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SUMMARY

The killifish Nothobranchius furzeri is the shortest-
lived vertebrate that can be bred in the laboratory.
Its rapid growth, early sexual maturation, fast
aging, and arrested embryonic development
(diapause) make it an attractive model organism
in biomedical research. Here, we report a draft
sequence of its genome that allowed us to un-
cover an intra-species Y chromosome polymor-
phism representing—in real time—different stages
of sex chromosome formation that display fea-
tures of early mammalian XY evolution ‘‘in action.’’
Our data suggest that gdf6Y, encoding a TGF-b
family growth factor, is the master sex-determining
gene in N. furzeri. Moreover, we observed
genomic clustering of aging-related genes, identi-
fied genes under positive selection, and revealed
significant similarities of gene expression profiles
between diapause and aging, particularly for
genes controlling cell cycle and translation. The
annotated genome sequence is provided as an
online resource (http://www.nothobranchius.info/
NFINgb).
INTRODUCTION

The turquoise killifish Nothobranchius furzeri (Jubb, 1971) is an

annual fish that inhabits seasonal freshwater ponds in the south-

east of Africa. It is characterized by rapid growth, early sexual

maturation, and an exceptionally short lifespan reflecting the

adaptation to the ephemeral nature of the habitat (Bla�zek et al.,

2013; Cellerino et al., 2015; Genade et al., 2005). Several labora-

tory strains exist differing in their origin and lifespan. The GRZ

strain comes from a semi-arid habitat in Zimbabwe (Figures

1A, 1C, and 2A) (Jubb, 1971), where its founders were collected

in 1969 and have a maximum lifespan of 4–6 months. To date,

this is the shortest maximum lifespan reported for a vertebrate

bred in captivity (Valdesalici and Cellerino, 2003). Strains from

semi-arid or more humid regions in Mozambique (e.g., MZM-

0403 and MZM-0410) (Figure 1B) and the borderland between

Mozambique and Zimbabwe (MZZW-0701) have a longer

maximum lifespan of �1 year (Terzibasi et al., 2008; Tozzini

et al., 2013). These strains were established only several years

ago and are genetically heterogeneous, whereas GRZ is highly

inbred (Reichwald et al., 2009). In spite of the short lifespan,

both GRZ and MZM strains show typical signs of aging, i.e., a

decline in cognitive and behavioral capacity accompanied by

aging-related histological changes (Di Cicco et al., 2011; Terzi-

basi et al., 2007) as well as aging-related telomere shortening

and impairment of mitochondrial function (Hartmann et al.,
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Figure 1. The Turquoise Killifish and the

Genome Assembly

(A) Adult GRZ male.

(B) Adult MZM-0403 male.

(C) Adult GRZ female.

(D) Circles: the stepwise assembly of the reference

sequence is represented from the inner to the

outer circle. a: scaffolds obtained by applying

programs ALLPATHS-LG and KILAPE. b: super-

scaffolds built upon integration of optical mapping

data. c: genetic scaffolds generated by linkage

map integration. d: synteny groups defined upon

analyses of synteny in medaka and stickleback.

Synteny groups are sorted by length and

numbered accordingly. Chromosome ends iden-

tified by optical mapping are marked in orange.

The distance between two ticks is 10 Mb. Center:

pairs of paralogous genes for synteny groups with

a 1:1 (1:2) relation are connected by blue (red)

lines; different hues define different chromosomal

pairs (trios). Grey lines indicate gene pairs that do

not follow our classification of chromosomal pa-

ralogy.

See also Figures S1 and S2 and Data S1.
2009, 2011). Lifespan determination in N. furzeri is polygenic;

four quantitative loci relevant for lifespan are presently known

(Kirschner et al., 2012).

Due to its fast development, N. furzeri can reach sexual matu-

rity in <3 weeks and first signs of sexual dimorphism are

apparent at 2 weeks after hatching (Bla�zek et al., 2013). In verte-

brates, the gonads are usually the last organ system to develop

into the functional adult structure. In fish, gonad differentiation

commences only at late larval stages or even after metamor-

phosis and full functionality is reached at puberty (Devlin and Na-

gahama, 2002). Also, the sex determination system that provides

the decision whether the undifferentiated gonad anlage of the

embryo will develop later into a testis or an ovary is very plastic

and can differ between closely related fish species or even within

species (Volff et al., 2007). The fact that sex determination sys-

tems can change easily or arise rapidly during fish evolution

together with the necessary rapid development of the reproduc-

tive system observed in N. furzeri, raises the question whether

fast lifecycle and short lifespan influenced the evolution of the

primary sex-determining (SD) gene and the sex chromosomes.

Thus far, the segregation analyses of four sex-linked markers

in crosses of GRZ and MZM-0403 is concordant with an XY

sex determination system (Kirschner et al., 2012; Valenzano

et al., 2009). The identical morphology (homomorphy) of the pu-

tative sex chromosomes (Reichwald et al., 2009) pointed to their

young age and possibly to a situation of ‘‘sex chromosome evo-

lution in action.’’

To survive the dry season, embryos of N. furzeri are protected

from dehydration by a desiccation-resistant chorion and can

enter into a state of developmental arrest termed diapause; the

latter being a well-known adaptation in animal species to over-

come unfavorable conditions. In N. furzeri, the arrest may occur

at three distinct developmental stages (diapause I, II, and III) and

can last for more than a year. Also in the nematode Caenorhab-

ditis elegans, a larval arrest is observed (dauer larvae), and genes
1528 Cell 163, 1527–1538, December 3, 2015 ª2015 Elsevier Inc.
relevant for entering and maintaining the dauer state affect life-

span (Kenyon et al., 1993). We therefore analyzed whether differ-

entially expressed genes (DEGs) in N. furzeri diapause versus

non-diapause embryos are regulated in aging.

Recently, protocols for transgenesis (Hartmann and Englert,

2012; Valenzano et al., 2011) andCRISPR/Cas9-mediatedmuta-

genesis have been established for N. furzeri (Harel et al., 2015).

These tools, together with the short lifespan, make N. furzeri a

very attractive vertebrate model to study aging, developmental

arrest, and the interrelationship between both phenotypes.

Here, we report a high-quality draft sequence of the N. furzeri

genome. We provide insights into the very early evolutionary

stages of an XY sex determination system, reveal clustering of

aging-related genes in specific genomic regions, identify genes

under positive selection and detect common expression profiles

in diapause and aging.

RESULTS AND DISCUSSION

Assembly and Annotation of a High-Quality Draft
Genome Sequence with Long-Range Contiguity
Today’s challenge in genome analysis is generating a reference

sequence of high quality and long-range contiguity. The

N. furzeri project required special efforts because the genome

is large and repeat-rich (Reichwald et al., 2009). In these two as-

pects, it resembles the zebrafish genome, for which a high-qual-

ity reference sequence was published only recently (Howe et al.,

2013). We sequenced genomic DNA from N. furzeri females of

the highly inbred GRZ strain (Figures 1A and 1C) in which all au-

tosomes and the X chromosome are nearly homozygous. Using

Illumina and Roche next-generation sequencing (NGS) technol-

ogies, we obtained whole-genome shotgun (WGS) data from

17 paired-end and mate-pair libraries amounting to 236 Gb

(158-fold coverage, based on a genome-size estimate of

1.5 Gb; Figure S1B; Data S1A and S1B). Further, we sequenced
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Figure 2. Phylogeny and Sex Chromosome

Analyses of N. furzeri Strains GRZ, MZZW-

0701, MZM-0410, and MZM-0403

(A) Geographic origin of N. furzeri strains is indi-

cated by dots. The distribution range of N. furzeri

and N. kadleci is marked by dotted lines.

(B) SNV density profile for synteny group (sgr) 05

obtained by aligning GRZ male WGS reads to the

female reference sequence (sliding window: 1 Mb,

step size: 500 kb).

(C) Phylogenetic relationship between strains

based on WGS variation data.

(D) Phylogenetic tree of N. furzeri strains rooted by

their sister species N. kadleci (NKA) based on

exonic variations obtained by RNA-seq (Data S4I).

The divergence time of N. furzeri and kadleci

was estimated as 0.75 Mya (Dorn et al., 2014) and

used for scaling. Red marks indicate the primary

(asterisk) and secondary (triangle) events leading

to the suppression of recombination shown in (E)

and (F).

(E) Genotype density profiles for sgr05 of the

strains. Genotype data were filtered for SNV posi-

tions in a given strain where all females are homo-

zygous and all males are heterozygous (sliding

window: 500 kb, step size: 250 kb).

(F) Top: zoom into the genotype density profile of

the sex-determining region (SDR) in MZM-0403

(sliding window: 10 kb, step size: 5 kb). Genes an-

notated in the SDR of the GRZ female reference

sequence are shown as green arrows. Bottom:

identity plot (red lines) of BAC-based X and Y

chromosome-specific sequences (black lines). The

blue box represents a Y-specific 35 kb tandem

repeat cluster composed of repeat units of 634 nt

and 150 nt.

See also Figure S3 and Data S1I and S2A–S2C.
genomic insert ends of 81,393 BACs and fosmids to assist in the

assembly and to provide a physical resource of the N. furzeri

genome (5.3-fold clone coverage; Data S1C and S1D). To build

the assembly, a five-step strategy was applied: we started with

ALLPATHS-LG (Gnerre et al., 2011), continued with scaffolding,

integrated optical and three genetic linkage maps, and finished

with comparative synteny mapping in two closely related fish

species (Table 1). The incorporation of optical mapping data

remarkably improved the assembly contiguity (30-fold, Fig-

ure S1C). The genome assembly, in the following referred to as

reference sequence, comprises 1.24 Gb (scaffold N50: �0.5

Mb, optical N50: �16 Mb, synteny N50: �57 Mb), of which
Cell 163, 1527–1538, D
87% were assigned to 19 synteny groups

(sgrs) (Figure 1D). For 15 sgrs, we identi-

fied the corresponding N. furzeri chromo-

somes by fluorescence in situ hybridiza-

tion using BAC probes (Figure S2A; Data

S1E). Further, optical mapping data indi-

cate that the assembly reached 22 of 38

chromosome ends (Figures 1D and S1D).

We built a comprehensive catalog of re-

petitive elements using Sanger/Illumina

WGS reads and the genome assembly.
Based on the Sanger data, we determined a repeat content of

64.6%, comprising 42.1% dispersed and 22.5% tandem re-

peats. This was confirmed by non-assembled NGS WGS data

(Figure S2B). The N. furzeri reference sequence, however, con-

tains only 35% repeats. In particular, tandem repeats are under-

represented (2% instead of 22.5%). This is most likely caused by

the short NGS reads that collapse during the assembly process.

Dispersed repeats amount to 33%, with LINEs being most abun-

dant (8.4%) attributable to a recent expansion in this class of

retrotransposons (Figure S2C; Data S1F). Finally, we confirmed

the high quality of the reference sequence by PacBio WGS-

and BAC sequencing (Data S1H and S1I) showing that gaps
ecember 3, 2015 ª2015 Elsevier Inc. 1529



Table 1. Statistics of the Stepwise Assembly

Assembly Step

Number of

Scaffolds

Total Length

(bp)

Fraction of

Na (%)

Longest Assembly

Unit (bp) N50 (bp)

A ALLPATHS-LG 15,930 900,823,930 9.9 1,451,049 132,538

B Scaffolding + gap filling 7,675 943,595,854 9.2 3,869,209 494,454

C Optical map integration 6,012 1,230,898,532 30.4 44,272,285 15,858,201

D Genetic map integration 5,924 1,239,698,532 30.9 96,068,516 48,234,189

E Synteny integration 5,896 1,242,498,532 31.0 98,476,147 57,367,160

Anchoring within the Final Assembly

Chromosomes/synteny groups 19 1,078,719,814 33.64 98,476,147 63,666,967

Autosomes 18 1,008,464,687 33.42 98,476,147 57,680,405

X chromosome 1 70,255,127 36.78 70,255,127 70,255,127

Unassigned 5,877 163,778,718 13.94 1,706,182 81,864

See also Data S1.
aUnresolved nucleotide positions, stands for A, C, G, or T.
contained in the genome assembly are almost entirely com-

posed of repeats (83.1%).

We performed gene annotation using comprehensive RNA

sequencing (RNA-seq) and microRNA sequencing (miRNA-seq)

datasets aswell as protein homology and in silico prediction tools

(Figure S2D; Data S1K–S1N). We annotated 26,141 protein-cod-

ing genes with 59,154 transcripts, and 59 rRNA, 453 tRNA, 184

small nucleolar RNA (snoRNA), 598 miRNA, and 117 other non-

protein coding RNA (ncRNA) genes (a detailed description of

the miRNome will be reported elsewhere; M. Baumgart, I.A.,

and A.P., unpublished data). The teleost genome duplication

(TGD) is reflected by the presence of 2,229 paralogous gene

pairs, representing 17% of the N. furzeri protein-coding genes;

further, we identified five pairs of putatively paralogous chromo-

somes with a 1:1 and three triads with a 1:2 relationship (Fig-

ure 1D; Data S1O).

To assess the completeness of the reference sequence with

respect to the non-repetitive fraction of the genome, we used

the Core Eukaryotic Genes Mapping Approach (CEGMA) (Parra

et al., 2007) and searched in N. furzeri for orthologs of 248 highly

conserved genes present in most eukaryotic genomes. Of these,

we detected 98% in the reference sequence with 95% being

completely covered (Data S1P). Furthermore, we could align

91% of the N. furzeri transcript catalog (Petzold et al., 2013)

with the reference sequence strongly suggesting a highly com-

plete representation of the genic fraction of the genome. More-

over, the PacBio-based estimate of the repeat content in gaps

confirms that�90%of the non-repetitive genome fraction is rep-

resented in the assembly. The annotated genome reference

sequence is accessible at the N. furzeri Information Network

Genome Browser (NFINgb, http://www.nothobranchius.info/

NFINgb). Its long-range contiguity, chromosomal scale assem-

bly, and completeness of genic regions allow studying the

biology of the N. furzeri genome.

Insights into Early Events of XY Sex Chromosome
Evolution
To map the SD region (SDR) in the reference sequence, which

represents a GRZ female genome, we performed additional
1530 Cell 163, 1527–1538, December 3, 2015 ª2015 Elsevier Inc.
WGS sequencing of four GRZ males (Data S2B). Because the

GRZ strain is highly inbred, we expected genomic variations pre-

dominantly in the region of suppressed recombination between

male and female sex chromosomes. Accordingly, male single

nucleotide variations (SNVs) were mainly confined to a region

on sgr05 (Figures 2B and S3A) that bears the only four sex-linked

markers identified so far (Kirschner et al., 2012; Valenzano et al.,

2009). This male-specific region of the Y chromosome (MSY) en-

compasses 26.1 Mb (sgr05: 15,031,832–41,162,746) and ex-

hibits a distinct peak in variation density at position 37.6 Mb.

PCR/Sanger sequencing-based validation of sex-linkage for

selected SNVs pointed to an intra-species sex chromosome

polymorphism between N. furzeri strains. For example, varia-

tions in the syntabulin gene (sybu) are associated with sex in

GRZ, MZZW-0701, and MZM-0410 but not in MZM-0403,

whereas SNVs up to 42 kb upstream of sybu show sex-linkage

in all strains (Data S2A).

By analyzing the intra-species variations by additional WGS

data from males and females of MZZW-0701, MZM-0410, and

MZM-0403 in more detail (Data S2B), we identified �3.3 million

SNVs (accessible at NFINgb). Using those SNVs to determine

the phylogenetic relationship between strains, we found a

good agreement with the geographic location of collection sites

(Figures 2A and 2C). Rooting of the phylogenetic tree revealed

that MZM-0403 belongs to a different lineage than the three

other strains (Figure 2D), thus confirming the deep geographic

structuring of the species (Bartáková et al., 2013; Dorn et al.,

2011). We next searched genome-wide for signs of suppressed

recombination and identified the most prominent region in all

strains on sgr05 (Figures 2E and S3A). In GRZ, the SNV and ge-

notype density profiles coincide (Figures 2B and 2E) suggesting

that the same genetic signal of suppressed sex chromosomal

recombination was detected with both approaches. While the

size of the MSY differs considerably between strains, ranging

from 196 kb to 37 Mb (Data S2C), the position of the variation

peak is identical. To date, intra-species sex chromosome poly-

morphisms have been observed only in exceptional cases and

only by using cytogenetic methods, e.g., in guppy (Nanda

et al., 2014).

http://www.nothobranchius.info/NFINgb
http://www.nothobranchius.info/NFINgb


Comparative variation analyses of this remarkable strain-spe-

cific Y chromosome polymorphism indicate a two-step scenario

for its evolution. First, an ancient event in the common ancestor

of all strains led to suppressed recombination in a 196-kb region

and the emergence and/or fixation of a SD signal. This stage of

early sex-chromosome evolution is conserved in MZM-0403

(Figure 2F, top). In all four strains, the highest number of sex

chromosome-specific SNVs was accumulated in the 196-kb re-

gion, indicating that recombination suppression shielded in the

ancestral state the newly evolving SD gene from cross-over

and the proto-Y from losing its identity. To shed light on the

mechanism of recombination suppression, we sequenced X-

and Y-specific BACs harboring this region using PacBio technol-

ogy (Data S1I). The BAC-based X-specific assemblies confirmed

the reference sequence. In addition, we obtained a correspond-

ing Y-specific region encompassing a 35 kb tandem-repeat clus-

ter (Figure 2F, bottom) that similarly to the MSY of the medaka

fish (Kondo et al., 2006) may prevent recombination in flanking

regions.

Secondary events encompassing larger regions (7–37Mb), yet

containing the primary SDR, occurred independently in each of

the three northern strains. By applying FISH analysis, we identi-

fied an inversion as the secondary cross-over barrier in MZM-

0410 (Figure S3B). Thus, the individually structured N. furzeri Y

chromosomes seem to reflect the first stages of the mammalian

XY evolution that has shaped these chromosomes by consecu-

tive inversions into evolutionary strata over 320 million years

(Lahn and Page, 1999). Also, the sex chromosomes of the flatfish

Cynoglossus semilaevis estimated to be �30 million years old,

have most likely diverged due to suppression recombination

by a large inversion (Chen et al., 2014). For N. furzeriwe estimate

the occurrence of the secondary recombination suppression in

GRZ around 70 thousand years ago (kya), in MZZW-0701 50

kya and in MZM-0410 38 kya by dating the primary event to

the species split between N. furzeri and N. kadleci at 750 kya

(Dorn et al., 2014) (Figure 2D; Data S2D). Although this is a rough

estimate, we conclude that the secondary events are very young

in evolutionary terms compared to previously studied SD

systems.

Our data demonstrate that during early sex chromosome evo-

lution, a whole set of different Ys can be created. In-depth ana-

lyses of Y polymorphisms in species with older Y chromosomes

will allow studying whether in a second phase the most success-

ful Y might make a sweep through the species. Such a sweep

would then lead to a situation noticed for mammalian Ys where

only minor sequence variations mark the Y haplotypes in a later

phase of Y chromosome evolution (Ellegren, 2003). Future

studies will clarify whether population-genetic fragmentation

(Bartáková et al., 2013), short lifespan, annualism, and/or the

multiple specific adaptations of N. furzeri facilitated its unprece-

dented Y chromosome polymorphism.

Tracing the Emergence of a Novel Sex-Determining
Gene: gdf6Y
We next attempted to identify the SD gene in N. furzeri. The min-

imal MSY was observed in MZM-0403 encompassing 196 kb

and coinciding with the peak of Y-specific sequence variation

at position 37.6Mb in sgr05 (Figures 2E and 2F). This region con-
tains only one annotated gene, gdf6, encoding growth differenti-

ation factor 6, a member of the TGF-b family. We propose gdf6Y

as symbol for the gene in the MSY. In GRZ, the gdf6Y coding

sequence (CDS) differs from gdf6 on the X chromosome in 22

SNVs and a 9-bp deletion, resulting in 15 amino acid (aa) ex-

changes and a 3 aa deletion (Figure S4A). All non-synonymous

SNVs and the deletion are conserved between strains (Data

S3A and S3B). Remarkably, the part of gdf6Y coding for the

C-terminal 120 aa and homologous to the mature human

GDF6, contains five non-synonymous but no synonymous sub-

stitutions indicating that positive selection acted on this part

of the protein. The mature growth factor is highly conserved be-

tween vertebrates, and all male substitutions affect aa con-

served between the N. furzeri X-chromosomal Gdf6 and its

human ortholog (Figure 3A). Scanning all 339 genes in the 26.1

Mb MSY of GRZ confirms the sequence variations in gdf6Y as

by far strongest signal of local positive selection (Data S3C).

To evaluate the impact of these aa changes, we performed ho-

mology modeling using the structure of the human receptor-

bound GDF5 dimer (Kotzsch et al., 2009). Four of the five aa

differing between mature Gdf6 and Gdf6Y reside in the modeled

region (Figure 3A). Two of them (Gdf6Y/Gdf6: R405/Q408 and

V407/E410) point outward into the solvent and reside at the

edge of a b sheet (Figures 3B and S4B) that undergoes an

induced fit upon formation of the GDF5:receptor complex

(Kotzsch et al., 2009). The other two (T364/I367 and V372/

M375) are located in a helix being part of the protomer interface

but also contacting the receptor (Kotzsch et al., 2009). Hence, all

four X/Y variable aa might have a bearing on protein interactions,

either during dimerization or in the process of forming complexes

with receptor(s).

Comparative analyses of gdf6/gdf6Y transcript levels revealed

biallelic expression in early developmental stages ofmale and fe-

male GRZ and a significantly higher overall expression in males

starting at day 3 post-hatching (Figures S4C and S4D; Data

S3D). In RNA-seq data of adult ovaries, we found few gdf6 reads,

whereas in testes only gdf6YmRNAs were detected at a consid-

erable level. A possible explanation for themale-specific expres-

sion from the Y-chromosomal locus is a gdf6Y-specific deletion

of 241 bp (sgr05: 37,526,406–37,526,646) in the 30UTR including

a potential mir-430 binding site (Figures S4E–S4G). In fish, mir-

430 is an important regulator of germline-specific gene expres-

sion (Mishima et al., 2006). It is tempting to speculate that this

deletion was the primary event marking the inception of the XY

differentiation.

Gdf6Y expression peaks shortly after hatching; this is a time

period when sex determination occurs in many fish species.

Gdf6 is a member of the TGF-b family known to play a predom-

inant role in developmental processes. Other members of the

TGF-b family, e.g., the anti-Mullerian hormone (AMH) and the

gonadal soma-derived growth factor (GSDF), as well as their

receptors are important factors in sexual development of mam-

mals and other vertebrates and function as master male sex de-

terminants in several fish species (Josso and Clemente, 2003;

Kikuchi and Hamaguchi, 2013; Morrish and Sinclair, 2002; Myo-

sho et al., 2012; Rondeau et al., 2013). Gdf9 and Bmp15 are

important players in ovarian development of mammals (Otsuka

et al., 2011) and fish (Clelland and Kelly, 2011). Gdf6 has not
Cell 163, 1527–1538, December 3, 2015 ª2015 Elsevier Inc. 1531



A B

Figure 3. Gdf6Y/Gdf6 Homology Modeling

(A) ClustalW alignment of C-terminal, highly conserved 125 aa ofN. furzeriGdf6Y andGdf6 as well as humanGDF6 and GDF5. Amino acids (aa) identical to GDF6

are shown as dots. Amino acids varying between Gdf6Y and Gdf6 are highlighted by filled triangles and their numbers. The first 22 aa depicted in gray were not

included in the modeling because they are missing in the reference structure.

(B) Detailed ribbon representations of two regions (left, right) of the modeled Gdf6Y/Gdf6 hetero-dimer (gray) receptor (yellow) complex given in Figure S4B. The

four Gdf6Y/Gdf6 variable aa covered by themodel are shownwith side chains in blue for Gdf6Y and red for Gdf6. In the dimer, these aa are located spatially close

to each other in the two regions shown.

See also Figure S4 and Data S3.
been described in the context of gonad development so far; how

it acts as a master sex regulator in N. furzeri warrants further

investigation.

Genomic Positional Enrichment of Aging-Related Genes
Recently, data have accumulated suggesting that eukaryotic

genes located in physical proximity may be co-regulated and/

or have similar functions. Correlations between chromosomal

position and membership of functional gene sets were identified

for yeast (Santoni et al., 2013) and human (Thévenin et al., 2014)

genomes. Hence, chromosomal and spatial co-localization in

the nucleus may indicate co-regulation. It was previously shown

that 3D chromatin structure couples nuclear compartmentaliza-

tion of chromatin domains with the control of gene activity (Gue-

len et al., 2008) and thus contributes to cell-specific gene

expression (Zullo et al., 2012). In this context, it is noteworthy

that cellular senescence is associated with modifications of the

global chromatin interaction network (Chandra et al., 2015). To

our knowledge, it has not yet been investigated whether genes

relevant for organismal aging are clustered in genomic regions.

Taking advantage of the long-range contiguity of the N. furzeri

reference sequence, we set out to study whether aging-related

genes show positional gene enrichment (PGE) in sgrs. To

this end, we identified aging-related DEGs in three tissues

(brain, liver, and skin) by applying two different approaches: (1)

we compared young versus old MZM-0410 (5 weeks versus

39 weeks, corresponding to 10% versus 75% of maximum life-

span), and (2) we comparedGRZ versusMZM-0410 at 12weeks.

As aging rates differ between these strains (Terzibasi et al.,

2008), the same chronological age in the second approach cor-

responds to 50% of the maximum lifespan in GRZ and 24% in

MZM-0410 (Data S4A–S4G).

In total, we detected ten PGE regions. Four of those are based

on DEGs obtained by the first approach and six were identified

by the second approach (false discovery rate [FDR] < 0.05,
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scan statistics; Data S4H). These regions are located on seven

sgrs, extend over 2.6–9.2Mb, and contain 11–23 DEGs. On three

sgrs, two PGE regions each overlap non-randomly (p = 0.0012,

resampling test) indicating that the same genomic features

were detected by different approaches and in samples from

different organs. One of the latter PGE regions located on

sgr10 and detected based on DEGs in skin aging (Figure 4A) is

enriched for the GO term ‘‘response to wounding’’ (FDR <

0.05, Fisher’s exact test). The genes are downregulated in aging

(Figure 4B) thus suggesting their co-regulation and providing a

link to the well-accepted aging-related phenotype of decreased

regenerative capacity (Conboy et al., 2005). These findings

demonstrate thatN. furzeri genes related to aging are distributed

non-randomly in the genome and that positional clustering may

allow their co-regulation.

Positively Selected Genes in N. furzeri

The availability of high-quality genomic reference sequences

facilitates the identification of genes under positive selection.

To identify genes potentially relevant for adaptation of life-history

traits we analyzed N. furzeri in comparison with N. pienaari

because these sympatric species show convergent evolution

of short lifespan (Tozzini et al., 2013). Therefore, we generated

CDS data for N. pienaari and, additionally, for four longer-lived

Nothobranchius species as well as the non-annual killifish

Aphyosemion striatum as outgroup by RNA-seq of brain sam-

ples (Data S4I). The consensus tree based on multi-species

CDS alignments matched well their reported phylogeny (Dorn

et al., 2014) (Figure 4C). To avoid assembly errors, only de

novo assembled N. furzeri transcripts that show 100% identity

to the reference sequence (n = 23,108; corresponding to

11,748 genes) were analyzed. Accordingly, for N. pienaari we

included transcripts showing at least 99% coverage and 98%

identity to the N. furzeri reference sequence (n = 5,576; corre-

sponding to 5,363 genes). We identified seven genes under
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sgr10

Figure 4. Positional Gene Enrichment and

Positive Selection

(A) Schematic representation of synteny group

(sgr) 10 and a region of positional gene enrichment.

The genes in the sgr are represented by vertical

bars: red, differentially expressed; gray, not

differentially expressed. The density of all genes

on the sgr (black line) and those differentially

expressed (red line) is shown (kernel density esti-

mation, Gaussian kernel). Arrows indicate the di-

rection of increasing values.

(B) Relative downregulation of four DEGs with

the GO annotation ‘‘response to wounding’’ in

aging skin. Gene symbols f2, f7, and f10 stand

for coagulation factors II, VII, and X. aox1,

aldehyde oxidase 1. Boxes, first and third

quartiles; horizontal line, median; whiskers, most

extreme value within 1.53 of inter-quartile range; dots, outliers. Expression differences were calculated by pairwise comparisons (n = 25) between the

samples.

(C) Phylogram of the species used for transcriptome sequencing based on Dorn et al. (2014). For each species, the captive median lifespan is reported:

A. striatum (unpublished), N. korthause (Baumgart et al., 2015), N. rachovii, N. pienaari, N. kuhntae, N. furzeri (Tozzini et al., 2013), and N. kadleci (Ng’oma

et al., 2014).

(D) Alignment of the Id3 C terminus. The red arrow indicates aa under positive selection in N. furzeri followed by a two aa deletion. The blue arrow

indicates the N. pienaari-specific deletion. The background color of each aa relates to the chemical nature of its side chain.

See also Data S4A–S4M.
positive selection inN. furzeri and one inN. pienaari (FDR < 0.05,

Data S4J) highlighting the importance of a reference sequence

for evolutionary analyses. Remarkably, five of these genes are

either up- or downregulated in aging in at least one of three

MZM-0410 organs (brain, liver, skin at 39 versus 5 weeks; Data

S4A and S4K–S4M).

The signature of selection for id3 (inhibitor of DNA binding 3,

dominant negative helix-loop-helix protein) is particularly inter-

esting. Id3 is upregulated during aging in brain and skin and

is also a key component of TGF-b signaling. TGF-b regulates

inflammation, is involved in aging-related diseases such as

tumorigenesis, fibrosis, glaucoma, and osteoarthritis (Krieglstein

et al., 2012), and regulates life-history traits in C. elegans (Luo

et al., 2010; Shaw et al., 2007). InN. furzeri, the gene shows signs

of positive selection; i.e., a radical substitution of a non-polar by

a charged aa followed by a 2-aa deletion (Figure 4D). Interest-

ingly, at 10-aa distance in N. pienaari one evolutionarily con-

served aa is deleted suggesting convergent evolution.

Another interesting gene under positive selection is ikbip (I

Kappa B Kinase Interacting Protein), a pro-apoptotic gene (Ho-

fer-Warbinek et al., 2004) downregulated in skin aging. Apoptosis

is relevant for both diapause and aging. Diapausing killifish em-

bryos are resistant to apoptosis (Meller and Podrabsky, 2013),

but apoptosis is induced in aging N. furzeri (Di Cicco et al.,

2011; Ng’oma et al., 2014). Apoptosis-related geneswere shown

tobeage-regulated across tissues in ameta-analysis ofmamma-

lian aging (deMagalhães et al., 2009). Studies of larger taxonom-

ical samples, including genomic and transcriptomic sequence

datasets, are needed for further investigation of positive selection

and convergent evolution in Nothobranchius species.

Overlap of Transcriptional Changes in Developmental
Arrest and Aging
Last, we assessed the potential relation between developmental

arrest (diapause) and aging in N. furzeri. Focusing on diapause II
at the somite stage, we determined gene expression changes

between arrested and non-arrested embryos at a comparable

morphological stage using RNA-seq (Figure 5A). We identified

1,256 down- and 971 upregulated genes in arrested GRZ and

MZM-0403 embryos (FDR < 0.05, DEseq and edgeR; Data

S4O). In the set of downregulated genes, pattern specification

processes including embryonic development of different organs

and processes associated with cell proliferation were enriched

(p < 0.05, hypergeometric test). Processes enriched in upregu-

lated genes were more diverse and included translational

elongation, ribosome biogenesis, metabolism and regulation of

cellular component movement (Figure S5A). Decreased rates

of cell proliferation and changes in the metabolic status have

also been observed in diapause embryos of the South American

killifish Austrofundulus limnaeus (Podrabsky and Culpepper,

2012). Upregulation of genes involved in translational and ribo-

somal processes, however, was unexpected. A possible expla-

nation is the need for immediate cellular activity once environ-

mental conditions trigger the exit from diapause.

We then analyzed whether there were similar gene expression

changes in diapause and aging. To this end, we again employed

MZM-0410 RNA-seq data (brain, liver, skin; 5/12/20/27/

39 weeks; Data S4A) and focused on genes showing a mono-

tonic increase or decrease of transcript levels in aging (Data

S4P–S4R). In brain, the number of genes that were either

down- or upregulated in both aging and diapause was signifi-

cantly higher than the number of genes downregulated in brain

aging and upregulated in diapause or vice versa (p < 0.001,

chi-square test; Figure 5B). We therefore concentrated on the

first two groups with highest DEG numbers and found that all

significantly enriched processes in the group of downregulated

genes were associated with cell-cycle progression and DNA

replication (Figure 5C). Previous work suggests that brain aging

in N. furzeri is associated with reduced mitotic activity of adult

neuronal stem cells (Tozzini et al., 2012). Unexpectedly, the
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Figure 5. RNA-Seq Analyses of Diapause Embryos and Brain Aging

(A) The embryo (upper picture) has arrested in diapause II for 9 months, whereas the non-arrested embryo (lower picture) exhibiting a comparable morphological

stage has an age of 6 days post fertilization.

(B) Venn-analyses of genes downregulated (light red) and upregulated (light green) in diapause as well as monotonic downregulated (dark red) and upregulated

(dark green) in brain aging.

(C) Enrichment analyses of genes downregulated in diapause and brain aging. Numbers of involved genes and GO terms are shown for each biological process.

(D) Enrichment analyses of genes upregulated in diapause and brain aging.

See also Figure S5 and Data S4A and S4N–S4U.
two major processes enriched in upregulated genes in diapause

and brain agingwere translational elongation and ribonucleopro-

tein complex biogenesis (Figure 5D). The small number of over-

lapping DEGs between diapause and liver aging prevented

further analysis (Figure S5B). Similar to brain, we identified in

skin a significantly higher number of genes that were either up-

or downregulated both in diapause and aging than genes regu-

lated in opposite ways (p < 0.001, chi-square test, Figure S5B).

Analysis of consistently downregulated genes showed enrich-

ment of diverse processes. In the respective set of upregulated

genes, however, again translational elongation and ribosome

biogenesis were enriched (Figure S5C). Previously, aging-

related upregulation of genes encoding translational and ribo-

somal proteins has been reported for human brain, muscle,

and kidney suggesting a compensatory mechanism for aging-

related increase in protein damage (Zahn et al., 2006). To our

knowledge, a common expression profile for vertebrate devel-

opmental arrest and aging has not been described before.

In the nematode C. elegans, a link between developmental

arrest, the so-called dauer larvae, and longevity has been iden-
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tified. When mutated, some genes affecting dauer formation

such as daf-2 (a homolog of the insulin and IGF-1 receptor) in-

crease lifespan (Kenyon et al., 1993; Lin et al., 1997; Ogg et al.,

1997; Shaw et al., 2007). Moreover, the gene expression profile

of dauer larvae shows similarities to the expression profile of

long-lived adult mutants (McElwee et al., 2004). At present, the

absence of long-lived mutants prevents such kinds of analysis

in N. furzeri. Our comparison of gene expression changes be-

tween N. furzeri diapause embryos and C. elegans dauer larvae

(Wang and Kim, 2003) revealed little overlap (Data S4V). This

does not seem surprising, given the long evolutionary distance

between the two species and their different habitats. The identi-

fication of e.g., daf-16/FoxO4 being upregulated in embryonic

arrest of both species, however, indicates commonalities be-

tween the two processes and calls for further analyses, e.g.,

genomic manipulation of the FoxO4 locus in N. furzeri.

In conclusion, the high-quality draft sequence of the N. furzeri

genome provided here and the availability of several N. furzeri

strains that differ in lifespan represent excellent resources for

studying and identifying genes involved in aging and longevity.



Furthermore, the novel genomic engineering tools now available

in N. furzeri such as the CRISPR/Cas system (Harel et al., 2015)

will allow the generation of mutant lines at a large scale providing

a platform for drug screening and sophisticated models to study

aging as well as aging-related and other diseases and to develop

novel therapies.

EXPERIMENTAL PROCEDURES

Additional details are provided in the Supplemental Experimental Procedures.

Animal Material

Sample acquisition was carried out in accordance with the ‘‘principles of lab-

oratory animal care’’ and the current version of the German Law on the Protec-

tion of Animals.

De Novo Genome Sequencing and Assembly

Two adult female GRZ were sequenced using Illumina technology and assem-

bled with ALLPATHS-LG. In parallel, two adult male GRZ were sequenced us-

ing Roche technology; these data served for long-range scaffolding and gap

filling. Further, optical mapping (OpGen; http://www.opgen.com) was per-

formed in one adult female GRZ. By combining restriction maps obtained

with this procedure and sequence scaffolds, superscaffolds were formed.

These were manually ordered in genetic scaffolds based on own genetic

maps (Kirschner et al., 2012; Ng’oma et al., 2014). Finally, by synteny analyses

in medaka and stickleback, genetic scaffolds were arranged in sgrs.

Repeat Annotation

Repeats are identified by (1) RepeatModeler in the reference sequence, (2) Re-

peatMasker, RepeatScout (Price et al., 2005) for assembled Sanger se-

quences generated by whole-genome sample sequencing, and (3) RepARK

(Koch et al., 2014) for WGS Illumina reads. Subsequently, libraries were

merged in a N. furzeri-specific repeat library and finally used to annotate the

reference sequence by RepeatMasker and TandemRepeatFinder (Benson,

1999).

Gene Annotation and Identification of Paralogs

Protein-coding genes were annotated based on (1) ab initio gene prediction,

(2) protein sequence similarity, and (3) Illumina RNA-seq data. Results were

combined into CDS models with EVM and UTRs, and transcripts were

constructed with PASA (Haas et al., 2008). Gene symbols and functions

were annotated using homologous proteins of medaka, platyfish, stickleback,

tetraodon, and zebrafish obtained from Ensembl (Cunningham et al., 2015).

InterProScan75 (Zdobnov and Apweiler, 2001) was used to identify protein

domains and to retrieve Gene Ontology annotations.

MiRNA geneswere identified from IlluminamiRNA-seq data. To detect rRNA

genes, BLAT searches using known N. furzeri rRNA sequences (Reichwald

et al., 2009) as queries were performed. In addition, miRNA, tRNA, rRNA,

and other non-protein-coding genes were identified using ab initio gene pre-

diction tools.

TGD-derived paralogs were identified with Ensembl Compara. First,

N. furzeri genes were used to find orthologs in medaka, platyfish, stickleback,

tetraodon, and zebrafish. Next, Ensembl gene IDs served as queries in En-

sembl Compara to detect pairwise paralogous relationships. Any pair of dupli-

cated genes originating before the teleost split was discarded. Finally,

N. furzeri genes related to the same orthologous gene were also included.

Genomic Resequencing of N. furzeri Strains and Variation Calling

Illumina WGS reads generated for all strains were mapped to the reference

sequence with Bowtie2 (Langmead and Salzberg, 2012) (minimum mapping

quality score of 11). Regions with alignment gaps were realigned with GATK

(McKenna et al., 2010) and duplicate reads marked with Picard Tools (http://

picard.sourceforge.net). Sequence variations and genotypes were called

with GATK. Selected genomic regions were resequenced in additional speci-

mens by PCR and Sanger technology as described (Reichwald et al., 2009).
Overrepresentation Analysis

Zebrafish orthologs ofN. furzeri genes were retrieved using BLAST. Human or-

thologs were fetched with R package orthology. GO enrichment analysis was

done using DAVID (Huang et al., 2009) and summarized by REViGO (Supek

et al., 2011).

Positional Gene Enrichment

Aging-related DEGs were identified by Illumina RNA-seq. Scan statistics (Glaz

et al., 2001) were used to test if an observed accumulation of k DEGs on a sgr

containing N genes is likely to happen by chance. The scan statistic S is the

maximal k in any interval W of fixed size w (w = 0.1 3 N). Subsequently, an

overrepresentation analysis for each detected genomic region was performed.

Positive Selection

Protein-coding sequences of N. kadleci, N. korthausae, N. kuhntae,

N. pienaari,N. rachovii, A. striatum, andN. furzeriwere assembled de novo us-

ing Illumina RNA-seq data. Prank (Löytynoja and Goldman, 2008) alignments

of orthologous CDS were filtered by Gblocks (Talavera and Castresana,

2007) and in-house software. Then, the improved branch-site test of positive

selection was applied as described (Zhang et al., 2005). Ka/Ks ratios were

calculated for all CDS pairs in the SDR both in total and in 333 nt windows

sampled using a step size of 99 nt.

Gene Expression Analysis in Diapause Embryos

In total, 287 diapause and 239 non-diapause embryos were collected at the

somite stage. Approximately 30 embryos per state were pooled resulting in

eight diapause and eight non-diapause samples. Total RNA was extracted

and sequenced by Illumina RNA-seq. Significant DEGs were identified and

an overrepresentation analysis was performed.

ACCESSION NUMBERS

The accession number for the N. furzeri genome project including genome

assembly and NGS data (WGS, RNA-seq, and BAC-seq) reported in this

paper is BioProject: PRJEB5837. The accession numbers for the N. furzeri

GRZ genomic insert end sequences of BACs and fosmids are GenBank:

KG817100 to KG959958. The accession number for assembled Sanger

WGS sequences is BioProject: PRJNA29535. Accession numbers of individual

datasets are given in Data S1, S2, S3, and S4.
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