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Molecular discreteness is apparent in small-volume chemical systems, such as biological cells, 
leading to stochastic kinetics. Here we present a theoretical framework to understand the 
effects of discreteness on the steady state of a monostable chemical reaction network. We 
consider independent realizations of the same chemical system in compartments of different 
volumes. Rate equations ignore molecular discreteness and predict the same average steady-
state concentrations in all compartments. However, our theory predicts that the average steady 
state of the system varies with volume: if a species is more abundant than another for large 
volumes, then the reverse occurs for volumes below a critical value, leading to a concentration 
inversion effect. The addition of extrinsic noise increases the size of the critical volume. We 
theoretically predict the critical volumes and verify, by exact stochastic simulations, that rate 
equations are qualitatively incorrect in sub-critical volumes. 
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Mesoscopic chemical reaction systems are typically realized 
in compartments with length scales ranging from few tens 
of nanometers to millimeters. The same concentration 

realized in compartments of decreasing size implies a decreasing 
total number of molecules. This leads to an increase in apparent 
molecular discreteness and an increase in the size of the concen-
tration fluctuations about the mean1. These intrinsic fluctuations 
stem from the discrete change in the number of molecules when a 
reaction occurs, and their random character is principally imparted 
by the contact of the system with a heat bath2. Chemical reac-
tion dynamics in small-scale compartments is hence considerably  
influenced by intrinsic (or internal) noise.

Biological cells are natural and ubiquitous examples of highly 
confined chemically reactive systems. Biochemical reactions pro-
ceed in sub-micron compartments where the total number of mol-
ecules is in the range of one to several thousand3,4, and intrinsic 
noise is hence expected to have an important functional role in  
biochemical circuits5. Biological systems are also subjected to 
extrinsic noise originating outside the immediate system of interest. 
For example, the rate of chemical reactions inside a compartment 
may depend on the abundance of an upstream species that is trans-
located from another compartment6,5. The relevance of intrinsic 
noise, however, is not limited to biological systems. Molecular cap-
sules7, carbon nanotubes8 and crystalline zeolites9 are other exam-
ples of nanospaces confining chemical reactions. It has been shown 
that accounting for intrinsic noise leads to a considerable modifica-
tion of the temperature dependence of the equilibrium constants of 
reactions in such confined spaces10.

There is an extensive literature on modelling the effects of  
intrinsic noise in chemical kinetics. Intrinsic noise is taken into 
account by chemical master equations (CMEs), which are exact 
mesoscopic descriptions of well-stirred and thermally equilibrated 
gas-phase chemical systems11 and chemical reactions occurring in 
well-stirred dilute solutions12. Unfortunately, CMEs are generally 
analytically intractable, and many studies have therefore resorted  
to the linear-noise approximation (LNA) of the CME (see, for  
example, refs 13–19).

The LNA prediction of mean concentrations is the same as that 
from rate equations (REs)20,21, but it is well known that, for systems 
involving at least one bimolecular reaction, the mean concentrations 
approach those from the REs only in the macroscopic limit of large 
molecule numbers1,22,23. Hence, the LNA cannot capture effects 
in the mean that are due to molecular discreteness. Recently, it has 
also been shown that the relaxation kinetics around steady states 
of nonlinear reactions is altered by molecular discreteness24,25. It is 
thus likely that the functionality and operation of chemical circuits 
involving low copy numbers of some species may considerably dif-
fer from standard predictions based on the LNA or REs. In addition, 
a detailed understanding of how extrinsic noise influences a circuit’s 
low-copy-number properties is desirable because experimental 
studies suggest that extrinsic noise is frequently comparable to, or 
larger than, intrinsic noise26.

Here we investigate the dependence of the non-equilibrium 
steady-state properties of a monostable nonlinear chemical circuit 
on the discreteness of the interacting molecules. We consider inde-
pendent realizations of the same chemical reaction system in com-
partments of different volumes. Given some fixed-rate constants, 
the LNA and REs predict the same steady-state concentrations for 
all realizations. In contrast, we show that accounting for molecular 
discreteness leads to volume-dependent steady-state mean concen-
trations, and that the RE and LNA predictions are qualitatively cor-
rect only for systems above a critical volume. This describes a new 
phenomenon: discreteness-induced concentration inversion. For 
systems in sub-critical volumes, the REs and LNA predict that the 
steady-state mean concentration of a species A is, say, larger than 
that of another species B, whereas accounting for discreteness leads 

to the reverse prediction. We present a theory to explain this novel 
discreteness-induced inversion effect and to predict the values of 
the critical volumes. We illustrate and validate the theory by com-
paring its predictions to exact stochastic simulations of the CME for 
the generic model system of trimerization (Fig. 1). Furthermore, we 
show that the critical volume increases in the presence of extrinsic 
noise due to bursty input of a reactant into the compartment.

Results
Theory of the inversion effect. We consider a molecular reaction 
network confined to a well-stirred compartment of volume Ω and 
involving the interaction of N distinct chemical species via a number 
of elementary chemical reactions. We furthermore require that the 
network be monostable.

The vector of macroscopic concentrations at any time t, denoted 
f f f( ) = ( ( ),..., ( ))1t t tN

T, can be predicted by solving the REs of the 
network. This prediction ignores molecular discreteness. Time- 
evolution equations for the approximate mean concentrations when 
discreteness is taken into account, effective mesoscopic rate equa-
tions (EMREs), have recently been derived from the volume expan-
sion of the CME including terms of the order Ω − 1/2, that is, one 
order higher than terms leading to the LNA23 (see Methods section 
for an introduction to EMREs). This derivation is valid for monosta-
ble networks. The instantaneous solution of the EMREs is a vector of 
mean concentrations denoted 


f *( )t . By setting the time derivative in 

the EMREs (equations (9) and (10) in Methods) to zero, one obtains 
an expression for the difference between the steady-state mean  
concentration predictions of the EMREs and REs:
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Figure 1 | Discreteness-induced inversion effect. The species are 
monomers (species 1, purple), dimers (species 2, orange), and 
trimers (species 3, green). They are involved in an open trimerization 
reaction confined to a compartment of volume Ω. Monomers enter the 
compartment, bind to other monomers to form dimers, and to dimers to 
form trimers. All molecules leave the compartment at a constant rate. 
The spheres represent the molecules, whereas the semi-transparent 
pink surface represents the arbitrarily shaped compartment to which 
the molecules are confined. The bar graphs reflect the steady-state 
mean concentrations (denoted fi* for species i). When the volume 
decreases below a critical value Ω12, the ratio of the steady-state mean 
concentrations of monomers (species 1) and dimers (species 2) changes 
from greater than one to less than one. This inversion effect is induced by 
an increase in the apparent discreteness of the system as the volume is 
decreased from (a) to (b). The rate constants and the average occupied 
volume fraction of the system are the same at both the volumes. REs  
and the LNA predict no change in the steady state of the system as the 
volume is decreased.
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  
f f d* 1= ,− − −W

where 
 
d = ( )1J Cs s

− ⋅∆ , Js is the Jacobian of the REs, and Cs is the  
covariance matrix (the subscript s denotes evaluation at steady 
state). The vector 


∆ is the mean–covariance coupling vector whose 

lth component is:
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Here 〈εwz〉 is short-hand notation for 〈εwεz〉, the entry in the wth 
row and zth column of the covariance matrix of fluctuations (the 
steady-state solution of the latter is obtained by solving equation 
(10) in Methods with the time derivative set to zero).

We now focus on the physical interpretation of equation (1). 
Consider the case where the macroscopic steady state of the sys-
tem is such that f f f f1

*
1 2

*
2= > = . It follows from equation (1) that 

if δ1>δ2, there exists a critical compartment volume Ω12 = (δ2 − δ1)/
(φ2 − φ1) at which the steady-state mean concentrations of the two 
species become equal, f f1

*
2
*= . For volumes smaller than critical, we 

have f f1
*

2
*< . In other words, although accounting for molecular dis-

creteness always leads to some correction to the RE solutions, it is 
only below a certain critical volume (that is, a certain copy number 
of molecules) that these corrections lead to qualitative changes in 
the steady state of a chemical network. We call this novel transition 
‘discreteness-induced inversion effect’, owing to the inversion in the 
ranking of the steady-state mean concentrations of two species as 
the volume crosses the critical threshold. This inversion effect is not 
predicted by the LNA, because it originates from terms of higher 
order than Ω0. For a system of N distinct chemical species, there are 
at most N(N − 1)/2 different critical volumes, one for each unique 
pair of species. The general condition for the existence of a critical 
volume Ωij for species i and j is: sign(δi − δj) = sign(φi − φj). REs and 
the LNA are qualitatively valid in volumes larger than the maximum 
of all critical volumes, whereas discreteness-induced effects domi-
nate the steady-state behaviour in sub-critical volumes.

A necessary (but not sufficient) condition for the inversion effect 
to occur is that ∆l in equation (2) is non-zero for some l, that is, that 
there is at least one bimolecular reaction in the reaction network. 
Quasi-first-order reactions lead to a very small ∆l and are hence 
unlikely to cause discreteness-induced inversion.

A general three-step recipe for predicting the critical volumes 
of a chemical network is: (i) derive an expression for the vec-
tor 
 
d = ( )1J Cs s

− ⋅∆  using the Jacobian of the REs and the mean– 
covariance coupling vector given in equation (2), both evaluated 
at steady state; (ii) obtain an explicit expression from the LNA for 
the steady-state covariance matrix Cs in terms of the steady-state 
RE concentrations by solving equation (10) in the Methods section 
with the time derivative set to zero; (iii) obtain the final expressions 
for the critical volumes of the system by substituting the expres-
sion for Cs into the one previously obtained for 


d , and inserting the  

latter in

Wij i j i j i j i j N= ( )/( ), , , =1,..., .d d f f− − ≠

The accuracy of the predicted critical volumes depends on the 
accuracy of the EMRE estimate of the steady-state mean concentra-
tions when discreteness is taken into account, 


f *. From equation (1),  

it is clear that, if δi is positive, there exists a breakdown volume of 
the EMREs for which fi

* is zero. For volumes smaller than that, 
fi

* becomes negative, which is not physical. A different breakdown 
volume exists, in principle, for each species. The above prediction of 
a critical volume can thus only be trusted if it is significantly larger 
than the maximum of all breakdown volumes.
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(3)(3)

Trimerization in a small compartment. We demonstrate and verify 
our theoretical predictions by exemplarily considering the molecu-
lar assembly of trimers from monomers in a small volume24. This 
example is of relevance in various biological contexts, for example, 
trimerization of receptor proteins and heat-shock factors27–29, and 
also has applications in nanotechnology, including nano-particle 
clustering and colloidal crystallization.

The trimerization reaction scheme is:
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The above choice of rate constants reduces the dimensionality of 
the parameter space and simplifies the algebra. Monomers (X1) are 
input into the compartment in bursts of size m. The monomers form 
dimers (X2) that can in turn react with other monomers to form 
trimers (X3). All three species leave the system at a constant rate. 
The burst-input mechanism models molecules entering the com-
partment by active transport rather than by diffusion30. This is a 
common mechanism in biological cells31,6. For example, in the case 
of receptor trimerization in the plasma membrane, the burst input 
stems from the vesicular transport of receptor monomers from exo-
cytic compartments. Experimental evidence suggests that the burst 
size m can be as large as 1,000 (ref. 6). Our system is influenced by 
intrinsic noise from inherent molecular discreteness and by extrin-
sic noise due to the burst-input process5. The parameter m controls 
the magnitude of extrinsic noise as a larger m implies larger fluc-
tuations in the monomer concentration on input into the compart-
ment. These input fluctuations are not induced by a process inside 
the compartment. They are caused by the input process, which is 
external to the compartment and hence a source of extrinsic noise 
for the reactions inside the compartment. For now, we consider m to 
be a time-independent constant. Later, we also study the case where 
m is itself a stochastic quantity, as it is typically in burst phenomena 
associated with protein production32.

We start by calculating the critical volumes of this system using 
the present theoretical framework, and then validate these predic-
tions against exact stochastic simulations33. From the Jacobian of 
the deterministic REs of this system and equation (2), we find:
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2k k k k+ + + . The steady-state values of 

the relevant correlators are obtained by solving the Lyapunov equa-
tion (10) with the time derivative set to zero, leading to:
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with b f f f f f= 2(12 6 2 )( 3 )1
2

1
2

1 1 2 1 2 2 2
2

1 2 1 1 2k k k k k k k k k+ + + + + . The  
elements of the symmetric, positive semi-definite matrix D 
can be computed from the macroscopic stoichiometry and 
rate-function matrices S and F (see Methods), leading to: 
D m k k k k11

2
0 1 1 1 1 2 2= (4 2 )+ + +f f f , D k12 1 1 2 1= 2 ( )f f f− , and 

D k k k22 1 1
2

1 1 2 2 2= 2f f f f+ + . The vector 

d  in equation (4) can then  

be expressed in terms of the rate constants and the steady-state  
solution of the REs. We obtain the three critical volumes of the  
system by substituting the components of 


d  into equation (3).

In the interest of simplicity, we did not include reverse reactions 
for the two bimolecular reactions. The inversion effect exists, with or 
without them, because they are unimolecular; their addition would, 
however, modify the critical volumes of the system.

Simulations confirm the inversion effect. We probe the theoreti-
cally predicted discreteness effects by exact stochastic simulations. 
Details of the latter can be found in Methods. We first study the 
inversion effect for a particular set of parameters to verify its exist-
ence. Then, we scan the parameter space using both simulations  
and the theoretical expressions previously derived to validate the 
theory’s ability to delineate the regions of parameter space, where 
RE predictions qualitatively fail.

Fig. 2 shows the time evolution of the mean concentrations 
from both ensemble-averaged stochastic simulations (solid lines) 
and the REs (dashed lines), for three different compartment vol-
umes Ω = 103, 12, 3 with identical rate constants k0 = 1/3, k1 = 0.5, 
and k2 = 1.0 and a fixed burst size m = 30. The discreteness of the 
system, as quantified by the total number of molecules in the com-
partment nT, becomes more apparent as the volume decreases. The 
concentrations from the REs and the mean concentrations from the 
large-volume, large-copy-number (Ω = 1,000, nT = 5,195) stochastic  
simulations are in good agreement (Fig. 2a). The two critical vol-
umes of this system, as predicted by our theory (that is, equation (3),  
together with equations (4–7)), are Ω12 = 2.79 and Ω13 = 11.83. 
Indeed, at a compartment volume of Ω = 12 (Fig. 2b), the stochas-
tic simulations show that the steady-state mean concentrations of  
species 1 and 3 are roughly equal. For smaller volumes, the steady-
state mean concentration of species 3 is larger than that of species 1  
(Fig. 2c). The simulations thus verify the existence of the predicted 
discreteness-induced inversion effect. It is noteworthy that the 
inversion occurs at a copy number of nT = 62, which is relatively 
large considering that stochastic effects are usually deemed sig-
nificant only in conditions characterized by a mere few molecules. 
The inversion effect between species 1 and 2, which is theoretically  
predicted to occur at a smaller volume than that between species 1 
and 3, is not found in our simulations (Fig. 2c). We will come back 
to this point later.

Regions of parameter space where RE models fail. To further test 
the theory, we consider the (Ω,m)-space where Ω and m take val-
ues between 1 and 1,000 in increments of 10. These two parameters 
are convenient because Ω provides a measure of the intrinsic noise 

(6)(6)

(7)(7)

whereas m measures extrinsic noise. The constants k1 and k2 are 
fixed to the same values, as in the previous example. The parameter 
k0 is determined by the condition mk0/k2 = 10, which guarantees that 
the comparison between the RE and EMRE is performed at constant 
volume fraction at all points in parameter space (see Methods). As 
k0m is a constant, the deterministic RE prediction is independent 
of (Ω,m). In contrast, the magnitude of intrinsic and extrinsic noise 
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Figure 2 | Simulations confirming the existence of the inversion effect. 
Ensemble-averaged mean concentrations versus time for the trimerization 
reaction confined to three different compartment volumes: (a) Ω = 1,000, 
(b) Ω = 12, and (c) Ω = 3. The data (solid lines) are obtained from exact 
stochastic simulations whereas the dashed lines show the RE predictions. 
Time is in non-dimensional units. The colour coding is purple for monomers,  
orange for dimers, and green for trimers. The rate constants are fixed to 
k0 = 1/3, k1 = 0.5, and k2 = 1 and the input burst size to m = 30. Given these 
parameter values, the total number of molecules in the compartment, 
nT, according to the REs is 5,195 for (a), 62 for (b), and 16 for (c). The 
simulations confirm the existence of a discreteness-induced inversion 
below a critical volume Ω13 = 11.83 for species 1 and 3. The average 
concentration of monomers in free and bound states is constant across 
all volumes, f f f1
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0 22 3 = / = 10+ + mk k , as is also the occupied volume 
fraction. This is enforced by steady-state conditions (see Methods).
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varies from one (Ω,m) to another, leading us to expect inversions in 
some regions of parameter space, but not in others.

Simulations are performed for 100×100 pairs of (Ω,m) values. 
The dark grey and light grey regions in Fig. 3a show where the 
simulations gave zero and one inversions, respectively. The dashed 
orange line shows the theoretical prediction of the critical volume 
Ω13 as a function of m, calculated using equation (3), together with 
equations (4–7). The line accurately demarcates the dark grey and 
light grey regions, thus validating the theory’s ability to predict 
where the deterministic RE model qualitatively fails. This is also 
significant from a computational point of view, because the theo-
retical prediction can be performed much faster than scanning the 
parameter space in Fig. 3 using a stochastic simulation algorithm 
(SSA). The dashed red line shows the theoretically predicted critical 
volume Ω12 as a function of m, which should demarcate the regions 
of one and two inversions. However, simulations show that there is 
no second inversion in the parameter space (a similar observation, 
but for specific parameters, was pointed out in the previous exam-
ple of Fig. 2). One can see, in Fig. 3a, that the EMRE prediction of 
a second inversion, as given by the dashed red line, occurs near the 
white region, where the EMRE predicts negative steady-state mean 
concentrations. It is hence clear that the inversion is not found by 
simulations because Ω12 is too close to the breakdown volume of 
the EMRE, as previously discussed.

The largest critical volume is hence likely to be the only reliable 
prediction, and also the most important one. This is because the 
maximum of all critical volumes of a system demarcates the two 
most important regions: the region where the REs and the LNA cor-
rectly predict the ranking of the steady-state mean concentrations, 
and the region where these predictions are incorrect for at least one 
pair of species.

We also numerically compute maps of the type of Fig. 3a, for 
other values of the decay constant k2. For each value, we compute the 
fraction fi,j of the (Ω,m) space (1 ≤ (Ω,m) ≤ 1,000) showing inversion 
of the steady-state mean concentrations of species i and j (Fig. 3b). 
The agreement between EMRE theory (solid lines) and stochastic 
simulations (data points) is excellent. Consider first the variation of 
f1,3 (orange) with k2: it is 0 for k20.8, and has a sharp peak up to 
1 at k2≈0.8, and then decreases smoothly back to zero with further 
increasing k2. The peak value 1 implies that effects due to molecular 
discreteness can be felt across all of the considered parameter space 
at that particular value of k2. This can be explained as follows: at 
k2 = 0.77, the macroscopic steady-state concentrations of species 1 
and 3 are precisely equal. Discreteness invariably induces a correc-
tion to the RE concentrations. Even if this correction is very small, for 
example, at very large volumes, it is sufficient to break the strict equal-
ity between the macroscopic steady-state concentrations of species 1  
and 3, and hence to induce an inversion across all of the parameter 
space. Finite-volume corrections to the macroscopic steady-state 
concentrations are always non-zero, but they can either amplify 
or diminish the existing difference between the two macroscopic 
steady-state concentrations. Of these two cases, the former cannot 
lead to inversion and occurs for k2 < 0.77, whereas the latter leads to 
inversion and occurs for k2>0.77. This also explains the discontinuous  
rise of f1,3 at k2 = 0.77 and the smooth decay beyond this point.

The peak in f2,3 (red) at k2 = 4.45 similarly coincides with the 
value of k2 at which the REs predict equal macroscopic steady-state 
concentrations for species 2 and 3. In contrast, we find no peak in 
f1,2 (blue), which monotonically increases as k2 approaches zero. For 
the chosen parameter values, the macroscopic steady-state concen-
tration of species 2 monotonically approaches (from below) that of 
species 1, as k2 approaches zero. The size of the correction needed to 
cause inversion hence becomes smaller as k2 approaches zero. This 
corresponds to a larger critical volume, which explains the mono
tonic increase of f1,2 in the same limit. The general significance of the  
existence of peaks in fi,j at the point where φi = φj is that the region of 

parameter space where discreteness-induced effects are most con-
spicuous can be deduced directly from the deterministic REs.

Stochasticity in burst size. So far, we have assumed that the burst-
size parameter m is independent of time. In our model, m could, for 
example, represent the number of monomers carried by a vesicle in 
active intracellular transport. Clearly, different vesicles may carry 
different numbers of monomers, rendering m itself a stochastic 
variable.
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Figure 3 | Regions of parameter space where REs fail. In (a), we consider 
the (Ω,m) parameter space. There is a one-to-one correspondence 
between the volume Ω and nT, the total number of molecules according 
to the REs. The latter is shown on the right-hand y axis. The dashed 
lines are the theoretical predictions of the critical volumes. The solid 
background shading shows the simulation results. Dark grey regions 
are those where f f f1

*
3
*

2
*> > ; in this case, there is no inversion, and the 

RE model is qualitatively correct. Light grey regions are those where 
f f f3

*
1
*

2
*> > ; here there exists one inversion, that is, the RE model fails. 

The demarcation of parameter space by the dashed lines and by the 
solid shading is almost coincident, highlighting the agreement between 
theory and simulation. In the white region, the EMRE breaks down as it 
predicts negative steady-state mean concentrations. This breakdown is 
induced by very large fluctuations due to the combination of very low copy 
numbers and large-burst input. (b) Plot of the fraction fi,j of parameter 
space with at least one inversion between species i and j versus the decay 
rate-constant k2. The peaks identify the conditions of maximal difference 
between the predictions of deterministic and stochastic models (see text 
for discussion). In both the panels, the rate constants are k0 = 10k2/m and 
k1 = 0.5, with k2 = 1 in (a) and varying between 10 − 3 and 4.7 in (b). The 
colour key is: blue for f1,2, orange for f1,3, and red for f2,3. The data points 
show the results from exact stochastic simulations33 whereas the solid 
lines show the predictions of the present theory.
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We study the effect of stochastic burst sizes using data acquired on 
burst phenomena in protein production. Experiments have shown 
that proteins are produced in bursts, where the number of molecules 
per burst is distributed according to an exponential distribution32. 
We therefore study the situation where the burst size m is sampled, 
independently for each input event, from a geometric probability 
distribution, P(m) = p(1 − p)m − 1, where p = 〈m〉 − 1, and 〈m〉 is the 
average burst size. This distribution is the discrete analogue of the 
continuous exponential distribution. We rerun the above parameter 
scan with stochastic m. The results are shown in Fig. 4. Comparing 
Figs 3a and 4 shows that the fraction of parameter space character-
ized by an inversion is significantly larger when m is a stochastic 
variable than when m is a time-independent constant.

The new line demarcating the region of no inversion from that 
characterized by a single concentration inversion can be approxi-
mately predicted by a simple, albeit heuristic, modification of the 
EMREs (see Methods). The two critical volume predictions from 
the so-modified EMREs are shown as dashed lines in Fig. 4. The pre-
dicted line separating the regions of zero and one inversion (dashed 
orange line) is in rough agreement with the border between the dark 
grey and light grey regions obtained from the simulations.

The decreased accuracy of the theoretical predictions compared 
with the case of constant m has two reasons: (i) the present modifi-
cations for the EMRE to include stochastic m are heuristic and not 
derived from first principles; (ii) a stochastic m causes larger fluc-
tuations than a constant m. Terms to order Ω − 1/2, which lead to 
the EMREs, probably cannot accurately capture the effects of these 
large fluctuations, presumably requiring higher order terms from 
the system-size expansion.

Discussion
We have presented and analysed a novel discreteness-induced inver-
sion effect in mesoscopic chemical reaction systems. Our analysis 
is based on EMREs that only describe monostable chemical reac-
tion networks. This implies that the qualitative change in the steady 
state at a critical compartment volume is not due to noise-induced 
transitions between two or more mesoscopic or macroscopic states. 
Rather, the inversion effect can be explained as follows. According 
to the CME, the mean rate of a bimolecular reaction between spe-
cies i and j with concentrations niΩ − 1 and njΩ − 1, respectively (ni is 
number of molecules of species i), is proportional to the mean of the 
product of the concentrations, Ω − 2〈ninj〉. Equivalently, it is propor-
tional to the sum of the covariance of concentration fluctuations, 
V− 〈 〉 − 〈 〉〈 〉2( )n n n ni j i j , and of the product of the mean concentra-
tions, Ω − 2〈ni〉〈nj〉. In the limit of large molecule numbers, the cov-
ariance becomes very small and the mean rate is simply proportional 
to the product of the mean concentrations, Ω − 2〈ni〉〈nj〉; these are the 
REs. As molecule numbers decrease, the covariance grows and the 
mean rates of bimolecular reactions deviate from those predicted by 
the REs, leading to different concentrations. Rates and product con-
centrations increase if the covariance is positive, and decrease if it is 
negative. Hence, it is possible that, if the REs predict the steady-state 
concentration of a species to be larger than that of another species, 
the reverse may be true for small molecule numbers. This is the pre-
sented discreteness-induced inversion effect. Although a few recent 
papers34–37,23,30 have studied the renormalization of the probabil-
ity distribution or of the steady-state concentrations with volume, 
to our knowledge, this is the first time that a discreteness-induced 
inversion effect has been found and studied in detail.

One may ask whether the concentration inversion described here 
is of importance in any real-world systems. As we show in the Sup-
plementary Methods and Supplementary Discussion, discreteness-
induced inversion effects also exist in the protein concentration  
output of a gene regulation network with negative feedback  
(Supplementary Figs S1 and S2). This motif is ubiquitous in biology, 
appearing in such diverse contexts as metabolism38, signalling39, 

somitogenesis40, and circadian clocks41. In biological systems, the 
gene network considered feeds into more complicated metabolic or 
signal-transduction networks, and it is plausible that the discrete-
ness-induced concentration inversions at the level of the gene net-
work are propagated into these downstream networks.

Practical relevance of the inversion effect requires that the criti-
cal volumes be in a physically or physiologically meaningful range. 
Substituting typical parameter values in equations (3–7): k0∈[102, 
104]Ms − 1, k1∈[5×104, 5×105]M − 1s − 1, k2∈[105, 106]s −1  (ref. 42), 
and m = 1,000 (ref. 6) results in critical volumes in the range 28 nm3 
to 6×107 nm3 (corresponding to spheres of diameters 4 to 500 nm). 
This suggests that RE predictions may become qualitatively incor-
rect when modelling chemical reactions inside, for example, lipid 
rafts (10 to 200 nm (ref. 43)), endosomes and endocytic vesicles 
(20 to several hundred nanometers44), sub-organellar structures 
in the endoplasmic reticulum (few hundred nanometers45,46) and 
mitochondria (few to hundred nanometers,47) and inside ‘effective’ 
cytoplasmic compartments (35 to 50 nm (ref. 48)) created by molec-
ular sieving effects. Similar predictions are expected for reactions 
occurring in artificial nanoreactors, such as nanofibres, and various 
biomimetic reactors that typically have diameters of less than a few 
hundred nanometers49,50.

Methods
Effective mesoscopic rate equations. Any chemical reaction net-
work proceeding in a well-stirred volume Ω can be written as a set of 
N distinct chemical species interconverting via R reactions of the type 
s s r rj Nj N j Nj N1 1 1 1... ...X X X X+ + → + + , where j = 1,…,R, Xi denotes  
species i (i = 1,…,N), and sij and rij are the stoichiometric coefficients. The jth  
reaction is characterized by the macroscopic rate constant kj. The constraint  
Σisij ≤ 2 ensures that each reaction is at most bimolecular and hence elementary. 
The deterministic macroscopic REs for this system are of the form:

∂
∂

−∑f fi

j

R

ij ij j
t

t
r s f t i N( ) = ( ) ( ( )), =1, , ,

=1


…

where 

f f f( ) = ( ( ),..., ( ))1t t tN

T is the vector of macroscopic concentrations at 
time t, and f t k tj j w

N
w
swj( ( )) = ( )=1


f fΠ  is the macroscopic rate function. The details 

of the REs can be encapsulated in two matrices: the N×R stoichiometry matrix S 

(8)(8)
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Figure 4 | Enhancement of inversion effect due to stochasticity in the 
burst size. We plot the regions of parameter space where the REs fail when 
the burst size m is a stochastic variable. The probability distribution of the 
latter is a geometric distribution with mean 〈m〉. All parameter values and 
colour codes are the same as in Fig. 3a. The dashed lines are the theoretical 
predictions; the solid background shading shows the simulation results. 
Comparing Figs 3a and 4 shows the increase in extrinsic noise caused 
by making m stochastic enlarges the portion of parameter space where 
the REs are qualitatively incorrect (regions of inversion). The theoretical 
predictions here are obtained using a heuristic modification of the EMRE  
to approximately account for the randomness in burst size.
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with entries Sij = rij − sij and the R×R diagonal matrix F with the jth row equal to 
f tj( ( ))

f .
The CME is the corresponding mesoscopic description of the molecular  

network. Master equations are differential-difference equations22 whose solution  
is the probability distribution over the states of the system at time t. The state  
of the system is the vector of the numbers of molecules of each species (the 
molecular positions and velocities do not enter the state because of the assumption 
of well-mixing). Thus, the CME provides a description of chemical processes  
that accounts for the discrete nature of molecules in well-mixed compartments  
of mesoscopic to macroscopic sizes. Unfortunately, the stochastic description of  
a general reaction network given by the CME is not easily amenable to calculation. 
The problem, however, simplifies if we are only interested in the mean concentra-
tions as predicted by the CME. Approximate time-evolution equations23 for these 
mean concentrations have recently been derived from the volume expansion  
of the CME1, including terms up to order Ω − 1/2. Terms of order Ω0 correspond  
to the LNA, while terms of order Ω − 1/2 and beyond capture the effects of  
molecular discreteness. These EMREs have the following form for a general  
reaction network:

∂
∂

∂
∂

+ ⋅ − + +− −
 

  f f f f
*

* 1 3/2= ( ) ( ) ( ),
t t

OJ CW W∆

∂
∂

⋅ + ⋅ + + −C T
t

O= ( ),1/2J C C J D W

where we have suppressed the time dependence of variables for clarity.  
Ω is the volume of the compartment in which the reactions occur, 
f *

1( ) = ( ( )/ ,..., ( )/ )t n t n tN〈 〉 〈 〉W W T is the vector of mean concentrations  
(angle brackets denote averaging over an ensemble of independent realizations), 
and ni is the number of molecules of species i present in the volume Ω. The  
matrix J is the Jacobian of the REs (equation (8)), and C is the covariance matrix 
with entries in the ith row and jth column equal to 〈εiεj〉, where Ω − 1/2εi is the  
fluctuation about the macroscopic concentration of species i. The matrix D is  
given by D = S·F·ST (ref. 13) and provides a measure of the strength of the noise. 
The vector 


∆ is the mean–covariance coupling vector with components given  

by equation (2).
In the limit of macroscopically large volumes, the Ω − 1 term in equation (9) 

tends to zero, implying that in this limit EMREs reduce to the REs. For mesoscopic 
volumes, the solution of EMREs is generally different from that of REs. The 
macroscopic RE prediction for the number of molecules of a species equals the 
macroscopic concentration of that species multiplied by Ω. It is hence clear that  
the Ω − 1 term in the EMREs arises from the discreteness of the system. Further-
more, inspection of the vector 


∆ shows that the corrections to the REs are only 

non-zero if some Jacobian elements in equation (2) are functions of the macro-
scopic concentrations, that is, if the chemical network has at least one bimolecular 
reaction. Although EMREs are derived from the CME, they can be constructed 
from sole knowledge of the REs. The correct way of interpreting the EMREs (equa-
tions (9) and (10)) is that given a set of reactions occurring in a volume Ω, 


f( )t  is 

the concentration prediction if we ignore molecular discreteness, and 

f *( )t  is the 

approximate mean concentration prediction, if we take discreteness into account. 
This interpretation comes from the fact that terms of order Ω0 in the CME’s vol-
ume expansion do not explicitly depend on Ω, whereas terms of order Ω − 1/2, from 
which the EMREs are obtained, do depend on Ω (see equation 14 in ref. 23).  
Considering terms of even higher order in the volume expansion may reveal  
further discreteness-induced effects that cannot be captured by EMREs.

The EMREs can also be heuristically modified to describe scenarios with  
stochasticity in the burst size parameter, such as that studied in the preceding  
sections. In this case, the REs are also stochastic and their average solutions  
must be obtained by ensemble-averaging over a large number of independent  
realizations. The concentrations φ1 and φ2 to be used in the EMREs (equations  
(6–10)) are then set to the averaged concentrations from the stochastic REs. 
Furthermore, the EMREs explicitly depend on m via D11. We hence replace 
m2 in D11 with its average computed over the geometric distribution, that is, 
〈m2〉 = 〈m〉(2〈m〉 − 1).

Simulation details. The theoretical predictions of the critical volumes, at which 
the trimerization system undergoes inversion, are validated using the partial-
propensity direct method33, an exact SSA that produces sample trajectories from 
the CME at a fraction of the computational cost incurred by traditional SSA 
formulations. The volume dependence enters the stochastic simulation through the 
propensity functions of the input and bimolecular reactions, which scale as Ω and 
1/Ω, respectively, in accordance with the CME1. We compute steady-state mean 
concentrations fi

* from the simulations by ensemble-averaging the number of 
molecules of species i over 2×104 independent realizations, and dividing by Ω.

Steady-state conditions require that for all volumes the influx of monomers 
equals their efflux, that is, mk k0 2 1

*
2
*

3
*= ( 2 3 )f f f+ + . The efflux is equal to the 

sum of three terms: the first is the efflux of monomers, the second is the efflux of 
monomers that are part of a dimer, and the third is the efflux of monomers that 

(9)(9)

(10)(10)

are part of a trimer. This condition is also valid for the deterministic REs, that is, 
mk0 = k2(φ1 + 2φ2 + 3φ3). Hence, the total steady-state mean concentration of  
monomers (in free form or bound in dimers and trimers), f f f1* 2* 3*2 3 = /+ + Nm W ,  
is equal to mk0/k2, where Nm is the total number of monomers, that is, 
N n n nm = 2 31* 2* 3*〈 〉 + 〈 〉 + 〈 〉. We study independent realizations of the same  
chemical reaction system in compartments of different volumes. This implies  
that mk0/k2 is a volume-independent constant and that there exists a linear rela-
tionship between Nm and Ω. One can also show that the constant mk0/k2 is equal 
to Φ/v, where v is the physical volume of a single monomer and Φ is the average 
occupied volume fraction at steady state. Realizations in different volumes have 
equal occupied volume fractions, and the relationship between Nm and Ω can be 
written as Ω = (v/Φ)Nm. The quantity Nm is only an upper bound on the actual 
number of discrete molecules in the system. Hence, instead of using Nm as a  
measure of system discreteness, we use the total number of molecules as predicted 
by the REs: nT = Ω(φ1 + φ2 + φ3). A smaller nT indicates higher discreteness, and  
vice versa. 

References
1.	 van Kampen, N. G. Stochastic Processes in Physics and Chemistry (North 

Holland, 2nd edn 2001).
2.	 Gillespie, D. T. Stochastic simulation of chemical kinetics. Ann. Rev. Phys. 

Chem. 58, 35–55 (2007).
3.	 Ghaemmaghami, S. et al. Global analysis of protein expression in yeast. Nature 

425, 737–741 (2003).
4.	 Ishihama, Y. et al. Protein abundance profiling of the Escherichia coli cytosol. 

BMC genomics 9, 102 (2008).
5.	 Eldar, A. & Elowitz, M. B. Functional roles for noise in genetic circuits. Nature 

467, 167–173 (2010).
6.	 Cai, L., Dalal, C. & Elowitz, M. Frequency-modulated nuclear localization 

bursts coordinate gene regulation. Nature 455, 485–490 (2008).
7.	 Vriezema, D., Aragones, M., Elemans, J., Cornelissen, J., Rowan, A. & Nolte, R. 

Self-assembled nanoreactors. Chem. Rev. 105, 1445–1490 (2005).
8.	 Ugarte, D., Chatelain, A. & De Heer, W. Nanocapillarity and chemistry in 

carbon nanotubes. Science 274, 1897–1899 (1996).
9.	 Smit, B. & Maesen, T. Towards a molecular understanding of shape selectivity. 

Nature 451, 671–678 (2008).
10.	Polak, M. & Rubinovich, L. Nanochemical equilibrium involving a small 

number of molecules: A prediction of a distinct confinement effect. Nano Lett. 
8, 3543–3547 (2008).

11.	Gillespie, D. T. A rigorous derivation of the chemical master equation. Physica 
A 188, 404–425 (1992).

12.	Gillespie, D. T. A diffusional bimolecular propensity function. J. Chem. Phys. 
131, 164109 (2009).

13.	Elf, J. & Ehrenberg, M. Fast evaluation of fluctuations in biochemical networks 
with the linear noise approximation. Genome Res. 13, 2475–2484 (2003).

14.	Paulsson, J. Summing up the noise in gene networks. Nature 427, 415–418 
(2004).

15.	Bruggeman, F., Blüthgen, N. & Westerhoff, H. Noise management by molecular 
networks. PLoS Comp. Biol. 5, e1000506 (2009).

16.	Grönlund, A., Lötstedt, P. & Elf, J. Costs and constraints from time-delayed 
feedback in small gene regulatory motifs. Proc. Natl Acad. Sci. USA 107, 
8171–8176 (2010).

17.	Elf, J., Paulsson, J., Berg, O. G. & Ehrenberg, M. Near-critical phenomena in 
intracellular metabolite pools. Biophys. J. 84, 154–170 (2003).

18.	Hayot, F. & Jayaprakash, C. The linear noise approximation for molecular 
fluctuations within cells. Phys. Biol. 1, 205–210 (2004).

19.	McKane, A. J., Nagy, J. D., Newman, T. J. & Stefanini, M. O. Amplified 
biochemical oscillations in cellular systems. J. Stat. Phys. 128, 165–191  
(2007).

20.	Van Kampen, N. G. A power series expansion of the master equation. Can.  
J. Phys. 39, 551–567 (1961).

21.	Van Kampen, N. G. The expansion of the master equation. Adv. Chem. Phys 34, 
245–309 (1976).

22.	McQuarrie, D. A. Stochastic approach to chemical kinetics. J. Appl. Prob. 4, 
413–478 (1967).

23.	Grima, R. An effective rate equation approach to reaction kinetics in small 
volumes: Theory and application to biochemical reactions in nonequilibrium 
steady-state conditions. J. Chem. Phys. 133, 035101 (2010).

24.	Ramaswamy, R., Sbalzarini, I. F. & González-Segredo, N. Noise-induced 
modulation of the relaxation kinetics around a non-equilibrium steady state of 
non-linear chemical reaction networks. PLoS ONE 6, e16045 (2011).

25.	Ramaswamy, R. & Sbalzarini, I. F. Intrinsic noise alters the frequency spectrum 
of mesoscopic oscillatory chemical reaction systems. Sci. Rep. 1, 154 (2011).

26.	Newman, J. R. S. et al. Single-cell proteomic analysis of S. cerevisiae reveals the 
architecture of biological noise. Nature 441, 840–846 (2006).

27.	Klemm, J. D., Schreiber, S. L. & Crabtree, G. R. Dimerization as a regulatory 
mechanism in signal transduction. Annu. Rev. Immunol. 16, 569–592 (1998).

28.	Choudhary, C. & Mann, M. Decoding signalling networks by mass 
spectrometry-based proteomics. Nat. Rev. Mol. Cell Biol. 11, 427–439 (2010).



ARTICLE

��

nature communications | DOI: 10.1038/ncomms1775

nature communications | 3:779 | DOI: 10.1038/ncomms1775 | www.nature.com/naturecommunications

© 2012 Macmillan Publishers Limited. All rights reserved.

29.	Åkerfelt, M., Morimoto, R. I. & Sistonen, L. Heat shock factors: integrators 
of cell stress, development and lifespan. Nat. Rev. Mol. Cell Biol. 11, 545–555 
(2010).

30.	Grima, R. Investigating the robustness of the classical enzyme kinetic equations 
in small intracellular compartments. BMC Syst. Biol. 3, 101 (2009).

31.	Alberts, B. et al. Molecular Biology of the Cell, Garland Science, (1994).
32.	Cai, L., Friedman, N. & Xie, X. S. Stochastic protein expression in individual 

cells at the single molecule level. Nature 440, 358–362 (2006).
33.	Ramaswamy, R., González-Segredo, N. & Sbalzarini, I. F. A new class of highly 

efficient exact stochastic simulation algorithms for chemical reaction networks. 
J. Chem. Phys. 130, 244104 (2009).

34.	Scott, M., Hwa, T. & Ingalls, B. Deterministic characterization of stochastic 
genetic circuits. Proc. Natl Acad. Sci. USA 104, 7402–7407 (2007).

35.	Samoilov, M. S. & Arkin, A. P. Deviant effects in molecular reaction pathways. 
Nat. Biotechnology 24, 1235–1240 (2006).

36.	Grima, R. Noise-induced breakdown of the Michaelis-Menten equation in 
steady-state conditions. Phys. Rev. Lett. 102, 218103 (2009).

37.	Thomas, P., Straube, A. V. & Grima, R. Stochastic theory of large-scale enzyme-
reaction networks: Finite copy number corrections to rate equation models.  
J. Chem. Phys. 133, 195101 (2010).

38.	Selkov, E. 1968 Self-oscillations in glycolysis. 1. A simple kinetic model. Eur.  
J. Biochem. 4, 79–86.

39.	Goldbeter, A. 1975 Mechanism for oscillatory synthesis of cyclic AMP in 
Dictyostelium discoideum. Nature 253, 540–542.

40.	Lewis, J. 2003 Autoinhibition with transcriptional delay: A simple mechanism 
for the zebrafish somitogenesis oscillator. Curr. Biol. 13, 1398–1408.

41.	Tyson, J., Hong, C., Dennis Thron, C. & Novak, B. 1999 A simple model of 
circadian rhythms based on dimerization and proteolysis of PER and TIM. 
Biophys. J. 77, 2411–2417.

42.	Fersht, A. Structure and Mechanism in Protein Science (WH Freeman, 1998).
43.	Pike, L. J. The challenge of lipid rafts. J. Lip. Res. 50, S323 (2009).
44.	Helmuth, J. A., Burckhardt, C. J., Greber, U. F. & Sbalzarini, I. F. Shape 

reconstruction of subcellular structures from live cell fluorescence microscopy 
images. J. Struct. Biol. 167, 1–10 (2009).

45.	Sbalzarini, I. F., Mezzacasa, A., Helenius, A. & Koumoutsakos, P. Effects of 
organelle shape on fluorescence recovery after photobleaching. Biophys. J. 89, 
1482–1492 (2005).

46.	Luedeke, C., Buvelot Frei, S., Sbalzarini, I., Schwarz, H., Spang, A. & Barral, Y. 
Septin-dependent compartmentalization of the endoplasmic reticulum during 
yeast polarized growth. J. Cell Biol. 169, 897–908 (2005).

47.	Tam, Z. Y., Cai, Y. H. & Gunawan, R. Elucidating Cytochrome c release from 
mitochondria: Insights from an in silico three-dimensional model. Biophys. J. 
99, 3155–3163 (2010).

48.	Provance, D. W., McDowall, A., Marko, M. & Luby-Phelps, K. Cytoarchitecture 
of size-excluding compartments in living cells. J. Cell Sci. 106, 565–577  
(1993).

49.	Anzenbacher, P. & Palacios, M. A. Polymer nanofibre junctions of attolitre 
volume serve as zeptomole-scale chemical reactors. Nat. Chem. 1, 80–86 
(2009).

50.	Karlsson, M. et al. Biomimetic nanoscale reactors and networks. Annu. Rev. 
Phys. Chem. 55, 613–649 (2004).

Acknowledgements
I.F.S. and R.R. were supported with two grants from the Swiss SystemsX.ch initiative 
(grants ‘WingX’ and ‘LipidX’), evaluated by the Swiss National Science Foundation.  
R.G. acknowledges support by SULSA (Scottish Universities Life Science Alliance).  
We thank Peter Swain (Centre for Systems Biology, University of Edinburgh, UK) and 
Sorin Tănase-Nicola (Department of Cell and Molecular Biology, Uppsala Biomedical 
Center (BMC), Sweden) for their valuable feedback on the draft manuscript.

Author contributions
R.R., I.F.S., N.G.-S. and R.G. conceived the study; R.R. and R.G. performed the analytical 
work; R.R. implemented and ran the simulations; R.G. wrote the manuscript text 
supported by R.R., I.F.S. and N.G.-S., and R.R. prepared the figures. All the authors 
reviewed and edited the manuscript.

Additional information
Supplementary Information accompanies this paper at http://www.nature.com/
naturecommunications

Competing financial interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

How to cite this article: Ramaswamy, R. et al. Discreteness-induced  
concentration inversion in mesoscopic chemical systems. Nat. Commun. 3:779  
doi: 10.1038/ncomms1775 (2012).




