Strongly coupled networks are those where dc increases proportionally with network size, i.e.,
dc is O(M), where M is the number of reactions in the network.

2.1.4 Examples

2.1.4.1 Cyclic chain model

Consider the following cyclic chain reaction network with N species and M = N reactions:

Si −→ Si+1, i = 1, . . . , N − 1

SN −→ S1.
(2.13)

For N = 3 the reaction network is

Reaction 1 : S1 −→ S2

Reaction 2 : S2 −→ S3

Reaction 3 : S3 −→ S1.

(2.14)

The stoichiometry matrices for this reaction network are:

ν− =




1 0 0

0 1 0

0 0 1


 , (2.15)

ν+ =




0 0 1

1 0 0

0 1 0


 , (2.16)
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and

ν = ν+ − ν− =



−1 0 1

1 −1 0

0 1 −1


 . (2.17)

The null space f of ν is

f =




1

1

1


 . (2.18)

Therefore, the steady-state flux vector can be written as

T0(φss) =




1

1

1


α1, (2.19)

i.e., the steady-state fluxes of all reactions are equal multiples of a positive constant α1.
The left null space l of ν is

l =




1

1

1


 , (2.20)

which implies:

φ1 + φ2 + φ3 = constant. (2.21)

This is the conservation relation enforced by the reactions in Eq. 2.14 at all times (in stationary
and non-stationary state). For very large reaction networks, this relation may not be obvious
and the left null space useful.

The binarized stoichiometry matrices are

ν̂− =




1 0 0

0 1 0

0 0 1


 , (2.22)

ν̂+ =




0 0 1

1 0 0

0 1 0


 (2.23)

and

ν̂ =




1 0 1

1 1 0

0 1 1


 . (2.24)
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2 Formulations of the stochastic simulation algorithm for chemical reaction networks

The dependency graph of this reaction network is shown in Fig. 2.2A. A directed edge
is drawn from node 1 to node 2 since species S2 is a product of reaction 1 and a reactant
in reaction 2. The drawing of this directed edge can also be decided by performing the
elementwise logical-and operation between ν̂1 and ν̂−2 :

ν̂1 ∧ ν̂−2 =




1

1

0


 ∧




1

0

0


 =




1

0

0


 . (2.25)

Since at least one of the elements in the resulting vector is non-zero, we draw a directed edge
from node 1 to node 2. In addition, a directed edge is drawn from node 1 to itself, due to the
presence of species 1. These two directed edges are the only edges originating from node 1. In
a similar manner, directed edges are drawn from nodes 2 and 3 to complete the dependency
graph as shown in Fig. 2.2A.

The degree of coupling of this network can be computed from Eqs. 2.11 and 2.12: Visual
inspection of the dependency graph in Fig. 2.2A shows that the out-degree dµ = 2 for every
µ. Hence, the degree of the coupling is dc = 2.

This is the degree of coupling for the cyclic chain model with N = 3 species. The dependency
graph for the same model with N = 4 species is shown in Fig. 2.2B, and we observe that
also here dc = 2. In general, for the cyclic chain model with N species (Eq. 2.13), dc = 2
independent of the size of the network. Therefore, the cyclic chain model is an example of a
weakly coupled reaction network.

2.1.4.2 Colloidal aggregation model

Consider the following colloidal aggregation reaction network with N species and M =
⌊
N2

4

⌋

reactions:

Si + Sj −→ Si+j i+ j = N. (2.26)

Species Si can be considered a multimer consisting of i monomers.
For N = 4 the reaction network is

Reaction 1 : S1 + S1 −→ S2

Reaction 2 : S1 + S2 −→ S3

Reaction 3 : S1 + S3 −→ S4

Reaction 4 : S2 + S2 −→ S4.

(2.27)

The stoichiometry matrices for this reaction network are:

ν− =




2 1 1 0

0 1 0 2

0 0 1 0

0 0 0 0


 , (2.28)
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ν+ =




0 0 0 0

1 0 0 0

0 1 0 0

0 0 1 1


 , (2.29)

and

ν = ν+ − ν− =




−2 −1 −1 0

1 −1 0 −2

0 1 −1 0

0 0 1 1


 . (2.30)

The null space f of ν is

f =




1

−1

−1

1


 . (2.31)

Therefore, the steady-state flux vector can be written as

T0(φss) =




1

−1

−1

0


α1. (2.32)

Again, all steady-state fluxes are multiples of a positive constant α1. Since α1 is non-negative,
the above relationship indicates that the steady-state fluxes of reactions 2 and 3 in Eq. 2.27
are negative. Since fluxes are always non-negative, this imposes that α1 = 0. Consequently,
the above flux relation imposes that all steady-state fluxes in the reaction network of Eq. 2.27
are zero. This can be verified by simulating the RRE with any initial condition and rates.
The reasoning can also be as follows: Consider that the initial state of the system is given
by 10 molecules of species S1 and 0 molecules of all other species. Depending on the reaction
rates (assuming that they are all non-zero), the steady-state population would be one of two
possibilities: 1 molecule of S2 and 2 molecules of S4, or 2 molecules of S3 and 1 molecule of S4.
Both of these population vectors would render all fluxes zero as there would not be enough
reactant molecules for any reaction to have a non-zero flux (see Eq. 1.41 in Sec. 1.2.2 for the
definition of reaction fluxes T0(φ)).

The left null space l of ν is

l =




1

2

3

4


 , (2.33)
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implying that

φ1 + 2φ2 + 3φ3 + 4φ4 = constant. (2.34)

This is the conservation relation enforced by the reactions in Eq. 2.27 at all times (in stationary
and non-stationary state). This means that the total number of bound and free monomers in
the system is constant.

The binarized stoichiometry matrices are

ν̂− =




1 1 1 0

0 1 0 1

0 0 1 0

0 0 0 0


 , (2.35)

ν̂+ =




0 0 0 0

1 0 0 0

0 1 0 0

0 0 1 1


 (2.36)

and

ν̂ =




1 1 1 0

1 1 0 1

0 1 1 0

0 0 1 1


 . (2.37)

The dependency graph of this reaction network is shown in Fig. 2.2C. The degree of coupling
can be computed from Eqs. 2.11 and 2.12. Visual inspection of the dependency graph in
Fig. 2.2C shows that the out-degrees of the nodes are d1 = 4, d2 = 4, d3 = 3 and d4 = 3.
Hence, the degree of coupling is dc = 4 (Eq. 2.12).

Classification: This is the degree of coupling for the colloidal aggregation model with N = 4
species. The dependency graph for the same model with N = 5 species is shown in Fig. 2.2D,
and we observe that then dc = 6. In general, for the aggregation model with N species
(Eq. 2.26), dc = 2N −4. Since dc increases with network size, dc ∈ O(N) ⊆ O(M). Therefore,
the colloidal aggregation model is a strongly coupled reaction network.
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2.2 SSA formulations

Figure 2.2: Dependency graph representations of four example reaction networks. (A) and (B) show
the dependency graph of the cyclic chain model (Eq. 2.13) with N = 3 and 4 species,
respectively. (C) and (D) show the dependency graph of the colloidal aggregation model
(Eq. 2.26) for N = 4 and 5, respectively.

2.2 SSA formulations

All formulations of Gillespie’s SSA aim to simulate chemical kinetics by sampling the random
variables τ (time to the next reaction) and µ (index of the next reaction) according to Eq. 1.49
and propagating the state of the chemical system in time. Since SSA is a Monte Carlo scheme,
several independent runs of each simulation need to be performed in order to estimate the state
(population) probability function P (n, t).

Existing SSA formulations can be classified into exact and approximate methods. Exact
methods sample from the joint probability distribution in Eq. 1.49. These formulations in-
clude the first reaction method (FRM) (Gillespie, 1976), the direct method (DM) (Gillespie,
1977), Gibson-Bruck’s next-reaction method (NRM) (Gibson and Bruck, 2000), a Gibson-
Bruck variant of the DM (Gibson and Bruck, 2000), the optimized direct method (ODM) (Cao
et al., 2004), the sorting direct method (SDM) (McCollum et al., 2006), the logarithmic direct
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2 Formulations of the stochastic simulation algorithm for chemical reaction networks

method (LDM) (Li and Petzold, 2006) and the composition-rejection formulation (SSA-CR)
(Slepoy et al., 2008). Approximate SSA formulations provide better computational efficiency
for larger numbers of molecules by sampling from an approximation to the joint probabil-
ity distribution in Eq. 1.49. These methods include τ -leaping (Gillespie, 2001; Cao et al.,
2005a, 2006; Peng et al., 2007), kα-leaping (Gillespie, 2001), R-leaping (Auger et al., 2006),
L-leap (Peng and Wang, 2007), K-leap (Cai and Xu, 2007), the slow-scale method (Cao et al.,
2005b), and implicit τ -leaping (Rathinam et al., 2003).

In the following, we focus on exact SSA formulations, but briefly also mention the funda-
mental idea, benefits and limitations of approximate SSAs towards the end of this chapter.

2.3 Exact formulations of the SSA and their computational
cost

Exact SSA formulations sample µ and τ from Eq. 1.49, and only one reaction µ is executed per
time step. The time step size τ is itself a random variable. The population state of the chemical
system is subsequently updated. The fundamental steps in every exact SSA formulation are
thus:

1. Sample τ and µ from Eq. 1.49.

2. Update population n.

3. Recompute the reaction propensities aµ.

Various algorithms have been developed to perform these steps, and they constitute different
SSA formulations with different computational costs. We quantify computational cost by
the CPU time needed to execute one reaction event. The computational cost of any SSA
formulation depends on the coupling class of the simulated reaction network. We provide here
a review of various exact SSA formulations and analyze their computational costs as a function
of the coupling class of the reaction network.

2.3.1 The first reaction method (FRM)

FRM (Gillespie, 1976) is one of the earliest exact SSA formulations. In this formulation, the
time τµ when reaction µ fires next is computed according to the probability function

p(τµ | n(t)) = aµ e−aµτµ . (2.38)

Subsequently, the next reaction µ is chosen to be the one with the minimum τµ, and the time
τ to the next reaction is set to the minimum τµ. The algorithm is given in Table 2.1.

The computational cost of FRM is O(M) (Gibson and Bruck, 2000; Cao et al., 2004; Ra-
maswamy et al., 2009; Ramaswamy and Sbalzarini, 2010b) where M is the number of reactions
in the network. This is due to steps 2 and 4 (see Table 2.1), both of which have a runtime of
O(M): step 2 involves generating M random numbers and step 4 involves recomputing all M
reaction propensities.
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2.3 Exact formulations of the SSA and their computational cost

1. Set t ← 0; initialize n, aµ ∀µ, and a

2. Sample τµ according to Eq. 2.38 for each reaction µ: For each reaction generate a uniform
random number r1 ∈ [0, 1) and compute τµ ← −a−1

µ log(r1). τ ← min{τ1, . . . , τM}

3. µ← the index of minimum{τ1, . . . , τM}

4. Update: n ← n + νµ, where νµ is the stoichiometry of reaction µ; recompute all aµ
and a

5. t ← t + τ ; go to step 2

Table 2.1: Algorithm for the first reaction method (FRM)

2.3.2 The direct method (DM)

DM (Gillespie, 1977) samples the next reaction index µ according to Eq. 1.51 using linear
search over the reaction propensities. The time τ to the next reaction is sampled according to
Eq. 1.50. The algorithm is given in Table 2.2.

1. Set t ← 0; initialize n, aµ ∀µ, and a

2. Sample µ using linear search according to Eq. 1.51: generate a uniform random number
r1 ∈ [0, 1) and determine µ as the smallest integer satisfying r1 <

∑µ
µ′=1 aµ′/a

3. Sample τ according to Eq. 1.50: generate a uniform random number r2 ∈ [0, 1) and
compute τ as τ ← −a−1 log(r2)

4. Update: n ← n + νµ, where νµ is the stoichiometry of reaction µ; recompute all aµ
and a

5. t ← t + τ ; go to step 2

Table 2.2: Algorithm for the direct method (DM)

The computational cost of DM is also O(M) (Gibson and Bruck, 2000; Cao et al., 2004;
Ramaswamy et al., 2009; Ramaswamy and Sbalzarini, 2010b). This is due to steps 2 and 4
in the algorithm (see Table 2.2), both of which have a worst-case runtime of O(M). In terms
of absolute runtimes, however, DM is more efficient that FRM since it does not involve the
expensive step of generating M random numbers for each reaction event.
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2.3.3 Next reaction method (NRM)

NRM (Gibson and Bruck, 2000) is an improvement over FRM in which the M − 1 unused
reaction times are suitably reused, and efficient data structures such as indexed minimum
priority queues (Gibson and Bruck, 2000) and dependency graphs are introduced. The indexed
priority queue is used to efficiently find the minimum among all τµ; the dependency graph is
a data structure that stores for each reaction the indices of the propensities that have to be
recomputed upon firing of this reaction (see Sec. 2.1.1). This avoids having to recompute all
aµ after every reaction event. The formulation of NRM is in terms of the absolute time to the
next reaction τg instead of the relative time to the next reaction τ that is used in DM and
FRM. The algorithm of NRM is given in Table 2.3.

1. Set t ← 0; initialize n, the dependency graph, aµ ∀µ, and a

2. For each reaction µ generate a uniform random number r1 ∈ [0, 1) and compute as τg
µ ←

−a−1
µ log(r1). Store these τg

µ ’s in a minimum priority queue, indexed by the reaction
label

3. The reaction µ with the minimum τg
µ can be found at the top of the priority queue. Set

τg ← τg
µ

4. Update: n ← n + νµ, where νµ is the stoichiometry of reaction µ

5. Set t← τg

6. For all reactions i whose propensities change upon firing of reaction µ (i.e., the destination
nodes of all directed edges leaving node µ in the dependency graph):

6.1. Recompute the propensity ai. Store the old propensity in aold

6.2. if i 6= µ, set τg
i ← t+ aold

ai
(τg
i − t)

6.3 if i = µ, set τg
i ← t− a−1

i log(r2), where r2 is a uniform random number in [0, 1)

6.4 Update the priority queue with the new value of τg
i for reaction i

7. Go to step 3

Table 2.3: Algorithm for the next reaction method (NRM)

The data structures in NRM, together with the reuse of reaction times, reduce the compu-
tational cost to O(dc log2M), where dc is the degree of coupling of the reaction network. This
scaling of the computational cost is due to step 6 in Table 2.3. In this step, a maximum of dc

reaction times need to be recomputed. Additionally, every change involves ensuring that the
tree structure of minimum priority queue has nodes that always carry smaller reaction times
than their children. The computational cost of this update operation is O(log2M) and hence
the overall cost of step 6 is O(dc log2M). For strongly coupled networks, dc is a function of
M and is O(M). The computational cost of NRM is thus O(M log2M) for strongly coupled
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networks. Even for some weakly coupled networks for which dc �M and is O(1), the com-
putational cost of NRM has been empirically shown to be O(M) (Cao et al., 2004). This is
due to the additional overhead, memory-access operations, and cache misses introduced by the
complex data structures (indexed priority queue, dependency graph) of NRM. The absolute
runtime of NRM is, however, still superior to that of FRM and DM.

2.3.4 Optimized direct method (ODM)

ODM (Cao et al., 2004) is an improvement over DM where the reactions are approximately
sorted in descending order of firing frequency. Like DM, ODM uses linear search to sample the
index of the next reaction and the reordering makes it more probable to find the next reaction
close to the beginning of the list, reducing the average search depth. ODM estimates the firing
frequencies of all reactions during a short pre-simulation run of about 5–10% of the length of
the entire simulation (Cao et al., 2004; McCollum et al., 2006). In order to reduce the cost of
updating the propensities after a reaction has fired, ODM also uses a dependency graph. The
algorithm of ODM is similar to that of DM (see Table 2.2) except that the propensities of the
reactions are stored in the descending order of their estimated firing frequency. Irrespective
of the degree of coupling of the network, the computational cost of ODM is O(M), which
was also empirically confirmed in benchmarks (Cao et al., 2004). The absolute runtimes of
ODM, however, are smaller than those of DM and NRM (Cao et al., 2004), especially for
multiscale (stiff) reaction networks whose propensities span several orders of magnitude. In
stiff networks, few reactions fire much more frequently than all others, and having the frequent
reactions at the top of the list greatly reduces the average search depth in the linear search.

2.3.5 Sorting direct method (SDM)

SDM (McCollum et al., 2006) is a variant of ODM that does not use pre-simulation runs,
but dynamically shifts up a reaction in the reaction list whenever it fires (“bubbling up”
of the more frequent reactions). Like ODM, SDM is also especially efficient for multiscale
reaction networks. Among multiscale reaction networks, the strategy of dynamically sorting
the reactions is especially suited to deal with temporal changes in firing frequency that ODM
fails to capture. The algorithm of SDM is given in Table 2.4.

The strategy of dynamically sorting the reactions reduces the prefactor of the computational
cost of SDM compared to that of ODM, but the scaling remains O(M) (McCollum et al., 2006),
irrespective of the degree of coupling of the network (Ramaswamy et al., 2009; Ramaswamy
and Sbalzarini, 2010b).
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1. Set t ← 0; initialize n, aµ ∀µ, a, the change to the total propensity ∆a ← 0, the
dependency graph and ordering list l such that lj = j for j = 1, . . . ,M .

2. Sample µ using linear search according to Eq. 1.51: generate a uniform random number
r1 ∈ [0, 1) and determine j as the smallest integer satisfying r1 <

∑j
j′=1 alj′/a. Set µ← j

3. If j 6= 1, swap lj and lj−1

4. Sample τ according to Eq. 1.50: generate a uniform random number r2 ∈ [0, 1) and
compute τ as τ ← −a−1 log(r2)

5. Update: n ← n + νµ, where νµ is the stoichiometry of reaction µ

6. For all reactions i whose propensities change upon firing of reaction µ (i.e., the destination
nodes of all directed edges leaving node µ in the dependency graph):

6.1. Update ∆a← ∆a− ai
6.2. Recompute the propensity ai

6.3. Update ∆a← ∆a+ ai

7. Set a← a+ ∆a

8. t ← t + τ and set ∆a← 0; go to step 2

Table 2.4: Algorithm for the sorting direct method (SDM)

2.3.6 Logarithmic direct method (LDM)

LDM (Li and Petzold, 2006) uses a binary search tree (recursive bisection) on an ordered linear

list of cumulative sums of propensities sj =
∑j
µ′=1 aµ′ , j = 1, . . . ,M and s0 = 0, to find the

next reaction µ. The algorithm for LDM is given in Table 2.5.
The binary search tree to sample the next reaction index reduces the search depth to

O(log2M). Irrespective of the degree of coupling, however, the update step (Step 6 in Ta-
ble 2.5) is O(M) since on average (M + 1)/2 and in the worst case M cumulative sums of
propensities need to be recomputed, rendering the computational cost of LDM O(M).
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1. Set t ← 0; initialize n, aµ ∀µ, the dependency graph and the partial sums sj

2. Sample µ using recursive bisection search according to Eq. 1.51: generate a uniform
random number r1 ∈ [0, 1) and perform binary search until sµ−1 ≤ sMr1 = ar1 < sµ
where a = sM is the total propensity of all reactions

3. Sample τ according to Eq. 1.50: generate a uniform random number r2 ∈ [0, 1) and
compute τ as τ ← −a−1 log(r2)

4. Update: n ← n + νµ, where νµ is the stoichiometry of reaction µ

5. Using the dependency graph, find the smallest reaction index i whose propensity is
affected by µ

6. for j = i . . .M

6.1. Recompute sj

7. t ← t + τ ; go to step 2

Table 2.5: Algorithm for the logarithmic direct method (LDM)

2.3.7 Composition-rejection method (SSA-CR)

SSA-CR (Slepoy et al., 2008) uses composition-rejection sampling to determine the index
of the next reaction. Composition-rejection sampling (Devroye, 1986; Slepoy et al., 2008;
Ramaswamy and Sbalzarini, 2010b) is a way of sampling realizations of a random variable
according to a given probability function. In SSA, the discrete probability function to sample
the next reaction index µ is p(µ | n(t)) (see Eq. 1.51). The sampling process starts by binning
the propensities ai according to their value, and then proceeds in two steps: The composition
step is used to identify the bin by linear search, the rejection step is used to identify the aµ,
and hence the next reaction index µ, inside that bin.

In SSA-CR, the propensities ai are sorted into Ga = log2(amax/amin) + 1 bins such that
bin b contains all ai where b is determined by the condition: 2b−1amin ≤ ai < 2bamin. The
constants amin and amax are the smallest non-zero and largest value that any of the ai’s can
assume during the simulation. The value of amin is given by the minimum specific probability
rate among all reactions in the network. The value of amax can be estimated by using physical
reasoning. In cases where such an estimation is not possible, the number of bins Ga can also
be dynamically increased during the simulation.

In SSA-CR, sampling the next reaction index µ proceeds in two steps: (1) composition
sampling using linear search over the Ga bins and a uniform random number in [0, 1) to
identify the bin b such that

b = min


b′ : r1a <

b′∑

i=1

αi


 , (2.39)
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where the total propensity αb of each bin is computed by summing up the ai’s in bin b,
and subsequently (2) rejection (also known as acceptance-rejection) sampling to identify the
reaction index µ in that bin b. This is done by generating a uniformly distributed random
number r2 in [0, 2bamin) and a uniformly distributed random integer r3 between 1 and the
number of elements in bin b. If the rth

3 element in bin b is greater than or equal to r2, the
corresponding reaction index is chosen as the index of the next reaction. If the inequality is
not satisfied, the rejection step is repeated. This procedure is illustrated in Fig. 2.3. Assume
that the composition step has chosen bin 2 as the bin containing the next reaction index. The
rejection step then samples uniformly random points inside the rectangle defining the value
range of this bin (bold rectangle). A sample is accepted if it falls inside one of the shaded bars
representing the propensities. If the first sample (point A in Fig. 2.3 with r3 = 3 and r2 > a2)
is rejected, sampling is repeated until the point falls inside one of the bars (point B in Fig. 2.3
with r3 = 2 and r2 < a4). By binning the propensities as described above, one ensures that
they cover at least 50% of each bin’s total area, ensuring that the average number of rejection
steps needed is less than or equal to two. Once a reaction is executed, the affected propensities
are updated and their bin memberships are reassigned. Reassigning a bin membership can be
achieved in O(1) time. The algorithm for SSA-CR is given in Table 2.6.

Figure 2.3: Illustration of the binning of the reaction propensities in SSA-CR. In this example the
reaction network has six reactions and hence six propensities. The heights of the shaded
rectangular bars indicate the magnitudes of the propensities of the reactions with the
corresponding index. Points A and B are the examples used in the main text to illustrate
rejection sampling.

The computational cost of SSA-CR is O(Ga) for weakly coupled reaction networks. This is
due to step 2.1 in Table 2.6 that involves a linear search over the Ga bins to identify the bin
containing the index of the next reaction. In cases where the ratio of maximum to minimum
non-zero propensity is constant, rendering Ga O(1), the computational cost of SSA-CR reduces
to O(1). For strongly coupled reaction networks, the computational cost of SSA-CR is O(M)
since the degree of coupling of a strongly coupled network is O(M) and hence the cost of the
update step (Step 5 in Table 2.6) because O(M) dominates the overall cost.
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1. Set t ← 0; initialize n, aµ ∀µ, a, and the dependency graph. Sort the aµ’s into Ga bins
as described in Sec. 2.3.7. Initialize amin, amax and set ∆a← 0

2. Sample µ using composition-rejection sampling according to Eq. 1.51:

2.1. Composition step: Generate a uniform random number r1 ∈ [0, 1) and perform a
linear search over the Ga bins to sample the bin index b containing the next reaction
according to Eq. 2.39

2.2. Rejection step: Generate a uniform random number r2 ∈ [0, 2bamin) and a uniform
random integer between 1 and the number of elements in bin b. If the rth

3 element
in bin b is greater than or equal to r2, the corresponding reaction index is chosen
as the index of the next reaction µ. If the inequality is not satisfied, repeat the
rejection step

3. Sample τ according to Eq. 1.50: generate a uniform random number r2 ∈ [0, 1) and
compute τ ← −a−1 log(r2)

4. Update: n ← n + νµ, where νµ is the stoichiometry of reaction µ

5. For all reactions i whose propensities change upon firing of reaction µ (i.e., the destination
nodes of all directed edges leaving node µ in the dependency graph):

5.1. Update ∆a← ∆a− ai
5.2. Recompute the propensity ai and reassign the bin membership of ai if needed

5.3. Update ∆a← ∆a+ ai

6. Set a← a+ ∆a

7. t ← t + τ and set ∆a← 0; go to step 2

Table 2.6: Algorithm for the SSA with composition-rejection sampling (SSA-CR)

2.3.8 Summary of the computational costs and memory requirements of
these exact SSA formulations

Computational cost: The computational costs of all the aforementioned exact SSA formula-
tions are O(M) for strongly coupled reaction networks (Ramaswamy et al., 2009). For weakly
coupled networks, however, some are significantly more efficient and can be O(log2M) or even
O(1) (Ramaswamy et al., 2009; Gibson and Bruck, 2000; Slepoy et al., 2008).

Memory requirement: The memory requirements of all aforementioned exact SSA formu-
lations are O(M). For strongly coupled reaction networks, this can be O(M2). This can be
reduced to O(M) by avoiding the use of a dependency graph.
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2.4 Approximate SSA formulations

In approximate SSA formulations, the population n(t) is described by the equation of motion
of a jump Markov process given by

n(t+ ∆t) = n(t) + Ξ(∆t ; n(t)). (2.40)

The random variable Ξ(∆t ; n(t)), the Markov propagator, can be written as

Ξ(∆t ; n(t)) = ν




ψ1(∆t ; n(t))
...

ψµ(∆t ; n(t))
...

ψM (∆t ; n(t))



, (2.41)

where ψµ(∆t ; n(t)) is a random variable for the number of times reaction µ fires in the time
interval [t, t + ∆t]. Deriving an exact expression for ψµ(∆t ; n(t)) is equivalent to solving
the CME analytically. Hence, we assume that the propensities aµ do not change in [t, t+ ∆t]
leading to an approximate solution of the CME. We start by dividing the time interval [t, t+∆t]
into k equisized subintervals. The probability P (ψµ(∆t ; n(t)) = λ) that reaction µ fires in
each of λ < k subintervals, and does not fire in any of the remaining subintervals, is given by
(using Eq. 1.15)

P (ψµ(∆t ; n(t)) = λ)

= lim
k→∞

k!

λ!(k − λ)!

[
aµ(n)

∆t

k
+O

(
∆t2

k2

)]λ [
1− aµ(n)

∆t

k
+O

(
∆t2

k2

)](k−λ)

.(2.42)

Noting that limk→∞O
(

∆t2

k2

)
= 0, we get

P (ψµ(∆t ; n(t)) = λ) = lim
k→∞

k!

λ!(k − λ)!

(
aµ(n)

∆t

k

)λ(
1− aµ(n)

∆t

k

)(k−λ)

= lim
k→∞

k!

kλ(k − λ)!

(aµ(n)∆t)λ

λ!

(
1− aµ(n)

∆t

k

)(k−λ)

= lim
k→∞

(k − λ+ 1) . . . k

kλ
(aµ(n)∆t)λ

λ!

(
1− aµ(n)

∆t

k

)(k−λ)

= lim
k→∞

(
1− λ+ 1

k

)
. . .

(
1− 1

k

)
(aµ(n)∆t)λ

λ!

(
1− aµ(n)

∆t

k

)(k−λ)

= lim
k→∞

(aµ(n)∆t)λ

λ!

(
1− aµ(n)

∆t

k

)k (
1− aµ(n)

∆t

k

)−λ

=
(aµ(n)∆t)λ

λ!
e−aµ(n)∆t. (2.43)
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Therefore, the random variable ψµ(∆t ; n(t)) is distributed according to the Poisson distri-
bution i.e., ψµ(∆t ; n(t)) ∼ P(aµ(n)∆t). In deriving this we assumed that the propensity
aµ(n) does not change during the time interval [t, t+ ∆t]. This condition can only be satisfied
if exactly one reaction fires per time step just as in exact SSA formulation (see Sec. 2.3).
Approximate SSA’s impose two conditions (Gillespie, 2000, 2001) :

1. ∆t must be small enough for the change in the reaction propensities to be small i.e.

aµ(n(t+ ∆t)) ≈ aµ(n(t)) ∀µ. (2.44)

2. ∆t must be large enough for the average number of firings of reaction µ to be much larger
than 1. Otherwise the method offers no improvements of the computational performance
over exact SSA formulations.

〈ψµ(∆t ; n(t))〉 = aµ(n)∆t > 1. (2.45)

There are various heuristics for choosing a time step ∆t that satisfies the above two condi-
tions (Cao et al., 2006; Gillespie, 2000, 2001). Note that the second condition is not neces-
sary, but it improves the computational performance of approximate SSA’s. In general, since
many reactions fire within a time step ∆t by sampling ψµ(∆t ; n(t)) from P(aµ(n)∆t) for
µ = 1, . . . ,M , approximate SSA’s have a computational cost of O(M) per time step. The
computational cost per reaction event is O(M) divided by the number of reactions fired dur-
ing the time step ∆t. This renders the computational cost of approximate SSAs superior to
that of exact SSAs. The scaling of the computational cost of approximate SSAs, however, is
the same as that of the exact direct method (DM).

Considering that

aµ(n)∆t� 1

is valid when the population n(t) is large, the random variables ψµ in Eq. 2.41 can be approx-
imates by a Gaussians, i.e.,

ψµ(∆t ; n(t)) ∼ P(aµ(n)∆t) ≈ N (aµ(n)∆t, aµ(n)∆t) if aµ(n)∆t� 1. (2.46)

Under this approximation the Markov propagator Ξ(∆t ; n(t)) in Eq. 2.41 can be written
as

Ξ(∆t ; n(t)) ∼ N (ΩF (φ)∆t,ΩD(φ)∆t), (2.47)

where N (m,Σ) denotes a multivariate Gaussian distribution with mean vector m and co-
variance matrix Σ. After changing from population n to concentration φ, Eq. 2.40 hence
becomes the chemical Langevin equation, which is the equation of motion (see Eq. 1.36) of the
nonlinear chemical Fokker-Planck equation (see Eq. 1.32) obtained by truncating the chemical
Kramer-Moyal equation (see Eq. 1.27). This shows that the nonlinear chemical Fokker-Planck
equation is not just a arbitrary approximation, but one when the population n(t) is large or,
equivalently, when the reactor volume Ω is large (Horsthemke and Brenig, 1977; Gillespie,
2000, 2001).
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Approximate SSA formulations simulate Eq. 2.40 with different numerical schemes. They
are computationally efficient when the population of species is not small (more than a few
hundreds). The weak order of convergence of these methods has been shown to be at least
1
2 (Anderson et al., 2011; Rathinam et al., 2005) for some moments of the state-probability
function. There are, however, still some disagreements regarding the order of convergence (An-
derson et al., 2011; Rathinam et al., 2005). It is also unclear how quantities that contain
information on the path of the stochastic process, such as the time-correlation functions and
“higher order quantities”, such as switching frequencies in multistable systems, converge with
decreasing time step ∆t (Helmuth et al., 2011).

2.5 Summary

We have presented the topological properties and the dependency graph representation of
chemical reaction networks. Using the dependency graph representation, we defined the degree
of coupling of a reaction network as the maximum out-degree of the graph. This enabled
classifying reaction networks into weakly coupled and strongly coupled ones. Weakly coupled
reaction networks are those in which the degree of coupling is bounded by a constant with
increasing network size. For strongly coupled networks the degree of coupling increases with
the network size.

We further presented various exact formulations of Gillespie’s stochastic simulation algo-
rithm (SSA). We showed that for weakly coupled networks the computational cost of exact
SSA has been reduced to O(log2M), or even O(1) under the assumption that the ratio be-
tween the maximum and minimum non-zero reaction propensities is bounded by a constant
with increasing network size. For strongly coupled networks, however, all presented exact SSA
formulations have a computational cost of O(M).

We also presented the concept of approximate SSA formulations that can offer superior com-
putational performance at the expense of accuracy. Approximate SSA formulations can offer
significant speed-ups when the population of the chemical species is large. The computational
cost of approximate SSAs is O(M), irrespective of the coupling class of the reaction network.
The speed-up over exact SSAs is obtained by firing many reactions during a single time step,
proportionally reducing the prefactor of the computational cost.
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3
Partial-propensity formulations of the

stochastic simulation algorithm

“The human brain is incapable of creating anything which is really complex.”
– Andrey Kolmogorov

Stochastic chemical kinetics is described by the chemical master equation (CME). Numerical
simulations of the CME can be done using a kinetic Monte Carlo scheme called the stochastic
simulation algorithm (SSA) (Gillespie, 1976, 1992) (see Sec. 1.3). The computational cost
of exact SSA formulations depends on the property of the chemical reaction network. To
predict the computational cost of exact SSA formulations, we classify reaction networks into
two classes: strongly coupled and weakly coupled. Any chemical reaction network with N
species and M reactions can be represented by its dependency graph. Each node in this graph
represents a chemical reaction and a directed edge is drawn from node p to node q if firing of
reaction p affects the copy number of any of the reactants of reaction q. In this representation,
we quantify the degree of coupling of the reaction network as the maximum number of edges
leaving any node, i.e., the maximum out-degree of the dependency graph. We define weakly
coupled networks as those in which the degree of coupling is bounded by a constant with
increasing network size. Strongly coupled networks have a degree of coupling that increases
unboundedly with network size. The computational cost of exact SSA formulations depends
on the coupling class of the reaction network. For weakly coupled reaction networks the
computational cost (CPU time) has been reduced to O(1) (Slepoy et al., 2008) under the
assumption that the ratio of maximum to minimum propensity is bounded by a constant. For
strongly coupled networks, however, the computational cost of exact SSAs remains O(M). For
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details see Chapter 2.

We present here a new class of exact SSA formulations using the novel concept of partial
propensities. In doing so, we limit ourselves to networks of elementary reactions under the
premise that non-elementary reactions can be broken down to elementary ones at the expense
of an increase in network size (Gillespie, 1992; Wilhelm, 2000; Schneider and Wilhelm, 2000)
(see Appendix A2). In Sec. 3.1 we introduce partial propensities. In Sec. 3.2 we introduce
the concept of partial-propensity formulations. Using partial propensities we first describe
the partial-propensity direct method (PDM) in Sec. 3.3. The computational cost of PDM is
O(N) (i.e., linear in the number of chemical species) irrespective of the degree of coupling
of the reaction network. In Sec. 3.4 we present the partial-propensity SSA with composition-
rejection sampling (PSSA-CR) that further reduces the computational cost for weakly-coupled
networks toO(1). In Sec. 3.5 we extend the partial-propensity formulation to reaction networks
with time delays using the delay PDM (dPDM). Finally, we summarize the partial-propensity
formulations as a family of SSAs with algorithmic building blocks that naturally constitute
the different formulations.

3.1 Partial propensity

We define the partial propensity of a reaction with respect to one of its reactants as the

propensity per molecule of this reactant. For example, the partial propensity π
(i)
µ of reaction

µ with respect to (perhaps the only) reactant Si is aµ/ni, where aµ is the propensity of reaction
µ and ni is the number of molecules of Si. The partial propensities of the three elementary
reaction types are:

• Bimolecular reactions (Si + Sj → Products): aµ = ni nj cµ and π
(i)
µ = nj cµ, π

(j)
µ = ni cµ.

If both reactants are of the same species, i.e. Si = Sj , only one partial propensity exists,

π
(i)
µ = 1

2 (ni − 1)cµ because the reaction degeneracy is 1
2ni(ni − 1).

• Unimolecular reactions (Si → Products): aµ = ni cµ and π
(i)
µ = cµ.

• Source reactions (∅ → Products): aµ = cµ and π
(0)
µ = cµ.

3.2 The concept of partial-propensity SSA formulations

Partial-propensity formulations use partial propensities and group them in order to sample
the index of the next reaction and to update the partial propensities after a reaction has
fired. For the sampling step, the partial propensities are grouped according to the index of the
factored-out reactant, yielding at most N + 1 groups of size O(N). Sampling then proceeds in
two steps: we first sample the index of the group before sampling the actual partial propensity
inside that group. This sampling procedure can also be interpreted as sampling reaction
partners. The first step involves sampling a reactant before sampling its reaction partner.
This grouping scheme reduces the number of operations needed for sampling the next reaction
using a concept that is reminiscent of cell lists (Hockney and Eastwood, 1988).
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3.2 The concept of partial-propensity SSA formulations

After the selected reaction has been executed, we use a dependency graph over species, rather
than reactions, to find all partial propensities that need to be updated. The dependency graph
over species acts as a pointer to the partial propensities that need to be updated upon change
in population of a certain species. This is possible because partial propensities depend on the
population of at most one species, and it is analogous to a Verlet list (Verlet, 1967). This limits
the number of updates to O(N). In addition, partial propensities of unimolecular reactions
are constant and never need to be updated. In weakly coupled networks, where the degree of
coupling is O(1), the scaling of the computational cost of the update becomes equal to that
of methods that use dependency graphs over reactions, such as SSA-CR (Slepoy et al., 2008)
(see Sec. 2.3.7), ODM (Cao et al., 2004) (see Sec. 2.3.4), and SDM (McCollum et al., 2006)
(see Sec. 2.3.5).

We illustrate the concept of partial propensity methods using a simple protein aggregation
example. Consider proteins that aggregate to form at most tetrameric complexes. There
are N = 4 species in the reaction network: monomers (S1), dimers (S2), trimers (S3), and
tetramers (S4). All species except tetramers can aggregate in all possible combinations to
form multimeric complexes (4 bimolecular reactions). In addition, all multimeric complexes
can dissociate into any possible combination of two smaller units (4 unimolecular reactions)
and monomers are constantly produced (1 source reaction). The reaction network is given by
the following 9 reactions

Reaction 1 : Ø −→ S1

Reaction 2 : S1 + S1 −→ S2

Reaction 3 : S1 + S2 −→ S3

Reaction 4 : S1 + S3 −→ S4

Reaction 5 : S2 + S2 −→ S4

Reaction 6 : S2 −→ S1 + S1

Reaction 7 : S3 −→ S1 + S2

Reaction 8 : S4 −→ S1 + S3

Reaction 9 : S4 −→ S2 + S2.

(3.1)

This reaction network is described by M = 9 partial propensities (π
(0)
1 ), (π

(1)
2 , π

(1)
3 , π

(1)
4 ),

(π
(2)
5 , π

(2)
6 ), (π

(3)
7 ), (π

(4)
8 , π

(4)
9 ). Grouping the partial propensities according to the index of

the factored-out reactant given in the superscript, we obtain 5 (= N + 1) groups as indicated
by the parentheses. Along with each group, we store the sum of all partial propensities inside
it. We first sample the group that contains the next reaction before finding the corresponding
partial propensity inside that group. Assume that in our example reaction 7 is to fire next.
Different search algorithms can be used for this task. Using linear search, for instance, the
search depth to find the group index is 4 and the search depth to find the partial propensity

(π
(3)
7 ) is 1. Linear search thus requires 5 operations to sample the next reaction in this network

of 9 reactions. The average linear search depth for sampling the next reaction in this example
is 37/9 ≈ 4.1, if all reaction propensities are equal.
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3.3 The partial-propensity direct method (PDM)

In PDM, the index of the next reaction µ is sampled using linear search over groups and
subsequently over elements in the group. The sampling procedure is algebraically equivalent to
that of Gillespie’s direct method (DM). The novelties in PDM are the use of partial propensities
and efficient data structures that reduce the number of operations needed to sample µ and to
update the partial propensities. The time to the next reaction τ is sampled as in DM.

3.3.1 Detailed description

All partial propensities are stored in the “partial-propensity structure” Π = {Πi}Ni=0 as a
one-dimensional array of one-dimensional arrays Πi. Each array Πi contains the partial
propensities belonging to group i. The partial propensities of source reactions are stored as
consecutive entries of the 0th array Π0. The partial propensities of all reactions that have
species S1 as one of its reactants are stored as consecutive entries of Π1. In general, the ith

array Πi contains the partial propensities of all reactions that have Si as a reactant, provided
these reactions have not yet been included in any of the previous Πj<i. That is, out of the

two partial propensities of a reaction µ with Si and Sj as reactants, π
(i)
µ is part of Πi if i < j,

and π
(j)
µ is not stored anywhere. In order for Π to be independent of the numbering of the

reactants, we first renumber the species such that Si is the species involved as a reactant in
ith-most reactions. This ordering also minimizes the number of required update operations. Π
needs to be constructed only once, at the beginning of a simulation. The steps to automatically
build Π from the stoichiometry matrix are outlined in Table 3.1.

Since the different Πi’s can be of different length, storing them as an array of arrays is more
(memory) efficient than using a matrix (i.e., a two-dimensional array). The reaction indices of
the partial propensities in Π are stored in a look-up table L = {Li}Ni=0, which is also an array
of arrays. This makes every reaction µ identifiable by a unique pair of indices, a group index
I and an element index J , such that the partial propensity of reaction µ = LI,J is stored in
ΠI,J .

We further define the “group-sum array” Λ, storing the sums of the partial propensities in
each group Πi, thus Λi =

∑
j Πi,j , i = 0, . . . , N . In addition, we also define Σ, the array of the

total propensities of all groups, as Σi = niΛi, i = 0, . . . , N , and set the population n0 of the
reservoir in the source reactions to 1. The total propensity of all reactions is then a =

∑N
i=0 Σi.

The use of Λ avoids having to recompute the sum of all partial propensities in Πi after one of
them has changed. Rather, the same change is also applied to Λi, and computing the new Σi
only requires a single multiplication by ni. Using these data structures and a single uniformly
distributed random number r1 ∈ [0, 1), the next reaction µ can efficiently be sampled in two
steps: (1) sampling the group index I such that

I = min


I ′ : r1a <

I′∑

i=0

Σi


 (3.2)
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1. Initialize the reactant stoichiometry matrix ν−, the initial population n(0), and the
specific probability rates c. Reorder all stoichiometry matrices such that the ith row
corresponds to the species involved as a reactant in ith-most reactions.

2. Using ν−, build a list of all reactants in each reaction. For reaction µ, the reactants
have a non-zero entry in ν−µ . If all species have a zero reactant stoichiometry then the
reactant index is 0 and the reaction is a source reaction.

3. For each reaction, go through the list of reactants:

3.1 If the number of distinct reactants in a reaction is 2, compute the partial propensity
of this reaction by factoring out the population of the species with the smaller index
i from the full reaction propensity. Append this partial propensity to Πi.

3.2 If the number of reactants in a reaction is 1, then check

3.2.1 If it is a biomolecular reaction between the same species Si, store the corre-
sponding partial propensity in Πi.

3.2.2 If it is a unimolecular reaction with only species Si as a reactant, store the
partial propensity in Πi.

3.2.3 If it is a source reaction (i = 0), store the partial propensity in Π0.

4. Stop.

Table 3.1: Algorithm for constructing the partial-propensity structure Π

and (2) sampling the element index J in ΠI such that

J = min


J ′ : r1a <

J′∑

j=1

nIΠI,j +

(
I∑

i=0

Σi

)
− ΣI


 . (3.3)

(see Appendix A3 for a proof of the equivalence of this sampling scheme to that of DM.) Using
the temporary variables

Φ =

I∑

i=0

Σi, Ψ =
r1a− Φ + ΣI

nI
, (3.4)

Eq. 3.3 can be efficiently implemented as

J = min


J ′ : Ψ <

J′∑

j=1

ΠI,j


 . (3.5)

The indices I and J are then translated back to the reaction index µ using the look-up table
L, thus µ = LI,J .

To execute a sampled reaction, n, Π, Λ, and Σ need to be updated. This is efficiently done
using three update structures:
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U(1) is an array of M arrays, where the ith array contains the indices of all species involved
in the ith reaction.

U(2) is an array of M arrays containing the corresponding stoichiometry (the change in pop-
ulation of each species upon reaction) of the species stored in U(1). U(1) and U(2)

constitute the sparse representation of the stoichiometry matrix ν.

U(3) is an array of N arrays, where the ith array contains the indices of all entries in Π that
depend on ni, thus:

U(3) =





U
(3)
1 =

[(
i11, j

1
1

) (
i12, j

1
2

)
. . . . . . . . .

]

U
(3)
2 =

[(
i21, j

2
1

) (
i22, j

2
2

)
. . .
]

...

U
(3)
N =

[
iN1 , j

N
1 iN2 , j

N
2 . . . . . .

]
.

(3.6)

When a reaction is executed, the populations of the species involved in this reaction change.
Hence, all entries in Π that depend on these populations need to be updated. After each
reaction, we use U(1) to determine the indices of all species involved in this reaction. The
stoichiometry is then looked up in U(2) and the population n is updated. Subsequently, U(3)

is used to locate the affected entries in Π and recompute them. The two data structures
U(1) and U(2) are a sparse representation of the stoichiometry matrix, and U(3) represents
the dependency graph over species. Since the partial propensities of unimolecular and source
reactions are constant and need never be updated, U(3) only contains the indices of the partial
propensities of bimolecular reactions. The size of U(3) is a factor of O(N) smaller than that of
the corresponding dependency graph over reactions, since partial propensities depend on the
population of at most one species. Figure 3.1 summarizes the data structures used in PDM for
an example reaction network. The complete algorithm is given in Table 3.2. Overall, PDM’s
computational cost is O(N) and its memory requirement is O(M), irrespective of the degree
of coupling of the simulated network (see Sec. 3.3.3).
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3.3 The partial-propensity direct method (PDM)

1. Initialization: set t ← 0; initialize n, Π, Λ, Σ; a ← ∑N
i=0 Σi; ∆a ← 0; generate L,

U(1), U(2), and U(3)

2. Sample µ: generate a uniform random number r1 ∈ [0, 1) and determine the group index
I and the element index J according to Eqs. 3.2, 3.4, and 3.5; µ ← LI,J

3. Sample τ : generate a uniform random number r2 ∈ [0, 1) and compute the time to next
reaction τ as τ ← a−1 ln(r−1

2 )

4. Update n: for each index k of U
(1)
µ , l ← U

(1)
µ,k and nl ← nl + U

(2)
µ,k

5. Update Π, Λ, Σ and compute ∆a, the change in a:

For each index k of U
(1)
µ , do:

5.1. l ← U
(1)
µ,k

5.2. For each index m of U
(3)
l , do:

5.2.1. (ilm, j
l
m) ← U

(3)
l,m (Eq. 3.6)

5.2.2. Πilm,j
l
m
← Πilm,j

l
m

+ cµ′U
(2)
µ,k, µ′ = Lilm, jlm if l 6=ilm

Πilm,j
l
m
← Πilm,j

l
m

+ 1
2cµ′U

(2)
µ,k, µ′ = Lilm, jlm if l=ilm

5.2.3. Λilm ← Λilm + cµ′U
(2)
µ,k, µ′ = Lilm, jlm if l 6=ilm

Λilm ← Λilm + 1
2cµ′U

(2)
µ,k, µ′ = Lilm, jlm if l=ilm

5.2.4. Σtemp ← Σilm
5.2.5. Σilm ← nilmΛilm
5.2.6. ∆a ← ∆a + Σilm − Σtemp

5.3. ∆a ← ∆a + nlΛl − Σl; Σl ← nlΛl

6. Update a and increment time: a ← a + ∆a; ∆a ← 0; t ← t + τ

7. Go to step 2

Table 3.2: Detailed algorithm for the partial-propensity direct method PDM.
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3 Partial-propensity formulations of the stochastic simulation algorithm

Figure 3.1: (a) Illustration of the data structures in PDM for the example reaction network shown
in (b). Note that there may be arrays Πi, i = 1, . . . , N , containing at most one negative
entry if the corresponding ni = 0. Indeed, in this example, Π2,1 < 0 and Λ2 < 0 if n2 = 0.
This, however, poses no problem in sampling I and J as all Σi for which ni = 0 are zero
and hence the corresponding group indices I are never selected.

3.3.2 The sorting partial-propensity direct method (SPDM)

The sorting partial-propensity direct method (SPDM) is the partial-propensity variant of
SDM (McCollum et al., 2006). In SPDM, the group and element indices I and J are bubbled
up whenever the reaction µ = LI,J fires. The reordered indices are stored in an array for I, and
an array of arrays of the size of Π for the J ’s. This requires an additional N +M memory, but
further reduces the average search depth to sample the next reaction, especially for multiscale
(stiff) networks. The computational cost of SPDM is also O(N), but with a possibly reduced
pre-factor (see Sec. 3.3.3).

3.3.3 Computational cost and memory requirements

3.3.3.1 Computational cost

The computational cost of PDM is governed by the following steps: (a) sampling the index
of the next reaction and (b) updating the population n and the partial-propensity structure
Π. The scaling of the computational cost of SPDM is the same as that of PDM. In terms of
absolute runtimes SPDM, however, is expected to be more efficient than PDM especially for
multiscale reaction networks.

Computational cost of sampling the index of the next reaction: For any chemical reaction
network with N species, the number of arrays in the partial-propensity structure Π is at
most N + 1, which is also the maximum length of Σ and Λ. The number of entries in each
array Πi is O(N), since any species can react with at most N species in bimolecular reactions
and undergo at most O(N) unimolecular reactions. Sampling the index of the next reaction
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involves two steps: (a) a linear search for the group index I in Σ and (b) a linear search for the
element index J in ΠI . Since Σ is at most of length N + 1, the first step is O(N). The second
step is also O(N), since the number of elements in Πi is O(N). The overall computational
cost of sampling the next reaction is thus O(N) for networks of any degree of coupling.

Computational cost of the update: Let the maximum number of chemical species involved
in any reaction (as reactants or products) be given by the constant s. Let us assume that s
is O(1) with increasing system size. This assumption is not restrictive since the number of
species involved in a reaction is unlikely to increase with system size. The computational cost
of updating n is thus s ∈ O(1). In PDM, only the partial propensities of bimolecular reactions
need to be updated. The total number of entries in the third update structure U(3) is, thus,
equal to the number of bimolecular reactions. In addition, the total number of entries in Π
that depend on any ni is always less than or equal to N , as any species Si can only react with
itself and the remaining N − 1 species in bimolecular reactions. Therefore, the upper bound
for the total number of partial propensities in Π to be updated after executing any reaction
is sN ∈ O(N).

In summary, the computational cost of PDM is O(N), irrespective of the degree of coupling
of the reaction network (see Sec. 3.3.4 for benchmark results).

3.3.3.2 Memory requirements

The memory requirement of PDM is given by the total size of the data structures n, Π, L,
Λ, Σ, U(1), U(2), and U(3).

The partial-propensity structure Π and the look-up table L have the same size. Since every
reaction is accounted for exactly once, each structure requires O(M) memory. Λ, n, and Σ
are all at most of length N + 1 and thus require O(N) memory. The sizes of U(1) and U(2) are
O(M), and the size of U(3) is proportional the number of bimolecular reactions and, hence,
O(M) if all reactions are bimolecular.

In summary, the memory requirement of PDM is O(M). SPDM requires an additional
N +M memory to store the reordered index lists.

3.3.4 Benchmarks

We benchmark the computational performance of PDM and SPDM using four chemical reac-
tion networks that are prototypical of: (a) strongly coupled reaction networks, (b) strongly
coupled reaction networks comprising only bimolecular reactions, (c) weakly coupled reaction
networks, and (d) multiscale biological networks. The first two benchmarks consider strongly
coupled networks where the degree of coupling dc scales with system size (see column “Maxi-
mum” under “Degree of coupling of nodes (dµ)” in Table 3.3). The first benchmark consists
of a colloidal aggregation model. The second benchmark considers a network of only bimolec-
ular reactions, where none of the partial propensities are constant. In the third benchmark,
we compare PDM and SPDM to SDM on the linear chain model, a weakly coupled reaction
network with the minimal degree of coupling, for which SDM was reported to be very efficient
(Cao et al., 2004; McCollum et al., 2006). The fourth benchmark considers the heat-shock
response model, a small multiscale (stiff) biological reaction network of fixed size.
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Model Number of Number of Degree of coupling of nodes (dµ)

species (N) reactions (M) Minimum Average Maximum

(min{dµ})
(∑M

µ=1 dµ

M

)
(dc = max{dµ})

CA N
⌊
N2

2

⌋
4N−1

3 2.3N − 4.7 3N − 7

NB N N(N−1)
2 4N − 10 4N − 10 4N − 10

LC N N − 1 1(∗) 2− 1
N−1 ≈ 2 2

HSR 28 61 1 5.9 11

Table 3.3: Properties of the benchmark cases. The number of species, number of reactions, and
minimum, average, maximum out-degree (degree of coupling) of the dependency graph are
given for the benchmark cases defined in Sections 3.3.4.1, 3.3.4.2, 3.3.4.3 and 3.3.4.4: the
colloidal aggregation model (CA), the network of bimolecular reactions (NB), the linear
chain model (LC), and the heat-shock response model (HSR). (∗) In the linear chain model
the degree of coupling is 1 only for the last reaction, since its product is not a reactant
anywhere else.

All tested SSA formulations are implemented in C++ using the random-number genera-
tor of the GSL library and compiled using the GNU C++ compiler version 4.0.1 with the
O3 optimization flag. All timings are determined using a nanosecond-resolution timer (the
mach absolute time() system call) on a MacOS X 10.4.11 workstation with a 3 GHz dual-
core Intel Xeon processor, 8 GB of memory, and a 4 MB L2 cache. For each test case we
report both the memory requirement and the average CPU time per reaction (i.e., per time
step), Θ. Θ is defined as the CPU time (identical to wall-clock time in our case) needed to
simulate the system up to final time T , divided by the total number of reactions executed
during the simulation, and averaged over independent runs. The time Θ does not include the
initialization of the data structures (step 1 in Table 3.2) as this is done only once and is not
part of the time loop.

We explain the benchmark results in terms of the computational cost of the individual steps
of the algorithms. We distinguish three steps: (a) sampling the index of the next reaction, (b)
updating the population, and (c) updating the partial propensities (for PDM and SPDM) or
the propensities (for SDM). The computational costs of these steps are quantified separately
and the overall timings are then explained as a weighted sum of:

• Cµ: The number of operations required to sample the index of the next reaction (for
PDM, this is step 2 in Table 3.2).

• Cn: The number of elements of the population n that need to be updated after executing
a reaction (for PDM, this is step 4 in Table 3.2).

• CP: The number of (partial) propensities that need to be updated after executing a
reaction (for PDM, this is step 5.2.2 in Table 3.2).

The expressions for these elementary costs are given in Table 3.4 as determined by inde-
pendently fitting models for the scaling of the algorithms to the measured operation counts,
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averaged over 100 independent runs of each test problem. In all cases, the models used for the
computational cost explain the data with a correlation coefficient of at least 0.98. The bench-
mark results are then explained by fitting the weights of the cost superposition aCµ + bCn + cCP
to the measured scaling curves Θ(N) using the expressions given in Table 3.4. In order to
preserve the relative weights of the data points, all fits are done on a linear scale, even though
the results are plotted on a logarithmic scale for two of the benchmarks. All these fits also have
a correlation coefficient of at least 0.98. Explaining the timing results as a superposition of
elementary costs allows determining which part of an algorithm is responsible for a particular
speedup or scaling behavior, and what the relative contributions of the three algorithmic steps
are to the overall computational cost.

PDM SPDM

Cµ Cn CP Cµ Cn CP
CA 0.49N + 2.0 3 5.2N0.5 − 8.1 0.45N + 0.38 3 5.2N0.5 − 8.1

NB 0.97N − 1.3 4 1.6N − 3.2 0.94N − 4.7 4 1.6N − 3.2

LC 0.50N + 1.0 2 0 1.0N0.5 + 0.79 2 0

HSR 13 3 2.2 3.7 3 2.2

SDM

Cµ Cn CP
CA 0.14N2 + 1.2N − 9.9 N 2.8N − 10

NB 0.33N2 − 0.044N + 0.51 N 4.0N − 10

LC 1.0N0.5 − 0.21 N 2

HSR 2.9 28 8.2

Table 3.4: Number of compute operations needed by the different algorithms (PDM, SPDM, SDM)
for the different test cases (CA: colloidal aggregation model; NB: network of bimolecular
reactions; LC: linear chain model; HSR: heat-shock response model). Cµ is the average
number of operations needed to sample the next reaction µ. Cn is the average number of
entries in the population n that need to be updated after any reaction. CP is the average
number of partial propensities (or propensities for SDM) that need to be updated after
any reaction. The operation counts are averaged over all reactions executed during 100
independent runs of each benchmark over the range of N shown in Fig. 3.2. The average
numbers are then fitted with the models given here (with correlation coefficient of at least
0.98 in all cases). See Fig. 3.3 for the distribution of the number of updates.

The memory requirements of the algorithms are reported in Table 3.5 for all benchmark
cases. These numbers were derived analytically from the size of the individual data structures.
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PDM/SPDM

n, Λ, Σ Π, L, c U(1), U(2) U(3) Total

CA N
⌊
N2

2

⌋
3
⌊
N2

2

⌋
2
⌊
N2

4

⌋
O(N2) = O(M)

NB N N(N−1)
2 4N(N−1)

2 2N(N−1)
2 O(N2) = O(M)

LC N N − 1 2(N − 1) 0 O(N) = O(M)

HSR 28 61 133 24 557

SDM

n c, a dependency graph ν Total

CA N
⌊
N2

2

⌋
1.2N3 − 2.5N2 + 2.3N N

⌊
N2

2

⌋
O(N3) = O(NM)

NB N N(N−1)
2 2N3 − 7N2 + 5N N2(N−1)

2 O(N3) = O(NM)

LC N N − 1 2(N − 1) N(N − 1) O(N2) = O(NM)

HSR 28 61 360 1708 2218

Table 3.5: Total amount of computer memory needed by the different algorithms (PDM, SPDM, SDM)
for the different test cases (CA: colloidal aggregation model; NB: network of bimolecular
reactions; LC: linear chain model; HSR: heat-shock response model). The sizes of all major
data structures (c and a are the arrays of specific probability rates and reaction propensities,
respectively; ν is the stoichiometry matrix; see Sec. 3.3 for other definitions) as well as
the total memory requirements are given as determined analytically for all benchmark
simulations. SPDM and SDM need additional memory of size M +N and M , respectively,
for the reordered index lists. This, however, does not change the overall scaling of the total
memory requirements.
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3.3.4.1 Strongly coupled reaction network: colloidal aggregation model

We use the colloidal aggregation model (von Smoluchowski, 1917; van Dongen and Ernst, 1987;
van Dongen, 1987; Axford, 1996; Turner et al., 2005) as a first example of a strongly coupled
reaction network. The reaction network of the colloidal aggregation model is defined by:

Sn + Sm
cn,m−−−→ Sn+m n+m = 2, . . . , N

Sp+q
c̄p,q−−→ Sp + Sq p+ q = 2, . . . , N. (3.7)

For an even number of species N , the partial-propensity structure for this network is:

Π =


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(3.8)

For odd N , the structure looks similar. This reaction network can be used to model, e.g.,
colloidal aggregation of solvated proteins, nano-beads, or viruses. For N chemical species it

consists of M =
⌊
N2

2

⌋
reactions and the maximum out-degree of the dependency graph, i.e.,

the degree of coupling dc of the network is 3N − 7 and hence scales with system size (see Table
3.3).

The colloidal aggregation model is simulated up to time T = 100 with specific probability
rates cn,m = 1 and c̄p,q = 1. At time t = 0, ni = Nδ1,i. The scaling of Θ for PDM, SPDM,
and SDM with system size is shown in Fig. 3.2a, averaged over 100 independent runs. ΘPDM

and ΘSPDM are O(N0.5) for small N (less than about 100) and O(N) for large N . ΘSDM is
O(N2). The pre-factor of ΘSPDM is similar to that of ΘPDM, since in this network Cµ is not
significantly reduced by the dynamic sorting (Table 3.4). The memory requirements of PDM
and SPDM are O(N2) = O(M), that of SDM is O(N3) = O(NM) (Table 3.5).

In summary, the computational costs of both PDM and SPDM are O(N). This scaling is
mediated by all three cost components. The use of partial propensities renders the scaling of
the sampling cost Cµ O(N) (see Table 3.4). The cost CP for updating the partial propensities
is O(N0.5) (Table 3.4), since the use of partial propensities allows formulating a dependency
graph over species, rather than reactions, and unimolecular reactions have constant partial
propensities. This leads to a smaller number of updates needed as shown in Fig. 3.3a.
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3 Partial-propensity formulations of the stochastic simulation algorithm

3.3.4.2 Strongly coupled network of bimolecular reactions

The following hypothetical network of bimolecular reactions:

Sn + Sm
cn,m−−−→ Sp + Sq





n = 1, . . . , N − 1 ; m = n+ 1, . . . , N ;

p = min [{1, . . . , N}\{n,m}] ;

q = min [{1, . . . , N}\{n,m, p}] .
(3.9)

consists of M = N
2 (N − 1) strongly coupled bimolecular reactions, such that none of the partial

propensities are constant. The partial-propensity structure for this reaction network is:

Π =





Π0 = (∅)
Π1 = (c1,2n2 c1,3n3 c1,4n4 . . . c1,NnN )

Π2 = (c2,3n3 c2,4n4 c2,5n5 . . . c2,NnN )
...

ΠN−1 = (cN−1,NnN )

ΠN = (∅) .

(3.10)

Both the minimum and the maximum out-degrees of the dependency graph in this case are
4N − 10, scaling faster with N than in the colloidal aggregation model (see Table 3.3).

We simulate this network up to time T = 0.001 with all specific probability rates ci = 1. At
t = 0, ni = 100(δN−4,i + δN−3,i + δN−2,i + δN−1,i + δN,i). The scaling of Θ for PDM, SPDM,
and SDM with system size is shown in Fig. 3.2b, averaged over 100 independent runs. ΘPDM

and ΘSPDM are O(N), whereas ΘSDM is O(N2). The pre-factors of PDM and SPDM are
comparable. The memory requirements of PDM and SPDM are O(N2) = O(M), that of SDM
is O(N3) = O(NM) (see Table 3.5).

In summary, the computational costs of PDM and SPDM are O(N) for this strongly coupled,
purely bimolecular network. The scaling is again mediated by all three cost components.
Grouping the partial propensities renders the sampling cost Cµ O(N) (see Table 3.4). Because
none of the partial propensities are constant, the update costs CP of PDM and SPDM areO(N),
as in SDM, albeit with a pre-factor that is ≈ 2.5 times smaller than that in SDM. One reason
for this smaller pre-factor is the smaller number of updates needed upon reactions firing, as
shown in Fig. 3.3(b). This is due to the fact that partial propensities of bimolecular reactions
depend on the population of only one species, which reduces the number of combinations that
need to be updated.

3.3.4.3 Weakly coupled reaction network: linear chain model

We benchmark PDM and SPDM on a weakly coupled model in order to assess their limitations
in cases where other SSA formulations might be more efficient. We choose the following linear
chain model

Si
ci−→ Si+1 i = 1, . . . , N − 1 , (3.11)

since it is the most weakly coupled reaction network possible, and it has been used as a
model for isolated signal transduction networks (Albert, 2005). For M reactions, it involves
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3.3 The partial-propensity direct method (PDM)

the number of species N = M + 1, and the maximum out-degree of the dependency graph
is constant at the minimum possible value of 2 (see Table 3.3), since every reaction at most
influences the population of its only reactant and of the only reactant of the subsequent
reaction.

The partial-propensity structure of the linear chain model is given by:

Π =





Π0 = (∅)
Π1 = (c1)

Π2 = (c2)
...

ΠN−1 = (cN−1)

ΠN = (∅) .

(3.12)

We simulate the linear chain model to a final time of T = 1000 with all specific probability
rates ci = 1. At time t = 0, ni = 10000δ1,i. Figure 3.2c presents the scaling of the CPU time
with system size for PDM, SPDM, and SDM, averaged over 100 independent runs. ΘPDM

scales linearly with N and ΘSPDM with N0.5. ΘSDM is O(N) with a pre-factor that is more
than 4 times larger than that of ΘPDM. This difference in pre-factor is mainly caused by
PDM having smaller Cn and CP (Table 3.4). Cµ, however, scales worse for PDM than for
SDM due to the dynamic sorting in SDM. This is overcome in SPDM, where Cµ is O(N0.5),
as in SDM. The memory requirements of SPDM and PDM are O(N) = O(M), that of SDM
is O(N2) = O(NM) (Table 3.5).

In summary, the computational costs of PDM and SPDM on the weakly coupled linear chain
model are governed by (a) updating the population n using a sparse stoichiometry representa-
tion and (b) never needing to update the partial propensities of unimolecular reactions. Since
the linear chain model contains only unimolecular reactions, none of the partial propensities
ever need to be updated, leading to an update cost of CP = 0 (see Table 3.4). While we have
implemented SDM according to the original publication (McCollum et al., 2006), we note that
if one uses a sparse representation of the stoichiometry matrix also in SDM, point (a) vanishes
and Cn = 2 also for SDM. A sparse-stoichiometry SDM would thus have the same scaling of
the computational cost on the linear chain model as SPDM, outperforming PDM.

3.3.4.4 Multi-scale biological network: heat-shock response in Escherichia coli

We assess the performance of PDM and SPDM on a small, fixed-size multiscale reaction
network. We choose the heat-shock response model since it has also been used to benchmark
previous methods, including ODM (Cao et al., 2004) and SDM (McCollum et al., 2006). The
heat-shock response model (Kurata et al., 2001) was obtained from Dr. Hong Li and Prof. Linda
Petzold (UCSB) and is publicly available as part of the StochKit package (Li et al., 2008). The
model describes one of the mechanisms used by the bacterium E. coli to protect itself against
a variety of environmental stresses that are potentially harmful to the structural integrity of
its proteins. The heat-shock response (HSR) system reacts to this by rapidly synthesizing
heat-shock proteins. The heat-shock sigma factor protein σ32 activates the HSR by inducing
the transcription of heat-shock genes. The heat-shock response model is a small multiscale
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3 Partial-propensity formulations of the stochastic simulation algorithm

reaction network (the specific probability rates span 8 orders of magnitude) with N = 28
chemical species, M = 61 reactions, and a maximum out-degree of the dependency graph of
11 (see Table 3.3). For a detailed description of the model, we refer to Kurata et al. (Kurata
et al., 2001)

We simulate the HSR model for T = 500 seconds. During this time, approximately 46 million
reactions are executed. For a single run, we measure ΘPDM = 0.256µs and ΘSDM = 0.272µs.
This corresponds to a simulated 3.68 million reactions per second of CPU time for SDM and
3.89 million reactions per second for PDM. Hence, PDM is about 6% faster than SDM. This
speed-up is mainly due to a smaller CP in PDM (see Fig. 3.3(c) for the distribution of updates
over all reactions) since the partial propensities of unimolecular reactions never need to be
updated. The speed-up, however, is modest because Cµ of PDM is ≈ 4.6 times larger than
that of SDM (Table 3.4). This is due to the fact that 95% of all reaction firings are caused
by a small subset of only 6 reactions. This multiscale network thus strongly benefits from the
dynamic sorting used in SDM. This advantage is recovered in SPDM, where Cµ is comparable
to that of SDM, and ΘSPDM = 0.245µs (4.08 million reactions per second). This makes SPDM
11% faster than SDM on this small network.
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3.3 The partial-propensity direct method (PDM)

Figure 3.2: Computational costs of PDM (circles), SPDM (diamonds), and SDM (squares). See main
text for the simulation parameters and initial conditions used. The average CPU time per
reaction (i.e. per time step), Θ, is shown as a function of system size quantified by the
number of species N . Θ is defined as the CPU time needed to simulate the system up to
final time T , divided by the number of reactions executed during this time, and averaged
over 100 independent runs (error bars are smaller than symbol size). The solid lines are
the corresponding least-squares fits of the scaling Θ(N) of PDM, SPDM, and SDM with
the model aCµ + bCn + cCP on a linear scale (see Table 3.4), where a, b, and c are the fitted
constants. (a) Logarithmic plot of the results for the colloidal aggregation model. The fits
are: ΘPDM/µs = 0.0022N + 0.050N0.5 + 0.22, ΘSPDM/µs = 0.0027N + 0.053N0.5 + 0.20,
and ΘSDM/µs = 0.00031N2+0.018N+0.31. (b) Logarithmic plot of the results for the
network of bimolecular reactions. The fits are: ΘPDM/µs = 0.038N , ΘSPDM/µs = 0.039N ,
and ΘSDM/µs = 0.00061N2+0.027N+0.15. (c) Linear plot of the results for the linear
chain model. The fits are: ΘPDM/µs = 0.00065N+0.19, ΘSPDM/µs = 0.0015N0.5+0.20,
and ΘSDM/µs = 0.0029N−0.0025N0.5+0.15. In all cases, the computational cost Θ(N) of
PDM and SPDM is O(N).
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3 Partial-propensity formulations of the stochastic simulation algorithm

Figure 3.3: Measured distributions of the number of partial propensities (for PDM and SPDM, red
line) or propensities (for SDM, blue line) that need to be updated after firing any reaction
of: (a) the colloidal aggregation model, (b) the network of bimolecular reactions, and (c)
the heat-shock response model. Dots indicate medians, horizontal bars the upper and
lower quartiles, and vertical bars the upper and lower extrema (maximum and minimum).
The dotted lines denote the minimum, average and maximum degree of coupling dc of
the reaction networks (see Table 3.3). The number of updates in SDM (McCollum et al.,
2006) using a dependency graph is governed by the degree of coupling of the network. In
PDM and SPDM, less updates need to be performed since partial propensities depend on
the population of at most one species and are constant for unimolecular reactions.
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3.3 The partial-propensity direct method (PDM)

3.3.5 Conclusions

When simulating weakly coupled reaction networks, where the maximum number of reactions
that are influenced by any reaction is constant with system size, the best computational cost
of previous exact SSAs for the sampling step is O(log2M) (Gibson and Bruck, 2000), where M
is the total number of reactions, or O(1) under some additional conditions on the propensity
distribution (Slepoy et al., 2008). Using dependency graphs, also the update step has been
reduced to O(1) for weakly coupled networks (Cao et al., 2004; McCollum et al., 2006; Slepoy
et al., 2008). For strongly coupled reaction networks, where the degree of coupling increases
with system size and can be as large as the total number of reactions, all previous exact SSA
formulations have a computational cost that is O(M).

We have introduced a new quantity called partial propensity and have used it to construct two
novel formulations of the exact SSA: PDM and its sorting variant SPDM. Both are algebraically
equivalent to DM and yield the same population trajectories n(t) as to those produced by DM.
In our formulation of partial propensities, we have limited ourselves to elementary chemical
reactions. Since their partial propensities depend on the population of at most one species,
both new SSA formulations have a computational cost that scales at most linearly with the
number of species rather than the number of reactions, independently of the degree of coupling.
This is particularly advantageous in strongly coupled reaction networks, where the number
of reactions M grows faster than the number of species N with system size. For networks
of fixed size, PDM and SPDM are especially efficient when M � N . PDM’s computational
cost is O(N), which is made possible by appropriately grouping the partial propensities in the
sampling step and formulating a dependency graph over species rather than reactions in the
update step. Moreover, the partial propensities of unimolecular reactions and source reactions
are constant and never need to be updated. This further reduces the size of the dependency
graph and the computational cost of the update step. To our knowledge, PDM is the first SSA
formulation that has a computational cost that is O(N), irrespective of the degree of coupling
of the reaction network. In the case of multiscale networks, the absolute computational cost
of SPDM is smaller than that of PDM.

We have benchmarked PDM and SPDM on four test cases with various degrees of coupling.
The first two benchmarks considered strongly coupled networks, where the degree of coupling
scales proportionally to the number of species. The third benchmark considered the most
weakly coupled network possible, where several other SSA formulations might be more effi-
cient. Finally, the fourth benchmark considered a small biological multiscale network. These
benchmarks allowed estimating the scaling of the computational cost with system size and the
cost contributions from reaction sampling, population update, and partial-propensity update.
The results showed that (a) the overall computational costs of PDM and SPDM are O(N),
even for strongly coupled networks, (b) on very weakly coupled networks, SPDM is compet-
itive compared to SDM, (c) on multiscale networks SPDM outperforms PDM, and (d) the
memory requirements of PDM and SPDM are O(M) in all cases, and hence not larger than
those of any other exact SSA formulation.

PDM and SPDM, however, have a number of limitations. The most important limitation is
that the presented formulation of partial propensities is only applicable to elementary chemical
reactions. Higher-order chemical reaction can be broken down into elementary reactions at
the expense of increasing system size (see Appendix A2). In applications such as population
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ecology or social science, the idea of partial propensities can, however, only be used if the
(generalized) reactions are at most binary and one species can be factored out, i.e., if the
propensity for every reaction between species Si and Sj can be written as aµ = cµnih̃(nj).
Besides this structural limitation, the computational performance of the particular algorithms
presented here can be limited in several situations. One of them is the simulation of very small
networks, where the overhead of the data structures involved in PDM and SPDM may not be
amortized by the gain in efficiency and a simulation using DM may be more efficient. In mul-
tiscale networks, where the propensities span several orders of magnitude, PDM is slower than
SPDM. In multiscale networks where a small subset (� N) of all reactions accounts for almost
all of the reaction firings, however, the overhead of the data structures involved in SPDM, in-
cluding their initialization, may not be amortized by the gain in efficiency. Finally, PDM and
SPDM were designed to have a computational cost that scales linearly with the number of
species rather than the number of reactions. For reaction networks in which the number of
reactions grows sub-linearly with the number of species, this becomes a disadvantage. In such
cases, SSA formulations that scale with the number of reactions are favorable.

Taken together, our results suggest that PDM and SPDM can potentially offer significant
performance improvements especially in strongly coupled networks, including the simulation of
colloidal aggregation (von Smoluchowski, 1917; van Dongen and Ernst, 1987; van Dongen, 1987;
Axford, 1996; Turner et al., 2005), Becker-Döring-like nucleation-and-growth reactions (Wattis,
2009), and scale-free biochemical reaction networks, where certain hubs are strongly coupled
(Jeong et al., 2000; Strogatz, 2001; Albert and Barabási, 2002; Albert, 2005).

3.4 The partial-propensity SSA with composition-rejection
sampling (PSSA-CR)

PDM has a computational cost of O(N) irrespective of the degree of coupling of the reaction
network. However, in practice, and especially for networks of fixed size, it is often difficult to
determine which coupling class a reaction network belongs to. This is because the coupling
class is defined as a function of network size. For fixed-size systems, however, only a single
point of that function is known, requiring additional knowledge to determine the coupling class.
There is thus a need for an exact SSA that combines the favorable scaling of the computational
cost of SSA-CR (Sec. 2.3.7) for weakly coupled networks and of PDM for strongly coupled
ones. Here, we use the concept of partial propensities (see Sections 3.1 and 3.2) to construct
a partial-propensity variant of SSA-CR, called the partial-propensity SSA with composition-
rejection sampling (PSSA-CR). We show that PSSA-CR has a computational cost of O(1)
for weakly coupled networks and O(N) for strongly coupled networks, thus combining the
advantages of PDM and SSA-CR.

The partial-propensity SSA with composition-rejection sampling (PSSA-CR) is based on
the idea of factorizing the reaction propensities into partial-propensities, grouping and binning
them, and using composition-rejection (CR) sampling (Devroye, 1986; Slepoy et al., 2008) to
determine the index of the next reaction (see Sec. 2.3.7 for the principle behind CR sampling).
PSSA-CR reduces the computational cost for weakly coupled reaction networks to O(1) under
the assumption that the ratio of maximum to minimum non-zero propensity is bounded by a
constant. It achieves this superior scaling for weakly coupled networks while maintaining the
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computational cost for strongly coupled reaction networks at O(N).

3.4.1 Detailed description

PSSA-CR uses a composition-rejection sampling strategy over partial propensities in order to
sample the index of the next reaction. Since every reaction in a partial-propensity method
is identified by its group index and its element index, we apply two composition-rejection
steps: one to sample the group index and one to sample the element index. Table 3.6 gives an
overview of PSSA-CR. The individual steps are described in detail below.

The principle data structures in PSSA-CR are the same as in PDM. The partial propensities
are stored in a partial-propensity structure Π = {Πi}Ni=0 as a one-dimensional array of one-
dimensional arrays. The reaction indices µ corresponding to a certain entry in Π are stored
in a look-up table L = {Li}Ni=0, making every reaction µ identifiable by its group index I
and its element index J as µ = LI,J . The group-sum array Λ stores the sums of the partial
propensities in each group Πi, i.e. Λi =

∑
j Πi,j . We also store the total propensity of each

group in an array Σ, computed as Σi = niΛi, i = 1, . . . , N , and Σ0 = Λ0. See Sec. 3.3 for
more details on the data structures.

In PSSA-CR, the entries of Σ are then sorted into GΣ = log2
Σmax

Σmin
+ 1 bins such that bin b

contains all Σi’s with 2b−1Σmin ≤ Σi < 2bΣmin. Σmin and Σmax are the smallest and largest
non-zero values in Σ that can possibly occur during a simulation. They are determined as

outlined below. The total propensity of each bin b, σ
(Σ)
b , is computed by summing up the Σi’s

in that bin. Similarly, the entries of each Πi are sorted into GΠi = log2
Πi,max

Πi,min
+ 1 bins with

bin b containing all elements in Πi with 2b−1Πi,min ≤ Πi,j < 2bΠi,min. Πi,min and Πi,max are
the smallest and largest non-zero values in Πi that can possibly occur during a simulation.

The total partial propensity of bin b is stored in σ
(Πi)
b . The Πi,min’s and Σmin can always be

computed a priori. Πi,min is the minimum non-zero value in Πi when all partial propensities
are calculated with one molecule of each reactant. Σmin is the minimum among all niΠi,min’s,
where ni is the population of species Si used to calculate Πi,min. Estimating the Πi,max’s and
Σmax a priori may be possible using prior knowledge about the chemical reaction network, such
as physical constraints. In cases where the Πi,max’s and Σmax cannot be estimated a priori,
PSSA-CR dynamically updates the Πi,max’s and Σmax over the course of the simulation. If
this increases any GΠi or GΣ, the corresponding data structures are dynamically enlarged.

We apply the composition-rejection sampling strategy (Devroye, 1986; Slepoy et al., 2008)
to obtain the group index I and the element index J of the next reaction µ. The group index
I is sampled in two steps: (1) the composition step to find the bin bI and (2) the rejection
step to find ΣI inside that bin. The composition step is done by linear search, thus:

bI = min

[
b : r1a <

b∑

i=1

σ
(Σ)
i

]
, (3.13)

where a is the total propensity of all reactions in the network and r1 is a uniform random
number in [0, 1). The rejection step samples the group-index I from the elements in bin bI .
For this step, we generate a uniformly distributed random number r2 in [0, 2bIΣmin) and a
uniformly distributed random integer r3 between 1 and the number of elements in bin bI . If
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the rth
3 Σi in bin bI is less than r2, the index of that Σi is chosen as the group-index I. If this

inequality is not satisfied, the rejection step is repeated. This is illustrated in Fig. 3.4 for an
example with 6 partial-propensity groups. Assume that, in this example, the composition step
has selected bin bI = 2 as the one containing ΣI . The rejection step then samples uniformly
random points inside the rectangle defining this bin’s value range (bold rectangle). A sample
is accepted if it falls inside one of the bars representing the Σi’s. If the first sample (point
A in Fig. 3.4 with r3 = 2 and r2 > Σ4) is rejected, sampling is repeated until the point falls
inside one of the bars (point B in Fig. 3.4 with r3 = 1 and r2 < Σ0). This determines the
group index of the next reaction (I = 0 in the example in Fig. 3.4). By binning the Σi’s as
described, we ensure that the area covered by the Σi bars in any bin is at least 50% of the
total area of the bin’s bounding rectangle. The expected number of iterations of the rejection
sampling is hence less than or equal to two.

In order to sample the element index J , the same composition-rejection procedure is also
applied within the identified group I. The composition step again involves a linear search for
the bin bJ containing the partial propensity of the next reaction, as:

bJ = min

[
b : r4ΛI <

b∑

i=1

σ
(ΠI)
i

]
, (3.14)

where r4 is a uniform random number in [0,1). The rejection step as described above is
subsequently used to find the element index J from a uniformly distributed random number
r5 in [0, 2bJΠI,min) and a uniformly distributed random integer r6 between 1 and the number
of elements in bin bJ . In the example in Fig. 3.4, the group index I = 0 has been selected.
Assume that the composition step for the element index J has selected bin bJ = 2 in the
group Π0. Rejection sampling in this bin is then repeated until a point inside any of the
bars representing the partial propensities Π0,j is selected (point C in Fig. 3.4 with r6 = 2 and
r5 < Π0,1). This determines the element index of the next reaction (J = 1 in the example in
Fig. 3.4). The indices I and J of the next reaction are then translated to the reaction index
µ using the look-up table, hence µ = LI,J .

To execute a sampled reaction, n, Π, Λ, and Σ are updated using the same update algorithm
and data structures as in PDM (see Sec. 3.3):

U(1) is a array of M arrays, where the ith array contains the indices of all species involved in
the ith reaction.

U(2) is a array of M arrays containing the corresponding stoichiometry (the change in popu-
lation of each species upon reaction) of the species stored in U(1).

U(3) is a array of N arrays, where the ith array contains the indices of all entries in Π that
depend on ni.

After each reaction, we use U(1) to determine the indices of all species involved in this
reaction. The stoichiometry is then looked up in U(2) and the population n is updated
accordingly. Subsequently, U(3) is used to locate the affected entries in Π and recompute
them. Since the partial propensities of unimolecular and source reactions are constant and
need never be updated, U(3) only contains the indices of the partial propensities of bimolecular
reactions.
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Figure 3.4: Illustration of the two composition-rejection sampling steps used in PSSA-CR. The exam-
ple shown is for a network with N = 5 species and M = 19 reactions. The partial propen-
sities are grouped into 6 (=N+1) groups in the partial-propensity structure {Π}Ni=0. The
sum of propensities in group Πi is stored in Σi. The elements of Σ and of each Πi are
sorted into dyadic bins. The shaded bars represent the values of the corresponding entries.
The extent of each bin is shown by a bold rectangle. Due to the dyadic binning, the bars
always cover at least 50% of the area of any bin’s rectangle. In order to sample the index
of the next reaction, two composition-rejection sampling steps are used: one for the group
index I and another one for the element in index J in Π. Points A, B, and C refer to the
example given in the main text.
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After updating the partial propensities, the bin memberships of all modified Πi,j ’s and Σi’s
need to be updated. This requires locating the bin assignment of any Πi,j and Σi in a one-
step operation. We implement this by having every Πi,j and Σi store two additional integers:
the bin membership and the location inside that bin. Depending on their new value, the
changed Πi,j ’s and Σi’s are kept inside the same bin or moved to a different bin. Then, the
corresponding bin sums are updated by adding the total change. This can be done in O(1)
operations since the ordering of elements in a bin does not matter. Elements that are removed
from a bin are simply replaced by the last element in that bin, which is then removed.

The computational cost of PSSA-CR is O(GΣ + max{GΠ0
, . . . , GΠN } + N) for strongly

coupled reaction networks and O(GΣ + max{GΠ0
, . . . , GΠN }) for weakly coupled ones (see

Sec. 3.4.2). If the dynamic range of propensities is bounded over the time of a simulation, the
computational cost on weakly coupled networks reduces to O(1) (see Sec 3.4.2).

The memory requirement of PSSA-CR is larger than that os PDM. In addition to the data
structures required in PDM, PSSA-CR needs an additional O(N+M) memory for the binning
of the Σi’s and Πi,j ’s. This renders the memory requirement of PSSA-CR O(N +M), which
is equivalent to O(M) since M usually scales faster than N for large reaction networks.

1. Initialize the data structures. Set time t← 0.

2. While t < tf , where tf is the final simulation time, repeat:

2.1. Sample the group index I using composition-rejection sampling.

2.2. Sample the element index J using composition-rejection sampling.

2.3. Read the index of the reaction identified by the group index I and the element
index J from the look-up table L.

2.4. Compute the time to the next reaction τ ← a−1 ln(r−1), where a is the total
propensity of all reactions and r a uniformly distributed random number in [0, 1).

2.5. Update the population of species and the partial propensity structure using the
dependency graph over species. Update the bin assignments of changed partial
propensities.

2.6. Increment time: t← t+ τ .

3. Stop.

Table 3.6: Overview of PSSA-CR.

3.4.2 Computational cost

The computational cost of PSSA-CR is determined by the sampling and update steps of the
algorithm. Composition-rejection sampling of the group-index I has a cost that is O(GΣ).
This is because (a) the composition step involves a linear search over at most GΣ elements
and (b) the computational cost of the rejection step is O(1) with increasing network size. The
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reasoning is as follows: The present binning strategy ensures that at least 1/2 of the area
of each bin is covered by the Σi’s in that bin (see Fig. 3.4). Therefore, the probability of
acceptance after i iterations of rejection sampling is 1 − 2−i. This is independent of network
size and hence the rejection step is O(1). The probability of acceptance is at least 0.9999
after 13 iterations of the rejection sampling step∗. Likewise, the computational cost of the
composition-rejection sampling of the element index J is O(max{GΠ0 , . . . , GΠN }).

The computational cost of the update step isO(N) like in PDM, albeit with a larger prefactor
due to additional overhead associated with reassigning bin memberships. In summary, the total
computational cost of PSSA-CR is O(GΣ + max{GΠ0 , . . . , GΠN }+N).

For weakly coupled reaction networks, the update step becomes O(1), since the number
of entries in Π that need to be updated is independent of system size. This reduces the
computational cost of PSSA-CR for weakly coupled networks to O(GΣ+max{GΠ0

, . . . , GΠN }).
In addition, if Σmax and Πi,max are bounded for all i, the number of bins GΣ = log2

Σmax

Σmin
+ 1

and GΠi = log2
Πi,max

Πi,min
+ 1 are also bounded. This renders the computation cost of PSSA-CR

O(1) for weakly coupled networks that have a bounded dynamic range of propensities. Even if
GΣ and GΠi are not bounded by a constant it is unlikely that they equal to N irrespective of

system size. This would require requires that the ratios Σmax

Σmin
and

Πi,max

Πi,min
scale proportionally to

2N . In practice we observe that GΣ and GΠi scale only weakly with increasing system size N .
We present this empirical evidence for the weakly coupled cyclic chain model in Sec. 3.4.3.1.

3.4.3 Benchmarks

We benchmark the computational performance of PSSA-CR on both a weakly coupled and a
strongly coupled reaction network. We choose the cyclic chain model (Cao et al., 2004; Heuett
and Qian, 2006) and the colloidal aggregation model (von Smoluchowski, 1917; van Dongen and
Ernst, 1987; van Dongen, 1987; Axford, 1996; Turner et al., 2005) as representative networks,
respectively. We compare the performance of PSSA-CR with that of SDM, the sorting direct
method (McCollum et al., 2006), and SPDM, the analogous sorting variant of PDM (see
Sections 3.3 and 3.3.2).

All tested SSA formulations are implemented in C++ using the random number generator
of the GSL library and compiled using the Intel C++ compiler version 11.1 with the O3
optimization flag. All timings are measured on a Linux 2.6 workstation with a 2.8 GHz quad-
core Intel Xeon E5462 processor, 8 GB of memory and 4 MB L2 cache. For all test cases, we
simulate the reaction network until 107 reactions have been executed and report the average
CPU time Θ per reaction. All simulations are run without any a priori estimate of the
Πi,max’s and Σmax. Instead, the Πi,max’s and Σmax are constantly updated over the course of
a simulation and the number of bins is dynamically increased when necessary.

∗The number 1− 2−i evaluates to 1 in the standard double-precision representation for i = 51.
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3.4.3.1 A weakly coupled reaction network: Cyclic chain model

The cyclic chain model is given by the reaction network

Si
ci−→ Si+1 i = 1, . . . , N − 1 ,

SN
cN−−→ S1 . (3.15)

For N chemical species, this network has M = N reactions. The degree of coupling (maximum
out-degree of the dependency graph) of this reaction network is 2, independently of system
size.

At time t = 0, we set all ni = 1 and all specific probability rates ci = 1. Fig. 3.5A shows
Θ(N) for PSSA-CR, SPDM, and SDM. As expected from the theoretical cost analysis, Θ
is O(1) for PSSA-CR and O(N) for SPDM and SDM. PSSA-CR outperforms SPDM for N
above a certain break-even point (N > 700 here; Fig. 3.5A) and is faster than SDM for all
N tested. Below the break-even point, the overhead of the additional data structures and
the binning involved in PSSA-CR is not amortized by the better scaling of the computational
cost. The O(1) scaling for PSSA-CR in this case is realized because the reaction network is
weakly coupled (degree of coupling is independent of N) and all GΠi ’s and GΣ are constant
with system size.

In order to test the efficiency of PSSA-CR for a weakly coupled reaction network with
increasing number of bins, we simulate this test case with specific probability rates ci randomly
chosen between 1 and 106 from an exponential distribution. All other simulation parameters
are unchanged. Fig. 3.5B shows the scaling of Θ for PSSA-CR, SPDM, and SDM. In this multi-
scale case, GΣ increases slowly with system size (by 2% over a 16-fold increase in N), leading
to a very slow increase in Θ (proportional to N0.028 in this case) of PSSA-CR, as predicted
by the theoretical cost analysis. Nevertheless, PSSA-CR is more efficient than SPDM for N
above a certain break-even point (N > 500 here; Fig. 3.5B) and more efficient than SDM for
all N tested.

In summary, the measured computational cost of PSSA-CR is O(1) for the cyclic chain model
if the number of bins is bounded. If GΣ or GΠi increase with system size, the computational
cost is O(GΣ + max{GΠ0

, . . . , GΠN }), as shown in Sec. 3.4.2.

3.4.3.2 A strongly coupled reaction network: Colloidal aggregation model

The colloidal aggregation model is given in Eq. 3.7. For N chemical species, the number

reactions is M =
⌊
N2

2

⌋
. The degree of coupling of this reaction network is 3N − 7 and hence

scales with system size (Table 3.3).
At time t = 0, we set all ni = 1 and all specific probability rates to 1. Fig. 3.5C shows

Θ(N) for PSSA-CR, SPDM, and SDM. Θ is O(N) for PSSA-CR and SPDM, and it is O(N2)
for SDM. The Θ of PSSA-CR is always larger than that for SPDM. This constant offset is
caused by the additional overhead of binning and bin reassignments in PSSA-CR, which is not
necessary in SPDM. The break-even point of PSSA-CR with SDM is around N > 160. For
systems larger than this, the extra overhead in PSSA-CR is amortized.
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Figure 3.5: Computational cost of PSSA-CR (circles), SPDM (squares), and SDM (diamonds). The
average CPU time Θ per reaction, averaged over 100 independent runs, is shown as a
function of the number of species N . (A) Θ(N) for the weakly coupled cyclic chain model
with bounded dynamic range of non-zero reaction propensities. Θ is O(1) for PSSA-CR
and O(N) for SPDM and SDM. (B) Θ(N) for the weakly coupled cyclic chain model with
increasing dynamic range of non-zero reaction propensities. Θ ∝ N0.028 for PSSA-CR and
Θ ∝ N1 for SPDM and SDM. (C) Θ(N) for the strongly coupled colloidal aggregation
model. Θ is O(N) for both PSSA-CR and SPDM, whereas it is O(N2) for SDM.
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3.4.4 Conclusions

We have introduced PSSA-CR, a partial propensity variant of the stochastic simulation algo-
rithm with composition-rejection sampling (SSA-CR) (Slepoy et al., 2008). PSSA-CR uses two
composition-rejection sampling steps over partial propensities in order to determine the index
of the next reaction. Computational efficiency is achieved by grouping the partial propensities
and using dyadic binning in the sampling.

PSSA-CR is an exact SSA formulation whose computational cost is O(N) for strongly
coupled reaction networks and O(1) for weakly coupled networks with a bounded range of
propensities. We have presented a theoretical cost analysis of PSSA-CR and benchmarked it
on three prototypical test cases: (1) a non-stiff weakly coupled reaction network, (2) a multi-
scale (stiff) weakly coupled reaction network, and (3) a strongly coupled reaction network. All
benchmarks confirmed the theoretically predicted scaling of the computational cost.

PSSA-CR, however, inherits the limitations of PDM (Sec. 3.3.5) and of SSA-CR (Slepoy
et al., 2008). For small networks, PSSA-CR is outperformed by other methods due to the
additional overhead involved in the composition-rejection sampling. SSA formulations such
as SDM (McCollum et al., 2006), NRM (Gibson and Bruck, 2000), SSA-CR (Slepoy et al.,
2008), PDM, or SPDM (see Sections 3.3 and 3.3.2) might be more efficient here. In addition,
PSSA-CR only achieves the O(1) scaling for weakly coupled networks for which the ratio of
maximum to minimum non-zero reaction propensity is bounded by a constant throughout a
simulation.

To our knowledge, PSSA-CR has the best scaling of the computational cost on any class
of reaction networks. This, however, does not imply that the actual computational cost of
PSSA-CR is lowest in all cases, since the pre-factor depends on the data structures involved.
If the coupling class of a particular network is not known in practice, however, PSSA-CR seems
a reasonable choice for exact stochastic simulations of large reaction networks. Compared to
other partial propensity methods, such as SPDM, the better computational scaling of PSSA-
CR for weakly coupled networks is paid for by a larger pre-factor in the computational cost
for strongly coupled networks.

3.5 The delay partial-propensity direct method (dPDM)

All the exact SSA formulations presented so far assume instantaneous execution of reactions
according to the description by the CME. The population of species is instantaneously up-
dated at the time of reaction firing. In many systems, such as gene expression networks in
biological cells, the initiation of the reaction and the formation of the products, however, is not
instantaneous. In gene expression, the initiation of a reaction corresponds to the binding of the
transcription factor to the gene. The product, the ribonucleic acid (RNA), is only formed once
the RNA-polymerase finished scanning the entire gene. There is hence a time delay between
the initiation of the reaction and formation of the products. The average transcription and
translation speeds in eukaryotic cells, for example, are 20 nucleotides per second and 2 codons
per second, respectively (Alberts et al., 1997; Bratsun et al., 2005; Cai, 2007). This amounts
to a coarse-grained modeling of the fundamental processes that mediate the delay, lumping
them into a single delay time. Nevertheless, such approaches are valuable and have been used,
for instance, to implicate delay along with intrinsic noise in chemical reactions to tune or
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induce circadian-rhythmic oscillations in drosophila (Li and Lang, 2008; Xu and Cai, 2009),
oscillations in other biomolecular clocks such as in the dynamics of messenger-RNA for Notch
signaling molecules (Barrio et al., 2006) and oscillations in gene regulatory networks (Bratsun
et al., 2005).

Delays in chemical reactions render the kinetics non-Markovian. This is because the next
population state of the system depends on the current population as well as the population
of the system at previous times when still unfinished reactions have been initiated. This non-
Markovian process can be accounted for by the delay CME (Bratsun et al., 2005; Barrio et al.,
2006; Tian et al., 2007). The delay CME (dCME) is analogous to the classical CME and in
the limit of infinite reactor volume Ω (or infinite population) it tends to the corresponding
delay RRE (dRRE), which is a delay differential equation (Bratsun et al., 2005; Barrio et al.,
2006; Tian et al., 2007). In order to simulate stochastic chemical kinetics of reaction networks
with delays, the delay stochastic simulation algorithm (dSSA) is available (Bratsun et al.,
2005; Barrio et al., 2006; Cai, 2007; Tian et al., 2007), extending SSAs to properly account
for the effects of non-zero reaction durations. The dSSA samples exact trajectories from the
dCME (Barrio et al., 2006; Cai, 2007; Tian et al., 2007). Accelerated approximate methods
to sample from the dCME are also available (Zhou et al., 2008; Bayati et al., 2009). The
main difference between the dSSA and the conventional SSA is that the reaction propensities
(i.e., the probability rate of a reaction firing) may change in the time between two reaction
initiations (firings), as a result of pending reactions finishing meanwhile. This renders the
random variable for the time to the next reaction τ and the index of the next reaction µ
mutually dependent. In contrast to conventional SSAs, τ and µ are independent random
variables (see Eq. 1.52 in Sec. 1.3).

3.5.1 The delay stochastic simulation algorithm (dSSA)

Consider a network of M chemical reactions among N species. Assume that a subset of
these M reactions incur a delay. If a reaction involves no delay (hereafter denoted as RD0),
it completes instantaneously and the populations of reactants and products are immediately
updated. If a reaction incurs a delay, its products are formed only after a delay dµ from
reaction initiation. We classify delay reactions depending on when the reactants are consumed
into non-consuming (denoted RD1) and consuming (denoted RD2) ones (Cai, 2007). In non-
consuming delay reactions, the population of reactants is only updated once the products have
formed, thus after the delay dµ. In consuming delay reactions, the population of the reactants
is updated immediately upon reaction initiation, but the products only form after the delay
dµ. In the following, we measure time globally, i.e. relative to time t = 0. This is in contrast
to the local (relative to the current time t) times used in other SSA formulations. We denote
the global time of firing (initiation) of the next reaction as τg = t+ τ and the global time at
which the products of a delay reaction µ are formed as dg

µ = t+ τ + dµ.
Assume that at some time t there are ∆ pending (ongoing) delay reactions that will finish at

later global times T g
1 , T g

2 , T g
3 , . . . , T g

∆. We assume that the list of pending reactions is ordered
according to ascending global completion times, thus T g

i ≤ T g
i+1 i = 1, . . . ,∆−1. Furthermore,

we define T g
0 = t and T g

∆+1 = ∞. As in classical SSA, the time to the next reaction τ (or
the global time of firing of the next reaction, τg) and the index of the next reaction µ are
sampled in order to propagate the system from reaction event to reaction event. In classical
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SSA, all reactions complete instantaneously, i.e., reaction initiation and completion happen
at the same time. Therefore, the reaction propensities remain unchanged during the time
interval [t, t+τ). This, however, is not the case in delay SSAs, where the reaction propensities
change whenever a pending reaction completes. Accounting for these inter-firing changes of
the propensities, the probability distribution functions for the global time of firing (initiation)
of the next reaction fτ (τg) and of the index of the reaction fµ(µ) are given by: (Cai, 2007)

fτ (τg) = a(T g
i ) exp


−

i−1∑

j=0

a(T g
j )(T g

j+1 − T g
j )−a(T g

i )(τg − T g
i )


 , (3.16)

τg ∈ [T g
i , T

g
i+1), i = 0, . . . ,∆ ,

and

fµ(µ) =
aµ(T g

i )

a(T g
i )

, µ = 1, . . . ,M, τg ∈ [T g
i , T

g
i+1) . (3.17)

Here, aµ(t) is the reaction propensity of reaction µ at global time t and a(t) is the total
propensity of all reactions at global time t.

3.5.1.1 The delay direct method (dDM)

In dDM, as presented by Cai et al. (Cai, 2007) and summarized in Table 3.7, the global time of
firing of the next reaction τg is obtained from Eq. 3.20 using linear search in order to sample
the interval p such that

p = max [i : r1 ≥ F (T g
i )] (3.18)

with τg ∈ [T g
p , T

g
p+1) and r1 a uniform random number in [0,1). Here, F (·) is the cumulative

distribution function of the probability density function fτ (τg) (Eq. 3.16). It is given by:

F (τg) = 1− exp


−

i−1∑

j=0

a(T g
j )(T g

j+1 − T g
j )−a(T g

i )(τg − T g
i )


 , (3.19)

τg ∈ [T g
i , T

g
i+1), i = 0, . . . ,∆ .

Note that in order to find p, we have to keep track of the change in a whenever a pending
reaction finishes. This is done by successively updating the propensities aµ and the total
propensity a every time a pending reaction completes. Therefore, p is the search depth needed
to sample τg.

Once the interval p is determined, τg is calculated as

τg = T g
p +
− log (1− r1)−∑p−1

j=0 a(T g
j )(T g

j+1 − T g
j )

a(T g
p )

, (3.20)

such that

τg ∈ [T g
p , T

g
p+1) .
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The index µ of the next reaction is also obtained by linear search. Unlike in Gillespie’s
original direct method (DM), however, the probability distribution function of µ depends on
the interval p, where p is an integer such that 0 ≤ p ≤ ∆ (In Gillespie’s non-delay DM, p is
fixed to 0 since there are no pending reactions). The next reaction is hence always sampled
after p has been found. Using a uniform random number r2 ∈ [0, 1), µ is found such that

µ = min


µ′ : r2a(T g

p ) <

µ′∑

i=1

ai(T
g
p )


 . (3.21)

The algorithm of the delay direct method (dDM) (Cai, 2007) is summarized in Table 3.7.
It is built around a list of global completion times of the pending delay reactions, maintained
in ascending order. The computational cost of this algorithm is determined by the following
steps:

Update step: In a strongly coupled reaction network, firing of one reaction can potentially
affect all propensities. Hence, the computational cost of updating the reaction propensities
is O(M), where M is the number of reactions in the network. For a weakly coupled reaction
network the update step is O(1) since the number of propensities affected by any reaction is
(by definition of a weakly coupled network) bounded by a constant.

Sampling the global time of the next reaction: The computational cost of sampling the
global time of firing (initiation) of the next reaction, τg, is O(pM) for a strongly coupled
reaction network. Here, p is the search depth to locate τg according to Eq. 3.18. This is
because the number of times the propensities need to be updated due to pending reactions
finishing is p when τg ∈ [T g

p , T
g
p+1). In each of these p updates, O(M) propensities need to be

updated. Deleting the p pending reactions that finish is O(p). Similarly, for a weakly coupled
reaction network, the computational cost of sampling τg is O(p). In C++, we store the list
of the global finishing times of pending reactions in the multiset standard template library
(STL) container and use the provided methods to add and remove pending reactions.

Sampling the index of the next reaction: The index of the next reaction is found by linear
search across the M propensities. The computational cost of this operation is O(M). If the
sampled reaction is a delay reaction, it is added to the list of pending reactions, along with
its global completion time. Inserting a new reaction such a way that the global times of
completion of pending reactions remain sorted in ascending order is O(log2 ∆), where ∆ is the
number of pending reactions currently in the list.

In summary, the computational cost of dDM is O(pM + M + log2 ∆) for strongly coupled
reaction networks. This is equivalent to O(pM+log2 ∆) for p > 0. For weakly coupled reaction
networks, the computational cost is O(p + M + log2 ∆). Note that when there are no delay
reactions, and hence no global pending times need to be inserted in the list, the computational
cost of dDM is O(M), as for Gillespie’s DM.

We present a partial-propensity formulation of the exact dSSA for chemical reaction net-
works with delays: the delay partial-propensity direct method (dPDM). The computational
cost of dPDM is O(pN + log2 ∆) for strongly coupled networks and O(p + N + log2 ∆) for
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1. Initialization: set t ← 0, δa ← 0, and the number of pending reactions ∆← 0; initialize
the population vector n, the propensities aµ, and the total propensity a =

∑
µ aµ.

2. Sample the global time of firing of the next reaction, τg: First, perform linear search to
find the search depth p such that p ∈ [T g

p , T
g
p+1) according to Eq. 3.18. Then compute

τg according to Eq. 3.20. Update ∆ ← ∆− p and set t ← τg.

3. Sample the index of the next reaction µ according to Eq. 3.21 using linear search.

4. If µ is a delay reaction, insert t + dµ into the list that stores the global finishing times
of the pending reactions. Use bisection search to insert at the proper position such that
the list is maintained in ascending order; increment ∆ ← ∆ + 1.

4. Update n depending on the delay type of reaction µ.

5. Update the affected aµ’s using a dependency graph and calculate the change in total
propensity δa.

6. Update a ← a+ δa.

7. Go to step 2.

Table 3.7: Outline of the algorithm for the delay direct method (dDM) with global times. In C++, the
list of global finishing times of pending reactions can conveniently be stored in a multiset

standard template library container.
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weakly coupled ones. As a result of using partial propensities, the number of reactions M
in the computational cost of dDM is replaced by the usually smaller number of species N .
The dPDM formulation is thus especially efficient when p and ∆, which are network-specific
parameters that are independent of the simulation method, do not scale faster than O(N).
In addition, the linear dependence of the computational cost on N makes dPDM especially
efficient for strongly coupled reaction networks, where M grows much faster than N with
network size.

3.5.2 Detailed description

Like in PDM, the partial propensities in dPDM are stored in a partial-propensity structure
Π = {Πi}Ni=0, the reaction indices in look-up table L = {Li}Ni=0, the sum of partial propensity
in a group in the array Λ and sum of propensities in a group in the array Σ.

After each reaction event (reaction initiation or completion) the population n, the partial
propensities Πi,j , the Λi’s, and the Σi’s need to be updated. Which values need to be updated
depends on the type of event that happened (firing of a non-delay reaction, initiation of a
non-consuming delay reaction, initiation of a consuming delay reaction, or completion of a
delay reaction). We efficiently implement the updates using the following data structures:

U(1): an array of M arrays, where the ith array contains the indices of all species involved in
the ith reaction.

U(2): an array of M arrays containing the corresponding stoichiometry (the change in popu-
lation of each species upon reaction) of the species stored in U(1).

U
(1)
(−): an array of M arrays, where the ith array contains the indices of all species that are

reactants in the ith reaction.

U
(2)
(−): an array of M arrays containing the corresponding stoichiometry of the reactant species

stored in U
(1)
(−). U

(1)
(−) and U

(2)
(−) constitute the sparse-representation of the reactant

stoichiometry matrix ν−.

U
(1)
(+): an array of M arrays, where the ith array contains the indices of all species that are

products in the ith reaction.

U
(2)
(+): an array of M arrays containing the corresponding stoichiometry of the product species

stored in U
(1)
(+). U

(1)
(+) and U

(2)
(+) constitute the sparse-representation of the product

stoichiometry matrix ν+.

U(3): an array of N arrays, where the ith array contains the indices of all entries in Π that
depend on ni.

We also maintain a list T that stores the global times (T g
i , i = 0, . . . ,∆) of all ∆ pending

reactions in ascending order. The corresponding indices and delay types (RD0, RD1, or RD2)
of the reactions are stored in the lists µ(D) and D, respectively.
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In dPDM, the global time of firing (initiation) of the next reaction, τg, and the index of the
next reaction are mutually dependent. First, the interval p is found according to Eq. 3.18 using
linear search such that the global time of firing of the next reaction τg ∈ [T g

p , T
g
p+1). This tells

us between which two reaction completion events the next firing or initiation event happens
(see Fig. 3.6A). The difference between dPDM and dDM in sampling p is the mechanism of
updating the total propensity a(T g

i ) each time a pending reaction completes and is removed
from the queue of pending reactions. In dPDM, we make use of the partial propensities Π
and the associated data structures to update a. For instance, assume that τg ∈ [T g

1 , T
g
2 ) and

the reaction type associated with the global completion time T g
1 is RD2 (consuming delay

reaction). In this case, we update n using U
(1)
(+) and U

(2)
(+). If the finishing reaction is of type

RD1 (non-consuming delay reaction), n is updated using U(1) and U(2). Subsequently, Π and
the associated data structures are updated using U(3), thereby obtaining δa (the change in
a) and hence the new a. All these updates are done at the completion times of each pending
reaction until the interval containing the global time of firing (initiation) of the next reaction
is reached and all p pending reactions that have completed are removed from the list T . Then,
the global time of firing (initiation) of the next reaction, τg, within that interval is calculated
according to Eq. 3.20.

For sampling the index µ of the next reaction, we use a single uniformly distributed random
number r2 ∈ [0, 1) to (a) sample the group index I using linear search such that

I = min


I ′ : r1a(T g

p ) <

I′∑

i=0

Σi(T
g
p )


 (3.22)

and (b) sample the element index J in ΠI using linear search such that

J = min


J ′ : r1a(T g

p ) <

J′∑

j=1

nIΠI,j(T
g
p ) +

(
I∑

i=0

Σi(T
g
p )

)
− ΣI(T

g
p )


 (3.23)

if τg ∈ [T g
p , T

g
p+1) (see Fig. 3.6B). The sampling of J can be performed efficiently as described

in Eq. 3.5. The indices I and J are then translated back to the reaction index µ using the
look-up table L, thus µ = LI,J .

Once the index of the next reaction is sampled, we ascertain the type of the reaction and
initiate it. If µ is a non-delay (type RD0) reaction, the population n is immediately updated
using U(1) and U(2). Subsequently, Π is updated using U(3). If µ is a non-consuming delay
reaction (type RD1), n and Π are not updated at the time of reaction initiation. Instead, the
attributes of this delay reaction (its global time of completion, index, and type) are inserted
into T , µ(D), and D, respectively. We ensure that the global completion times in T are
maintained in ascending order by inserting at the appropriate location, which is found using
bisection search. If µ is a consuming delay reaction (type RD2), n is immediately updated

using U
(1)
(−) and U

(2)
(−). Subsequently, Π is updated using U(3). In addition, the attributes of

this reaction are inserted into T , µ(D), and D at the appropriate location, again found by
bisection search.

In summary, dPDM is an exact formulation of dSSA, generalizing PDM to handle reactions
with delays according to the probability distribution functions of dSSA (Eqs. 3.16 and 3.17).
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7 = ∞

Figure 3.6: Illustration of the main steps in dPDM. (A) Illustration of the linear search to find the
interval p such that the global time of firing (initiation) of the next reaction τg ∈ [T g

p , T
g
p+1).

In this figure, the number of pending reactions ∆ = 6. (B) Illustration of the partial-
propensity structure Π and the grouping based on the index of the common factored-out
reactant. The group index I of the next reaction is sampled using linear search over the
total propensities of the groups, Σi. The element index J within the selected group is
found using linear search over the partial propensities stored in group I.

79



3 Partial-propensity formulations of the stochastic simulation algorithm

The detailed algorithm of dPDM is given in Table 3.8. The computational cost of dPDM
is O(pN + log2 ∆) for strongly coupled reaction networks and O(p + N + log2 ∆) for weakly
coupled ones, as shown in Sec. 3.5.3.
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1. Initialization: set t ← 0, δa ← 0, and the number of pending reactions ∆← 0; initialize the population
vector n, the partial propensities Π, the group sum array Λ, Σ, and the total propensity a ←

∑N
i=0 Σi;

initialize T, D, and µ(D) (these are empty at this stage); initialize the update structures U(1), U(2),

U
(1)
(−)

, U
(2)
(−)

, U
(1)
(+)

, and U
(2)
(+)

.

2. Sample the global time of firing of the next reaction, τg:

2.1. Generate a uniform random number r1 in [0,1).

2.2. If ∆ == 0 (i.e., T is empty) then t ← t− log r1/a

2.3. else

2.3.1. λ1 ← t; λ2 ← T1; at ← a(λ2 − λ1); F ← 1− exp(−at)
2.3.2. While F < r1

2.3.2.1. Get current delay reaction and its type from µ
(D)
1 and D1, respectively. Update n, Π,

Λ, and Σ accordingly using the proper subset of update structures U(1), U(2), U
(1)
(−)

,

U
(2)
(−)

, U
(1)
(+)

, and U
(2)
(+)

, U(3) (see Section 3.5.2). Calculate δa and set a ← a+ δa.

2.3.2.2. λ1 ← T1. Remove T1, µ
(D)
1 , and D1 from the corresponding lists and decrement

∆ ← ∆− 1.

2.3.2.3. If ∆ == 0 then exit from the while loop 2.3.2.

2.3.2.4. else λ2 ← T1

2.3.2.5. at ← at + a(λ2 − λ1); F ← 1− exp(−at)
2.3.3. if ∆ == 0 then τg ← λ1 +

− log (1−r1)−at−a(λ2−λ1)
a

; set t ← τg

2.3.4. else τg ← λ1 +
− log (1−r1)−at

a
; set t ← τg.

3. Sample the index of the next reaction, µ: Using linear search, sample the group index I and element
index J of the next reaction according to Eqs. 3.22 and 3.23, respectively. Look up the index of the
next reaction as µ = LI,J .

4. If µ is a delay reaction, increment ∆ ← ∆ + 1. Insert t+ dµ into T, µ into µ(D), and the type of the
delay reaction into D. Use bisection search to ensure that the entries in T are in ascending order and
maintain the correspondence between T, µ(D), and D.

4. Update n depending on reaction µ’s type:

4.1. If µ is RD0, then update n using U(1) and U(2)

4.2. else if µ is RD1, then do not update n

4.2. else if µ is RD2, then update n using U
(1)
(−)

and U
(2)
(−)

5. Update Π using the update structure U(3) and calculate the change in total propensity δa0.

6. Update a ← a+ δa.

7. Go to step 2.

Table 3.8: Detailed algorithm for the delay partial-propensity direct method (dPDM), explicitly de-
scribing all sub-steps. Using the multiset container of the C++ STL, the list of pending
reactions is conveniently maintained.
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3.5.3 Computational cost

The computational cost of dPDM as detailed in Table 3.8 is determined by the following steps:

Update step: The computational cost of the update step is O(N) and O(1) for strongly
and weakly coupled reaction networks, respectively, where N is the number of species in the
network.

Sampling the global time of the next reaction: The computational cost of sampling the
global time of firing (initiation) of the next reaction, τg, is O(pN) and O(p) for strongly and
weakly coupled reaction networks, respectively. This is because the number of times the partial
propensities need to be updated due to a finishing pending reaction is p, where p is search
depth to locate τg. During each of these p updates, the number of partial propensities that
need to be recomputed is O(N) and O(1) for strongly and weakly coupled reaction networks,
respectively. Removing the p completed reactions from the list of pending reactions is O(p).

Sampling the index of the next reaction: Sampling the group index is performed using linear
search across at most N + 1 groups. Subsequently, the element index is sampled using linear
search across the O(N) partial propensities within the selected group. The computational cost
of sampling the index of the next reaction hence is O(N). If the sampled reaction is a delay
reaction, it is added to the list of pending reactions, along with its attributes. Inserting a new
reaction such a way that the global completion times of pending reactions are maintained in
ascending order is O(log2 ∆), where ∆ is the number of pending reactions currently in the list.

In summary, the computational cost of dPDM is O(pN +N + log2 ∆) for strongly coupled
reaction networks. This is equivalent to O(pN+log2 ∆) for p > 0. For weakly coupled reaction
networks, the computational cost is O(p+N+log2 ∆). In general, the search depth p is O(∆).
The worst case is realized when the time to the next reaction is past the last pending reaction.
In this case, p = ∆. The computational cost for subsequently sampling the next reaction is
then O(N), without the O(log2 ∆) term. This is because the queue of pending reactions is
empty and cost of inserting the new pending reaction is O(1). The overall cost of dPDM then
is O(∆N + N) and O(∆ + N) for strongly coupled and weakly coupled reaction networks,
respectively.

3.5.4 Benchmarks

We benchmark the computational performance of dPDM on both a weakly coupled and a
strongly coupled prototypical reaction network. We again choose the cyclic chain model (Cao
et al., 2004; Heuett and Qian, 2006) and the colloidal aggregation model (von Smoluchowski,
1917; van Dongen and Ernst, 1987; van Dongen, 1987; Axford, 1996; Turner et al., 2005)
as representative networks for which we compare the performance of dPDM with that of
dDM (Cai, 2007). In the benchmarks, we only consider consuming delay reactions since they
require updates at both the time of reaction initiation as well as completion.

All tested SSA formulations are implemented in C++ using the random number generator
of the GSL library and compiled using the Intel C++ compiler version 11.1 with the O3

82



3.5 The delay partial-propensity direct method (dPDM)

optimization flag. All timings are measured on a Linux 2.6 workstation with a 2.8 GHz quad-
core Intel Xeon E5462 processor, 8 GB of memory and 4 MB L2 cache. For all test cases,
we simulate the reaction network until 107 reactions have been initiated, and we report the
average CPU time Θ per reaction initiation (i.e., the average time to execute steps 2 through
7 in Table 3.8 for dPDM and Table 3.7 for dDM).

3.5.4.1 A strongly coupled reaction network: Colloidal aggregation model

The colloidal aggregation model is given in Eq. 3.7. For N chemical species, the number of

reactions is M =
⌊
N2

2

⌋
. The degree of coupling of this reaction network is 3N − 7 and hence

scales with system size.
At time t = 0, we set all ni = 1 and all specific probability rates cµ = 1. We set all reactions

with an even index to be consuming delay reactions (RD2), each with a delay of dµ = 0.1.
The rest of the reactions are non-delay reactions (RD0). The benchmarks confirm that the
search depth p to sample the global time of firing (initiation) of the next reaction is O(1), and
that the logarithm of the number of pending delay reactions, log2 ∆, is O(log2N). Hence, the
computational cost of this simulation is O(N) for dPDM and O(N2) for dDM. This is shown
in Fig. 3.7A, where Θ(N) for dPDM and dDM are compared.

Figure 3.7B shows the results for larger networks on a linear scale. Here, we consider
networks of up to N = 2000 species and M = 2 million reactions in order to reveal memory
contention effects. Around N = 1000 species, the slope of the cost curve increases, while
remaining O(N). This is probably due to the partial-propensity structure not fitting into
cache any more. The machine used for the benchmark has a 4 MB L2 cache. At N = 1000 the
partial-propensity structure for this network contains 500 000 double-precision floating-point
numbers of 8 bytes each, amounting to exactly 4 MB.

In summary, for a strongly coupled reaction network, the computational cost of dPDM is
O(pN + log2 ∆) as predicted by the theoretical analysis.

3.5.4.2 A weakly coupled reaction network: Cyclic chain model

The cyclic chain model is given by Eq. 3.15. For N chemical species, this network has M = N
reactions. The degree of coupling of this reaction network is 2, independent of system size.

At time t = 0, we set all ni = 1 and all specific probability rates cµ = 1. We set all reactions
with an even index to be consuming delay reactions (RD2), each with a delay dµ = 0.1. The
rest of the reactions are non-delay reactions (RD0). The benchmarks confirm that the search
depth p to sample τg is O(1) and that log2 ∆ is O(log2N). Hence, the computational cost of
this simulation is O(N) for dPDM as well as for dDM. The corresponding Θ(N) for dPDM
and dDM are shown in Fig. 3.7C.

In summary, for a weakly coupled reaction network, the computational cost of dPDM is
O(p+N + log ∆) as predicted by the theoretical analysis.
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Figure 3.7: Computational cost of dPDM (squares) and dDM (circles). The average (over 100 inde-
pendent runs) CPU time Θ per reaction initiation (i.e., the average time to execute steps
2 through 7 in Table 3.8 for dPDM, and Table 3.7 for dDM) is shown as a function of
the number of species N in the reaction network. (A) Logarithmic plot of Θ(N) for the
strongly coupled colloidal aggregation model, considering systems of size up to N = 320.
Θ is O(N) for dPDM and O(M) = O(N2) for dDM. (B) Linear plot of Θ(N) for the
strongly coupled colloidal aggregation model, considering systems of size up to N = 2000
(2 million reactions). While the scaling of the computational cost remains linear for all
system sizes tested, the slope increases around N = 1000. This is the system size beyond
which the partial-propensity structure does not fit into the computer’s cache memory any
more. (C) Linear plot of Θ(N) for the weakly coupled cyclic chain model. The solid lines
are linear least square fits. Θ is O(N) for both dPDM and dDM, but with a smaller slope
for dPDM.
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3.5.5 Conclusions

We have presented the delay partial-propensity direct method (dPDM), a partial-propensity
formulation of the delay stochastic simulation algorithm (dSSA) (Cai, 2007) to simulate chemi-
cal reaction networks with delays. dPDM uses partial propensities and reaction groups in order
to improve computational efficiency. For reaction networks with no delays, dPDM becomes
identical to the partial-propensity direct method (PDM) (see Sec. 3.3).

The presented dPDM is an exact dSSA formulation with a computational cost of O(pN +
N + log2 ∆) for strongly coupled reaction networks and O(p+N + log2 ∆) for weakly coupled
networks. Here, N is the number of chemical species, p is the search depth to sample the time
to the next reaction, and ∆ is the number of pending delay reactions at a given time. We have
presented a theoretical cost analysis of dPDM and confirmed its results in two benchmark cases
prototypical of strongly and weakly coupled reaction networks. Since p and ∆ are properties of
the chemical reaction network alone, and the only other variable that the computational cost
depends on is linear in N , dPDM is especially efficient for strongly coupled reaction networks
with delays. This is because in these networks the number of chemical species N grows much
slower with network size than the number of chemical reactions M .

However, dPDM inherits the limitations of PDM (see Sec. 3.3.5). Like PDM and PSSA-
CR, it is limited to chemical reaction networks composed of elementary reactions involving at
most two reactants. For small networks, dPDM is outperformed by other methods due to the
overhead of the additional data structures. Other dSSA formulations, such as the delay direct
method (dDM) (Cai, 2007), might be more efficient there.

The computational cost of dPDM can be further reduced to O(p+log2 ∆) for weakly coupled
reaction networks by using composition-rejection sampling (Devroye, 1986; Slepoy et al., 2008)
(see Sections 2.3.7 and 3.4) instead of linear search (Gillespie, 1976) to sample the index of
the next reaction. This is analogous to PSSA-CR. For multi-scale (stiff) reaction networks,
prototypical of biochemical networks where the propensities span several orders of magnitude,
dynamic sorting (McCollum et al., 2006) (see Sec. 3.3.2) can further reduce the computational
cost, even though its scaling with N remains the same. These two improved formulations of
dPDM have been implemented in the partial-propensity SSA software package as dPSSA-CR
and dSPDM respectively (see Appendix A4).

3.6 The family of partial-propensity methods

We present the different partial propensity methods like PDM, SPDM, PSSA-CR, dPDM,
dSPDM and dPSSA-CR as realizations of a fixed set of modules. We show that by mod-
ifying these modules one can flexibly obtain different partial-propensity formulations, each
of which being particularly efficient on a certain class of reaction networks. For example,
on weakly coupled reaction networks, the partial propensity SSA with composition-rejection
sampling (PSSA-CR) has a computational cost of O(1) under the assumption that the ratio
of maximum to minimum non-zero propensity is bounded by a constant. On strongly coupled
reaction networks, the partial propensity direct method (PDM) is particularly efficient with
a computational cost of O(N). On multi-scale strongly coupled networks, the sorting variant
of PDM (SPDM) is recommended. For networks with delays, dSPDM is efficient for strongly
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coupled networks and for weakly coupled networks dPSSA-CR (the delay variant of PSSA-CR)
is efficient.

3.6.1 Modules of partial-propensity algorithms

The use of partial propensities can be interpreted as follows: Let X be the diagonal matrix of
the population vector n, such that X = diag(n). Further, let B be the symmetric, positive
definite N × N matrix of specific probability rates of all bimolecular reactions. Element
Bi,j = Bj,i > 0 is the specific probability rate c of the reaction of species i with species j.
Similarly, the specific probability rates of all unimolecular reactions are collected in the N×N
diagonal matrix U . The propensities of bimolecular reactions are then given by the product
AB = XBX, those of unimolecular reaction by AU = XU . Traditional SSA formulations
amount to first explicitly computing all propensities and then sampling over all the elements in
AB,U = [AB,AU]. Partial-propensity methods first sample over the vector AB,U 1 to obtain
the group index I, where 1 is a vector of 1’s. Subsequently sampling the element index J
is performed over the elements of the Ith row of the matrix X−1AB,U = [BX,U ]. This
is implemented using three algorithmic modules: grouping the partial propensities, sampling
the next reaction, and updating the values. These modules of partial propensity SSAs are
summarized in Fig. 3.8 together with their respective computational costs. Different partial-
propensity methods with different computational costs can be constructed by using different
algorithms in the sampling module.

1. Grouping module: Partial-propensity methods group the partial propensities of all
reactions according to the index of the factored-out reactant, i.e., the common reaction
partner. Each group thus contains the partial propensities of all reactions having this
species as a reactant. The different partial propensities within a group correspond to the
various possible reaction partners of the common, factored-out reactant. For any reaction
network, there are at most N +1 groups (including group 0 for source reactions) and the
number of partial propensities in each group is at most O(N). For higher-order reactions
(trimolecular and more), multi-dimensional grouping can be used with one dimension
per reactant. Again, the total number of groups in each dimension is O(N) and the
sampling module can be independently applied in each dimension in order to sample the
reaction partners.

2. Sampling module: The key building block of partial propensity methods is the algo-
rithm used to sample the time to the next reaction is as in DM and the index of the next
reaction. Given the grouping of partial propensities, sampling the index of the next re-
action involves sampling the index of the group and then the index of the element within
that group. Sampling the index of the group amounts to sampling the first reactant
of the next reaction. In order to find out which partner this reactant is going to react
with, the partial propensity within the group is sampled. For unimolecular and source
reactions, the partial propensities are constants and the second step is obsolete.

All sampling algorithms used in standard SSAs can also be used in partial-propensity
methods. Instead of applying them over reactions, however, they are first applied over
partial-propensity groups and then over the elements within the selected group. For
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example, using linear search (as in Gillespie’s direct method (Gillespie, 1976)) leads
to a sampling step that is O(N) on all classes of networks. Replacing linear search
by composition-rejection sampling (Devroye, 1986) reduces the computational cost of
the sampling step to O(1). Other sampling strategies, such as search trees or a first-
reaction-method-like sampling over the reaction times can also be used straightforwardly.
Depending on the sampling strategy and the associated algorithmic overhead, certain
partial-propensity formulations are particularly well suited for certain classes of reaction
networks. Also for networks with time delays, different algorithms can be combined
for sampling the time to the next reaction and the index of the next reaction. The
key difference, however, is that the time to the next reaction and the index of the next
reaction are not independent random variables, and hence the time to the next reaction
needs to be computed first. See Fig. 3.8 for a summary of different algorithms that can be
used. Note that the partial-propensity formulations for networks with delays seamlessly
reduce to partial-propensity formulations for network without delays when the delay for
each reaction is set to 0.

3. Update module: After the selected reaction has fired and the populations of the in-
volved species have been updated, the affected partial propensities are recomputed using
a dependency graph over species. Since any partial propensity is a function of the pop-
ulation of at most one species, the number of partial propensities to be updated is at
most O(N). In weakly coupled reaction networks, the number of partial propensities to
be updated is O(1), since the degree of coupling is bounded by a constant. However,
depending on the data structures that are used in the sampling module, the computa-
tional cost of the update module varies. Figure 3.8 shows the computational cost of the
update step depending on the sampling method used.

Using this modular approach, different algorithms can be combined to construct different
partial-propensity formulations (see Fig. 3.8). Certain formulations may be well-suited for
reaction networks with certain properties. The classification of reaction networks according
to their “difficulty”, however, is still largely an open question. Besides system size, degree
of coupling, and multiscaling (spectrum of time scales), there might also be other network
properties that influence the computational cost of the various SSA formulations. Automa-
tized selection of the most efficient SSA formulation for a given network would require both
a systematic classification of networks that goes beyond merely classifying networks as being
weakly or strongly coupled. In addition, a prediction of the computational cost of SSA for-
mulations based on network properties would be required. This might involve a more detailed
cost analysis of the algorithms and a set of standard benchmark problems that are designed
to cover a wide range of performance-relevant parameters.

Implementing the generic modules in C++, we have developed the partial-propensity SSA
(pSSA) software package for simulating stochastic chemical kinetics of reaction networks with
or without delays. pSSA reads the reaction network in the SBML (Systems Biology Markup
Language) (Hucka et al., 2003) input format and is equipped with a user-friendly MATLAB
interface. Exact stochastic simulation algorithms supported by the pSSA include DM, PDM,
SPDM, PSSA-CR, dDM, dPDM, dSPDM and dPSSA-CR. More details on the pSSA software
package can be found in Appendix A4.
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3.7 Summary

3.7 Summary

We have introduced partial-propensity formulations of Gillespie’s exact stochastic simulation
algorithm (SSA). All presented partial-propensity formulations sample trajectories from the
exact solution of the chemical master equation (CME). In addition, we also presented a partial-
propensity formulation of the delay SSA (dSSA) for chemical reaction networks with delays.
We showed that all partial-propensity formulations can be composed from three modules: the
grouping module, the sampling module and the update module. Different algorithms and
data structures can be used in these modules to obtain partial-propensity formulations. These
formulations have varying computational cost depending on the algorithms used and on the
coupling class of the simulated reaction network.

Limiting ourselves to networks with elementary reactions, all partial-propensity formulations
have a computational cost that scales at most linear with the number of chemical species in the
reaction network. Partial-propensity formulations are therefore efficient for reaction networks
where the number of chemical species is much smaller than the number of chemical reactions.
Due to the overhead of the additional data structures, partial-propensity formulations may not
be efficient for small reaction networks, where the additional cost from creating and operating
on these data structures may not be amortized.

For strongly and weakly coupled reaction networks without delays, the partial-propensity
direct method (PDM) has a computational cost of O(N) where N is the number of chemical
species. Due to the dynamic sorting strategy in the sampling module, the sorting variant
of PDM (SPDM) is especially efficient for multiscale (stiff) reaction networks, without any
significant trade-off in the computational cost for non-multiscale reaction networks. For weakly
coupled reaction networks, the computational cost of partial-propensity formulations has been
reduced to O(1) using composition-rejection sampling (PSSA-CR). For reaction networks with
delays, the delay variants of the these partial-propensity formulations have the same scaling
of computational cost with increasing network size.

The favorable scaling of the computational cost of partial-propensity formulations, how-
ever, does not necessarily make them the most efficient in terms of absolute runtimes. Even
though we have demonstrated that partial-propensity methods can offer significant speed-ups
for relatively large reaction networks, this does not imply superior performance on any given,
particular network. Based on empirical evidence and on theoretical analysis of the compu-
tational costs, however, we recommend SPDM for strongly coupled networks and PSSA-CR
for weakly coupled networks. In special cases, SPDM can be worse than PSSA-CR even on
strongly coupled reaction networks. If the coupling-class of the reaction network is unknown,
we recommend PSSA-CR. For reaction networks with time delay, the corresponding delay
variant is recommended.
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4
Discreteness-induced concentration

inversion in mesoscopic chemical reaction
systems

“NATURE! . . . She performs a play; we know not whether she sees it herself,
and yet she acts for us, the lookers-on.”
– Nature: Aphorisms by Goethe, Thomas H. Huxley (1869)

Mesoscopic chemical reaction systems are typically realized in compartments or reactors
with length scales ranging from a few tens of nanometers to millimeters. The same con-
centration realized in compartments of decreasing size implies a decreasing total number of
molecules. This leads to an apparent increase in molecular discreteness and increases concen-
tration fluctuations (van Kampen, 1963; Kurtz, 1972; Gardiner et al., 1976; Berg et al., 2000;
Pedraza and Paulsson, 2008; van Kampen, 2001; Shibata, 2004; Miller et al., 2005; Raj et al.,
2006; Beard and Qian, 2007; Perc et al., 2007; Grima and Schnell, 2008; Mouri et al., 2009;
Nishikawa and Shibata, 2010; Grima, 2010a). Thus, chemical reaction dynamics in small-scale
compartments must be considerably influenced by intrinsic (or internal) noise (Qian et al.,
2002; Perc et al., 2008; Shimoni et al., 2009; Grima, 2009b, 2010a). The effect of intrinsic
noise on simple chemical reaction systems has been introduced in Chapter 1, Sec. 1.4.

Biological cells are natural and ubiquitous examples of highly confined chemically reactive
systems. Biochemical reactions proceed in sub-micron compartments containing one to sev-
eral thousand molecules per compartment (Ghaemmaghami et al., 2003; Ishihama et al., 2008)
and hence intrinsic noise is expected to play an important functional role in biochemical cir-
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4 Discreteness-induced concentration inversion in mesoscopic chemical reaction systems

cuits (Berg et al., 2000; Springer and Paulsson, 2006; Eldar and Elowitz, 2010). Such systems
are also subjected to extrinsic noise originating outside the immediate system of interest. For
example, the rate of chemical reactions inside a compartment may depend on the abundance
of an upstream species that is translocated from another compartment (Bar-Even et al., 2006;
Pedraza and Paulsson, 2008; Cai et al., 2008; Eldar and Elowitz, 2010). The relevance of
intrinsic noise is, however, not limited to biological systems. Molecular capsules (Vriezema
et al., 2005), carbon nanotubes (Ugarte et al., 1996), and crystalline zeolites (Smit and Mae-
sen, 2008) are other examples of nanospaces confining chemical reactions. Recent studies
have shown that consideration of intrinsic noise leads to a considerable modification of the
temperature dependence of the equilibrium constants of reactions in such artificially confined
spaces (Polak and Rubinovich, 2008).

There is an extensive modeling literature investigating the effects of intrinsic noise on chem-
ical kinetics. The effect of intrinsic noise is taken into account by the CME, which is an exact
mesoscopic description for any well-stirred and thermally equilibrated gas-phase chemical sys-
tem (Gillespie, 1992), and for chemical reactions in well-stirred dilute solutions (Gillespie,
2009). Unfortunately, the CME is generally analytically intractable. To overcome this limi-
tation, a large proportion of studies (van Dongen, 1987; Elf and Ehrenberg, 2003; Paulsson,
2004; Bruggeman et al., 2009; Grönlund et al., 2010; Elf et al., 2003; Hayot and Jayaprakash,
2004; McKane et al., 2007) make use of the linear-noise approximation (LNA)—a linear ap-
proximation of the nonlinear Fokker-Planck equation—of the CME by using Langevin or linear
Fokker-Planck equations to analytically estimate the magnitude of intrinsic noise and to in-
vestigate various noise-induced phenomena. One should, however, bear in mind that the LNA
is valid in the limit of large volumes (van Kampen, 2001, 1961, 1976). This limit in van
Kampen’s system-size expansion is taken at fixed macroscopic concentrations and thus the
LNA is valid in the asymptotic limit of very large molecule numbers. In other words, use of
the LNA presumes that effects due to molecular discreteness do not dominate the phenomena
under study (See Appendix A5 for more details on the van Kampen expansion and the LNA).
This is, for example, valid for pathways involving at most first-order reactions, for which it is
known that including the effects of molecular discreteness does not influence the predictions of
the mean concentrations (McQuarrie, 1967; Heuett and Qian, 2006). However, this is not the
case if some reactions are bimolecular; these effects originate from the nonlinearity inherent
in the law of mass action describing such reactions (van Kampen, 1963, 2001; Grima, 2010a).
It hence stands to reason that the predicted functionality and operation of a chemical circuit
involving small copy numbers of some species may in some cases be considerably different from
standard predictions based on the LNA. It is furthermore of interest to understand how extrin-
sic noise influences a circuit’s low-copy-number properties, since experimental studies suggest
that extrinsic noise is frequently comparable to or larger than intrinsic noise (Bar-Even et al.,
2006; Newman et al., 2006).

Here, we investigate the dependence of the nonequilibrium steady-state properties of a
monostable chemical circuit on the apparent discreteness of the interacting chemical species.
We consider independent realizations of the same chemical reaction system in compartments of
different volumes. Given some fixed rate constants, reaction rate equations (RRE) predict the
same steady-state concentrations for all realizations. However, the predicted average molecule
numbers (concentration multiplied by the volume) decrease with compartment volume. It is
thus clear that one can study the relationship between molecular discreteness and the steady
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state of a chemical system by studying the relationship of the latter with compartment volume.
RRE are based on an implicit assumption of large numbers of interacting molecules and hence
one expects their breakdown for systems realized in small volumes. The linear Fokker-Planck
equation associated with the LNA leads to the same prediction of volume-independent mean
concentrations (van Kampen, 2001; Grima, 2010a). In contrast, we show that accounting for
molecular discreteness leads to volume-dependent mean concentrations, and that the RRE
and LNA predictions are qualitatively correct only for systems above a critical volume. This
describes a new phenomenon: discreteness-induced concentration inversion. For systems in
sub-critical volumes, the RRE and LNA predict that the concentration of a species Si is larger
than that of another species Sj , whereas accounting for discreteness leads to the opposite
prediction. We present a theory to explain this novel discreteness-induced inversion effect
and to predict the values of the critical volumes. We illustrate and verify the theory by
comparing its predictions to exact stochastic simulations of the CME for the model system
of trimerization (see Fig. 4.1 for a cartoon illustration). Furthermore, we show that the
inversion effect occurs already at larger numbers of molecules in the presence of extrinsic
noise. In general, extrinsic noise in biological systems models stochastic influences from the
environment. Here, we specifically model extrinsic noise as a bursty influx of a reactant into
the reactor.
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4 Discreteness-induced concentration inversion in mesoscopic chemical reaction systems

Figure 4.1: Illustration of the change in the nonequilibrium steady-state concentrations of monomers
(species 1, purple), dimers (species 2, yellow), and trimers (species 3, green) with compart-
ment volume Ω to which an open trimerization reaction system is confined. Monomers are
pumped into the compartment. They then bind to other monomers to form dimers and
to dimers to form the final product, trimers. All molecules leave the compartment at a
constant rate. The spheres represent the molecules, while the semi-transparent pink sur-
face represents the arbitrarily shaped compartment to which the molecules are confined.
The bar graphs reflect the mean steady-state concentration values (denoted by 〈φ∗i 〉ss for
species i). When the volume decreases below a certain critical value (Ω12), the ratio of
monomer and dimer concentrations changes from greater than one to less than one. This
“inversion effect” is induced by an increase in the apparent discreteness of the system as
the volume is decreased from 2V to V . The apparent discreteness is quantified by the total
number of molecules in the compartment, nT. The rate constants and the average occu-
pied volume fraction of the system are the same at both volumes. In contrast, RRE and
the LNA predict no change in the steady state of the system as the volume is decreased.
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4.1 General theory

We present a theory that predicts the discreteness-induced concentration inversion in meso-
scopic chemical systems. We start from a general molecular reaction network proceeding in
a well-stirred volume Ω. The network can be written as a set of N distinct chemical species
interacting via M reactions of the type described in Eq. 1.1:

N∑

i=1

ν−i,µSi
kµ−−−−−→

N∑

i=1

ν+
i,µSi, µ = 1, . . . ,M, (4.1)

where the macroscopic reaction rate of reaction µ is kµ. The constraints
∑N
i=1 ν

−
i,µ ≤ 2 ∀ µ

ensure that each reaction is at most bimolecular and hence elementary. The RRE for this
system is

∂φ

∂t
= νT0(φ), (4.2)

where φ(t) = [φ1(t), ..., φN (t)]
T

is the vector of macroscopic concentrations at time t, and

Tµ,0(φ(t)) is the macroscopic rate function of reaction µ given by Tµ,0(φ(t)) = kµ
∏N
i=1 φ

ν−i,µ
i (t)

(see Chapter. 1, Eq. 1.41). The details of the RRE can be encapsulated in the N × M
stoichiometric matrix ν with entries νi,µ = ν+

i,µ− ν−i,µ and the M × 1 rate function (also called
reaction flux) vector T0(φ).

The CME is the corresponding mesoscopic description of the molecular network. It is a
differential-difference equation (McQuarrie, 1967) whose solution gives the probability that
the system is in a certain state at time t. The state of the system is given by the vector of the
absolute numbers of molecules of each species (the molecular position and velocity variables do
not enter into the state description because of the assumption of well-mixing). Thus, the CME
provides us with a description of chemical processes factoring in the discrete nature of molecules
in well-mixed compartments of mesoscopic to macroscopic sizes. Unfortunately, the stochastic
description of a general reaction network using a CME is not easily amenable to calculation.
The problem, however, simplifies if we are only interested in the mean concentrations as
predicted by the CME. Approximate time-evolution equations (Grima, 2010a) have recently
been derived for these mean concentrations using the volume expansion of the CME (van
Kampen, 2001), including terms of the order Ω−1/2. Terms of order Ω0 correspond to the LNA,
while terms of order Ω−1/2 and beyond capture the effects of molecular discreteness. These
equations are called the effective mesoscopic reaction rate equations (EMRE). In Appendix A5
we provide a detailed description of the van Kampen system-size expansion that leads to the
LNA as a first approximation (Appendix A5.1) and subsequently to the EMRE when terms
of the order Ω−1/2 are included (Appendix A5.2).

The EMRE has the following form for a general reaction network:

∂〈φ∗〉
∂t

=
∂φ

∂t
+ J (0) (〈φ∗〉 − φ) + Ω−1∆(C) +O(Ω−3/2) (4.3)

∂C(t)

∂t
= J (0)C +CJ (0)T

+D(0) +O(Ω−1/2) , (4.4)
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where we have suppressed the time dependence of variables for clarity. The vector of mean
concentrations is 〈φ∗〉 = [〈n1〉/Ω, . . . , 〈nN 〉/Ω]

T
, where ni is the number of molecules of species

i in volume Ω. The matrix J (0) is the Jacobian of the RRE (Eq. 4.2) and C is the covariance
matrix, with entries in the ith row and jth column equal to 〈εiεj〉, where Ω−1/2εi is the noise
about the macroscopic concentration of species i (van Kampen, 2001). The matrix D(0) is
given by D(0) = ν diag(T0(φ))νT (Elf and Ehrenberg, 2003) and provides a measure of the
strength of noise. The vector ∆ is the mean–covariance coupling vector. Its lth components
is defined as (see also Eq. A5.37):

∆l =
1

2

( N∑

w,z=1

∂Jlw
∂φz
〈εwz〉 −

N∑

w=1

φw
∂Jlw
∂φw

)
, (4.5)

where 〈εwz〉 is a short-hand notation for 〈εwεz〉. In the limit of macroscopically large volumes,
the Ω−1 term in Eq. 4.3 tends to zero, implying that in this limit the EMRE reduce to the RRE.
For finite volumes, the solution of the EMRE is in general different from that of the RRE. The
macroscopic RRE estimate for the copy number of molecules of a species equals the macroscopic
concentration of that species multiplied by the compartment or reactor volume; hence it is
clear that the Ω−1 term in the EMRE formulation arises due to the discreteness of the system.
Furthermore, inspection of the vector ∆ shows that the corrections to the RRE exist only if
some Jacobian elements in Eq. 4.5 are functions of the macroscopic concentrations, i.e., if the
chemical network has at least one bimolecular reaction (See Appendix A5.2.1 and A5.2.2).
Although the EMRE are derived from the CME, they can be constructed from sole knowledge
of the RRE. We emphasize that the correct way of interpreting the EMRE (Eqs. 4.3–4.4) is
that given some set of reactions occurring in a volume Ω, φ is the concentration prediction if
we ignore molecular discreteness, and 〈φ∗〉 is the approximate mean-concentration prediction
if we take discreteness into account. This interpretation stems from the fact that terms of
order Ω0 in the system-size expansion, which lead to the LNA, do not explicitly depend on the
volume, whereas the terms of order Ω−1/2, from which the EMRE are obtained, do depend on
the volume (see Eq. A5.17 in Appendix A5).

We obtain steady-state values by setting the time derivatives in Eqs. 4.3 and 4.4 to zero,
leading to

〈φ∗〉ss − φss = −Ω−1δ , (4.6)

where δ = J
(0)
ss

−1
∆(Css) and the subscript ss denotes evaluation at steady-state. None of these

matrices, nor the steady-state solution φss of the RRE, explicitly depend on Ω. Consider the
case where the macroscopic steady state of the system is such that 〈φ∗1〉 = φ1 > 〈φ∗2〉 = φ2.
It follows from Eq. 4.6 that if δ1 > δ2 then there exists a critical compartment volume Ω12 =
(δ2 − δ1)/(φ2 − φ1) at which the concentrations of the two species become equal, 〈φ∗1〉 = 〈φ∗2〉.
For volumes smaller than critical, the state of the system is described by 〈φ∗1〉 < 〈φ∗2〉. In
other words, although accounting for molecular discreteness always leads to some correction
to the RRE solutions, it is only below a certain critical copy number of molecules that these
corrections lead to qualitative changes in the mean steady-state concentrations of a chemical
network. We refer to this novel transition as a discreteness-induced inversion effect due to the
“inversion” in the ratio of the concentrations of two species as the volume crosses the critical
threshold. This inversion effect is not predicted by the LNA because the effect originates from
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terms of higher order than Ω0. For a system of N distinct chemical species, there are at most
1
2N(N−1) different critical volumes, one for each unique pair of species. The general condition
for the existence of a critical volume Ωij for species i and j is: sign(δi − δj) = sign(φi − φj).
RRE and the LNA are qualitatively valid for volumes larger than the maximum of all critical
volumes, whereas discreteness-induced effects dominate the steady-state behavior for sub-
critical volumes.

A general three-step recipe for predicting the critical volumes of a chemical network is as
follows:

1. An expression for the vector δ = J
(0)
ss

−1
∆(Css) is derived using the Jacobian of the

RRE rate function T0(φ) and the mean–covariance coupling vector as given by Eq. 4.5.

2. An explicit expression for the steady-state covariance matrix, Css, in terms of the steady-
state concentrations is obtained by solving Eq. 4.4 with the time derivative set to zero.

This also requires that one derives an expression for the matrix D
(0)
ss using D(0) =

ν diag (T0(φ)) νT.

3. By substituting the resulting expression for Css into the one previously obtained for δ,
and inserting the latter in

Ωij = (δi − δj)/(φi − φj), i 6= j, i, j = 1, ..., N, (4.7)

one obtains the final expressions for the critical volumes of the system.

4.2 Model

As a representative model of nonlinear reaction networks out of equilibrium we consider driven
colloidal aggregation, for three reasons: First, it is a complete model since this reaction network
comprises all three types of elementary reactions: bimolecular, source (input), and unimolecu-
lar (Gillespie, 1992), rendering the results obtained here valid also for other reaction networks.
Second, it is a well-characterized model as it has been studied for decades, notably from the
1917 works of Smoluchowski on coagulation and fragmentation (von Smoluchowski, 1917).
Third, it is a relevant model for many real-world phenomena of practical importance, e.g., in
biological cells (receptor oligomerization, protein and prion-peptide aggregation, cytoskeletal
actin & tubulin polymerization), in nanotechnology (nano-particle clustering, colloidal crys-
tallization), in food engineering and the oil industry (emulsion stabilization, emulsification in
porous media), and in metallurgy (dealloying).

We use the CME to describe the reaction kinetics, neglecting molecular aspects underlying
nucleation and growth. Our system is spatially homogeneous (well stirred) as we disregard
structural, spatial, or solvent effects. We also factor out the role of (i) densification upon de-
crease in system volume, as the total volume fraction is kept constant, and (ii) conformational
kinetics, as we do not consider intra-molecular degrees of freedom. In addition, we study our
system at a steady state that may be arbitrarily far away from thermodynamic equilibrium.
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Denoting aggregates or multimers containing n monomers as species Sn, the aggregation
reaction network is:

Ø
kon

1−−→ bS1

Sn + Sm
kn,m−−−→ Sn+m n+m = 2, . . . , N

Sn
koff
n−−→ Ø n = 1, . . . , N, (4.8)

where the k’s are macroscopically measurable reaction rates (Gillespie, 1976). This system
describes the aggregation of monomers S1 into multimers Sn of maximum size N . Monomers
are input into the finite reactor volume Ω in bursts of arbitrary size b. They then form dimers,
which can further aggregate with other monomers or multimers to form larger aggregates.

We now demonstrate and verify our theoretical predictions by considering the molecular
assembly of trimers from monomers (i.e., N = 3 in Eq. 4.8) in a small confined space. This
is an example of particular relevance in various biological contexts, such as the trimerization
of receptor proteins in the plasma membrane (Klemm et al., 1998; Choudhary and Mann,
2010) that tunes the activity and sensitivity of many signal-transduction pathways, and the
trimerization of heat-shock factors, which is responsible for regulating a multitude of cellular
processes ranging from the expression of stress genes to cell development and lifespan control
(Akerfelt et al., 2010). Further, experiments indicate that approximately 35% of the proteins
in E. coli are homodimers or homotrimers (Goodsell and Olson, 2000). Finally, trimerization
(i.e., N = 3 in Eq. 4.8) is the simplest colloidal aggregation model with all types elementary
chemical reactions: source reactions (input), unimolecular reactions, and the two types of
bimolecular reactions: homodimerisation and heterodimerisation.

The specific reaction scheme considered here is:

Ø
k0−→ bS1,

S1 + S1
k1−→ S2,

S1 + S2
2k1−−→ S3,

S1
k2−→ Ø,

S2
k2−→ Ø,

S3
k2−→ Ø . (4.9)

The above choice of rate constants significantly reduces the dimensionality of the parameter
space and simplifies the algebra. Monomers (S1) are input into the compartment in bursts of
size b. The monomers form dimers (S2) that can in turn react with more monomers to form
trimers (S3). All three species leave the system at some constant rate. The CME and the
RRE associated with the reactions in Eq. 4.9 are given in Appendix A8. We also show in
Appendix A8 that this trimerization system is monostable.

The burst-input mechanism is a model for molecules entering the compartment by active
means of transport, rather than diffusion (Dobrzyński and Bruggeman, 2009; Grima, 2009a).
This is a common mechanism in biological cells (Alberts et al., 1994; Cai et al., 2008). In
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particular, this mechanism occurs in the dynamics of membrane-protein domains (rafts) in
contact with a metabolic network (Turner et al., 2005; Zhao and Keen, 2008). For example, in
the case of receptor protein trimerization in the plasma membrane, the burst input could stem
from the vesicular transport of receptor monomers from exocytic compartments. Experimental
evidence suggests that the burst size b can be as large as 1000 (Cai et al., 2008). Our system
is influenced by intrinsic noise stemming from the inherent molecular discreteness, and also by
extrinsic noise due to the burst-input process (Pedraza and Paulsson, 2008; Eldar and Elowitz,
2010). The parameter b controls the magnitude of extrinsic noise, since a larger b naturally
implies larger fluctuations in the monomer concentration upon input into the compartment.

Generally, in a reaction system with burst input ∅ k−→ bA into a reactor of finite volume Ω (k
is the macroscopic reaction rate), the variance at a nonequilibrium steady-state is O(b/Ω) (see
Eq. A7.10 in Appendix A7). We emphasize that these input fluctuations are not induced by a
chemical reaction process inside the compartment; rather, they are caused by the input process,
which is external to the compartment and hence a source of extrinsic noise to the reactions in
the compartment. For the moment we consider b to be a time-independent constant; later we
also study the case where b is itself a stochastic quantity, as it typically is in bursty phenomena
associated with protein production (Cai et al., 2006).

We start by calculating the critical volume sizes for this system using the above theoretical
framework and then validate these predictions using PDM simulations. Using the Jacobian of
the deterministic RRE for this system together with Eq. 4.5, we find:

δ =
k1

α




2[〈ε11〉ss − φ1,ss](3k1φ1,ss + k2) + 2k2〈ε12〉ss
−[〈ε11〉ss − φ1,ss](6k1φ2,ss + k2) + 2(k2 + 6k1φ1,ss)〈ε12〉ss

2k1[〈ε11〉ss − φ1,ss](2φ2,ss − φ1,ss)− 2(4k1φ1,ss + k2)〈ε12〉ss


 , (4.10)

where α = 12k2
1φ

2
1,ss + 2k1k2(3φ1,ss + φ2,ss) + k2

2. The steady-state values of the relevant
correlators are obtained by solving the Lyapunov Eq. 4.4 with the time derivative set to zero,
leading to:

〈ε11〉ss =β−1
[
(8k2

1φ
2
1,ss + (5φ1,ss + φ2,ss)k2k1 + k2

2)D
(0)
1,1,ss

− 2k1φ1,ss(2k1φ1,ss + k2)D
(0)
1,2,ss + 2k2

1φ
2
1,ssD

(0)
2,2,ss

]
, (4.11)

〈ε12〉ss = β−1
[
((2φ2

1,ss − 2φ1,ssφ2,ss)k
2
1 + (φ1,ss − φ2,ss)k2k1)D

(0)
1,1,ss

+ (4φ1,ss(φ2,ss + 2φ1,ss)k
2
1 + 2(3φ1,ss + φ2,ss)k2k1 + k2

2)

×D(0)
1,2,ss − k1φ1,ss(2(2φ1,ss + φ2,ss)k1 + k2)D

(0)
2,2,ss

]
, (4.12)

〈ε22〉ss = β−1
[
2(φ2

1,ss − 2φ1,ssφ2,ss + φ2
2,ss)k

2
1D

(0)
1,1,ss + ((−φ1,ssφ2,ss

− φ2
2,ss + 2φ2

1,ss)4k
2
1 + (φ1,ss − φ2,ss)2k2k1)D

(0)
1,2,ss

+ ((φ2
2,ss + 7φ2

1,ss + 4φ1,ssφ2,ss)2k
2
1 + (3φ2,ss + 7φ1,ss)

× k2k1 + k2
2)D

(0)
2,2,ss

]
, (4.13)
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where

β = 2(12k2
1φ

2
1,ss + 6k1φ1,ssk2 + 2k1φ2,ssk2 + k2

2)(k1φ2,ss + 3k1φ1,ss + k2). (4.14)

The entries of the symmetric, positive semi-definite matrix D(0) can be computed from the
stoichiometry matrix ν and the rate-function vector T0(φ):

D
(0)
1,1,ss = b2k0 + φ1,ss(4k1φ1,ss + 2k1φ2,ss + k2), (4.15)

D
(0)
1,2,ss = 2k1φ1,ss(φ2,ss − φ1,ss), (4.16)

D
(0)
2,2,ss = k1φ

2
1,ss + 2k1φ1,ssφ2,ss + k2φ2,ss. (4.17)

The vector δ in Eq. 4.10 can then be expressed in terms of the macroscopic rate constants and
the steady-state solution of the RRE. The three critical volumes of the system are obtained
by substituting the components of δ in Eq. 4.7.

4.3 Simulation details

The theoretical prediction of the critical volume (see Eq. 4.7) at which the trimerization system
undergoes inversion is tested using PDM (see Sec. 3.3). The volume dependence enters the
stochastic simulation through the propensities of the input and bimolecular reactions, which
scale as Ω and 1/Ω, respectively, in accordance with the CME (Gillespie, 1976, 1992; van
Kampen, 2001) (see Eq. A8.3). The molecular concentrations φ∗i are computed from the
simulations by ensemble-averaging the absolute number of molecules of species i over 20,000
independent realizations, and dividing by Ω.

Steady-state conditions require that the influx of monomers equals their efflux, i.e., bk0 =
k2(φ∗1 + 2φ∗2 + 3φ∗3). The efflux is equal to the sum of three expressions: the first is the efflux
of monomers, the second is the efflux of monomers which are part of a dimer, and the third
is the efflux of monomers which are part of a trimer. This condition is also valid for the
deterministic RRE, i.e., bk0 = k2(φ1 + 2φ2 + 3φ3). Denoting the volume of a single monomer
by v, the average occupied volume fraction (at steady state) is

Φ = vbk0/k2. (4.18)

Here, we choose to fix Φ = 0.1 and v = 0.01 (hence bk0/k2 = 10), such that the comparison
between the solutions of the RRE and the EMRE at different volumes is performed at constant
volume fraction. Imposing the mass-balance condition has some important consequences:

1. It helps us isolate the role of Ω from that of densification by keeping Φ constant as we
vary Ω across systems of fixed b, v, k1 and k2.

2. It helps isolate the effect of burst size b from that of influx bk0Ω by keeping bk0 constant
as we vary b and Ω across systems of fixed Φ, v, k1 and k2.

3. The RRE does not discriminate between (i) a burst input ∅ k−→ bA at rate k and a non-

burst input ∅ bk−→ A at rate bk, (ii) different volumes Ω (see Appendix A7). This renders
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the kinetics predicted by the RRE independent of the position in (Ω, b) parameter space
for fixed k1 and k2. Hence, the deviation of the stochastic kinetics arises solely due to
the noise sources b and Ω−1.

Given the steady-state condition and the definition of the average occupied volume fraction,
it can be deduced that the volume of the compartment and the total number of monomers
(free and bound in dimers and trimers, i.e., Nm = 〈n∗1〉 + 2〈n∗2〉 + 3〈n∗3〉) are related as:
Ω = (v/Φ)Nm. Since we have fixed the volume fraction, the total number of monomers Nm
decreases as the volume decreases. The quantity Nm is an upper bound for the actual number
of discrete molecules in the system. Hence, instead of using Nm as a measure of system
discreteness, we use the total number of molecules in the compartment as predicted by the
RRE, nT = Ω(φ1 + φ2 + φ3). A smaller nT indicates a higher level of discreteness, and vice
versa.

4.4 Results

Using PDM simulations we first verify the existence of the predicted discreteness-induced
concentration inversion for a particular set of parameters. This example also helps clarify the
nature of the effect, since our presentation so far has been purely abstract. We then present
the results of a large-scale scan of parameter space using both simulations and the theoretical
expressions previously derived, with the aim of validating the theory’s ability of delineating
the regions of parameter space where RRE predictions qualitatively fail.

Figure 4.2 shows the time evolution of the concentrations from both ensemble-averaged PDM
simulations (solid lines) and the RRE (dashed lines) for three different compartment volumes
Ω = 1000, 12, 3 with identical rate constants k0 = 1/3, k1 = 0.5, and k2 = 1.0 and a fixed burst
size b = 30. The discreteness of the system as quantified by nT becomes more apparent as the
volume decreases. The concentrations from the RRE and the large-volume, large-copy-number
(Ω = 1000, nT = 5195) stochastic simulations are in good agreement (Fig. 4.2a). The two
critical volumes of this system as predicted by our theory (i.e., Eq. 4.7 together with Eqs. 4.10–
4.13) are Ω12 = 2.79 and Ω13 = 11.83. Indeed, at a compartment volume of Ω = 12 (Fig. 4.2b),
the stochastic simulations show that the mean steady-state concentrations of species 1 and
3 have become equal. For smaller volumes, the mean steady-state concentration of species 3
is larger than that of species 1 (Fig. 4.2c). The simulations thus verify the existence of the
postulated discreteness-induced inversion effect. It is interesting that the inversion occurs at a
copy number of nT = 62, which is relatively large considering that stochastic effects are usually
deemed significant only in conditions characterized by a mere few molecules. The inversion
effect between species 1 and 2, which is theoretically predicted to occur at a smaller volume
than that between species 1 and 3, is not found in our simulations (Fig. 4.2c). We will come
back to this point later.

In order to further test the theory, we consider the (Ω, b) parameter space, where Ω and
b take values between 1 and 1000 in increments of 10. These two variables are convenient
because Ω provides a measure of the intrinsic noise, while b measures extrinsic noise. The
constants k1 and k2 are fixed to the same values as in the previous example. The parameter
k0 is determined by the condition bk0/k2 = 10, which guarantees that the comparison between
the RRE and EMRE is performed at constant volume fraction at all points in parameter space
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(see Sec. 4.3). Since k0b is a constant, the deterministic RRE prediction is independent of
(Ω, b). In contrast, the magnitudes of intrinsic and extrinsic noise vary from one (Ω, b) to
another, leading us to expect inversions in some regions of parameter space, but not in others.

We perform simulations for 100×100 pairs of (Ω, b) values. The solid black and gray regions
in Fig. 4.3a show where the simulations gave zero and one inversions, respectively. The orange
dashed line shows the theoretical prediction of the critical volume Ω13 as a function of b,
calculated using Eq. 4.7 together with Eqs. 4.10–4.13. The line accurately demarcates the solid
black and grey regions, thus verifying the theory’s ability to predict where the deterministic
RRE model qualitatively fails. This is also significant from a computational point of view
since the theoretical calculation can be performed much faster than scanning the parameter
space (in Fig. 4.3) using an SSA simulation. The red dashed line shows the theoretically
predicted critical volume Ω12 as a function of b, which should demarcate the regions of one
and two inversions. However, the simulations show that there is no second inversion in the
parameter space (a similar observation, but for specific parameters, was already pointed out
in the previous example of Fig. 4.2). This disagreement with theory is not unexpected since
EMRE break down for sufficiently small volumes (Grima, 2010a). The largest theoretical
critical volume is hence likely to be the only reliable prediction, but also the most important
one. This is because the line in parameter space associated with the maximum of all critical
volumes of a system demarcates the two most important regions: the region where the steady-
state predictions of the RRE and the LNA are qualitatively valid, and the region where these
predictions are incorrect for at least one pair of species.

The fact that Ω13 is a linear function of b can be deduced from theory as follows: Our scan
of parameter space is at constant k0b, which implies that the macroscopic concentrations are

constant and that D
(0)
1,1 = b2k0 + φ1(4k1φ1 + 2k1φ2 + k2) is a linear function of b (the other

elements of D(0) are independent of b; see Section 4.1). Thus, it follows from Eq. 4.7 and
Eqs. 4.10–4.13 that all critical volumes of the system are linear functions of b. This can be
shown to be generally true for any chemical reaction network with burst input at steady-state.
The increase in critical volume with b shows that the addition of extrinsic noise increases the
threshold copy number of molecules below which stochastic effects become determinant to the
steady-state behavior of the system.

We also numerically compute maps of the type shown in Fig. 4.3a for different values of
the decay constant k2. For each value we compute the fraction fi,j of the (Ω, b)-space (1 ≤
(Ω, b) ≤ 1000) where there is at least one inversion in the concentrations of species i and j
(see Fig. 4.3b). The agreement between EMRE (solid lines) and numerical predictions (data
points) is very good. Consider first the variation of f1,3 (yellow) with k2: it is zero for k2 . 0.8,
has a sharp peak up to one at k2 ' 0.8, and then decreases smoothly back to zero with further
increasing k2. This implies that the effect due to molecular discreteness can be felt across all
of the considered parameter space at that particular value of k2. This can be explained as
follows: At k2 = 0.77, the macroscopic concentrations of species 1 and 3 are precisely equal.
Discreteness invariably induces a correction to the RRE concentrations. Even if this correction
is very small, for example at very large volumes, it is sufficient to break the strict equality
between the macroscopic concentrations of species 1 and 3, and hence to induce an inversion
across all of parameter space. Finite-volume corrections to the macroscopic concentrations are
always non-zero, but they can either amplify or diminish the existing difference between the
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two macroscopic concentrations. Of these two cases, the former cannot lead to inversion and
occurs for k2 < 0.77, while the latter naturally leads to inversion and occurs for k2 > 0.77.
This also explains the discontinuous rise in f1,3 at k2 = 0.77 and the smooth decay beyond
this point.

The peak in f2,3 (red) at k2 = 4.45 similarly coincides with the value of k2 at which the RRE
predict equal macroscopic steady-state concentrations for species 2 and 3. In contrast, we find
no peak in f1,2 (blue), which monotonically increases as k2 approaches zero. For the cho-
sen parameter values, the macroscopic steady-state concentration of species 2 monotonically
approaches (from below) that of species 1 as k2 approaches zero. The size of the correction
needed to cause inversion hence becomes smaller as k2 approaches zero. This also corresponds
to a larger critical volume, which explains the monotonic increase of f1,2 in the same limit.
The general significance of the existence of peaks in fi,j at the point where φi = φj is that
the region of parameter space where discreteness-induced effects are most conspicuous can be
deduced directly from the deterministic RRE.

So far we have assumed that the burst-size parameter b is a sure variable. In our model, b
could for example represent the number of monomers carried by a vesicle in active intracellular
transport. Clearly, different vesicles may carry different numbers of monomers, rendering b
itself a stochastic variable. In the absence of experimental information about the probability
distribution of b, we use data acquired on bursty phenomena in protein synthesis. Experiments
have shown that proteins are produced in bursts, where the number of molecules per burst is
distributed according to an exponential distribution (Cai et al., 2006). We therefore also study
the situation where the burst size b is sampled, independently for each input event, from a
geometric probability distribution, P (b) = p(1−p)b−1, where p = 〈b〉−1, and 〈b〉 is the average
burst size. This distribution is the discrete analog of the exponential distribution. Simulations
of the CME and of the RRE are rerun with stochastic b; the results are shown in Fig. 4.4.
Comparing Fig. 4.3a and Fig. 4.4 shows that the fraction of parameter space characterized by
an inversion when b is a stochastic variable is significantly larger than when b is a sure variable.
In the present example, this fraction is almost 1.8 times larger when burst is stochastic. In
other words, increasing the magnitude of extrinsic noise in the system enlarges the region of
parameter space where the RRE are qualitatively incorrect.

The new line demarcating the region of no inversion from that characterized by a single
concentration inversion can be approximately predicted by a simple, albeit heuristic modifica-
tion of the EMRE, which we now discuss. The EMRE predictions are based on the solution
of the RRE. The RRE in the case where b is stochastic are also stochastic themselves, and
hence their average concentrations must be obtained by ensemble-averaging over a large num-
ber of independent realizations. The concentrations φ1 and φ2 to be used in the EMRE
(Eqs. 4.7, 4.10–4.13) are set to equal the averaged concentrations obtained from solving the
stochastic RRE. Furthermore, the EMRE explicitly depend on b via D1,1. We hence replace
b2 in D1,1 by its average computed over the geometric distribution, i.e., 〈b2〉 = 〈b〉(2〈b〉 − 1).
The two critical volume predictions of the so-modified EMRE are shown as dashed lines in
Fig. 4.4. The predicted line separating the regions of zero and one inversion (orange dashed
line) is in rough agreement with the border between the black and gray regions obtained from
simulations. The decreased accuracy of the theoretical predictions compared to the case of
constant b clearly stems from the fact that the present modifications to the EMRE to include
stochastic b are heuristic and not derived from first principles as for the case of constant b.
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Figure 4.2: Ensemble-averaged concentrations (from exact stochastic simulations) versus time for the
trimerization reactions in different compartment volumes: (a) Ω = 1000, (b) Ω = 12,
(c) Ω = 3. The rate constants are fixed to k0 = 1/3, k1 = 0.5, and k2 = 1 and the
input burst-size to b = 30. The dashed lines show the RRE predictions for the same
parameter values. The simulations confirm the theoretical prediction of a discreteness-
induced inversion below a critical volume, Ω13 = 11.83, for species 1 and 3. The total
concentration of monomers in free and bound states is constant at all volumes, φ∗1 + 2φ∗2 +
3φ∗3 = bk0/k2 = 10 (as is also the occupied volume fraction), a condition enforced by
steady-state conditions.
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Figure 4.3: Comparison of theory and simulations for the regions of parameter space where the de-
terministic RRE model fails, i.e., regions with at least one inversion. (a) We consider the
(Ω, b) parameter space. The dashed lines are the theoretical predictions, while the solid
background color shows the simulation results. The demarcation of parameter space by
the dashed lines and by the solid colors is almost coincident, highlighting the agreement
between theory and simulation. In the white region, the EMRE breaks down since it pre-
dicts negative mean steady-state concentrations. This breakdown is induced by very large
fluctuations due to a combination of very low copy numbers and large-burst input. The
red line is the equation of the curve for Ω12(b) = 0.09658b− 0.1107 obtained from EMRE.
The orange line is the equation of the curve for Ω13(b) = 0.4189b − 0.7395 also obtained
from EMRE. The simulations do not show the existence of Ω12, whereas the least-square
fit for Ω13(b) from the SSA simulations is given by Ω13(b) = 0.4035b + 4.418. (b) Plot
of the fraction fi,j of parameter space with at least one inversion between species i and
j versus the decay rate constant k2. The peaks identify the conditions for which there is
maximum difference between the predictions of deterministic and stochastic models (see
text for discussion). In both figures, the rate constants are k0 = 10k2/b and k1 = 0.5 with
k2 = 1 in (a) and varying between 10−3 and 4.7 in (b).
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Figure 4.4: Comparison of theory and simulations for the regions of parameter space where the de-
terministic RRE model fails when the burst-size parameter b is a stochastic variable.
The probability distribution of the latter is a geometric distribution with mean 〈b〉. All
parameter values are the same as for Fig. 4.3a. The dashed lines are the theoretical
predictions, while the solid background color shows the simulation results. Comparing
Fig. 4.3a with the present shows that the increase in extrinsic noise caused by making b
stochastic leads to a larger proportion of parameter space where the RRE are qualitatively
incorrect (i.e., larger regions of inversion). The theoretical predictions here are obtained
using a heuristic modification of the EMRE to approximately account for the randomness
in burst size. The red line is the equation of the curve for Ω12(b) = 0.1954〈b〉 − 0.305
obtained from the modified EMRE. The orange line is the equation of the curve for
Ω13(b) = 0.8594〈b〉−1.756 also obtained from the modified EMRE. The simulations do not
show the existence of Ω12 and the least-square fit for Ω(13)(b) from the SSA simulations
is given by Ω13(b) = 0.7283〈b〉+ 3.691.
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4.5 Conclusions and Summary

We have elucidated the effect of discreteness on the mean concentrations in a confined monos-
table chemical reaction network at steady state. Our analysis considered a setup in which the
same chemical system is realized in a number of different volumes and the mean steady-state
concentrations are studied as a function of the volume. Molecule numbers decrease with vol-
ume, and the apparent discreteness is proportional to the inverse volume. Since both RRE
and the LNA are only valid in the limit of large-enough numbers of molecules, we surmised
that their predictions break down in small volumes containing small numbers of molecules.
Our analysis based on EMRE, a recently developed framework providing corrections to RRE
due to system discreteness or, equivalently, due to a finite compartment volume, confirmed our
initial hypothesis. The steady-state mean concentrations of a nonlinear chemical system was
found to depend on the volume of the compartment in which it is realized. For volumes above
a critical value, the mean steady-state concentrations as predicted by our theory qualitatively
agree with those predicted by RRE, i.e., the ranking of chemical species according to their
mean concentrations is the same for both predictions. For sub-critical systems this is not the
case, i.e., the ranking is changed for some pair of species. This discreteness-induced concen-
tration inversion was confirmed by exact stochastic simulations. Furthermore, we have found
that the critical compartment volume at which inversion occurs increases with the magnitude
of extrinsic noise due to a bursty input process. Our analysis also clarifies that the system size,
Ω in van Kampen’s system-size expansion, is related to the average total number of molecules
in the system, but not in a linear manner. Rather, Ω is directly proportional to a quantity
that is an upper bound of the average total number of molecules. While the concentration-
inversion effect described here is just one of a wealth of possible discreteness-induced effects,
the theoretical framework we have developed provides a relatively simple means of investigat-
ing such phenomena and is therefore expected to provide a useful tool for probing the physics
of mesoscopic chemical systems.

Our analysis is based on the EMRE and on the CME, both of which impose certain con-
straints on the conditions that can be reasonably captured within our analytical and simulation
approach. The EMRE is based on the volume expansion of the CME, which is only valid for
monostable chemical reaction networks (van Kampen, 2001). This is a limitation of the volume
expansion, but not of the CME itself. This also implies that the qualitative change of steady
state at the critical compartment volume is not due to noise-induced transitions between two
or more fixed points of the RRE (see Appendix A8). The inversion effect purely stems from a
noise-induced change in the shape of the unimodal probability distribution of copy numbers:
deviations from Gaussian increase with system discreteness, leading to corresponding changes
in the moments of the distribution. Although a few recent papers (Scott et al., 2007; Samoilov
and Arkin, 2006; Grima, 2009b, 2010a, 2009a; Thomas et al., 2010) have studied the renormal-
ization of the probability distribution or of the steady-state concentrations with volume, to our
knowledge, this is the first time that a discreteness-induced inversion effect has been found and
studied in detail. In other words, the inversion effect can be explained as follows: According to
the CME, the mean rate of a bimolecular reaction between species i and j with concentrations
niΩ

−1 and njΩ
−1, respectively (ni is number of molecules of species i), is proportional to

the mean of the product of the concentrations, Ω−2〈ninj〉. Equivalently, it is proportional to
the sum of the covariance of concentration fluctuations, Ω−2 (〈ninj〉 − 〈ni〉〈nj〉), and of the
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product of the mean concentrations, Ω−2〈ni〉〈nj〉. In the limit of large molecule numbers, the
covariance becomes very small and the mean rate is simply proportional to the product of
the mean concentrations, Ω−2〈ni〉〈nj〉; this is the RRE. As molecule numbers decrease, the
covariance grows and the mean rates of bimolecular reactions deviate from those predicted by
the RRE, leading to different concentrations. Rates and product concentrations increase if
the covariance is positive and decrease if it is negative. Hence, it is possible that if the RRE
predict the steady-state concentration of a species to be larger than that of another species,
the reverse may be true for small molecule numbers. This is the presented discreteness-induced
inversion effect.

Two other implicit assumptions of our approach are that the system is dilute and well stirred,
both necessary conditions for the validity of the CME (Gillespie, 2007). While in biochemical
systems the latter condition is not always true over the length scale of an entire cell, it may
hold in smaller compartments, particularly those smaller than the Kuramoto length (Kuramoto
and Yamada, 1976; van Kampen, 2001; Grima and Schnell, 2008). Thus, the assumption of
well-mixedness is not problematic for the scenarios studied here. The implicit assumption
of diluteness is more difficult to uphold, since the intracellular environment is crowded with
various macromolecules that occupy 5% to 40% of the cell’s volume (Schnell and Turner, 2004)
without participating in a given chemical reaction pathway. Hence, our CME-based approach
is only valid for describing reactions in lightly crowded compartments; an extension of the
study to intermediately crowded conditions may be possible through the use of CMEs with
renormalized propensity functions (Grima, 2010b).

One may ask whether the concentration inversion described here is of importance in any
real-world systems. As we show in Appendix A6, discreteness-induced inversion effects also
exist in the protein concentration output of a genetic network with negative feedback. This
motif is ubiquitous in biology, appearing in such diverse contexts as metabolism (Selkov,
1968), signaling (Goldbeter, 1975), somitogenesis (Lewis, 2003), and circadian clocks (Tyson
et al., 1999). In biological systems the gene network considered feeds into more complicated
metabolic or signal-transduction networks and it is plausible that the discreteness-induced
concentration inversions at the level of the gene network are propagated into these downstream
networks.

Practical relevance of the inversion effect requires that the critical volumes be in a physically
or physiologically meaningful range. Substituting typical parameter values in Eqs. (4.7)–(4.13):
k0 ∈ [102, 104] M s−1, k1 ∈ [5 × 104, 5 × 105] M−1s−1, k2 ∈ [105, 106] s−1 (Fersht, 1998), and
m = 1000 (Cai et al., 2008) results in critical volumes in the range 28 nm3 to 6×107 nm3

(corresponding to spheres of diameters 4 to 500 nm). This suggests that RE predictions may
become qualitatively incorrect when modeling chemical reactions inside, e.g., lipid rafts (10
to 200 nm (Pike, 2009)), endosomes and endocytic vesicles (20 to several hundred nanometers
(Helmuth et al., 2009)), sub-organellar structures in the endoplasmic reticulum (few hundred
nanometers (Sbalzarini et al., 2005; Luedeke et al., 2005)) and mitochondria (few to hundred
nanometers (Tam et al., 2010)), and inside “effective” cytoplasmic compartments (35 to 50 nm
(Provance et al., 1993)) created by molecular sieving effects. Similar predictions are expected
for reactions occurring in artificial nanoreactors, such as nanofibers, and various biomimetic
reactors that typically have diameters of less than a few hundred nanometers (Anzenbacher
and Palacios, 2009; Karlsson et al., 2004).
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5
Effect of noise on the relaxation kinetics

of mesoscopic chemical systems

“NATURE! . . . She is vanity of vanities; but not to us, to whom she has made
herself of the greatest importance. She allows every child to play tricks with
her; every fool to have judgement over her; thousands to walk stupidly over
her and see nothing; and takes her pleasure and finds her account in them all.”
– Nature: Aphorisms by Goethe, Thomas H. Huxley (1869)

We investigate the characteristics of fluctuation at a nonequilibrium steady-state of meso-
scopic chemical reaction systems. We assume that intrinsic noise is realized by decreasing
reactor volume, and extrinsic noise is realized by burst input as described in Chapter 4.

The effect of noise manifests itself differently in different types of chemical reaction networks:
In linear reaction networks, RRE predictions of the mean concentrations from the CME are
correct, regardless of the reactor volume (van Kampen, 2001; Gillespie, 1991). In nonlinear
reaction networks, however, noise induces quantitative differences from the concentrations
predicted by RRE (Gillespie, 1991; van Kampen, 2001). This quantitative difference can
become large enough to render RRE even qualitatively invalid in certain regimes (Chapter 4).
In multi-stable systems, intrinsic noise can lead to switching behavior between the multiple
fixed points of the system (Gillespie, 1991; van Kampen, 2001), as shown in Sec. 1.4.4. This
phenomenon has, e.g., been used to explain spontaneous switching behavior in biochemical
systems (Carrier and Keasling, 1999; Tian and Burrage, 2006; Samoilov et al., 2005) and the
switching of genetic programs in response to environmental changes (Kashiwagi et al., 2006).
More remarkably, intrinsic noise can induce oscillatory behavior at steady state, even when
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the corresponding RRE is away from Hopf bifurcation and hence do not exhibit oscillatory
behavior (Qian et al., 2002; Baxendale and Greenwood, 2011). This has, e.g., been used to
explain circadian rhythms in biological organisms (Barkai and Leibler, 2000; Li and Lang,
2008; Ko et al., 2010).

In this chapter, we investigate the relaxation kinetics of the fluctuations at a nonequilibrium
steady-state of both a non-oscillating and an oscillating nonlinear mesoscopic reaction network.

In Sec. 5.1 we study the characteristics of the time-autocorrelation of the steady-state con-
centration fluctuations in the trimerization model system considered in Chapter 4. The RRE
of the trimerization system has a single fixed point. In addition, the mesoscopic system pa-
rameterized as in Chapter 4 does not exhibit oscillatory behavior. This can be seen by the
relaxation of a small perturbation around the fixed point of the RRE. The eigenvalues corre-
sponding to this relaxation have negative real parts and, importantly, the absolute values of
the real parts of the eigenvalues are much larger than the absolute values of their imaginary
parts (see Appendix A8). Under this condition, oscillatory behavior is not expected even in
the presence of noise (Baxendale and Greenwood, 2011). Moreover, the RRE of the trimeriza-
tion system are always asymptotically stable in the Lyapunov sense for all rate constants and
hence does not exhibit any bifurcations (see Appendix A8).

In Sec. 5.2 we study the frequency spectrum of the steady-state concentration fluctuations
of an oscillatory mesoscopic system. We use the Brusselator (Nicolis and Prigogine, 1977;
Prigogine, 1980) as a model system. The Brusselator is a chemical reaction system that exhibits
Hopf bifurcation. Like the trimerization system, it has a single fixed point. The characteristic
of the fixed point is determined by the eigenvalues corresponding to the relaxation kinetics
of a small perturbation around the fixed point. These eigenvalues are functions of the rate
constants. When these eigenvalues have negative real parts, the Brusselator is monostable. For
some values of the rate constants the real parts of the eigenvalues vanish, the Brusselator hence
undergoes a Hopf bifurcation and the RRE exhibits limit cycle oscillations when the real parts
of the eigenvalues are positive (see Appendix A9). Interestingly, it has been observed that even
when the real parts of the eigenvalues are negative, and hence away from Hopf bifurcation,
the mesoscopic Brusselator can exhibit oscillatory behavior. These oscillations are especially
prominent when the absolute value of the real part of an eigenvalue is comparable to the
absolute value of its imaginary part (Qian et al., 2002; Baxendale and Greenwood, 2011). We
study the frequency spectrum of the fluctuations around a nonequilibrium steady-state of the
mesoscopic Brusselator under this condition. We will restrict ourselves to the effect of intrinsic
noise as realized by low copy numbers upon decrease in reactor volume Ω.

5.1 Steady-state relaxation kinetics of mesoscopic
non-oscillatory chemical systems

We study the signatures of the two noise sources that cooperate to produce the discreteness-
induced concentration inversion observed in Chapter 4: (i) low copy number as created by
finite volume Ω and (ii) extrinsic noise due to the burst input b. We quantify their influence
on the relaxation kinetics of nonlinear reaction networks. We use the time-autocorrelation
function (ACF) of concentration fluctuations around a nonequilibrium steady-state via as
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integral (here we call it lifetime) and derivatives∗. For this we use (i) the LNA of the CME
via the van Kampen expansion in the system volume (van Kampen, 2001; van Dongen, 1987)
and (ii) the full CME via the partial-propensity direct method (PDM) (see Sec. 3.3).

We show that the lifetimes of chemical species are modulated by burst input b and volume
Ω (or confinement Ω−1). We quantify lifetime by the integral of the ACF of the concentration
fluctuations. The integral or the lifetime of the ACF is the fraction of the power of the fluctu-
ations at zero frequency. Experimentally, in mesoscopic biochemical systems, the ACF can be
measured using fluorescence-lifetime imaging microscopy (FLIM) or fluorescence-correlation
spectroscopy (FCS) (Lakowicz, 2006).

Analysis of FLIM and FCS spectra, however, is based on deterministic RRE, which is
adequate for linear reaction networks (Elson, 1974; Magde, 1974; Qian and Elson, 2004). For
nonlinear reaction networks in small volumes and with bursty input the RRE-based analysis
might be inadequate. We show that confinement increases the lifetimes of all reactants in a
nonlinear reaction. Burst either increases or decreases the lifetimes. Furthermore, we show
that the derivatives of the ACF of the concentration fluctuations are affected in opposite ways
by burst b and confinement Ω−1, thus discriminating between the two noise source. This
directly links the present results to experimental applications in two ways: (i) Knowing the
lifetime modulation introduced by confinement and burst may allow estimating reaction rates
in experimental systems, since the lifetime is a function of reaction fluxes and covariances,
which are in turn functions of burst and confinement. (ii) Derivatives of the ACF can be used
to discriminate between the confinement- and burst-induced effects.

We believe that our findings are useful to: (i) Use FLIM or FCS to measure burst size b and
volume Ω when the reaction rates are known. (ii) Correct for the effects of burst input and
confinement when experimentally measuring reaction rates. (iii) Understand the mechanisms
that deviate stochastic kinetics from its deterministic counterpart and choose the right level
of description when modeling nonlinear reaction networks. (iv) Account for the influences
of confinement and burst when formulating coarse-grained governing equations of nonlinear
reaction models.

In Sec. 5.1.1 we introduce the model. In Sec. 5.1.2 we study the ACF from the LNA, which
shows modulation by the burst b alone. In Sec. 5.1.3, using the PDM SSA we numerically
generate population trajectories from the full CME as system volume Ω is shrunk and burst
b is increased. The ACF of these trajectories has that of the LNA as a baseline. Sec. 5.1.4
provides an analysis of the results and concludes.

∗Note that ACF is normalized by the variance such that the total power of the fluctuations is one.
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5 Effect of noise on the relaxation kinetics of mesoscopic chemical systems

5.1.1 Model

We consider the same reaction network as in Chapter 4, namely the trimerization network
described in Eq. 4.9:

Ø
k0−→ bS1,

S1 + S1
k1−→ S2,

S1 + S2
2k1−−→ S3,

S1
k2−→ Ø,

S2
k2−→ Ø,

S3
k2−→ Ø . (5.1)

We again impose the mass-balance condition as prescribed by Eq. 4.18: Φ = vbk0/k2, where
v is the volume of a single monomer and Φ is the average occupied volume fraction at steady
state. We solve the CME (Eq. A8.3) approximately using (i) the LNA (Appendix. A5.1), and
(ii) numerically generating exact trajectories of the CME using PDM. We then compute the
ACF of the concentration fluctuations of species Sn at steady state as

Rn(t) = 〈φ̃∗n(0)φ̃∗n(t)〉ss/σ2
φ∗n
. (5.2)

Here, 0 is a time origin at steady-state, i.e. after the initial relaxation period −∞ < t < 0,
where −∞ represents an arbitrary origin in the past. The average 〈·〉ss is taken at steady state

at time origins and independent stochastic trajectories, φ̃∗n = φ∗n − 〈φ∗n〉ss is the fluctuation,

and σ2
φ∗n

= 〈φ̃∗n(0)φ̃∗n(0)〉ss is the steady-state variance.
We compute the lifetime of an aggregate of size n as

τn =

∫ ∞

0

Rn(t) dt ≈
∫ t×n

0

Rn(t) dt, (5.3)

where t×n is the first zero crossing of Rn(t). This is a measure of the fraction of the power
of concentration fluctuations of the aggregate Sn at zero frequency, in accordance with the
Wiener-Khintchine theorem (Gillespie, 1991). Since the fixed point of the trimerization sys-
tem is a stable spiral, the ACF becomes negative due to oscillatory relaxation, hence the
approximation in Eq. 5.3 may not be valid. The frequency of these oscillatory relaxation,
however, is small enough compared to the rate of decay of the ACF to justify the approxima-
tion in Eq. 5.3 (see Appendix A8).

We also compute the decay-rate function of the ACF as

χn(t) = − d

dt
Rn(t) (5.4)

and the initial curvature of the ACF

Zn =
d2

dt2
Rn(0). (5.5)
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These quantities serve as (curve) characteristics to study the effects of b and Ω on the kinetics.
In addition, they provide a connection with experiments since they can directly be calculated
from standard FCS or FLIM read-outs.

In our model, we set k2 = 1, v = 0.01, k1 = 0.5, and Φ = 0.1 and compute k0 using Eq. 4.18.
We also limit ourselves to (b,Ω)-regimes where population the fluctuations are not larger than
their mean. We estimate the bounds of this regime as follows: The mean number of particles
at steady state is Φ Ω/v = 10Ω. From Eq. A7.10 we see that the standard deviation at steady
state without any aggregation, i.e., for a system containing only monomers, is proportional
to (bφΩ/(2v))1/2 (see Appendix A7). We impose the mean as an upper bound for twice
the standard deviation. This imposes a b-dependent lower bound on the system volume:
φΩ/v > 2b. Interestingly, we observe that below this lower bound for the volume Ω, the
EMRE fail as indicated by the white region in Fig. 4.3a.

5.1.2 Low confinement: the linear-noise approximation (LNA)

We approximate the CME associated with our model by the LNA (van Kampen, 2001). The
LNA of the master equation is valid at low confinement, i.e., for large enough reactor volumes.
We do this in order to (i) obtain baseline kinetics relative to which to interpret the full-CME
kinetics provided in the next section (see Sec. 5.1.3), (ii) obtain analytical functions for the
ACF, and (iii) reach the large-volume, low-confinement limit where the modulation of the
ACF by Ω vanishes, thus isolating the dependence on b.

The details of the LNA are presented in Appendix A5.1. In short, the LNA consists of
retaining leading-order terms in a Taylor expansion of the concentration probability function
P (φ∗, t) in the small parameter Ω−1/2. The latter enters after assuming that the fluctuations
around the concentration of aggregate Sn scales with reactor volume Ω as Ω−1/2εn, where εn is
a random variable evolved by a master equation (van Kampen, 2001; van Dongen and Ernst,
1987; van Dongen, 1987; Grima, 2009b).

In the LNA, (i) the noise εn is Gaussian, (ii) the mean concentration 〈φ∗n〉 obeys the deter-
ministic RRE, and (iii) the ACF as defined in Eq. 5.2 does not depend on Ω (van Kampen,
2001). Despite this, the LNA remains useful as the covariances do depend on the burst b, as
we show in this section.

Considering that in the LNA the covariances 〈φ̃∗nφ̃∗m〉 coincide with the second moments
〈φ∗nφ∗m〉, because the mean noise is zero, we solve the time evolution of the first and second
moments (see Eqs. A5.27 and A5.31 in Appendix A5.1) at steady state to obtain the ACF at
steady state,

R1(t) = a1,1e−γ1t + a1,2e−γ2t + a1,3e−γ3t

R2(t) = a2,1e−γ1t + a2,2e−γ2t + a2,3e−γ3t

R3(t) = a3,1e−γ1t + a3,2e−γ2t + a3,3e−γ3t. (5.6)

The coefficients ai,j , i, j = 1, . . . , 3, are ratios of two functions that are linear in the covariances.
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The rates γn, n = 1, . . . , 3, are (Appendix A8)

γ1 = k2 + 3k1φ1,ss + k1φ2,ss − k1

√
−3φ2

1,ss + 6φ1,ssφ2,ss + φ2
2,ss

γ2 = k2 + 3k1φ1,ss + k1φ2,ss + k1

√
−3φ2

1,ss + 6φ1,ssφ2,ss + φ2
2,ss

γ3 = k2, (5.7)

where φn,ss is the steady-state RRE concentration of species Sn. Note that γ1 and γ2 may have
imaginary parts that give the ACF an oscillatory contribution, introducing anticorrelation at
late times. These imaginary parts, however, do not point at limit cycle oscillations. They
merely show the nature of the fixed point as a stable spiral. This makes the ACF have
properties of a weakly underdamped behavior (i.e., almost overdamped) in this case, since
Re γn & 5 Im γn (see Appendix A8). By integrating Eq. 5.6 over [0,∞) we get the lifetimes,

τ1 = a1,1γ
−1
1 + a1,2γ

−1
2 + a1,3γ

−1
3

τ2 = a2,1γ
−1
1 + a2,2γ

−1
2 + a2,3γ

−1
3

τ3 = a3,1γ
−1
1 + a3,2γ

−1
2 + a3,3γ

−1
3 , (5.8)

where the integrals of Eq. 5.6 from their first zero-crossings up to infinity are negligibly small.
The corresponding integrals over [t×n ,∞) for the SSA-computed ACFs remain small.

The pre-factors ai,j , i, j = 1, . . . , 3, are ratios of two functions linear in the burst b because
each covariance is linear in b. This is seen by solving Eq. A5.31 at steady state with the
mass-balance condition. As a consequence, ai,j , i, j = 1, . . . , 3, become b-independent at large
enough b, and so do the lifetimes. Figure 5.1a shows how the lifetimes depend on burst.
As burst increases from the no-burst case b = 1, monomer lifetimes decrease and multimer
lifetimes increase. As seen from Eq. 5.8, the lifetimes become b-independent at large enough
b, Fig. 5.1b. This thus defines a high-b region above b ≈ 300. It can also be seen from the
general form of Eq. 5.8 for N species that, for a nonlinear reaction network at a nonequilibrium
steady-state, τn will either increase or decrease with b.

Figure 5.2 shows the decay-rate functions χn(t) for several burst values. For monomers,
χ1(t) remains monotonic as burst increases, with its maximum at t = 0. For dimers, χ2(t)
becomes non-monotonic above a threshold burst b ≈ 10, while for trimers the threshold sets
in before, at b ≈ 6. In other words, the decay-rate function of the non-aggregating multimers
(trimers) is more sensitive to burst than that of the aggregating multimers (dimers). Note that
the maximum that develops shifts from being at t = 0 towards later times as burst increases
the time tχn,max at which χn(t) reaches its maximum. We interpret tχn,max as the time of
fastest decay, since the (absolute value of the) ACF slope is maximum at this time.

In this section we have calculated the ACF from the linear-noise approximation of the CME,
from which we obtained the lifetimes analytically. We observed that the ACF is a superposition
of exponentials with pre-factors modulated by the bursty driving, thereby establishing the
baseline of the burst-induced modulation of the kinetics.
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5.1 Steady-state relaxation kinetics of mesoscopic non-oscillatory chemical systems

Figure 5.1: Lifetimes from the linear-noise Fokker-Planck approximation at low confinement. Lifetime
as a function of burst for (a) small and (b) large bursts, normalized to the no-burst, unit-
stoichiometry case b = 1 for monomers n = 1, dimers n = 2 and trimers n = 3. The region
above ca. b = 300 defines the high-b region, where lifetimes become insensitive to b. Note
that the lifetime of monomers decreases, whereas that of the dimers and trimers increases.
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Figure 5.2: Decay-rate functions from the linear-noise Fokker-Planck approximation at low confine-
ment for several burst values b. (a) Monomers n = 1; (b) Dimers n = 2; (c) Trimers
n = 3. For dimers and trimers there is a threshold burst above which χn(t) becomes
non-monotonic in t. Furthermore, the maximum shifts towards later times with increasing
burst b.
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5.1.3 Beyond the LNA: the full CME

We showed in the previous section how the ACF depends on burst in the low-confinement limit.
In this section we show how higher confinement further modulates this ACF. We compute the
stochastic trajectories of the populations ni as given by the CME to show that shrinking the
volume at high-enough confinement further modulates lifetimes and the time of fastest decay.
In addition, we introduce the ACF’s initial curvature as a further characteristic.

To generate stochastic trajectories from the CME we use the PDM SSA (Sec. 3.3). For each
parameter set we generate an ensemble of 20 000 independent trajectories at steady state.
Each trajectory is roughly 20(k2)−1 long and we record 4 000 equi-spaced data points with a
time resolution of 0.005(k2)−1. The initial condition for each trajectory is ni(−∞) = 0, where
−∞ represents an arbitrary origin in the past and −∞ < t < 0 is a period of relaxation to
steady state.

5.1.3.1 Lifetime

Figure 5.3 shows the lifetimes τn(Ω) as a function of volume Ω for both no burst (b = 1) and
a burst value in the high-burst regime observed in the LNA limit (b = 500). We see that
shrinking Ω increases τ1 and τ2, but not τ3, and that this effect is more appreciable at larger
Ω as the burst b increases.

Figure 5.4 shows maps of lifetime versus volume for a burst range. The trimers’ map
shows that volume does not affect lifetime, as also seen in Fig. 5.3. Figure 5.4 shows that for
monomers and dimers, increasing burst b extends the Ω-interval over which the lifetimes vary
with Ω. This can also be seen in Fig. 5.3. In other words, burst seems to act as an amplifier
for confinement-induced lifetime modulation. This is analogous to the discreteness-induced
inversion occurring at larger volumes with increasing burst size (see Fig. 4.3a).

The monomer lifetime τ1 deserves special attention because it is the only lifetime that is
non-monotonic in the burst b, see Fig. 5.4a. For any Ω fixed in the interval 100 < Ω ≤ 1000, τ1
decreases with b and then increases back for b beyond some threshold bτ1 . The threshold bτ1 ,
in turn, decreases with confinement Ω−1. The non-monotonicity of τ1(b) is a high-confinement
effect because it does not occur in the LNA, see Fig. 5.1. The existence of the threshold bτ1 ,
nonetheless, is not surprising because for monomers, confinement and burst cause opposing
modulations: confinement increases lifetimes whereas, as seen from the LNA, burst decreases
them. Since burst amplifies the confinement-induced modulation of the lifetimes, it acts as a
−/+ switch for it. Another interesting observation is the close proximity of the line Ω(bτ1)
to the critical volume Ω13(b) that demarcates the region of inversion from the region of no
inversion in Fig. 4.3a. At this point the relationship between the proximity of these lines
remains unexplored and unexplained.

We can also view the problem from the perspective of how confinement affects burst-induced
lifetime modulation: varying b while we fix Ω below the LNA limit, see Fig. 5.4. In other words,
by looking into a hypothetical volume-dependent, high-confinement version of Eq. 5.8. Note
also that the lifetimes τ2(b) and τ3(b) are the only lifetimes increasing with burst b in the LNA
limit. Recall that further confinement Ω−1 allows the decreasing function τ1(b) to acquire
a slope of the same sign of that of τ2(b) and τ3(b) for large enough burst b. This suggests
that confinement is an amplifier of burst-induced lifetime modulation. This amplification,
in turn, must result from O(Ω−α) terms entering ai,j , i, j = 1, . . . , 3, and/or O(Ωα) terms
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entering γj , j = 1, . . . , 3, in Eq. 5.8 for some α > 0. This is in agreement with van Kampen’s
observation that nonlinearity in chemical reaction networks gives rise to additional Debye
terms in the fluctuation spectrum (van Kampen, 2001), making them more relevant at higher
confinement.

In summary, we have shown that confinement increases the lifetimes of all species that are
reactants in a bimolecular reaction. Confinement-induced modulation acts on top of the burst-
induced modulation seen in the LNA limit. It provides an effective modulation that may lead
to non-monotonic behavior.
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Figure 5.3: Lifetime from the full-CME trajectories. We show the lifetimes as a function of system
volume Ω for constant burst b, normalized to its corresponding Ω = 1000 system. (a) No
burst, b = 1; (b) Higher burst, b = 500 for monomers n = 1, dimers n = 2 and trimers
n = 3. Note that the system becomes insensitive to Ω at large-enough Ω, as the linear-
noise approximation predicts (see Sec. 5.1.2). As volume decreases, the system departs
from linear-noise behavior. Note that trimers are insensitive to volumes in the present
example as they are not reactants in any nonlinear reaction.
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Figure 5.4: Lifetimes from the full-CME trajectories. We show the lifetimes normalized to their value
at (b,Ω) = (1, 1000). (a) Monomers n = 1; (b) dimers n = 2; (c) trimers n = 3. The void
region for small Ω and large b corresponds to population fluctuations becoming larger than
the mean. The plot show an interpolation of data sampled at intervals (∆b,∆Ω) = (10, 10).

120



5.1 Steady-state relaxation kinetics of mesoscopic non-oscillatory chemical systems

5.1.3.2 Derivatives of the time-autocorrelation function

Figure 5.5 shows representative samples of how the decay-rate function χn(t) responds to
volume shrinking at burst b = 500. This burst value corresponds to a large burst regime for the
multimers (n = 2, 3) at low confinement, see Fig. 5.2. Our aim here is to study how confinement
alters this low-confinement behavior. We look for qualitative features that correlate with
changes in volume Ω and burst b. These features may possibly be used to develop quantitative
methods to characterize local volume and burst from FCS-sampled ACFs.

From Fig. 5.5 we can see that for monomers, χ1(t) is monotonic. For multimers (n = 2, 3),
χn(t) is non-monotonic, making the time tχn,max at which χn(t) is maximum greater than zero
i.e., tχ1,max = 0, tχ2,max > 0 and tχ3,max > 0. This change in monotonicity of χ2(t) and χ3(t)
is a purely burst-induced modulation and exists already in the LNA limit (see Sec. 5.1.2).
Note that confinement reduces tχn,max, as opposed to burst, which increases it, see Fig. 5.2.

Up to now we have studied two-dimensional datasets {(t, χn)}. To facilitate feature detection
in an FCS experiment, it would be desirable to reduce the dimensionality to one. To this end
we study the ACF’s initial curvature Zn. Since Zn = − d

dtχn(0), from Fig. 5.5 we see that Zn
is monotonic for all species as the volume shrinks.

Figure 5.6 shows the ACF’s initial curvature Zn for burst and volume ranges. For monomers,
confinement increases Z1, more noticeably at larger burst. Moreover, Z1 > 0, reflecting the
monotonicity of χ1(t). For multimers (n = 2, 3), on the contrary, confinement reduces the
ACF’s initial curvature from a positive to a negative value as we go from the small-b–large-Ω
region to the large-b–small-Ω region. This reflects the non-monotonicity of χn(t) for n > 1,
beyond a burst threshold. In other words, the change of monotonicity is a purely burst-induced
modulation, also at high confinement. There is no qualitative difference between aggregating
(n = 2) and non-aggregating (n = 3) multimers.
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Figure 5.5: Decay-rate functions from full-CME trajectories. We show the decay-rate functions χn(t)
for (a) monomers n = 1, (b) dimers n = 2, and (c) trimers n = 3 as volume shrinks at
b = 500. The time tχ,max

2 is defined as the position of the maximum. Shrinking volume
alone reduces tχ2,max, as opposed to increasing b, see Fig. 5.1. A similar trend is also
shown by the trimers.
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Figure 5.6: ACF initial curvature from full-CME trajectories. We show the ACF’s initial curvature,

Zn ≡ d2

dt2
Cnn(0) = − d

dt
χn(0), normalized by its absolute value at (b,Ω) = (1, 1000); (a)

for monomers n = 1, (b) dimers n = 2, and (c) trimers n = 3. This quantity serves as a
lower-dimensional read-out of the decay-rate function χn(t). The void region for small Ω
and large b corresponds to population fluctuations becoming larger than the mean. The
plots show an interpolation of data sampled at intervals (∆b,∆Ω) = (10, 10).
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5.1.4 Conclusions

In Table 5.1 we summarize the behavior of the most relevant characteristics we studied, which
can be obtained a posteriori from standard FCS or FLIM read-outs. This table may serve as
a reference for contrasting burst-induced and confinement-induced modulations and may be
useful for later studies of the mechanisms causing them. An immediate use may be to help
discern whether the noise source is burst-induced or confinement-induced.

Characteristic LNA CME

(∆b,∆Ω−1) (∆b,∆Ω−1)

τ1 (−, 0) (^,+)�

τ2 (+, 0) (+,+)

τ3 (+, 0) (+, 0)F

Z1 (+, 0) (+,+)

Z2 (−, 0)N (−,+)N♠
Z3 (−, 0)N (−,+)N♠

tχ1,max (0, 0) (0, 0)

tχ2,max (+, 0) (+,−)

tχ3,max (+, 0) (+,−)

Characteristics upon increasing burst b and confinement Ω−1, encoded as pairs (∆b,∆Ω−1),
where ∆b,∆Ω−1 ∈ {+,−, 0,^} is the modulation of the relevant characteristic as b or Ω−1

increases, respectively, while keeping the other constant. Here τn is the lifetime, Zn is the
initial curvature of the ACF and tχn,max is the time at which the decay rate of the ACF is
maximum for monomers n = 1, dimers n = 2 and trimers n = 3 (see Sec. 5.1.1). The
modulation states are positive (+), negative (−), negligible or zero (0), and
decreasing-then-increasing (^). �: ^ because there exists a competition of burst-induced
versus confinement-induced modulation. F: ∆Ω−1τn ≡ 0 for species reacting only
unimolecularly. N: ∆bZn decreases from positive to negative, reflecting the role of burst in
changing χn(t) monotonicity. ♠: ∆Ω−1Zn does not change sign, hence Ω−1 does not change
χn(t) monotonicity.

Table 5.1: ACF characteristics upon increasing burst b and confinement Ω−1.

The presence of anti-correlations implies that care must be taken when relating lifetimes as
we define them to the correlation time τc in the expression for the ACF R(t) ∝ e−t/τc cosω0t.
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The quantity we refer to as lifetime τ is the integral of the ACF. In other words, the lifetime
is the power spectral density of the fluctuations at zero frequency. Only in the absence of
oscillations ω0 = 0 can we say that the lifetime τ is the same as the correlation time τc. In our
case, τ−1

c is at least five times larger than ω0 in the LNA, and hence the oscillatory relaxation
is minimal. Truncating the ACF at its first zero crossing is therefore not such a restrictive
assumption. In cases where τ−1

c is comparable to or less than ω0, the power spectral density
of the fluctuations, which is the Fourier transform of the ACF, would be more appropriate. In
Sec. 5.2 we thus investigate the power spectral density of a mesoscopic reaction system where
τ−1
c is less than ω0. We summarize the relationship between the lifetime, correlation time and

the oscillatory frequency ω0 in the summary section of this chapter.

Including scission of aggregates or multimers as a backward reactions in Eq. 4.8 would
not modify the qualitative behavior of the results. This is because scission is a unimolecular
reaction, whose reaction degeneracy, and hence its propensity, is linear in the population,
while the degeneracy for aggregation is nonlinear (Gillespie, 1976, 1992; van Kampen, 2001).
Consequently, scission would modify the populations at the same rate for all reactants Sn+m

and would not introduce any additional nonlinearities. Note that scission is not negligible for
aggregates of low-enough interfacial tension, whose equilibrium in the absence of driving is
not totally displaced to the product side of the aggregation reactions.

In summary, we have characterized fundamental properties of the relaxation kinetics of a
nonlinear and non-oscillating stochastic reaction network around a nonequilibrium steady-
state. We have chosen as a model a confined, open colloidal aggregation system in a finite
volume Ω. The system is driven by a monomer influx in bursts of b monomers and a non-
burst multimer outflux. Specifically, we studied the trimer aggregation network as the simplest
aggregation network comprising all types of elementary reactions. This makes our observations
on the relaxation kinetics applicable also to larger aggregation networks and to other nonlinear
reaction networks around a nonequilibrium steady-state. We studied the role of (i) low copy
number created by confinement Ω−1 at constant volume fraction, and (ii) burst influx b. Both
of these are noise sources that increase concentration fluctuations.

We accounted for these stochastic effects using (i) a linear-noise, Fokker-Planck approxima-
tion, valid in the low-confinement limit, and (ii) exact trajectories of the CME from a stochastic
simulation algorithm, modeling high confinement. We used the time autocorrelation function
(ACF) of species concentrations to study the relaxation kinetics towards the nonequilibrium
steady-state.

We have proposed the following curve characteristics to study the response of the ACF of a
species n to confinement (inverse volume) and burst: (i) the lifetime τn =

∫∞
0
Cn(t)dt, (ii) the

decay-rate function χn(t) = − d
dtCn(t), and (iii) the ACF’s initial curvature Zn = d2

dt2Cn(0).

We observed that increasing burst b monotonically increases or decreases the lifetimes (or
the fraction of the power of the fluctuations at zero frequency) of all species. On the other
hand, confinement Ω−1 increases the lifetimes of those species undergoing bimolecular reactions
(monomers and dimers), but does not modulate those undergoing only unimolecular reactions
(trimers). This can lead to a competition between confinement-induced and burst-induced
modulations. From these observations we hypothesize that the ACF is modulated through
terms of the form bαΩ−β for some α ≥ 0, β ≥ 0, in agreement with van Kampen’s observation
of nonlinearity giving rise to additional Debye terms in the fluctuation spectrum (van Kampen,
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2001) rendering the additional terms systematically more relevant at higher confinement.
Burst alone is responsible for making χn(t) non-monotonic for some species. The peak in

the non-monotonic χn(t), reflected by Zn, is shifted in opposite directions by burst b and
confinement Ω−1. This observation might be useful to differentiate between extrinsic noise
due t burst b and intrinsic noise due to confinement Ω−1. Recently, Hilfinger and Paulsson
have proposed using read-outs of fluctuations from two independent and identical reaction
systems embedded in the same environment to differentiate between extrinsic noise due to
dynamic environments and intrinsic noise due to low population (Hilfinger and Paulsson, 2011).
They have shown that for nonlinear reaction networks the effect of intrinsic and extrinsic are
coupled. We observe this coupling in our analysis. Additional relationships between the results
presented by Hilfinger and Paulsson, and ours will be investigated in the future.

We believe that our results are useful to measure volume and burst in systems with known
reaction rates, or, alternatively, correct for the effects of volume and burst when experi-
mentally measuring reaction rates using fluorescence-lifetime imaging microscopy (FLIM) or
fluorescence-correlation spectroscopy (FCS). Furthermore, our results might help understand
the mechanisms that deviate the stochastic kinetics of nonlinear reaction networks at high
confinement and burst from their deterministic counterpart.

5.2 Steady-state relaxation kinetics of mesoscopic oscillatory
chemical reaction systems

We investigate the effect of volume Ω or confinement Ω−1 on the frequency spectrum of the
fluctuations in a mesoscopic chemical reaction system at a nonequilibrium steady state. For
this purpose we choose a reaction network that exhibits oscillatory behavior in the presence of
intrinsic noise. Oscillatory chemical reaction networks are appealing systems to study as they
can exhibit a wide range of complex behaviors, such as bifurcations, limit cycles, and chaos in
different parts of their phase spaces. Consequently, they have been shown to be involved in
a number of fundamental phenomena, including pattern formation (Kuramoto and Yamada,
1976), turbulence (Mertens et al., 1994; Kuramoto, 2003), chemical waves (Kuramoto, 2003),
and vortex dynamics (Wu et al., 1991). Chemical oscillators also play important roles in
biological systems, ranging from circadian clocks (Barkai and Leibler, 2000; Li and Lang, 2008;
Ko et al., 2010; O’Neill et al., 2011) to rhythmic gene expression and metabolism (Schibler and
Naef, 2005), glycolytic oscillators (Hess, 1979; Chandra et al., 2011), embryonic segmentation
clocks (Pourquié, 2003), and cell-division control in both space and time (Hu and Lutkenhaus,
1999; Novak and Tyson, 1993; Tyson et al., 1996).

Here, we use an exact SSA and a mesoscopic oscillatory model system away from Hopf
bifurcation to characterize the effect of intrinsic noise on the frequency spectrum of the steady-
state concentration fluctuations. We use Gillespie’s exact SSA (Gillespie, 1977) to sample
trajectories governed by the corresponding CME. The impact of noise is quantified by changes
in the power spectral density (PSD) of the concentration fluctuations at a nonequilibrium
steady state. Larger intrinsic noise is realized by decreasing the reactor volume Ω at constant
macroscopic concentration, hence decreasing the total number of reactive molecules in the
system. We observe that the PSD has a Lorentzian-like form, confirming an earlier study (Xiao
et al., 2007). We, further, show that the frequency at which the PSD is maximum depends on
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5.2 Steady-state relaxation kinetics of mesoscopic oscillatory chemical reaction systems

the reactor volume and hence the noise magnitude. We observe that the peak shifts toward
lower frequencies with increasing intrinsic noise. This shift is also accompanied by an increase
in the bandwidth of the fluctuation spectrum.

Interactions between several oscillatory systems may lead to non-trivial effects (Cohen and
Neu, 1979). We hence also study cascades of downstream-coupled mesoscopic chemical sys-
tems and compare the results to a single-stage system and to the large-Ω regime (Shibata,
2004; van Kampen, 2001). We show that due to intrinsic noise, each cascade stage further
amplifies the shift in the peak of the PSD towards lower frequencies. For a fixed volume,
the bandwidth decreases along the cascade, rendering the peak sharper and more relevant
with every additional stage. In biology, downstream-coupled cascades of reaction networks
are found, e.g., as cascades of autocatalytic reactions or in signaling cascades. This includes
the up to six downstream-coupled autocatalytic stages of MAPK signaling cascades (Seger
and Krebs, 1995; Angeli et al., 2004), which can exhibit oscillatory behavior under global
feedback (Kholodenko, 2000). Another example of an oscillatory autocatalytic biochemical
system is found in cell cycle control (Novak and Tyson, 1993; Tyson et al., 1996).

We believe that our findings shed light on the effect of intrinsic noise on mesoscopic oscilla-
tory chemical reaction systems. We show that intrinsic noise can not only induce oscillatory
behavior in systems away from Hopf bifurcation (Qian et al., 2002; Baxendale and Green-
wood, 2011), but that it also alters the frequency spectrum of the oscillations. The key
novelty in our findings is the shift of the peak of the Lorentzian-like PSD with increasing
intrinsic noise. Our findings can be used to understand the fundamental effects of intrinsic
noise in (cascades of) mesoscopic chemical reaction networks. Furthermore, it has been shown
that steady-state fluctuation spectra can aid parameter identification of stochastic chemical
reaction networks (Munsky et al., 2009). Under this premise, our results can be used to
more reliably identify the parameters of mesoscopic chemical reaction networks by using the
corrected fluctuation–relaxation kinetics as an additional fingerprint of the effects of intrinsic
noise, where the time series of steady-state fluctuations can, e.g., be obtained using fluores-
cence correlation spectroscopy (FCS) (Lakowicz, 2006; Qian and Elson, 2004; Rigler and Elson,
2001). See Chapter 7.

In Sec. 5.2.1 we present the model system. We present the results in Sec. 5.2.2 and conclude
in Sec. 5.2.3.

5.2.1 Model

We consider a chain of downstream-coupled Brusselators (Shibata, 2004) in a reactor of volume
Ω (see Fig. 5.7) as a model system. The Brusselator is a model system for autocatalytic
reactions. Examples of autocatalytic reactions include the Belousov-Zhabotinsky reaction,
MAPK signaling cascades (Seger and Krebs, 1995; Angeli et al., 2004), and activation of the
M-phase promoting factor in cell-cycle control (Novak and Tyson, 1993; Tyson et al., 1996).
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5 Effect of noise on the relaxation kinetics of mesoscopic chemical systems

The reaction network of our model system is:

X0
k1−→ X1

Xn
k2−→ Xn+1 n = 1, . . . , N − 1

XN
k2−→ ∅

Xn
k3−→ Yn n = 1, . . . , N

2Xn + Yn
k4−→ 3Xn n = 1, . . . , N , (5.9)

where n denotes the stage of the cascade and N ≥ 1 the total number of stages. The k’s are
the macroscopic reaction rates. Each stage n ≥ 1 involves reactions between two species, Xn

and Yn. The first stage of the cascade is driven by a buffer (species X0) whose concentration
is fixed at all times. Every subsequent stage of the cascade is driven by species Xn−1 of the
previous stage. Therefore, the first stage n = 1 is independent of the subsequent downstream
stages (n > 1). In general, any stage n = q is independent of all subsequent downstream
stages (n > q).

Figure 5.7: Illustration of the model system of a series of N downstream-coupled Brusselators. The
cascade of Brusselator reactions progresses in a mesoscopic reactor volume Ω.

The CME corresponding to the reaction system in Eq. 5.9 is given by

∂P (X1, Y1)

∂t
= x0Ωk1(E−1

X1
− 1)P (X1, Y1) + k2(E1

X1
− 1)X1P (X1, Y1)

+ k3(E1
X1
E−1

Y1
− 1)X1P (X1, Y1)

+
k4

Ω2
(E−1

X1
E1

Y1
− 1)X1(X1 − 1)Y1P (X1, Y1)

∂P (Xn, Yn)

∂t
= k2(E1

Xn − 1)XnP (Xn, Yn) + k3(E1
XnE

−1
Yn
− 1)XnP (Xn, Yn)

+
k4

Ω2
(E−1

Xn
E1

Yn − 1)Xn(Xn − 1)YnP (Xn, Yn), n = 2, . . . N , (5.10)
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5.2 Steady-state relaxation kinetics of mesoscopic oscillatory chemical reaction systems

where Xn and Yn are the populations (copy numbers) of species Xn and Yn, respectively, x0

is the concentration of the buffer X0, P (Xn, Yn) is the probability of having Xn molecules of
species Xn and Yn molecules of species Yn, and EX is a step operator defined as EmX f(X,Y ) =
f(X + m,Y ) for any function f(·). The corresponding RRE describing the deterministic
time evolution of the concentrations xn = Xn/Ω and yn = Yn/Ω is given in Eq. A10.1 (see
Appendix A10).

For simplicity, we set k2 = k4 = 1. We also enforce the concentration x0 of the buffer
X0 to be 1 at all times. Under these conditions, the fixed point of the deterministic RRE
(Eq. A10.1) is given by xn(t → ∞) = k1 and yn(t → ∞) = k3/k1 for all n ≥ 1. This fixed
point is exponentially stable if k3 < k2

1 + 1, undergoes a Hopf bifurcation at k3 = k2
1 + 1,

and becomes unstable for k3 > k2
1 + 1 (see Appendix A9). In the latter case, xn(t) and yn(t)

exhibit oscillations for each n = 1, . . . , N . In the deterministic RRE description, the condition
for a limit cycle has to be strictly fulfilled in order to observe oscillatory behavior, whereas
in the stochastic description oscillations may be observed even when the limit-cycle condition
for the RRE is not fulfilled (Qian et al., 2002; Baxendale and Greenwood, 2011).

We numerically sample trajectories from the CME (Eq. 5.10) using the direct method (Gille-
spie, 1976), an exact formulation of Gillespie’s stochastic simulation algorithm (Gillespie,
1977), for different reactor volumes Ω. The reactor volume determines the magnitude of
intrinsic noise, as smaller Ω decrease the total number of reactive molecules in the system and
hence increase the intrinsic noise magnitude. We set N = 20, thus simulating a cascade of 20
Brusselator stages, which includes the single-stage case when looking at the concentrations in
stage 1, since they are independent of ll subsequent stages. This value for N is chosen arbi-
trarily and the results would not change if a different N were chosen. The concentrations of
all species are 0 at time t = 0. We also set k1 = 1 and k3 = 1. For these parameters, the fixed
point of the system is stable, and the deterministic system does hence not exhibit limit-cycle
oscillations, reaching the fixed point (xn, yn) = (1, 1) for all n = 1, . . . , N (see Appendix A9).
The mesoscopic system, however, shows oscillations due to intrinsic noise. This can be seen in
Fig. 5.8, where the deterministic RRE trajectories from the first and last cascade stages are
shown in panels (b) and (d), respectively, and a single trajectory sampled from the CME in
panels (a) and (c). Starting from the above initial condition, the stochastic trajectory shows
oscillations, whereas the deterministic trajectory reaches the stable fixed point.

We study the normalized steady-state PSD Sn(ω) of the concentration fluctuations of species
Xn (species X of the n-th stage) for n = 1, . . . , N as a function of the angular frequency ω for
different reactor volumes Ω. The normalized steady-state PSD Sn(ω) is defined as the Fourier
transform of the ACF Rn(t):

Sn(ω) = F(Rn(t)) , (5.11)

where the ACF is

Rn(t) = 〈x̃n(0)x̃n(t)〉ss/σ2
n . (5.12)

The subscript ss denotes quantities computed at steady state, x̃n = xn − 〈xn〉ss, and the
variance at steady state σ2

n = 〈x̃n(0)x̃n(0)〉ss. The normalization of Rn(t) with σ2
n factors

out the total energy of the fluctuations, so that
∫∞

0
Sn(ω)dω = 1. We hence call Sn(ω)

the normalized steady-state PSD. It quantifies the fraction of energy of the fluctuations at
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5 Effect of noise on the relaxation kinetics of mesoscopic chemical systems

Figure 5.8: Plot of a single trajectory in phase space (xn, yn) for the first and last stages, n = 1 and
n = 20, of the model system (Eq. 5.9) with N = 20 and reactor volume Ω = 100. For this
system, the RRE predict an exponentially stable fixed point at (xn, yn) = (1, 1). (a) A
single stochastic trajectory sampled from the CME for stage n = 1; (b) the corresponding
deterministic RRE prediction for the same parameters. (c, d) Stochastic and deterministic
trajectories, respectively, for the last stage of the cascade.

a specific frequency, namely, Sn(ω)dω gives the fraction of the energy of the fluctuations
contained between ω and ω + dω. We compute Sn(ω) by recording a single long trajectory
of xn(t) at steady state. We sample 8 404 992 (223 + 214) data points of xn(t) starting from
t = 2000 with a time resolution of δt = 0.1. We then compute the ACF (Eq. 5.12) from a
minimum lag of t = 0 up to a maximum lag of t = 214δt. Sn(ω) is obtained by fast Fourier
transform (Eq. 5.11).

We quantify the effect of intrinsic noise by the PSD’s peak frequency and bandwidth. The
peak frequency ωm

n is defined as the angular frequency at which Sn(ω) is maximum, hence

ωm
n = arg max

ω
(Sn(ω)) . (5.13)

Since Sn(ω) is generated by a stochastic process and hence is noisy, we smooth Sn(ω) before
computing ωm

n . Smoothing is done using a moving-average filter with a window diameter of
10 data points, corresponding to a frequency-space resolution of δω = 2 · 10−2 (data points in
frequency space are uniformly spaced with a distance of 2 · 10−3).
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5.2 Steady-state relaxation kinetics of mesoscopic oscillatory chemical reaction systems

The bandwidth ωb
n of the steady-state PSD is defined as the difference between the two

frequencies (ω1, ω2) where the steady-state PSD drops to half of its maximum value, i.e.,
ωb
n = ω2−ω1 so that Sn(ω1) = Sn(ω2) = 1

2Sn(ωm
n ) with ω2 > ω1. Also ωb

n is computed on the
smoothed PSD.

In the large-volume regime, the quantities Sn(ω) and ωm
n can be calculated analytically (Shi-

bata, 2004; van Kampen, 2001) (see Appendix A10). We use the results from the large-volume
regime as a baseline to understand the effects of intrinsic noise in our model system.

5.2.2 Results

We present the normalized steady-state PSD Sn(ω), the peak frequency ωm
n , and the bandwidth

ωb
n for different reactor volumes Ω of our model system. These quantities are numerically

computed from exact SSA trajectories (Gillespie, 1976, 1992) as described above. In the
large-volume limit, the quantities are analytically computed as described in Appendix A10.

First, we assess Sn(ω) as a function of reactor volume Ω for the stage n = 1 alone and
then extend our results to cascades of coupled Brusselators. Figure 5.9a shows S1(ω) for three
different reactor volumes Ω = 1, 5, 50. It can be seen that the steady-state PSD is indeed a
function of Ω and that it has a Lorentzian-like form with a peak frequency and an associated
bandwidth. This form of the steady-state PSD is expected, since the time-autocorrelation
function is Rn(t) ∝ e−αnt cos(βnt) (Xiao et al., 2007). As the volume Ω is reduced, the peak
ωm

1 shifts to lower frequencies. For Ω = 50 the peak frequency is ωn
1 = 0.86. This reduces to

ωm
1 = 0.73 and ωm

1 = 0.45 for Ω = 5 and Ω = 1, respectively.

Figure 5.9: (a) Normalized steady-state power spectral density S1(ω) of the fluctuations of species
X1 (see Eq. 5.11) for a single Brusselator in different reactor volumes Ω = 1, 5, 50. (b)
Normalized steady-state power spectral density S20(ω) of the fluctuations of species X20

at the last stage of a cascade of 20 downstream-coupled Brusselators in different reactor
volumes Ω = 1, 5, 50.

The bandwidth for Ω = 50 is ωb
1 = 1.19. For Ω = 5, it increases to ωb

1 = 1.29, and for
Ω = 1 further to ωb

1 = 1.46. The bandwidth of the steady-state PSD hence increases with
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decreasing reactor volume Ω. This is in agreement with the observation that even though
noise induce oscillations in mesoscopic chemical systems, it also results in a loss of synchrony
of the oscillations (Barkai and Leibler, 2000).

We now consider how these results change along a cascade of downstream-coupled Brussela-
tors. Figure 5.9b shows S20(ω) at stage n = 20 for the same three reactor volumes Ω = 1, 5, 50.
Similar to what is observed in the first stage, the peak ωm

20 also shifts toward lower frequencies
as Ω decreases. For Ω = 50 the peak frequency is ωm

20 = 0.72, which reduces to ωm
20 = 0.51 and

ωm
20 = 0.28 for Ω = 5 and Ω = 1, respectively. For a given Ω, the peak frequency is successively

reduced by each cascade, hence ωm
n+1 < ωm

n .

Figure 5.10: Peak frequency ωm
n of the normalized steady-state power spectral density Sn(ω) as a

function of cascade stage n in different reactor volumes Ω. The results for “large Ω” are
obtained from the analytical expressions presented in Appendix A10.

The bandwidth ωb
n at stage n = 20 also increases with decreasing volume, just as it did

for the first stage (see Fig. 5.9b). For Ω = 50, 5, and 1, we find ωb
20 = 0.37, ωb

20 = 0.48, and
ωb

20 = 0.50, respectively. Comparing ωb
1 and ωb

20, we observe that for fixed reactor volume Ω
the bandwidth decreases with every stage along the cascade.

These results are summarized in Table 5.2 and shown also for intermediate cascade stages in
Fig. 5.10. We observe that for a given cascade stage n the peak frequency decreases with de-
creasing reactor volume and that for a given reactor volume the peak frequency also decreases
with every stage along the cascade. In the large-volume limit, the peak frequency is indepen-
dent of the reactor volume and also of the cascade stage (see Eq. A10.9). This indicates that
the effects observed for smaller volumes are indeed caused by intrinsic noise in the system.

It should also be noted that Sn(ω = 0) increases with decreasing reactor volume Ω (see
Fig 5.9). This corroborates the observation made in Sec. 5.1 that the lifetime increases with
decreasing Ω. This is because the lifetime as defined in Eq. 5.3 is the equivalent to the PSD
at ω = 0 according to the definition of the PSD given in Eq. 5.11.
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Stage 1 (n = 1) Stage 20 (n = 20)

Ω ωm
1 ωb

1 ωm
20 ωb

20

Large (linear noise) 0.86 1.18 0.86 0.19

50 0.86 1.19 0.72 0.37

5 0.73 1.29 0.51 0.48

1 0.45 1.46 0.28 0.50

Table 5.2: The effect of intrinsic noise, realized by decreasing the reactor volume Ω, on the peak
frequency ωm

n and the bandwidth ωb
n of the normalized steady-state PSD Sn(ω) for stages

n = 1 and n = 20 of a cascade of downstream-coupled Brusselators (see Eq. 5.9).

5.2.3 Conclusions

We have studied the effect of intrinsic noise due to molecular discreteness in a mesoscopic
oscillatory chemical reaction network. We considered the model system of a Brusselator away
from Hopf bifurcation, where the deterministic RRE do not exhibit oscillatory behavior. Os-
cillations can nevertheless be induced by intrinsic noise, the magnitude of which was tuned
by changing the reactor volume. We also studied propagation of noise-induced effects along
a downstream-coupled cascade of Brusselators. Noise-induced effects were quantified using
the frequency spectrum of concentration fluctuations, given by the normalized power spectral
density (PSD) at a nonequilibrium steady state. Specifically, we used the peak frequency and
the bandwidth of the PSD as fingerprints of noise-induced effects. We used an exact stochastic
simulation algorithm (Gillespie, 1976, 1992) to study the kinetics of the system as governed
by the corresponding CME.

The results have shown that the frequency at which the steady-state PSD is maximum
decreases with decreasing reactor volume. This effect is further amplified with every stage of
a cascade of coupled Brusselators, leading to a further decrease along the cascade. This is in
contrast to the large-volume limit, which does not predict any effect of intrinsic noise on the
normalized steady-state PSD. We also showed that for a given cascade stage the bandwidth
of concentration fluctuations decreases with increasing reactor volume, which is in agreement
with the loss of synchrony of oscillations with increasing noise in mesoscopic chemical reaction
systems (Barkai and Leibler, 2000; Gaspard, 2002; Xiao et al., 2007). For a fixed volume, the
bandwidth also decreases along the cascade, rendering the peak sharper and more pronounced
with every stage. One may hence speculate whether intrinsic noise plays a role in “tuning” the
output frequency of biochemical oscillators. This tuned output frequency could in turn drive
further downstream reaction networks, qualitatively changing their behavior. It is for example
known that the behavior of glycolytic oscillator models can change from periodic to quasi-
periodic to chaotic upon small changes in the driving input frequency (see p. 33, Fig. 2.24, in
(Holden, 1986), or (Tomita and Daido, 1980; Chandra et al., 2011)).

We believe that our study sheds light on the role of intrinsic noise in chemical oscillators.
Even though we studied a simple model system, the results show how intrinsic noise qualita-
tively influences the frequency spectrum of the oscillations. We have shown that mesoscopic
chemical reaction networks, and cascades thereof, exhibit different output spectra depending
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5 Effect of noise on the relaxation kinetics of mesoscopic chemical systems

on the magnitude of intrinsic noise. We expect this effect to be present also in mesoscopic
oscillatory reaction systems where the RRE show oscillatory behavior. This is because there
is no qualitative difference in the concentration trajectories of mesoscopic systems just before
and after Hopf bifurcation (Qian et al., 2002).

Our findings are relevant for identifying the reactor volume of (cascades of) mesoscopic
reaction networks when the concentration fluctuations are measured experimentally, e.g. using
fluorescence correction spectroscopy. In addition, we believe that the effects reported here can
be used as fingerprints to more reliably identify parameters of stochastic chemical reaction
networks in systems biology models (see Chapter 7). Finally, the presented results here might
contribute towards developing a general understanding of how noise influences the kinetics of
different chemical systems, when deterministic RRE predictions are valid, and what deviations
are to be expected otherwise.

5.3 Summary

We studied the effect of noise on the relaxation kinetics of open mesoscopic chemical systems.
Specifically, we investigated the effect of two noise sources: (1) the effect of intrinsic noise
due to decreasing copy numbers realized by decreasing reactor volume Ω and (2) the effect of
extrinsic noise modeled as a bursty driving. We studied the effects of both noise sources on
a mesoscopic non-oscillatory reaction system and the effect of intrinsic noise on a mesoscopic
oscillatory system.

We observed that for both mesoscopic systems, the fraction of the power of the fluctua-
tions at zero frequency increase with decreasing reactor volume Ω. Increasing burst can either
increase or decrease this fraction. These observations help characterize the change in the
nonequilibrium steady-state fluctuations as a function of noise for any given mesoscopic chem-
ical system. In general, the time autocorrelation function (ACF) R(t) of the fluctuations at
steady state, of any mesoscopic reaction network is of the form e−t/τc cos(ωmt) (van Kampen,
2001; Xiao et al., 2007). This general model relates the relaxation time of the exponential
envelope of R(t), or the autocorrelation time τc, of the fluctuations and the oscillatory be-
havior quantified by the angular frequency ωm. The Fourier transform of normalized R(t) is
the normalized power spectral density S(ω) of the fluctuations. S(ω) is Lorentzian-like (Xiao
et al., 2007) and it can hence be approximated by the Cauchy-Lorentz distribution

S(ω) =
(τc)−1

π [(τc)−2 + (ω − ωm)2]
(5.14)

with the peak frequency ωm and bandwidth (or width at half maximum) 2τ−1
c . In our study,

we observed that the peak frequency ωm decreases and the bandwidth 2τ−1
c increases with

decreasing Ω, i.e.,

ωm = f(Ω) ωm,∞ (5.15)

and

τc = g(Ω) τc,∞, (5.16)
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where f(Ω) and g(Ω) are functions that monotonically increase with Ω and tend to 1 for
asymptotically large Ω. The peak frequency and bandwidth of the fluctuation spectrum for
asymptotically large Ω is ωm,∞ and 2τ−1

c,∞ respectively. The normalized power spectral density
(PSD) S(ω) can thus be written as

S(ω) =
g(Ω) τc,∞

π
{

1 + [ω − f(Ω) ωm,∞]
2

[g(Ω) τc,∞]
2
} . (5.17)

The fraction of power at zero frequency

S(ω = 0) =
g(Ω) τc,∞

π
{

1 + [f(Ω) ωm,∞]
2

[g(Ω) τc,∞]
2
} , (5.18)

and hence the lifetime of fluctuations increases with decreasing Ω. This illustrates that for
systems where the RRE show an oscillatory relaxation to their only fixed point, there is no
qualitative difference between the nonequilibrium steady-state fluctuation spectra of oscilla-
tory and non-oscillatory mesoscopic chemical reaction systems. The differences are merely
quantitative. For systems where the RRE exhibit a non-oscillatory relaxation to steady state,
i.e. ωm,∞ = 0, the S(ω = 0) is expected to decrease with decreasing Ω.

Our observations shed light on the effects of intrinsic noise on the fluctuations at steady
state and may be used to understand the effects of noise on stochastic chemical kinetics of
nonlinear reaction networks. Furthermore, our observations may be useful when using ACFs
measured in fluorescence correlation spectroscopy experiments to estimate reaction rates of
mesoscopic chemical systems.
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6
Exact on-lattice stochastic

reaction-diffusion simulations using
partial-propensity methods

“There are the rushing waves...
mountains of molecules,
each stupidly minding its own business...
trillions apart
...yet forming white surf in unison.”
– Richard P. Feynman

Chemically reactive systems exhibiting spatial heterogeneity are often modeled using
reaction-diffusion equations (Fisher, 1937; Kolmogorov et al., 1937; Pearson, 1993; Chaplain
et al., 2001; Elf and Ehrenberg, 2004; Fange and Elf, 2006; Altschuler et al., 2008; Takahashi
et al., 2010; Bergdorf et al., 2010; Holloway et al., 2011). Reaction-diffusion models explicitly
capture spatial variations of the concentration fields, accounting for diffusive transport of
reactants and products to and from reaction sites. Spatial heterogeneity is sustained when
diffusion of chemicals is slower than reactions between them. In the limit of large numbers
of molecules, reaction-diffusion processes can be modeled continuously as systems of coupled
partial differential equations (frequently called reaction-diffusion equations or Fisher-KPP
equations (Fisher, 1937; Kolmogorov et al., 1937)) governing the spatiotemporal evolution of
the smooth concentration fields of all chemical species. Continuum reaction-diffusion mod-
els can exhibit nontrivial spatiotemporal dynamics, such as traveling concentration fronts
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(Benguria and Depassier, 1996) and inhomogeneous stationary concentration distributions
(“Turing patterns”) (Turing, 1952; Gierer and Meinhardt, 1972; Pearson, 1993; Koch and
Meinhardt, 1994). These phenomena have been successful in explaining a number of exper-
imental observations, including localization of cell division sites in E. coli (Meinhardt and
Piet, 2001) and “black eyes” patterns in the chlorite-iodide-malonic acid reaction (Zhou et al.,
2002; Yang et al., 2002; Gunaratne et al., 1994). For low molecular copy numbers, however,
continuum models fail to provide an accurate description of the spatiotemporal dynamics of
reaction-diffusion systems. In particular, intrinsic noise from the apparent molecular discrete-
ness, leading to stochasticity of chemical reactions, alters front propagation dynamics (Panja,
2004) and Turing patterns (Elf and Ehrenberg, 2004; Fange and Elf, 2006) in a nontrivial
way. This is because fluctuations in the molecule populations may no longer be negligible, and
correlated fluctuations may lead to deviations from deterministic behavior (Gardiner et al.,
1976; Elf and Ehrenberg, 2004; Fange and Elf, 2006; Takahashi et al., 2010; Springer and
Paulsson, 2006). These effects can be accounted for by stochastic reaction diffusion (SRD)
simulations.

There are mainly two types of SRD simulations: on-lattice (or compartment-based) simu-
lations and off-lattice (or particle-based) simulations. On-lattice simulations include the Next
Subvolume Method (NSM) (Elf and Ehrenberg, 2004), whereas Greens-Function Reaction Dy-
namics (GFRD) (van Zon and ten Wolde, 2005) and Brownian Dynamics (BD) (Andrews and
Bray, 2004) are examples of off-lattice schemes. On-lattice SRD simulations (Elf and Ehren-
berg, 2004; Hattne et al., 2005; Rossinelli et al., 2008; Iyengar et al., 2010; Ferm et al., 2010;
Koh and Blackwell, 2011; Jeschke et al., 2011) are based on dividing (discretizing) the compu-
tational domain into subvolumes, in each of which the chemical reaction system is assumed to
be well mixed (spatially homogeneous). It is further postulated that only molecules within the
same subvolume can react with each other, effectively treating molecules of the same chemical
in different subvolumes as different species. Diffusion is modeled as unimolecular “diffusion
reactions” representing jumps of molecules between neighboring subvolumes. The on-lattice
approach hence describes the reaction-diffusion system as a large chemical reaction network
with the number of species proportional to the product of the actual number of chemical
species and the number of subvolumes used to discretize space. The kinetics of this enlarged
reaction network can be mathematically described by the on-lattice reaction-diffusion master
equation (RDME), analogous to the chemical master equation (CME) (Gillespie, 1992). Off-
lattice SRD simulations (Andrews and Bray, 2004; van Zon and ten Wolde, 2005; Morelli and
ten Wolde, 2008; Hellander and Lotstedt, 2011) are based on computational particles mim-
icking the Brownian motion of molecules, whereby the molecules involved in a bimolecular
reaction react with a certain probability when the distance between them is smaller than a
pre-defined reaction radius.

Here, we focus on-lattice SRD simulations in order to avoid computationally expensive
collision detection and time-step adaptation mechanisms (Fange et al., 2010). Since on-lattice
SRD is described by a system of chemical reactions modeled by the RDME, it can be exactly
simulated using Gillespie’s stochastic simulation algorithm (SSA) (Gillespie, 1976, 1992). SSA
samples trajectories from the exact solution of the master equation by sampling the index of
the next reaction, the time to the next reaction, and updating the reaction probability rates
(called “propensities”). Different SSA formulations are available that use different sampling
and update algorithms, including the direct method (DM) (Gillespie, 1976, 1977), the first
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reaction method (FRM) (Gillespie, 1976, 1977), the next reaction method (NRM) (Gibson
and Bruck, 2000), the optimized direct method (ODM) (Cao et al., 2004), the sorting direct
method (SDM) (McCollum et al., 2006), the SSA with composition-rejection sampling (SSA-
CR) (Slepoy et al., 2008) (see Sec. 2.3), and partial-propensity methods (see Chapter 3) such as
the partial-propensity direct method (PDM) (Sec. 3.3), the sorting PDM (SPDM) (Sec. 3.3.2),
and the partial-propensity SSA with composition-rejection sampling (PSSA-CR) (Sec. 3.4).
Directly using any of these SSA formulations for the RDME, without adapting it to the
specifics of on-lattice SRD simulations, would be correct, but computationally and/or memory
inefficient since the number of species and the number of reactions increase linearly with the
number of subvolumes. A more efficient way of performing on-lattice SRD simulation is to
first sample the subvolume in which the next reaction will happen and then sample the index
of the reaction within that subvolume. This is, for example, done in NSM (Elf and Ehrenberg,
2004) as implemented in the MesoRD software package (Hattne et al., 2005). NSM uses NRM
for sampling the subvolume and DM for sampling the reaction within that subvolume (Elf
and Ehrenberg, 2004; Hattne et al., 2005). For a chemical reaction network with N species
and M reactions, the computational cost (here formalized using the Bachmann-Landau “big-
O” notation) of NSM to perform an on-lattice SRD simulation in a three-dimensional (3D)
computational domain divided into Nv subvolumes is O(log2Nv +Mfr + 6N(1− fr)) (Elf and
Ehrenberg, 2004; Hattne et al., 2005), where fr is the fraction of firings accounted for by “real”
reactions and (1− fr) the fraction of firings of “diffusion reactions”. This is composed of the
O(log2Nv) cost for maintaining the subvolume priority queue and the O(Mfr + 6N(1 − fr))
cost for sampling the next reaction. M + 6N is the number of reactions in each subvolume,
composed of the M “real” chemical reactions and the 6N “diffusion reactions” to the 6 face-
connected neighboring subvolumes in a uniform Cartesian 3D mesh (in 2D this would be 4N).

If the molecular population increases, the time step of exact SSAs decreases, increasing the
runtime of the simulations. This can be alleviated by approximate SSAs that use a fixed
time step to sample trajectories from an approximate solution of the master equation. In
this spirit, on-lattice SRD simulations involving larger population sizes can be accelerated
using approximate and hybrid SSAs (Rossinelli et al., 2008; Iyengar et al., 2010; Ferm et al.,
2010; Koh and Blackwell, 2011; Jeschke et al., 2011). Here, we focus on exact on-lattice SRD
formulations since they are parameter free and do not require prescription of a time step size
or a target error level.

We propose a novel exact on-lattice SRD simulation method, called PSRD, using partial
propensities. Partial-propensity methods are exact SSAs with a computational cost that scales
at most linearly with the number of species in the reaction network (see Chapter 3). For weakly
coupled reaction networks, where the number of reactions influenced by any other reaction
is asymptotically independent of system size, the computational cost of partial-propensity
methods is bounded by a constant (see Chapter 3). This is particularly advantageous for
on-lattice SRD simulations, where the number of neighboring subvolumes influenced by any
subvolume is constant (6 in 3D, 4 in 2D), independent of the total number of subvolumes
used to discretize space. PSRD hence uses composition-rejection sampling to find the next
subvolume with an O(Ga) cost, and then uses SPDM inside that subvolume to sample the
next reaction with a cost of O(N). Ga is the logarithm of the ratio of the maximum to the
minimum non-zero subvolume propensities, which is at most O(log2Nv). PSRD thus has an
overall computational cost of O(Ga + N), which is asymptotically bounded from above by

139



6 Exact on-lattice stochastic reaction-diffusion simulations using partial-propensity methods

O(log2Nv +N) and independent of the ratio between “real” and “diffusion” reactions. This is
achieved by restricting the method to elementary chemical reactions, under the premise that
any non-elementary reactions can be broken down into elementary reactions (Wilhelm, 2000;
Schneider and Wilhelm, 2000; Gillespie, 1992) at the expense of an increase in network size
(see Appendix A2). We demonstrate the scaling of the computational cost of PSRD on two
types of reaction networks: one in which the number of reactions M increases super-linearly
with the number of species N (a strongly coupled network), and a second in which M is
proportional to N (a weakly coupled network). Finally, we demonstrate the application of
PSRD to pattern-forming stochastic Gray-Scott systems (Gray and Scott, 1983, 1984, 1985;
Pearson, 1993; Lee et al., 1993), highlighting the effect of intrinsic noise on the resulting Turing
patterns.

6.1 On-lattice stochastic reaction-diffusion

We recall the concept of on-lattice SRD simulations using an example reaction network. In
the benchmarks presented below we assume that the boundary of the computational domain
is reflective (no-flux boundary condition), except for the showcases in Sec. 6.2.5, where we
use periodic boundary conditions. Other boundary conditions can be treated as described by
Erban and Chapman (2007) (Erban and Chapman, 2007) (see Sec. 2 in their article). The
scaling of the computational cost of on-lattice SRD simulations, however, is independent of
the type of the boundary condition.

6.1.1 General concept

Consider the example of the following trimerization reaction in a 3D cuboidal reactor of di-
mension Lx × Ly × Lz and volume Ω = LxLyLz:

Reaction 1 : Ø
k1−→ S1

Reaction 2 : S1 + S1
k2−→ S2

Reaction 3 : S1 + S2
k3−→ S3

Reaction 4 : S3
k4−→ Ø.

(6.1)

The k’s are the macroscopic reaction-rate constants. This reaction network has N = 3 species
and M = 4 reactions. We choose this reaction network as an example since it contains all
types of elementary reactions: reaction 1 is a source reaction, reaction 2 a bimolecular reac-
tion between the same species (homo-bimolecular reaction), reaction 3 a bimolecular reaction
between two different species (hetero-bimolecular reaction), and reaction 4 is a unimolecular
reaction. Any non-elementary reaction involving r > 2 reactants can be broken down to a
set of 2r − 3 elementary reactions by introducing additional r − 2 auxiliary species (see Ap-
pendix A2). The reaction-propensity aµ of reaction µ is defined as the probability rate of
firing of that reaction. Each aµ is computed as the product of the reaction degeneracy and
the specific probability rate cµ of that reaction. The reaction degeneracy is the number of dis-
tinct combinations (collision pairs) of reactant molecules that can be formed, and the specific
probability rate is the probability rate of the reaction when only one molecule of each reactant
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is present (see Chapter 1 for a more elaborate presentation of these quantities). According to
these definitions, the reaction propensities for the reaction network in Eq. 6.1 are:

aµ =





cµ, cµ = k1Ω, if µ = 1
1
2n1(n1 − 1)cµ, cµ = 2k2Ω−1, if µ = 2

n1n2cµ, cµ = k3Ω−1, if µ = 3

n3cµ, cµ = k4, if µ = 4 ,

(6.2)

where ni denotes the population of species Si, i.e., the number of molecules of Si present in
the system.

If the characteristic time of diffusion of the species is comparable to or larger than the
characteristic time of reaction, the system will exhibit spatial inhomogeneities and diffusion
of the species in the reaction network needs to be explicitly accounted for. In on-lattice SRD
methods, this is done by dividing the computational domain into subvolumes within which
the system is assumed to be well mixed. The chemical species in each subvolume can (i)
react with each other in bimolecular reactions, (ii) undergo unimolecular reactions, or (iii)
be produced through source reactions. In both cases, the products are formed in the same
subvolume and species from different subvolumes can not react with each other. Diffusion
of molecules is modeled as a jump process from a subvolume to any of the face-connected
neighboring subvolumes.

Assume that we divide the 3D computational domain into Nv = KxKyKz equi-sized cubic
subvolumes of edge length h = Lx/Kx = Ly/Ky = Lz/Kz and volume Ωc = h3 (see Fig. 6.1C;
the one- and two-dimensional cases are illustrated in Figs. 6.1A and 6.1B, respectively). The
subvolumes are indexed by their Cartesian mesh coordinates over the set (Erban and Chapman,
2009)

Iall = {(l,m, n) | l,m, n are integers such that 1 ≤ l ≤ Kx ; 1 ≤ m ≤ Ky ; 1 ≤ n ≤ Kz } (6.3)

and the set of face-connected neighbors of a subvolume with index (l,m, n) is

Cl,m,n = {(l,m, n) + δ | (l,m, n) + δ ∈ Iall} (6.4)

such that δ ∈ E = {(1, 0, 0), (−1, 0, 0), (0, 1, 0), (0,−1, 0), (0, 0, 1), (0, 0,−1)}. Hence, the on-
lattice reaction-diffusion system of the reaction network in Eq. 6.1 can be written as:

Ø
k

(l,m,n)
1−−−−−→ S

(l,m,n)
1 , a

(l,m,n)
1

S
(l,m,n)
1 + S

(l,m,n)
1

k
(l,m,n)
2−−−−−→ S

(l,m,n)
2 , a

(l,m,n)
2

S
(l,m,n)
1 + S

(l,m,n)
2

k
(l,m,n)
3−−−−−→ S

(l,m,n)
3 , a

(l,m,n)
3

S
(l,m,n)
3

k
(l,m,n)
4−−−−−→ Ø, a

(l,m,n)
4

S
(l,m,n)
1

D1/h
2

−−−−→ Sc
1, a

(l,m,n)
5

S
(l,m,n)
2

D2/h
2

−−−−→ Sc
2, a

(l,m,n)
6

S
(l,m,n)
3

D3/h
2

−−−−→ Sc
3, a

(l,m,n)
7





∀(l,m, n) ∈ Iall, c ∈ Cl,m,n,(6.5)
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where S
(l,m,n)
i denotes species Si in subvolume (l,m, n), the k’s the macroscopic reaction rates,

and the a’s the corresponding propensities. In general, the k’s can be different in different
subvolumes, which is explicitly shown in Eq. 6.5 by indexing them with the subvolume in-
dex. Diffusion of species Si with diffusion constant Di is modeled as jumps to face-connected
neighboring subvolumes as illustrated in Fig. 6.1D. Equation 6.5 models the on-lattice reaction-
diffusion system as a system of chemical reactions composed of 3KxKyKz = 3Nv species and
22KxKyKz−6(KxKy +KyKz +KxKz) = 22Nv−6Nv( 1

Kx
+ 1
Ky

+ 1
Kz

) reactions composed of

4KxKyKz “real” reactions and 3(6KxKyKz−6(KxKy+KyKz+KxKz)) “diffusion reactions”,
accounting for the missing neighboring subvolumes at the domain boundary. In general, the
3D SRD dynamics of N species and M reactions in a computational domain with reflective
boundaries and Kx×Ky×Kz subvolumes can be modeled by a chemical reaction network con-
sisting of NKxKyKz = NNv species and (M +6N)KxKyKz−2(KxKy +KyKz +KxKz)N =

(M+6N)Nv−2
(

1
Kx

+ 1
Ky

+ 1
Kz

)
NvN reactions. For other boundary conditions, the number

of reactions is (M + 6N)Nv, accounting for the diffusive fluxes across the boundary.
For inhomogeneous diffusion, Di additionally depends on the subvolume index (l,m, n). For

anisotropic diffusion, Di depends on the direction of the jump reaction. These extensions are
straightforward to include in any on-lattice SRD framework.

The propensities of the reactions in Eq. 6.5 are:

a(l,m,n)
µ =





c
(l,m,n)
µ , c

(l,m,n)
µ = k

(l,m,n)
1 Ωc, if µ = 1

1
2n

(l,m,n)
1 (n

(l,m,n)
1 − 1)c

(l,m,n)
µ , c

(l,m,n)
µ = 2k

(l,m,n)
2 Ω−1

c , if µ = 2

n
(l,m,n)
1 n

(l,m,n)
2 c

(l,m,n)
µ , c

(l,m,n)
µ k

(l,m,n)
3 Ω−1

c , if µ = 3

n
(l,m,n)
3 c

(l,m,n)
µ , c

(l,m,n)
µ = k

(l,m,n)
4 , if µ = 4

n
(l,m,n)
1 c

(l,m,n)
µ , c

(l,m,n)
µ = D1h

−2, if µ = 5

n
(l,m,n)
2 c

(l,m,n)
µ , c

(l,m,n)
µ = D2h

−2, if µ = 6

n
(l,m,n)
3 c

(l,m,n)
µ , c

(l,m,n)
µ = D3h

−2, if µ = 7 ,

(6.6)

where n
(l,m,n)
i is the population of species S

(l,m,n)
i (i.e., species Si in subvolume (l,m, n)) and

c
(l,m,n)
µ is the specific probability rate of reaction µ in subvolume (l,m, n). These formulations

for the propensities directly follow from the same argument as the propensities in Eq. 6.2 for
the reaction system given in Eq. 6.1. The rates of the “diffusion reactions” always scale as
h−2, irrespective of the dimension of the subvolumes.

6.1.2 Discretization-corrected propensities

The propensity formulations in Eq. 6.6 may lead to artifacts in the kinetics introduced by
the spatial discretization (Erban and Chapman, 2009; Fange et al., 2010). This is due to the
subdivision of the reaction space into several small subvolumes. This subdivision is funda-
mentally different from the one used in spatial discretization of continuum models (e.g., finite
difference or finite volume methods). While in discretizing continuum models more resolution
(smaller subvolumes) is always better, this is not necessarily the case in SRD simulations.
This is because in SRD simulations, the subvolumes introduce spurious physical boundaries;
molecules in one subvolume cannot react with molecules in a neighboring subvolume, even if for
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molecules close to a subvolume boundary the closest collision partner could be in a neighboring
subvolume. The subvolumes thus define closed, well-mixed reaction spaces of volume Ωc � Ω.
In order for the reaction system to be well mixed within each subvolume, the subvolume edge
lengths have to be much smaller than the Kuramoto length (Kuramoto and Yamada, 1976),
hence

h� hmax =
√

2dDtr , (6.7)

where d is the dimension of the subvolume. The characteristic time tr of the fastest reactions
in the system can be estimated from the time autocorrelation function of species populations
simulated using exact SSA. While tr depends on the reactor volume Ω, an estimate for it can
be obtained from the linear-noise approximation of the CME (see Chapter 5). At length scales
above hmax the subvolumes are no longer spatially homogeneous (well mixed).

In addition to this upper bound on h, there may also be a lower bound. It is, for example,
known that chemical kinetics in small volumes is quantitatively and qualitatively altered (see
Chapters 4 and 5). It has further been shown that the RDME gives different results depend-
ing on the level of spatial discretization of the computational domain (Erban and Chapman,
2009). If the discretization becomes too fine, the RDME even yields unphysical results (Er-
ban and Chapman, 2009; Fange et al., 2010). These artifacts are introduced by the artificial
subdivision of space and lead to propensities in the RDME becoming inconsistent with Smolu-
chowski’s microscopic reaction-diffusion framework (von Smoluchowski, 1917; Fange et al.,
2010). The propensities in on-lattice SRD simulations hence need to be corrected for the
spatial discretization.

At present, there are two strategies toward deriving discretization-corrected propensities.
The first is based on the premise that for a well-stirred system of reactions the kinetics of the
reaction-diffusion process should not depend on the resolution of the spatial discretization (Er-
ban and Chapman, 2009). In this strategy, only the propensities of bimolecular reactions need
to be corrected. Assuming a 3D cubic computational domain of size L×L×L that is divided
into K3 subvolumes of edge length h = L/K, Erban and Chapman (2009) (Erban and Chap-
man, 2009) have derived discretization-corrected propensities for bimolecular reactions. For a
hetero-bimolecular reaction µ occurring in subvolume (l,m, n)

S
(l,m,n)
i + S

(l,m,n)
j

k(l,m,n)
µ−−−−−→ Products (6.8)

the discretization-corrected propensity is given by:

a
(l,m,n)
µ = n

(l,m,n)
i n

(l,m,n)
j c

(l,m,n)
µ , c

(l,m,n)
µ =

(Di+Dj)k
(l,m,n)
µ

(Di+Dj)h3−βk(l,m,n)
µ h2

. (6.9)

For a homo-bimolecular reaction µ occurring in subvolume (l,m, n)

S
(l,m,n)
i + S

(l,m,n)
i

k(l,m,n)
µ−−−−−→ Products (6.10)

the discretization-corrected propensity is given by:

a
(l,m,n)
µ =

n(l,m,n)
µ (n(l,m,n)

µ −1)

2 c
(l,m,n)
µ , c

(l,m,n)
µ =

Dik
(l,m,n)
µ

Dih3−βk(l,m,n)
µ h2

. (6.11)
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In Eqs. 6.9 and 6.11, the factor β is given by:

β =
1

2K3

K−1∑

l,m,n=0; (l,m,n)6=(0,0,0)

1

3− cos(lπ/K)− cos(mπ/K)− cos(nπ/K)
. (6.12)

This discretization-correction framework imposes a lower bound on the admissible subvol-
ume size, given by the constraint that the corrected reaction propensities have to be non-
negative (Erban and Chapman, 2009). The RDME with corrected propensities is only physi-
cally valid for

h > hmin = max
µ

[
βk

(l,m,n)
µ

Di +Dj
(1− δij) +

βk
(l,m,n)
µ

Di
δij

]
, (6.13)

where δij is the Kronecker delta. The maximum is taken over all bimolecular reactions µ where
Di and Dj are the diffusion coefficients of the two respective reactants.

The second strategy derives discretization-corrected propensities such that the RDME be-
comes consistent with Smoluchowski’s microscopic reaction-diffusion framework (von Smolu-
chowski, 1917; Fange et al., 2010). In this strategy, the discretization-corrected propensities
depend on the population of reactant molecules in the neighboring subvolumes, rendering the
correction non-local and reaction-dependent. This approach is valid also for non-cubic com-
putational domains and non-3D simulations, and it does not impose any lower bound on the
subvolume size h. It has been shown to provide a seamless transition between Smoluchowski’s
microscopic framework and that of on-lattice SRD as based on the RDME (von Smoluchowski,
1917; Fange et al., 2010).

In summary, the propensities of all reactions in a system obtained by on-lattice discretization
of a reaction-diffusion process need to be corrected. Erban and Chapman (2009) (Erban
and Chapman, 2009) have derived the discretization correction only for cubic computational
domains where the number of subvolumes in each spatial dimension is the same. We thus
use the above discretization-corrected propensities only in these cases. Extending the present
on-lattice SRD method to the framework proposed by Fange et al. (2010) (Fange et al., 2010)
should be possible. The scaling of the computational cost of on-lattice SRD methods, however,
is independent of the formulation used for the propensities.

We note that similar corrections are also necessary in off-lattice SRD simulations, where the
artificial spatial discretization is, e.g., introduced by the reaction radius (Erban and Chapman,
2009).

6.1.3 The Next Subvolume Method (NSM) for on-lattice stochastic
reaction-diffusion simulations

NSM simulates the on-lattice SRD system by sampling from the conditional joint probability
distribution function (PDF) for the time τ to the next reaction, the index µ of the next reaction,
and the subvolume (l,m, n) containing the next reaction, given the current population n(t) at
time t. This joint PDF results from the on-lattice RDME and is given by:

p(τ, µ, l,m, n |n(t)) = p(τ) p(l,m, n) p(µ | l,m, n) . (6.14)

144



6.1 On-lattice stochastic reaction-diffusion

Here, p(τ) is the continuous PDF for the time to the next reaction, τ , given by:

p(τ) = aeaτ , (6.15)

where a is the total propensity of the system. The discrete PDF p(l,m, n) for the subvolume
(l,m, n) of the next reaction is given by:

p(l,m, n) =
a(l,m,n)

a
, (6.16)

where a(l,m,n) is the propensity of subvolume (l,m, n). The discrete PDF p(µ | l,m, n) for the
next reaction µ within subvolume (l,m, n) is given by

p(µ | l,m, n) =
a

(l,m,n)
µ

a(l,m,n)
, (6.17)

a
(l,m,n)
µ the propensity of reaction µ in subvolume (l,m, n). Formally, n(t) =

[
n

(1,1,1)
1 , . . . , n

(1,1,1)
N

, . . . , n
(Kx,Ky,Kz)
1 , . . . , n

(Kx,Ky,Kz)
N

]
(t), where n

(l,m,n)
i (t) is the population of species Si in sub-

volume (l,m, n) at time t, a(l,m,n) =
∑
µ a

(l,m,n)
µ the total propensity of all reactions in

subvolume (l,m, n), and a =
∑Kx
l=1

∑Ky
m=1

∑Kz
n=1 a

(l,m,n) the total propensity of all reactions
across all subvolumes.

NSM (Elf and Ehrenberg, 2004) is a popular and efficient algorithm for sampling trajectories
of n(t) from the above PDF, which is the exact solution of the RDME. In NSM, the subvolume
(l,m, n) in which the next reaction will occur is sampled first according to Eq. 6.16 and
subsequently one of the reactions µ in that subvolume is sampled according to Eq. 6.17. The
latter is done by first deciding whether the next reaction is a “real” or a “diffusion” reaction
and then using linear search only over the corresponding reaction group (Hattne et al., 2005).
The algorithm used in NSM to sample the next subvolume is inspired by the indexed priority
queues used in the next reaction method (Gibson and Bruck, 2000). Sampling a reaction within
a subvolume is done using linear search as in Gillespie’s original direct method (Gillespie, 1976,
1977). The time to the next reaction is calculated from Eq. 6.15. After the chosen reaction
fired, the population and the propensities of some of the reactions need to be updated. In
NSM, the population is updated using a sparse representation of the stoichiometry matrix,
and the propensities are updated using a dependency graph (Gibson and Bruck, 2000).

The computational cost of NSM is: (i) O(1) for sampling the subvolume; (ii) O(Mfr +
6N(1 − fr)) for sampling the next reaction within that subvolume, where M is the number
of “real” reactions, 6N the number of “diffusion reactions” (4N in 2D), and fr the fraction
of reaction firings accounted for by “real” reactions; (iii) O(1) for updating the population;
(iv) at most O(M) for updating the propensities within a subvolume; (v) O(log2Nv) for
updating the subvolume priority queue, where Nv is the number of subvolumes. The overall
computational cost of NSM thus is O(log2Nv +Mfr + 6N(1− fr)). The fraction fr of “real”
reaction firings decreases with increasing Nv. For small Nv, almost all reactions are “real”
and the computational cost of NSM is O(log2Nv +M). In particular, for Nv = 1 the fraction
fr = 1 and the computational cost of NSM is O(M), as for Gillespie’s DM (Gillespie, 1976,
1977). For large Nv, the computational cost of NSM is O(log2Nv + 6N) since fr � 1 and
almost all reaction events pertain to “diffusion reactions”.
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Figure 6.1: Division of the computation domain into subvolumes. (A–C) Different possibilities of a
subdiving a box-shaped computational domain in one, two, and three dimensions, respec-
tively. Lx, Ly, and Lz are the lengths of the computational domain in each direction. Kx,
Ky, and Kz are the numbers of subvolumes of edge length h after subdivision in each di-
rection. (D) Diffusion is modeled as jump “reactions” to face-connected subvolumes. The
same chemical in different subvolumes is treated as a different species in stochastic on-
lattice reaction-diffusion simulations. Unimolecular “diffusion reactions” convert species
as shown.
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6.2 The partial-propensity stochastic reaction-diffusion
method (PSRD)

Combining ideas from NSM and partial-propensity SSAs (Chapter 3), we introduce a novel
on-lattice SRD simulation method, the partial-propensity stochastic reaction-diffusion method
(PSRD). PSRD is based on the idea of binning the subvolumes and determining the next
subvolume using composition-rejection sampling (Devroye, 1986; Slepoy et al., 2008) (see Sec-
tions 2.3.7 and 3.4). Then, we use the concept of partial propensities (see Sec. 3.2) to sample
the index of the next reaction within the selected subvolume.

6.2.1 General concept of PSRD

We summarize the general concepts of binned composition-rejection sampling and partial
propensities in the context of SRD simulations.

6.2.1.1 Composition-rejection sampling to select the subvolume

Composition-rejection sampling (Devroye, 1986; Fox, 1990; Rajasekaran and Ross, 1993;
Hagerup et al., 1993) is an efficient algorithm to sample realizations of a random variable
according to a given discrete probability distribution. In on-lattice SRD simulations, the dis-
crete PDF for the subvolume index (l,m, n) is p(l,m, n) (see Eq. 6.16). The sampling process
starts by binning the a(l,m,n) according to their values and then proceeds in two steps: The
composition step is used to identify the bin by linear search, and the rejection step is used to
identify the a(l,m,n), and hence the index of the subvolume (l,m, n), inside that bin.

6.2.1.2 Partial propensities to sample the next reaction within a subvolume

Partial propensities: The partial propensity of a reaction is defined as the propensity per

molecule of one of its reactants (see Sec. 3.1). For example, the partial propensity π
(l,m,n);(i)
µ

of reaction µ within a subvolume (l,m, n) with respect to (perhaps the only) reactant S
(l,m,n)
i

is a
(l,m,n)
µ /n

(l,m,n)
i , where a

(l,m,n)
µ is the propensity of reaction µ in subvolume (l,m, n) and

n
(l,m,n)
i the population of S

(l,m,n)
i (i.e., the number of molecules of species Si in subvolume

(l,m, n)). The partial propensities of the three elementary reaction types within each subvol-
ume (l,m, n) are:

• Bimolecular reactions S
(l,m,n)
i + S

(l,m,n)
j

c(l,m,n)
µ−−−−−→ Products: a

(l,m,n)
µ = n

(l,m,n)
i n

(l,m,n)
j c

(l,m,n)
µ

and π
(l,m,n);(i)
µ = n

(l,m,n)
j c

(l,m,n)
µ , π

(l,m,n);(j)
µ = n

(l,m,n)
i c

(l,m,n)
µ . If both reactants are of

the same species, i.e. S
(l,m,n)
i = S

(l,m,n)
j , only one partial propensity exists, π

(l,m,n);(i)
µ =

1
2 (n

(l,m,n)
i − 1)c

(l,m,n)
µ , because the reaction degeneracy is 1

2n
(l,m,n)
i (n

(l,m,n)
i − 1).

• Unimolecular reactions S
(l,m,n)
i

c(l,m,n)
µ−−−−−→ Products: a

(l,m,n)
µ = n

(l,m,n)
i c

(l,m,n)
µ and π

(l,m,n);(i)
µ = c

(l,m,n)
µ .

The “diffusion reactions” representing the jumps from a subvolume to one of its neighbors
fall into this category.
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• Source reactions Ø
c(l,m,n)
µ−−−−−→ Products: a

(l,m,n)
µ = c

(l,m,n)
µ and π

(l,m,n);(0)
µ = c

(l,m,n)
µ .

We use the specific probability rates given in Eq. 6.6. In cases where the 3D computational
domain is cubic with equal numbers of subvolumes in each dimension, we use the discretization-
corrected specific probability rates as given by Erban and Chapman (2009) (Erban and Chap-
man, 2009) for the bimolecular reactions. The computational cost and the formalism of PSRD,
however, are independent of the formulation used for the specific probability rates.

Sampling using partial propensities: Within the selected subvolume we use partial propen-
sity methods to sample the next reaction according to Eq. 6.17. We group the partial propensi-
ties of all reactions within each subvolume according to the index of the factored-out reactant.
This results in at most N + 1 groups of size O(N). Every reaction in a subvolume, and its
corresponding partial propensity, are then identifiable by two indices: a group index and an
element index. The group index identifies the partial-propensity group to which a reaction
belongs and the element index identifies the position of the reaction inside that group. Deter-
mining the index of the next reaction is thus done by first sampling its group index and then
the element index.

After the selected reaction has fired and the populations of the involved species have been
updated according to the reaction stoichiometry, the affected partial propensities are updated
using a dependency graph over species (see Eq. 3.6). This dependency graph points to all par-
tial propensities within the subvolume that need to be updated due to the change in population.
If the executed reaction was a “diffusion reaction” modeling the jump of a molecules from a
subvolume to one of its neighbours, we additionally update the population of that species
in the corresponding neighboring subvolume and update the affected partial-propensities in
the neighboring subvolume using the respective dependency over species. Since any partial
propensity is a function of the population of at most one species, the number of updates is at
most O(N). For more details, see Chapter 3.

6.2.2 Detailed description of the PSRD algorithm

We provide a detailed description of the algorithms and data structures used in PSRD. The
workflow of the algorithm is summarized in Table 6.1.

6.2.2.1 Data structures

The population of species in each subvolume (l,m, n) is stored in an array n(l,m,n). The
partial propensities of the reactions within each subvolume (l,m, n) are stored in “partial-

propensity structures” Π(l,m,n) =
{

Π
(l,m,n)
i

}N
i=0

as one-dimensional arrays of one-dimensional

arrays Π
(l,m,n)
i . Each array Π

(l,m,n)
i contains the partial propensities belonging to group i

in subvolume (l,m, n). The partial propensities of source reactions are stored as consecutive

entries of the 0th array Π
(l,m,n)
0 . The partial propensities of all reactions in subvolume (l,m, n)

that have species S
(l,m,n)
1 as the factored-out reactant are stored as consecutive entries of

Π
(l,m,n)
1 . In general, the ith array Π

(l,m,n)
i contains the partial propensities of all reactions
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in subvolume (l,m, n) that have S
(l,m,n)
i as the common factored-out reactant, provided these

reactions have not yet been included in any of the previous Π
(l,m,n)
j<i . That is, out of the

two partial propensities of a bimolecular reaction with S
(l,m,n)
i and S

(l,m,n)
j as its reactants

and i < j, π
(l,m,n); (i)
µ is part of Π

(l,m,n)
i , and π

(l,m,n); (j)
µ is not stored anywhere. In order to

save memory, we lump the “diffusion reactions” of each species within a subvolume into one
reaction with no products. The specific probability rate of the lumped reaction is the sum of
the specific probability rates of all “diffusion reactions” in that subvolume. Therefore, instead
of storing 6 partial propensities in 3D (4 in 2D), we only store 1 partial propensity for the
“diffusion reactions” of each species. This reduces the total number of reactions per subvolume
from M + 6N in 3D (M + 4N in 2D) to M + N . For convenience, we define all reactions
µ ≤ M as “real” reactions and the reaction with index µ = M + i as the lumped “diffusion

reaction” of species S
(l,m,n)
i . See Sec. 6.2.2.2 for how the direction of a “diffusion jump” is

resolved when a lumped “diffusion reaction” has been selected.

The reaction indices of the partial propensities in Π(l,m,n) are stored in a look-up table
L = {Li}Ni=0, which is also an array of arrays. For subvolumes containing the same reaction
network, we store the look-up table only once. In case the reaction network is the same in
all subvolumes, only a single, global look-up table is needed. Subvolumes that host different
reaction networks have different look-up tables. The look-up table renders every reaction
within each subvolume identifiable by a unique pair of indices, a group index I and an element

index J , such that the partial propensity of reaction µ = LI,J is stored in Π
(l,m,n)
I,J for subvolume

(l,m, n).

The “group-sum array” Λ(l,m,n) stores the sums of the partial propensities in each group

Π
(l,m,n)
i , i.e. Λ

(l,m,n)
i =

∑
j Π

(l,m,n)
i,j . We also store the total propensity of each group in an

array Σ, computed as Σ
(l,m,n)
i = n

(l,m,n)
i Λ

(l,m,n)
i , i = 1, . . . , N , and Σ

(l,m,n)
0 = Λ

(l,m,n)
0 . The

total propensity of the reactions in subvolume (l,m, n) is then a(l,m,n) =
∑N
i=0 Σ

(l,m,n)
i . The to-

tal propensity of all reactions across all subvolumes is stored in a =
∑Kx
l=1

∑Ky
m=1

∑Kz
n=1 a

(l,m,n)

and is used to calculate the time to the next reaction according to Eq. 6.15 as τ = −a−1 log2 r0,
where r0 is a uniformly distributed random number in [0, 1).

6.2.2.2 Algorithms

In PSRD, like in NSM, the subvolume containing the next reaction is sampled first. To this
end, the total propensities a(l,m,n) of all subvolumes are sorted into Ga = log2(amax/amin) + 1
bins, such that bin b contains all a(l,m,n) in the interval 2b−1amin ≤ a(l,m,n) < 2bamin. The
bounds amin and amax are the smallest non-zero and the largest value that any of the a(l,m,n)

can assume during the simulation. They are determined as follows: The lower bound amin is
the minimum propensity of any reaction in any subvolume when the number of molecules of all
reactants is one (minimum non-zero population). For elementary reactions, this is the smallest
specific probability rate across all subvolumes. The largest possible value of a(l,m,n) may be
ascertained using physical reasoning or prior knowledge about the reaction-diffusion system.
In cases where this cannot be evaluated a priori, PSRD initially sets amax to the maximum
a(l,m,n). If during the course of the simulation the maximum a(l,m,n) increases, PSRD updates
amax and Ga, and the corresponding data structures are dynamically enlarged.
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Figure 6.2: Illustration of the binning of the total propensities of the subvolumes used for composition-
rejection sampling of the next subvolume. The illustration shows a computational domain
divided into 4 subvolumes. Points A and B refer to the example in main text used to
explain rejection sampling.

PSRD uses composition-rejection sampling to determine the subvolume of the next reaction
in two steps: (i) composition step to find the bin b and (ii) rejection step to find a(l,m,n) inside
that bin. The composition step uses linear search to determine

b = min


b′ : r1a <

b′∑

i=1

αi


 , (6.18)

where r1 is a uniform random number in [0, 1) and αi is the total propensity in bin i computed
by summing up the a(l,m,n) in that bin. The rejection step samples the subvolume (l,m, n)
among the entries in the selected bin b. For this, we first generate a uniformly distributed
random number r2 in [0, 2bamin) and a uniformly distributed random integer r3 between 1
and the number of entries in bin b. If the r3-th element in bin b is greater than or equal to r2,
the corresponding subvolume is selected. If the inequality is not satisfied, the rejection step is
repeated. This procedure is illustrated in Fig. 6.2 for a computational domain divided into 4
subvolumes with indices (1, 1, 1), (2, 1, 1), (1, 2, 1) and (2, 2, 1). Assume that the composition
step has chosen bin 1 as the bin containing the next subvolume. The rejection step then
samples uniformly random points inside the rectangle defining the range of this bin (bold
rectangle). A sample is accepted if it falls inside one of the shaded bars representing the
a(l,m,n)’s. If the first sample (point A in Fig. 6.2 with r3 = 2 and r2 > a(1,2,1)) is rejected,
sampling is repeated until the point falls inside one of the shaded bars (point B in Fig. 6.2
with r3 = 1 and r2 < a(2,1,1)). By binning the a(l,m,n) as described above, it is guaranteed
that the area covered by the a(l,m,n) bars in each bin is at least 50% of the bin’s total area.
This ensures that the expected number of rejection steps required is ≤ 2. The probability of
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needing more than k rejection steps is ≤ 2−k and hence exponentially small.
Once the subvolume (l,m, n) containing the next reaction has been chosen, PSRD samples

the index of the next reaction µ within that subvolume in two steps: (i) perform linear search
for the group index I such that

I = min


I ′ : r4a

(l,m,n) <

I′∑

i=0

Σ
(l,m,n)
i


 (6.19)

and (ii) perform linear search for the element index J inside group Π
(l,m,n)
I such that

J = min


J ′ : r4a

(l,m,n) <

J′∑

j=1

n
(l,m,n)
I Π

(l,m,n)
I,j +

(
I∑

i=0

Σ
(l,m,n)
i

)
− Σ

(l,m,n)
I


 , (6.20)

where r4 is a uniform random number in [0,1) (see Eqs. 3.4 and 3.5 for the procedure to sample
J efficiently). The indices I and J are then translated to the reaction index µ in subvolume
(l,m, n) using the look-up table L, thus µ = LI,J . In order to reduce the average search
depth, the group and element indices are dynamically rearranged such that frequent reactions
accumulate at the beginning of the list, i.e., have low index values. This is done by dynamically
bubbling up a reaction whenever it fires by performing a single iteration of a bubble-sort
algorithm. The permutation lists for the reordered indices in each subvolume are stored in an
array for the I’s, and one-dimensional array of one-dimensional arrays of the size of Π(l,m,n) for
the J ’s. PSRD thus uses the sorting partial-propensity direct method (SPDM) to sample the
next reaction within a subvolume (see Sec. 3.3.2). This renders the sampling procedure more
efficient (in the sense that it reduces the prefactor in the scaling of the computational cost)
when the reaction network in a subvolume is multi-scale (stiff), without compromising on the
efficiency in non-stiff cases. In SRD simulations the reaction networks inside the subvolumes
tend to be stiff since the specific probability rates of bimolecular reactions scale as h−3 (in 3D
subvolumes) whereas those of source reactions scale as h3 (see Eq. 6.6). Using SPDM instead
of PDM may hence lead to significant computational savings.

Once a reaction has been executed, n(l,m,n), Π(l,m,n), Λ(l,m,n), and Σ(l,m,n) need to be
updated. This is efficiently done using three update structures. If the reaction network is the
same in each subvolume, the same update structures can be used for all subvolumes and they
do not have to be stored separately for different subvolumes. Subvolumes containing different
reaction networks have different update structures.

U(1) is an array of M arrays, where the ith array contains the indices of all species involved
in the ith “real” reaction. The index of the species involved in the ith lumped “diffusion
reaction” does not need to be stored as it is simply i itself.

U(2) is a array of M arrays containing the corresponding stoichiometries (the change in pop-
ulation of each species upon reaction) of the species stored in U(1). The stoichiometries
of the “diffusion reactions” are not stored since they are all −1.

U(3) is a array of N arrays, where the ith array contains the indices of all entries in the

Π(l,m,n)’s that depend on n
(l,m,n)
i .
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When a reaction is executed in subvolume (l,m, n), the populations of the species involved
in this reaction change. Hence, all entries in Π(l,m,n) that depend on these populations need
to be updated. After each reaction, we use U(1) to determine the indices of all species involved
in this reaction. The stoichiometry is then looked up in U(2) and the population n(l,m,n) is
updated. Subsequently, U(3) is used to locate the affected entries in Π(l,m,n) and recompute
them. The two data structures U(1) and U(2) hence amount to a sparse representation of the
stoichiometry matrix; U(3) represents the dependency graph over species. Since the partial
propensities of unimolecular and source reactions are constant and never need to be updated,
U(3) only contains the indices of the partial propensities of bimolecular reactions. Along with
updating the partial propensities in subvolume (l,m, n), the change in the total propensity
of that subvolume is also calculated and incrementally applied to a(l,m,n). This may require
the bin membership of a(l,m,n) to be updated, for which the current bin assignment of a(l,m,n)

must be known. We implement this by storing two additional integers for every a(l,m,n): one
for the bin membership and the other for the location inside that bin. Depending on its new
value, a(l,m,n) may remain in the same bin or move to a different one. Removal of an element
from a bin is done by replacing it with the last element in that bin and reducing the bin size
by one. Addition of an element into a bin is done by appending it at end of the bin. The
computational cost of both of these operations is O(1) (Slepoy et al., 2008) (see Sec. 3.4).

If the index of the next reaction is greater than M , then the sampled reaction is a lumped
“diffusion reaction” and additional steps need to be taken to resolve the direction of the jump
as follows: First, the index of the species undergoing diffusion is computed as i = µ −M .
Second, a uniform random number between 0 and the lumped specific probability rate of
the lumped “diffusion reaction” is generated. Third, linear search over the specific probability
rates of individual directional diffusion events is used to determine the target subvolume of the
jump. The jump is executed by increasing the population of species Si in the target subvolume
by 1 (the reduction in the source subvolume has already been done above) and updating the
entries in the partial propensity structure of the target subvolume as given by the indices

in U
(3)
i . Finally, the total propensity of the target subvolume and its bin membership are

updated.
Figure 6.3 summarizes the data structures used in PSRD for the example reaction network

given in Eq. 6.1. The complete algorithm is given in Table 6.1. The computational cost
of PSRD to sample the subvolume is O(1) if the ratio of maximum to minimum non-zero
total propensity in each subvolume is independent of the number of subvolumes and of the
size of the reaction network. In cases where this ratio is not bounded by a constant, the
computational cost to sample the subvolume is O(Ga), where the total number of bins Ga

depends on the logarithmic span of the subvolume propensities as Ga = log2(amax/amin) + 1.
The computational cost of sampling the index of the next reaction within a subvolume is O(N).
The overall computational cost of PSRD hence is O(Ga +N), which is at most O(log2Nv +N).
The memory requirement of PSRD is O((M +N)Nv). For more details on the computational
cost and the memory requirement, see Sec. 6.2.3.
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Figure 6.3: The data structures in PSRD. The contents of the data structures shown corresponds to
the example reaction network in Eq. 6.1 with 3 species and 4 reactions. We assume that
the computational domain is divided into 4 subvolumes. In the illustration, c

(2,2,1)
5 , c

(2,2,1)
6

,and c
(2,2,1)
7 are the lumped specific probability rates of the “diffusion reactions” of species

1, 2, and 3 respectively. See main text for further details.
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0. Assume that the reaction network has N species and M reactions. Divide the com-
putational box into Nv = KxKyKz cubic subvolumes of edge length h. Formulate the
reaction network modeling the reaction-diffusion system by including the jump reactions.
The resulting reaction network for the reaction-diffusion system has at most M +6N re-
actions and N species in each subvolume. Lump the “diffusion reactions” of each species
in each subvolume into one reaction with no products, such that number of reactions in
each subvolume is M + N . Make sure that the reaction index of the lumped “diffusion
reactions” is > M and that reaction µ = M + i is the lumped “diffusion reaction” of
species i.

1. Set time t ← 0. Initialize the data structures in each subvolume (l,m, n): the partial-
propensity structure Π(l,m,n), the group-sum array Λ(l,m,n), Σ(l,m,n), the population
n(l,m,n), the specific probability rates c(l,m,n), and the total propensity in the subvolume
a(l,m,n). Also initialize the data structures global to all subvolumes: the look-up table
L, the sparse representation of the stoichiometry matrix U(1) and U(2), the dependency
graph over species U(3), and the total propensity of all subvolumes a. Bin the a(l,m,n)

into Ga bins as described in Sec. 6.2.2.2.

2. While t < tf , repeat:

2.1. Compute the time to the next reaction τ ← a−1 ln(r−1), where a is the total
propensity of all reactions and r a uniformly distributed random number in [0, 1).

2.2. Use composition-rejection sampling to determine the subvolume (l,m, n) containing
the next reaction. Use linear search (Eq. 6.18) in the composition step to locate
the bin containing a(l,m,n) and use the rejection step to locate a(l,m,n) inside that
bin.

2.3. Sample the next reaction µ in subvolume (l,m, n) by sampling its group and element
indices. Sample the group index I using linear search over Σ(l,m,n) (Eq. 6.19). Sub-

sequently, sample the element index J using linear search over Π
(l,m,n)
I (Eq. 6.20).

The reaction index µ is then identified from the look-up table as µ = LI,J .

2.4. Update the internal data structures in subvolume (l,m, n) and the total propensity
a using U(1), U(2), and U(3).

2.5. Increase the number of bins Ga if necessary and update the bin membership of
a(l,m,n)

2.6. If µ > M (i.e., the sample reaction is a lumped “diffusion reaction”), compute
the index of the diffusing species as s = µ −M . Resolve the diffusion event to
identify the neighboring target subvolume (l′,m′, n′) to which species s of subvolume
(l,m, n) is diffusing. Update the population of species s in the target subvolume.
Subsequently, update the other internal data structures of the target subvolume

and the total propensity a using U
(3)
s . Increase the number of bins Ga if necessary

and update the bin membership of a(l′,m′,n′).

2.6. Advance time: t← t+ τ .

3. Stop.

Table 6.1: The detailed algorithm of PSRD.
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6.2.3 Computational cost

The steps that define the scaling of the computational cost of PSRD are the sampling of
the subvolume containing the next reaction, the sampling of the next reaction within that
subvolume, and the update of the data structures after firing the sampled reaction.

The computational cost of the composition-rejection sampling of the next subvolume is
O(Ga). This is because (i) the composition step is a linear search over Ga bins, and (ii) the
rejection step is O(1) since the average number of iterations for this step is bounded by a
constant thanks to the dyadic binning (Slepoy et al., 2008) (see Sec. 3.4).

The computational cost for sampling the next reaction within the selected subvolume
(l,m, n) is O(N). This step involves sampling the group index I and the element index J
of the next reaction in the partial-propensity structure. Sampling the group index involves
a linear search over the at most N + 1 elements of Σ(l,m,n) and hence has a computational
cost of O(N). Sampling the element index involves a linear search over the O(N) elements of

Π
(l,m,n)
I and hence has a computational cost of O(N) as well.
The computational cost for updating the data structures within a subvolume is at most

O(N). Assuming that the number of distinct species involved in any one chemical reaction is
O(1) (i.e., does not increase beyond a constant bound as the number of species in the network
increases), the cost of updating the population of species is O(1). Under the same assumption,
the number of entries in Π(l,m,n) that need to be updated after any reaction has fired is at
most O(N).

By the same argument, the cost of updating the partial-propensity structure of any neigh-
boring subvolume upon firing of a “diffusion reaction” is at most O(N).

Overall, the computational cost of PSRD thus is O(Ga +N), irrespective of the fraction fr

of “real” reaction firings.
The asymptotically (for large Nv) worst case for PSRD is when half of the subvolumes

contain bimolecular reactions and the other half source reactions. In 3D subvolumes, the
propensity of the bimolecular reactions is proportional to h−3 whereas that of the source
reactions is proportional to h3, where h is the edge length of the subvolumes. As Nv increases,
the logarithmic span of the propensities in the system hence increases. This leads to an increase
in the number of bins Ga that is proportional to log2 h

−6 = 2 log2Nv−2 log2 Ω, where Ω is the
(constant) volume of the reactor. Therefore, Ga ∈ O(log2Nv), rendering the computational
cost of PSRD O(log2Nv + N) in the worst case, independent of fr. This worst-case scaling
of PSRD’s computational cost can be reduced to O(log2 log2Nv + N) by using a tree search
(Gibson and Bruck, 2000) to sample b in Eq. 6.18.

The data structures of PSRD require O(M + N) memory per subvolume. Therefore, the
total memory requirement of PSRD is O((M +N)Nv).

6.2.4 Benchmarks

We analyze the computational cost of PSRD as quantified by the average simulation (CPU)
time Θ taken per reaction event of the chemical reaction model of a reaction-diffusion system.
We compare it to the time expected from the theoretical cost analysis (see Sec. 6.2.3) for two
different types of reaction networks: (i) an aggregation model where the number of reactions
increases super-linearly with the number of species and (ii) a linear chain model where the
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number of reactions is almost the same as the number of species. We simulate the correspond-
ing reaction-diffusion processes in a three-dimensional cubic computational domain (reactor)
of dimensions L × L × L and volume Ω = L3 from a initial time t = 0 until a final time
t = tf . For simulating the reaction-diffusion process we divide the computational domain into
Nv = K3 equi-sized cubic subvolumes of edge length h = L/K, such that K is the number of
subvolumes along each spatial dimension.

For each of these networks we report Θ as a function of the number of subvolumes Nv for
a fixed size of the reaction network and as a function of the reaction network size for a fixed
number of subvolumes. We use the number of species N in the reaction network to quantify
the size of the network. All timings are compared to those obtained on the same systems and
the same computer using NSM.

Both PSRD and NSM were implemented in C++ using the random number generator of
the GSL library and compiled using the Intel C++ compiler version 12.0.2 with the O3 opti-
mization flag. NSM is implemented according to the details provided on the MesoRD webpage
(Algorithm 7 in (Hattne, 2006)). All timings were measured on a Linux 2.6 workstation with
a 2.8 GHz quad-core Intel Xeon E5462 processor, 8 GB of memory and 4 MB L2 cache. For all
test cases, we simulate until a final time tf and report the average CPU time Θ per reaction
event. The time Θ does not include the initialization of the data structures as this is done only
once. We explain the measurements by least-squares fits of Θ(Nv, N) with the corresponding
theoretical cost models. For PSRD and NSM, we hence fit Θ with α1 log2Nv + α2N and
α1 log2Nv + α2frM + α3(1 − fr)6N , respectively. Before fitting, we estimate the functional
dependence of fr on Nv or N by performing simulations. Subsequently, we fit Θ to determine
the coefficients αi.

All simulations are run without any a priori estimate of the maximum total propensity
amax across all subvolumes. Instead, amax is constantly updated during a simulation and the
number of bins Ga is dynamically increased when required (see Sec. 6.2.2.2).

6.2.4.1 Colloidal aggregation model

We consider the nonequilibrium colloidal aggregation model as a prototype of a strongly cou-
pled reaction network in which the number of reactions increases super-linearly with the num-
ber of species:

Ø
k0−→ S1

Si + Sj
ki,j−−→ Si+j i+ j = 2, . . . , N

Si+j
k̄i,j−−→ Si + Sj i+ j = 2, . . . , N

Si
ki−→ Ø i = 1, . . . , N.

(6.21)

The k’s are the macroscopic reaction rates. This system of reactions models the influx of
monomers (S1) into a reactor where multimers (Si) fuse with each other to form larger mul-
timers. Multimers in the reactor also break to form smaller units in all possible combina-
tions, and all of the multimers can leave the reactor. Such a system of reactions models
driven colloidal aggregation and is relevant for a variety of phenomena of practical impor-
tance, e.g., nano-particle clustering and colloidal crystallization (nanotechnology), emulsifi-
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cation and emulsion stabilization in porous media (oil industry), and oligomerization of pro-
teins (biochemistry). For N chemical species, the aggregation reaction network consists of
M = bN2/2c+N + 1 reactions.

We divide the cubic computational domain (reactor) into Nv = K3 subvolumes, such that
the on-lattice reaction-diffusion process with reflective boundary conditions is described by
the following set of “reactions”:

Ø
k0−→ S

(l,m,n)
1

S
(l,m,n)
i + S

(l,m,n)
j

ki,j−−→ S
(l,m,n)
i+j i+ j = 2, . . . , N

S
(l,m,n)
i+j

k̄i,j−−→ S
(l,m,n)
i + S

(l,m,n)
j i+ j = 2, . . . , N

S
(l,m,n)
i

ki−→ Ø i = 1, . . . , N

S
(l,m,n)
i

Di/h
2

−−−−→ Sci i = 1, . . . , N





∀ (l,m, n) ∈ Iall, c ∈ Cl,m,n, (6.22)

where Di is the diffusion constant of species Si and h the edge length of the cubic subvolumes.
The propensities of these reactions are computed as described in Sec. 6.1. For all bimolecular
reactions, we use discretization-corrected propensities (see Eqs. 6.9 and 6.11). The above
network consists of NK3 = NNv species and MK3 + N(6K3 − 6K2) = (bN2/2c + 1)Nv +

N(7Nv − 6N
2/3
v ) reactions.

For the present benchmarks, we set the macroscopic reaction rates ki,i = 0.5, all other
rates and all diffusion constants to 1, and the reactor volume to Ω = 10. At time t = 0, the

populations of all species in all subvolumes, i.e. all n
(l,m,n)
i , are set to 0. From this initial

condition we simulate the reaction-diffusion system until tf = 100.
Figure 6.4A shows the computational cost Θ as a function of the number of subvolumes Nv

using PSRD and NSM for two fixed-size aggregation networks with N = 10 and N = 100,
respectively. The corresponding numbers of reactions M are 61 and 5101, respectively. In
both cases we estimate fr and use it for fitting Θ. We observe that fr decreases as N−0.34

v

with increasing Nv. For PSRD, Θ(Nv, N = 10) ≈ 0.02861 logNv at large Nv. This scaling
of Θ is caused by the dynamic increase in the number of bins Ga. For NSM, Θ(Nv, N =
10) ≈ 0.1095 logNv at large Nv. For the larger network with N = 100, we find for PSRD
Θ(Nv, N = 100) ≈ 0.04401 logNv at large Nv. For NSM, Θ(Nv, N = 100) ≈ 0.288 logNv at
large Nv. For smaller 1 ≤ Nv < 512, Θ of NSM decreases with increasing Nv. This is mediated
by the decrease in fr. At Nv = 1, fr = 1 and the cost is dominated by that of sampling the next
“real” reaction. As Nv increases, fr decreases. This decrease in fr progressively reduces the
cost of sampling a reaction in a subvolume from being linear in M to linear in 6N . At large-
enough Nv, the cost of sampling a reaction in a subvolume is dominated by the cost of sampling
“diffusion reactions”. For a fixed network size, the increase in Θ(Nv, N = 100) at large Nv

is thus primarily due to the increasing cost to sample the next subvolume. In summary, the
scaling of the computational cost of PSRD with respect to the number of subvolumes Nv is
O(log2Nv). This scaling is asymptotically (for large Nv) the same as that of NSM, but with
a smaller prefactor.

Figure 6.4B shows the computational cost Θ as a function of the size N of the aggregation
reaction network using PSRD and NSM with Nv = 512 and Nv = 1000 subvolumes. We
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Figure 6.4: Computational cost of PSRD and NSM for the aggregation model (Eq. 6.21). (A) Compu-
tational cost Θ of PSRD (squares) and NSM (circles) as a function of the number of subvol-
umes Nv with the size of the reaction network fixed to N = 10 (filled symbols) and N = 100
(empty symbols), respectively. The solid lines show the corresponding least-squares fits
of the theoretical cost models: For N = 10, ΘPSRD ≈ 0.02861 logNv + 0.03925N ,
ΘNSM ≈ 0.1095 logNv + 0.00581frM + 0.00481(1 − fr)6N ; for N = 100, ΘPSRD ≈
0.04401 logNv + 0.003579N , ΘNSM ≈ 0.288 logNv + 0.001375frM + 0.001418(1 − fr)6N .
We estimate fr ≈ 1.096N−0.3353

v −0.08263 for N = 10 and fr = 1.097N−0.3372
v −0.0825 for

N = 100. (B) Computational cost Θ of PSRD (squares) and NSM (circles) as a function
of the number of species N in the reaction network with the number of subvolumes fixed
to Nv = 512 (filled symbols) and Nv = 1000 (empty symbols), respectively. The solid lines
show the corresponding least-squares fits of the theoretical cost models: For Nv = 512,
ΘPSRD ≈ 0.07559 logNv + 0.002258N , ΘNSM ≈ 0.1356 logNv + 0.002784fr(bN2/2c +
N + 1) + 0.002633(1 − fr)6N ; for Nv = 1000, ΘPSRD ≈ 0.07205 logNv + 0.002777N ,
ΘNSM ≈ 0.1198 logNv + 0.002762fr(bN2/2c+N + 1) + 0.003163(1− fr)6N . The fraction
fr = 0.04 for Nv = 512 and fr = 0.02 for Nv = 1000.

observe that for both Nv the ratio fr does not depend on the size N of network. For Nv = 512,
fr = 0.04, decreasing to fr = 0.02 for Nv = 1000. For PSRD, Θ(Nv = 512, N) ≈ 0.002258N ,
confirming the linear dependence on N predicted by the theoretical cost analysis. For NSM,
Θ(Nv = 1000, N) ≈ 0.00011M + 0.0152N . For the larger number subvolumes, Nv = 1000,
Θ(Nv = 1000, N) ≈ 0.002777N for PSRD. For NSM, Θ(Nv = 1000, N) ≈ 0.000055M +
0.0186N . In summary, the scaling of the computational cost of PSRD with respect to the size
N of the reaction network is O(N).
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6.2.4.2 Linear chain model

As a prototypical reaction network in which the number of reactions is almost the same as the
number of species, we consider the nonequilibrium linear chain model:

Ø
k0−→ S1

Si
ki−→ Si+1 i = 1, . . . , N − 1

SN
kN−−→ Ø.

(6.23)

Again, the k’s are the macroscopic reaction rates. This linear chain of reactions can, e.g.,
be used to model signal transduction pathways in biological cells (Albert and Barabási, 2002;
Albert, 2005). For N species, this network contains M = N + 1 reactions.

Again dividing the cubic computational domain into Nv = K3 subvolumes, the resulting
reaction-diffusion system with reflective boundary conditions is given by:

Ø
k0−→ S

(l,m,n)
1

S
(l,m,n)
i

ki−→ S
(l,m,n)
i+1 i = 1, . . . , N − 1

S
(l,m,n)
N

kN−−→ Ø

S
(l,m,n)
i

Di/h
2

−−−−→ Sci i = 1, . . . , N





∀ (l,m, n) ∈ Iall, c ∈ Cl,m,n, (6.24)

where Di is the diffusion constant of species Si and h is the edge length of the cubic subvol-
umes. The propensities of these reactions are computed as described in Sec. 6.1. There are
no bimolecular reactions in this network, and we do not use discretization-corrected propen-
sities (Erban and Chapman, 2009). This system of reactions modeling the reaction-diffusion

process contains NK3 = NNv species and MK3 + N(6K3 − 6K2) = (7N + 1)Nv − 6NN
2/3
v

reactions.
For the benchmarks we set all macroscopic reactions rates and all diffusion constants Di to

1, and the volume of the reactor to Ω = 100. At time t = 0, the populations of all species in
all subvolumes are 0, and the simulation is run until tf = 100.

Figure 6.5A shows the computational cost Θ as a function of the number of subvolumes Nv

using PSRD and NSM for two fixed-size linear chain networks with N = 10 and N = 100.
The corresponding numbers of reactions M are 11 and 101, respectively. In both cases we
estimate fr and use it for fitting Θ. We observe that fr decreases as N−0.22

v with increasing
Nv. For PSRD, Θ(Nv, N = 10) ≈ 0.03312 logNv. This scaling of Θ is caused by the increase
in the number of bins Ga. For NSM, Θ(Nv, N = 10) ≈ 0.08256 logNv. For the larger network
with N = 100, the computational cost of PSRD is Θ(Nv, N = 100) ≈ 0.04842 logNv for
Nv / 512 and Θ(Nv, N = 100) ≈ 0.2923 logNv for Nv ' 512. For NSM, Θ(Nv, N = 100) ≈
0.1428 logNv for Nv / 512 and Θ(Nv, N = 100) ≈ 0.5929 logNv for Nv ' 512. The abrupt
increase in the prefactor of the scaling around Nv ≈ 512 is likely caused by cache-memory
effects. In summary, the scaling of the computational cost of PSRD with respect to the number
of subvolumes Nv is O(log2Nv). Again, this is the same scaling as that of NSM, but with a
smaller prefactor.

Figure 6.5B shows the computational cost Θ as a function of the size N of the linear chain
network using PSRD and NSM with Nv = 512 and Nv = 1728 subvolumes. We observe that
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Figure 6.5: Computational cost of PSRD and NSM for the linear chain model (Eq. 6.23). (A) Compu-
tational cost Θ of PSRD (squares) and NSM (circles) as a function of the number of subvol-
umes Nv with the size of the reaction network fixed to N = 10 (filled symbols) and N = 100
(empty symbols), respectively. The solid lines show the corresponding least-squares fits
of the theoretical cost models: For N = 10, ΘPSRD ≈ 0.03312 logNv + 0.03703N ,
ΘNSM ≈ 0.08256 logNv + 0.02504frM + 0.002615(1 − fr)6N ; for N = 100, ΘPSRD ≈
0.04842 logNv+0.003786N , ΘNSM ≈ 0.1428 logNv+0.002934frM+0.0001978(1−fr)6N for
Nv / 512 and ΘPSRD ≈ 0.2923 logNv−0.01199N , ΘNSM ≈ 0.5929 logNv+0.0000008frM−
0.004924(1−fr)6N for Nv ' 512. We estimate fr ≈ 1.281N−0.2121

v −0.2505 for N = 10 and
fr ≈ 1.241N−0.2291

v − 0.2138 for N = 100. (B) Computational cost Θ of PSRD (squares)
and NSM (circles) as a function of the number of species N in the reaction network with the
number of subvolumes fixed to Nv = 512 (filled symbols) and Nv = 1728 (empty symbols),
respectively. The solid lines show the corresponding least-squares fits of the theoretical cost
models: For Nv = 512, ΘPSRD ≈ 0.03051 logN + 0.5291, ΘNSM ≈ 0.07885 logN + 0.5458;
for Nv = 1728, ΘPSRD ≈ 0.08479 logN + 0.5073, ΘNSM ≈ 0.1642 logN + 0.5561. The
fraction fr = 0.06 for Nv = 512 and fr = 0.03 for Nv = 1728.

for both Nv the ratio fr is independent of the size N of the network. For Nv = 512, fr = 0.06,
decreasing to fr = 0.03 for Nv = 1728. We observe that the scaling of Θ is slower than
predicted by the theoretical cost analysis. This is not a violation of the theory since the
theoretical analysis only provides an upper bound for the scaling. The slower scaling in the
present case is specific to the particular reaction network. We obtain reasonable fits with a
function linear in logN . The asymptotic plateau is due to “diffusion reactions” of species
S1 accounting for the majority of all reaction firings. Since this reaction is on top of the list
(species index 1), it is found in O(1) time. For PSRD, Θ(Nv = 512, N) ≈ 0.03051 logN . For
NSM, Θ(Nv = 512, N) ≈ 0.07885 logN . For the larger number subvolumes Nv = 1728, Θ of
PSRD is Θ(Nv = 1728, N) ≈ 0.08479 logN . For NSM, Θ(Nv = 1728, N) ≈ 0.1642 logN . In
summary, the scaling of the computational cost of PSRD with respect to the size N of the
reaction network is O(N), since logN ∈ O(N).
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6.2.5 Two- and three-dimensional SRD simulations using PSRD

As an example application we use PSRD for two- and three-dimensional SRD simulations of
the Gray-Scott reaction system (Gray and Scott, 1983, 1984, 1985; Pearson, 1993; Lee et al.,
1993), given by:

Ø
Fk1u

3

−−−−→ S1

S1
Fk1u

2

−−−−→ Ø

S1 + 2S2
k1−→ 3S2

S2
kk1u

2

−−−−→ Ø

S2
Fk1u

2

−−−−→ Ø.

(6.25)

This system is widely used to study the formation of Turing patterns (Turing, 1952) in reaction-
diffusion systems (Pearson, 1993). The trivial steady state of the system is n1 = uΩ and n2 = 0,
where Ω is the volume of the reactor. For a fixed reactor volume, a larger u hence corresponds
to a larger number of molecules in the reactor, reducing the effect of noise. In the limit of very
large u, the kinetics of the stochastic system tends to that of the deterministic one.

The third reaction in the system is not elementary since it involves three reactant molecules.
We therefore extend PSRD to also handle trimolecular reactions by using a three-dimensional
partial-propensity structure and factoring out two other reactants. We choose this strategy
over expanding the network into elementary reactions in order to render the parameters k
and F comparable to the deterministic limit case. We do not use discretization-corrected
propensities since no theoretical framework is available for trimolecular reactions (Fange et al.,
2010).

For the simulations we fix the dimensionless constants such that F = 0.04 and k = 0.06,
and we choose the macroscopic rate k1 = 1. In 2D we simulate the reaction-diffusion system
in a computational domain of area Ω = 0.642, divided into K2 = 642 subvolumes (or subareas)
of edge length h = 0.01. At the boundary of the computational domain, periodic boundary
conditions are used for the jump reactions. The resulting reaction-diffusion system in 2D thus
is:

Ø
Fk1u

3

−−−−→ S
(l,m)
1

S
(l,m)
1

Fk1u
2

−−−−→ Ø

S
(l,m)
1 + 2S

(l,m)
2

k1−→ 3S
(l,m)
2

S
(l,m)
2

kk1u
2

−−−−→ Ø

S
(l,m)
2

Fk1u
2

−−−−→ Ø

S
(l,m)
1

D1/h
2

−−−−→ S
(l′,m′)
1

S
(l,m)
2

D2/h
2

−−−−→ S
(l′,m′)
2





∀ (l,m) ∈ Iall , (6.26)

where Iall is the set of all possible subvolume indices in 2D and (l′,m′) are the neighboring
subvolumes of (l,m) taking into account the periodic boundary conditions, hence l′ ∈ {[((l −
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1)± 1 + 2K) mod K] + 1} and m′ ∈ {[((m− 1)± 1 + 2K) mod K] + 1}. At t = 0, the initial
population is:

n
(l,m)
1 =

{
uh2

2 + b0.04(r − 0.5)uh2 + 0.5c, for 24 ≤ l,m ≤ 40

uh2, otherwise.

n
(l,m)
2 =

{
uh2

4 + b0.02(r − 0.5)uh2 + 0.5c, for 24 ≤ l,m ≤ 40

0, otherwise,
(6.27)

where r is a uniform random number in [0, 1) that acts as an initial perturbation. We use the
diffusion constants D1 = 2 · 10−5 and D2 = D1/2.

Figure 6.6: Normalized spatial concentration distribution of species S1 in the two-dimensional Gray-
Scott reaction-diffusion system (Eq. 6.26) for F = 0.04, k = 0.06, k1 = 1, and D1 =
2D2 = 2 · 10−5 in a square computational domain of area 0.642, divided into Nv = 642

subvolumes (or subareas) of edge length h = 0.01. The concentration in each subvolume
is shown as a color ranging from blue (concentration zero) to red (concentration one).
(A)+(B) Concentration distributions, normalized by u, obtained using PSRD for u = 106

and u = 107, respectively. (C) Normalized concentration distribution obtained from a
deterministic simulation using the same parameters, simulated using second-order finite
differences. All snapshots are taken at time t = 2000/(k1u

2).

Figure 6.6 shows the 2D simulation results from PSRD and from a deterministic simulation.
It shows the spatial concentration distribution of species S1, normalized with u, at time tf =
2000/(k1u

2). Figures 6.6A and 6.6B show the normalized concentration distributions for
u = 106 and 107, respectively, as obtained using PSRD. The maximum number of molecules
of S1 in any subvolume is on the order of h2u = 0.01u. For u = 106, approximately 0.3 · 109

reaction events are simulated until tf with fr ≈ 0.12 and a total runtime (CPU time) of 157 s
for PSRD and 200 s for NSM. For u = 107, the number of reaction events happening during
the simulation increases to ≈ 3 · 109 with fr ≈ 0.14 and a total runtime (CPU time) of 1854 s
for PSRD and 2290 s for NSM.

Increasing u increases the total number of molecules in the reactor and hence decreases the
noise in the system. The normalized concentration distribution obtained from a deterministic
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simulation is independent of u and is shown in Fig. 6.6C. The deterministic simulation is done
using the same numerical scheme as Pearson (Pearson, 1993) in order to render the results
comparable. This is a second-order finite-difference discretization of the Laplacian for the
diffusion part and a first-order explicit Euler scheme with time-step size ∆t = 1.125 for time
stepping. The results show that as the number of molecules in the reactor increases with
increasing u, the stochastic spatial pattern tends toward the deterministic one. The intrinsic
noise in the stochastic system, however, breaks the symmetry of the pattern.

We also simulate the reaction-diffusion system in Eq. 6.26 in 3D (using triplet indices for
the subvolumes) in a computational domain of volume Ω = 0.643, divided into K3 = 643 sub-
volumes of edge length h = 0.01. Again using periodic boundary conditions for the diffusion,
the resulting reaction-diffusion system is:
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−−−−→ Ø

S
(l,m,n)
1 + 2S

(l,m,n)
2

k1−→ 3S
(l,m,n)
2

S
(l,m,n)
2

kk1u
2

−−−−→ Ø
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∀ (l,m, n) ∈ Iall , (6.28)

where Iall is the set of all possible subvolume indices in 3D and (l′,m′, n′) are the neighboring
subvolumes of (l,m, n) taking into account the periodic boundary conditions, hence l′ ∈ {[((l−
1)±1+2K) mod K]+1}, m′ ∈ {[((m−1)±1+2K) mod K]+1}, and n′ ∈ {[((n−1)±1+2K)
mod K] + 1}. At t = 0, the initial population is:

n
(l,m,n)
1 =

{
uh3

2 + b0.04(r − 0.5)uh3 + 0.5c, for 24 ≤ l,m, n ≤ 40

uh3, otherwise.

n
(l,m,n)
2 =

{
uh3

4 + b0.02(r − 0.5)uh3 + 0.5c, for 24 ≤ l,m, n ≤ 40

0, otherwise,
(6.29)

where r is a uniform random number in [0, 1) that acts as an initial perturbation. We use the
same diffusion constants as in the 2D case above.

Figure 6.7 shows the 3D concentration distribution of species S1 at time tf = 2000/(k1u
2),

normalized with u = 108. For these parameters, the maximum number of molecules of species
S1 in any subvolume is uh3 = 100 and hence the intrinsic noise breaks the symmetry of the
Turing pattern. Approximately 36 · 109 reaction events are simulated until tf with fr ≈ 0.1.
The total runtime (CPU time) for PSRD is 77 413 s, for NSM it is 100 636 s (extrapolated).
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Figure 6.7: Normalized spatial concentration distribution of species S1 in the three-dimensional Gray-
Scott reaction-diffusion system (Eq. 6.28) for F = 0.04, k = 0.06, k1 = 1, and D1 =
2D2 = 2 · 10−5 in a cubic computational domain of volume 0.643, divided into Nv = 643

subvolumes of edge length h = 0.01. The concentration in each subvolume, normalized by
u = 108, is shown as a color ranging from blue (concentration zero) to red (concentration
one). The snapshot is taken at time t = 2000/(k1u

2).

6.3 Conclusions and Summary

We have introduced the on-lattice partial-propensity stochastic reaction-diffusion (PSRD)
method. PSRD proceeds by dividing the computational domain into Nv subvolumes. The
chemical reaction system in each subvolume is assumed to be well mixed and it is imposed
that molecules can only react with partners within the same subvolume. Diffusion is modeled
by jump “reactions” between neighboring subvolumes. PSRD combines composition-rejection
sampling (Devroye, 1986; Slepoy et al., 2008) (see Sections 2.3.7 and 3.4) with the concept
of partial propensities (see Sec. 3.2). Computational efficiency is achieved by binning the
subvolumes and using partial propensities to group the reactions within each subvolume.

PSRD samples trajectories from the exact solution of the reaction-diffusion master equation
for on-lattice reaction-diffusion systems, provided the subvolume sizes are within admissi-
ble bounds (Erban and Chapman, 2009; Fange et al., 2010; Kuramoto and Yamada, 1976).
This is done by first sampling the subvolume using composition-rejection sampling, and then
sampling the index of the next reaction within that subvolume using linear search over the
dynamically grouped partial propensities, analogous to the sorting partial-propensity direct
method (SPDM) (see Sec. 3.3.2). The computational cost of PSRD to sample the next subvol-
ume is O(Ga), where the number of bins is Ga = log2(amax/amin) + 1, amax is the maximum
total propensity in any subvolume, and amin is the smallest non-zero total propensity in any
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subvolume. In any simulation, the number Ga scales at most as O(log2Nv). If the logarithmic
span of the propensities can be a priori bounded by a constant, the cost of sampling the sub-
volume reduces to O(1)(Slepoy et al., 2008). The computational cost to sample the index of
the next reaction within a subvolume is O(N), where N is the number of species in the reac-
tion network. Thus, the overall computational cost of PSRD is O(Ga +N), which is bounded
in the worst case by O(log2Nv +N). This cost of PSRD is independent of whether the SRD
simulation is dominated by “real” reactions or by “diffusion reactions”. We demonstrated
this scaling of the computational cost using prototypical benchmark cases for both types of
reaction networks: strongly coupled and weakly coupled.

PSRD inherits the limitations of partial-propensity methods. It is hence limited to reac-
tion networks comprising only elementary reactions. For spatiotemporal reaction-diffusion
simulations, however, including non-elementary reactions is of questionable value since no
kinetic-theoretical framework exists for them (Fange et al., 2010; von Smoluchowski, 1917). It
is hence unclear how the propensity functions of non-elementary reactions should be correctly
formulated in a discretized space (Fange et al., 2010).

Due to the more complex data structures used in partial-propensity methods, we do not
expect PSRD to offer significant speed-ups for small (N / 10) chemical reaction networks. In
these cases, the next subvolume method (Elf and Ehrenberg, 2004; Hattne et al., 2005) can be
as efficient or faster than PSRD. In addition, PSRD is restricted to chemical reaction networks
that do not involve time delays. This could be overcome by using dPDM (delay PDM) (see
Sec. 3.5.2) instead of SPDM inside each subvolume in PSRD. Our current software implemen-
tation of PSRD is moreover limited to rectangular computational domains. This limitation,
however, is not inherent to the method as such and future developments will consider extend-
ing the method to computational domains of arbitrary shape (Sbalzarini et al., 2005, 2006),
e.g., using unstructured meshes (Engblom et al., 2009).

While we have described the basic version of PSRD for simplicity and conciseness of the
presentation, the algorithm can be further improved in efficiency using standard techniques.
Using a binary tree search instead of linear search over subvolume bins (Gibson and Bruck,
2000), the computational cost of sampling the next subvolume can, for example, be reduced to
O(log2Ga), rendering the overall computational cost of such a variant of PSRD O(log2Ga+N)
and in the worst-case O(log2 log2Nv + N). Moreover, for weakly coupled reaction networks
the computational cost of sampling the next reaction within a subvolume can be reduced
to O(Gr) using the partial-propensity method with composition-rejection sampling (PSSA-
CR) within each subvolume. Gr is the logarithmic span of non-zero propensities within the
subvolume. In summary, the computational cost of PSRD can be reduced to O(log2Ga +N)
or even O(log2Ga + log2Gr) for certain classes of reaction networks and when using a binary
search tree also within PSSA-CR. These improvements can be realized at the expense of larger
memory requirements, which is why we did not include them in the presentation here. Their
implementation, however, is straightforward and they will be included in future versions of
the PSRD software package.

PSRD uses dynamic bubble sort for the reactions within each subvolume. This is inspired
by the sorting direct method (SDM) (McCollum et al., 2006) and its partial-propensity variant
SPDM. Sorting SSAs have been shown to be particularly efficient on multi-scale (stiff) reaction
networks where the propensities of different reactions are orders of magnitude apart. This
means that a small fraction of reactions can potentially account for the majority of reaction
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6 Exact on-lattice stochastic reaction-diffusion simulations using partial-propensity methods

events. The dynamic “bubbling up” of these reactions in the reaction list reduces the average
search depth when sampling the next reaction as it accumulates the most frequent reactions at
the top of the list. Using a sorting SSA inside each subvolume of an on-lattice SRD simulation
is particularly advantageous since the propensities of different reaction types scale differently
with subvolume size (see Eq. 6.2). While the propensities of bimolecular reactions scale as
Ω−1

c , those of source reactions scale as Ωc, and the propensities of unimolecular reactions are
independent of Ωc. The propensities of “diffusion reactions” scale as h−2. Reducing the grid
spacing h thus renders the reaction network increasingly multi-scale with the propensity ratio
between the fastest and slowest reactions scaling at most as h6 in 3D subvolumes (h4 in 2D
subvolumes).

Taken together, PSRD offers an improved scaling of the computational cost for exact on-
lattice SRD simulations. This can lead to significant performance improvements when simu-
lating strongly coupled spatiotemporal processes, such as colloidal aggregation and scale-free
biochemical networks (Strogatz, 2001; Albert and Barabási, 2002; Barabási and Oltvai, 2004;
Albert, 2005).

A C++ implementation of PSRD is currently being implemented in pSSA simulation pack-
age (see Appendix A4).
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7
Global parameter identification for

stochastic reaction networks from single
trajectories

“I have had my results for a long time; but I do not yet know how I am to
arrive at them.”
– Carl F. Gauss

We provide an example of an application that involves stochastic simulations of chemical ki-
netics as a forward model in solving an inverse problem. Specifically, we consider the problem
of parameter identification in systems biology network models (Engl et al., 2009). This demon-
strates a potential application of partial-propensity methods and of the fluctuation-relaxation
kinetics in mesoscopic chemical systems.

Systems biology implies a holistic research paradigm, complementing the reductionist ap-
proach to biological organization (Kitano, 2002b,a). This frequently has the goal of mechanis-
tically understanding the function of biological entities and processes in interaction with the
other entities and processes they are linked to or communicate with. A formalism to express
these links and connections is provided by network models of biological processes (Barabási
and Oltvai, 2004; Albert, 2005). Using concepts from graph theory (Mason and Verwoerd,
2007) and dynamic systems theory (Wolkenhauer, 2001), the organization, dynamics, and
plasticity of these networks can then be studied.

Systems biology models of molecular reaction networks contain a number of parameters.
These are the rate constants of the involved reactions and, if spatiotemporal processes are
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7 Global parameter identification for stochastic reaction networks from single trajectories

considered, the transport rates, e.g. diffusion constants, of the chemical species. In order for
the models to be predictive, these parameters need to be inferred. The process of inferring
them from experimental data is called parameter identification. If in addition also the network
structure is to be inferred from data, the problem is called systems identification. Here, we
consider the problem of identifying the parameters of a biochemical reaction network from a
single, noisy measurement of the concentration time-course of some of the involved species.
While this time series can be long, ensemble replicas are not possible, either because the
measurements are destructive or one is interested in variations between different specimens or
cells. This is particularly important in molecular systems biology, where cell–cell variations are
of interest or large numbers of experimental replica are otherwise not feasible (Snijder et al.,
2009; Zechner et al., 2011, submitted).

This problem is particularly challenging and traditional genomic and proteomic techniques
do not provide single-cell resolution. Moreover, in individual cells the molecules and chemical
reactions can only be observed indirectly. Frequently, fluorescence microscopy is used to
observe biochemical processes in single cells. Fluorescently tagging some of the species in
the network of interest allows measuring the spatiotemporal evolution of their concentrations
from video microscopy and fluorescence photometry. In addition, fluorescence correlation
spectroscopy (FCS) allows measuring fluctuation time-courses of molecule numbers (Lakowicz,
2006).

Using only a single trajectory of the mean concentrations would hardly allow identification
of network parameters. There could be several combinations of network parameters that lead
to the same mean dynamics. A stochastic network model, however, additionally provides
information about the fluctuations of the molecular abundances. The hope is that there is
then only a small region of parameter space that produces the correct behavior of the mean
and the correct spectrum of fluctuations (Munsky et al., 2009). Experimentally, fluctuation
spectra can be measured at single-cell resolution using FCS.

The stochastic behavior of biochemical reaction networks can be due to low copy numbers
of the reacting molecules (Grima, 2009b). In addition, biochemical networks may exhibit
stochasticity due to extrinsic noise (see Chapter 4 for an example). This can persist even at
the continuum scale, leading to continuous–stochastic models. Extrinsic noise can, e.g., arise
from environmental variations or variations in how the reactants are delivered into the system.
Also measurement uncertainties can be accounted for in the model as extrinsic noise, modeling
our inability to precisely quantify the experimental observables.

We model stochastic chemical kinetics using the chemical master equation (CME). Using a
CME forward model in biological parameter identification amounts to tracking the evolution
of a probability distribution, rather than just a single value. This prohibits predicting the
state of the system and only allows statements about the probability for the system to be
in a certain state, hence requiring sampling-based parameter identification methods. In the
stochastic–discrete context, a number of different approaches have been suggested. Boys et al.
proposed a fully Bayesian approach for parameter estimation using an explicit likelihood for
data/model comparison and a Markov Chain Monte Carlo (MCMC) scheme for sampling (Boys
et al., 2008). Zechner et al. developed a recursive Bayesian estimation technique (Zechner
et al., 2011,,) to cope with cell–cell variability in experimental ensembles. Toni and co-workers
used an approximate Bayesian computation (ABC) ansatz, as introduced by Marjoram and
co-workers (Marjoram et al., 2003), that does not require an explicit likelihood (Toni et al.,
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2009). Instead, sampling is done in a sequential Monte Carlo (or particle filter) framework.
Reinker et al. used a hidden Markov model where the hidden states are the actual molecule
abundances, and state transitions model chemical reactions (Reinker et al., 2006). Inspired
by Prediction Error Methods (Ljung, 2002), Cinquemani et al. identified the parameters of
a hybrid deterministic–stochastic model of gene expression from multiple experimental time
courses (Cinquemani et al., 2008). A variational approach for stochastic two-state systems has
been proposed by Stock and co-workers based on Maximum Caliber (Stock et al., 2008), an
extension of Jaynes’ Maximum Entropy principle (Jaynes, 1957) to nonequilibrium systems.
Randomized optimization algorithms have been used, e.g., by Koutroumpas et al. who applied
a Genetic Algorithm to a hybrid deterministic–stochastic network model (Koutroumpas et al.,
2008). More recently, Poovathingal and Gunawan used another global optimization heuristic,
the Differential Evolution algorithm (Poovathingal and Gunawan, 2010). Gazzola et al. used
the evolution strategy with covariance matrix adaptation (CMA-ES) (Hansen and Ostermeier,
2001; Hansen et al., 2003) to estimate the parameters of a linear reaction network modeling
stochastic microtubule dynamics (Gazzola et al., 2009). CMA-ES has also been used for
parameter identification in a variety of deterministic systems (Kern and Koumoutsakos, 2006;
Hansen et al., 2009; Gazzola et al., 2011).

If estimates are to be made based on a single trajectory, the stochasticity of the measure-
ments and of the model leads to very noisy similarity measures, requiring optimization and
sampling schemes that are robust against noise in the data. Here, we propose a novel combi-
nation of exact stochastic simulations for a CME forward model and an adaptive Monte Carlo
sampling technique, called Gaussian Adaptation, to address the single-trajectory parameter
estimation problem for monostable stochastic biochemical reaction networks. Evaluations
of the CME model are done using exact partial-propensity stochastic simulation algorithms
(see Chapter 3). Parameter optimization uses Gaussian Adaptation (Müller and Sbalzarini,
2010b,a). The method iteratively samples model parameters from a multivariate normal dis-
tribution and evaluates a suitable objective function that measures the distance between the
dynamics of the forward model output and the experimental measurements. In addition to
estimates of the kinetic parameters in the network, the present method also provides an el-
lipsoidal volume estimate of the viable part of parameter space and is able to estimate the
physical volume of the compartment in which nonlinear reactions take place.

We assume that quantitative experimental time series of either a transient or the steady
state of the concentrations of some of the molecular species in the network are available.
This can, for example, be obtained from single-cell fluorescence microscopy by translating
fluorescence intensities to estimated chemical concentrations. Accurate methods that account
for the microscope’s point-spread function and the camera noise model are available to this
end (Helmuth et al., 2009; Helmuth and Sbalzarini, 2009; Cardinale et al., 2009). Addition-
ally, FCS spectra can be analyzed in order to quantify the fluctuation relaxation kinetics of
molecular populations (Lakowicz, 2006; Qian and Elson, 2004). The present approach requires
only a single stochastic trajectory from each cell. Since the forward model is stochastic and
only a single experimental trajectory is used, the objective function needs to robustly mea-
sure closeness between the experimental and the simulated trajectories. We review previously
considered measures and present a new distance function in Sec. 7.4. First, however, we set
out the formal problem description below. We then describe Gaussian Adaptation and its
applicability to the current estimation task. The evaluation of the forward model is outlined
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7 Global parameter identification for stochastic reaction networks from single trajectories

in Sec. 7.3. We consider a linear cyclic chain and a nonlinear colloidal aggregation model as
benchmark test cases in Sec. 7.5 and conclude in Sec. 7.6.

7.1 Problem statement

We consider a network model of a biochemical system given by M coupled chemical reactions

N∑

i=1

ν−i,jSi
kj−−−−−→

N∑

i=1

ν+
i,jSi ∀j = 1, . . . ,M (7.1)

between N species, where ν− = [ν−i,j ] and ν+ = [ν+
i,j ] are the stoichiometry matrices of the

reactants and products, respectively, and Si is the ith species in the reaction network. Let ni
be the population (molecular copy number) of species Si. The reactions occur in a physical
volume Ω and the macroscopic reaction rate of reaction j is kj . This defines a dynamic system
with integer-valued state n(t) = [ni(t)] and M + 1 parameters θ = [k1, . . . , kM ,Ω].

The problem considered here can then be formalized as follows: Given a forward modelM(θ)
and a single noisy trajectory of the population of the chemical species n̂(t0 + (q− 1)∆texp) at
K discrete time points t = t0 +(q−1)∆texp, q = 1, . . . ,K, we wish to infer θ = [k1, . . . , kM ,Ω].
The time between two consecutive measurements ∆texp and the number of measurements K
are given by the experimental technique used. As a forward model M(θ) we use the CME as
given in Eq. 1.19 and sample trajectories from it using the partial-propensity formulation of
Gillespie’s exact SSA as described in Sec. 7.3.

7.2 Gaussian Adaptation (GaA)

Gaussian Adaptation (GaA), introduced in the late 1960’s by Gregor Kjellström (Kjellström,
1969; Kjellström and Taxen, 1981), is a Monte Carlo technique that has originally been de-
veloped to solve design-centering and optimization problems in analog electric circuit design.
Design centering solves the problem of determining the nominal values (resistances, capaci-
tances, etc.) of the components of a circuit such that the circuit output is within specified
design bounds and is maximally robust against random variations in the circuit components
with respect to a suitable criterion or objective function. This problem is a superset of gen-
eral optimization, where one is interested in finding a parameter vector that minimizes (or
maximizes) an objective function without any additional robustness criterion. GaA has been
specifically designed for scenarios where the objective function f(θ) is only available in a black-
box (or oracle) model that is defined on a real-valued domain A ⊆ Rn and returns real-valued
output. The black-box model assumes that gradients or higher-order derivatives of the objec-
tive function may not exist or may not be available, hence including the class of discontinuous
and noisy functions. The specific objective function used here is presented in Sec. 7.4.

The principle idea behind GaA is the following: Starting from a user-defined point in pa-
rameter space, GaA explores the space by iteratively sampling single parameter vectors from
a multivariate Gaussian distribution N (m,Σ) whose mean m ∈ Rn and covariance matrix
Σ ∈ Rn×n are dynamically adapted based on the information from previously accepted sam-
ples. The acceptance criterion depends on the specific mode of operation, i.e., whether GaA is
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7.2 Gaussian Adaptation (GaA)

used as an optimizer or as a sampler (Müller and Sbalzarini, 2010a; Müller, 2010). Adaptation
is performed such as to maximize the entropy of the search distribution under the constraint
that acceptable search points are found with a predefined, fixed hitting (success) probability
p < 1 (Kjellström and Taxen, 1981). Using the definition of the entropy of a multivariate

Gaussian distribution H(N ) = log
(√

(2πe)n det(Σ)
)

shows that this is equivalent to max-

imizing the determinant of the covariance matrix Σ. GaA thus follows Jaynes’ Maximum
Entropy principle (Jaynes, 1957).

GaA starts by setting the mean m(0) of the multivariate Gaussian to an initial acceptable
point θ(0) and the Cholesky factor Q(0) of the covariance matrix to the identity matrix I. At

each iteration g > 0, the covariance Σ(g) is decomposed as: Σ(g) =
(
r ·Q(g)

) (
r ·Q(g)

)T
=

r2
(
Q(g)

) (
Q(g)

)T
, where r is the scalar step size that controls the scale of the search. The

matrix Q(g) is the normalized square root of Σ(g), found by eigen- or Cholesky decomposition
of Σ(g). The candidate parameter vector in iteration g + 1 is sampled from a multivariate
Gaussian according to θ(g+1) = m(g) + r(g)Q(g)η(g), where η(g) ∼ N (0, I). The parameter
vector is then evaluated by the objective function f(θ(g+1)).

Only if the parameter vector is accepted, the following adaptation rules are applied: The
step size r is increased as r(g+1) = fe · r(g), where fe > 1 is termed the expansion factor. The
mean of the proposal distribution is updated as

m(g+1) =

(
1− 1

Nm

)
m(g) +

1

Nm
θ(g+1) . (7.2)

Nm is a weighting factor that controls the learning rate of the method. The successful search
direction d(g+1) =

(
θ(g+1) −m(g)

)
is used to perform a rank-one update of the covariance

matrix: Σ(g+1) =
(

1− 1
NC

)
Σ(g)+ 1

NC
d(g+1)d(g+1) T. NC weights the influence of the accepted

parameter vector on the covariance matrix. In order to decouple the volume of the covariance
(controlled by r(g+1)) from its orientation, Q(g+1) is normalized such that det(Q(g+1)) = 1.

In case θ(g+1) is not accepted at the current iteration, only the step size is adapted as
r(g+1) = fc · r(g), where fc < 1 is the contraction factor.

The behavior of GaA is controlled by several strategy parameters. Kjellström analyzed
the information-theoretic optimality of the acceptance probability p for GaA in general re-
gions (Kjellström and Taxen, 1981). He concluded that the efficiency E of the process and
p are related as E ∝ −p log p, leading to an optimal p = 1

e ≈ 0.3679, where e is Euler’s
number. A proof is provided in (Kjellström, 1991). Maintaining this optimal hitting prob-
ability corresponds to leaving the volume of the distribution, measured by det(Σ), constant
under stationary conditions. Since det(Σ) = r2n det(QQT), the expansion and contraction
factors fe and fc expand or contract the volume by a factor of f2n

e and f2n
c , respectively.

After S accepted and F rejected samples, a necessary condition for constant volume thus
is:
∏S
i=1(fe)2n

∏F
i=1(fc)2n = 1. Using p = S

S+F , and introducing a small β > 0, the choice
fe = 1 + β(1− p) and fc = 1− βp satisfies the constant-volume condition to first order. The
scalar rate β is coupled to NC. NC influences the update of Σ ∈ Rn×n, which contains n2

entries. Hence, NC should be related to n2. We suggested using NC = (n+ 1)2/ log(n+ 1) as
a standard value, and coupling β = 1

NC
(Müller and Sbalzarini, 2010b). A similar reasoning

is also applied to Nm. Since Nm influences the update of m ∈ Rn, it is reasonable to set
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7 Global parameter identification for stochastic reaction networks from single trajectories

Nm ∝ n. We propose Nm = en as a standard value.
Depending on the specific acceptance rule used, GaA can be turned into a global optimizer

(Müller and Sbalzarini, 2010b), an adaptive MCMC sampler (Müller and Sbalzarini, 2010a;
Müller, 2010), or a volume estimation method (Müller and Sbalzarini, 2011), as described
next.

7.2.1 GaA for global black-box optimization

In a minimization scenario, GaA uses an adaptive-threshold acceptance mechanism. Given an

initial scalar cutoff threshold c
(0)
T , we accept a parameter vector θ(g+1) at iteration g + 1 if

f(θ(g+1)) < c
(g)
T . Upon acceptance, the threshold cT is lowered as c

(g+1)
T =

(
1− 1

NT

)
c
(g)
T +

1
NT
f(θ(g+1)), where NT controls the weighting between the old threshold and the objective-

function value of the accepted sample. This sample-dependent threshold update renders the
algorithm invariant to linear transformations of the objective function. The standard strategy
parameter value is NT = en (Müller and Sbalzarini, 2010a). We refer to (Müller and Sbalzarini,
2010a) for further information about convergence criteria and constraint handling techniques
in GaA.

7.2.2 GaA for approximate Bayesian computation and viable volume
estimation

Replacing the threshold acceptance-criterion by a probabilistic Metropolis criterion, and set-
ting Nm = 1, turns GaA into an adaptive MCMC sampler with global adaptive scaling (An-
drieu and Thoms, 2008). We termed this method Metropolis-GaA (Müller and Sbalzarini,
2010a; Müller, 2010). Its strength is that GaA can automatically adapt to the covariance of
the target probability distribution while maintaining the fixed hitting probability. For stan-
dard MCMC, this cannot be achieved without fine-tuning the proposal using multiple MCMC
runs. We hypothesize that GaA might also be an effective tool for approximate Bayesian com-
putation (ABC) (Toni et al., 2009). In essence, the ABC ansatz is MCMC without an explicit
likelihood function (Marjoram et al., 2003). The likelihood is replaced by a distance function
— which plays the same role as our objective function — that measures closeness between a
parameterized model simulation and empirical data D, or summary statistics thereof. When a
uniform prior over the parameters and a symmetric proposal are assumed, a parameter vector
in ABC is unconditionally accepted if its corresponding distance function value f(θ(g+1)) < cT
(Marjoram et al., 2003). The threshold cT is a problem-dependent constant that is fixed prior
to the actual computation. Marjoram and co-workers have shown that samples obtained in this
manner are approximately drawn from the posterior parameter distribution given the data D.
While Pritchard et al. used a simple rejection sampler (Pritchard et al., 1999), Marjoram and
co-workers proposed a standard MCMC scheme (Marjoram et al., 2003). Toni and co-workers
used sequential MC for sample generation (Toni et al., 2009). To the best of our knowledge,
however, the present work presents the first application of an adaptive MCMC scheme for
ABC in biochemical network parameter inference. Finally, we emphasize that when GaA’s
mean, covariance matrix, and hitting probability p stabilize during ABC, they provide direct
access to an ellipsoidal estimation of the volume of the viable parameter space as defined by
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the threshold cT (Müller and Sbalzarini, 2011). Hafner and co-workers have shown how to use
such viable volume estimates for model discrimination (Hafner et al., 2009).

7.3 Evaluation of the forward model

In each iteration of the GaA algorithm, the forward model of the network needs to be evaluated
for the proposed parameter vector θ. This requires an efficient and exact SSA for the chemical
kinetics of the reaction network, used to generate trajectories n(t) from M(θ). Since GaA
could well propose parameter vectors that lead to low copy numbers for some species, it is
important that the SSA be exact since approximate algorithms are not appropriate at low
copy number.

In its original formulation, Gillespie’s SSA has a computational cost that is linearly pro-
portional to the total number M of reactions in the network (see Sec. 2.3). If many model
evaluations are required, as in the present application, this computational cost quickly be-
comes prohibitive. Scale-free networks as seem to be characteristic for systems biology models
(Albert, 2005; Strogatz, 2001) are by definition strongly coupled. This is due to the existence
of hubs that have a higher connection probability than other nodes. These hubs frequently
correspond to chemical reactions that produce or consume species that also participate in the
majority of the other reactions, such as water, ATP, or CO2 in metabolic networks. We hence
use partial-propensity methods (see Chapter 3) to sample trajectories according to the exact
solution of the CME.

7.4 Objective function

In the context of parameter identification of stochastic biochemical networks, a number of
distance or objective functions have previously been suggested. Reinker et al. proposed an
approximate maximum-likelihood measure under the assumption that only a small number of
reactions fire between two experimental measurement points, and a likelihood based on sin-
gular value decomposition that works when many reactions occur per time interval (Reinker
et al., 2006). Koutroumpas et al. compared objective functions based on least squares, normal-
ized cross-correlations, and conditional probabilities using a Genetic Algorithm (Koutroumpas
et al., 2008). Koeppl and co-workers proposed the Kantorovich distance to compare experi-
mental and model-based probability distributions (Koeppl et al., 2010). Alternative distance
measures include the Earth Mover’s distance or the Kolomogorov-Smirnov distance (Poo-
vathingal and Gunawan, 2010). These distance measures, however, can only be used when
many experimental trajectories are available. In order to measure the distance between a
single experimental trajectory n̂(t) and a single model output n(t), we propose a novel cost
function f(θ) = f(M(θ), n̂) that reasonably captures the kinetics of a monostable system.
We define a compound objective function f(θ) = f1(θ) + f2(θ) with

f1(θ) =

4∑

i=1

γi , f2(θ) =

N∑

i=1

∑l×

l=0 |ACFl(n̂i)−ACFl(ni)|∑l×

l=0 ACFl(n̂i)
, (7.3)
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where

γi =

N∑

j=1

√(
µi(nj)− µi(n̂j)

µi(n̂j)

)2

(7.4)

with the central moments given by

µi(nj) =

{ ∑K
p=1 nj(t0 + (p− 1)∆texp) if i = 1

(|∑K
q=1 (nj(t0 + (q − 1)∆texp)− µ1(nj))

i |)1/i otherwise
(7.5)

and the time autocorrelation function (ACF) at lag l given by

ACFl(ni) =
ni(t0)ni(t0 + l∆texp)− (µ1(ni))

2

µ2(ni)
.

The variable l× is the lag at which the experimental ACF crosses 0 for the first time. The
function f1(θ) measures the difference between the first four moments of n and n̂. This
function alone would, however, not be enough to capture the kinetics since it lacks information
about correlations in time. This is taken into account by f2(θ), measuring the difference in the
lifetimes of all chemical species. These lifetimes are systematically modulated by the volume
Ω (see Chapter 5), hence enabling volumetric measurements of reaction compartments along
with the identification of the rate constants.

The present objective function allows inclusion of experimental readouts from image-based
systems biology. The moment-matching part is a typical readout from fluorescence photometry,
whereas the autocorrelation of the fluctuations can directly be measured using, e.g., FCS.

7.5 Results

We estimate the unknown parameters θ for two reaction networks: a weakly coupled cyclic
chain and a strongly coupled nonlinear colloidal aggregation network. For the cyclic chain we
estimate θ at steady state. For the aggregation model we estimate θ both at steady state and
in the transient phase. Every kinetic parameter is allowed to vary in the interval [10−3, 103]
and the reaction volume Ω in [1, 500]. Each GaA run starts from a point selected uniformly
at random in logarithmic parameter space.
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Figure 7.1: In silico data for all test cases. a. Time evolution of the populations of three species in
the cyclic chain model at steady state (starting at t0 = 2000). b. Time evolution of the
populations of two species in the aggregation model at steady state (starting at t0 = 5000)
for Ω = 15. c. Same as b, but during the transient phase (starting at t0 = 0).

7.5.1 Weakly coupled reaction network: cyclic chain

The cyclic chain network is given by:

Si
ki−→ Si+1 i = 1, . . . , N − 1 ,

Si
kN−−→ S1 i = N . (7.6)

In this linear network, the number of reactions M is equal to the number of species N . The
maximum degree of coupling of this reaction network is 2, irrespective of the size of the system
(length of the chain), rendering it weakly coupled. We hence use PSSA-CR to evaluate the
forward model with a computational complexity of O(1). In the present test case, we limit
ourselves to 3 species and 3 reactions, i.e., N = M = 3. The parameter vector for this case
is given by θ = [k1, k2, k3], since the population kinetics of linear reactions is independent
of the volume Ω since the specific probability rates of unimolecular reactions is equal to the
macroscopic reaction rate (see Eq. 1.3).

We simulate steady-state “experimental” data n̂ using PSSA-CR with ground truth k1 = 2,
k2 = 1.5, k3 = 3.2 (see Fig. 7.1a). We set the initial population of the species to n1(t = 0) = 50,
n2(t = 0) = 50, and n3(t = 0) = 50 and sample a single CME trajectory at equi-spaced time
points with ∆texp = 0.1 between t = t0 and t = t0+(K−1)∆texp with t0 = 2000 and K = 1001
for each of the 3 species S1, S2, and S3. For the generated data we find l× = 7.

We generate trajectories from the forward model for every parameter vector θ proposed by
GaA using PSSA-CR between t = 0 and t = (K − 1)∆texp = 100, starting from the initial
population ni(t = 0) = n̂i(t = t0).

Before turning to the actual parameter identification, we illustrate the topography of the
objective function landscape for the present example. We fix k3 = 3.2 to its optimal value and
perform a two-dimensional grid sampling for k1 and k2 over the full search domain. We use 40
logarithmically spaced sample points per parameter, resulting in 402 parameter combinations.
For each combination we evaluate the objective function. The resulting landscapes of f1(θ),
f2(θ), and f(θ) are depicted in Fig. 7.2a. Figure 7.2b shows refined versions around the
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global optimum. We see that the moment-matching term f1(θ) is largely responsible for the
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Figure 7.2: a. Global objective function landscape for the cyclic chain over the complete search
domain for optimal k3 = 3.2. The three panels from left to right show f1(θ), f2(θ), and
f(θ), respectively. b. A refined view of the objective function landscape near the global
optimum. The three panels from left to right show f1(θ), f2(θ), and f(θ), respectively.
The white dots indicate the ground truth parameters.

global single-funnel topology of the landscape. The autocorrelation term f2(θ) sharpens the
objective function near the global optimum and renders it locally more isotropic.

We perform both global optimization and ABC runs using GaA. In each of the 15 inde-
pendent optimization runs, the number of objective function evaluations (FES) is limited to
MAX FES= 1000M = 3000. We set the initial step size to r(0) = 1 and perform all searches
in logarithmic scale of the parameters. Independent restarts from uniformly random points
are performed when the step size r drops below 10−4 (Müller and Sbalzarini, 2010b). For each
of the 15 independent runs, the 30 parameter vectors with the smallest objective function
values are collected and displayed in the box plot shown in the left panel of Fig. 7.3a. All
450 collected parameter vectors have objective function values smaller than 1.6. These results
suggest that the present method is able to accurately determine the correct scale of the kinetic
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7.5 Results

parameters from a single experimental trajectory, although an overestimation of the rates is
apparent.

We use the obtained optimization results for subsequent ABC runs. We conduct 15 indepen-
dent ABC runs using cT = 2. The starting points for the ABC runs are selected uniformly at
random from the 450 collected parameter vectors in order to ensure stable initialization. For
each run, we again set MAX FES= 1000M = 3000. The initial step size r(0) is set to 0.1, and
the parameters are again explored in logarithmic scale. For all runs we observe rapid conver-
gence of the empirical hitting probability pemp to the optimal p = 1

e (see Sec. 7.2). We collect
the ABC samples along with the means and covariances of GaA as soon as |pemp − p| < 0.05.
As an example we show the histograms of the posterior samples for a randomly selected run
in Fig. 7.3b. The means of the posterior distributions are again larger than the true kinetic
parameters. Using GaA’s means, covariance matrices, and the corresponding hitting probabil-
ities that generated the posterior samples, we can construct an ellipsoidal volume estimation
(Müller and Sbalzarini, 2011). This is done by multiplying each eigenvalue of the average of
the collected covariance matrices with cpemp

= invχ2
n(pemp), the n-dimensional inverse Chi-

square distribution evaluated at the empirical hitting probability. The product of these scaled

eigenvalues and the volume of the n-dimensional unit sphere, |S(n)| = π
n
2

Γ(n2 +1) , then yields

the ellipsoid volume with respect to a uniform distribution (see (Müller and Sbalzarini, 2011)
for details). The resulting ellipsoid contains the optimal kinetic parameter vector and is de-
picted in the right panel of Fig. 7.3a. It has a volume of 0.045 in log-parameter space. This
constitutes only 0.0208% of the initial search space volume, indicating that GaA significantly
narrows down the viable parameter space around the true optimal parameters, despite the
noise in the forward model.
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Figure 7.3: a. Left panel: Box plot of the 30 best parameter vectors from each of the 15 indepen-
dent optimization runs. The blue dots indicate the true parameter values. Right panel:
Ellipsoidal volume estimate of the parameter space below an objective-function thresh-
old cT = 2 from a single ABC run. b. Empirical posterior distributions of the kinetic
parameters from the same single ABC run with cT = 2. The red lines indicate the true
parameters.
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7.5.2 Strongly coupled reaction network: colloidal aggregation

The colloidal aggregation network is given by:

∅ kon
1−−→ S1

Si + Sj
kij−−→ Si+j i+ j = 1, . . . , N

Si+j
k̄ij−−→ Si + Sj i+ j = 1, . . . , N

Si
koff
i−−→ ∅ i = 1, . . . , N . (7.7)

For this network of N species, the number of reactions is M =
⌊
N2

2

⌋
+N + 1. The maximum

degree of coupling of this reaction network is proportional to N , rendering the network strongly
coupled. We hence use SPDM to evaluate the forward model with a computational complexity
of O(N). We use SPDM instead of PDM since the search path of GaA is unpredictable and
could well generate parameters that lead to multi-scale networks. For this test case, we limit
ourselves to two species, i.e., N = 2 and M = 5. The parameter vector for this case is
θ = [k11, k̄11, k

on
1 , koff

1 , koff
2 ,Ω].

We perform GaA global optimization runs following the same protocol as for the cyclic chain
network with MAX FES = 1000(M + 1) = 6000.

7.5.2.1 At steady state

We simulate “experimental” data n̂ using SPDM with ground truth k11 = 0.1, k̄11 = 1.0,
kon

1 = 2.1, koff
1 = 0.01, koff

2 = 0.1, and Ω = 15 (see Fig. 7.1b). We set the initial population
of the species to n1(t = 0) = 0, n2(t = 0) = 0, and n3(t = 0) = 0 and sample K = 1001
equi-spaced data points between t = t0 and t = t0 + (K − 1)∆texp with t0 = 5000 and
∆texp = 0.1.

We generate trajectories from the forward model for every parameter vector θ proposed
by GaA using SPDM between t = 0 and t = (K − 1)∆texp = 100, stating from the initial
population ni(t = 0) = n̂i(t = t0).

The optimization results are summarized in the left panel of Fig. 7.4a. For each of 15
independent runs, the 30 lowest-objective parameter vectors are collected and shown in the
box plot. We observe that the true parameters corresponding to θ2 = k̄11, θ3 = kon

1 , θ4 = koff
1 ,

and θ5 = koff
2 are between the 25th and 75th percentiles of the identified parameters. Both

the first parameter and the reaction volume are, on average, overestimated. Upon rescaling
the kinetic rate constants with the estimated volume, we find θnorm = [θ1/θ6, θ2, θ3 θ6, θ4, θ5],
which are the specific probability rates of the reactions. The identified values are shown in the
right panel of Fig. 7.4a. The median of the identified θnorm

3 coincides with the true specific
probability rate. Likewise, θnorm

1 is closer to the 25th percentile of the parameter distribution.
This suggests a better estimation performance of GaA in the space of specific probability rates,
at the expense of not obtaining an estimate for the reactor volume.
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7.5.2.2 In the transient phase

We simulate “experimental” data in the transient phase of the network dynamics using the
same parameters as above between t = t0 and t = (K − 1)∆texp with t0 = 0, ∆texp = 0.1,
and K = 1001 (see Fig. 7.1c). We evaluate the forward model with ni(t = 0) = n̂i(t = t0) to
obtain trajectories between t = 0 and t = (K − 1)∆texp for every proposed parameter vector
θ from GaA.

The optimization results for the transient case are summarized in Fig. 7.4b. We observe
that the true parameters corresponding to θ3 = kon

1 , θ5 = koff
2 , and θ6 = Ω are between

the 25th and 75th percentiles of the identified parameters. The remaining parameters are,
on average, overestimated. In the space of rescaled parameters θnorm we do not observe a
significant improvement of the estimation.
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Figure 7.4: a. Left panel: Box plot of the 30 best parameter vectors from each of the 15 independent
optimization runs for the steady-state data set. Right panel: Box plots of the normalized
parameters (see main text for details). b. Left panel: Box plot of the 30 best parameter
vectors from each of the 15 independent optimization runs for the transient data set. Right
panel: Box plot of the normalized parameters (see main text for details). The blue dots
indicate the true parameter values.
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7.6 Conclusions and Summary

We have considered parameter estimation in monostable stochastic biochemical networks from
single experimental trajectories. Parameter identification from single time series is desirable
in image-based systems biology, where per-cell estimates of the fluorescence evolution and
its fluctuations are available. This enables quantifying cell–cell variability on the level of
network parameters. The histogram of the parameters identified for different cells provides
a biologically meaningful way of assessing phenotypic variability beyond simple differences in
the fluorescence levels.

We have proposed a novel combination of a flexible Monte Carlo method, the Gaussian
Adaptation (GaA) algorithm, and efficient exact stochastic simulation algorithms, the partial-
propensity methods. The presented method can be used for global parameter optimization,
approximate Bayesian inference under uniform prior, and ellipsoidal volume estimation of the
viable parameter space. We have introduced an objective function that measures closeness be-
tween a single experimental trajectory and a single trajectory generated by the forward model.
The objective function comprises a moment-matching and a time-autocorrelation part. This
allows including experimental readouts from, e.g., fluorescence photometry and fluorescence
correlation spectroscopy.

We have applied the method to estimate the parameters of two monostable reaction networks
from a single simulated temporal trajectory each, both at steady state and during transient
phases. We considered the linear cyclic chain network and a nonlinear colloidal aggregation
network. For the linear model we were able to robustly identify a small region of parameter
space containing the true kinetic parameters. In the nonlinear aggregation model, we could
identify several parameter vectors that fit the simulated experimental data well. There are
two possible reasons for this reduced parameter identifiability: either GaA cannot find the
globally optimal region of parameter space due to high ruggedness and noise in the objective
function, or the nonlinearity of the aggregation network modulates the kinetics in a non-trivial
way (Grima, 2009b) (see Chapters 4 and 5). Both cases are not accounted for in the current
objective function, thus leading to reduced performance for nonlinear reaction networks.

We also used GaA as an adaptive MCMC method for approximate Bayesian inference of
the posterior parameter distributions in the linear chain network. This enabled estimating
the volume of the viable parameter space below a given objective-function value threshold.
We found these volume estimates to be stable across independent runs. We thus believe
that GaA might be a useful tool for exploring the parameter spaces of stochastic systems.
This is corroborated by unpublished results indicating that GaA is able to robustly identify
plausible parameters even in cases where CMA-ES is not. This might be due to CMA-ES being
a non-elitist, population-based heuristic, which can be unfavorable on very noisy objective
functions (Jin and Branke, 2005). Further studies are required to elucidate this hypothesis.
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8
Conclusions, limitations and future work

“The pursuit of science has often been compared to the scaling of mountains,
high and not so high. But who amongst us can hope, even in imagination, to
scale the Everest and reach its summit when the sky is blue and the air is
still, and in the stillness of the air survey the entire Himalayan range in the
dazzling white of the snow stretching to infinity? . . . But there is nothing
mean or lowly in standing in the valley below and awaiting the sun to rise
over Kangchenjunga.”
– Subrahmanyan Chandrasekhar

We have developed efficient stochastic simulation algorithms (SSA) for sampling trajectories
from the exact solution of the chemical master equation (CME) and to better understand the
role of fluctuations in mesoscopic chemical systems. We also applied the presented algorithms
and results to stochastic simulations of spatiotemporal reaction-diffusion processes and to
global parameter identification in stochastic chemical reaction networks. Below, we summarize
the key conclusions, assess the limitations of the presented work and outline possible future
research directions.

Stochastic chemical kinetics. We recapitulated the theoretical foundations of stochastic
chemical kinetics in well-stirred reaction systems. We revisited the derivation of the CME
from the Chapman-Kolmogorov equation and demonstrated which systematic approximations
lead to the chemical Kramer-Moyal equation, the chemical nonlinear Fokker-Planck equation
and the classical reaction rate equation (RRE). We also reviewed the derivation of Gillespie’s
stochastic simulation algorithm (SSA) to sample trajectories from the exact solution of the
CME.
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8 Conclusions, limitations and future work

Assuming that the population of species in a chemical reaction system is proportional to the
reactor volume, we demonstrated the effect of intrinsic noise due to low population in small
reactor volumes on simple chemical reaction networks. We showed that the mean concentra-
tion of species as predicted by the CME in a monostable linear reaction network is equal to
the concentration prediction from the RRE. For monostable nonlinear reaction networks, we
demonstrated that the mean concentration predicted by the CME deviates from that predicted
by the RRE. We also showed that intrinsic noise can induce oscillatory behavior and can cause
switching between the fixed points of multistable reaction networks.

Computational cost of exact SSA formulations. We reviewed existing SSAs and analyzed
their computational cost. We presented the topological properties of chemical reaction net-
works that can be inferred from their N ×M stoichiometry matrices, where N is the number
of chemical species and M the number of reactions. Using the dependency graph represen-
tation, we presented the cost-determining topological properties and used them to classify
reaction networks into strongly coupled and weakly coupled networks. Based on the coupling
class of a reaction network, we reformulated the computational cost of exact SSA formula-
tions. We showed that for weakly coupled networks the computational cost of exact SSAs has
been reduced to O(log2M) or even to O(1). For strongly coupled networks, we showed that
the computational cost of previous exact SSA formulations is at best linear in the number of
reactions, i.e., O(M).

Partial-propensity exact SSA formulations. We presented the first contribution of this the-
sis, a novel quantity called partial propensity, using which we devised a family of partial-
propensity exact SSA formulations whose computational cost is at most linear in the number
of chemical species, i.e., O(N) irrespective of the coupling class of the reaction network. The
concept of partial propensities was also proposed later by Indurkhya and Beal (Indurkhya and
Beal, 2010). We further presented a family of SSAs and provided a comprehensive analysis of
their computational cost.

The scaling of the computational cost of partial-propensity formulations is mediated by
the use of partial propensities where sampling of a reaction can be interpreted as sampling
a reactant followed by sampling its reaction partner. We presented the partial-propensity
direct method (PDM) that has a computational cost of O(N) irrespective of the coupling
class of the network, rendering it especially efficient for strongly coupled reaction networks.
The sorting variant of PDM (SPDM) incorporates dynamic “bubbling up” of reactions, ren-
dering it especially efficient for multiscale reaction networks. Combining partial propensities
and composition-rejection sampling, we devised the partial-propensity SSA with composition-
rejection sampling (PSSA-CR) whose computational is reduced to O(1) for weakly coupled
networks. We further extended partial-propensity methods to reaction networks with time
delays.

Finally, we illustrated that partial-propensity formulations form a family of SSAs with dis-
tinct algorithmic building blocks. Suitably modifying and combining these building blocks
yields all possible partial-propensity formulations for reaction networks with and without de-
lays. Using the modular representation of partial-propensity formulations, we developed the
partial-propensity SSA (pSSA) software in C++, which conveniently simulates chemical reac-
tion networks from their Systems Biology Markup Language (SBML) representation.
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Partial-propensity formulations are limited to elementary reactions. Non-elementary reac-
tions can, however, be broken down to elementary reactions. This reduction results in equiv-
alent chemical kinetics in the large-volume quasi-steady-state approximation. The validity of
the reduction, however, is questionable for mesoscopic systems in small reactor volumes. This
limitation can be overcome by extending partial-propensity formulations to multi-dimensional
instead of two-dimensional partial-propensity structures. In applications such as population
ecology, partial propensities are only beneficial if the population of at least one species can
be factored out from the propensity. The current implementation of partial-propensity formu-
lations further requires that these reaction are at most binary. For small networks, partial-
propensity formulations may not be efficient, as the overhead of creating the data structures
may not be amortized. All of these limitations are specific to partial-propensity formulations
and none of the existing exact SSAs are restricted by them. Using partial propensities will not
change the scaling of the computational cost of approximate SSAs. Nevertheless, improved
computational performance can be expected due to a smaller number of update operations
owing to grouping of the partial propensities according to the index of the factored-out reac-
tant.

A limitation of the analysis of the computational costs of exact SSAs is that we have only
presented upper bounds. The favorable scaling of the upper bound for partial-propensity meth-
ods does not guarantee superior performance on any given reaction network. This limitation is
due to lack of lower bounds for the previous methods. Nevertheless, we have demonstrated fa-
vorable performance on prototypical test cases. Deriving a lower bound for the computational
cost requires much finer topological properties of chemical reaction networks. We believe that
by restricting the topological properties of chemical reaction networks to those observed in
real-world systems, one might be able to provide lower bounds. Future work will consider
deriving such lower bounds for the scaling of the computational cost of previous SSAs and
partial-propensity methods.

Discreteness-induced concentration inversion in mesoscopic chemical systems. We ap-
plied partial-propensity methods to study the effects of noise in mesoscopic chemical reaction
networks. The results constitute the second key contribution of this thesis. We studied the
effect of noise on static properties at steady state for mesoscopic monostable non-oscillating
chemical reaction systems.

Chemical reaction systems with low population of reactants are strongly influenced by in-
trinsic noise. Assuming that the population of species is proportional to the reactor volume,
intrinsic noise due to apparent molecular discreteness is expected to play an increasingly sig-
nificant role in smaller reactor volumes. In addition, many reactors are subject to extrinsic
noise originating from outside the reactor. We modeled extrinsic noise by the burst size of a
reactant fed into the reactor. We demonstrated that the qualitative predictions of steady-state
mean concentrations from RRE and from the linear-noise approximation (LNA) of the CME
are only valid above a critical reactor volume. Below this critical volume, the ordering of the
steady-state mean concentrations predicted by the CME is different due to noise. We call this
novel effect discreteness-induced concentration inversion.

We showed that extrinsic noise increases the critical volumes, rendering the RRE and LNA
incorrect over a larger range of reactor volumes. We also illustrated that stochastic burst, as
observed for example in biological systems, further increases the critical reactor volume. We
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presented a theory that predicts the critical volume using van Kampen’s system-size expansion.
The results highlight that noise, intrinsic and extrinsic, not only deviates stochastic chemical
kinetics from its macroscopic limit, but also renders the two qualitatively different. We found
that the predictions of the presented theory are in good agreement with numerical simulations
performed using exact SSAs.

The presented work, however, is limited to monostable systems. In multistable systems,
noise can induce switching between stable fixed points of the RRE and steady-state mean
concentrations of species are hence bad descriptors for studying the effect of noise. Even in
mesoscopic oscillatory systems, oscillations due to noise render steady-state mean concentra-
tions less relevant. The presented theory is also limited to monostable systems due to the
limitations of the van Kampen ansatz in the system-size expansion. Furthermore, at small
reactor volumes and large burst sizes, the presented theory predicts negative species concen-
trations. This is due to the truncation of van Kampen’s asymptotic expansion to the least
number of terms capable of predicting deviations in the mean concentration of stochastic
chemical kinetics from that of the RRE. Future work include (i) using additional terms in
van Kampen’s asymptotic expansion to increase the domain of noise-magnitudes over which
the resulting finite approximation of the expansion yields physical results, (ii) trying to ob-
serve discreteness-induced concentration inversions in experiments, and (iii) attempting to
generalize the theory to non-monostable systems.

Relaxation kinetics of the fluctuations in mesoscopic chemical systems. Next, we studied
the fingerprints of noise-induced modulations of dynamic properties of mesoscopic monostable
reaction networks. We quantified the relaxation kinetics of the fluctuations around a nonequi-
librium steady state of a reaction network. We studied the effect of increasing the magnitude
of intrinsic noise by decreasing the reactor volume and increasing the magnitude of extrinsic
noise by increasing burst size of a reactant fed into the reactor. We computed the lifetimes of
concentration fluctuations, which we defined as the power spectral density of the fluctuations
at zero frequency. We observed that the lifetimes of all species involved as a reactant in a non-
linear reaction increase with decreasing reactor volume. We also showed that the two sources
of noise affect the derivative of the time-autocorrelation function in opposite ways, allowing us
to differentiate between them. In addition, we showed that for mesoscopic oscillatory reaction
systems, the bandwidth of the oscillations increases and the peak frequency decreases with
decreasing reactor volume. This systematic change in the peak frequency and the bandwidth
corroborates the increase in lifetime observed in non-oscillating mesoscopic systems. The de-
crease in the peak frequency is further exacerbated with decreasing reactor volume in reaction
networks that are downstream in a cascade of self-similar networks. The bandwidth along the
cascade decreases.

We believe that understanding the changes in the characteristics of the fluctuation spec-
trum at a nonequilibrium steady-state might be beneficial for estimating reaction rates from
fluorescence correlation spectroscopy measurements. Understanding these changes might also
advance the general understanding of the role of noise in stochastic chemical kinetics.

The changes in the fluctuation spectrum were demonstrated on specific model systems,
namely the trimerization reaction network and a cascade of downstream-coupled Brusselators.
This thesis does not provide evidence for the applicability of these results to other nonlinear
reaction networks. Even in the case of general applicability of these results, we did not provide
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a systematic methodology to incorporate the findings when estimating reaction rates from
experimental data. Merely looking at the power spectral density of species fluctuations at a
nonequilibrium steady state might not suffice for generally understanding the role of noise.
A systematic analysis of the effect of noise on cross-correlation spectra might be beneficial,
as their spectrum are directly related to reaction fluxes in stochastic chemical kinetics (Qian
and Elson, 2004). We also did not provide a mechanistic description of how the dynamic
properties affect the static properties of stochastic reaction networks. The analysis at this point
remains purely mathematical without any intuitive interpretation of the role of fluctuations in
stochastic chemical kinetics∗. Future work will focus on understanding the role of noise in the
cross-correlation spectrum, provide a systematic methodology to use the results for estimating
reaction rates from experimental data and attempt to provide an intuitive understanding of
the role of fluctuations in stochastic chemical kinetics.

Partial-propensity formulation of the on-lattice stochastic reaction-diffusion simulations.
We used the algorithms and the results presented so far in two applications. The first one
considered the simulation of stochastic spatiotemporal reaction-diffusion processes.

Spatial heterogeneity is relevant in cases where the diffusion of reactants is slower than
the reactions between them. In such scenarios, the CME is not an appropriate description
due to its implicit assumption of spatial homogeneity. Spatial heterogeneity can, however, be
accounted for by the on-lattice reaction-diffusion master equation (RDME) which is analogous
to the CME. In the RDME, the reactor is divided into subvolumes, in each of which the
reaction system is well stirred. Diffusion is modeled as jump reactions between neighboring
subvolumes. We presented an efficient algorithm for sampling trajectories from the exact
solution of the RDME. We combined composition-rejection sampling to find the index of the
next subvolume with a partial-propensity method to sample the index of the next reaction
within the subvolume. The computational cost of the algorithm is at most logarithmic in the
number of subvolumes and linear in the number of species.

The limitations of partial-propensity methods equally apply to the presented algorithm.
Moreover, the lack of lower bounds of the computational cost hampers deciding between
using the next subvolume method (NSM) (Elf and Ehrenberg, 2004), an existing on-lattice
stochastic reaction-diffusion simulator, and the presented method. Future work will attempt
to address this limitation. We will also render the software implementation more efficient by
using elaborate algorithms as described in Sec. 6.3. We will further extend the method to make
it compatible with Smoluchowski’s microscopic foundation of reaction-diffusion as presented
in a recent work (Fange et al., 2010). It will also be interesting to extend the presented
method to adaptive subvolumes depending on the local population of reactants, as presented
recently (Bayati et al., 2011). It remains to be seen, however, whether the RDME that is
compatible with Smoluchowski’s microscopic framework of reaction-diffusion can be extends
to adaptive subvolumes.

Global parameter identification of stochastic chemical reaction networks using single tra-
jectories The second application considered the problem of estimating the unknown reaction
rates and the reactor volume of a stochastic chemical reaction network from a single, noisy

∗“An equation for me has no meaning unless it expresses a thought of God.” – Srinivasa Ramanujan
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species population measurement. This constitutes an inverse problem. Assuming that the
topology of the chemical reaction network is known, we attempted to address the problem
of parameter identification from experimental data. We presented a novel methodology com-
bining partial-propensity methods to sample from the exact solution of the CME with an
adaptive Monte Carlo sampling technique called Gaussian adaptation (Kjellström and Taxen,
1992; Müller and Sbalzarini, 2010b,a; Müller, 2010) to search the parameter space. Gaus-
sian adaptation iteratively proposes candidate parameters for which the partial-propensity
method samples a realization from the solution of the CME. An objective function is then
used to measure the distance between the experimental trajectory and the simulated trajec-
tory. This distance function includes the fingerprints of the noise-induced modulations of
stochastic chemical kinetics as presented in the previous chapters. We also used Gaussian
adaptation to provide an ellipsoidal volume estimate of the viable parameter space as a means
to quantify the uncertainty in the estimation of the parameters.

We found that the presented method provided reasonable parameter estimates for linear
reaction networks. For nonlinear reaction networks, however, the estimation quality was less
satisfactory. This could possibly be improved by using a more elaborate objective function. We
used synthetic “experimental” trajectories generated in silico using an exact SSA. Therefore,
we did not account for measurement noise, nor for sample variablility. Future work will
consider (i) alternative objective functions that include temporal cross-correlations between
species and the derivatives of the autocorrelation; (ii) longer experimental trajectories; (iii)
multi-stable and oscillatory systems; (iv) alternative global optimization schemes; and (v)
real experimental data from single-cell fluorescence photometry and fluorescence correlation
spectroscopy. Moreover, the applicability of the present method to large, nonlinear biochemical
networks will be tested in future work.

On the eve of the Alan Turing year, I wish to conclude this thesis with the last sentence from
his seminal work on artificial intelligence (Turing, 1950): “We can only see a short distance
ahead, but we can see plenty there that needs to be done.”
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Appendix

A1 Method of generating functions to compute moments
from the CME

Consider the following reaction network in a reactor of volume Ω:

Ø
k1−→ S1

S1 + S1
k2−→ Ø.

(A1.1)

The CME is

∂P (n1, t)

∂t
= k1ΩP (n1 − 1, t) + (n1 + 2)(n1 + 1)

k2

Ω
P (n1 + 2, t) (A1.2)

−
[
k1Ω + n1(n1 − 1)

k2

Ω

]
P (n1, t), (A1.3)

where n1 is the population of S1.
The moment-generating function is

F (z1, t) =

∞∑

n1=0

zn1
1 P (n1, t). (A1.4)

The moments of P (n1, t) can be expressed in terms of the derivatives of F (z1, t) with respect
to z1. For instance,

∂F (z1, t)

∂z1

∣∣∣∣
z1=1

= 〈n1〉(t). (A1.5)

Other moments can be obtained similarly.
Multiplying the CME by zn1

1 and summing over n1 we get

∂
∑∞
n1=0 z

n1P (n1, t)

∂t
= k1Ω

[ ∞∑

n1=0

zn1
1 P (n1 − 1, t)−

∞∑

n1=0

zn1
1 P (n1, t)

]

+
k2

Ω

[ ∞∑

n1=0

zn1
1 (n1 + 2)(n1 + 1)P (n1 + 2, t)−

∞∑

n1=0

zn1
1 n1(n1 − 1)P (n1, t)

]
, (A1.6)
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i.e.,

∂F (z1, t)

∂t
= k1Ω

[
z1

∞∑

n1=0

zn1
1 P (n1, t)−

∞∑

n1=0

zn1
1 P (n1, t)

]

+
k2

Ω

[ ∞∑

n1=0

zn1−2
1 n1(n1 − 1)P (n1, t)−

∞∑

n1=0

zn1
1 n1(n1 − 1)P (n1, t)

]

= k1Ω

[
z1

∞∑

n1=0

zn1
1 P (n1, t)−

∞∑

n1=0

zn1
1 P (n1, t)

]

+
k2

Ω

[ ∞∑

n1=0

zn1−2n1(n1 − 1)P (n1, t)− z2
1

∞∑

n1=0

zn1−2
1 n1(n1 − 1)P (n1, t)

]

= k1Ω(z1 − 1)F (z1, t) +
k2

Ω
(1− z2

1)
∂2F (z1, t)

∂t2
.

This equation has no obvious solution. Restricting ourselves to the steady-state solution
Fss(z1) =

∑∞
n1=0 z

n1
1 Pss(n1), the equation is simplified by setting the time derivative to zero:

∂2Fss(z1)

∂z2
1

=
k1Ω2

k2(1 + z1)
Fss(z1). (A1.7)

The boundary conditions are Fss(1) =
∑∞
n1=0 Pss(n1) = 1 and Fss(−1) = 0. The solution is

then given by

Fss(z1) =

√
k1Ω2

k2
(1 + z1)I1

(
2
√

k1Ω2

k2
(1 + z1)

)

√
2k1Ω2

k2
I1

(
2
√

2k1Ω2

k2

) , (A1.8)

where Ia(x) is the modified Bessel function of the first kind.

The steady-state mean concentration 〈φ∗1〉ss = Ω−1〈n〉ss = Ω−1 ∂Fss(z1)
∂z1

∣∣∣
z1=1

is

〈φ∗1〉ss =
1

4Ω
+

√
k1

2k2

I ′1

(
2
√

2
√

k1Ω2

k2

)

I1

(
2
√

2
√

k1Ω2

k2

) , (A1.9)

where I ′a(b) = dIa(x)
dx

∣∣∣
x=b

. In terms of the RRE steady-state concentration φ1,ss =
√

k1

2k2

〈φ∗1〉ss =
1

4Ω
+ φ1,ss

I ′1 (4φ1,ssΩ)

I1 (4φ1,ssΩ)
, (A1.10)

where the derivative I ′1(a) = (1/a)I1(a) + I2(a).
The asymptotic expansion of the the steady-state mean concentration is

〈φ∗1〉ss = φ1,ss +
Ω−1

8
+

3Ω−2

128φ1,ss
+O

(
Ω−3

)
. (A1.11)
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We then see that

lim
Ω→∞

〈φ∗1〉ss = φ1,ss. (A1.12)
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A2 Breakdown of a non-elementary reaction into elementary
reactions

Consider the following reaction

N∑

i=1

ν−i,µSi
kµ−−−−−→ . . . . (A2.1)

The reaction is considered non-elementary if

N∑

i=1

ν−i,µ > 2. (A2.2)

The simplest non-elementary reaction is the trimolecular reaction

S1 + S2 + S3
k−→ . . . (A2.3)

It can be argued that such trimolecular reactions are not physical. This is because writing the
reaction as in Eq. A2.3 requires the simultaneous collision of three molecules, which is highly
improbable. The probability of such a collision to happen in an infinitesimal time interval dt
scales as O(dt2) (Gillespie, 1991). This is particularly the case in dilute chemical systems, of
which the CME is an exact mesoscopic description. This scaling is furthermore inconsistent
with Eq. 1.2. Nevertheless, the reaction in Eq. A2.3 can be interpreted as a large-volume
quasi-steady-state approximation of a system of 3 elementary reactions:

S1 + S2
k1−→ S∗

S∗
k2−→ S1 + S2

S∗ + S3
k3−→ . . .

(A2.4)

where

k =
k1k3

k2
, (A2.5)

such that k2 is very large (Wilhelm, 2000; Schneider and Wilhelm, 2000; Gillespie, 1991, 1992).
In the above case, the trimolecular reaction is broken down into elementary reactions with

1 additional species and 2 additional reactions, assuming that the original non-elementary
reaction is the large-volume, quasi-steady-state limit case of the elementary reactions. In
general, following the same procedure, any reaction of the form described in Eq. A2.1 with∑N
i=1 ν

−
i,µ > 2 can be broken down into elementary reactions with an additional

(∑N
i=1 ν

−
i,µ

)
−2

species. The total number of resulting elementary reactions is 2
(∑N

i=1 ν
−
i,µ

)
− 3.

It should, however, be noted that the stochastic kinetics of the non-elementary reaction is
expected to be equivalent to the broken-down system of elementary reactions only in the quasi-
steady-state approximation in large volumes. It has also been argued that the large-volume,
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quasi-steady-state approximation is indeed necessary for the validity of any non-elementary,
macroscopic chemical kinetic models used for enzyme kinetics, cooperativity, competitive in-
hibition, allosteric inhibition, and others. The condition required for these approximations
to be justified, however, may not be met in all biochemical reactors, and hence the non-
elementary macroscopic description may not be equivalent to the elementary, microscopic
description (Grima, 2009b; Kholodenko and Westerhoff, 1995; Markevich et al., 2004; Flach
and Schnell, 2006; Farrow and Edelson, 1974; Segel, 1988; Pedersen et al., 2008; Marquez-Lago
and Stelling, 2010).
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A3 Equivalence of PDM’s next reaction sampling to that of
DM

In the direct method (DM), the next reaction index is sampled as

µ = min


µ′ : r1a <

µ′∑

m=1

am


 , (A3.1)

where r1 is a uniform random number ∈ [0, 1) and am is the propensity of reaction m. Without
loss of generality, we identify µ′ by a unique pair of indices, I ′ and J ′, such that µ′ = LI′,J′ .
Using this mapping to a group (row) index I ′ and an element (column) index J ′, Eq. A3.1
becomes (

I

J

)
= min



(

I ′

J ′

)
: r1a <

I′−1∑

i=0

∑

∀j

aLi,j +

J′∑

j=1

aLI′,j


 , (A3.2)

such that µ = LI,J . This can be written for the group (row) index I alone

I = min


I ′ : r1a <

I′∑

i=0

∑

∀j

aLi,j


 (A3.3)

and the element (column) index J alone

J = min


J ′ : r1a <

I−1∑

i=0

∑

∀j

aLi,j +

J′∑

j=1

aLI,j


 . (A3.4)

Using the definitions for Σi and Πi, Eqs. A3.3 and A3.4 are equivalent to Eqs. 3.2 and 3.3,
respectively.
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A4 The partial-propensity SSA (pSSA) software package

The pSSA software is designed to facilitate simulation of chemical reaction networks using
partial-propensity formulations of the exact SSA. The software was developed by Oleksandr
Ostrenko (Master student in the Computational Biology and Bioinformatics program at ETH
Zurich) during his research assistantship at the MOSAIC group between November 2010 and
June 2011. The text in this section is partially reproduced from his technical report.

pSSA is written in C++ using the guidelines and features of the ANSI/ISO C++ Standard,
providing the following features:

• The whole application programming interface (API) is object-oriented, providing a
higher level of abstraction over the underlying SSAs. This allows users to perform
simulations at a high level of abstraction without needing to worry about low-level
implementation details. All main functions are made available through a single class,
which serves as the interface.

• All functional units of pSSA are written to facilitate extension of their functionality, for
example, addition of new SSAs.

A4.1 Partial-propensity methods implemented in pSSA

pSSA implements the algorithmic building blocks of partial-propensity methods as presented
in Sec. 3.6. This provides a simple interface to the following partial-propensity formulations:

• partial-propensity direct method (PDM)

• sorting partial-propensity direct method (SPDM)

• partial-propensity SSA with composition-rejection sampling (PSSA-CR)

• delay partial-propensity direct method (dPDM)

• delay sorting partial-propensity direct method (dSPDM)

• delay partial-propensity SSA with composition-rejection sampling (dPSSA-CR).

In addition, Gillespie’s original direct method (DM) is also implemented for comparison.

A4.2 Platforms

pSSA has been tested on Linux 2.6 and Mac OS X 10.5 workstations using the GNU C++
compiler.

A4.3 Dependencies

Apart from the classes provided by the standard template library (STL), pSSA makes use
of the following external libraries: the GNU Scientific Library (GSL) for random number
generation, the Boost library for hash maps, the Systems Biology Markup Language (SBML)
library (Hucka et al., 2003) for importing model data from SBML input files, and the Command
Line Parser Library (TCLAP) for the command-line interface (CLI).
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A4.4 Functionality

The functionality of pSSA can be divided into two main categories:

• Sampling trajectories from the CME and then computing the average and standard
deviation of the populations of user-specified species. We refer to this functionality as
the “Traj” mode

• Computing the marginal population probability functions of user-specified species at a
given time. In addition, pSSA also computes the multivariate population probability
function. This functionality is referred to as the “Hist” mode

Both functionalities can be accessed through the CLI of pSSA or from within MATLAB.

A4.5 Command line interface (CLI) of pSSA

The CLI supports the two modes, “Traj” and “Hist”, as selected by a command line switch.
In “Traj” mode we sample trajectories and compute average and standard deviation of the
population. Simulations in “Traj” mode write output files containing the trajectories from
each Monte Carlo run, trajectory of average population, and the trajectory of the standard
deviation of the population. In “Hist” mode, the histogram of species at a specified time is
computed for specified species, and written to an output file. In addition, the “Hist” mode
also writes an output file with the average runtime per reaction event.

Detailed information on the command line arguments is given in the help page below:
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USAGE:

. / bu i ld / p s s a c l i − i </input /path/ f i l e . sbml>
−o </output /path/>
−m < ‘ ‘0 1 2 3 4 5 6 ’ ’>
[− t <0.0>]
−f <1.0>
[− r ]
[−b ]
[−d <0.1>]
−n < ‘ ‘10 20 30 ’ ’>
[− s < ‘ ‘ s p e c i e s 1 s p e c i e s 2 . . . spec ies N ’ ’> ]
[−−]
[−−ve r s i on ]
[−h ]

where :

− i </input /path/ f i l e . sbml>, −−input− f i l e </input /path/ f i l e . sbml>
( r equ i r ed ) St r ing r e p r e s en t i n g the SBML model f i l e .

−o </output /path/>, −−output−path </output /path/>
( r equ i r ed ) St r ing r e p r e s en t i n g the output path .

−m < ‘ ‘0 1 2 3 4 5 6 ’ ’> , −−method−l a b e l < ‘ ‘0 1 2 3 4 5 6 ’ ’>
( r equ i r ed ) St r ing o f method l a b e l s separated by a space .

Method l a b e l s are : 0 ( G i l l e s p i e ’ s DM) , 1 (PDM) , 2 (PSSA−CR) , 3 (SPDM) ,
4 (dPDM) , 5 (dPSSA−CR) , 6 (dSPDM)
−t <0.0> , −−s ta r t−time <0.0>

Time to s t a r t output to f i l e in ‘ ‘ Traj ’ ’ mode .
−f <1.0> , −−f i n a l−time <1.0>

( r equ i r ed ) Fina l time o f the s imu la t i on .
−r , −−t r a j−mode

I f set , the program i s run in ‘ ‘ Traj ’ ’ mode . Otherwise , ‘ ‘ Hist ’ ’ mode i s
assumed .

−b , −−h i s t−i n f o
I f run in ‘ ‘ Traj ’ ’ mode turns on s t a t i s t i c a l output . In ‘ ‘ Hist ’ ’ mode ,
causes the engine to switch between one− and mult id imens iona l
h istograms

−d <0.1> , −−dt <0.1>
Time i n t e r v a l between outputs .

−n < ‘ ‘10 20 30 ’ ’> , −−n t r i a l s < ‘ ‘10 20 30 ’ ’>
( r equ i r ed ) I f run in ‘ ‘ Hist ’ ’ mode : s t r i n g c o n s i s t i n g o f numbers o f
t r i a l s to be s imulated . Mult ip le i n s t a n c e s are to be separated by a
space . In ‘ ‘ Traj ’ ’ mode only f i r s t va lue w i l l be cons ide red .

−s < ‘ ‘ s p e c i e s 1 s p e c i e s 2 s p e c i e s 3 . . . spec ies N ’ ’> , −−spe c i e s−l a b e l < ‘ ‘
s p e c i e s 1 s p e c i e s 2 s p e c i e s 3 . . . spec ies N ’ ’> .

I f run in ‘ ‘ Hist ’ ’ mode : s t r i n g o f s p e c i e s l a b e l s f o r which the histogram
at a given f i n a l time w i l l be computed . Mult ip le l a b e l s are to be separated
by a space . Ignored in ‘ ‘ Traj ’ ’ mode .

−−, −− i g n o r e r e s t
Ignore s the r e s t o f the l ab e l ed arguments f o l l o w i n g t h i s f l a g .

−−ve r s i on
Disp lays ve r s i on in format ion and e x i t s .

−h , −−help
Disp lays usage in fo rmat ion and e x i t s .

A4.6 Calling pSSA from MATLAB

pSSA can also be called from within MATLAB using the two functions:
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function [P ] = p s s a l i b a v g ( input , method , n t r i a l s , f i n a l t i m e , dt )

function [P ] = p s s a l i b h i s t ( input , method , n t r i a l s , sp e c i e s , f i n a l t i m e , mult i ) .

The first function samples individual trajectories and returns the average and the standard
deviation of the population. The second function is provided to compute histograms for given
species. Both functions call the CLI of pSSA. Arguments are defined as follows:

input String representing the SBML model file

method Array of method labels

ntrials Array of numbers of trials to be simulated

final time Final time of the simulation

species String of species labels for which the histogram at a given final time will be
computed

dt Time interval between outputs.

multi If set to ‘true’, computes the multivariate histograms of species populations.
The intended usage of these functions is the same as of the CLI. Each function produces a

cell array as its output:

• pssalib avg produces a cell array containing arrays of average trajectories and respec-
tive standard deviations at every time point for each of the methods selected. The first
cell array contains the species identifiers.

• pssalib hist returns a cell array containing arrays of species histograms, one for each
species simulated with each of the selected methods. Alternatively, if multi is set to
true, a multidimensional species histogram over all of the chosen species is computed
using each of the selected methods.

Figure A4.1: A single trajectory of the time evolution of the concentration of double-phosphorylated
MAPK, obtained using pSSA.
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A4.7 Simulation of the mitagen-activated protein kinase (MAPK)
phosphorylation-dephosphorylation system using pSSA

The MAPK phosphorylation-dephosphorylation system is modeled using the following set of
reactions (Markevich et al., 2004):

M + MAPKK
k1=0.02−−−−−→ M-MAPKK

M-MAPKK
k-1=1−−−−→ M + MAPKK

M-MAPKK
k2=0.01−−−−−→ Mp + MAPKK

Mp + MAPKK
k3=0.032−−−−−−→ Mp-MAPKK

Mp-MAPKK
k-3=1−−−−→ Mp + MAPKK

Mp-MAPKK
k4=15−−−−→ Mpp + MAPKK

Mpp + MKP
h1=0.045−−−−−−→ Mpp-MKP

Mpp-MKP
h-1=1−−−−→ Mpp + MKP

Mpp-MKP
h2=0.092−−−−−−→ Mp-MKP

Mp-MKP
h3=1−−−→ Mp + MKP

Mp + MKP
h-3=0.01−−−−−−→ Mp-MKP

Mp + MKP
h4=0.01−−−−−→ Mp-MKP∗

Mp-MKP∗
h-4=1−−−−→ Mp + MKP

Mp-MKP∗
h5=0.5−−−−→ M-MKP

M-MKP
h6=0.086−−−−−−→ M + MKP

M + MKP
h-6=0.0011−−−−−−−→ M-MKP,

(A4.1)

where the ki and hi are the macroscopic rate constants. The volume of the reactor is
Ω. The unit for the rates of unimolecular reactions is s−1, that for bimolecular reac-
tions nanomolar−1 s−1. M denotes dephosphorylated MAPK, MAPKK the MAPK kinase,
Mp phosphorylated MAPK on the tyrosine or on the threonine residues, Mpp the double-
phosphorylated MAPK on both residues, MKP the MAPK phosphatase, Mp-MKP the com-
plex in which M is phosphorylated on the threonine residue and Mp-MKP∗ the complex in
which M is phosphorylated on the tyrosine residue.

We simulate this reaction system using the CLI of pSSA. We choose SPDM as the sim-
ulation algorithm. The SBML file of the reaction system is generated manually and is
used as input for pSSA. The initial concentration is [M] = 500 nanomolar, [MAPKK] = 50
nanomolar, [MKP] = 100 nanomolar. The concentrations of all other species are set to 0
nanomolar. We track the time evolution of concentration of Mpp with Ω = 1 nanomolar−1

until a final time tf = 10000.0s. The command line call to execute the simulation is:
./build/pssa cli -r -i ‘YourPath/MAPK.sbml’ -o ‘YourPath/MAPK’ -m ‘3’ -s ‘all

species’ -n ‘100’ -f 10000.0 -d 0.1. The result is shown in Fig. A4.1. On a Linux 2.6
workstation with a 2.4GHz Intel Core 2 Duo processor T8300, 4 GB of memory and 4 MB L2
cache, the total runtime for 100 Monte Carlo replica of the complete simulation is 104 seconds
using SPDM and 127 seconds using DM.
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A5 The van Kampen system-size expansion

Consider the general reaction network with N species and M reactions as described in Eq. 1.1:

N∑

i=1

ν−i,µSi
kµ−−−−−→

N∑

i=1

ν+
i,µSi, µ = 1, . . . ,M. (A5.1)

The RRE is given by (Eq. 1.46)

dφ

dt
= νT0(φ), (A5.2)

i.e.,

dφi
dt

=

M∑

µ=1

νi,µTµ,0(φ) i = 1, . . . , N. (A5.3)

The corresponding CME (Eqs. 1.19, 1.20 and 1.25) describing the mesoscopic system is

∂P (φ∗, t)

∂t
= Ω

M∑

µ=1

(
E−Ω−1νµ − 1

)
Tµ(φ∗)P (φ∗, t), (A5.4)

where E is the step operator such that

E−Ω−1νµf(φ∗) =

(
N∏

i=1

E−Ω−1νi,µ
i

)
f(φ∗1, . . . , φ

∗
N )

= f(φ∗1 − Ω−1ν1,µ, . . . , φ
∗
N − Ω−1νN,µ). (A5.5)

φ∗ is the stochastic concentration vector described by the CME and φ is the deterministic
concentration vector described by RRE.

The CME cannot be solved analytically, except in few special cases. Hence, a systematic
approximation of the CME in a small parameter is beneficial. The small parameter needs to
govern the size of the fluctuations and hence of the jumps in the Markov process describing
stochastic chemical kinetics. For mesoscopic chemical reaction systems one such parameter is
the reactor volume Ω; when Ω is large the jumps are small. The resulting expansion is the van
Kampen system-size expansion (van Kampen, 1961, 1976, 2001). It starts from the ansatz:

φ∗ = φ+ Ω−1/2ε, (A5.6)

where ε = [ε1, . . . , εN ]
T

is a continuous random variable that defines the fluctuations around
φ. Using the above ansatz the probability distribution P (φ∗, t) is transformed to a new
probability function Γ(ε, t). The time derivative in Eq. A5.4 then becomes

∂P (φ∗, t)

∂t
=
∂Γ(ε, t)

∂t
+

N∑

i=1

dεi
dt

∂Γ(ε, t)

∂εi
. (A5.7)
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This time derivative is taken at constant φ∗, therefore

dεi
dt

= −Ω1/2 dφi
dt

. (A5.8)

Eq. A5.7 is then

∂P (φ∗, t)

∂t
=
∂Γ(ε, t)

∂t
− Ω1/2

N∑

i=1

dφi
dt

∂Γ(ε, t)

∂t
. (A5.9)

From the definition of the step operator E in Eq. A5.5 and the ansatz in Eq. A5.6

(
E−Ω−1νµ − 1

)
= −Ω−1/2

N∑

i=1

νi,µ
∂

∂εi
+

Ω−1

2

N∑

i,k=1

νi,µνk,µ
∂2

∂εi ∂εk

−Ω−3/2

6

N∑

i,k,r=1

νi,µνk,µνr,µ
∂3

∂εi ∂εk ∂εr
+O(Ω−2). (A5.10)

Under this ansatz, the function Tµ(φ∗) hence is

Tµ(φ∗) = Tµ(φ+ Ω−1/2ε)

= Tµ(φ) + Ω−1/2
N∑

w=1

εw
∂Tµ(φ)

∂φw
+

Ω−1

2

N∑

w,z=1

εwεz
∂2Tµ(φ)

∂φw ∂φz
+ . . . . (A5.11)

Using Eqs. 1.37, 1.41 and 1.42, this becomes

Tµ(φ∗) = Tµ,0(φ) + Ω−1Tµ,1(φ) + Ω−1/2
N∑

w=1

εw
∂Tµ,0(φ)

∂φw

+
Ω−1

2

N∑

w,z=1

εwεz
∂2Tµ,0(φ)

∂φw ∂φz
+O(Ω−3/2). (A5.12)

Using the relationship given in Eq. 1.42,

Tµ,1(φ) = −
N∑

i=1

φi
2

∂2Tµ,0(φ)

∂φ2
i

, (A5.13)

Eq. A5.12 is

Tµ(φ∗) = Tµ,0(φ) + Ω−1/2
N∑

w=1

εw
∂Tµ,0(φ)

∂φw
(A5.14)

+
Ω−1

2

[
N∑

w,z=1

εwεz
∂2Tµ,0(φ)

∂φw ∂φz
−

N∑

w=1

φw
∂2Tµ,0(φ)

∂φ2
w

]
+O(Ω−3/2). (A5.15)
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Substituting Eqs. A5.9, A5.10 and A5.15 into Eq. A5.4 and noting that the coefficients of
Ω1/2 get canceled upon substituting the RRE, we find the series expansion in Ω−1/2:

∂Γ(ε, t)

∂t
=

M∑

µ=1



Ω0


−

N∑

i,w=1

νi,µ
∂Tµ,0(φ)

∂φw

∂εwΓ

∂εi
+

1

2

N∑

i,k=1

νi,µνk,µTµ,0(φ)
∂2Γ

∂εi ∂εk




+
Ω−1/2

2


−

N∑

i,w,z=1

νi,µ
∂2Tµ,0(φ)

∂φw ∂φz

∂εwεzΓ

∂εi
+

N∑

i,w=1

νi,µφw
∂2Tµ,0(φ)

∂φ2
w

∂Γ

∂εi




+
Ω−1/2

2

N∑

i,k,w=1

νi,µνk,µ
∂Tµ,0(φ)

∂φw

∂2εwΓ

∂εi ∂εk

− Ω−1/2

6

N∑

i,k,r=1

νi,µνk,µνr,µTµ,0(φ)
∂3Γ

∂εi ∂εk ∂εr





+ O(Ω−1). (A5.16)

Equivalently,

∂Γ(ε, t)

∂t
= Ω0


−

N∑

i,w=1

J
(0)
i,w(φ)

∂εwΓ

∂εi
+

1

2

N∑

i,k=1

D
(0)
i,k (φ)

∂2Γ

∂εi ∂εk




+
Ω−1/2

2


−

N∑

i,w,z=1

∂J
(0)
i,w(φ)

∂φz

∂εwεzΓ

∂εi
+

N∑

i,w=1

φw
∂J

(0)
i,w(φ)

∂φw

∂Γ

∂εi




+
Ω−1/2

2

N∑

i,k,w=1

J
(0)
i,k,w(φ)

∂2εwΓ

∂εi ∂εk

− Ω−1/2

6

N∑

i,k,r=1

D
(0)
i,k,r(φ)

∂3Γ

∂εi ∂εk ∂εr

+ O(Ω−1), (A5.17)

where

J
(0)
i,j,...,k,w(φ) =

M∑

µ=1

νi,µνj,µ . . . νk,µ
∂Tµ,0(φ)

∂φw
(A5.18)

and

D
(0)
i,j,...,k,w(φ) =

M∑

µ=1

νi,µνj,µ . . . νk,µνw,µTµ,0(φ). (A5.19)

The J (0)’s and D(0)’s are related to the pth jump moments bp ; q1,...,qN =
∑∞
i=0 b

(i)
p ; q1,...,qNΩ−i,
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where
∑N
i=1 qi = p (Eqs. 1.31 and 1.38) such that

J
(0)
i,j,...,k,w(φ) =

∂b
(0)
p ; q1,...,qN

∂φw
qi = 1, qj = 1, . . . , qk = 1

and other q’s are zero, (A5.20)

and p is the sum of the q’s. In other words, it is one less than the number of indices of the
J (0)’s. Similarly, D(0)’s are

D
(0)
i,j,...,k,w(φ) = b(0)

p ; q1,...,qN qi = 1, qj = 1, . . . , qk = 1, qw = 1

and other q’s are zero, (A5.21)

where p is the sum of the q’s or the number of indices of the D(0)’s. Using Eqs. 1.33 and 1.39

in the case when the J (0)’s have only two indices, as in J
(0)
i,w, they can be written as the matrix:

J (0)(φ) =
[
J

(0)
i,w

]
=
∂F (0)(φ)

∂φ
=
∂νT0(φ)

∂φ
, (A5.22)

where J (0) is the Jacobian of the right-hand side of the RRE (Eq. A5.2) with respect to the
vector of concentrations. F (0) is the first term in the asymptotic expansion of the drift F in
the nonlinear Fokker-Planck equation (see Eq. 1.39). Using Eqs. 1.34 and 1.40, the D(0)’s with

two indices as in D
(0)
i,j can be written as the matrix (Elf and Ehrenberg, 2003)

D(0)(φ) = ν diag(T0(φ)) νT. (A5.23)

D(0) is the first term in the asymptotic expansion of the diffusion tensor D in the nonlinear
Fokker-Planck equation (see Eq. 1.40).

A5.1 The linear-noise approximation

Retaining only Ω0 terms in Eq. A5.17 yields the linear Fokker-Planck equation, also known as
the linear-noise approximation (LNA), for the fluctuations ε:

∂Γ(ε, t)

∂t
= ∇ε ·

[
2−1D(0)(φ)∇εΓ(ε, t)−A(ε)Γ(ε, t)

]
+O(Ω−1/2), (A5.24)

where ∇ε =
[
∂
∂ε1

, . . . , ∂
∂εN

]T
. The drift vector

A(ε) = J (0)(φ)ε (A5.25)

is hence linear in the fluctuations ε. The diffusion matrix D(0)(φ) is independent of ε.
Eq. A5.24 is therefore a special case of the continuous Markov process described by the nonlin-
ear Fokker-Planck equation, namely the Ornstein-Uhlenbeck process. The linear Fokker-Planck
equation is a linear approximation of the nonlinear Fokker-Planck equation. The equation of
motion of 〈ε〉 according to the LNA is

ε(t+ dt) = ε(t) + Ξ(∆ε | dt ; ε, t), (A5.26)
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where Ξ(∆ε | dt ; ε, t) ∼ Π(∆ε | dt ; ε, t) and Π(∆ε | dt ; ε, t) is the GaussianN (A(ε)dt,D(0)(φ)dt) (Gille-
spie, 1996a,b).

Multiplying Eq. A5.24 with ε and integration over all ε’s we get the time-evolution equation
of the mean 〈ε〉:

∂〈ε〉(t)
∂t

= J (0)(φ)〈ε〉(t) +O(Ω−1/2) (A5.27)

so that

〈ε〉(t) = etJ
(0)〈ε〉0, (A5.28)

where 〈ε〉0 is the mean of the initial fluctuation. Eq. A5.27 can also be obtained by linearizing
the RRE around a small perturbation δφ, as in dynamical systems theory, where the linearized
equation is usually evaluated at a fixed point of the RRE to ascertain the stability of the fixed
point (see Appendix A10).

Considering that the initial condition of the CME (Eq. A5.4) is the unit impulse function

P (φ∗, t = 0) = δ(φ∗ − φ0), (A5.29)

φ∗(0) is a sure variable and is equal to the initial RRE concentration. Therefore, the initial
fluctuation is zero. Consequently,

〈ε〉(t = 0) = 〈ε〉0 = 0. (A5.30)

The equation of motion for the covariance matrix (same as the matrix of second moments
under Eqs. A5.28 and A5.30) C = [Ci,j ] = [〈εiεj〉] is obtained by multiplying Eq. A5.24 with
C and integrating over ε:

∂C(t)

∂t
= J (0)C +CJ (0)T

+D(0) +O(Ω−1/2) (A5.31)

with initial condition C(t = 0) = 0. The solution of this continuous-time Lyapunov equation
is (van Kampen, 2001)

C(t) =

∫ t

0

e(t−t′)J(0)

D(0)e(t−t′)J(0)T

dt′. (A5.32)

Constructing a Gaussian distribution from the mean 〈ε〉 and the covariance C, and substi-
tuting it back into Eq. A5.24, we find that this Gaussian distribution is indeed the solution of
the LNA with no initial fluctuations (van Kampen, 2001). Thus, the solution of the LNA is

Γ(ε, t) = N (0,C(t)), (A5.33)

where the covariance C(t) is given by Eq. A5.32. Using this result and the van Kampen ansatz
(Eq. A5.6) the probability function P (φ∗, t) is

P (φ∗, t) = N (φ,Ω−1C(t)). (A5.34)
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As for the nonlinear Fokker-Planck equation, the Markov propagator Π of the linear Fokker-
Planck equation (or the LNA) is a Gaussian. The solution of the LNA, however, is also a
Gaussian, unlike the solution of the nonlinear Fokker-Planck equation.

Using Eq. A5.34, the mean concentration 〈φ∗〉 described by the LNA is

〈φ∗〉(t) = φ(t). (A5.35)

That is, at the level of the LNA, the mean concentration described by the CME is the same
as the RRE concentration, for all times. Consequently, the LNA cannot explain any deviation
of the mean concentration described by the CME from the RRE concentration.

In summary, the LNA amounts to an Ornstein-Uhlenbeck process. According to the LNA,
φ∗(t) is a Gaussian random variable with the mean equal to the RRE concentration φ and
the covariance scaling with Ω−1. For linear reaction networks, the mean from the CME is the
same as that from the RRE (Sec. 1.4.1). The LNA is therefore a suitable approximation for
linear networks. The LNA, however, does not account for the deviations of the mean of φ∗

from φ observed in nonlinear reaction networks (Sec. 1.4.2). To explain that we at least have
to consider the Ω−1/2 terms in Eq. A5.17.

A5.2 Beyond the linear-noise approximation: the effective mesoscopic
reaction rate equation (EMRE)

Equation A5.17 contains terms beyond the linear-noise approximation. We use this equation to
obtain the time-evolution equation for the mean 〈ε〉 of the fluctuations. Multiplying Eq. A5.17
by ε and integration over all ε’s we obtain

∂〈ε〉
∂t

= J (0)〈ε〉+ Ω−1/2∆(C) +O(Ω−1), (A5.36)

where C = [Ci,j ] = 〈εiεj〉 and the vector ∆(C) is defined as

∆l(C) =
1

2

(
N∑

w,z=1

∂J
(0)
l,w(φ)

∂φz
〈εwεz〉 −

N∑

w=1

φw
∂J

(0)
l,w(φ)

∂φw

)
. (A5.37)

For Eq. A5.36 to have an O(Ω−1) error, we need to estimate C with an error of at most
O(Ω−1/2). This can be done using the LNA. Here we repeat the time-evolution equation of C
from the LNA is (see Eq. A5.31):

∂C(t)

∂t
= J (0)C +CJ (0)T

+D(0) +O(Ω−1/2). (A5.38)

Using this time evolution ofC from the LNA is indeed an approximation. Computing the time-
evolution equation of C from Eq. A5.17 would make it depend also on the third moments of
the fluctuation ε, requiring additional closure for the moment equations. By using the time-
evolution equation of C from the LNA we avoid this problem at the expense of a reduced
accuracy.
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Using Eqs. A5.6 and A5.36, the time evolution equation for the mean concentration 〈φ∗〉 is

∂〈φ∗〉
∂t

=
∂φ

∂t
+ Ω−1/2 ∂〈ε〉

∂t

=
∂φ

∂t
+ J (0) (〈φ∗〉 − φ) + Ω−1∆(C) +O(Ω−3/2), (A5.39)

where the time evolution of C is given by Eq. A5.38 and the vector ∆(C) is defined in
Eq. A5.37. Eq. A5.39, along with Eqs. A5.38 and A5.2 is called the effective mesoscopic
reaction rate equation (EMRE) (Grima, 2010a). Unlike the LNA, this equation can be used
to explain the deviation of the mean concentration predicted by the CME from that of the
RRE (Grima, 2009b, 2010a).

A5.2.1 Example 1: Linear reaction network

We apply the EMRE to a monostable linear reaction network. We use the reaction network
described in Eq. 1.53:

Ø
k1−→ S1

S1 + S1
k2−→ Ø.

(A5.40)

The mean steady-state concentration from the CME is

〈φ∗1〉CME
ss =

k1

k2
. (A5.41)

The RRE steady-state concentration is

φ1,ss =
k1

k2
, (A5.42)

confirming that the CME mean concentration is equal to the RRE concentration.
For evaluating the EMRE, we compute the Jacobian J (0) and the diffusion tensor D(0).

Since the reaction network consists of only a single chemical species, both are scalar. The
steady-state expressions for these quantities are (Eqs. A5.22 and A5.23)

J (0)
ss = −k2 (A5.43)

and

D(0)
ss = k1 + k2φ1,ss. (A5.44)

Using Eqs. A5.22, A5.23 and A5.38, the covariance matrix (scalar in this case) C at steady
state is

Css =
k1 + k2φ1,ss

2k2
. (A5.45)

Using Eq. A5.37, the quantity ∆(C) at steady state is

∆(Css) = 0. (A5.46)
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Substituting the above expressions in Eq. A5.39 evaluated at steady-state, we obtain

〈φ∗1〉EMRE
ss = φ1,ss. (A5.47)

This equality arises because ∆(Css) = 0, which is the result of the Jacobian being independent
of the RRE concentrations. The Jacobian is independent of the RRE concentrations for all
linear reaction networks and thus the mean concentration predicted by the EMRE is the same
as the RRE concentration, which in turn is the same as the mean concentration predicted by
the CME.

A5.2.2 Example 2: Nonlinear reaction network

We apply the EMRE to a monostable nonlinear reaction network. We use the reaction network
described in Eq. 1.59:

Ø
k1−→ S1

S1 + S1
k2−→ Ø

(A5.48)

in a reactor volume Ω. We test the effectiveness of the EMRE in approximating the steady-
state mean concentration predicted by the CME. The mean concentration predicted by the
CME is (see Eq. A1.10)

〈φ∗1〉ss =
1

4Ω
+ φ1,ss

I ′1 (4φ1,ssΩ)

I1 (4φ1,ssΩ)
, (A5.49)

where Ia(x) is the modified Bessel function of the first kind and I ′a(b) = dIa(x)
dx |x=b denotes its

first derivative. The steady-state RRE concentration φ1,ss is

φ1,ss =

√
k1

2k2
. (A5.50)

For evaluating the EMRE, we compute the Jacobian J (0) and the diffusion tensor D(0),
which are (Eqs. A5.22 and A5.23)

J (0)
ss = −4k2φ1,ss (A5.51)

and

D(0)
ss = k1 + 4k2φ

2
1,ss. (A5.52)

Using Eqs. A5.22, A5.23 and A5.38, the covariance matrix (scalar in this case) C at steady
state is

Css =
k1 + 4k2φ

2
1,ss

8k2φ1,ss
=

3k1

8k2φ1,ss
. (A5.53)

The quantity ∆(C) at steady state (using Eq. A5.37) is:

∆(Css) =
k1

4φ1,ss
. (A5.54)
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From Eq. A5.39, the steady-state concentration predicted by the EMRE is

〈φ∗1〉EMRE
ss = φ1,ss − Ω−1 ∆(Css)

J
(0)
ss

= φ1,ss +
Ω−1

8
. (A5.55)

Figure A5.1: CME, EMRE and the RRE predictions of the steady-state mean concentration of species
S1 in the monostable nonlinear reaction network in Eq. A5.48. The predictions are shown
as a function of the reactor volume Ω for the rates k1 = 5 and k2 = 10.

Fig. A5.1 shows the steady-state mean concentration predictions as a function of the reactor
volume Ω for k1 = 5 and k2 = 10. We see that in contrast to the RRE, the EMRE does show a
systematic modulation of the steady-state mean concentration as a function of Ω. At Ω = 10,
〈φ∗1〉CME

ss = 0.5130 and 〈φ∗1〉EMRE
ss = 0.5125, whereas φ1,ss = 0.5. For this reactor volume, the

difference between the CME and the EMRE prediction is about 1%, whereas that between
CME and the RRE is 2.6%. The EMRE is therefore more accurate than the RRE.

Fig. A5.2 shows the error in the steady-state mean concentration predicted by the EMRE
in comparison to the true concentration predicted by the CME. The error is quantified as the
absolute difference between the CME and the EMRE predictions using Eqs. A5.49 and A5.55.
We see that the error decreases as Ω−2 with increasing Ω. This can be proven analytically
using the asymptotic expansion of 〈φ∗1〉CME

ss (see Eq. A1.11). Using Eq. A1.11 and A5.55, the
error is given by

∣∣〈φ∗1〉CME
ss − 〈φ∗1〉EMRE

ss

∣∣ =
3Ω−2

128φ1,ss
+O(Ω−3) (A5.56)

and is hence O(Ω−2) for this reaction network.
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A5 The van Kampen system-size expansion

Figure A5.2: Difference between the CME and EMRE predictions of the steady-state mean concen-
tration of species S1 in the monostable nonlinear reaction network in Eq. A5.48. The
error (circles) is plotted as a function of the reactor volume Ω using the EMRE and CME
predictions from Eqs. A5.49 and A5.55, respectively. The solid line is the leading error
term in Eq. A5.56 obtained by asymptotic expansion (in Ω) of the CME steady-state
solution for the mean.

A5.3 Limitations of the van Kampen expansion and the EMRE

The examples in the previous section show that the EMRE, which is obtained using van Kam-
pen system-size expansion, is competitive in predicting the CME steady-state concentration.
The van Kampen expansion, and therefore the EMRE, however, also have limitations. All
limitations of the van Kampen expansion arise from the ansatz in Eq. A5.6. This ansatz
approximates the random jumps around the macroscopic state with Gaussian fluctuations,
thereby introducing a small fluctuation variable that can be used to expand the CME. The
ansatz stipulates that the variance of the concentration decreases as Ω−1 with increasing Ω.
This, however, is not true for every chemical reaction network. As seen in Sec. 1.4, only monos-
table reaction networks obey the scaling of the variance prescribed by the van Kampen ansatz.
Reaction networks whose RRE show limit cycle oscillations do not obey this scaling, neither
do multistable networks. In such systems, the variance decrease much slower than Ω−1 (see
Fig. 1.10) and the van Kampen ansatz, and hence the expansion therewith, is an unsubstanti-
ated approximation (van Kampen, 2001). In addition, it has been shown that the van Kampen
expansion fails to reproduce qualitative features of systems with absorbing states (McKane
and Newman, 2005; Di Patti et al., 2011). This is expected since the fluctuations close to an
absorbing state are not symmetric. The Gaussian approximation, therefore, does not necessar-
ily capture certain qualitative features in such systems (McKane and Newman, 2005; Di Patti
et al., 2011). In general, for systems for which the van Kampen expansion is not suitable, a
generalized ansatz φ∗ = φ+Ω−αε, where 0 ≤ α < 1, has been proposed (Di Patti et al., 2011).
Such an ansatz can potentially account for non-Gaussian fluctuations around the macroscopic
states and has been tested on birth-death processes with mixed success (Di Patti et al., 2011).
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The EMRE has further limitations owing to the truncation of the van Kampen expansion.
The EMRE includes the minimum number of terms needed to explain deviations of the mean
concentration predicted by the CME from that of the RRE. This results in a finite truncation
error in the prediction of the mean. In addition, at small volumes Ω, where the number of
molecules is few, the EMRE can predict negative concentrations. Such unphysical predictions
can be avoided by including additional terms of the van Kampen expansion. Including addi-
tional terms, however, requires estimating an increasing number of moments of the fluctuations
ε in order to close the evolution equation for the mean. For instance, if terms of order Ω−1

are to be included in Eq. A5.17, the second moment of ε needs to be estimated by including
all terms up to order Ω−1, the third moment up to order Ω−1/2 and the fourth moment up to
order Ω0. These equations moreover tend to be coupled, except for special cases. The need to
estimate an increasing number of moments makes the derivations laborious. In addition, ana-
lytical solutions that help provide a baseline picture may no longer be obtainable. Numerical
simulations of such equations could, however, still prove quite useful.
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A6 Discreteness-induced concentration inversion in an
in-silico genetic network

Figure A6.1: Illustration of the genetic reaction network in Eq. A6.1

We present the existence of the concentration inversion effect in an in silico genetic net-
work (Francois and Hakim, 2004):

a
k′1−→ a + mA

A
k2−→ Ø

b
k′3−→ b + mB

B
k4−→ Ø

A + B
k5−→ AB

AB
k6−→ Ø

b + A
k′7−→ bA

bA
k′8−→ b + A

bA
k′9−→ bA + B.

(A6.1)

The k’s are the macroscopic reaction rates and the reactions occurs in a reactor of volume
Ω. In this network, a and b are genes. The corresponding proteins encoded by these genes
are A and B, respectively. The synthesis of these proteins occur in bursts of size m. Proteins
A and B form a heterodimer AB. This network models a frequently found motif in gene
networks (Francois and Hakim, 2004). Protein A represses gene b at the transcriptional
level. Protein B, however, acts through heterodimerization with A, the heterodimer AB being
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unable to repress gene b. Thus, if A is high, b is repressed, but if B is high, all of the As
are heterodimerized, and B remains high (Francois and Hakim, 2004) (see Fig. A6.1 for an
illustration).

Note that since there is one gene of a and one gene of b, the concentration of gene a in the
rate equation (RE) model is constant and equal to [a] = 1/Ω, whereas the concentration of b
and bA are [b] = x/Ω and [bA] = y/Ω, respectively, where x + y = 1. This follows from the
fact that gene b exists either in unbound or bound form. The term in the RE model for the
rate of production of A due to transcription is k′1[a]m = k′1m/Ω; other terms such as those
leading to transcription of B and those modeling the reversible interaction of b and A also
show this explicit volume dependence. This implies that the solution of the RE model for this
system (and indeed for any genetic system) will depend on the volume of the compartment.
This dependence stems from the fact that the copy number of genes is fixed, independent of
the volume. Taking into account discreteness generates a volume dependence on top of this
pre-existing volume dependence. To clearly distinguish the first from the second, we scale the
rates such that we eliminate the volume dependence of the REs. This is achieved by setting
k′1 = k1Ω/m, k′3 = k3Ω/m, k′7 = k7Ω, k′8 = k8Ω and k′9 = k9Ω. Note that here we have
additionally scaled some rates by the burst size m in order to eliminate also dependence on
the latter; this is convenient, but not essential.

We further set the parameters of this network so that the system is monostable: k1 = 2.0,
k2 = 0.34, k3 = 0.74, k4 = 0.1, k5 = 0.72, k6 = 0.53, k7 = 2.0, k8 = 2.0 and k9 = 2.0. We
investigate the existence of the concentration inversion effect in the concentration levels of
proteins A, B and their heterodimer AB. Initially, the number of molecules of gene a and b
are set to 1, and the concentrations of all other chemical species are 0.

A6.1 Comparison of critical volumes from theory and simulation

Using burst size m = 10, the time evolution of the average concentrations of proteins A, B
and their heterodimer AB predicted by the chemical master equation (CME) are shown in
Fig. A6.2 for four different reactor volumes Ω = 100, 2.5, 1.4, 0.65. At large Ω, the concentra-
tion predicted by the RE and the average concentration predicted by the CME are in good
agreement (Fig. A6.2(a)). The theory using the effective mesoscopic reaction rate equation
(EMRE) predicts the largest critical volume as ΩA,AB = 3.35. The simulations indeed show
that at Ω = 2.5 the average steady-state concentrations of A and AB are equal (Fig. A6.2(b)).
Below this volume the ordering of the average steady-state concentration levels of A and AB is
reversed with respect to their concentration levels at large Ω (Figs. A6.2(c) and (d)). The the-
ory further predicts two addition critical volumes ΩB,AB = 1.93 and ΩA,B = 0.41. The values of
these critical volumes from stochastic simulations are 1.4 and 0.65, respectively (Figs. A6.2(c)
and (d)). Note that all possible concentration inversions are seen for this genetic network.
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Figure A6.2: Ensemble-averaged concentrations of proteins A, B and their heterodimer AB as a func-
tion of time for a genetic reaction network confined in compartments of different vol-
umes. The data (solid lines) are obtained from exact stochastic simulations using PDM
SSA (Ramaswamy et al., 2009). The gene network is schematically shown in Fig. A6.1.
The compartment volumes are: (a) Ω = 100, (b) Ω = 2.5, (c) Ω = 1.4, (d) Ω = 0.65. The
rate constants are fixed to k′1 = 2.0Ω/m, k2 = 0.34, k′3 = 0.74Ω/m, k4 = 0.1, k5 = 0.72,
k6 = 0.53, k′7 = 2.0Ω, k′8 = 2.0Ω, k′9 = 2.0Ω and the burst size to m = 10. The dashed
lines show the RE predictions for the same parameter values. The simulations confirm
the theoretical prediction of a discreteness-induced inversion below the largest critical
volume, ΩA,AB = 3.35, for species A and AB. Below this largest critical volume the or-
dering of steady-state concentrations predicted by the RE is incorrect. Note that time,
concentration and volumes are in non-dimensional units.

For m = 1, the theoretical predictions of the critical volumes are ΩA,B = 0.39, ΩB,AB = 0.32
and ΩA,AB = 0.27. The corresponding values from stochastic simulations are 0.4, 0.28 and 0.18,
respectively. For m = 30, the theoretical predictions of the critical volumes are ΩA,AB = 10.38,
ΩB,AB = 5.51 and ΩA,B = 0.43. The corresponding values from simulations are 8, 4 and 1.2,
respectively. From these results we observe that the critical volumes increase with increasingm,
as indeed was also the case for the trimerization reaction studied in the main text. In addition,
the largest critical volume predicted by the EMRE is the most accurate in comparison to the
ones observed from exact stochastic simulations. This volume is also the most important, since
it demarcates regions with inversion from regions with no inversion.
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A7 Effect of volume, burst and the mass-balance condition
on the concentration variance

Consider the following chemical reaction

∅ k1−→ bS1

S1
k2−→ ∅. (A7.1)

The CME is
∂P (n1, t)

∂t
= Ωk1(E−b1 − 1)P + k2(E1 − 1)(n1P ), (A7.2)

where Ω is the volume of the reactor, P (n1, t) is the probability distribution for having n1

molecules of S1 at time t and the step operator is defined as Erg(n1) = g(n1 + r).
The deterministic RRE is given by

dφ1

dt
= bk1 − k2φ1. (A7.3)

Multiplying Eq. A7.2 by n1 and summing over all possible values of n1 we get the evolution
of the mean

d〈n1〉
dt

= Ωk1b− k2〈n1〉. (A7.4)

We obtain the steady-state mean by setting the time derivative to zero

〈n1〉ss =
Ωk1b

k2
. (A7.5)

Multiplying Eq. A7.2 by n2
1 and summing up over all possible values of n1 we get

d〈n2
1〉

dt
= Ωk1b

(
b+ 2〈n1〉

)
− k2

(
2〈n2

1〉 − 〈n1〉
)
. (A7.6)

By setting the time derivative to zero we see that at steady state

〈n2
1〉ss − 〈n1〉2ss =

k1

2k2
b(b+ 1)Ω, (A7.7)

which is the population variance. Hence, the variance of the concentration, φ∗1 = n1/Ω, at
steady state is

σ2
ss =

k1

k2

b(b+ 1)

2Ω
. (A7.8)

Note that σ2
ss ∝ b2/Ω.

Imposing that the average occupied volume fraction Φ = v 〈φ∗1〉ss is constant at steady state,
where v is the volume of a single molecule of S1, leads to the mass-balance condition

v b k1/k2 = Φ.. (A7.9)
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A7 Effect of volume, burst and the mass-balance condition on the concentration variance

Fixing k2, v, and Φ hence fixes the product bk1, which appears in the macroscopic RRE
(Eq. A7.3). Fixing the product bk1 renders the RRE invariant to the burst size b.

The condition in Eq. A7.9 leads to the concentration variance

σ2
ss =

φ

v

(b+ 1)

2Ω
(A7.10)

and to the mean concentration
〈φ∗1〉ss = Φ/v. (A7.11)

The scaling of the steady-state variance is thus b/Ω.
Having a non-linear reaction in Eq. A7.1 would leave this scaling unchanged at steady state.
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A8 CME, RRE and the stability of the fixed point of the
trimerization system

The CME for the general driven colloidal aggregation reaction system described in Eq. 4.8 is:

∂P (n, t)

∂t
=

(
E−b1 − 1

)
Ωkon

1 P (n, t)

+

bN/2c∑

i=1

(
E2
iE
−1
2i − 1

)
Ω−1ki,ini(ni − 1)P (n, t)

+

bN/2c∑

i=1

N−i∑

j=i+1

(
E1
iE1

jE
−1
i+j − 1

)
Ω−1ki,jninjP (n, t)

+

N∑

i=1

(
E1
i − 1

)
koff
i niP (n, t), (A8.1)

where n = [n1, . . . , nN ]
T

is the population vector, N is the maximum size of a multimer and
Ei is the step operator defined as Eai g(ni) = g(ni + a). The corresponding RRE is

dφi
dt

= kon
1 bδi,1

+

bN/2c∑

p=1

N−p∑

q=p

kp,qφpφq (δp+q,i − δp,i − δq,i)

−koff
i φi, (A8.2)

where φi is the macroscopic concentration of the multimers of size i. In general, the rates
ki,j ’s depend on the sizes of the reacting multimers i and j (van Dongen, 1987; Axford, 1996;
Leyvraz, 2003).

For the specific case of trimerization, i.e. N = 3, described in Eq. 4.9 the CME is

∂P (n, t)

∂t
=

(
E−b1 − 1

)
Ωk0P (n, t)

+
(
E2

1E
−1
2 − 1

)
Ω−1k1n1(n1 − 1)P (n, t)

+
(
E1

1E1
2E
−1
3 − 1

)
Ω−12k1n1n2P (n, t)

+

3∑

i=1

(
E1
i − 1

)
k2niP (n, t). (A8.3)

The corresponding RRE is

dφ1

dt
= k0b− 2k1φ

2
1 − 2k1φ1φ2 − k2φ1

dφ2

dt
= k1φ

2
1 − 2k1φ1φ2 − k2φ2

dφ3

dt
= 2k1φ1φ2 − k2φ2. (A8.4)
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A8 CME, RRE and the stability of the fixed point of the trimerization system

It is easy to see that when k0b is constant, the RRE trajectory is invariant to the individual
values of k0 and b. In Chapters 4 and 5 we impose the mass-balance condition (Eq. 4.18) to
render the RRE invariant to b. In addition, the RRE is also invariant to the reactor volume
Ω.

Setting the time derivative to zero and solving for the steady-state concentrations (φ1,ss, φ2,ss, φ3,ss),

we find that the trimerization system has a single fixed point. The Jacobian J
(0)
ss is

J (0)
ss =



−4k1φ1,ss − 2k1φ2,ss − k2 −2k1φ1,ss 0

2k1φ1,ss − 2k1φ2,ss −2k1φ1,ss − k2 0

2k1φ2,ss 2k1φ1,ss −k2


 . (A8.5)

The eigenvalues −γ1, −γ2 and −γ3 of J
(0)
ss are

γ1 = k2 + 3k1φ1,ss + k1φ2,ss − k1

√
−3φ2

1,ss + 6φ1,ssφ2,ss + φ2
2,ss,

γ2 = k2 + 3k1φ1,ss + k1φ2,ss + k1

√
−3φ2

1,ss + 6φ1,ssφ2,ss + φ2
2,ss,

γ3 = k2. (A8.6)

For some regions in the parameter space of the rates, the eigenvalues −γ1 and −γ2 are complex.
The real parts of all three eigenvalues are, however, always negative throughout the parameter
space since the rates and the steady-state concentrations are always non-negative. The fixed
point (φ1,ss, φ2,ss, φ3,ss) of the trimerization system is, therefore, always stable. In regions of
the parameter space where −γ1 and −γ2 are complex, the fixed point is a stable spiral. The
trimerization system is hence monostable.

For the parameter values, k1 = 0.5, k2 = 1.0 and k0 = 10k2/b, used in Chapter 4 and
Chapter 5

γ1 = 4.9803− i 1.0387,

γ2 = 4.9803 + i 1.0387,

γ3 = 1.0. (A8.7)

The real parts of γ1 and γ2 are approximately 4.8 times larger than the imaginary parts. In
situations where the real part of a complex eigenvalue is a few times larger than the imaginary
part, noise is not expected to make the mesoscopic system oscillate (Baxendale and Greenwood,
2011). In addition, fixing k1 to 0.5 and varying k2 ∈ [0.01, 100], we observe that the real parts
of γ1 and γ2 are always at least 4.3 times larger than the imaginary parts. The minimum
ratio between the absolute values of the real and imaginary parts of γ1 and γ2 is observed at
k2 = 3.2551.
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A9 Stability of the fixed point and Hopf bifurcation of the
Brusselator

The Brusselator in a reactor of volume Ω is given by

X0
k1−→ X1

X1
k2−→ Ø

X1
k3−→ Y1

2X1 + Y1
k4−→ 3X1.

(A9.1)

Here, X0 is a buffer whose concentration is fixed to x0 = 1, and the concentrations of species
X1 and Y1 are x1 and y1 respectively. The RRE of the Brusselator is

dx1

dt
= k1x0 − k2x1 − k3x1 + k4x

2
1y1

dy1

dt
= k3x1 − k4x

2
1y1. (A9.2)

The fixed point of x1 and y1 is

x1,ss =
k1

k2

y1,ss =
k3k2

k1k4
. (A9.3)

The Jacobian J
(0)
ss evaluated at the RRE steady-state is

J (0)
ss =

[
−k2 − k3 + 2k4x1,ssy1,ss k4x

2
1,ss

k3 − 2k4x1,ssy1,ss −k4x
2
1,ss

]
. (A9.4)

The eigenvalues λ of J
(0)
ss are complex:

λ =
k3 − k3,c

2
± i
√
k2

1k4

k2
− k3 − k3,c

2
, (A9.5)

where

k3,c = k2 +
k2

1k4

k2
2

. (A9.6)

When k3 < k3,c, the real part of λ is negative and hence the fixed point of the Brusselator
is stable. When k3 = k3,c, λ is purely imaginary and the Brusselator undergoes a Hopf
bifurcation. For k3 > k3,c, the real part of λ is positive and the fixed point is unstable.
However, a stable limit cycle exists (Gaspard, 2002).
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A9 Stability of the fixed point and Hopf bifurcation of the Brusselator

For the parameters k1 = k2 = k3 = k4 = 1 that we use in Sec. 5.2

λ = −1

2
± i
√

3

2
(A9.7)

and hence the absolute value of the real part of λ is less than that of the imaginary part. It
has been observed that under such conditions a mesoscopic system described by the CME can
show oscillations (Qian et al., 2002; Baxendale and Greenwood, 2011). It can be verified that
for every stage in the cascaded Brusselator system (Eq. 5.9), the steady state and stability of
the fixed point are identical to those of a single stage (Shibata, 2004).
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Appendix

A10 Normalized power spectral density of a cascade of
Brusselators at larges volume

We analytically derive the normalized steady-state PSD Sn(ω) and its peak frequency ωm
n for

each cascade stage n in the large-volume regime. The derivation follows that of Shibata (Shi-
bata, 2004).

The deterministic RRE for the reaction system given in Eq. 5.9 are

dx1

dt
= k1x0 − k3x1 − k2x1 + k4x

2
1y1

dxn
dt

= k2xn−1 − k3xn − k2xn + k4x
2
nyn n = 2, . . . , N

dyn
dt

= k3xn − k4x
2
nyn n = 1, . . . , N , (A10.1)

where xn and yn are the concentrations of species Xn and Yn, respectively. As in the nu-
merical study for mesoscopic volumes, we set k2 = k4 = x0 = 1. Let δxn and δyn be small
perturbations around the steady state (xn,ss, yn,ss) = (k1, k3/k1). The linear equations for the
perturbations around the steady state are

(
dδxn

dt
dδyn

dt

)
=

(
k3 − 1 k2

1

−k3 −k2
1

)(
δxn

δyn

)
+

(
1 0

0 0

)(
δxn−1

δyn−1

)
. (A10.2)

This expression for the perturbations around the fixed point of the RRE is the same as the one
that would be obtained from the linear-noise approximation using van Kampen expansion.

Taking the Fourier transform on both sides, we obtain
(
jω 0

0 jω

)(
Xn
Yn

)
=

(
k3 − 1 k2

1

−k3 −k2
1

)(
Xn
Yn

)
+

(
1 0

0 0

)(
Xn−1

Yn−1

)
, (A10.3)

where Xn and Yn are the Fourier transforms of xn(t) and yn(t), respectively. Simplifying the
above equation leads to

Xn = F (ω)Xn−1 , (A10.4)

where

F (ω) =
jω + k2

1

−ω2 + j(k2
1 − k3 + 1)ω + k2

1

. (A10.5)

Since we consider a linearized version of the macroscopic system, the normalized PSD is
invariant to the input noise excitation used to quantify the correlations introduced by the
system. We here use the simple input noise δx0 = ε0(t), which is uncorrelated white noise
with 〈ε0(t)〉 = 0 and 〈ε0(t)ε0(t + τ)〉 = σ2

0δ(τ), where δ(τ) is the unit impulse function. The
PSD P0(ω) of the input buffer to the first stage is then given by

P0(ω) = 〈|X0(ω)|2〉

=
σ2

0

2π
. (A10.6)
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A10 Normalized power spectral density of a cascade of Brusselators at larges volume

The PSD Pn(ω) of the output of cascade stage n ≥ 1 is given by

Pn(ω) = 〈|Xn(ω)|2〉 . (A10.7)

Substituting Eqs. A10.4 and A10.6 into Eq. A10.7 we get

Pn(ω) = |F (ω)|2n σ
2
0

2π
.

The normalized steady-state PSD Sn(ω) is then

Sn(ω) =
Pn(ω)∫∞

0
Pn(ω′)dω′

=
|F (ω)|2n∫∞

0
|F (ω′)|2ndω′

. (A10.8)

Given the expression for F (ω) (Eq. A10.5), the normalized steady-state PSD Sn(ω) has a
Lorentzian-like form with peak frequency

ωm
n =

√
−k4

1 + k2
1

√
2k2

1k3 + 2k3 − k2
3 ∀n . (A10.9)

It is therefore evident that in the large-volume regime the peak frequency ωm
n is independent

of Ω and of the stage number n. The bandwidth ωb
n in the large-volume limit is computed

from Eq. A10.8.
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1. Rajesh Ramaswamy, Nélido González-Segredo and Ivo F. Sbalzarini, A new class
of highly efficient exact stochastic simulation algorithm for chemical reaction networks,
Journal of Chemical Physics, vol. 130, no. 24, 244104 (2009) (Swiss Institute of Bioin-
formatics best graduate paper award 2010)

2. Rajesh Ramaswamy and Ivo F. Sbalzarini, A partial-propensity variant of the
composition-rejection stochastic simulation algorithm for chemical reaction networks,
Journal of Chemical Physics, vol. 132, no. 4, 044102 (2010) (Swiss Institute of Bioin-
formatics best graduate paper award 2010)

3. Rajesh Ramaswamy and Ivo F. Sbalzarini, Fast exact stochastic simulation algo-
rithms using partial propensities, in Proc. ICNAAM, Numerical Analysis and Applied
Mathematics, International Conference, pages 1338–1341, American Institute of Physics
(2010)

4. Anton A. Polyansky, Rajesh Ramaswamy, Pavel E. Volynsky, Ivo F. Sbalzarini, Siew-
ert J. Marrink and Roman G. Efremov, Antimicrobial Peptides Induce Growth of Phos-
phatidylglycerol Domains in a Model Bacterial Membrane, Journal of Physical Chemistry
Letters, vol. 1, pages 3108–3111 (2010)

5. Rajesh Ramaswamy and Ivo F. Sbalzarini, A partial-propensity formulation of the
stochastic simulation algorithm for chemical reaction networks with delays, Journal of
Chemical Physics, vol. 134, no. 1, 014106 (2011)
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