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a b s t r a c t

We present a novel adaptive-resolution particle method for continuous parabolic problems.
In this method, particles self-organize in order to adapt to local resolution requirements.
This is achieved by pseudo forces that are designed so as to guarantee that the solution is
always well sampled and that no holes or clusters develop in the particle distribution.
The particle sizes are locally adapted to the length scale of the solution. Differential opera-
tors are consistently evaluated on the evolving set of irregularly distributed particles of
varying sizes using discretization-corrected operators. The method does not rely on any
global transforms or mapping functions. After presenting the method and its error analysis,
we demonstrate its capabilities and limitations on a set of two- and three-dimensional
benchmark problems. These include advection–diffusion, the Burgers equation, the Buck-
ley–Leverett five-spot problem, and curvature-driven level-set surface refinement.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

In Lagrangian particle methods (LPM) for advection–reaction–diffusion problems, field variables are discretized on an
unstructured set of nodes called particles that are advected by the flow map in a Lagrangian way. The nodes do not have
to satisfy any topological connectivity constraints, i.e., they do not have to form a (structured or unstructured) mesh or
lattice of any kind. This makes the method inherently adaptive with respect to the flow map. However, advection may lead
to the formation of holes or clusters in the distribution of particles, jeopardizing the consistency of the method [14,20]. This
issue is commonly addressed by a remeshing procedure that consists in periodically reinitializing the particles onto a regular
Cartesian mesh [22].

In systems with large spatial inhomogeneities, however, uniform remeshing is undesirable, and LPM have to be equipped
with adaptive-resolution or multi-resolution capabilities in order to remain computationally efficient. A number of such
frameworks have been proposed and we briefly summarize them below. For an in-depth review in the context of flow
simulations we refer to Koumoutsakos [23]. We distinguish between adaptive-resolution and multi-resolution methods. In
adaptive-resolution methods, the resolution of the discretization is given by a unique-valued map x 2 Rd # DðxÞ 2 Rþ

assigning to each location x a local target resolution D > 0. This is in contrast to multi-resolution methods where the solution
is represented on multiple resolution levels simultaneously at any given location.

Adaptive-resolution LPM were first introduced as vortex methods with spatially varying core sizes by Hou [20] and
further developed by Cottet et al. [15]. The method relies on a mapping from the physical space, where particle sizes are
locally adapted, to a reference space with uniform resolution. All operators, including remeshing, are applied in the uniform
. All rights reserved.
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reference space. This imposes the condition that particles living in low-resolution areas must not travel too far into any high-
resolution area between two remeshing steps Cottet et al. [15]. Also, the coordinate transform (mapping function) from
physical space to reference space needs to be explicitly known. This was later relaxed in the adaptive global mapping
(AGM) [8] formulation by numerically approximating the mapping function on the same particles that also represent the
flow fields, and numerically evaluating the Jacobian of the mapping in order to map differential operators between physical
space and reference space. This concept is related to r-adaptive finite element methods, in which computational elements
are dynamically moved to areas where increased resolution is needed [11]. The problem can be formulated as the equi-
distribution of a monitor function [10]. AGM evaluates this monitor function at each particle location and computes the global
mapping from physical space to reference space. The concept of r-adaptivity, however, is limited to locally ‘‘distorting’’ the
resolution map around the given set of particles. It does not allow for creation or removal of particles during adaptation.

Multi-resolution LPM include wavelet reproducing-kernel particle methods (WRKPM) [28], wavelet particle methods
(WPM) [7], adaptive mesh refinement (AMR) as applied to particle methods [8,32], and adaptive tree codes [31]. Wavelet
particle methods combine a sparse multi-resolution representation of the solution with a Lagrangian adaptation mechanism
[7]. AMR-type particle methods employ hierarchies of overlapping mesh patches onto which the particles are remeshed at
every time step [8,32].

Here, we propose an adaptive-resolution LPM that does not require global transforms or mapping functions. The method
is based on the concept of self-organization with pseudo forces driving the particles to areas where higher resolution is
needed, and dynamic insertion and removal of particles in under- and over-resolved regions, respectively. In addition, the
core sizes and interaction cutoff radii of the particles are locally adapted to the required resolution. This generates a self-
organizing configuration of particles that collectively represent the solution with a locally adapted resolution. Adaptation
is done using a Lagrangian mechanism with pseudo forces that are determined by approximate equi-distribution of a
monitor function defining the desired target resolution everywhere. Since the particles self-organize, the monitor function
does not need to be known a priori and is allowed to evolve during a simulation. Moreover, the total number of particles
required to reach a certain error level does not need to be known or imposed, but the self-organization mechanism finds
it automatically.

Pseudo forces have previously been used in moving-mesh methods [1]. There, the mesh nodes interact with each other
through pseudo forces that depend on a measure of the local truncation error. The use of pseudo forces to adapt particle loca-
tions has been described to stabilize smoothed particle hydrodynamics (SPH) simulations [18] using an artificial pressure
term based on the Lennard–Jones potential. Dynamic insertion and removal of particles has previously been considered
in the context of hybrid particle-mesh methods for convection–reaction–diffusion problems [42].

The present method combines these concepts and determines the adaptation pseudo forces and the particle insertion/
removal strategy based on the fact that under certain conditions interacting particles spontaneously self-assemble into
organized structures [43,13,33,35,34]. We exploit this to design adaptation pseudo forces that lead to particle distributions
with the desired resolution and regularity properties.

Particle self-organization also dispenses with the need for remeshing onto uniform or adaptive-resolution Cartesian
meshes. This is because the pseudo forces and particle insertion/removal guarantee consistent representation of the solution
at all times and (by construction) prevent the formation of holes in the particle distribution. Remeshing is hence replaced by
interpolation to the newly adapted set of particles after self-organization. After moving the particles according to the adap-
tation pseudo forces and inserting or removing particles where needed, the field quantities are interpolated from the old set
of particles to the new one. Since both sets are irregularly distributed, the interpolation schemes required differ from those
used in remeshing procedures. Rather, they are conceptually related to the interpolation scheme used in Behrens’s adaptive
semi-Lagrangian method [5] for radial basis functions. Differential operators can be consistently approximated on the evolv-
ing, irregular set of particles using the DC-PSE scheme [39], which can be seen as a generalization of vorticity redistribution
schemes [41,4,25] to arbitrary differential operators.

This paper is organized as follows: In Section 2 we recall the basics of Lagrangian particle methods and introduce a novel
variant in which particles self-organize by gradient descent on a pseudo-potential energy. The algorithm is described in
detail in Section 3 and numerical benchmarks are presented in Section 4. We conclude with a summary and a discussion
of possible extensions in Section 5.
2. A self-organizing adaptive-resolution Lagrangian particle method

We first review the basic concepts of adaptive-resolution LPM and introduce the operators used here to approximate
spatial derivatives on scattered sets of particles and to interpolate between two sets of particles. We then introduce the pseu-
do forces and particle insertion/removal strategies that lead to self-organizing adaptive-resolution particle arrangements.

2.1. Adaptive-resolution Lagrangian particle methods for parabolic problems

We focus on parabolic problems of the form:
of
ot
þr � ðuf Þ ¼ Lðf Þ; ð2:1Þ
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where L is an elliptic differential operator, u a given advection velocity field, and f : Rd ! R a continuous scalar field repre-
senting the concentration of the transported quantity.

In LPM, the field f is discretized on a set of particles that carry local or compact kernel (basis) functions. Eq. (2.1) is then solved
by a method of lines: the particles follow the streamlines of the flow and carry the quantity corresponding to the field f. The
accuracy of the method depends on how the differential operator L is discretized over the particles and on the regularity of
the particle distribution. In order to avoid spurious distortions of the field and to ensure sufficient sampling, particles can be
periodically reinitialized on a Cartesian mesh using a remeshing procedure [22]. This also enables discretizing the operator
L using mesh-based schemes, such as finite differences.

LPM can be classified according to whether the particles carry extensive or intensive quantities. If they carry extensive
quantities, the LPM discretizes the weak form of Eq. (2.1). In this case, the particles have a physical volume and their extensive
strengths are computed by integrating f over the volume of the particle. The kernels carried by extensive particles must over-
lap with those of their neighbors at all times for the function approximation to be consistent [14,20]. This can, e.g., be guar-
anteed by remeshing. The particle positions, strengths, and volumes then evolve according to a system of ordinary
differential equations [23]. Directly attributing the local value of f to each particle, disregarding particle volumes, leads to
LPM for the strong form of Eq. (2.1) where the particles carry intensive quantities. There, as in generalized finite-difference
methods, the function approximation is given by
1 The
f ðxÞ �
XN

p¼1

fpf�p ðx; xpÞ ¼ f hðxÞ; ð2:2Þ
where xp is the position of particle p (p = 1, . . . ,N) and fp = f(xp) its intensity. The kernel functions f(x;xp) may be different on
each particle, as indicated by parameterizing them with the particle position xp (see details in Appendix A). They are as-
sumed to have compact support of radius rc,p and are rescaled to characteristic width �p as: f�p ðx; xpÞ ¼ fðx=�p; xpÞ. The cutoff
radii rc,p are an additional property of the particles and different particles can have different cutoff radii. The core sizes �p are
scaling parameters that define the local spatial resolution of the method in the neighborhood of particle p. They can also be
different on each particle, depending on the local resolution required. However, �p and rc,p are of the same order of magnitude
and proportional to each other.

The dynamics of the particles is governed by the following system of ODEs:
dxp

dt
¼ uðxp; tÞ ¼ upðtÞ; ð2:3aÞ

dfp

dt
¼ up � rfp þ

o

ot
fp ¼ Lhðfp; tÞ � fprh � u; ð2:3bÞ
where Lh is a discrete approximation of the differential operator L, expressed in the form:
Lhðfp; tÞ ¼
XN

q¼1

ðfq � fpÞgpðxqÞ: ð2:4Þ
The operator kernels gp (not to be confused with the basis functions f�p ðx; xpÞ above) are discretized versions of the general-
ized integral operators proposed by Eldredge et al. [17] and depend on the desired order of accuracy (see [39] and Appendix
A).

In this paper we discretize the strong form of Eq. (2.1) on particles, rather than its weak form. This avoids defining and
evolving particle volumes and renders particle–particle interpolation simpler. However, it leads to more restrictive regular-
ity constraints on the solution than those of a weak-form discretization, and it hampers conservativeness of the method.
2.2. Approximation of derivatives and particle–particle interpolation

The present adaptive-resolution method relies on discretizing the function f on irregularly distributed particles with vary-
ing core sizes. These particles self-organize by means of pseudo forces in order to rearrange according to the required res-
olution. After this adaptation, we need to interpolate the particle intensities fp from the old set of particles (circles in Fig. 2.1)
to the new one (crosses in Fig. 2.1) and determine the temporal change of fp by approximating the right-hand side of Eq.
(2.3b). We obtain a consistent approximation of derivatives of f on arbitrary distributions of particles with varying core sizes
using DC-PSE operators [39], which rely on solving a small1 linear system of equations at each particle to determine the kernel
weights. After interpolating the fp values from the old particles to the new ones, there are two ways the right-hand side of
Eq. (2.3b) can be computed in a collocation setting: (i) using the new set of particles as both source and collocation points
(dashed arrows in Fig. 2.1) or (ii) using the old set of particles as source points, but the new set as collocation points (solid
arrows in Fig. 2.1). We denote by collocation points the particles at whose location the operator is evaluated, i.e., where the deriv-
ative approximation is computed. The source points are the surrounding particles whose fp values are used to do so.
number of equations is given by the number of moment conditions that are to be satisfied and hence by the order of accuracy of the operator.



Fig. 2.1. Interpolation of function values from the old set of particles (circles) to a new set of particles (crosses). After interpolation, the differential
operators can be approximated either by using the values on the old particles (left circle, solid arrows), or the values on the new particles (right circle,
dashed arrows). While the two ways are algebraically equivalent, they differ in computational cost when using DC-PSE operators; see main text for details.
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The two ways are algebraically equivalent for corresponding kernel choices. In fact, in both cases the kernels for derivate
approximation and interpolation could be combined into one, as has been done by Wee and Ghoniem [45] for the case where
L is the Laplacian and the particles are remeshed. The two ways, however, differ with respect to their computational cost
when using DC-PSE operators: Variant (i) uses two kernels with different sets of source particles, hence requiring two
different systems of linear equations to be solved on each particle. In variant (ii) both kernels use the same set of source
particles and their weights can be determined from the same system of linear equations. The computational cost of the
second way is thus about half of that of the first way. We hence prefer the second way, but do not combine the two kernels
into one for the sake of clarity and simplicity of the presentation.

In order to be able to use the values of the old particles to approximate derivatives on the new particles, the DC-PSE oper-
ators need to be evaluated at off-particle locations, i.e., at collocation points that are not in the set of source points. This
requires the zeroth-order moment of the DC-PSE kernels to vanish. With DC-PSE operators this is possible since the
zeroth-order moment is a free parameter that can be used to tune the stability properties of the operators [39]. Setting
the zeroth-order moment to zero and evaluating the operators at off-particle locations makes DC-PSE a particle-analog of
derivative-reproducing kernel (DRK) Galerkin collocation methods [12,46,44], which are conceptually related to moving
least-squares (MLS) schemes [26,6].

The kernel for the zeroth derivative can be used to evaluate the function f itself at arbitrary locations, also between
particles. We exploit this to construct particle–particle interpolation schemes that satisfy the same moment conditions as
the derivative approximations. However, interpolating fp from one set of irregularly distributed particles to another addition-
ally requires the kernel to be interpolating, i.e., to satisfy the Kronecker delta property at the particle locations (see Appendix
A for details).

Under some mild assumptions (see Appendix B) about the smoothness of f and the regularity of the particle distribution,
upper bounds for the local approximation errors can be expressed in terms of the DC operator’s order of accuracy m, the local
inter-particle spacing hp, and the magnitude of the derivatives of f.

Chen et al. [12] report the following error estimate for the interpolant fh defined by Eqs. (2.2) and (A.9):
jf � f hjx¼xp
6 Chm

p jf jWm
1ðBpÞ; ð2:5Þ
where Bp is the ball of radius rc,p around particle p, C is a positive constant, and jf jWm
1ðXÞ ¼maxjaj¼mkojajf=oxakL1ðXÞ. We use the

notation:
ojajf
oxa
¼ ojaj

oxa1
1 . . . oxad

d

ð2:6Þ
for differential operators in Rd, where a = (a1,a2, . . . ,ad) is a multi-index and jaj = a1 + a2 + � � � + ad.
The point-wise truncation error for differential operators of the type L ¼ ojajf=oxa is bounded by (see Appendix B):
jLðf Þ � Lhðf Þjx¼xp
6 Chm�jaj

p jf jWm
1ðBpÞ: ð2:7Þ
2.3. Self-organizing Lagrangian particles

The point-wise error bounds for the approximation of derivatives and for particle–particle interpolation stated above
motivate a spatially adapted resolution (i.e., h is a function of space) such as to equi-distribute the error across all particles.
This would then result in the minimum number of particles needed for these approximations to reach below a certain error
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level everywhere in the domain. The above operators for approximating derivatives are consistent on almost any particle
distribution [39], except those for which the associated Vandermonde matrix V is not invertible (see Eq. (A.3)), in which case
we randomly displace or insert particles until V becomes invertible.

The self-organization of the particles is driven by pseudo forces that arise from pairwise particle–particle interactions
with a pair potential that is scaled with the local target resolution. After a short relaxation time, the particle density and their
core sizes thus follow the spatial features of the field function f such as to approximately equi-distribute the approximation
error (see also Appendix B). Particles further self-organize into configurations that are non-degenerate with respect to the
above scattered-points interpolation scheme, ensuring that the field is well sampled everywhere.

We describe below how such self-organization potentials can be constructed from a target resolution field (monitor func-
tion), and how we handle dynamic insertion and removal of particles in regions where this is needed.

2.3.1. Resolution field
We denote by eDðxÞ the desired local target resolution of the spatial discretization. This defines the smallest scales that

ought to be resolved by the numerical approximation in the neighborhood of x.
In order to be able to determine the locally required resolution at every point in the computational domain, eDðxÞ needs to

be expressed as a function of known or computable properties of f. Although many choices are possible, we here choose the
simple form:
eDðxÞ ¼ D0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jrf ðxÞj2

q ; ð2:8Þ
which is often used as a monitor function in adaptive-resolution methods, including moving-mesh methods. D0 > 0 is a user-
defined parameter that sets the coarsest resolution in the computational domain and hence an upper bound on the inter-
particle spacing h. We refer to Appendix B for a discussion of how the choice of eD influences the accuracy of the method.

Each particle p is assigned the minimum value of eD over all its neighbors within a certain cutoff radius:
Dp ¼ DðxpÞ ¼ min
jxq�xp j6rc;p

eDðxqÞ: ð2:9Þ
The cutoff radius of particle p is rc,p = Dpr⁄, where r⁄ > 1 is a global parameter that depends on the kernels used for approx-
imating derivatives and for particle–particle interpolation. See Section 2.3.4 for how r⁄ is determined. The core size of particle
p is set to �p = rc,p = Dpr⁄.

2.3.2. Self-organization potential
The pairwise interaction potential for the adaptation pseudo forces between particles p and q is scaled to the locally

required resolution as:
Vpq ¼ D2
pqVðjxp � xqj=DpqÞ; ð2:10Þ
where Dpq = min(Dp,Dq) and V(r) is a normalized symmetric pair potential. This form ensures that the adaptation pseudo
forces scale with Dpq and that the length scale of the potential corresponds to the local resolution requirement.

Locally minimizing the total potential energy of the particles:
Wðx1; . . . ;xNÞ �
X

p

X
q

Vpq ð2:11Þ
with respect to the particle positions (x1, . . . ,xN) leads to a distribution of particles that provides a spatial resolution close to
the target resolution eDðxÞ, such that the characteristic inter-particle spacing hp near a particle at xp is smaller than or equal toeDðxpÞ.

Many choices are possible for V(r), but only those that lead to low-discrepancy particle distributions where the distance
between any pair of nearest neighbors is �Dpq should be considered. In special cases, self-organization potentials with prov-
able ground states can be designed in a principled way [43,13]. This has, e.g., been used to make particles relax to Cartesian
[33,35] and hexagonal [34] lattices at minimum energy. How the systematic design of self-organization potentials could be
generalized to irregular adaptive-resolution cases, however, is an open problem.

We propose two parameter-free self-organization potentials from well-studied classes:
V1ðrÞ ¼ 0:8 � 2:51�5r � 2:5�4r ; ð2:12Þ
V2ðrÞ ¼ r�2=2þ r�6=6; ð2:13Þ
which are plotted in Fig. 2.2. V1 is a h-stable attractive/repulsive Morse potential [30,16]. V2 is a purely repulsive potential.
We modify both potentials to linearly decay below r = 0.5. This ensures that particles that are too close to each other fuse
(circles in Fig. 2.2; see also Section 2.3.4).

We illustrate the qualitative differences between these potentials by equilibrating a fixed number of particles in the 2D
unit square with a high-resolution field eD ¼ 0:01 inside a square of size 0.1 � 0.1 at the center, and a lower resolution



Fig. 2.2. Examples of normalized self-organization potentials. (a) Stable attractive/repulsive Morse potential V1(r) (Eq. (2.12)) to be used in open domains,
(b) Purely repulsive potential V2(r) (Eq. (2.13)) for finite and periodic domains. The lines with symbols show the modified potentials with strong short-range
attraction to induce particle fusion in over-resolved regions.
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eD ¼ 0:1 elsewhere. The ratio between the high and low resolutions is chosen small for the sake of visualization. At the edges
of the high-resolution square eDðxÞ abruptly jumps by a factor of 10. For the potential V2 we also consider the same setting
with a gradually varying resolution field. Initially, all particles are placed inside the high-resolution region and let to self-
organize to steady state.

The resulting particle arrangements after energy minimization by gradient descent are shown in Fig. 2.3. They illustrate
how particles self-organize in regions of uniform resolution (the small high-resolution square) and in regions where the
resolution abruptly or gradually changes (the edges of the high-resolution square).

The h-stable attractive/repulsive Morse potential V1 keeps the local particle density constant [16], with a characteristic
local spacing of Dpq, and covers an increasingly large domain with increasing particle number (Fig. 2.3(a) and (b)). This is
well suited for free-space boundary conditions where the support of the particle distribution can vary.

The purely repulsive potential V2 is convex and leads to an energy that can be robustly minimized, causing particles to rap-
idly spread over the entire computational domain. This is desired in finite and periodic domains, where this potential ensures
that the ratio between the distance of two particles and their core sizes reflects the local resolution requirement. The absolute
value of the inter-particle spacing can be adjusted by changing the total number of particles in the computational domain.
However, this only works well if the ratio between the target resolutions eD of any two nearest-neighbor particles is less than
r⁄. This follows from Eq. (2.9) together with the neighborhood definition given in Section 2.3.3. If the resolution field varies
faster than that, the particles inside the high-resolution region tend to be expelled into the low-resolution region. This leads
to the high-resolution region being under-resolved and the low-resolution region over-resolved, as illustrated in Fig. 2.3(c)
and (d), where the resolution discontinuously jumps by a factor of 10 at the edge of the high-resolution square. When the
jump in the resolution field eD is replaced by a linear decay with a slope of less than (r⁄ � 1) (which implies that the ratio
of eD is less than r⁄ between nearest-neighbor particles), the local resolution is correct everywhere. This is shown for the same
case in Fig. 2.3(e) and (f), where the two squares mark the beginning and the end of the linear slope.

In summary, we always use the self-organization potential V1 in open domains with free-space boundaries or when the
resolution field has gradients jreDj > ðr� � 1Þ. The potential V2 is used in finite domains and domains with periodic boundary
conditions when jreDj < ðr� � 1Þ.

2.3.3. Neighbor lists
The cutoff radius of the operator and function approximations presented here is a function of space. Defining the neigh-

bors of particle p, denoted by the index set N p, as those particles within a ball of radius rc,p around xp could hence lead to the
situation where particle p is a neighbor of particle q, but not vice versa. Such asymmetric neighbor lists are undesirable for
the computational efficiency of the method. In order to guarantee symmetric neighbor lists, we consider as neighbors of
particle p all particles q at a distance less than min(rc,p,rc,q) from particle p (see Fig. 2.4(a)). This ensures that
q 2 N p () p 2 N q and that particles in coarsely resolved regions (rc,p large) do not interact with potentially large clusters
of particles in nearby finely resolved regions where rc,q is small. Such neighbor lists can efficiently be built using adap-
tive-resolution cell lists [3].

2.3.4. Insertion/removal of particles and choice of r⁄

Finding the global minimum of the potential energy of a large collection of interacting particles is rarely feasible and
always computationally expensive. Finding a particle distribution that locally minimizes the energy is comparatively much
easier. For sufficiently smooth self-organization potentials, simple gradient descent algorithms are able to robustly approach
local minima of the potential energy, which is sufficient for the present method.

The number of iterations required by a gradient descent algorithm depends on how far the initial condition is from the
energy basin where the algorithm terminates. If the initial particle distribution is very different from the final, adapted one,



Fig. 2.3. Examples of steady-state particle distributions under different self-organization potentials in the 2D unit square: (a and b) V1(r) (Eq. (2.12)), (c and
d) V2(r) (Eq. (2.13)) with a discontinuous resolution field, (e and f) V2(r) (Eq. (2.13)) with a continuous resolution field; Left column: N = 324 particles, right
column: N = 529 particles. Gray disks indicate the core sizes of the particles, scaled down by a factor 10 for better visualization.
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the number of iterations required can be prohibitively large. This may happen, for example, when an initially uniform solu-
tion field develops steep gradients in a small region of the computational domain. In order to resolve those gradients, many
particles from across the computational domain need to move to the region where refinement is needed. This major particle
migration would quickly become the bottleneck in large simulations. Moreover, if fine scales in the solution develop and
disappear over time, not only the distribution of particles, but also their total number has to be adapted in order to maintain
the same accuracy.



(a) (b)

Fig. 2.4. (a) Illustration of the present definition of neighborhood. Particles that are neighbors of each other are grouped together by shaded links. This
definition of neighborhood ensures symmetric neighbor lists. (b) Insertion and removal of particles. Particles that are too close to others are removed and
new particles are inserted in under-resolved regions; see main text for details.
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We achieve faster energy minimization and adaptive particle numbers by dynamically removing particles from over-
resolved regions and inserting new ones in under-resolved regions. We do this by fusing particles that are too close to each
other and generating new particles in regions where the already existing ones have fewer neighbors than a critical number
(see Fig. 2.4(b)). We now outline how this critical number is determined and what ‘‘too close’’ means in the context of the
present method.

We wish that near any particle p, the neighboring particles locally adapt toward an irregular distribution with character-
istic spacing Dp. The first requirement that needs to be fulfilled is that each particle must have a minimum number of
N⁄ neighbors within its cutoff radius rc,p in order for the discretization to be consistent. This number is equal to the number
of moment conditions that need to be fulfilled by the discretized operators, which depends on the order of accuracy of the
spatial discretization of the elliptic operator L in Eq. (2.1), see Appendix A. For 4th-order interpolation and 2nd-order
approximation of the Laplacian, e.g., N⁄ = 10 in 2D and N⁄ = 20 in 3D. The actual number of neighbors of any particle is ideally
identical to N⁄ as any additional neighbors increase the computational cost without increasing the accuracy of the discret-
ization. We thus take N⁄ as the critical number of neighbors for the particle insertion/removal strategy.

In a first approximation, we start the algorithm by setting r⁄ such that jN pj ¼ N� for particles arranged on a triangular
lattice with spacing Dp. For a triangular lattice in 2D, for example, r� ¼ 1;

ffiffiffi
3
p

;2;
ffiffiffi
7
p

, or 3 leads to jN pj ¼ 6;12;18;30, or
36, respectively. In 3D, r� ¼ 1;

ffiffiffi
2
p

;
ffiffiffi
3
p

, or 2 leads to jN pj ¼ 12;18;42, or 54. The local particle density is then adapted during
energy minimization by inserting particles in regions where jN pj < N� and fusing particles that are closer to each other than
Dpq/2, which means that they are too close for the local resolution required. The total number of particles N in a simulation is
hence not a free parameter of the method, but is determined adaptively by the self-organization algorithm at run-time.

We find that this insertion/removal strategy is effective in dealing with global changes in the required resolution, allow-
ing the gradient descent minimizer to reach a local minimum within few iterations (typically less than 10).

If necessary, N can be bounded from above by imposing a lower bound on the resolution field eDðxÞ. For D0 ; 0, the number of
particles contained in a d-dimensional domain X scales as N /

R
X
eDðxÞ�ddx and may grow arbitrarily large. This is, e.g., the case

when the solution develops infinitely steep gradients. In such cases, we impose a minimum threshold Dmin on the resolution
field as follows: eDðxÞ  maxðeDðxÞ;DminÞ. This guarantees that N does not exceed Nmax � jXj=D�d

min. However, this also means
that the field f will be under-resolved in regions where eD < Dmin, and that the desired accuracy cannot be guaranteed there.

2.4. Boundary conditions

We demonstrate the present method mainly on problems with free-space and periodic boundary conditions. Other types
of boundary conditions, however, can be treated in the standard ways.

Homogeneous Neumann and Dirichlet boundary conditions can be imposed using mirror particles in a small neighbor-
hood outside the computational domain (method of images). These mirror particles are only used to evaluate the right-hand
side of Eq. (2.3b). They are not considered for the adaptation pseudo forces, nor for particle–particle interpolation. Instead,
they are re-generated after each particle self-organization. When computing the adaptation pseudo forces, the boundaries of
the domain are treated as rigid walls that confine the particles to the computational domain.

Inhomogeneous and mixed boundary conditions can be enforced by locally modifying the intensities of the particles in
the neighborhood of the boundary [24] or by treating them as artificial reaction terms [36].
3. Implementation

We first describe how the pseudo forces for resolution adaptation are computed from the self-organization potential.
Then, we give an overview of the workflow of the overall algorithm.
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3.1. Steepest descent on W

Self-organization of the particle positions and core sizes is driven by pseudo forces that locally decrease the total potential
energy W of the interacting particle system. After fusing particles that are closer to each other than Dpq/2 and inserting new
particles where needed, a single step of a gradient descent is performed. This displaces each particle by a step wp against the
gradient of the interaction potential energy W:
wp ¼ �coWðx1; . . . ;xNÞ=oxp; ð3:1Þ

¼ �c
X
q2N p

oVpq=oxp þ
X

qs:t:p2N q

oVqp=oxp

24 35; ð3:2Þ
where the step size c is determined by a line search.
Since both the potential V and the neighborhood relations are symmetric, the gradient descent flow simplifies to:
wp ¼ �2c
X
q2N p

oVpq=oxp: ð3:3Þ
Using the chain rule and the rescaled form of Vpq from Eq. (2.10) leads to:
wp ¼ �2c
X
q2N p

Dpq V 0ðrÞepq þ ð2VðrÞ � rV 0ðrÞÞ$xp Dpq
� �

r¼rpq=Dpq
; ð3:4Þ
where epq is the unit vector pointing from particle p to particle q and rpq is the distance between particles p and q. Note that
once the field f is properly resolved (i.e., the total number of particles N is sufficiently large), $xp Dpq 	 1 and the second term
in Eq. (3.4) can be neglected.

During particle self-organization, the insertion/removal and steepest descent algorithms are iterated until all particles
have at least N⁄ neighbors and the stopping criterion maxpmaxq2N p ðDpq=rpqÞ 6 dc is met. This ensures that no two particles
are too close to each other. We find that a value of dc = 2.5 leads to a small number of iterations (typically less than 10) while
ensuring that the local density of particles matches the target resolution. Choosing a smaller value for dc leads to more
regular particle distributions at the expense of a larger number of gradient-descent iterations.

3.2. Overall workflow of the method

The whole simulation workflow starts from determining a good initial particle distribution and then enters a time loop
where Eq. (2.3) is solved and the particle distribution is continuously adapted.

3.2.1. Initialization
There are several possibilities of placing the particles at the beginning of a simulation: Particles can be initialized on a

(adaptive-resolution) Cartesian mesh, placed uniformly at random in the computational domain, or sampled from a proba-
bility density function that is proportional to the initial monitor function.

In practice, we find that random placement of a fixed number of particles and subsequent self-organization to the initial
condition is sufficient. This leads to a simple and robust initialization strategy where the number of particles required to
represent the initial condition on a certain error level is determined by the adaptation algorithm and does not need to be
know a priori. Fig. 3.1 illustrates this initialization procedure for the example of a Gaussian pulse (see Section 4.3 below).
We initially randomly place a fixed number of 800 particles with uniform core sizes (Fig. 3.1(a)). We then iterate the adap-
tation algorithm (step 4(e) of the algorithm below) until it terminates, without performing any time steps. Fig. 3.1(b) and (c)
show two different resulting particle distributions for D0 = 0.2 and D0 = 0.05, respectively. The total resulting number of
particles is 3027 in the first case and 27 631 in the second.

This resulting particle distribution is then used to represent the initial condition of the problem before entering time
stepping.

3.2.2. Time stepping
The system of ODEs in Eq. (2.3) is solved until final time t = T using any time-stepping scheme. In each time step, we

perform the following operations to evaluate the right-hand side of the discretized equations and re-organize the particles:

1. Choose the time-step size dt from the CFL condition based on the globally smallest value of the inter-particle spacing.
2. Advect the particles with the Lagrangian velocity u between t and t + dt.
3. Construct the neighbor lists.
4. If it is time to re-organize the particles, do:

(a) Construct the DC-PSE operators.
(b) Evaluate the field derivatives and eDðxpÞ.
(c) Compute Dp using Eq. (2.9).



Fig. 3.1. Adaptation of the particle distribution to the initial condition given in Eq. (4.6). (a) Initial set of 800 uniformly randomly
placed particles of equal size. (b) Particle distribution after self-organization with D0 = 0.2 (N = 3027 particles, 7 gradient-descent iterations).
(c) Particle distribution after self-organization with D0 = 0.05 (N = 27631 particles, 21 gradient-descent iterations). Circles represent
Dp (dashed) and rc,p (solid) for a sample set of particles.
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(d) Save the set of points xp as xold
p .

(e) Adapt the particles to a new distribution x new
p by iterating:

i. Fuse particles where jxq � xpj < Dpq/2.
ii. Insert new particles at random locations in the neighborhood of particles that have fewer than N⁄ neighbors.

iii. Construct the neighbor lists within xnew
p and between xnew

p and x old
p .

iv. Compute Dp of xnew
p by first-order interpolation from Dp of xold

p .
v. Adapt the cutoff radii rc,p and core sizes �p.

vi. Compute the total energy of the self-organization potential and its gradient.
vii. Perform a line search for the gradient-descent step size and move the particles by one step down the energy

gradient.
viii. If the stopping criterion of the gradient descent is met and every particle has at least N⁄ neighbors, go to step 4(f).

Else go to step 4(e)-i.
(f) Compute on each particle the interpolation kernels fp and the kernels of the discretized right-hand side of Eq. (2.3b),
re-using the matrix inverse from step 4(a).

(g) Interpolate the particle intensities fp from xold
p to xnew

p .
5. Construct the DC-PSE operators for the right-hand side of Eq. (2.3b) and evaluate them using xold

p as source points and xnew
p

as collocation points. Update the particle intensities fp.
6. Advance time t t + dt and loop back to step 1, unless t > T.
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4. Numerical experiments and benchmarks

We present an array of numerical experiments and benchmarks that are designed to demonstrate the capabilities and
limitations of the present method. The first benchmark in Section 4.1 demonstrates the consistency of the operator approx-
imation and particle–particle interpolation schemes. The second benchmark considers a pure advection problem for a
passive scalar. This test case was also considered by Bergdorf and Koumoutsakos [7], which allows comparing the results.
The third test case in Section 4.3 adds diffusion and considers an advection–diffusion problem with known analytical solu-
tion. It also compares the behavior of the present method in 2D and 3D. The fourth test case in Section 4.4 is the 2D unsteady
Burgers equation, which serves as a benchmark for nonlinear transport problems. The fifth test case in Section 4.5 demon-
strates the efficiency and accuracy of the present method for the real-world application of the nonlinear 2D Buckley–Leverett
problem. The sixth problem considers curvature-driven surface refinement in 3D. We conclude this section by analyzing and
commenting on the computational cost of the method. In all cases, convergence is shown in terms of the effective inter-
particle spacing h = (jXj/N)1/d, where jXj is the volume of the computational domain, N the actual number of particles used,
and d the space dimension. In order to illustrate the adaptation capabilities of the present method, we use test cases that
develop steep gradients in small parts of the computational domain. The actual number of particles hence rarely exceeds
105, since the larger parts of the computational domains require only low resolution.

Problems 1 to 5 are defined on finite or periodic domains with smooth resolution fields and hence use the self-organiza-
tion potential V2 (Eq. (2.13)) plotted in Fig. 2.2(b). Problem 6 has free-space boundaries and uses the self-organization
potential V1 (Eq. (2.12)) shown in Fig. 2.2(a).

4.1. Consistency of derivative approximation and interpolation

We assess the convergence of the interpolation kernels and of the discretized Laplace operator on the test function:
f ðx; yÞ ¼ tanh
x2 þ y2 � 0:22

0:01

 !
ð4:1Þ
in the domain X = [�1,1]2. This test function has a steep sigmoidal transition of tunable slope. Successively reducing the

coarse-scale parameter D0, we measure the errors as follows: For an initial value Dð0Þ0 , particles are adapted to the field f

and their intensities are set to the exact values: f ð0Þp ¼ f xð0Þp

� �
. The particles are then adapted to a finer resolution

Dnþ1
0  0:95Dn

0 using the self-organization scheme described in Section 2.3, and the new function values f ðnþ1Þ
p are interpo-

lated from the old values f ðnÞp . The point-wise interpolation error is then computed as f ðnþ1Þ
p � f xðnþ1Þ

p

� ���� ���. The matrices that

have to be inverted for each particle to compute the interpolation kernels are re-used to compute an approximation Dh of

the Laplacian using the old particles xðnÞp ; f ðnÞp

n o
as source points. The point-wise error of this approximation is then computed

as Dhf ðnþ1Þ
p � Df xðnþ1Þ

p

� ���� ���. Finally, the particle intensities are re-set to the exact values f ðnþ1Þ
p ¼ f xðnþ1Þ

p

� �
and the whole pro-

cedure is repeated for n n + 1.
All kernels are computed with m = 4, leading to fourth-order convergence of the interpolation functions and second-order

convergence of the Laplacian approximation, as verified in Fig. 4.1(a). D0 decreases from 0.4 to 0.006 and the number of par-
ticles increases from 102 to 2 � 105, approximately. Each value of D0 corresponds to a different set of particles to represent
the test function f. The ruggedness of the convergence plot in Fig. 4.1 for low resolutions can thus be interpreted as the sen-
sitivity of the error norm to the underlying particle distribution. This is not specific to the present method. The same effect in
the L1-norm of the error also occurs, e.g., in Cartesian finite-difference schemes when rotating the mesh. An example particle
distribution created by the self-organization process is shown in Fig. 4.1(b).

4.2. Advection of a passive scalar

We illustrate the resolution adaptivity of the present method by considering 2D advection of a passive scalar f by a given
velocity field u, which can be written in non-conservative form as:
of
ot
þ u � rf ¼ 0: ð4:2Þ
In order to allow comparison with the Lagrangian wavelet-particle method of Bergdorf and Koumoutsakos [7], we consider
the same test problem they did. This comprises the advection of an initial ‘‘blob’’:
f ðx; y;0Þ ¼
Xi¼1

i¼�1

Xj¼1

j¼�1

ffiffiffi
2
p

2
erf c1 c2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� x0 þ iÞ2 þ ðy� y0 þ jÞ2

q� 	
þ 1

� 	
ð4:3Þ
with (x0,y0) = (0.5,0,75), c1 = 21.269446, and c2 = 0.16811704 by the divergence-free velocity field:



(a) (b)

Fig. 4.1. (a) Errors in the function approximation (maxpjfh(xp) � f(xp)j, lower curve) and in the approximation of the Laplacian (maxpjDhfh(xp) � Df(xp)j,
upper curve) for the test function given in Eq. (4.1), plotted against the average inter-particle spacing h ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
jXj=N

p
in 2D. Dashed lines indicate second- and

fourth-order convergence. (b) Example distribution of N = 40698 particles adapted to the test function in Eq. (4.1); Circles represent Dp (dashed) and rc,p

(solid) for a sample set of particles.

Fig. 4.2
time of
versus

3634 S. Reboux et al. / Journal of Computational Physics 231 (2012) 3623–3646
u ¼ 2 cosðpt=TÞ � sin2ðpxÞ sinðpyÞ cosðpyÞ
sin2ðpyÞ sinðpxÞ cosðpxÞ

 !
ð4:4Þ
in the computational domain X = [0,1]2 with doubly periodic boundary conditions. We simulate the time evolution of the
advected field f up to final time T = 2.5. The analytical solution at this final time is identical to the initial condition given
in Eq. (4.3). The maximum distortion of the field f occurs at t = T/2 and is shown in Fig. 4.2(a).

Like Bergdorf and Koumoutsakos [7], we use a fourth-order Runge–Kutta time stepping scheme with dt = 0.025. Interpo-
lation is performed using fourth-order kernels (m = 4 in Eq. (A.2)) and the error is computed as:
eðxÞ ¼ ðf ðx; TÞ � f ðx;0ÞÞkf ðx; TÞk�1
1 : ð4:5Þ
Fig. 4.2(b) shows the L1 norm of e(x) as a function of the average inter-particle spacing h ¼ 1=
ffiffiffiffi
N
p

. The convergence is fourth-
order, as expected. Quantitatively, the errors are competitive with those published for the wavelet-particle method [7] for
the same test case.

4.3. Rigid-body rotation with diffusion in 2D and 3D

As an advection–diffusion problem with known analytical solutions in both 2D and 3D we consider the d-dimensional
Gaussian pulse:
f ðx;0Þ ¼ exp �Pe
jx� x0j2

4

 !
; ð4:6Þ
initially centered at x0, diffusing and being advected by rigid-body rotation about the center of the computational domain
X = [�1,1]d. This is described by the equation:
of
ot
þ u � rf ¼ 1

Pe
Df ; ð4:7Þ
where Pe is the dimensionless Péclet number, and u is the velocity field of the rigid-body rotation. After one revolution, at
T = 1, the exact solution is given by
(a) (b)

. Advection of a passive scalar by the velocity field given in Eq. (4.4) with doubly periodic boundary conditions. Panel (a) shows the particles at the
maximum distortion, t = T/2. Color codes the particle intensities fp. Panel (b) shows the L1 error for the advection of the function given in Eq. (4.3)

h ¼ 1=
ffiffiffiffi
N
p

. The dashed line has slope 4.
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f ðx;1Þ ¼ 2�d=2 exp �Pe
jx� x0j2

8

 !
: ð4:8Þ
All kernels are computed with m = 4 and the characteristic width of the initial pulse, 2/Pe, is such that f is negligible near the
boundaries of X at all times t 6 T. The method converges with the expected second-order accuracy, the error being domi-
nated by the diffusion term (the advection term is, in this case, computed exactly). We compare the results with those ob-
tained using a remeshed LPM where advection is also computed exactly and diffusion is simulated using second-order
centered finite differences after the particles have been interpolated onto a uniform Cartesian mesh of resolution h using
the third-order M0

4 interpolation kernel [29]. In both cases time stepping is done using a forward Euler scheme with
dt ¼ h2

min=4, where hmin is the smallest distance between any two particles (hmin � h for the remeshed LPM).
We first consider the 2D case (d = 2) with X = [�1,1]2, x0 = (0.58,0.02), and u = 2p(y,�x). An example particle distribution

after self-organization to the initial condition in Eq. (4.6) is shown in Fig. 4.3 for Pe = 104. The steep gradients of the Gaussian
pulse are well resolved. Fig. 4.4(a) shows the maximum point-wise error as defined in Eq. (4.5) at T = 1 for different resolu-
tions and for Pe = 1000.

Since the present method discretizes the strong form of the governing equation, it does not conserve mass exactly. While
the L1 error reported in Fig. 4.4 also includes the mass error, and hence is an upper bound on it, we also separately quantify
the relative mass loss. We do this by interpolating the particle intensities fp onto a high-resolution Cartesian mesh (interpo-
lation error is negligible) and evaluating the total relative mass loss:
Z

f ðx; tÞdx�
Z

f hðx; tÞdx
� 	
Z

f ðx; tÞdx ð4:9Þ
over time. Fig. 4.5 shows the evolution for three different resolutions D0 and the respective maximum numbers of particles
used by the method. In all cases, the loss rate decreases with time as diffusion smoothes out the initially steep gradients in
the concentration field.

We illustrate the behavior of the present method in 3D by considering the case d = 3 with X = [�1.5,1.5]3,
x0 = (0.58,0.02,0.02), and u = 2p(y,�x,0). The method converges with the expected second-order accuracy of the diffusion
operator, as shown in Fig. 4.4(b) for Pe = 100.

For solutions with large gradients, the finest scales that are resolved by the present method are of length D0=max j$f j,
which in this test case decreases as Pe�2. This length is approximately 0.23D0 for Pe = 100. In the 3D case we find that the
corresponding number of particles required to achieve the same accuracy on a uniform Cartesian mesh is about 50 times
larger than when using the present adaptive-resolution method.

4.4. 2D Burgers equation

We demonstrate the performance of the present method on a nonlinear problem by considering the 2D unsteady Burgers
equation:
of
ot
þ u � rf ¼ 1

Re
Df ; ð4:10Þ
where Re is the Reynolds number and u = (f, f). We solve Eq. (4.10) subject to u(x,y, t = 0) = sin (2px) cos(2py) and doubly
periodic boundary conditions in the computational domain X = [0,1]2. For large Re, the solution of the Burgers equation
develops steep gradients over time, requiring an increasingly high resolution.

The solution as computed by the present method is shown in Fig. 4.6 at T = 0.17 for Re = 1000 and D0 = 0.15. The steep
gradients in Fig. 4.6(a) correspond to the dense regions in Fig. 4.6(b). The ratio of scales between fine and coarse regions
. Example particle distribution {xp,yp, f(xp,yp,0)} after self-organization to the initial condition (Eq. (4.6)) of the Gaussian pulse
on–diffusion problem for Pe = 104. The resulting number of particles is N = 1300. (a) Entire computational domain X;
uccessive close-ups on the Gaussian pulse.



(a) (b)

Fig. 4.4. Maximum point-wise error versus average inter-particle spacing h for the Gaussian pulse advection–diffusion problem after one revolution at
T = 1. (a) Two-dimensional case with Pe = 1000, m = 4, and h ¼ 2=

ffiffiffiffi
N
p

; filled circles: remeshed LPM, open circles: present method. (b) Three-dimensional
case with Pe = 100, m = 4, and h = 2/N1/3. Both dashed lines have slope 2.

Fig. 4.5. Total relative mass loss (Eq. (4.9)) versus time during the advection–diffusion of a 2D Gaussian pulse for three different resolutions D0 and the
resulting maximum numbers of particles N: (D0,N) = (0.04,8900); (0.06,3950); (0.08,2200).
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is approximately 12 in this case and depends mostly on the gradient of the solution f, and not on the user-defined resolution
limit D0. This indicates that all scales in the solution are properly resolved.

For comparison, we also solve Eq. (4.10) using a remeshed LPM in the weak formulation, where particles have a volume
and carry an extensive strength. Eq. (4.10) can be rewritten in conservative form as a transport equation for the quantity f
with a flow of velocity u/2:
of
ot
þr � u

2
f

� �
¼ 1

Re
Df : ð4:11Þ
The particles are initialized on the nodes of a uniform Cartesian mesh covering X with a resolution of h. Advection with the
velocity u/2 is performed using forward Euler with dt = h2Re/4. After each time step the particles are remeshed using the M0

4

interpolation kernel with � = h [29]. The diffusion term is computed on the mesh using centered second-order finite
differences.

Since no analytical solution is available for this problem, we use a numerical reference solution computed on a
2048 � 2048 mesh using the remeshed LPM. A second-order interpolation of this reference solution is used to compute
point-wise errors at all particle locations. The maximum of these point-wise errors as a function of h ¼ 1=

ffiffiffiffi
N
p

is shown in
Fig. 4.7 at T = 0.1 for Re = 100. Convergence with the average inter-particle spacing h is second-order in both cases. We
use the present method with m = 4, such that the DC-PSE operators have fourth order for interpolation and second order
for the approximation of the Laplacian. Time integration is done using forward Euler with dt ¼ h2

minRe=4, where hmin is the
smallest distance between any two particles in the domain.

The maximum number of particles used by the present method in this case is about 8 times smaller than that of the
remeshed LPM, independent of the target error level. This ratio, however, depends on the solution itself and increases as finer
scales and steeper gradients develop.
4.5. The five-spot problem: 2D Buckley–Leverett equation

As a real-world application we consider another 2D nonlinear problem, known as the five-spot problem or the
waterflooding problem. This popular test case for oil reservoir modeling describes the injection of a wetting fluid



(a)

(b)

Fig. 4.6. Numerical solution of the 2D Burgers equation for Re = 1000 at T = 0.17 using the present method. (a) Particle intensities fp interpolated onto a
regular Cartesian mesh for visualization purposes; color codes the function value. (b) Particle positions (circles) and sizes (color: log10(Dp)). (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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(water) at the center of a porous medium initially saturated with a non-wetting fluid (oil). The oil is flushed away by
the pressurized water and sucked out from the four corners of the reservoir. Details of this test case can be found, e.g.,
in Iske and Kaser [21]. When neglecting gravity and capillary effects, the problem reduces to the viscous Buckley–
Leverett equation:
of
ot
þ u � rgðf Þ ¼ mDf ð4:12Þ
for the water saturation f. Here, the flux function g is of the form:



Fig. 4.7. Maximum point-wise error versus average inter-particle spacing h ¼ 1=
ffiffiffiffi
N
p

for the 2D Burgers equation at T = 0.1 with Re = 100 and m = 4; filled
circles: remeshed LPM, open circles: present method. The dashed line has slope 2.

Fig. 4.8
Time ev
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gðf Þ ¼ f 2

f 2 þ lð1� f Þ2
; ð4:13Þ
where l > 0 is the ratio between the two fluids’ viscosities. The artificial diffusion term on the right-hand side of Eq. (4.12),
with m > 0, is a standard regularization technique to render the equation parabolic and guarantee the existence of smooth
solutions.

The oil is pumped out at the four corners of the domain X = [�0.5,0.5]2 and water is injected at the origin x = 0. Using the
same simplifications as Iske and Kaser [21], we assume that the velocity field is stationary and given by u ¼ �$p with
p ¼
X4

i¼1

log jx� cijð Þ � logðjxjÞ;
as plotted in Fig. 4.8(a).
At t = 0, f � 1 inside a disk of radius 0.02 centered at the injection well x = 0. Eq. (4.12) is then solved using the present

method. Time stepping is done using forward Euler with dt ¼ h2
min=4m. Particle distributions and saturation fields at different

times are shown in Fig. 4.9. The particles self-organize to concentrate near the steep water/oil front. The number of particles
in the simulation grows from 373 to 7300 as the front elongates and propagates across the reservoir (see Fig. 4.8(b)).
4.6. Curvature-driven surface refinement

As a geometric example application we consider the evolution of a curved surface embedded in R3. The surface is repre-
sented implicitly as a level set [40] that is discretized using the particles as collocation points [19].

We consider a surface of revolution generated by three arcs of circles, resembling a small bud pinching off from a larger
sphere (see Fig. 4.10). This models the geometry of a dividing yeast cell. The radii of the bud and of the sphere are fixed to 0.1
and 0.3, respectively. The neck between the bud and the sphere has a radius of curvature of 0.1. The distance L between the
center of the bud and that of the sphere is varied parametrically. The level set is known analytically as a function of L. When L
approches 0.6, the neck becomes a thin tether of vanishing thickness and the surface develops a singularity.
(a) (b)

. (a) Velocity field of the five-spot problem. The injection well is in the center of the domain and the fluid is pumped out from the four corners. (b)
olution of the number of particles N during a simulation using the present method.



Fig. 4.9. Visualization of the particle distribution (left column) and water saturation field f (right column) for the five-spot problem at different times: (a)/
(b) t = 0; (c)/(d) t = 0.056; (e)/(f) t = 0.09.
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In order to efficiently resolve the geometry, the density of particles needs to be larger (and their core sizes smaller) in
regions where the surface has a high curvature. We hence use the monitor function:
eDðxÞ ¼ D0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þmaxðjðxÞ;1=dðxÞÞ2

q ; ð4:14Þ
where j(x) is the larger of the two principal curvatures at x, and d(x) P 0 is the distance to the opposing surface. The latter
term matters only in the neck region where the surfaces from the two sides approach each other toward the singularity at
d ? 0.

The particle sizes span a continuous spectrum of scales and the geometry is well resolved everywhere. Particles are only
placed in a narrow band around the surface and the rest of the volume remains empty [9]. The width of the narrow band
varies in space and is set to 4eDðxÞ.



Fig. 4.10. Evolution of a level-set surface represented by self-organizing particles. The distances L between the sphere centers and the total numbers of
particles N are: (a) L = 0.40, N = 2.75 � 104; (b) L = 0.45,N = 2.8 � 104; (c) L = 0.50, N = 3.0 � 104; and (d) L = 0.56,N = 4.8 � 104. The core sizes of the particles
are proportional to the resolution Dp, represented by the color code on the isosurface of the level function. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
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In order to account for the free-space boundaries at the edge of the narrow band and to cope with the strong variations in
the resolution field, we use the Morse potential V1 (Eq. (2.12)) for particle self-organization (see Section 2.3.2).

The coarsest resolution is set to D0 = 0.1. The number of particles increases from 2.75 � 104 to 4.8 � 104 as L is increased
from 0.4 to 0.56. At all times, the particles self-organize to fill the narrow band with the desired local inter-particle spacing,
as shown in Fig. 4.11 for the interesting region around the neck.
4.7. Computational cost

We quantify the overall computational cost of the present method by comparing the CPU times needed to numerically
solve the Burgers Eq. (4.10) for different resolutions at Re = 100. The CPU times are averaged over the last 30 time steps
of each simulation, and N is the total number of particles at the end of a simulation. All benchmarks are implemented using
version 1.2.1 of the PPM library [37,2], available from www.ppm-library.org. The Fortran 90 code was compiled with the In-
tel Fortran compiler version 12 with -O3 optimization and run on an Intel Xeon 2.8 GHz core with 8 GB of RAM.

Fig. 4.12(a) shows the times spent in each step of the simulation algorithm. The overall scaling of the computational cost
appears linear with the total number of particles in the simulation, but has an upper bound of O(NlogN) due to the adaptive
tree used in the neighbor-list algorithm [3]. In the benchmarks presented here, particle self-organization (step 4 in the algo-
rithm in Section 3.2.2) is done every 10 time steps and represents 36% of the total CPU time.2 The remaining 64% are mostly
spent constructing the DC-PSE operators for the diffusion term in Eq. (4.10), which must be re-done at every time step (step 5).
Of the time spent for the particles to self-organize, 57% comes from constructing the DC-PSE operators (step 4(a)) for evaluating
the monitor function and for interpolating the particle intensities to the adapted particle positions. 38% of the self-organization
time is spent constructing neighbor lists (step 4(e)-iii) using the algorithm of Awile et al. [3]. Insertion/removal of particles and
gradient descent on the self-organization energy (step 4(e) without 4(e)-iii), jointly account for the remaining 5% of the self-
organization time (1.8% of the total simulation time).

Fig. 4.12(b) shows the number of gradient-descent iterations needed for the energy minimization in the self-organization
of particles (step 4(e) in the algorithm in Section 3.2.2). Starting from a uniformly random distribution of N = 1000 particles,
adaptation to the initial condition requires 23 iterations. Once the particles are adapted, two gradient-descent iterations
every 10 time steps are usually sufficient. Larger particle rearrangements (insertion and removal of particles) happen every
50–100 time steps and require between 8 and 18 gradient-descent iterations. Regardless of the number of gradient-descent
iterations, however, the most costly parts of the self-organization process (steps 4(a)–4(d) and 4(f)–4(g)) are done only once.
Energy minimization (step 4(e)) accounts for 15% of the total simulation time (43% of the self-organization time).

It has been shown [39] that in certain cases the cost of constructing DC-PSE operators may be amortized by the resulting
gain in accuracy. Here, we see that the computational overhead introduced by the self-organization procedure is comparable
to that from the DC-PSE operators and, similarly, may be amortized by the gain in spatial resolution for a given number of
2 If particle self-organization were done at every time step, it would account for about 85% of the total CPU time of the present test case.

http://www.ppm-library.org


Fig. 4.12. (a) CPU time per time step versus final number of particles N for solving the Burgers Eq. (4.10) until T = 0.1 for Re = 100. Open circles: total time;
filled circles: time for particle self-organization; stars: time for constructing DC-PSE operators; crosses: time for constructing neighbor lists; diamonds: time
for the rest of the self-organization algorithm (including insertion/removal of particles and gradient descent on the potential); pluses: time for computing
the derivatives and interpolations using DC-PSE operators. The dashed line without symbols has slope 1. (b) Number of iterations of the self-organization
gradient descent (step 4(e) in the algorithm in Section 3.2.2) required at each adaptation for N = 4 � 104. Self-organization is done every 10 time steps.

Fig. 4.11. Isosurface and particle distribution near the neck between the two spheres at separation distances (a) L = 0.40; (b) L = 0.45; (c) L = 0.50; and (d)
L = 0.56. The particles are confined to a narrow band with free-space boundary conditions and spatially varying width using the self-organization potential
V1 (Eq. (2.12)). Color codes the local resolution (particle sizes) Dp. (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)
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particles, or by needing less particles to achieve a certain error level. In the present test case, we measure a net speed-up of
approximately 2 over the CPU time required by the non-adaptive remeshed finite-difference LPM code with remeshing at
every time step (with the same parameters as described in Section 4.4) to reach the same error level. Remeshing less fre-
quently is, in the present case, less efficient since it increases the spatial discretization error and requires a larger number
of particles in order to reach the target accuracy.
5. Conclusions and discussion

We have introduced an adaptive-resolution Lagrangian particle method for continuous parabolic problems. In the present
method particles self-organize according to adaptation pseudo-forces such as to approximately equi-distribute the
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numerical approximation error. This causes the total number of particles in the simulation to approach the smallest number
required to represent the solution field with a given accuracy everywhere. In contrast to previous adaptive-resolution
particle methods, the present approach does not require any implicit or explicit mapping functions into a reference space
of uniform resolution, nor does it require global transforms.

The presented method relies on pairwise interaction potentials according to which the particles self-organize in an energy
minimization process. Together with dynamic insertion and removal of particles where needed, this leads to robust and
efficient adaptation of the particle density and sizes to the features of the evolving field functions. Remeshing is replaced
by interpolation from the old set of particles before self-organization to the new, adapted set of particles. The self-organiza-
tion potential is chosen according to the boundary conditions and the gradients of the monitor function such that the solu-
tion field is always well sampled and that no holes or clusters develop in the particle distribution. Consistent approximations
of differential operators on scattered sets of particles with varying core sizes, as well as particle–particle interpolation
schemes that satisfy certain moment conditions, can be constructed as DC-PSE operators [39]. Constructing these DC-PSE
operators requires inverting a small linear system of equations for each particle. These systems, however, only need to be
solved once and all operator and interpolation kernels can be constructed from the same inverse.

The additional computational cost incurred by the self-organization may be amortized by the gain in accuracy. Compared
to non-adaptive methods, the overhead of self-organization is amortized whenever the solution has multi-scale features. In
these cases, the present method requires fewer particles than non-adaptive methods. This advantage is more pronounced in
3D than in 2D.

We have shown that the truncation errors of the discretization schemes correspond to those predicted by theory, both for
particle–particle interpolation and for the DC-PSE operators. We have validated the present method on two- and three-
dimensional advection–diffusion problems where analytical solutions are available and have shown that the method can
be used to efficiently address also more complex, nonlinear problems.

The presented method has four parameters that control its behavior: the coarsest resolution to be used D0, the neighbor-
hood size r⁄, the termination threshold dc of the energy minimization, and every how many time steps particles are re-
organized. For dc we recommend a standard value of 2.5. The smaller this value, the more gradient-descent iterations are
needed and the more regular (but still adaptive-resolution) the resulting particle distribution becomes. The value for r⁄ is
determined as outlined in Section 2.3.4. The number of time steps between particle re-organization depends on how fast
the resolution requirements evolve in a given problem. A conservative, but computationally expensive setting would be
to do it at every time step. Finally, D0 is set according to what minimal resolution one requires in the solution. This is needed
since the total number of particles N is not a free parameter of the method, but is determined adaptively to fulfill the res-
olution requirements. For some problems it may also be beneficial to use a monitor function different from the one in
Eq. (2.8). We have presented an example in Section 4.6 and refer to Appendix B for how the choice of monitor function influ-
ences the accuracy of the method. For particle self-organization we always use the potentials presented in Section 2.3.2; they
have no parameters. Additional parameters, albeit not specific to the present method, are the order of accuracy m of the
DC-PSE operators [39] and the time-step size dt, which is given by the time stepping algorithm used.

In its current form the present method has a couple of limitations. The most important one probably is that the method is
not conservative. Exact conservation of mass could be enforced by symmetric DC-PSE operators. Constructing such opera-
tors, however, is an open problem for convergence orders larger than one. Another limitation of the present formulation
is that in explicit time-stepping schemes, such as Euler or Runge–Kutta, the time-step size is dictated by the CFL condition
in the highest-resolution region. In applications where most of the particles are located in coarsely resolved regions, this is
inefficient. Multi-resolution time-stepping schemes, such as multirate Runge–Kutta schemes [38], are available to alleviate
this. In most applications of adaptive-resolution methods, however, the majority of the particles are located in high-resolu-
tion regions.

Current and future work is concerned with extending the presented method to the weak form of the governing equations
and with restoring conservativeness. This requires particles with a non-zero physical volume that carry the extensive quantity
associated with the field f. Weak formulations are favorable if f is discontinuous.
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Appendix A. Interpolating DC-PSE operators

The present self-organizing particle method relies on accurate particle–particle interpolation schemes and on consistent
approximation of derivatives of f on arbitrary distributions of particles with varying core sizes. We outline how this can be
achieved in the DC-PSE framework [39] using the same approach as in Reproducing Kernel Particle Methods [27]. Since we
use the same framework for both interpolation and approximation of derivatives, we first refer to a generic kernel function /
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before specializing to f for particle–particle interpolation (see Eq. (2.2)) and g for approximating the elliptic operator L (see
Eq. (2.4)).

For any point x 2 Rd, we can define a kernel function y # /ðy; xÞ 2 R as the product of a smooth weight function w (in this
paper we choose w(x) = exp (�c2x2/2), with c > 0, but other choices are also possible) and a polynomial correction function:
/ðy; xÞ ¼ w2 jy � xj
�ðxÞ

� 	
p

y � x
�ðxÞ

� 	
cTðxÞ

� �
; ðA:1Þ
where the arguments are rescaled with the spatially varying resolution �(x). The row vector p(x) is the complete basis of
monomials {xk}jkj6m for a multi-index k, and cT is a column vector of unknown coefficients. These coefficients, which depend
on x, are determined by enforcing discrete moment conditions of the form:
X

q

xq � x
�ðxÞ

� 	k

/ðxq; xÞ
" #

¼ bk; for jkj < m; ðA:2Þ
where m is the desired order of accuracy of /. The support of w is assumed to be local, such that the summation in Eq. (A.2) is
only done over particles q in some neighborhood of the point x. In addition, here we always choose b0 = 0 in order to obtain
kernels with a vanishing zeroth-order moment that can be consistently evaluated at off-particle locations (i.e., when y does
not coincide with any xq).

Using Eqs. (A.1) and (A.2) can be written in matrix form as:
AðxÞcTðxÞ ¼ bT
; ðA:3Þ
where b = {bk}jkj6m and A(x) is the matrix (w(x)V(x))Tw(x)V(x) with V(x) the Vandermonde matrix associated with the
d-dimensional polynomial basis p(x) and the set of points {xp}belonging to the neighborhood of x. The diagonal weight ma-
trix w(x) has entries w(jx � xpj) for the same set of points {xp}.

The matrix A(x) in Eq. (A.3) contains information about the spatial distribution of the particles {xp} around x (weighted by
w), while the right-hand side b determines the approximation properties of the kernel. For example choosing the vector:
bT ¼ ojaj

oxa
p

�����
x¼0

; ðA:4Þ
for a given multi-index a, leads to kernel functions gp(x) � /(x;xp) that approximate the derivative of degree a at arbitrary
locations x, hence:
ojaj

oxa
f � �ðxÞ�jaj

X
p

fpgpðxÞ: ðA:5Þ
Similarly, choosing:
bT ¼ Dpjx¼0 ðA:6Þ
yields an approximation of the Laplace operator evaluated at arbitrary x:
Df ðxÞ � �ðxÞ�2
X

p

fpgpðxÞ: ðA:7Þ
We note here that the same way of constructing the right-hand side b of the discrete moment conditions in Eq. (A.2) can also
be used in general DC-PSE operators with non-vanishing zeroth-order moments [39]. The resulting approximation of the
Laplacian at source point locations x = xq, for example, then becomes:
Dhf ðxqÞ � �ðxqÞ�2
X

p

ðfp � fqÞgqðxpÞ � Df ðyÞjy¼xq
ðA:8Þ
with the same gp as in Eq. (A.7). Conveniently, the same gp also yield an approximation of the gradient of f at x = xq as:
rhf ðxqÞ � �ðxqÞ�2
X

p

fpðxq � xpÞgqðxpÞ � rf ðyÞjy¼xq
:

Note that, in contrast to general DC-PSE operators, the sum in Eq. (A.5) only involves the intensities of the source particles.
This is a direct consequence of the kernels having vanishing zeroth-order moments. In general DC-PSE operators the sum
also involves the intensity of the collocation particle, hence allowing for non-zero zeroth-order moments. Operators with
a non-vanishing zeroth-order moment, however, can only be consistently evaluated at source particle locations.

If the weight function w is strictly positive, the invertibility of A in Eq. (A.3) depends only on that of the Vandermonde
matrix V. If V is invertible, A is symmetric and positive definite (as the product of a real matrix and its transpose) and
can efficiently be inverted using, e.g., Cholesky decomposition. Nevertheless, this operation represents most of the compu-
tational cost of solving Eq. (A.3) for the unknown kernel coefficients c. Solving this system for multiple right-hand sides b in
order to, e.g., compute derivatives of different orders, then comes at little additional cost.
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The same framework can also be used to construct accurate particle–particle interpolation schemes that satisfy the same
moment conditions as the DC-PSE operators. This is done by choosinga = 0 in Eq. (A.4), which yields operators that approximate
the function f itself at any point x given the function values fp at scattered neighboring points {xp}. Without further precautions,
however, this approximation will not have the interpolating Kronecker-delta property, which may lead to undesired interpo-
lation errors.

Interpolating kernel functions fp(x) � f(x;xp) that exactly fulfill the property fh(xp) = fp for all p can be constructed by
re-using the same matrix A and its Cholesky decomposition (or inverse) that was already computed for approximating
derivatives.

Following Chen et al. [12], interpolating kernels are obtained by expressing f as the sum of the non-interpolating kernel /
and a correction function f̂, thus:
fpðxÞ ¼ /ðx; xpÞ þ f̂pðxÞ: ðA:9Þ
The non-interpolating kernels /(x;xp) are obtained by solving Eq. (A.3) with right-hand side:
bT ¼ pð0Þ �
X

q

p
x� xq

�ðxÞ

� 	
f̂qðxÞ ðA:10Þ
for smooth correction functions:
f̂pðxÞ ¼ û
x� xp

ap

� 	
ðA:11Þ
that satisfy ûððxq � xpÞ=apÞ ¼ dpq, where dpq is the Kronecker delta. The resulting kernels fp satisfy the moment conditions in
Eq. (A.2) for bT = p(0), which ensures that the approximation is consistent, as well as the Kronecker delta property
fp(xq � xp) = dpq, which ensures that the approximation is interpolating.

Like Wang et al. [44], we take û to be the quartic spline with cutoff radius 1 and choose ap such that it is smaller than the
distance between particle p and its nearest neighbor.

Appendix B. Truncation error analysis of DC-PSE operators with h-refinement

A Taylor series expansion of f around xp and multiplication with f�p ðy � xp; xpÞ yields, for all y in the ball Bp of radius rc,p

centered at xp:
ðf ðyÞ � f ðxpÞÞf�p ðy � xp; xpÞ ¼
Xm�1

jkj¼1

ðy � xpÞk

k!
f�p ðy � xp; xpÞ

ojkj

oyk f ðyÞ
�����

y¼xp

þ rðyÞ; ðB:1Þ
with the remainder satisfying
rðyÞ ¼
X
jkj¼m

ðy � xpÞkf�p ðy � xp; xpÞskðyÞ; with jskðyÞj 6 sup
y2B

1
k!

ojkj

oyk f ðyÞ
�����

�����:

Applying Eq. (B.1) for all particles q in the neighborhood N p of particle p and summing over particles yields:
X

q2N p

ðfq � fpÞf�p ðxq � xp; xpÞ ¼
Xm�1

jkj¼1

1
k!

ojkj

oyk f ðyÞ
�����

y¼xp

X
q2N p

ðxq � xpÞkf�p ðxq � xp; xpÞ
h i

þ
X

q2N p

rðxqÞ

¼
Xm�1

jkj¼1

�jkjp

Zk
p

k!

ojkj

oyk f ðyÞ
�����

y¼xp

þ
X
q2N p

rðxqÞ;
with the discrete moments Zk
p defined as:
Zk
p ¼ ��jkjp

X
q2N p

ðxq � xpÞkf�p ðxq � xp; xpÞ
h i

: ðB:2Þ
Using the following moment conditions for f:
Zk
p ¼ Yk for jkj < m; ðB:3Þ
with
Yk ¼
ð�1Þjaja!; k ¼ a;

0; else;

(
ðB:4Þ
we obtain an approximation for any partial derivative ojajf/oxa as:
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X
q2N p

ðfq � fpÞf�p ðxq � xp; xpÞ ¼ �jajp
ojajf ðyÞ

oya

�����
y¼xp

þ
X
q2N p

rðxqÞ ðB:5Þ

¼ �jajp
ojajf ðyÞ

oya

�����
y¼xp

þ h:o:t: ðB:6Þ
For each particle p, we choose a kernel function of the form:
fpðxÞ ¼ PpðxÞ expð�jcxj2Þ; ðB:7Þ
where Pp(x) is a polynomial of degree m and c > 0. The discrete moments in Eq. (B.2) are then given by
Zk
p ¼ ��jkjp

X
q2N p

�k
pðzpqÞkPpðzpqÞ exp �jczpqj2

� �h i
ðB:8Þ

¼
X
q2N p

ðzpqÞkPpðzpqÞ exp �jczpqj2
� �h i

; ðB:9Þ
where
zpq ¼
xq � xp

�p
:

The partial derivative of f can thus be approximated by the DC-PSE operator:
ojajf ðxpÞ
oxa

" #h

�
X
q2N p

ðfq � fpÞLpðxqÞ �
ojajf ðyÞ

oya

�����
y¼xp

; ðB:10Þ
where
LpðxqÞ ¼ ��jajp f�p ðxq � xp; xpÞ ¼ ��jajp Pp
xq � xp

�p

� 	
exp � c

xq � xp

�p

���� ����2
 !

: ðB:11Þ
From Eq. (B.5), assuming that the local inter-particle spacing is hp ¼ Oð�pÞ, we find that for x = xp the upper bound on the
point-wise error in the spatial derivative decreases as hm�jaj

p jf jWm
1ðBpÞ, thus:
ojajf ðxpÞ
oxa

" #h

� ojajf ðxpÞ
oxa

������
������ 6 h�jajp

X
q2N p

jrðxqÞj 6 Chm�jaj
p jf jWm

1ðBpÞkf�pk1: ðB:12Þ
The norm kf�pk1 of the kernel function depends on the order of approximation m, the parameter c, and the particle
distribution.

Other possible choices than Eq. (2.8) for the target resolution field (monitor function) eDðxÞ can in some cases lead to a

more accurate discretization of the differential operators in Eq. (2.1). The choice of eDðxÞ is intrinsically linked with the
discretization errors of the function and operator approximations. For example, the local truncation error of the spatial deriv-
ative of degree a computed with DC-PSE operators on particles spaced by a distance Dp and with a cutoff radius rc,p = Dpr⁄

scales like Dm�jaj
p jf jWm

1ðBpÞ. In this case, the optimal choice for the resolution field (in the sense that it would equi-distribute

the truncation error across all particles) is of the form Dp / jf jWm
1ðBpÞ

� ��1=ðm�jajÞ
, where the ball Bp contains all particles at a

distance less than Dpr⁄ from xp. One then has to solve Eq. (2.9) with:
eDðxÞ ¼ D0 max
jbj¼m

ojbj

oxb
f ðxÞ

�����
�����

 !�1=ðm�jajÞ

: ðB:13Þ
Note, however, that albeit Eq. (B.13) together with Eq. (2.9) is optimal (in some sense), it may not always be amenable to
efficient and accurate numerical computation.
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