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Abstract

Lineage tracing, the joint segmentation and tracking of liv-
ing cells as they move and divide in a sequence of light
microscopy images, is a challenging task. Jug et al. [20]
have proposed a mathematical abstraction of this task, the
moral lineage tracing problem (MLTP) whose feasible so-
lutions define a segmentation of every image and a lineage
forest of cells. Their branch-and-cut algorithm, however,
is prone to many cuts and slow convergences for large in-
stances. To address this problem, we make three contri-
butions: Firstly, we improve the branch-and-cut algorithm
by separating tighter cutting planes. Secondly, we define
two primal feasible local search algorithms for the MLTP.
Thirdly, we show in experiments that our algorithms de-
crease the runtime on the problem instances of Jug et al.
considerably and find solutions on larger instances in rea-
sonable time.

1 Introduction

Recent advances in microscopy techniques have enabled
biologists to observe organisms on a cellular level with
higher spatio-temporal resolution than before [13, 17, 37].
Analysis of such microscopy sequences is key to several
open questions in modern biology, including embryonic de-
velopment of complex organisms [24, 25], tissue forma-
tion [18] or the understanding of metastatic behavior of
tumor cells [43]. However, to get from vast amounts of
raw microscopy images to biologically or clinically relevant
quantities, such as cell motility, migration patterns and dif-
ferentiation schedules, robust methods for cell lineage trac-
ing are required and have therefore received considerable
attention in the past [2, 3, 14, 29, 30, 31].

Typically, cell lineage tracing is considered a two step
problem: In the first step, individual cells are detected and
segmented in every frame. Then, in the second step, in-
dividual cells are tracked over time and, in case of a cell
division, are linked to their ancestor cell, finally result-
ing in the lineage forest. The latter subproblem is com-
plicated by cells that enter or leave the field of view, or
low temporal resolution that allows large displacements or
even multiple consecutive divisions within one time step.

∗contributed equally.

time

Figure 1 The moral lineage tracing problem (MLTP)1: Given a
sequence of images decomposed into cell fragments (depicted as
nodes in the figure), cluster fragments into cells in each frame and
simultaneously associate cells into lineage forests over time. Solid
edges indicate joint cells within images and descendant relations
across images. Black nodes depict fragments of cells about to
divide.

In addition to this, mistakes made in the first step, leading
to over- or undersegmentation of the cells, propagate into
the resulting lineage forest and cause spurious divisions or
missing branches, respectively. The tracking subproblem is
closely related to multi-target tracking [12, 36, 40] or re-
construction of tree-like structures [16, 33, 38, 39], with
the most important difference that the objects can divide
(only) into two. It is thus often cast as an optimization prob-
lem [21, 23, 32, 34, 35], dealing with some of the mentioned
difficulties by being able to discard misdetections [23] or by
providing and selecting from multiple detection hypothe-
ses [34, 35].

Jug et al. [20], on the other hand, have proposed a rig-
orous mathematical abstraction for these two subtasks, the
moral lineage tracing problem (MLTP). It is a hybrid of
the minimum cost multicut problem (MCMCP) problem,
which has been extensively studied for image decompo-
sition [5, 6, 7, 8, 9, 10, 11, 22, 27, 28, 41, 42], and the
minimum cost disjoint arborescence problem, variations
of which have been applied to reconstruct lineage forests
in [21, 23, 32, 35, 34] or tree-like structures [16, 39, 38].
Feasible solutions to the MLTP define not only a valid
cell lineage forest over time, but also a segmentation of the
cells in every frame (cf. Fig. 1). Solving this optimization
problem therefore tackles both subtasks – segmentation and

1The figure is a correction of the one displayed in [20], a template was
kindly provided by the authors.
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tracking – simultaneously. While Jug et al. [20] demon-
strate the advantages of their approach in terms of robust-
ness, they also observe that their branch-and-cut algorithm
(as well as their cutting-plane algorithm of the correspond-
ing relaxation) is prone to a large number of cuts and ex-
hibits slow convergence on large instances. That, unfortu-
nately, prevents many potential use cases of the MLTP in
practice, since it would be too computationally expensive.

Contributions. In this paper, we address this disadvan-
tage. We make three contributions: Firstly, we improve
the branch-and-cut algorithm of [20] by separating tighter
cutting planes. Secondly, we devise two heuristics for the
MLTP, both of which are primal feasible local search algo-
rithms inspired by the heuristics of [27] for the MCMCP.
Finally, we evaluate our algorithms on the problem in-
stances of [20], where we show that our algorithms com-
pare favorably against the original branch-and-cut algo-
rithm, and on two additional, larger instances, where we
are able to find near-optimal solutions in reasonable time.

2 Background and Preliminaries

Consider a set of T = {0, . . . , tend} consecutive frames of
microscopy image data. In moral lineage tracing, we seek to
jointly segment the frames into cells and track the latter and
their descendants over time. This problem is formulated by
[20] as an integer linear program (ILP) with binary variables
for all edges in an undirected graph as follows.

For each time index t ∈ T , the node set Vt comprises all
cell fragments, eg. superpixels, in frame t. Each neighbor-
ing pair of cell fragments are connected by an edge. The
collection of such edges is denoted by Et. Between consec-
utive frames t and t + 1, cell fragments that are sufficiently
close to each other are connected by a (temporal) edge. The
set of such inter frame edges is denoted by Et,t+1. By con-
vention, we set Vtend+1 = Etend+1 = Etend,tend+1 = ∅. The
graph G = (V,E) with V =

⋃
t∈T Vt and E =

⋃
t∈T (Et∪

Et,t+1) is called hypothesis graph and illustrated in Fig. 1.
For convenience, we further write Gt = (Vt, Et) for the
subgraph corresponding to frame t and G+

t = (V +
t , E+

t )
with V +

t = Vt ∪ Vt+1 and E+
t = Et ∪ Et,t+1 ∪ Et+1 for

the subgraph corresponding to frames t and t + 1.
For any hypothesis graph G = (V,E), a set L ⊆ E is

called a lineage cut of G and, correspondingly, the subgraph
(V,E \ L) is called a lineage (sub)graph of G if

1. For every t ∈ T , the set Et ∩ L is a multicut2 of Gt.
2. For every t ∈ T and every {v, w} ∈ Et,t+1 ∩ L,

the nodes v and w are not path-connected in the graph
(V +
t , E+

t \ L).
3. For every t ∈ T and nodes vt, wt ∈ Vt, vt+1, wt+1 ∈

Vt+1 with {vt, vt+1}, {wt, wt+1} ∈ Et,t+1 \ L
and such that vt+1 and wt+1 are path-connected in
(V,Et+1 \L), the nodes vt and wt are path-connected
in (V,Et \ L).

2A multicut of Gt = (Vt, Et) is a subset M ⊆ Et such that for every
cycle C in Gt it holds that |M ∩ C| 6= 1, cf. [15].

For any lineage graph (V,E \ L) and every t ∈ T , the
non-empty, maximal connected subgraphs of (Vt, Et \ L)
are called cells at time index t. Furthermore, Jug et al. call
a lineage cut, respectively lineage graph, binary if it addi-
tionally satisfies

4. For every t ∈ T , every cell at time t is connected to at
most two distinct cells at time t + 1.

According to [20], any lineage graph well-defines a lineage
forest of cells. Moreover, a lineage cut (and thus a lineage
graph) can be encoded as a 01-labeling on the edges of the
hypothesis graph.

Lemma 1 ([20]). For every hypothesis graph G = (V,E)
and every x ∈ {0, 1}E , the set x−1(1) of edges labeled 1 is
a lineage cut of G iff x satisfies inequalities (1) – (3):

∀t ∈ T ∀C ∈ cycles(Gt)∀e ∈ C :

xe ≤
∑

e′∈C\{e}

xe′ (1)

∀t ∈ T ∀{v, w} ∈ Et,t+1∀P ∈ vw-paths(G+
t ) :

xvw ≤
∑
e∈P

xe (2)

∀t ∈ T ∀{vt, vt+1}, {wt, wt+1} ∈ Et,t+1(with vt, wt ∈ Vt)

∀S ∈ vtwt-cuts(Gt)∀P ∈ vt+1wt+1-paths(Gt+1) :

1−
∑
e∈S

(1− xe) ≤ xvtvt+1
+ xwtwt+1

+
∑
e∈P

xe (3)

Jug et al. refer to (1) as space cycle, to (2) as space-time
cycle and to (3) as morality constraints. We denote by X ′G
the set of all x ∈ {0, 1}E that satisfy (1) – (3). For the
formulation of the additional bifurcation constraints, which
guarantee that the associated lineage cut is binary, we refer
to ([20, Eq. 4]). The set XG collects all x ∈ X ′G that also
satisfy the bifurcation constraints.

Given cut costs c : E → R on the edges as well as birth
and termination costs c+, c− : V → R+

0 on the vertices
of the hypothesis graph, [20] defines the following moral
lineage tracing problem (MLTP)

min
x,x+,x−

∑
e∈E

cexe +
∑
v∈V

c+v x
+
v +

∑
v∈V

c−v x
−
v (4)

subject to x ∈ XG, x+, x− ∈ {0, 1}V , (5)

∀t ∈ T ∀v ∈ Vt+1∀S ∈ Vtv-cuts(G+
t ) :

1− x+
v ≤

∑
e∈S

(1− xe), (6)

∀t ∈ T ∀v ∈ Vt∀S ∈ vVt+1-cuts(G+
t ) :

1− x−v ≤
∑
e∈S

(1− xe). (7)

The inequalities (6) and (7) are called birth and termina-
tion constraints, respectively.

3 Improved Branch-and-cut Algorithm

Jug et al. propose to solve the MLTP with a branch-and-
cut algorithm, for which they design separation procedures

2
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for (1) – (3), (6) – (7) and the bifurcation constraints. In
the following, we propose several modifications of the con-
straints, which improve the performance of the optimization
algorithm.

The authors of [20] pointed out that it is sufficient to
consider only chordless cycles in (1) and, furthermore, it
is well-known that chordless cycle inequalities are facet-
defining for multicut polytopes (cf. [15] and [4]). However,
this argument was not transferred to inequalities (2) and (3),
which may be modified analogously.

Moreover, the inequalities of (3) where {vt, wt} ∈ Et
is an edge of the hypothesis graph may be considerably
strengthened by a less trivial, yet simple modification.
Lemma 2 shows that with both results combined, we can
equivalently replace (1) – (3) by the set of tighter inequali-
ties (8) and (9). In relation to our improved version of the
branch-and-cut algorithm, we refer to (8) as cycle and to (9)
as morality constraints.

Lemma 2. For every hypothesis graph G = (V,E) it holds
that x ∈ X ′G iff x ∈ {0, 1}E and x satisfies

∀t ∈ T ∀{v, w} ∈ Et ∪ Et,t+1

∀ chordless vw-paths P in G+
t :

xvw ≤
∑
e∈P

xe (8)

∀t ∈ T ∀v′, w′ ∈ Vt such that {v′, w′} /∈ Et

∀v′w′-cuts S in Gt∀ chordless v′w′-paths P in G+
t :

1−
∑
e∈S

(1− xe) ≤
∑
e∈P

xe (9)

Proof. We first show that any x ∈ {0, 1}E satisfying all of
(1) – (3) also satisfies (8) and (9) by contraposition. First,
assume x ∈ {0, 1}E violates an inequality of (8) for some
t ∈ T , {v, w} ∈ Et ∪ Et,t+1 and chordless vw-path P .
We distinguish the following cases: If {v, w} ∈ Et and P
is a path in Gt, then the inequality is included in (1). If
{v, w} ∈ Et,t+1, then the inequality is included in (2). It
remains to consider the case that {v, w} ∈ Et and P is
not entirely contained in Gt. Let {vt, vt+1}, {wt, wt+1} ∈
Et,t+1 with vt, wt ∈ Vt be the first and the last inter frame
edges in P , respectively. Furthermore, let Pvt+1wt+1

be the
subpath of P between those edges. Now, either there is a
vtwt-cut S in Gt such that xS = 1 or there is a vtwt-path
P ′ in Gt such that xP ′ = 0. It is clear that P ′ can be
extended to a vw-path of edges labeled 0, because xP =
0. This yields either an inequality of (3) corresponding to
S, {vt, vt+1}, {wt, wt+1} and Pvt+1wt+1

or an inequality of
(1) corresponding to {v, w} ∪ P ′ that is violated by x.

Next, suppose x ∈ {0, 1}E violates an inequality of
(9) for some t ∈ T , {v′, w′} ∈ Et, a v′w′-cut S in
Gt and a chordless v′w′-path P in G+

t . Then xS = 1
and xP = 0. Clearly, x violates the inequality of (3)
corresponding to S, {vt, vt+1}, {wt, wt+1} and Pvt+1wt+1

,
where {vt, vt+1}, {wt, wt+1} and Pvt+1wt+1 are defined
similar to the last paragraph.

For the converse, we show that if x ∈ {0, 1}E satisfies
the inequalities (8) and (9), then it also satisfies (1) – (3).

Any cycle in G+
t which is not chordless can be split into

two cycles contained in Gt, G
+
t or Gt+1 which share ex-

actly one edge. Therefore, any inequality of (1) – (2) is
implied by a combination of inequalities from (8). This is a
standard argument for multicut polytopes, cf., for instance,
[4]. Moreover, for any {vt, wt} ∈ Et and any vtwt-cut
S in Gt it holds that {vt, wt} ∈ S. Thus, reapplying the
previous argument and the simple fact that

1−
∑
e∈S

(1− xe) ≤ 1− (1− xvtwt
) = xvtwt

,

we conclude that the inequalities (3) are implied by a com-
bination of inequalities from (8) and (9).

Remark. Suppose we introduce for every pair of non-
neighboring nodes v′, w′ ∈ Vt a variable xv′w′ indicating
whether v′ and w′ belong to the same cell (xv′w′ = 0) or
not (xv′w′ = 1). Then any inequality of (9) is exactly the
combination of a cut inequality 1−xv′w′ ≤

∑
e∈S(1−xe)

and a path inequality xv′w′ ≤
∑
e∈P xe in the sense of

lifted multicuts ([4]). For neighboring nodes v, w ∈ Vt, i.e.
{v, w} ∈ Et, we have the variable xvw at hand and can thus
omit the cut part of the morality constraint, as the lemma
shows.

3.1 Termination and Birth Constraints

We further suggest a strengthening of the birth and termina-
tion constraints in the MLTP. To this end, for any v ∈ Vt+1

let Vt(v) = {u ∈ Vt | {u, v} ∈ Et,t+1} be the set
of neighboring nodes in frame t. Further, we denote by
E
(
Vt(v), Vt+1 \ {v}

)
the set of inter frame edges that con-

nect some node ut ∈ Vt(v) with some node ut+1 ∈ Vt+1

different from v.

Lemma 3. For every hypothesis graph G = (V,E), the
vectors x ∈ X ′G, x

+, x− ∈ {0, 1}V satisfy inequalities (6)
iff the following inequalities hold:

∀t ∈ T ∀v ∈ Vt+1∀S ∈ Vtv-cuts(G+
t ) :

1− x+
v ≤

∑
e∈S\E(Vt(v),Vt+1\{v})

(1− xe). (10)

Similarly, x ∈ X ′G, x
+, x− ∈ {0, 1}V satisfy (7) iff

∀t ∈ T ∀v ∈ Vt∀S ∈ vVt+1-cuts(G+
t ) :

1− x−v ≤
∑

e∈S\E(Vt\{v},Vt+1(v))

(1− xe) (11)

hold true.

Proof. We show the claim only for birth constraints since
the proof for termination constraints is analogous. Let x ∈
X ′G and x+, x− ∈ {0, 1}V . Apparently, if (10) is satisfied,
then ∑

e∈S\E(Vt\{v},Vt+1(v))

(1− xe) ≤
∑
e∈S

(1− xe)

implies that (6) also holds. Conversely, suppose (10) is
violated. Then there exists some t ∈ T and v ∈ Vt+1,

3



M. Rempfler, J.-H. Lange et al. Efficient Algorithms for Moral Lineage Tracing

S ∈ Vtv-cuts(G+
t ) such that x+

v = 0 and xe = 1 for all
e ∈ S \ E

(
Vt(v), Vt+1 \ {v}

)
. Assume (6) is not violated,

then there is a path P in G+
t from some node in Vt to v with

xP = 0. Then P must have non-empty intersection with
E
(
Vt(v), Vt+1 \ {v}

)
. Let u ∈ Vt(v) and v′ ∈ Vt+1 \ {v}

be such that {u, v′} ∈ P . Since xuv = 1 it follows that x
violates the inequality

xuv ≤
∑
e∈Puv

xe

of (2) where Puv is the subpath of P from u to v. This is a
contradiction to x ∈ X ′G.

3.2 Additional Odd Wheel Constraints

A wheel W = (V (W ), E(W )) is a graph that consists of
a cycle and a dedicated center node w ∈ V (W ) which is
connected by an edge to every node in the cycle. Let EC
denote the edges of W in the cycle and Ew the remaining
center edges. With a wheel subgraph W = (V (W ), E(W ))
of a graph G we may associate an inequality∑

e∈EC

xe −
∑
e∈Ew

xe ≤
⌊ |V (W )| − 1

2

⌋
, (12)

which is valid for multicut polytopes ([15]). A wheel is
called odd if |V (W )| − 1 is odd. It is known that wheel
inequalities are facet-defining for multicut polytopes iff the
associated wheel is odd ([15]).

We propose to add additional odd wheel inequalities to
the MLTP in order to strengthen the corresponding LP re-
laxation. More precisely, we consider only wheels W =
(V (W ), E(W )) ⊂ G such that w ∈ Vt+1 and v ∈ Vt for
all v ∈ V (W ) \ w and some t ∈ T . This structure guar-
antees that for any x ∈ X ′G, the restriction xE(W ) is the
incidence vector of a multicut of W . Therefore, (12) holds
with respect to x.

3.3 Optimization Procedure

For a subset of the constraints, we use the commercial
branch-and-cut solver Gurobi [19] to solve the LP relax-
ation and find integer feasible solutions. Whenever Gurobi
finds an integer feasible solution x, we check whether x ∈
XG and all birth and termination constraints are satisfied.
If not, then we provide Gurobi with an additional batch of
violated inequalities from (8) – (11) as well as violated bi-
furcation constraints and repeat. To this end, we adapt the
separation procedures of [20] to account for our improve-
ments in a straight-forward manner. We restrict ourselves
to optionally add wheel inequalities for odd wheels with 4
nodes as described above (so-called 3-wheels) to the start-
ing LP relaxation.

4 Local Search Algorithms

In this section, we introduce two local search heuristics for
the MLTP. The first is a greedy agglomeration heuristic

G = (V,E)

t

⇒

G = (V,A)

u

v

w a b

Figure 2 For a fixed decomposition of the frames (depicted with
black solid/dashed cut edges), we associate a directed graph G
over the components V . The arcs A bundle all edges going from
any node of one cell to any node of another cell in the successive
frame. For example, the components Va = {u} and Vb = {v, w}
are linked by the arc ab which corresponds to the set of edges
Eab = {uv, uw}. Determining the optimal state of the temporal
edges (grey) given a decomposition into cells boils down to finding
an optimal branching in G.

that is based on GAEC [27], which constructs a lineage in
a bottom-up fashion. The second is a Kernighan-Lin-type
algorithm [26] and an extension of KLj [27] (a heuristic for
the MCMCP), which tries to improve a feasible lineage by
greedily moving vertices between components. We adapt
both to account for birth and termination costs, and to treat
temporal edges differently than spatial edges, thus allowing
a cell to be linked to two different cells in the successive
time point.

Both algorithms maintain a decomposition of the graph
(V,
⋃
t∈T Et), ie. the components within each frame Gt

represent the cells. Let V be the set of all cells. For each set
of edges going from a component a ∈ V at time point t to
a component b at t + 1, we associate an arc ab ∈ A. This
gives a directed graph G = (V,A), as illustrated in Fig. 2.
We write Va for the set of vertices v in component a ∈ V
and Eab for the set of edges represented by arc ab ∈ A.
They further maintain a selection of the arcs A(y), where
y ∈ {0, 1}A, to represent which temporal edges are cut.

4.1 Greedy Lineage Agglomeration (GLA)

This algorithm, shown in Alg. 1, takes an MLTP instance
and constructs a feasible lineage in a bottom-up fashion.
Starting from V = V , it builds the lineage forest by ei-
ther merging two components within an identical frame or
selecting an arc ab ∈ A. The final selection of arcs then de-
termines which temporal edges are cut edges (xe = 1). To
do so, it maintains contracted edges between components
within the same frame, denoted with E , along with G =
(V,A). The change in objective (4) caused by a particular
move involving a and b is denoted with ∆move

ab . The three
allowed moves, merge, setParent and changeParent, are
depicted in Fig. 3. In order to determine the cost or reward
of a particular move, we have to examine not only the edge
between the involved components a and b, but also whether
they have an associated parent or child cell already. For a
merge, we have to consider arcs going to children or parents
of either component, since they would be combined into an
active arc and therefore change their state and affect the ob-

4
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a b

a

b

c

c

a

b d

set parent change parent merge components

t t+ 1 t t+ 1 t− 1 t t+ 1

Figure 3 The three moves of GLA: set a as parent of b (left),
change the parent of b from c to a (middle) or merge two com-
ponents a and b into one (right). The major arc along which the
move occurs is depicted in red, while arcs that affect the cost of
the move are depicted in blue. When changing a parent, for ex-
ample, the presence of other active arcs originating from a and c
determine whether termination costs have to be paid. For a merge,
we have to consider arcs to parents or children, which would be
joined with an active arc and therefore change their state.

Algorithm 1 Greedy Lineage Agglomeration (GLA)

while progress do
(a, b)← arg minab∈E∪A∆move

ab

if ∆move
ab < 0 then
applyMove(G, a, b) . updates partitions of G

and selects arcs A(y).else
break

end if
end while
return edgeLabels(G) . cut-edge labeling x∗

from V and A(y).

jective. The detailed, incremental calculation of these move
costs ∆move

ab can be found in the appendix. We maintain
feasibility at all times: two components with different par-
ents cannot be merged (it would violate morality constraints
(3)), and similarly, a merge of two partitions with a total of
more than two active outgoing arcs is not considered (as it
would violate bifurcation constraints). The algorithm stops
as soon as no available move decreases the objective.

Implementation. We use a priority queue to efficiently
retrieve the currently best move. After a move is applied,
all affected moves are re-calculated and inserted into the
queue. We invalidate previous editions of moves indirectly
by keeping track of the most recent version for all E . For
each component, we actively maintain the number of chil-
dren and its parent to represent the selected arcs A(y).

4.2 Kernighan-Lin with Optimal Branchings (KLB)

Algorithm 2 takes an MLTP instance and an initial decom-
position, eg. the result of GLA, and attempts to decrease
the objective function (4) in each step by changing the in-
frame partitions in a KL-fashion. Like the algorithm pro-
posed by [27] for the related MCMCP, it explores three dif-
ferent local moves to decrease the objective function max-
imally: a) apply a sequence of k node switches between
two adjacent components a and b, b) a complete merge of
two components, and c) splitting a component into two.

Algorithm 2 KL with Optimal Branchings (KLB)

while progress do
for a, b ∈ V do

if 6 ∃uv ∈ Et : u ∈ Va ∧ v ∈ Vb then
continue

end if
improveBipartition(G, a, b) . move nodes

across border
or merge.end for

for a ∈ V do
splitPartition(G, a) . split partition.

end for
end while
return cutEdgeLabels(G) . cut-edge labeling x∗

from V and A(y∗).

Operations that do not decrease the objective will be dis-
carded. In contrast to the setting of a MCMCP, such local
modifications affect the optimal parent-child relations be-
tween the (changed) components and thus, it becomes diffi-
cult to determine by how much the total objective (ideally)
changes. To this end, we note that for a fixed intra-frame
decomposition, determining the state of the temporal edges
becomes a minimum cost branching problem (MCBP) on
G = (V,A). Therefore, both improveBipartition(. . .) and
splitPartition(. . .) repeatedly solve an MCBP to deter-
mine the objective after an elementary move.

Minimum Cost Branching on G. For G = (V,A) over a
fixed decomposition into cells V , we formulate the MCBP
with birth and termination costs and bifurcation constraint
as an ILP:

min
y,y−,y+

∑
ab∈A

cabyab +
∑
a∈V

c+a y
+
a +

∑
a∈V

c−a y
−
a (13)

subject to ∀a ∈ V : (1− y+a ) =
∑

b∈δ−(a)

yba (14)

∀a ∈ V : (1− y−a ) ≤
∑

b∈δ+(a)

yab ≤ 2 (15)

y ∈ {0, 1}A, y−, y+ ∈ {0, 1}V , (16)

where yab indicates whether arc ab is active (yab = 1) or
not (yab = 0). The equality constraint (14) ensures that at
most one incoming arc is selected (preventing a violation of
morality) and, if none is chosen, the birth indicator y+a is
active. In the same sense, (15) enforces the penalty for ter-
mination if necessary, and its upper bound limits the number
of children to 2, which enforces the bifurcation constraint.
Note that G is acyclic by construction, and we therefore do
not require cycle elimination constraints. Observing that
∀e ∈ Eab : 1 − yab = xe, ie. all edges in an arc need
to have the same state to satisfy space-time constraints, we
derive the weights cab = −∑e∈Eab

ce. With a similar rea-
soning, all vertices of a component a need to be in the same
birth/termination state, ∀v ∈ Va : y+a = x+

v , hence we de-
rive c+a =

∑
v∈Va

c+v (and analogous for termination costs
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c−a ). The MLTP objective fMLTP (4) can be split into two
parts and directly calculated from the decomposition into
cells and the temporal cut edges induced from y∗, the opti-
mal branching:

fMLTP(x∗) =
∑

e∈
⋃

t∈T Et

cex
∗
e +

∑
e∈

⋃
t∈T Et,t+1

ce + fMCBP(y∗) , (17)

where we identify the first two sums as the costs for
the fixed decomposition with all temporal edges cut, and
fMCBP(y∗) corresponds to the achieved branching objec-
tive (13). The derivation is found in the supplements. This
allows us to evaluate the change of objective of a move sim-
ply as the sum of partial changes from both decomposition
and branching. For the latter, we note that for a given V ,
modifying two of its cells a and b in frame t will have rel-
atively localized effects on y∗. In particular, it only affects
arcs that go from t− 1 to t and from t to t+ 1, (their choice
is independent from selected arcs in earlier or later frames
when conditioned on Vt−1 and Vt+1). In practice, we find
that the effect is often also spatially localized, hence we op-
tionally restrict ourselves to only update the MCBP in a
range of dMCB (undirected) arc hops of from a and b. This
parameter is instance dependent.

Implementation. The algorithm maintains the weighted
G = (V,A), the objective corresponding to the intra-
frame decomposition, ie. the first part of (17), and solves
the MCBP on G by the branch-and-cut algorithm imple-
mented in [19]. In order to reduce the number of overall
calculations in later iterations, we mark components that
have changed and then, in the next iteration, attempt to im-
prove only those pairs of components which involve at least
one changed component. To account for changes that af-
fect moves in previous or subsequent frames, we propagate
these “changed” flags to all potential parents or children of
a changed component.

5 Experiments & Results

Instances and Setup. We evaluate our algorithms on the
two large instances of [20]: Flywing-epithelium and N2DL-
HeLa-full. The hypothesis graph of the former instance
consists of 5026 nodes and 19011 edges, while the lat-
ter consists of 10882 nodes and 19807 edges. In addition
to this, we report experiments on two more sequences of
a flywing epithelium time-lapse microscopy with a wider
field of view. The corresponding hypothesis graphs con-
sist of 10641 nodes and 42236 edges, respectively 76747
edges. We denote the data sets with Flywing-wide I and II.
These instances are preprocessed with the same pipeline as
Flywing-epithelium. For details on the preprocessing, we
refer to [20].

Our choice of birth and termination costs follows [20],
ie. we set c+ = c− = 5 for all instances. We initialize
the KLB heuristic with the solution of GLA to decrease the
number of outer iterations. We benchmark three versions of
KLB: The first one solves the full MCBP in each turn and

is denoted with KLB. The second, KLB-d=inf, exploits the
described temporal locality and solves the MCBP within
the (reachable) subgraph of t ± 1, while the third, KLB-
d=10, additionally exploits spatial locality ( dMCB = 10).

We apply our improved branch-and-cut algorithm with
and without additional 3-wheel constraints in order to eval-
uate the effect of the added inequalities. For the more exten-
sive data sets Flywing-wide I and II we provide Gurobi with
the objective value of the (quickly available) GLA solution
to avoid separating poor integral points and accelerate fath-
oming within the branch-and-bound tree.

Convergence Analysis. The convergence of our algo-
rithms in comparison to the branch-and-cut algorithm
of [20] is reported in Fig. 4 and Table 1. We find that GLA is
the fastest in all instances, but only reaches a local optimum
with a gap of about 1.95 % and 3.69 %, respectively. This
solution is improved by KLB in terms of objective, up to a
gap of 0.76 % and 1.86 %. All three variants of KLB obtain
the same solution in terms of cut-edge labeling, but those
which exploit temporal locality, ie. KLB-d=inf and KLB-
d=10, do so considerably faster. Considering spatial local-
ity, on the other hand, does not improve runtime on these
two instances. We find that KLB spends most of the time in
the first outer iteration, where it has to check a large num-
ber of bipartitions that do not improve and will therefore not
be considered in the next iteration. Our implementation of
KLB currently only uses a single core, but could potentially
be sped up by parallelization.

The improved branch-and-cut algorithm, denoted with
tight-ILP and tight-ILP+3W (with additional 3-wheel con-
straints), retrieves feasible solutions considerably faster
than the algorithm of [20] (original-ILP). For Flywing-
epithelium, they reach the optimal solution in 74.5 s and
71 s, respectively, while the original algorithm took 4098 s.
On N2DL-HeLa, the original-ILP found the optimal solu-
tion after 83929 s, and tight-ILP or tight-ILP+3W found it
in 610 s and 827.5 s. In both cases, they provide tighter
bounds, and the variant with 3-wheel constraints is even
able to prove optimality of the solutions found for both in-
stances. On a separate experiment with disabled bifurcation
constraints, we found that tight-ILP+3W was able to prove
optimality on Flywing-epithelium within 296 s and its solu-
tion does not violate any bifurcation constraint. As shown
in Fig. 5, we observe that our modifications of the branch-
and-cut greatly reduce the number of morality cuts.

On the larger instances Flywing-wide I and II, we present
our results in Fig. 6. The branch-and-cut algorithms did
not determine a feasible solution, but provide lower bounds.
For the variant with 3-wheel constraints, these bounds are
slightly tighter in both instances. Consequently, we are
able to determine the maximal optimality gaps for GLA to
be 2.9 % (I) and 2.1 % (II), and 1.3 % (I) and 0.9 % (II)
for KLB. Again, all variants of KLB obtain identical solu-
tions. On these instances, not only temporal locality helps
to speed up the algorithm, but also spatial locality: KLB-
d=inf reduces runtime from 9154.61 s to 1781.48 s (I) and
from 28625.40 s to 10388.60 s (II), while KLB-d=10 re-
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Figure 4 Comparison of algorithms for the MLTP in terms of run-
time, objective (solid) and bounds (dashed) on the large instances
of [20]. Our heuristics are able to determine feasible solutions
quickly, while our branch-and-cut algorithms (tight-ILP, tight-
ILP+3W) converge to the optimal solution in up to one hundredth
of the time of the original branch-and-cut algorithm (original-ILP)
and provide tighter bounds.
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Figure 6 Results on the more extensive instances Flywing-wide
I and II. The branch-and-cut algorithm with 3-wheel constraints
provides slightly tighter bounds, with which we determine the
gaps for GLA to be 2.9% (I) and 2.1% (II), and 1.3% (I) and
0.9% (II) for KLB. Exploiting temporal and spatial locality when
re-solving the MCBP considerably reduces runtime of KLB.

duces this further to 394.20 s and 4724.94 s.

Solution Quality. We compare the solution quality of our
two heuristics by segmentation (SEG) and tracking (TRA)
metrics as used in [30] for Flywing-epithelium. The results

(a)

(b)

(c)

Figure 7 Depicted above are (a) three representative and consec-
utive time points of Flywing-wide I, (b) corresponding decom-
positions of these images into cell fragments, and (c) decompo-
sitions of the images defined by a feasible solution of the moral
lineage tracing problem. The white edges in (c) are the outlines
of gold standard human lineage annotation, added here for simpli-
fied comparison.

are reported in Table 2. We observe that KLB improves
the scores of GLA slightly (up to an additional 1.2 % and
0.81 % for SEG and TRA, respectively). The (optimal) so-
lutions of the original and the improved branch-and-cut al-
gorithm are identical, and achieve slightly better scores in
both measures than the heuristics. All presented algorithms
outperform the baseline, the packing analyzer [1], a typi-
cal cell tracking tool used by biologists whose scores were
originally reported in [20].

6 Conclusion

In this work, we addressed efficient algorithms for the re-
cently introduced MLTP [20], a mathematical framework
for cell lineage reconstruction, which treats both subprob-
lems, image decomposition and tracking, jointly. We have
improved the branch-and-cut algorithm of [20] by separat-
ing tighter cutting planes. Furthermore, we proposed two
heuristics for MLTP: a fast agglomerative procedure called
GLA that constructs a feasible lineage in a bottom-up fash-
ion, and a variant of the KL-algorithm which attempts to
improve a given lineage by switching nodes between com-
ponents, merging or splitting them, and repeatedly solves
a MCBP conditioned on fixed partitions. Our algorithms
find exact solutions for previous instances up to two or-
ders of magnitude faster and produce near-optimal solutions
for wider instances in reasonable time. This empirically
demonstrates that our methods alleviate runtime issues with
MLTP instances and improve the applicability of moral lin-
eage tracing in practice.
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Table 1 Detailed quantitative comparison of algorithms for the MLTP. BestGap is calculated using the tightest bound of any algorithm,
while Gap is based on the bound established by each particular algorithm. We limit the runtime of tight-ILP to approximately the time
it took tight-ILP+3W to prove optimality. KLB solves the full branching problem in every turn, while KLB-d=inf utilizes temporal
locality and KLB-d=10 additionally uses spatial locality with dMCBP = 10.

Flywing-epithelium N2DL-HeLa-full
Method Time / s objBest objBound Gap BestGap Time / s objBest objBound Gap BestGap

GLA 0.26 -38835.90 0.0195 0.12 -6095.85 0.0369
KLB 546.32 -39294.65 0.0076 1025.39 -6205.54 0.0186
KLB-d=inf 27.45 -39294.65 0.0076 7.51 -6205.54 0.0186
KLB-d=10 27.28 -39294.65 0.0076 7.50 -6205.54 0.0186
tight-ILP 2214.06 -39593.90 -39630.50 0.0009 0.0000 16627.30 -6320.81 -6337.98 0.0027 0.0000
tight-ILP+3W 1696.80 -39593.90 -39593.90 0.0000 0.0000 15780.50 -6320.81 -6320.81 0.0000 0.0000
original-ILP [20] 23460.80 -39593.90 -39717.80 0.0031 0.0000 156542.00 -6320.81 -6484.02 0.0258 0.0000

Table 2 Comparison of the distance from ground truth of seg-
mentation (SEG) and traced lineage forest (TRA) on Flywing-
epithelium. ILP denotes the result of the branch-and-cut algo-
rithm, while PA [1] is a common tracking tool used by biologists.

Algorithm SEG TRA

GLA 0.9363 0.9640
KLB 0.9485 0.9721
ILP 0.9722 0.9813
PA (auto) 0.7980 0.9206
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god, G. Knott, U. Köthe, and F. A. Hamprecht. Globally
optimal closed-surface segmentation for connectomics. In
ECCV, 2012. 1

[7] B. Andres, J. Yarkony, B. S. Manjunath, S. Kirchhoff,
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