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Abstract

Cilia and eukaryotic flagella are long, thin extensions of cells that contain a

structure known as axoneme. The key components of the axoneme are microtubule

filaments and the motor proteins dynein. These dynein motors force the microtubules to

slide in an oscillatory fashion leading to a wave pattern along the axoneme. How these

motors are coordinated and how this phenomenon can be described quantitatively is not

understood.

I therefore studied the waveforms of sperm tails that contain such an axoneme. I

observed these waveforms under different conditions with a high-speed camera and

developed an automated image analysis tool allowing the extraction of long time series of

this waveform. In a subsequent Fourier analysis I increased the precision by obtaining an

averaged waveform. I then compared the data to the predictions of a theoretical

framework (Camalet, Julicher et al. 1999) and found that they do not agree. I suggested

extending this theoretical framework by considering a visco-elastic element at the base of

the axoneme, which leads to a satisfactory agreement. This project leaves open questions

hence further work is discussed.

As a side finding, I discovered a new phenomenon on how spermatozoa form

dynamic vortex arrays. I described this pattern in detail and introduced a novel order

parameter to quantify the order among many particles. I showed that the array only forms

above a critical sperm density. I suggested a model to explain the origin of the pattern and

showed by simulation that the model can account for the main features of the pattern.

Finally I estimated the typical interaction force between beating axonemes to be 0.1 pN

and drew conclusions about their collective action in general that might be relevant for

sperm cooperation or metachronal waves of cilia.



4

Zusammenfassung

Cilien und eukariotische Flagellen sind lange, dünne Fortsätze von Zellen. Sie

enthalten eine Struktur namens Axonem. Die wesentlichen Komponenten des Axonems

sind die Filamente und Motorproteine namens Mikrotubuli und Dynein. Die Motoren

forcieren die Filamente, sich in oszillierender Weise gegeneinander zu verschieben, was

zu einem Schlagmuster entlang des Axonemes führt. Wie diese Motoren koordiniert

werden und wie dieses Phänomen quantitativ beschrieben werden kann, ist nicht

verstanden.

Wir studierten die Wellenformen an Spermienschwänzen, welche ein solches

Axonem enthalten, unter verschiedenen Bedingungen mit einer

Hochgeschwindigkeitskamera. Wir entwickelten eine automatisierte Bildanalyse-

Software, die es erlaubt, lange Zeitreihen solcher Wellenformen von Filmen zu

extrahieren. In einer anschließenden Fourieranalyse erzielten wir eine gemittelte

Wellenform mit erhöhter Präzision. Ein Vergleich von unseren Daten mit den

Vorhersagen einer Theorie (Camalet, Julicher et al. 1999) führte zu einer Diskrepanz.

Entsprechend schlugen wir eine Erweiterung der Theorie vor, indem wir annahmen, daß

an der Basis des Axonems ein viskos-elastisches Element existiert. Dies führte zu einer

zufrieden stellenden Übereinstimmung zwischen Theorie und Experiment. Abschließend

diskutieren wir offene Fragen und zukünftige Experimente.

Als ein Nebenprodukt entdeckten wir ein neues Phänomen, bei welchem Spermien

Anordnungen von dynamischen Strudeln (Vortices) bilden. Wir beschrieben dieses

Phänomen im Detail und führten einen neuen Ordnungsparameter ein, mit dem die

Ordnung zwischen vielen Objekten quantifiziert werden kann. Mittels dieses

Ordnungsparameters konnten wir zeigen, daß dieses Muster sich erst ab einer kritischen

Dichte herausbildet. Wir schlugen ein Model vor, um den Ursprung des Musters zu

erklären. Die Simulation des Models zeigte volle Übereinstimmung mit den wesentlichen

Eigenschaften dieses Musters. Weiterhin schätzten wir die typische

Wechselwirkungskraft zwischen aktiven Axonemen mit 0.1 pN ab. Abschließend ziehen

wir Schlußfolgerungen über die kollektive Wirkung von Axonemen im Allgemeinen mit

Hinblick auf Spermienkooperation und metachronale Cilienwellen.
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Epistemology:

Is knowledge knowable? If not, how do we know this?

Woody Allen (Allen 1980)

This work is dedicated to

Dana, Luzy, the Keks,

and everyone my spermatozoa will bring along in the future.
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Introduction and overview

Modern biology is faced with the challenges of complexity and quantitation. Many

phenomena depend on many parameters; hence the behavior of these systems cannot be

understood purely by qualitative pictures and intuition, e.g. see (Pollard 2003). Instead

mathematical tools need to be applied to study and model such phenomena. This in turn

also requires new types of experiments, which extract quantitative parameters and test the

theoretical predictions. Consequently this has opened up a variety of interesting problems

and attracted many mathematicians and physicists to study biological problems –

including myself.

This “quantification of biology” is one of the big slogans of our time and

generates the impression that biology has “only” been a qualitative science until very

recently. Although there is a lot of truth in this statement, I am worried that the traditional

approaches and achievements of biologists and biochemists get underrated - actually in

two ways: First, there are many things that need to be explored and described qualitatively

before one even could think about a quantitative analysis, e.g. the tedious work of

identifying new genes. And second, there has always been a strong tradition of

quantitative analysis and modeling in biology, just to mention the classic work on action

potentials in neurons by Hodgkin and Huxley (Hodgkin and Huxley 1952).

Another classic example is the analysis on how a spermatozoon generates the

beating pattern of its tail. In contrast to the work on action potentials the answer to the

question of sperm beating cannot be found in a few seminal papers published within a

short period of time. Instead, many scientists made different breakthroughs over a few

decades, while some of the central questions are still not solved today.

When introduced to this problem I got immediately fascinated. Motivated by

combining experiments and theories I almost got torn apart somewhere between petting

sea urchins in a self-built aquarium and calculating functional derivatives. That this

actually did not happen and I finally can present this thesis is also a merit of my

supervisor Jonathon Howard and of our close collaborators from the MPI-PKS, namely

Andreas Hilfinger, Karsten Kruse, and Frank Jülicher.
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The work itself is divided into three parts that are sandwiched by this introduction

and an outlook. In the appendices I give additional controls and discussion. Furthermore a

CD accompanies this thesis containing movies to illustrate the dynamic patterns that

spermatozoa can generate.

The first part is a summary of what is known about the organelles called cilia and

flagella. The tail of a spermatozoon is exactly such a (eukaryotic) flagellum. We will see

how the internal molecular motors force the internal filaments to slide in an oscillatory

fashion, giving rise to a wave pattern on the sperm tail. This then leads me to the open

questions: How are these motors coordinated and how can a theoretical framework be set

up to quantitatively predict the beating pattern? Consequently I review a theoretical

framework developed by Camalet and coworkers (Camalet, Julicher et al. 1999; Camalet

and Julicher 2000) that potentially answers these questions and I also introduce some

extensions to this work that are motivated by my experimental findings.

In the second part I present the experimental work to measure the waveforms of a

beating bull spermatozoa with high precision under different conditions. The movies were

acquired with a high-speed camera. I developed an automated image analysis tool

allowing the extraction of long time series of this waveform. In a subsequent Fourier

analysis I increased the precision by obtaining an averaged waveform. This data was used

to test the theoretical predictions by Camalet. I find a very good agreement between

experiment and theory given that some extensions to the original work by Camalet are

considered, namely a visco-elastic element at the base of the axoneme.  This project

leaves open questions hence further work and experiments are discussed.

In the third part I describe the discovery of a new phenomenon on how sea urchin

spermatozoa form dynamic vortices. I study this pattern in detail and introduce a novel

order parameter to quantify the order among many particles. I show that the array only

forms above a critical sperm density. I suggest a model to explain the origin of the pattern

and show by simulation that the model can account for the main features of the pattern.

Finally I estimate the typical interaction force between beating axonemes and draw

conclusions about their collective action in general.
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1. Present knowledge on axonemal beating

1.1. Abstract

In this chapter I summarize the earlier work concerning cilia and flagella by other

groups with a focus on the question how the beat of a spermatozoon can be described

quantitatively based on the knowledge of its molecular details. This is one of the central

questions of this thesis. Particular attention is given to the theoretical work by Camalet

(Camalet, Julicher et al. 1999; Camalet and Julicher 2000) since it is tested against my

experimental data in the succeeding chapter. Furthermore, I present and discuss some

extensions of the work by Camalet that are necessary to find an agreement with the

experimental data.

1.2. Cilia and flagella

First I introduce the reader to the organelles called cilia and flagella. Especially

the facts summarized in the first subsection are largely common textbook knowledge.

Therefore the original references are only given for a few special cases. For a deeper

introduction including original references I recommend the review articles (Gibbons

1981; Linck 2001).

1.2.1. Design, function and importance of cilia and flagella

Cilia and eukaryotic flagella are long, thin extensions that contain a structure

known as axoneme (Fig. 1). The typical dimensions of the axoneme are lengths ranging

from 10 µm up to 50 µm (axonemes with lengths into the millimeter regime have been

found as well) and diameters of ~200 nm. They are surrounded by a cell membrane and

sometimes by much thicker and highly specialized structures such as mitochondria.
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Figure 1: Cilia and flagella contain an axoneme and
show dynamic wave patterns. a High voltage electron
micrograph (EM) of a fixed sea urchin spermatozoon
showing an approximately sinusoidal wave pattern. b
Scanning EM of a fixed protozoon showing the
metachronal waves of the ciliary carpet on the surface.
c, d EM cross-sections of the basal body and the
axoneme itself with the characteristic 9+2 microtubule
arrangement. The letters A-C refer to the microtubule-
doublets and triplets. (Scale bar shown in a
corresponds to 5 µm in a, 10 µm in b, and 0.94 µm in
c and d. Images taken from the review by Linck
(Linck 2001)), original images by I. R. Gibbons (a), S.
L. Tamm (b), and D. T. Woodrum and R. W. Linck (c,
d).)

The typical

cross-section of an

axoneme is sketched in

Fig. 2a. It shows the

prototypical 9+2

arrangement of 9 outer

microtubule doublets

and a central

microtubule pair.

Dynein-motors are

arranged between the

microtubule-filaments

in a nine-fold rotational

symmetry. I will

devote a later section to

these filaments and

motors hence I am very

brief at this point. The

axoneme contains

many supporting and

presumably also

regulatory structures

such as the radial

spokes and the elastic

nexin links. The total

number of different

proteins present in an

axoneme is several

hundreds (~180

according to (Gibbons

1981) but ~700
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Figure 2: The essential structure of cilia and flagella is the
axoneme. a The cross-section of an axoneme shows the
characteristic arrangement of 9 outer microtubule doublets
(A+B) and a central microtubule pair. The microtubules are
supported by various protein structures such as the radial
spokes and the nexin links. Dynein motors are placed such
to enforce neighbored microtubule doublets to slide relative
to each other. The axoneme is surrounded by a membrane
(not shown). The diameter of the axoneme is in the order of
200 nm. b Side-view of an A-microtubule showing the
typical periodicity of the different proteins and protein
complexes along the axoneme. This arrangement varies
among species, furthermore different types of dyneins are
present within a single axoneme. (Image taken from the
review by Linck (Linck 2001))

according to newer

studies (personal

communication by

Charles Brokaw)). Part

of a microtubule

doublet is shown in

side view in figure 2b.

The polarity of the

microtubules is such

that the minus-end,

which is the natural

walking direction of

the dynein-motors, is at

the attachment point in

the cell body. This

attachment point is

called the base and

usually consists of a

basal body, a tubuline-

based structure to

which the microtubule

doublets are connected

(Fig. 1c). At the tip of

the axoneme the

microtubules are

loosely attached to the

membrane, but they are

free to slide relative to

each other. Many

deviations from this

prototypical axoneme
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can be found in nature. Figure 3 shows the design of a mammalian spermatozoon that has

further structural and functional elements surrounding the axoneme.

The terms cilia and eukaryotic flagella were given at a time before it was

recognized by electron microscopy that all these organelles share the same internal design

that is now called the axoneme. In contrast bacterial flagella are passive rods and have a

rotary motor at their base. Throughout this thesis the term flagella refers to eukaryotic

flagella if not explicitly stated.

Cilia and flagella, can undergo periodic, that is oscillatory, motion when active.

To generate the beat the dynein motors within the structure convert chemical energy by

hydrolyzing adenosine triphosphate (ATP) into mechanical work while they walk on the

microtubules. This motor activity forces neighboring microtubule doubles to slide relative

Figure 3: The mammalian flagellum varies along its length: The mammalian flagellum
contains the axoneme as the central functional unit, but it is surrounded by different
structural elements such as the mitochondrial sheath and the dense fibres. Therefore a
mammalian spermatozoon is much stiffer at the base compared to a sea urchin
spermatozoon for instance. (Image taken from (Fawcett 1975).)
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to each other. Due to structural constraints this sliding motion is converted into an

oscillatory bending motion. How these motors are coordinated to generate a periodic

beating pattern is a central question in the field. I will come back to this question at a later

point. The form of the beating pattern itself is regulated by the cells, e.g. changes in Ca2+

concentrations typically lead to changes in the symmetry of the waveform; in the

trypanosomid Crithidia it was even observed, that the direction of wave propagation can

be reversed (Holwill and McGregor 1976).

Cilia and flagella have distinct functions. The functional role of flagella is the

forward propulsion of cells, such as in spermatozoa. The beating pattern typically consists

of rather

symmetrical and

propagating

waves, often

planar or helical

(Fig. 4a). Cilia in

contrast are

usually shorter

than flagella and

are found very

often at high

densities on cell

or tissue

surfaces. A

cilium typically

beats in two

phases with a

faster power

stroke followed

by a slower

recovery stroke,

where the pattern

Figure 4: The wave-patterns of cilia and flagella are different: a The
wave-pattern of a spermatozoa are often planar and appear
approximately sinusoidal. b Left: The wave-pattern of cilia are
typically three-dimensional where a fast power stroke (1)
interchanges with a slower recovery stroke (2-5). b Right: A large
number of cilia at high surface densities can synchronize their beat-
phases in a spatial-temporal manner leading to metachronal waves
(see also Figure 1b). (Image taken from the review by Linck (Linck
2001))
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looks oar-like (Fig. 4b). Cilia can be found at very high surface densities in ciliary

epithelium or in single celled organisms such as Paramecium (Fig. 1b). These cilia beat

cooperatively in synchrony leading to metachronal waves. The function of a ciliary

epithelium is to propel fluids over its surface, leading for instance to the clearance of dirt

or to forward propulsion of such a paramecium.

The axoneme is broadly distributed among eukaryotes, also within the human

body. They are found in the ciliary epithelia of lungs, as tails of spermatozoa and in the

primary cilia during early development. Furthermore, non-motile forms exist as

supporting structures such as in the hair-bundle or the photoreceptor cell of the eye.

Consequently, there are many diseases related to dysfunctional axonemes. Immotile

sperm tails cause infertility, paralyzed or uncoordinated tracheal cilia causes chronic

bronchitis, and an immotile primary cilium causes situs inversus, to give three prominent

examples. This highlights the importance of studying these structures, not only from a

purely scientific but also from a medical point of view.

To summarize, the axoneme is a broadly distributed structure in nature, serving

different functions. Its key components are microtubules and dynein-motors, leading to

the capability of active motion of the axoneme. The questions that I want to focus on are:

Why does the axoneme oscillate and can I find a quantitative theoretical framework that

predicts the beat-characteristics from the molecular structure of the axoneme?

1.2.2. How to describe the axonemal beat? – A historical account

To achieve a quantitative understanding of the axonemal beat several conceptual

steps took place over the last decades. In this subsection I give a historical sketch of the

main findings and concepts relevant to this thesis. These lead me to the open questions.

Only the most relevanct work is referenced since the literature is huge. I focus on the

work on spermatozoa as the subject of study of this thesis, although most of the presented

findings apply to cilia as well.

Taylor in 1951 (Taylor 1951) was the first one to realize, that the Reynolds

number for self-propelled cells are very low (10-6 to 10-4 for individual cilia and 10-2 to 10-

1 for protozoa (Gibbons 1981)), hence propulsion is different than for a human in water,

for instance. At low Reynolds numbers inertia is negligible. In order to gain any directed
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movement by periodic forcing the time reversal symmetry needs to be broken. For a nice

introduction I recommend “life at low Reynolds numbers” (Purcell 1977). In order to

describe the forward movement of a spermatozoon, the Stokes equation was solved by

Hancock in 1953 (Hancock 1953), which is linear at low Reynolds numbers. In 1953,

Gray and Hancock simplified the description of the viscous fluid by using two local drag

coefficients (Gray and Hancock 1955), furthermore they calculated the forward velocities

of spermatozoa from the observed waveforms. These forward-velocities are in reasonable

agreement with the experimental observations. Since then such forward-velocities have

been calculated for different beat patterns and head-sizes (Blum and Hines 1979).

Generally it can be concluded, that predicting swimming velocities from a certain beating

pattern is understood very well in first approximation.

It was also Gray in 1955 (Gray 1955) who took the first photographs of

waveforms of single sea urchin spermatozoa. Sea urchin spermatozoa are easily

observable due to their circular swimming paths and planar beat patterns when close to

surfaces. The waves of the sperm tail have almost constant amplitudes along the tail. The

waveforms of other spermatozoa, especially bull, were observed in succeeding years

(Gray 1958; Rikmenspoel, Vanherpen et al. 1960). It was found for bull spermatozoa that

the amplitude increased towards the end of the tail, in contrast to sea urchin spermatozoa.

The next question was how certain waveforms and beating patterns are generated.

In 1958, Machin was the first one (Machin 1958) to give a mathematical treatment on this

problem. He correctly concluded that the force must be generated all along the length of

the axoneme due to the not-decaying amplitude of the waves in such a highly over-

damped environment. (Actually, Sharpey hypothesized the same scenario already in 1835

(Gibbons 1981).) At that time it was not clear what the force-generators were and Machin

assumed contractile elements along the flagellum. He set up a fourth order differential

equation that included the flexural rigidity of the flagellum, the viscous drag of the

surrounding fluid and the forcing of active internal elements. In 1963 (Machin 1963)

Machin reasoned that the oscillations resulted from a feed-back loop being a nonlinear

oscillator that determines amplitude and frequency of the oscillation, furthermore

allowing the synchronization of close-by flagella as described in 1928 by Gray (Gray

1928).
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The next breakthrough was achieved when Gibbons identified the dynein arms

between the microtubules as the force-generating elements (Gibbons and Rowe 1965;

Gibbons and Gibbons 1972). This discovery led to the concept of motor driven oscillatory

microtubule sliding. Gibbons was able to reactivate demembranated sea urchin

spermatozoa with Triton in an ATP-buffer obtaining beating patterns very similar to those

in live spermatozoa (Gibbons and Gibbons 1969). Precursors of this technique but with

less success had been developed by others, mainly Hoffmann-Berling (Hoffmann-Berling

1955) and Brokaw (Brokaw 1961). This demembranation and reactivation technique

turned out to be a powerful tool since the beating patterns and frequencies under various

bio-chemical conditions could be studied. Gibbons treated such demembranated

spermatozoa with trypsin to destroy structural components of the axoneme (Summers and

Gibbons 1971). Adding then ATP to the buffer he found an up to 8-fold elongation of the

structure. This experiment showed (also with some further experiments that I do not want

to explicitly mention here) that the molecular motors force the microtubules to slide

relative to each other by molecular motors. He named these motors dynein. As found later

the trypsin digestion led to the disruption of the nexin links and radial spokes, while the

microtubules and the dynein-motors stayed intact. From these experiments, it was

reasoned that inside an intact axoneme the sliding of the axoneme is partially hindered by

structural elements leading to a conversion of the microtubule sliding into a bending of

the axoneme. Correspondingly the so-called sliding-bending hypothesis was formed

which is now a well-established and supported paradigm in the field. It has furthermore

been shown in electron microscope studies by Satir (Satir 1968), that the microtubules are

free to slide at the tip but not able to slide at the base, supporting the sliding-bending

hypothesis.

Further insight came from micro-manipulation experiments. Micro-needles were

used to measure flexural rigidities on immotile axonemones and forces produced by

active axonemes (Lindemann, Rudd et al. 1973; Okuno and Hiramoto 1979; Schmitz,

Holcomb-Wygle et al. 2000). The values obtained agree very well with what we know

today from single molecule experiments on microtubules (Gittes, Mickey et al. 1993) and

dynein motors (Shingyoji, Higuchi et al. 1998). Furthermore, active spermatozoa were

mounted on their head to a piezo-driven micro-needle and the beat-characteristics under
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different stimuli were studied (Gibbons, Shingyoji et al. 1987). It was found that the

axoneme adapts to the externally imposed frequency, which shows, that the axonemal

oscillator structurally couples and feedbacks to the actual beating state of the axoneme.

This is in contrast to the possibility of some autonomous oscillator periodically

stimulating the motors, for instance in the form of a chemical oscillator sitting in the head

of a spermatozoon. The same conclusion had already been drawn by Machin (Machin

1963) from the fact, that two nearby spermatozoa can synchronize their beat (Gray 1928).

Another important experimental finding was that a beating spermatozoa can be

stalled in any part of the beat cycle with a micro-needle while after removing the needle

the flagellum resumes is beating cycle in the same part of the beat cycle as it has been

before (Schmitz, Holcomb-Wygle et al. 2000). Furthermore demembranated spermatozoa

could be “frozen” into a waveform by quickly taking away the ATP, while re-adding the

ATP led to resuming of the beat at the same part of the beat cycle (Gibbons and Gibbons

1974). Both experiments indicate that there is a structural memory within the axoneme

about the beating state that can be preserved over times longer than the typical beating

period.

Given the nine-fold symmetry of the axoneme (Fig. 2a) and the unidirectional

movement of the dynein-motors, it is obvious that the axoneme might twist if all the

motors were pulling at the same time. But it is not obvious how oscillatory motion can be

achieved in this way. Consequently, the focus of the research shifted to the question, how

the motors are controlled or coordinated to enforce microtubule sliding in the required

spatio-temporal order to generate the observed wavy and oscillatory beat patterns. This is

considered as one of the main open question in the field up to today.

Suggested concepts for this motor coordination (among others) are curvature

control (Brokaw 1971; Brokaw 1972), geometrical switches within the axoneme that

change the inter-microtubule spacing and consequently changing the rate constants for the

motors (Lindemann and Kanous 1995), or spontaneous oscillations of collective motors

that are coupled to an elastic element (Brokaw 1975; Julicher and Prost 1997). (I will

discuss these concepts in a later subsection in more detail.)

Many analytical and numerical studies and simulations were carried out to predict

waveforms for certain concepts of internal motor coordination (Hill 1974; Brokaw 1975;
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Hines and Blum 1979). These predicted waveforms were compared to the waveforms of

spermatozoa from different species observed under various conditions such as increased

viscosities and changed ATP-concentrations. All of the published work demonstrated

waveforms that look reasonable under certain conditions and consequently making the

assumed concept a valid candidate for motor coordination. But often under extreme

conditions such as very high viscosity these descriptions break down. Usually it is hard to

judge whether this is simply due to some approximation leading to failure when the

approximation is not valid anymore or whether the assumed concept of motor

coordination as such is not adequately describing what actually happens inside the

axoneme. Especially due to the large number parameters it is often hard to judge what

influence each component has and how relevant it is for the real system.

Finally I want to mention that tremendous understanding of motor proteins at the

single molecule level has been achieved over the last two decades. I will review this field

in the following section. This understanding gives hope that the question of motor-

coordination within the axoneme can be posed more sharply and also can be answered in

the near future. Further insight comes from more simple but similar systems of molecular

motors showing oscillations, such as the spindle oscillator (Grill, Julicher et al. 2005).

In summary the sliding-bending hypothesis as the principle underlying the

axonemal beat is well established, and it leads to a quantitative description that combines

the internal motor-forces with the flexural rigidity of the axoneme and the external fluid

drag. It is furthermore clear that the axoneme oscillates via a feedback loop. This means

that the motor activity couples back to the actual beating state which then determines the

frequency and amplitude of the oscillation. This is in contrast to an externally driven

oscillation. The main open questions are: How is this periodic motor activity achieved and

coordinated? Can I find a theoretical framework based on the molecular details of the

axoneme that predicts the waveform under various conditions? What role do the various

structural details play, such as the connection of the axoneme to the base or the nexin

links along the axoneme?
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1.3. Dynein – a molecular motor

In this section I sketch a picture on how molecular motors work – alone or in large

numbers. I do not restrict myself purely to dynein as the motor acting inside the axoneme,

instead I also comment on kinesin and myosin since many concepts on how dynein does

and might work were developed on these other two. Furthermore I focus on the question

how such motors can generate oscillations. There is definitely much more to be known

about motor proteins – I refer the interested reader for a deeper introduction to (Schliwa

and Woehlke 2003) (Schliwa 2003) (Howard 2001).

1.3.1. Motor proteins and the cytoskeleton

Motor proteins are

enzymes that convert

chemical energy into

mechanical work by

hydrolyzing ATP. (In the

following I restrict myself to

the so-called cytoskeletal

motor-proteins.) The first

cytoskeletal motor protein

discovered was myosin in

muscles (Huxley 1957),

followed by dynein (Gibbons

and Rowe 1965) in

axonemes, and by kinesin

(Brady 1985) being

responsible for transport in

axons. Each of these motor-

proteins forms a class by

itself, meaning that many

different isoforms of e.g.

Figure 5: The different cytoskeletal motors as seen by
EM. Upper left: 3-headed ciliary dynein from
Tetrahymena. Upper right: 2-headed cytoplasmic dynein
from chick cells. Lower left: Myosin from
Acenthamoeba. Lower right: Kinesin from chick brain.
(Scale bar: 40 nm. Image taken from (Hollenbeck 1989).)
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dynein exist even in a single species. These motors have various functions. For instance

dynein does not only drive axonemal motility, another type of dynein is also present in the

cytoplasm being responsible for the intra-cellular transport towards the nucleus. Figure 5

shows the electron micrographs of the different motors.

These motor proteins walk upon filaments that constitute the cytoskeleton. Figure

6 shows the three main filaments, namely actin filaments, microtubules and intermediate

filaments. These filaments have a polarity setting a preferred direction for the motors to

walk to. While both, kinesin and dynein, walk along microtubules, the former moves

towards the “+”-end

while the later

towards the “-“-end.

Myosin in contrast

walks along actin-

filaments. Actin

filaments and

microtubules are

made of proto-

filaments that have a

dynamic structure;

that is, they can

shrink and grow.

Microtubules are

hollow cylinders with

a circumference of

typically 13

protofilaments but

other arrangements

are possible such as

the microtubule

doublets found in the

axoneme. The

Figure 6: The cytoskeleton consists of three main types of
filaments: a The actin filament is built from monomers and has
the shape of a double helix. b The microtubule is a hollow tube
formed from tubuline dimmers. c The intermediate filament is a
bundle made of various types of monomers. (Image taken from
the review by Insall (Insall and Machesky 1999).)
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periodicity along the microtubule is 8 nm as given by the size of the dimers in the

protofilaments. This periodicity for instance determines the step size of kinesin. Actin

filaments in contrast form a left-handed helix of actin monomers with a full period of 72

nm. Hence the lattice constant as seen by a motor is 36 nm.

These cytoskeletal filaments have various functions: First, they form a scaffold

that is a main determinant of the cell-shape. The persistence length of a microtubule for

instance is 6 mm (Howard 2001), hence over a typical cell diameter of 10 µm or the

length of an axoneme of 50 µm the microtubule is stiff, accordingly it forms the

“backbone” of axons in nerve cells for instance. Actin filaments in contrast are much

softer and have a persistence length of 15 µm (Howard 2001). Secondly, microtubules and

actin filaments serve has “highways” for the motor-proteins for intracellular transport.

This leads to directed transport, which is furthermore faster than diffusion on relevant

cellular length scales, such as to transport an organelle inside a cell over 1 µm (Howard

2001). Thirdly, these filaments are involved in dynamic process in cell motility such as

the actin-polymerization-front in keratocytes and microtubule-based chromosome

segregation during cell division.

These cytoskeletal based motors are not the only motor proteins that exist. For

instance the DNA-polymerase, which walks along the DNA to synthesize mRNA, or the

ATP-synthase, which is a rotary motor sitting in the membrane and using a proton-

gradient to generate ATP from ADP and P, and many others are also called motor

proteins. For a more general reading I refer to (Schliwa 2003).

1.3.2. Motor concepts: Lessons from kinesin and myosin

Starting from a molecular picture, it is natural to ask how a single motor protein or

a group of them manages to perform a directional movement relative to the lattice of a

filament. This involves a series of periodically performed conformational changes of the

protein. I want to explain the concepts developed to describe the functioning of such

proteins using kinesin and myosin as examples. These concepts were developed while

studying these two, which have many things in common but also show substantial

differences. Dynein itself is not as well studied as the other two – especially due to its
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comparatively larger size. But the concepts presented here are applicable as well to

dynein, and we should not be surprised if the study on dynein brings up more concepts.

As a first example I discuss conventional kinesin. Kinesin has two identical heads

that alternately step along the lattice in a so-called hand-over-hand mechanism  (Fig. 7)

(Schief, Clark et al. 2004), very similar to a pedestrian walking along the street. This leads

to the concept of processivity that describes whether a single motor can walk or whether

many motors are required. Kinesin is a processive motor. For each step kinesin takes it

hydrolyses one molecule of ATP. Both heads are highly coordinated concerning the

stepping and the nucleotide binding state they are in. This way of forward movement also

requires that always one head is bound to the filament at any given time to prevent the

fall-off of the motor from the filament. The maximum speed that a kinesin molecule can

achieve is then given by v = k !d , where d is the step-size and k the hydrolysis rate of a

two-headed kinesin in the presence of microtubules. The step-size for kinesin has been

measured to be d=8 nm, which is the lattice spacing of a microtubule. Together with a

hydrolysis-rate at of k=100 1/s for the single head this leads to a maximum speed of

v=800 nm/s, which has consistently been measured in other setups (Howard 2001). This

brings me to the concept of the duty-ratio, which is defined as the fraction of the time of

the ATP-cycle each head spends attached on the filament. For conventional kinesin this

duty ratio clearly has to be at least 1/2 or larger meaning that one head is always attached

to the lattice.

The next important question is how the speed is affected if a load is applied. It was

found that the speed decreases with increasingly opposing force leading to the concept of

force-velocity curves. Typically these force-velocity curves can be approximated by a

linear relationship F = Fstall(1! v /vmax ), where F is the applied force, v the actual speed,

F
stall

 the stalling force at which the motor does not move anymore, and v
max

 the maximal

velocity the motor can walk. Such curves have been measured by various techniques, e.g.

with optical traps. The stall force for kinesin has been measured to be F=~6 pN (Howard

2001). Considering the step size of d=8 nm we find that the maximum work is

W = Fd = 5 !10
"20  J, which can be compared to the free energy of a single ATP-molecule

inside the cell of G = !10 "10
!20  J (Howard 2001). Hence one can say that kinesin is

about 50% efficient at high loads. Finally I mention the concept of run length, which
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measures the

number of steps a

motor can take

before it falls off

the lattice. For a

single kinesin in

the absent of any

forces this was

measured to be

125 steps on

average (Howard

2001).

Myosin is

different in a few

very important

aspects compared

to kinesin. It

moves along actin

filaments. Some

members of the

myosin-family exist, e.g. myosin V (Howard 2001) that also have two heads like kinesin

and move in a similar processive manner. But in contrast, myosin II, though it has two

heads like kinesin, cannot move on its own along the lattice and hence it is non-

processive. Instead myosin II molecules have to work together in large numbers. In

muscles, all motors are attached to a common backbone hence effectively forming a

multi-headed motor. Some fraction of these heads is always attached to the actin filaments

on which the motors walk on. The other fraction of heads is detached and recovers from

their power stroke. Myosin II is a low duty ratio motor; under low load a myosin head

spends most of the time of its hydrolysis cycle detached from the filament. Only for a

very short fraction of the hydrolysis cycle the motor attaches to the filament and does its

so-called working stroke. The distance that the myosins travel collectively during the time

Figure 7: The hydrolysis cycle of kinesin: Kinesin is a dimer that
walks in a hand-over-hand fashion while hydrolyzing ATP. (Image
taken from (Schief, Clark et al. 2004), see also for values of the
rate constants).
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that a single motor spends attached to the filament defines the working distance of a

single myosin. This distance corresponds directly to the conformational change the

molecule undergoes while being attached to the actin filament. Note that distance traveled

during a full hydrolysis cycle is much larger, since for the most part of the hydrolysis

cycle the motor is detached from the filament. Since the magnitude of this working stroke

depends on the applied load there is no well-defined step-size as for kinesin. Under low

load this working distance has been measured to be d=5 nm (Howard 2001). The speed of

collective myosin motors is then limited by the time !
on
= 1  ms that each motor spends

attached on average. This maximum speed then is v = d !"
on
= 5000  nm/s. Hence many

myosin motors together can obtain much higher speeds than a single kinesin.

A force velocity curve for single myosin head does not make sense since it is not

processive on its own. But the force-velocity curve of many myosins working together

can be measured and maximum forces generated per motor were found to be F=1.5 pN

(Howard 2001). The shape of the force-velocity-relationship of collective myosins could

also be approximated by a linear relationship, although it clearly has some concave

component (Howard 2001) stemming from the fact, that at higher forces and accordingly

at lower speed each motor spends a larger portion of the hydrolysis cycle attached.

Consequently the fraction of attached motors is larger at lower speeds, which in turn

lowers the force pulling on each motor. Hence a large number of myosin motors can

combine very high velocities under no load with very high pulling forces at very low

velocities, a feature we can notice from our muscles everyday.

To summarize, conventional kinesin is processive and hence a single molecule can

walk on its own, while myosin typically (such as myosin II) is adapted to function in large

numbers to obtain much higher speeds under no load or compromise the high speed for

higher forces.

1.3.3. Dynein – a more complicated motor

Our knowledge about dynein (Oiwa and Sakakibara 2005) is certainly behind that

of kinesin and myosin. It is a much larger protein than the other two. Actually it is a

complex of a few smaller proteins, generally termed by their size as heavy, intermediate

and light chains. This leads to the following complications: First, it is much more
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complicated to purify functional proteins (Gibbons and Rowe 1965) (Nishiura, Kon et al.

2004). Secondly, no crystal structure of all the subunits has been obtained yet (Burgess,

Walker et al. 2003). And third, the many subunits leave much more functional freedom

possibly leading to more complicated conformational changes and regulation

mechanisms. Nevertheless, it was shown by sequence analysis that dynein is a member of

the AAA-family (ATPase associated with various cellular activities) which has six

potential nucleotide binding sites. Four of these sites have been shown to be active and it

is speculated that some of these binding sites rather have a regulatory role, e.g. upon

binding of ADP the properties of the whole motor change (Kon, Nishiura et al. 2004).

From the cryo-EM studies (Burgess, Walker et al. 2003) also the flexibilities of different

dynein parts were estimated (Lindemann and Hunt 2003) leading to the hypothesis, that

the way in which dynein walks has to be different at high and low loads.

Two main categories for dynein exist (Oiwa and Sakakibara 2005), namely

cytoplasmic and axonemal dynein.

Cytoplasmic dynein is similar to

kinesin and myosin V since a single

dynein complex consists of two

heads and can walk on its own

along microtubules, presumably in

a similar hand-over-hand

mechanism as kinesin. Cytoplasmic

dynein is responsible for a variety

of intracellular processes such as

organelle transport, organization of

the mitotic spindle and

chromosome segregation.

Axonemal dynein on the

other hand is similar to muscle

myosin concerning its function: It

works in large numbers and has a

low duty ratio, leading to the high

Figure 8: The hydrolysis cycle cytoplasmic
dynein: Cytoplasmic dynein walks coopertatively
in large numbers (only a single dynein head is
shown; M denotes the Microtubule and D stands
for Dynein). The motor detaches from the
microtubule upon ATP-binding, that is in the
absence of ATP all motors are bound and the
axoneme is in a rigor state. (Image taken from
(Johnson 1983), see also for these values of the
rate constants.)
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velocities of v=7000 nm/s as can be estimated from microtubule sliding inside the

axoneme while studying the beating pattern of sea urchin spermatozoa (Howard 2001). As

in the case of myosin these sliding speeds can be understood from its off-rate k=300 1/s

(Kamimura and Kamiya 1989) and possible step-sizes of d=16 nm (Burgess, Walker et al.

2003) leading to maximum sliding velocities of v=4500 nm/s. Maximum forces of dynein

have been measured to be 6 pN (Shingyoji, Higuchi et al. 1998), which is similar to

kinesin and myosin. The hydrolysis cycle of axonemal-dynein is shown in figure 8.

To summarize, axonemal dynein is similar in many aspects to myosin II, although

due to its larger size it might show some additional and very fundemental features.

1.3.4. How to describe the oscillations of the axonemal motors?

Oscillations involving molecular motors can be found in many instances, e.g.

flight muscle (Pringle 1977), spindle oscillation (Grill, Julicher et al. 2005), or the

axoneme as my object of interest.

The cytoskeletal motors are typically mono-directional. Most of the oscillations

involving molecular motors are coupled to an elastic element and take place at low

Reynolds numbers hence involving no significant inertia. Therefore these oscillations

cannot be simply understood as a mass coupled to a spring undergoing oscillations while

the motors only replenish the dissipated energy. This raises the question: How can

molecular motors, and in particular dynein inside the axoneme, give raise to oscillations?

Different mechanisms have been suggested to explain the oscillations of the

axoneme and I want to summarize the most prominent ones. As pointed out already

earlier, it is clear from experiments that the oscillation couples back to the actual status of

the oscillation. Therefore the oscillator is somehow contained within the structural

(mechanical) part of the axoneme. This is in contrast to an external oscillator being

independent of the beating state and periodically stimulating the axoneme. I describe the

main suggestions presented over the past decades:

The local curvature determines the activity of the motors. Termed as curvature

control, this was one of the earliest ideas (Brokaw 1971; Brokaw 1972) after the proposal

of the bending-sliding mechanism. Many simulation studies and also analytic studies were

undertaken by Brokaw showing the feasibility of the approach but also running into
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difficulties to reproduce wave patterns under extreme conditions. A related idea making

the molecular mechanism of such a regulatory mechanism more explicit was that the

structural changes within the microtubules due to bending influence the rate constants for

the motor activity (Hines and Blum 1979).

Collective molecular motors can undergo spontaneous oscillations. This concept

has been proposed and studied in theoretical detail (analytical and numerical) by Brokaw

(Brokaw 1975) and by Juelicher and colleagues (Julicher and Prost 1997). Their analysis

shows, that a large number of motors coupled elastically to the environment can undergo

a dynamic instability leading to oscillations. Plotting the force-velocity relationship of

these motors for a parameter set showing oscillations, a negative compliance is found.

Dynein is an oscillating force generator. The idea is, that a single dynein motor is

an oscillator on its own. An optical trap experiment by Shingyoij (Shingyoji, Higuchi et

al. 1998) shows, that a single dynein molecule (or at maximum two) are capable of

undergoing oscillations. The concept of the dynein motor being an oscillator is rather

vague, but roughly means that the motor itself moves into both directions in a periodic

manner. Therefore the motors inside the axoneme do not have to alternatively pull the

microtubules into opposite directions. Instead all motors contribute at all instances to the

oscillatory sliding. This idea is based on this single experimental work, which

unfortunately has never been repeated and leaves open questions upon its interpretation.

Structural changes within the axoneme hinder the motors on each side

alternatively in reaching the opposite microtubule. Such models are based on

observations in electron micrographs showing that the spacing between two

neighboreding microtubule doublets is larger if the dynein arms are un-bound to the

opposing microtubule-doublet then when they are bound (Gibbons and Gibbons 1973). It

was argued that structural (geometric) constraints exist within the axoneme such that

while the microtubule doublets on one side of the axoneme are coming together the ones

on the opposite site have to get displaced apart. Consequently only the motors on one side

can be active at any time at given piece of the tail. It is further argued that while the

motors on one side bend the axoneme in one direction, forces built up at the basal region

of the axoneme. These forces then rip off the active motors from the microtubules by

pulling the microtubule doublets apart. At the same time the microtubule doublets on the
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other side are pushed together activating the motors there. After each switching the

activity of the motors travels down the tail. This model has been termed “geometric-

clutch-model” and its feasibility has been shown by computer simulations (Lindemann

1994).

Further concepts for the motor coordination exist that I do not want to explicitly

mention. The question now is how to test and possibly rule out these explanations. Since

we are dealing with such a complicated system, we need more than just sophisticated and

insightful experiments. It is also important to develop a reductionistic framework

allowing one to discriminate between the key components vs. all the details that lead to

minor corrections.

Based on the analytical work by Machin (Machin 1958) and successors, a generic

description of the axonemal beat was presented by Camalet and coworkers (Camalet,

Julicher et al. 1999; Camalet and Julicher 2000), which is based on the sliding-bending

hypothesis but where no particular molecular model for the motors was considered nor

how these motors are coupled. Hence general statements can be made that should be valid

for all motor models. Particular motor models can of course be incorporated as well and a

simplified two state model was discussed that gives rise to spontaneous oscillations

(Julicher and Prost 1997). I will discuss this model at a later point. This generic

description is then expanded in its different order approximations. This has the advantage

that every term can be analyzed systematically, compared to experimental observations

and then judged in its importance for the axoneme itself. In the original work by Camalet

(Camalet, Julicher et al. 1999; Camalet and Julicher 2000) the linear order was presented

and discussed (actually it was done up to second order since these terms canceled for

symmetry reasons) being consistent with the earlier analytical work by Machin and

others.

In this thesis I will compare my experimental data to exactly this generic

description by Camalet. I will test how well it can account for this data and discuss

necessary extensions of this framework.  And we will see that to a first approximation an

additional term has to be incorporated into the theory that seems not to be related to the

coordination of the motors at all.
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1.4. A generic theory for the axonemal beat

In this section I discuss in more detail the theoretical tools that have been

developed and suggested in the past decades by other groups to describe the axonemal

beat. In particular I focus on the more recent work by Camalet and coworkers (Camalet,

Julicher et al. 1999; Camalet and Julicher 2000), which incorporates these earlier results

but is also mathematically very stringent, following the approach of a systematic order-

expansion. In the following I refer to this work as “Camalet”. The molecular motors are

incorporated in a generic way hence the results should be independent from the particular

motor model. To quantify the action of these collective motors the self-organized

oscillation of motors as suggested by Jülicher (Julicher and Prost 1997) can be applied.

The experimental work presented in this thesis is partly motivated to explicitly test

and possibly extend the theory by Camalet. I sketch the derivation by Camalet and

introduce two extensions namely the effect of a sperm tail with varying stiffness along its

length and the influence of a visco-elastic element at the base, where the tail is attached.

Both extensions are motivated by the experimental results presented in the following

chapter. In the derivation I focus on the differences compared to the derivation by

Camalet, the interested reader is referred for more detail to this original work.

1.4.1. A two-dimensional description

The theory presented by Camalet describes the two-dimensional beat of an

axoneme, where two filaments slide relative to each other (Fig. 9). The centerline of the

axoneme in space is given by r(s) , where s is the arc-length of the axoneme with s=0 at

the base, e.g. at the head of the spermatozoon, and s=L at its tip. Assuming

incompressibility of the filaments the relative sliding of the internal filaments !(s)  at

point s is found by integrating the local curvature C(s) along the filament starting from the

base:

!(s) = a C(s ')

0

s

" ds ' (1)

Here a is the filament-separation. Denoting the tangent on the filament with ! (s) ,

which is !
s
" (s) = C(s) , we find
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!(s) = a "
s '
# (s ')

0

s

$ ds ' = a # (s) %# (0)( ) (2)

Hence the tangent on the filament is linearly related to the internal sliding of the

filaments. In the case of small amplitude motion the outline of the tail can be described in

terms of the deviation from a straight rod measured by h(s) , where !
s
h(s) =" (s) , which

is called Monge-representation.

1.4.2. The enthalpy functional

The enthalpy functional G takes into account the bending of the filaments and the

internal stresses due to active and passive elements inside the axoneme:

G =
!

2
C
2
+ f" +

#

2
$
s
r( )
2%

&'
(

)*
0

L

+ ds (3)

Here L is the length of the axoneme, ! is the bending elasticity of the axoneme, f is the

effective active force per unit lengths which

forces the filaments to slide relative to each

other and !  is the Lagrange multiplier

function ensuring the incompressibility of

the system.

After a partial integration and using

(eq. 1) we find

G =
!

2
C
2 " aFC +

#

2
$
s
r( )
2%

&'
(

)*
0

L

+ ds

(4)

where

F(s) = ! f (s ')
s

L

" #ds '

(5)

Determining the variation !G  with respect

Figure 9: The complex structure of the
axoneme is reduced to a pair of sliding
filaments: Two filaments are spaced
apart by the distance a. The filaments are
connected at the base and free to slide at
the tip leading to a sliding displacement
! . The arc-length of the filament pair is
described by s. The motors (not shown)
generate local forces f (s) . (Image taken

from (Camalet and Julicher 2000).)
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to variations in !r we find

!G

!r
= "

s
#"

s
C $ af( )n $ % t&' () (6)

where  !  plays the role of a physical tension and n  and t  are the normal and tangent on

the outline r .

1.4.3. External fluid friction and the dynamic equation

As discussed earlier the Reynolds numbers for spermatozoa is much lower than 1

hence every motion is highly over-damped and the inertia has negligible influence on the

motion.

Using the simplest Rouse-dynamics, the hydrodynamic forces acting on the sperm

tail are approximated by two local (perpendicular and parallel) friction forces with the

ratio of their friction coefficients being 2 (Howard 2001). Such a Rouse-dynamic is of

course an approximation since each part of the tail causes fluid movements elsewhere in

the surrounding fluid hence the relative fluid movement at each tail point is not the same

as relative to the lab frame. This leads to logarithmic corrections, which can be neglected,

especially when low amplitude beating is considered. But it is questionable, whether this

is sufficient to precisely describe the waveforms of spermatozoa that can be found

experimentally, especially in cases of extreme waveforms such as described by Woolley

(Woolley and Vernon 2001).

Now we relate the external drag to the enthalpy functional (eq. 6) to obtain a

dynamic equation:

 

!
t
r = "

1

#$

nn +
1

#
!

tt
%

&'
(

)*
+
,G
,r

(7)

Here nn and tt are the normal and tangential projection operators, 
 
!
!
and!" are the parallel

and orthogonal friction coefficients respectively.

Analogous to the derivation by Camalet we then derive in linear order a dynamic

equation for the waveform! (s,t)

!
s

3 "!
s
# $ aF{ } = $%&!t# (8)

or alternatively in the Monge representation
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!
s

2 "!
s

2
h # aF{ } = #$%!th (9)

where the flexural rigidity !  can vary along the tail.

1.4.4. The boundary conditions

Different boundary conditions have been discussed by Camalet. I will focus in the

following on the case where the spermatozoon is clamped with its head that is the head

does not carry out any motion. In small amplitude approximation Camalet showed that the

four boundary conditions are given as:

h(0) = 0

!
s
h

s=0
= 0

!
s

2
h

s=L
= 0

!
s
"!

s

2
h # aF( )

s=L
= 0

(10a-d)

We convert these boundary conditions in the ! (s,t)  representation, where we

substitute the relation !
s
h =" . Since this is not possible directly for the first boundary

condition we substitute h(0) = 0  in (eq. 9) and then make the substitution !
s
h =" .

Hence we find for the boundary conditions:

!
s

2 "!
s
# $ aF( )

s=0
= 0

# (0) = 0

!
s
#

s= l
= 0

!
s
"!

s
# $ aF( )

s=L
= 0

(11a-d)

1.4.5. Oscillatory solution

Now we use !sF(s,t) = f (s,t)  (eq. 5) and seek an oscillatory solution by making a

Fourier-ansatz with 
 
! (s,t) = !! (s) " e

i# t
 and f (s,t) = !f (s) " e

i# t , where !  is the angular

beat frequency, which leads to

 
!s
3 " (s) # !s !$ (s){ } % a!s

2 !f (s) = %i&'(
!$ (s) (12)

and the boundary conditions
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!s
2 " (s) # !s !$ (s)( ) % a!s !f (s){ }

s=0
= 0

!$ (0) = 0

!s$ s=L
= 0

!s " (s) # !s !$ (s)( ) % a!f (s){ }
s=L

= 0

(13a-d)

1.4.6. Active internal visco-elasticity

The forcing term
 
!f (s)  can be described in linear response as

 
!f (s) = !(",# ) !$(s) (14)

where 
 
!!(s)  is the first Fourier mode of the sliding displacement !(s,t) . !(",# )  is the

linear response. It describes the influence of the active motors and the passive internal

visco-elastic elements, such as stretchable and detachable nexin links leading to protein-

springs and protein-friction. Hence !(",# )  can be written as

 !(",# ) = k + i$# + F(",# ) (15)

Here k is the stiffness and ! is the friction per unit length of the passive internal elements,

while the last term  F(!," ) is the linear response of the active motors themselves.

For a particular two state model (Julicher and Prost 1997) this motor response is

 

F(!," ) = #$k
CB
!
i" /% + (" /% )2

1+ (" /% )2
= #$

U

l
2

2& 2'

%
(
i" /% + (" /% )2

1+ (" /% )2
(16)

Here!  is the motor density, k
CB

 is the cross-bridge elasticity of the motors, ! is the

characteristic ATP-cycling rate.! plays the role of a control parameter (0 <! < "
2 ) that

is related to the rate constants of the motors and measures the distance of the system form

thermal equilibrium. Furthermore the substitutions ! = 2" 2# /$  and k
CB

=U / l
2  with U

being the typical potential height and l being the wavelength of the potential landscape

can be made.

We note that the real and imaginary part of !(",# )  can be positive or negative.

Hence the system can be resting or become unstable and starts oscillating, depending on

the general parameter choice. In particular, if !  increases, e.g. with increasing ATP-

concentration, the real or imaginary part (or both) of !(",# )  becomes positive at a
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critical !
c
 and the axoneme starts beating. In the scenario presented by Camalet this

corresponds to a supercritical Hopf-bifurcation.

The motor response in (eq. 14) is a generic term, which is independent of the

particular motor model. The only exceptions are: First, a constant force is acting

additionally, which breaks the assumed symmetry and would lead to an average

curvature. Actually, this averaged curvature is found and hence it would be very

interesting to discuss, what this constant force might relate to (e.g. it could already stem

from the axonemal 9-fold symmetry which together with the glass surface upon which the

spermatozoon is swimming leads to a symmetry breaking). Since we discuss an approach,

where the eigenmodes separate, there is no loss of generality in neglecting such a constant

force and the corresponding average curvature, and hence we concentrate on the

oscillatory pattern in the first eigenmode. Second, this linear term could exactly vanish

and some higher order term is the governing term. This is possible, but generally a rare

case.

1.4.7. Sliding at the base

To my knowledge in earlier theoretical work it has been exclusively assumed that

no filament sliding is possible at the base. Motivated by my experimental findings I

introduce a basal visco-elastic element that allows such sliding. This is also supported by

recent experimental work directly demonstrating basal sliding with electron micrographs

(Vernon and Woolley 2004). The enthalpy functional (eq. 3) then acquires an additional

term:

G ' =
K

2
!
0

2 (17)

where K is the stiffness of the visco-elastic element and !
0
 denotes the basal filament

sliding. The filament sliding (eq. 1) needs to be corrected for !
0
:

!(s) = a C(s ')

0

s

" ds '+ !
0

(18)

Variations of the enthalpy functional and incorporating friction at the base then lead to a

dynamic equation describing the displacement at the base
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K!
0
(t) + f (s,t)

0

L

" ds = #$%t!0
(t) (19)

where !  describes the friction at the base and the integral term describes the motors all

along the length leading to the forces that deform this basal element.

Now we can make the Fourier-ansatz as before to find

 

!!
0
= "

1

i#$ + K
!f (s)ds

0

L

% (20)

The internal forces in linear response are (eq. 14)

 

!f (s) = ! !"(s) = a! !# (s) + !"
0
/ a$% &' (21)

where 
 
!!(s) = a !" (s) + !!

0
 is the Fourier component of the filament sliding taking place

along the axoneme. Hence we find

 

!!
0
= "

a#
i$% + K + #L

!& (s)ds
0

L

' (22)

or alternatively to resolve for the motor response:

 

!f (s) = a! !" (s) #
a! 2

i$% + K + !L
!" (s)ds

0

L

& (23)

1.4.8. Varying flexural rigidity along the tail

Now I discuss that the flexural rigidity !  varies linearly with the length, which is

motivated by earlier measurements on bull spermatozoa (Lindemann, Rudd et al. 1973).

Hence ! (s) =!
0
+!

1
s , where !

0
 is the flexural rigidity at the base and !

1
 describes the

decrease in flexural rigidity per unit length. It is negative and is expected to lead to a

value of ! (s = L)  similar to the one of a pure axoneme.

Hence we find from equations (eq. 12)

 
!
s

3 "
0
+"

1
s( ) # !s !$ (s){ } % a2&!s

2
!$ (s) = %i'()

!$ (s) (24)

and
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!
s

2 "
0
+"

1
s( ) # !s !$ (s)( ) % a2&!s !$ (s){ }

s=0

= 0

!$ (0) = 0

!
s
$

s=L
= 0

!
s

"
0
+"

1
s( ) # !s !$ (s)( ) % a2& !$ (s) +
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2& 2

i'( + K + &L
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0
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+
,-

.
/
0- s=L

= 0

(25a-d)

If we explicitly carry out the differentiations we find:
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s

3
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(27a-d)

1.4.9. Results and discussion

Without the visco-elastic element at the base and a constant filament stiffness !

as presented originally in the work by Camalet we are dealing with a linear fourth order

differential equation with constant coefficients, which can be solved analytically leading

to solutions of the type 
 
!! (s) = Aje

k j s /L  with four complex k j , while the complex

amplitudes Aj determine the relative contribution of each of the solutions to the overall

waveform.

Using a set with typical parameters Camalet obtained beat-frequencies and

wavelengths being consistent with what had been observed experimentally by other

groups, furthermore they obtained realistic forward swimming speeds. Depending on the

boundary conditions different waveforms are selected, for instance in the case of a

clamped head the wave travels from the tip of the tail towards the base (which is in

contrast to my experimental observations as we will see later), while in the case of a

pivoting head or a freely swimming spermatozoon the wave travels from the base towards

the head. The traveling solutions themselves did not look particularly sinusoidal.
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Finally they argued, that nonlinear terms might play a much more important role

under natural conditions, possibly dominating the waveform.

1.4.10. Summary

I restate at this point all the relations that are needed in the next chapter to describe

the waveform of a spermatozoon that is clamped at its head. These are: First, the external

fluid friction is related to the bending rigidity of the axoneme and the effectively active

internal visco-elastic elements:

 
!
0
+ s "!

1( ) " #s
4
!$ (s) + 3!

1
#
s

3
!$ (s) % a2&#

s

2
!$ (s) = %i'()

!$ (s) (28)

Second, the internal effective forces are directly related to the waveform 
 
!! (s) :

 

!f (s) = a! !" (s) #
a! 2

i$% + K + !L
!" (s)ds

0

L

& (29)

where the effective internal response can be broken up in its active and passive parts:

 !(",# ) = k + i$# + F(",# ) (30)

And third, the four boundary conditions that select the solution to equation (eq. 28):
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 (31a-d)

I extended the original work by Camalet in two respects. First I explicitly took the

physical properties at the basal connection into account by introducing a visco-elastic

element at the base. Second I accounted for a varying flexural rigidity along the length. In

contrast to this initial work we are now dealing effectively with a linear fifth order

differential equation with non-constant coefficients, which is hardly solvable analytically,

hence needs to be solved numerically. (The fifth order is a consequence of substituting the

integral term in the last boundary condition and consequently transforming all equations

to another variable, leading to an increase in order by one.)
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1.5. Conclusions

In summary I discussed that cilia and flagella are broadly distributed organelles

containing a motile structure called axoneme. This axoneme contains the typical 9+2

arrangement of microtubules plus dynein motors which together constitute the main

functional components. Over the past decades lots of experimental and theoretical

knowledge has been accumulated, convincingly showing that a large number of molecular

motors (dynein) periodically force the internal microtubules to slide in a (usually)

oscillatory fashion. The knowledge of the molecular details is good enough to quantify all

parameters needed to for a theoretical description. One of the central open questions is

how these motors can collectively undergo this oscillatory motion.

Related to this question is the task of developing and proving a theoretical

framework that properly accounts for these cooperative motors and that is able to

quantitatively predict the observed beating patterns. I explicitly discussed in detail the

theoretical work by Camalet, which I will compare to the experimental data in the

following chapter. The work by Camalet has the conceptual advantage that it is an order

expansion and incorporates the molecular motors in a generic, that is model independent

way. Hence I can test to what extend this description agrees with the experimental data

and what additional terms have to be considered to make it a valid description for the

observed phenomenon. To be explicit, I already presented two extensions, namely that the

flexural rigidity varies along the axoneme and that there is a visco-elastic element at the

base of the axoneme that allows filament sliding in this region, in contrast to the

assumptions in earlier work by other groups.
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2. High precision waveforms and the test of a generic theory

2.1. Abstract

I investigate how the oscillations and traveling waves of an axoneme can be

understood from its molecular structure. As an experimental model I chose bull

spermatozoa that were observed close to a planar glass-surface. I imaged single

spermatozoa over many beat-cycles with a high-speed camera. A detection software was

developed which extracts automatically the wave-form in each frame of these movies.

Subsequently, this data was Fourier-analyzed. In earlier work on sperm waveforms only

one or two beat cycles were analyzed. Due to my automated method I was able to gather

much more data leading in the subsequent Fourier analysis to much higher precision. This

enabled me to make some rigorous statements about the boundary conditions acting at the

base and the tip of the tail.

I fitted the experimentally predicted waveforms by Camalet and coworkers

(Camalet, Julicher et al. 1999; Camalet and Julicher 2000) to my experimental data. I find

a good agreement between theory and experiment if a visco-elastic element at the base is

considered. All fit parameters are consistent with what has been predicted and measured

in earlier experimental work. Moreover the fits look reasonably similar to the observed

waveforms.

Finally I discuss open work and problems, including micromanipulation and time-

series analysis experiments, both of which are set-up in the lab but too preliminary to be

included in this thesis.

2.2. Methods

2.2.1. Sperm, microscopy and high-speed imaging

Bull sperm were obtained in frozen 100 µl pellets from the IFN in Schönow,

kindly supplied by Karin Müller. These pellets were stored under liquid nitrogen and

thawed freshly each day according to the following procedure: 0.9 ml PBSMCG-buffer

(2.7 mM KCl, 1.5 mM KH2PO4, 8.1 mM Na2HPO4, 58.6 mM NaCl; 1 mM MgSO4, 2 mM
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CaCl, 5 mM Glucose, pH=7.5) was pre-heated to 36° in a 1.5 ml Eppendorf tube. One

pellet with sperm was added and the tube was incubated for 10 minutes at 36°. Then the

solution was washed three times by 10 minutes centrifuging at 800 g at room temperature,

discarding 0.8 ml of the supernatant and re-suspending with PBSMCG-buffer. The sperm

were checked for motility under the microscope Axiovert 200M (Zeiss) in an open plastic

dish in PBSMCG buffer pre-heated to 36°. Usually about 10-20% of the spermatozoa are

motile (that is they survived the freezing and thawing process). Among the ones that were

beating at a high frequency (20-30 Hz) one was chosen for observation. As found after

analysis, these spermatozoa could differ in beat frequency, but had very similar

waveforms hence this selection procedure was without loss of generality.

Spermatozoa of bull swimming freely within the liquid away from the surface

show a roughly planar beat with a slight 3D component mainly at the tip-part of the tail

making the bull spermatozoa rolling around their swimming path. When spermatozoa

come close to surfaces they usually get trapped and follow circular swimming paths at

this surface.

For obtaining high quality movies of beating spermatozoa the following procedure

was used: Cover glasses No 1 1/2 18x18 mm (Corning #12520A) were cleaned by

sonication in a conventional soap solution and afterwards rinsed with technical ethanol

and double-distilled water. These cover glasses were either used without further treatment

or were further incubated with 1% F-127 (Sigma #P-2443) in PBS (as PBSMCG but

without MgSO4, CaCl, and Glucose) for 5 minutes. Without F-127 treatment the

spermatozoa usually stuck with their head to surface while their tails were still beating

close to the surface. The heads then were either clamped or pivoting. In case of surface

treatment with F-127 the sperm did not stick, instead they swam close to the surface,

usually in circles of varying radii typical in the order of 40 µm. This allowed the longer

observation of freely swimming spermatozoa since they did not leave the field of view.

Either way, the spermatozoa were observed close to the surface and their beating pattern

was roughly planar. This allowed single spermatozoa to be observed for up to 10 minutes.

I built a little metal (copper) observation chamber with diameter 12 mm and depth

of 1 mm. The metal surfaces inside the chamber were sealed with conventional nail polish
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to prevent potentially toxic metal ions escaping into the solution. Using conventional

vacuum grease the chamber could be sealed (also quickly re-opened) on top and bottom

with cover-slides that had been treated as described above. To the chamber two

thermocouple-sensors Type K (Conrad #120585-49) were attached with tape and heat-

paste (Conrad #189170-49) to constantly monitor the temperature with a thermometer

(Voltcraft 304/K204). This chamber was mounted to a microscope heating stage (Zeiss,

Figure 10: The beating pattern of a bull spermatozoon is automatically detected and
converted into an angular representation: A Typical image of a bull spermatozoon
observed close to surfaces that shows a planar beating pattern. (Scale bar: 10 µm) B
Position and orientation of the head (red circles) and the outline of the sperm tail (red
crosses) are automatically detected. C The outline of the sperm tail is converted into an
angular representation. Here ! (s,t)  is the tangent angle at each point of the tail (given

by the arc-length s) at the time t relative to the orientation of the sperm head. D The
tangent angle vs. arc-length obtained from successive frames shows a wave that travels
from the base towards the tip (numbers increase with time, time between successive
curves: 4 ms.). The amplitude of the wave increases towards the tip.
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Tempcontrol 37-2 digital, Universal Mounting Frame M-H) with tape and heat-paste. The

metal and the small volume of the chamber allowed a quick heat-equilibration under the

microscope.

Individual spermatozoa were chosen for observation. A movie at 250 fps was

taken with a high-speed camera (Fastcam / Photron) lasting for 1024 frames, which is

slightly more than 4 seconds and captures about 100 beat cycles. For a typical image see

figure 10A.

To study the effect of viscosity I also developed a buffer by adding Ficoll 400

(Sigma, #F-4375) to the PBSMCG buffer. Ficoll 400 is a highly branched polymer,

aqueous solutions of which behave as Newtonian fluids. This means that the viscosity of

the fluid is independent of the velocity (magnitude and orientation). Work by other groups

on increasing viscosity usually used Methyl-cellulose, e.g. (Machemer 1972). The

problem with these studies is that buffers with Methyl-cellulose are not Newtonian fluids

due to the long-chain-polymeric nature of this solution. I consider the use of a Newtonian

fluid being of great importance since all theories assume that the drag is proportional to

the velocity, furthermore that the ratio of the perpendicular and parallel drag-coefficient

can be approximated by 2 (Howard 2001). The maximum viscosity at 36° that I could go

to with the Ficoll buffer was limited to 10 cP, which is about 20 times that of water.

Higher viscosities could not be obtained for two reasons: First, Ficoll 400 changes the

refractive index of the solution hence worsening the contrast under the microscope.

Second, the osmolarity of the buffer gets more unphysiological with increasing Ficoll

concentration eventually immobilizing all the spermatozoa.

Viscosities were measured with a viscometer (Brookfield, Model DV-I +), where

water of 36° was constantly flowing through the device to ensure to measure the viscosity

at the same temperature as later within the observation chamber. The same thermocouples

used at the observation chamber under the microscope were attached to the viscometer to

control the temperature.
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2.2.2. Wave-form detection within the movie

All movies were automatically analyzed with the detection software that I wrote in

Matlab (The Math Works, Inc.). For a full description of the detection algorithm and the

precision see appendix A1. At this point I only give a short summary:

The software determines in each frame the position and orientation of the head of

the spermatozoon, together with the outline of the tail on 44 points (Fig. 10B). The very

tip of the tail itself could not be detected directly, unfortunately, but from immotile

spermatozoa I measured L = (58.3 ± 0.6)µm (mean and standard deviation). Hence the

variation in tail-length among individual sperm is about 1%, which is fairly small. On the

other hand the 41 tail-points used (the first three are still inside the head) correspond to a

measured length of L = 57.4µm , hence I miss about 1 µm of the tail. This has to be taken

into account if functionals of ! (s)  are computed as discussed in appendix A1.

The detected points along the tail where converted into angles relative to the head

orientation ! (s)  (Fig. 10C, D). Hence the center-position of the head, the orientation of

the head, and the tangential angles along the tail relative to the head contain the full

information about the spermatozoon that I want to obtain. Such a dataset is represents the

“raw data” for the succeeding work. The detection precision of the tangent angle is

estimated to be d!
total

= 4° as shown in the appendix A1.

2.2.3. Fourier analysis

Visual inspection of a beating spermatozoon under physiological conditions

reveals already a very repetitive beating pattern. Following the shear angle at one point of

the tail, e.g. the middle of the tail (Fig. 11A) shows a periodic, almost sinusoidal curve.

This clearly suggests as a next step to perform a Fourier analysis in time on the shear

angle at each point along the tail (and also on the head in cases where the head is not

completely clamped to the surface). The fast Fourier-Algorithm was used in combination

with a Hanning window as already implemented in Matlab.
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Figure 11: A Fourier analysis in time reveals that the beating pattern of a spermatozoon
can be described by its first eigenmode, furthermore the waves travel with similar
velocity along the whole tail: A The tangent angle ! (s,t)  at any point of the tail shows

an approximately sinusoidal form. (The presented curve was taken for a tail-position in
the middle of the tail.) B The power spectrum of the beating pattern reveals a clear peak
at a frequency of 20 Hz (red arrow). Higher modes are visible but clearly suppressed.
(Note the logarithmic scale. The power spectrum displayed was computed at the same
tail point as in a.) C The average tangent angle is different from zero and might in first
approximation be described as an arc. The corresponding average curvature leads to a
circular swimming path of swimming spermatozoon. D The amplitude of the tangent
angle along the tail as obtained from the power spectrum. The relationship looks
approximately linear. E The phase of the tangent angle along the length as obtained
from the Fourier analysis changes approximately linear. This means that the wave
travels with an approximately constant velocity from the base towards the tip.
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2.2.4. Fitting

My goal is to test whether the theoretical framework by Camalet (Camalet and

Julicher 2000) is a good description of my experimental data 
 
!! (s) , and if not, to suggest

an extension that leads to the desired agreement. To do so I fit the theoretically predicted

waveforms to the experimentally measured ones.

There are different alternatives how to carry out such a fit:

First, I obtain a parameter-dependent analytical expression of the wave-solution

for the given boundary conditions. Then I fit these wave-solutions to the experimental

data to determine the coefficients. This is straightforward for the initial work by Camalet

since there we are dealing with a linear fourth order differential equation with constant

coefficients. But in the case of varying stiffness such an analytical solution is hard (may

be impossible) to find therefore I did not follow this approach.

Second, I solve for a given parameter set the differential equation numerically by

using a shoot-and-match routine, since the boundary conditions are given at both sides

(Press, Vetterling et al. 2002). Then I optimize the agreement between experiment data

and theory by searching iteratively for an optimal parameter set that minimized the root-

mean-square displacement between numerical solution and experimental data. This is

doable but might be complicated since there are six independent parameters in the worst

case (see below) and it is not clear how smooth the corresponding six dimensional

optimization space is. Hence I am dealing with a non-linear optimization problem.

Although this optimization scheme might be a good strategy I choose another alternative:

Third, I can integrate the equation of motion for 
 
!! (s)  two times while

incorporating the two unknown boundary conditions that have not been checked explicitly

before. (I will discuss the details below.) The corresponding relation is then fitted to the

experimental data. The fitting procedure is linear hence straightforward to implement and

also robust in obtaining the optimal fit.

Preparing the fit:

I integrated (eq. 28) twice and incorporate the two boundary conditions (eq. 31a,

d) that I did not test so far:
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By carrying out the differentiation and furthermore substituting the forces for the motors

according to (eq. 29) we find:
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Using this integrated equation (eq. 32) instead of equations (eq. 28, 29, 31)

directly has the following advantages: First, only to a second derivative instead to a fourth

one is fitted. Since higher derivates are much more sensitive to uncertainties in the initial

waveform (see appendix A1), it is important to avoid them. Second, the two boundary

conditions that have not been tested so far are now incorporated into equation (eq. 32),

hence I do not have to fit for the waveform and the boundary conditions in parallel. (In

principle, I could even consider to integrate even two more times and impose the other

two boundary conditions as well. The form of functions appearing in (eq. 28) would allow

this. Whether this advantageous over the current strategy needs to be explored in the

future.)

So we can rewrite (eq. 32) as
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where

 

A =
a!

i"# + K + !L
!a !$ (s)ds
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from which the amount of filament sliding 
 
!!
0
 and the value of the visco-elastic element

at the base i!" + K  then can be obtained by (eq. 22):
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and
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Note that A and !  in equation (eq. 33) are complex constants and also 
 
!! (s)  is complex.

Furthermore both sides can be divided by i!"# , hence I find six independent constants

that need to be determined in a fit.

Strategy of fitting:

Since I want to test the possible influence of a visco-elastic element at the base, as

well as the influence of varying stiffness along the length, I carry out four different fits

that include none, one, or both of these influences by setting A and / or !
1
to zero.

I chose movies of five different bull spermatozoa that were clamped at their heads

and were beating at (20±1) Hz (mean ± Std). Their beating patterns looked very similar.

From their Fourier averaged waveforms I computed the different functionals in 
 
!! (s)  that

show up. Furthermore I determined the uncertainties in these functionals according to

appendix A1.

For the fit I only used the points within the bulk of 
 
!! (s) ; that is, I omitted the first

and last three points of 
 
!! (s) . The reason is that the error of the derivatives at the ends get

very large (see appendix A1) while inside the bulk the error is smaller and everywhere the

same. Since these end pieces contain only a small part of the available information on the

waveform it is convenient to omit them, which allows the usage of a simpler fitting

procedure since consequently the uncertainty is the same at every data point.

I did a linear least-square fit that reveals the three to six fit parameters (depending

on the fit) including their uncertainties. Furthermore the root-means-squared error and the
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goodness of fit were determined (chi-squared test). All five samples behaved very similar

in the different fits.  Hence from all five samples for all parameters weighted averages and

standard error of the mean (SEM) were computed (Young 1962).

2.3. Experimental results: Waveforms

I obtained four different kinds of data sets: Spermatozoa where the head is

clamped at the surface, where the head is fixed at the surface but is able to pivot, forward-

swimming spermatozoa, and finally I also observed forward-swimming spermatozoa at

higher viscosities due to the addition of Ficoll. Since the Ficoll prevents sticking of the

spermatozoon to the surface it was not possible to observe spermatozoa with clamped or

pivoting heads at higher viscosity. For all waveforms the wave was always traveling from

the base towards the tip of the tail in contrast to the results of the theoretical work by

Camalet who predicted that in the case of a clamped head the wave should travel towards

the head. Generally, I find that the waveforms look similar for the different boundary

conditions (data not shown), but the different fixation conditions of the head lead to

different sliding amplitudes close to the head. Furthermore for higher viscosity the

wavelength decreases. In the following discussion I restrict myselves to the analysis of the

case of the clamped head, the other cases still await analysis at the time of writing up this

thesis.

The Fourier analysis of these waveforms revealed clear peaks at the main

frequency and its higher harmonic (Fig. 11B). It was found that at least 95% of the power

in the Fourier spectrum was contained within the first mode at the tip of the tail. This

power increased towards the base. Since the power is !
1
(s)

2

, these 95% correspond to

about 2.5% loss in !
1
(s)  compared to the total amplitude ! (s)  at the end of the tail but

less loss at other parts. These 10% are still reasonably small enough to argue that the

beating pattern is essentially captured by the first eigenmode.

Hence I can conclude that ! (s)  for any given s changes nearly sinusoidal in time.

The higher modes only lead to smaller corrections and consequently all further analysis is

only executed at the lowest Fourier-mode. At lower beat-frequencies - achievable for

instance at lower (un-physiological) temperatures - the spermatozoon beats slower and
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more erratic and consequently these higher modes gain in relative contribution and this

approach might not be suitable any more. I used only those spermatozoa for analysis that

were beating at frequencies close to 20 Hz, which showed negligible higher modes.

Restricting myself to the first mode is also a valid approach if one wants to

compare the data to theoretical predictions. Most theoretical analyses make use of the

Fourier-ansatz to solve some nonlinear differential equations, which then in turns leads in

its first order approximation to some statement about the shape of exactly this lowest

mode. Furthermore, each Fourier-mode itself has to satisfy the boundary conditions on its

own. Taking all these facts together it is certainly justified to deduce only the lowest

Fourier-mode for further analysis from the data, although the higher modes are always

experimentally accessible if necessary. The following discussion focuses only on this first

Fourier mode. Hence the index of 
 
!!
1
(s)  is dropped and 

 
!! (s)  refers to this mode if note

explicitly stated differently.

Furthermore, the power spectrum also leads to the beat-frequency f  and its

fluctuations df, where df  is the standard deviation of a Gaussian fitted to the first peak in

the power spectrum. For a spermatozoon beating at f = 21Hz  I found df / f = 0.05 .

Defining the Quality factor as Q=f/(2df) we find Q=10. This is a lower estimate since

there could be undetected drift in the frequency over the observation time.

Figure 11C shows the amplitude of the zero eigenmode !
0
(s)  that is an average

curvature that is superimposed on the beating axoneme. This average curvature leads to a

circular swimming path of the spermatozoon near surfaces. The theory presented by

Camalet does not make any statement about such a feature. Obviously, some time

independent asymmetric force is needed to bend the axoneme on average towards one

side. It is known that such an average curvature can be induced or totally prevented or

even modified bio-chemically, e.g. with Ca2+ (Brokaw and Nagayama 1985). Furthermore

it is known that such changes in curvature allow a spermatozoon to move towards a

chemo-attractant, usually stemming from the egg, in a spiraling random walk like fashion

(Kaupp, Solzin et al. 2003). These facts make it clear, that such an average curvature

involves some more complicated regulatory mechanism and is not an essential feature

related to the axonemel beat. Since the scope of this work is to understand how collective
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motors give raise to the oscillatory beating pattern of an axoneme, I do not investigate this

subject further and also neglect this average curvature in the following discussion.

The amplitude 
 
!! (s) and phase ei! (s ) of the first eigenmode 

 
!! (s) = !! (s) ei" (s )  are

shown in figures 11D and 11E. I find a surprisingly linear relationship for both of them.

This almost linear phase relation means that the waves are traveling with an almost

constant velocity from the base towards the tip of the tail and that the waveform can be

approximated by a sine-wave with increasing amplitude: ! (s,t) = A " s " e# i2$ s /%ei2$ ft , with

approximate values A = 1.8° / µm , ! = 63µm , and f = 21Hz .  (At this point I only give a

qualitative picture. The appropriate fitting to a theoretical description including an error

analysis is given in the following section.) I point out that this form is clearly an

approximation, especially at the boundaries, which will become very important from a

theoretical perspective as we will see later. Furthermore, looking at equivalent data in

other species, e.g. the waveform ! (s,t)of Ciona spermatozoa (Brokaw 1993) I find a

very sinusoidal waveform as well but where the amplitude stays rather constant and hence

the wave can be approximated by ! (s,t) = A '" e# i2$ s /%ei2$ ft . Hence the waves on a

spermatozoon in general travel with a constant velocity along the tail. The varying

amplitude along the tail in the case of bull spermatozoa is very likely a secondary effect

due to the change of the flexural rigidity along the tail. This leads to the hypothesis that

the velocity of the traveling wave is in first approximation independent of the flexural

rigidity of the axoneme, at least for typical parameter choices.

Using the functions 
 
!! (s)  and ei! (s ) from this Fourier averaged data I can also

obtain an averaged waveform, which is plotted for successive time steps in figure 12A.

Comparing this to figure 10D we see the correspondence, but the averaged curve is

smoother and more precise. As discussed in the appendix A1 the Fourier analysis

increases the precision of the measured angles to d!
total

= 0.4° , corresponding to a

precision in sliding displacement of about 1 nm from the relation ! = a" .

This high precision compared to data obtained earlier by other groups now allows

the computation of various functionals in ! (s)  with a reasonable error. This high

precision is important, since especially the derivatives !
s

n" (s)  increase in their
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uncertainty with increasing n. Furthermore the derivatives at the boundaries have a larger

uncertainty than the ones for the bulk, which is summarized in appendix A1. Since the

theory given by equations (eq. 28-31) explicitly depends on the 4th derivative it is

important to be able to measure the waveform with a high precision.

2.4. Fit results: Test of a generic description

Now I test whether the analysis presented by Camalet (Camalet and Julicher 2000)

can be brought into agreement with the experimental data. I chose 5 data sets where the

head of the spermatozoon was clamped and that were beating at about 20 Hz. The

waveforms of these 5 sets were very similar in appearance, and lead to the very similar

fitting parameters and goodness of fits. Hence I am convinced that the conclusions drawn

are robust. Furthermore we will see, that the original theory by Camalet is in contradiction

to the experimental data. But considering an additional visco-elastic element at the base of

the axoneme not included in the original description by Camalet I find a good agreement.

Varying the stiffness of the axoneme along its length is also considered, but this, by itself,

is not sufficient to account for the discrepancy.

2.4.1. Testing two boundary conditions

First I check whether the experimental boundary conditions are in agreement with

the theoretical assumed ones. Figure 12 shows the waveform 
 
!! (s)  and the first three

derivatives, which are the ones entering the boundary conditions (eq. 31a-d). Two of the

boundary conditions can be tested directly without knowing any of the actual parameters

determining the beat. They only contain 
 
!! (s)  and the derivative of 

 
!! (s)  respectively and

both of them are zero.

Both relations are zero can be read off from figure 12A, B. Furthermore I can test

these relations from the actual data and the error analysis in appendix A1. I find

 
!! (0) = ("0.07 ± 0.09) + i("0.26 ± 0.12)[ ]° (37)

 
!
s
!" (s)

L
= (#0.11± 0.4) + i(0.11± 0.5)[ ]° / µm (38)



54

where the values are given as mean and standard error of the mean (SEM). Since both

values are expected to be zero I should find that the means are not significant from zero

that is similar to the SEM. This is the case.

Figure 12: An averaged beating pattern! (s,t)  at high precision is obtained that

allows the test of theoretical predictions: A-D The averaged waveform ! (s)  and up to

the third derivative of ! (s)  are shown for successive snapshots within a beat cycle.

The arrows denote the two boundary conditions that are independent of the fit
parameters. For a spermatozoon with a clamped head and a free tail it is expected that

! (0) = 0  and !
s
" (s)

0
= 0  which is clearly consistent with this data. The green bars

denote the estimated uncertainties inside the bulk for the different derivatives..
Consequently the second derivative still contains reliable information while the third
derivate could almost be arbitrary.
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Furthermore I can compare the SEM obtained from the 5 data sets with what I

expect from the measurement uncertainties estimated in appendix A1: For

 
SEM( !! (0)) = 0.4° / 5 = 0.2°  and 

 
SEM(!

s
!" (s)

s=L
) = 1.4° / µm/ 5 = 0.6° / µm . These

values are similar to the SEM in (eq. 37, 38) indicating that my error estimation in

appendix A1 is reasonable.

The other two boundary conditions depend on the actual parameters determining

the forces and the torques at the base and the tip. Since I first have to obtain these

parameters from fitting the theory to the experimental data I will come back to this issue

in a later subsection.

2.4.2. Fit results

As discussed earlier I carry out four different fits where I fit the second derivative

 
!
s

2
!" (s)  according to (eq. 33). These fits include the original work presented by Camalet,

additionally the effect of linearly decreasing flexural rigidity or a basal viscous element or

both effects at once. Figure 13 shows the real and imaginary part of 
 
!
s

2
!" (s)  (blue) and the

corresponding fits (red) for one of the five samples. The uncertainty in 
 
!
s

2
!" (s) and the

uncertainties in the fit are given as error-bars with 68% confidence level. By a chi-square

test I find that the first fit is not in agreement with the experimental data while the others

are. Actually, the agreement is already too good, indicating that either the measurement

uncertainties were overestimated, or that the theory contains too many free parameters in

comparison to the information content of the data.

The fit parameters are ratios of the different observables (eq. 33) that I am really

interested in. To obtain these observables I have to fix the spacing between two

microtubule-doubles, which was chosen to a=60 nm (Howard 2001). Furthermore I need

to fix one additional parameter that enters (eq. 33), where I chose friction coefficient

!" = 2.5  mPas. The significance of the different fits, the fitted observables und the

expected values for these observables are summarized in Table 1. (How to determine

these expected values I will discuss in the following subsection.)

Comparing the values of the observables to the expected ones I find a negative

flexural rigidity and a fully positive response for fit 1, which is unphysical. Hence I
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conclude that the original description by Camalet is not sufficient to account for the

experimental observation on bull spermatozoa. This is also supported by the prediction

that the wave travels from the base towards the head, while I see exactly the opposite in

the experiment.

Figure 13: The experimental data is fitted to the theory. A-D comparison between the

second derivative !
s

2" (s) (blue) and the right-hand side of (eq. 33) (red) for the

different fits, where the real and imaginary parts are plotted in each of the two panels
respectively. The uncertainties are given with 68% confidence (blue and red error
bars). Apparently the largest uncertainty stems from the second derivative and not
from the variability in the fit parameters or the uncertainty of the other functions that
appear on the right-hand side of (eq. 33). A Fit 1 that accounts for the theory as
proposed by Camalet. B Fit 2 that accounts for the varying stiffness along the tail. C
Fit 3 that accounts for a visco-elastic element at the base. D Fit 4 that accounts for
both the varying stiffness and the basal visco-elastic element.  By comparing all four
fits visually one might think that the varying stiffness is the most important
improvement since it compensates for the larger disagreements at the tip region in A
and C. (Data is taken from the same sample as figure 12.)
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In fit 2 I accounted for a linearly varying flexural rigidity along the length as has

been measured for bull spermatozoa by (Lindemann, Rudd et al. 1973). Again I find

unphysical values at least for the flexural rigidity. Hence this description fails as well.

Alternatively I considered in fit 3 that one of the boundary conditions might be

different from what as originally been assumed. The general assumption is that the

microtubules are rigidly connected at the base of the axoneme to prevent any filament

sliding there. But it was shown recently that at least for mammalian spermatozoa sliding

takes place at the base (Vernon and Woolley 2004). Consequently I assumed a visco-

elastic element being present at the base that allows this filament sliding. From the table

we can read off that all parameters have the expected sign, furthermore they are all in the

correct order of magnitude, although the viscous part of the basal element seems quite

Figure 14: The fitted waveforms 
 
!! (s)  are in good agreement with the experimental

data. The experimental data (blue) is compared the fit results (red). The theoretical

 
!! (s)was obtained by integrating the fitted second derivative !

s

2" (s)  (see Fig. 13 C,

D) two times and applying the boundary conditions ! (0) = 0  and !
s
" (s)

0
= 0 . A Fit

3 that accounts for a basal visco-elastic element. B Fit 4 that accounts for a basal
visco-elastic element and the varying stiffness along the tail. Both fits show a good
visual agreement. (Data is taken from the same sample as figures 12 and 13.)
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high. The values for all observables obtained from the different samples agree with each

other within their uncertainties. Hence I conclude that fit 3 is a valid description for the

experimental data.

In fit 4 the effect of the varying stiffness and the basal visco-elastic element are

combined. The flexural rigidities are too high, the other parameters agree with the

expectations. But we also note that the uncertainties for these observables are often higher

than the mean, furthermore that the values obtained from the different samples do not

agree with each other within their uncertainties. This indicates that there are too many free

parameters that cannot be deduced independently from the experimental data.  I conclude

that introducing the effect of linearly varying stiffness is expected to lead to a quantitative

improvement for the description of the beating pattern of the bull spermatozoon but the

data analyzed so far is not sufficient to fully support this conclusion.

As a final control I compare the results from fit 3 and 4 directly with the original

data. To do so I integrate the fitted second derivate two times !
s

2" (s)  by using the

boundary conditions !
s
" (s)

s=L
= 0  and ! (0) = 0 . (I had to adjust the first integration

constant to obtain the final agreement, which is reasonable to do due to measurement and

fitting uncertainties.) The results are shown in figure 14 and I find a very good agreement.
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Parameter Symbol Fit 1 Fit 2 Fit 3 Fit 4 Expected

value

RMSE (fit)

(10!3 )

5.2±3.2
*

1.9±1.6
*

3.5±0.7
*

1.6±0.2
*

-

Beat frequency (Hz) ! = 2" f 131±5
*

-

Drag coefficient

(10!3  Pas)
!"

2.5 2.5

Flexural rigidity base

(10!21 Nm2)

!
0

-(88±10)
§

-(69±17)
‡

3.6±0.2
‡

19±7
§

4.0

Flexural rigidity
change per unit length

(10!15Nm)

!
1

- -(1.2±0.7)
§

- -(0.32±0.11)
§

-0.056

Elastic response

(103  N/m2)

Re(!) 260±30
‡

(42±14)
‡

-(19±1)
‡

-(17±5)
‡

-30

Viscous response

(103  N/m2

Im(!) 54±15
‡

-(18±8)
‡

-(12±1)
‡

-(10±3)
‡

-50

Spring at base
(N/m)

K - - (4±1)
‡

-(11±17)
‡

2

Friction at base
(N/m)

!" - - (12±1)
‡

(12±18)
§

2

Displacement at base

(10!9  m)  

!!
0

- - (66±5)
‡

 (82±27)
‡

50

Table 1: Comparison of fit parameters and their expected values for the different fits. Fit

1 corresponds the description suggested by Camalet (Camalet and Julicher 2000), Fit 2

additionally includes varying stiffness along the length of the axoneme, Fit 3 accounts for
a visco-elastic element at the base of the axoneme, and Fit 4 includes both the terms from
Fit 2 and 3.
* mean ± Std (n=5)
§ Values from the different samples are within 95% confidence not consistent with each other, hence given
as mean ± Std (n=5)

‡ Values from the different samples are consistent, hence given as mean ± SEM (SEM computed by
weighing the individual uncertainties according to (Young 1962)) (n=5)
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2.4.3. Estimation of the fit parameters

In the following I want to discuss how the parameters obtained from the fits can be

estimated, some of them even have been measured. I also discuss whether the fit

parameters are reasonable, especially for fit 3 and 4 since the other two fits have already

been rejected as discussed before.

Friction per unit length: The friction coefficient for a cylinder close to a surface

can be estimated as !" = 4# $% / ln(2h / r)  (Howard 2001), where h is the distance

between center of the cylinder and the surface, r is the radius of the cylinder and

! = 0.5mPas is the viscosity of water at 36° C. Given the thickness of the head by 5 µm

(Brennen and Winet 1977), the radius of the tail at the base with r=1 µm and at the tip

r=0.1 µm I assume an average radius r=0.5 µm and an average distance from the surface

h=3. I find !" = (2.5 ±1)  mPas, where the uncertainty was estimated from higher or lower

friction at the base and tip respectively.

Flexural rigidities: The flexural rigidity for the basal part of a bull spermatozoon

has been measured to be !
0
= 4 !10"21  Nm2 (Lindemann, Rudd et al. 1973). The distal

flexural rigidity can be assumed to be the same as the one of a pure axoneme, which has

been measured to be ! =0.7 !10"21  Nm2 (Okuno and Hiramoto 1979). Assuming that the

flexural rigidity varies linearly along the length I find a changing rate per unit length of

!
1
= ! "!

0( ) / L =!56 "10
!18 Nm where L = 60  µm.

I find that for fit 3 the flexural rigidity is in full agreement while for fit 4 both

values !
0
 and !

1
 are higher than expected. Since both are influenced from the choice of

the friction per unit length !"  but their ratio is not, it is informative to compare this ratio

as well to the expected value. I find !
0
/!
1
= "6 #10

"5 /m compared to the expected value of

!
0
/!
1
= "7 #10

"5 /m, which is only about 15% difference. I conclude that at least the ratio

!
0
/!
1
 of the flexural rigidities as revealed by fit 4 is very reasonable.

The internal effectively active linear response ! : As discussed (eq. 30) the

internal effective active response is due to the active motors  F(!," )  and the passive

visco-elastic elements, such as protein friction !  and the stretching of nexin links k :
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 !(",# ) = k + i$# + F(",# ) . The linear response for a certain two-state motor model

(Julicher and Prost 1997) then is 
 

F(!," ) = #$
U

l
2

2% 2&

'
(
i" /' + (" /' )2

1+ (" /' )2
. In the

following I discuss each of the terms separately:

Internal elasticity per unit length k: The microtubule doublets are connected by

stretchable elements called nexin links (Warner 1976; Gibbons and Gibbons 1980).  This

elasticity density has been measured by (Minoura, Yagi et al. 1999) to be

k = (2.0 ± 0.8) !10
3
N / m

2  (mean± StD).  From the typical cross-bridge elasticity

k
B
= 5 ! (10

"4
"10

"3
)N / m  (as for Myosin or Kinesin (Howard 2001)) and the typical

nexin density (Minoura, Yagi et al. 1999) !
P
= 95 / µm I find a higher value of

k = 5 ! (10
4
"10

5
)N / m

2 . Since the motors can be assumed to be typically stiffer and also

not as stretchable as the nexin links, the later value is an overestimation, hence the value

of k = (2.0 ± 0.8) !103N / m2  is reasonable and presumably mainly due to the nexin links.

Internal friction per unit length !" : The internal friction is due to fluid and

protein friction. Assuming for the fluid friction the viscosity of the cytosol ! = 0.1  Pas

being 100 times higher than that of water, furthermore the sliding of N=10 filaments I find

! " 2#N$ = 6  Pas (Howard 2001). Protein friction in contrast is given by the rupturing

of attached proteins, in that case nexin links for instance, which have been observed to

detach and reattach periodically during the axonemal beat. The resulting protein friction

then would be! = pkB" on#P = 50  Pas. Here p ! 1  is the fraction of time the nexin spends

attached   (were I assume that these nexin links are attached most of the time), the

stiffness of the molecular bond of the nexin links k
B

 and the nexin density !
P

 are

determined by k = k
B
!
P
= 2.0 "103N / m2  as discussed before (Minoura, Yagi et al.

1999)). Finally I assume the rate of detachment1 / !
on
" 40  Hz that is each nexin link gets

ripped of two times per cycle for a beat frequency of the spermatozoon of f = 20  Hz.

Hence I find that protein friction dominates over fluid friction. The passive viscous

response then is2! f" = 6 #10
3  N/m2.
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Linear response of the motors themselves  F(!," ) : The linear response of the

motors can be estimated from 
 

F(!," ) = #$
U

l
2

2% 2&

'
(
i" /' + (" /' )2

1+ (" /' )2
 by assuming a

motor density ! =500 /µm, the energy scale U = 5 !10
"20 J as being half the free energy

available from an ATP-molecule within the cell, l=8 nm as the step-size of the motor, the

on- and off-rates of the motors! =10 /s (Shiroguchi and Toyoshima 2001) and ! =300 /s

(Kamimura and Kamiya 1989), and the beat-frequency of the spermatozoon

! = 2" f =126 Hz I find  F(!," ) = #(3+ 6i) $10
4  N/m2. This value is reduced by a factor

of 4 if the step-size is 16 nm instead of 8 nm (Burgess, Walker et al. 2003).

Summary internal effective active response: Putting the passive and active internal

response together I find !(",# ) = $(3+ 5i) %104  N/m2 where the active parts dominate.

Since all four values are within the same order of magnitude the real and imaginary part

of !(",# )  can easily switch from negative to positive for lower ATP-concentrations,

leading to a transition from oscillatory to non-oscillatory state as proposed (Julicher and

Prost 1997).

From the present experiment it is not possible to discriminate between the active

and passive response. This suggests an experiment to observe spermatozoa beating at

different frequencies, e.g. due to varying the ATP-concentration, which keeps the passive

components k and !  constant but influences the rate constants!  and ! .

Finally I note that the estimated responses are in reasonable agreement with what I

measured from fitting my experimental data for fit 3 and 4.

Visco-elastic element at the base: I notice from table 1 that for fit 3 the visco-

elastic element at the base is purely passive due to the positive signs. Within uncertainties

the same can be said about fit 4. This is very important since there is no experimental

indication for any additional active element at the base. Furthermore I see that the viscous

element dominates the elastic one for fit 3.

To estimate the elastic part I assume a protein structure consisting of 10

microtubule doublets ranging over l=5 µm. The elastic modulus then is E = 2 !10
9
N / m

2

(Howard 2001) with the cross-sectional area of a microtubule-doublet of A=400 nm2

leading to K = 10EA / l = 2N / m .
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To estimate the passive friction at the base I again consider a region of l=5 µm. I

assume that the friction is due to protein friction, and in this case not only due to the nexin

links but also to the much stiffer dynein motors that are presumably stalled in this region

due to the high built-up force in this basal region. Hence using the internal friction per

unit length 2! f" = 6 #10
3  N/m2 as estimated above but correct with a factor of 5 for the

higher protein density (95 / µm  for nexin links and 500 / µm for dynein) and with another

factor of 10 for the much stiffer dynein. I find !" = 50!#l = 2  N/m.

Hence I conclude that both the elastic and the viscous element are in the order of

magnitude of what I determine from the fit. While the elastic element agrees very well,

the viscous element obtained from the fits (especially fit 3) seems to be too high, also

given that the viscous element might be already overestimated. One solution to this

discrepancy is that the total number of molecules that get ruptured in this region is higher

due to other proteins.

The displacement at the base: Is has generally been assumed that the

microtubules are so rigidly attached at the base such that no filament sliding is possible

there. This has also been shown directly in the case for the case of sea urchin and tunicate

spermatozoa (Brokaw 1991). In contrast it was shown very recently in the case of

mammalian spermatozoa (Chinchilla) (Vernon and Woolley 2004) that there is sliding at

the base. It is reasonable to assume that the value for a bull spermatozoon is similar. A

reason for the difference between sea urchin and mammalian spermatozoa is that in the

case of mammalian spermatozoa the microtubules are not attached at the basal body. For a

basal diameter of 450 nm the sliding amplitude was 85 nm, leading to a sliding amplitude

of 
 

!!
0

=10 nm in the case of two neighbored microtubules that are spaced apart by 60 nm.

This is in the order of magnitude I obtained from the fit but still too small. Note that the

displacement at the base does not scale with the chosen value for friction !"  since it

cancels in the ratio A / ! . Hence this value is entirely determined by the fit and the given

microtubule-doublet separation a.

Besides this effect seen directly by Vernon (Vernon and Woolley 2004) I can also

estimate by what amount the microtubule doublets may get compressed in the basal

region. As discussed before, I find for the basal region an elasticity of
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K = 10EA / l = 2N / m . Hence if I want to compress these 5 µm by 50 nm, that is 1%, I

need a force of F
C
= K ! "l=100 nN. This force has to be generated by more distally

motors over a length !L . I find !L = F
C
/ (" #F

M
) = 40 µm where ! = 500  /µm is the

motor density and F
M
= 5  pN is the maximum force per motor. Hence !L  is in the order

of the length of the sperm tail hence it is perfectly reasonable that the microtubule-

doublets get compressed in the basal region by 50 nm.

2.4.4. Testing the other two boundary conditions

Now I can test for fit 3 and 4 whether the other two boundary conditions (eq.

31a,d) are satisfied as well.

I find for fit 3

 
! 0"s

3
!# (s) $ a2% & "

s
!# (s){ }

s=0
= $(0.12 ± 0.05) + i(0.03 ± 0.10)[ ] &10$3

rad &N / m

(39)

 

!
0
"
s

2
!# (s) $ a2% & !# (s) + !'

0
/ a( ){ }

s=L

= (0.11± 0.21) $ i(0.13 ± 0.16)[ ] &10$9
N & rad

(40)

and for fit 4

 
! 0"s

3
!# (s) + 2!1"s

2
!# (s) $ a2% & "

s
!# (s){ }

s=0
= (6 ±13) + i(14 ±15)[ ] &10$3

rad &N / m

(41)

 

(! 0 +!1L) " #s
2
!$ (s) +!1#s !$ (s) % a

2& " !$ (s) + !'0 / a( ){ }
s=L

=

= (0.02 ± 0.50) + i(0.49 ± 0.49)[ ] "10%9
N " rad

(42)

The values where obtained as averages of the five samples, together with the SEM. I

conclude that all relations are not significant from zero; that is, the boundary conditions

are satisfied by both fits.

I note that the measurement uncertainties of the higher derivatives at the

boundaries are very large, that is the ratio between the uncertainty and the maximal

expected value is larger than one (see appendix A1). Additionally the uncertainties in the

fit parameters come into play. For fit 4 they are also very large (table 1). Therefore it is

questionable whether my actual measurements contain more information than choosing an

arbitrary but realistic value. Nevertheless, it is comforting that the boundary conditions
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are consistent with the expectations. Although I might not have expected a disagreement

(because I constrained these two boundary conditions by the way I set up my fitting

procedure) it could have turned out that the theory might have been in such disagreement

with the data that no reasonable fit could have been achieved.

I conclude that these two theoretically assumed boundary conditions are not in

disagreement with the experimental data.

2.4.5. Summary

To summarize I find that the theoretical framework by Camalet in its original form

is not sufficient to account for the experimentally obtained waveforms on bull

spermatozoa. Considering linearly varying flexural rigidity along the tail cannot correct

for this failure. But introducing a visco-elastic element at the base leads to a very good

agreement. All parameters deduced from the fits are in agreement with what can be

expected. The only surprise is the rather large viscous element at the base that seems to

even dominate over the elastic properties in this region. Additionally to the basal visco-

elastic element, I also considered the varying stiffness along the tail. It leads to a

reasonable fit as well, while some of the parameters agree only within the order of

magnitude with the expectations. The improvement is not substantial. It seems that there

are too many free parameters to be sufficiently constrained by the data.

I found that all four theoretically assumed boundary conditions are in agreement

with the experimental data. Two of them can be solidly tested within the measurement

uncertainties and are also independent from the fits. While 
 
!! (0) = 0  is quite obvious, the

condition for zero curvature at the tip 
 
!
s
!" (s)

L
= 0  has not been explicitly measured

before to my knowledge. Hence it represents a new result, which was only possible due to

the high measurement precision. No curvature at the tip means that no torque is acting

there, indicating that the filaments are really free to slide at the tip. For the other two

boundary conditions the uncertainties of the measurement and also fit parameters are too

large to being actually able to disprove them, but it was useful to show that they do not

give rise to disagreement.

The presented results and conclusions are of reasonable conciseness to stop the

analysis at this point. But this is certainly work in progress and more work needs to be
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done. On one hand I want to consider alternative fitting strategies as discussed earlier to

have an independent control. It would be especially desirable to show that solving the

original equations (eq. 28-31) with the obtained parameter set leads to a solution that

agrees with the experimental data. The other open work concerns the analysis of the other

data sets that is waveforms for other boundary conditions and at increased viscosity. I

hope that I obtain consistent parameter sets from these fits.

2.5. Discussion and conclusions

I want to summarize and discuss my achievements. These are on one hand the

development of a waveform detection and analysis tool. On the other hand I was able to

test a theory and suggest an extension to bring this theory in agreement with the

experimental data. Finally I suggest an experimental scheme to address open question.

2.5.1. The new waveform detection tool

I developed a new and automated tracking system for the beating pattern of planar

beating spermatozoa that can be used in combination with a high-speed digital camera and

Fourier analysis, leading to a very high spatial and temporal precision in the waveforms.

Sperm waveform detection softwares have been developed before (Brokaw 1984) and

correspondingly waveforms have been published before (Brokaw 1996). In these studies

usually not more than one beating cycle was analyzed leading to less precision I obtained.

I can now automatically detect such a waveform in about 30.000 successive frames, being

only limited by the capabilities of the camera.

This new tool has the advantage that it leads to a very increased precision, which

enabled me to measure also the derivatives of the waveform with respect to the arc-length.

Therefore I was able to make rigorous statement about the boundary conditions,

especially to show that the curvature at the tip of the tail is zero as predicted. Furthermore

the data can be used to fit it to different theoretical predictions.

This new tool also allows the study of beating patterns that are not periodic by

taking much longer time series. Such non-periodic beating patterns can typically be found

in unphysiological conditions compared to the ones at which the spermatozoa usually

operate, for instance at decreased temperatures. But I expect that exactly these rather
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stochastic looking beating patterns can lead to really novel insight concerning the

cooperative motion of a large ensemble of molecular motors.

2.5.2. Novel biological insight

I measured waveforms of beating bull spermatozoa with very high precision and

showed that they exhibit sinusoidal traveling waves, which can be described reasonably

well by the first Fourier-mode. I was able for the first time to make a statement about the

frequency stability of the beat by finding a lower estimation on the Quality factor of

Q=10. What this might tell us about the axoneme needs to be discussed.

Furthermore, I made much more rigorous statements about the importance and the

type of the boundary conditions than it has been done before. Besides the visco-elastic

element at the base I was also able to show, for the first time, that there is no curvature at

the tip of the tail. Hence no torque is acting at the tip. Furthermore all boundary

conditions were in quantitative agreement with the theoretical predictions.

I tested the theoretical framework of the axonemal beat by Camalet where the

action of the motors was incorporated in a generic way. I found that this theory is not

sufficient to account for the experimental data.

Therefore I extended the theoretical work by Camalet in two respects: First, I

included the possibility that the stiffness of the axoneme can vary along its length, which

is necessary to describe the waveform of bull and presumably other mammalian

spermatozoa. Secondly, I suggested considering a passive visco-elastic element at the

base, as recently found experimentally.

I found that the varying flexural rigidity is not sufficient to account for the

discrepancy between the original work by Camalet and my experimental data, while the

properties of such a basal visco-elastic element can. The values that I obtained from the fit

agree with what I know from the molecular and structural details of the axoneme,

furthermore from experimental results obtained by other groups. Hence my work does not

only represent a confirmation of the theory, but can be seen at the same time as an

independent measurement of these parameters.

While discussing these parameters I realized that the viscous component of this

basal element is very high compared to what one would expect. This raises the question of
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whether I interpret this term in the correct way. Moreover it is even possible that a very

different term is also sufficient and actually more important to account for the differences

between the original Camalet work and the data. The theoretical analysis by Camalet was

carried out for small amplitude approximation. Whether this approximation is valid for

the experimental data is questionable but also hard to judge. Hence it is possible that some

nonlinear correction term is already sufficient and consequently the importance of the

introduced basal visco-elastic element are overestimated.

If we think, on the other hand, about what this high viscosity could mean the

connection to a basal switching mechanism (“geometric-clutch”) (Lindemann and Kanous

1995) becomes apparent, where the active motors that are stalled on one side, get ripped

off the filaments. This is a typical scenario leading to protein friction. Hence models like

the “geometric-clutch” seem to be in agreement with my data and the suggested

theoretical framework. This again highlights the power of such a generic approach since

my conclusions so far are independent of any molecular model concerning the

coordination of the motors.

As one of the key results I saw how the waveform depends on these basal

attachment properties and more generally on all boundary conditions. This suggests that

the basal region has been evolutionary optimized in different species and axonemes to

generate a certain wave pattern. For instance, in spermatozoa the attachment might be

such to generate the most effective forward propulsion while in cilia it might generate a

certain beat pattern leading to a desired fluid flow. I furthermore speculate that a cell

might be able to alter these attachment properties on shorter timescales to regulate the

beating behavior of the axoneme.

Finally I want to comment on earlier and similar work. The idea of analyzing

waveforms of beating spermatozoa is far from new and a fast literature on just this

approach has been accumulated. Hence it is a valid and important question to ask, what

my new and original contributions are and how they compare to this earlier work.

The corresponding literature is huge and hard to oversee. My work certainly

differs in how I carried out this waveform analysis. First, I was the first to analyze the

average of a large number of beating cycles compared to typically one or two in earlier

work. Second, I did not compare the results of a specific model visually to the
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experimentally observed waveforms. Instead I fitted a generic theory directly to the

experimental data, which is unbiased and also delivers back the fitting parameters. Third,

I made some solid statements about the boundary conditions, which also had not been

done before.

In earlier work it is generally assumed that the microtubules are incompressible.

As I discussed, it is very reasonable instead that they can get compressed. This leads to

different sliding displacements along the tail that are not proportional to the tangent angle.

There is one study where this sliding displacement actually was directly measured with

gold-beads that where attached to the sliding filaments (Brokaw 1989). The conclusion of

this work is that the sliding displacement is proportional to the tangent angle, which is in

contrast to my suggestions. This work was carried out on sea urchin spermatozoa where

the microtubules are connected differently at the base than in the case bull spermatozoa

used in my study. This could explain the difference. On the other hand I might be wrong

with my suggestion on that basal element. Furthermore it would be interesting to carefully

check the analysis in (Brokaw 1989) whether this data is consistent with some basal

filament sliding and how much this sliding could be. Hence there are still many open

questions and it becomes obvious that additional and alternative approaches to such a

waveform analysis are needed.

I summarize that the generic theory by Camalet in its present extended form is a

valid description for the beating pattern of a spermatozoon that is clamped at its head and

exhibits planar beat. It would be valuable to include the nonlinearities as well to hopefully

reach full quantitative agreement between experiment and theory. These nonlinearities are

also needed if one wants to predict the amplitude of the wave and to discuss the stability

of the oscillation with respect to slight perturbations. It is important to pose the open

questions more sharply, as well as to design and carry out new experiments.

2.5.3. Suggested future work

As a next important step I will test, whether the other data sets, that is pivoting

head, free swimming spermatozoon and the different viscosities, lead to an equally good

agreement with the theory and to similar, and hence consistent, parameter values.
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To avoid the complication of dealing with too many unknown parameters at the

same time, I suggest the following experimental scheme of micromanipulation

experiments. First, spermatozoa from a different species should be used that have a

homogenous tail, such as sea urchin or Ciona. This reduces the ambiguities according the

stiffness variations. Second, the spermatozoon should be demembranated and the motors

deactivated in such a way that they are detached from the opposite microtubule and hence

the axoneme is not in a rigor state, which prevents microtubule sliding. Third, such a

spermatozoon should be fixed at its head with a suction needle. With a piezo, different

stimuli can be applied by varying the frequency and amplitude (Gibbons, Shingyoji et al.

1987). The obtained waveforms then contain the pure information of the internal visco-

elastic parameters, the visco-elastic element at the base, the axonemal stiffness and

hydrodynamic friction with the surrounding media. In that way, all actions of the motors

are avoided. Hence the obtained waveforms have less free parameters than used in the

present study. Furthermore, stimuli of different amplitudes and frequencies allow us to

test within what ranges a linearized description as presented by Camalet is valid, and at

what point nonlinearities have to be taken into account.

Having obtained this, the experiment could be completed by subjecting such a

demembranated spermatozoon under different stimuli to different biochemical conditions,

e.g. ATP-concentrations, hence testing the motors themselves. Such experiments have

been done (Shingyoji, Yoshimura et al. 1995), but unfortunately in that study no

systematical comparison to any theory was undertaken.

I want to mention that I have set up this experiment and that I have already applied

sinusoidal stimuli to mobile and immobile spermatozoa. Yet, I was not able to carry out

this experiment systematically, mainly due to seasonality concerning the fresh sea urchin

sperm supply, and also since I finally ran out of time towards the end of this thesis.

Hopefully, I can finish this project in the near future.

The other project at hand, as already mentioned, is the study of long time series of

non-periodic sperm beating to test the cooperativity of many motors in a novel regime

using the developed tracking software.



71

3. Self-organized vortex array of sperm cells

3.1. Abstract

I report a self-organized spatio-temporal pattern formed by hydrodynamically

entrained spermatozoa. At planar surfaces these spermatozoa form dynamic vortices

resembling quantized rotating waves. The vortices in turn form an array with local

hexagonal order. Introducing a novel order parameter to quantify the cooperativity of

many particles, I show that the array is formed above a critical sperm density. This

demonstrates that large-scale coordination of cilia and flagella, such as in ciliary

metachronal waves and during sperm cooperation, can, in principle, be regulated via

critical phenomena. Moreover, I estimate the hydrodynamic interaction forces between

cilia and flagella to be ~0.1 pN.

3.2. Introduction: The experimental observation

The oscillatory bending waves of the sperm tail that propel the spermatozoon

through the fluid lead to a helical path. If a spermatozoon approaches a planar surface it

may get trapped at the surface where it follows a circular swimming path (Woolley 2003)

(movie M3). These paths often have a strongly preferred handedness (Woolley 2003).

I found that the spermatozoa of sea urchins (Strongylocentrotus droebachiensis

and S. purpuratus) get trapped at the liquid-glass interface and self-organize into an array

of vortices (Fig.15A, B and movies M1, M2) at a high surface density. At the density used

in Fig. 15 each vortex contained 10 ± 2 spermatozoa (unless otherwise stated, values refer

to mean ± standard deviation) circling clockwise (observed from inside the water phase)

around a common centre (Fig.1C-F). The circular paths had radius R=13.2 ± 2.8 µm, the

time for one revolution was T=0.67 ± 0.09 s, and the swimming speed was v=125 ± 21

µm/s. The beat frequency was f=41.7 ± 3.7 Hz. Occasionally the hopping of spermatozoa

between vortices and the fusion of two vortices was observed. The vortices were densely

packed and their centers moved randomly with an apparent diffusion constant of D=6.2 ±
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0.9 µm2/s. Thus the pattern formed by the spermatozoa reflected two levels of order,

namely a clustering into vortices and a packing of the vortices into an array

Generally, the emergence of spatiotemporal patterns is of great interest in many

scientific disciplines (Cross and Hohenberg 1993). Examples include physical self-

assembly (Grzybowski and Whitesides 2002), oscillating chemical reactions (Zaikin and

Zhabotinsky 1970), self-organization of cellular components (Nedelec, Surrey et al. 1997)

and micro-organisms (Ben-Jacob, Cohen et al. 2000; Dombrowski, Cisneros et al. 2004),

and the social activity of insects (Hoelldobler and Wilson 1990). Such patterns can arise

either due to self-assembly or self-organization (Misteli 2001). While the first one

generates equilibrium structures, the latter happens far from thermal equilibrium and is

associated with a permanent dissipation of energy (Turing 1952; Prigogin.I and Nicolis

Figure 15: Circulating spermatozoa from S. droebachiensis form a two-dimensional array
of vortices. (A) Dark field-contrast image (single frame) showing the heads of sea urchin
spermatozoa at a surface density of ~6000 cells/mm2. (B) The average intensity of 25
consecutive frames shows an arrangement of rings; each corresponding to a vortex of ~10
spermatozoa. (C-E) Successive frames of a phase contrast movie showing nine
spermatozoa swimming clockwise (arrow) within a vortex. (F), Average of 25 frames as
(C-E) giving a magnified view of the vortices shown in (B). Frame rate: 17 fps.
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1967), which is the case for the ATP-hydrolyzing spermatozoa. Even if self-organized

patterns appear static on a macroscopic level, they are dynamic on the microscopic level

and changes in one of the microscopic parameters can lead to very sudden changes in the

overall pattern. This duality of stability and flexibility makes self-organized processes

favorable for many biological regulatory and dynamic processes (Nedelec, Surrey et al.

1997; Misteli 2001). In this spirit I analyzed this unexpected vortex array (Fig.15) to

reveal its underlying physical cause and to determine its possible relevance for related

biological processes.

3.3. Methods

Sperm and imaging.

Dry sperm from the sea urchin Strongylocentrotus droebachiensis and S.

purpuratus (green and purple sea urchin) (Westwind Sealab Supplies, Canada) where

collected following 0.5M KCl injections (Brokaw 1986), stored on ice, and used within 3

days. Presented data are from green sea urchins.

 The spermatozoa were observed in an open plastic or glass dish (diameter: 2.5 cm,

volume: 1ml – hence the fluid layer was so thick that spermatozoa trapped at one surface

did not experience the opposite surface) pre-incubated for 5 min with 1% F-127 (Sigma,

#P-2443) in PBS to prevent sticking. The dry sperm were gently diluted six-fold in

artificial seawater  (ASW, without Ca2+). This suspension was either further diluted

homogenously, or a highly concentrated drop was placed in an ASW filled dish leading to

changes in sperm concentration over time. The sample was imaged on the plastic- or

glass-liquid interface. Movies were taken approximately 5 minutes after adding the sperm,

except for studies on sperm surface density dependence where the data were within 15

minutes after adding. Motility was good for 20-30 minutes. I noticed that the circling

radius of the spermatozoa decreased over time, independent of the sperm surface density.

Presumably this is due to the absence of Ca2+ (ref. (Brokaw 1986)). It does not effect any

of my conclusions (see Appendix A2).

Experiments were carried out at room temperature on an inverted microscope

(Zeiss Axiovert 200M) at magnifications between 5 and 40x using dark field or phase
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contrast. Movies were taken with a Fastcam (Photron) or Coolsnap HQ (Photometrics)

camera.

Data analysis.

The analysis was carried out with Metamorph (Universal imaging) and Matlab

(The Math Works, Inc.). Objects were traced by hand and at least six objects where

analyzed to estimate averages and standard deviations.

Analysis single vortex.

I tracked the orientation !(t)  relative to the laboratory frame of seven sperm

heads within one vortex over 1100 frames (Frame rate: 250 fps). The angular position of

the head in its trajectory around the vortex, !(t), and the phase of the oscillation of the

head during the beat of the spermatozoon, "(t) were filtered from the relation

!(t) = "(t) + # / 2 +!
0
cos($(t)) . (On average this relates to !(t) = 2" /T # t +!

0  and

!(t) = 2" f # t +!
0
,  where T is the circling time and f is the beat frequency of a

spermatozoon.) Then for each #!-channel in Fig. 3C I computed the mean as

!" (!#) = phase(1/N $ e
i!" j

j=1

N

% )
 (Fig. 17 E), where N is the total number of !"  in a

given !"  channel.

Order parameter $.

The grayscale images were thresholded to give binary images in which only the

sperm heads were visible. The frame rate (17 fps) and total number of frames (10)

ensured that individual spermatozoon had negligible self-overlap over the analysis time.

Frame rate, number of frames, and object size influence the value of the order parameter

$. But the dependence of $ on sperm density (plateau followed by a transition towards a

positive slope at 2500 cells/mm2) is always independent of parameter choice as shown

with a number of controls (see SOM). Therefore these parameters do not interfere with

the information content of $. Hence  $ is a robust measurement tool for such correlations.

Model, simulations, and simulated movies.

Starting from random distributions I let 1000 particles equilibrate accordingly to

the following equations:

r i(t + !t) = r i(t) + 2D!t "G i(t) + F j# i /$ " !t Eq. 43
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where r
i
is the position of the ith particle, t is the time, !t is the time step size, D is the

diffusion constant of a free particle, G
i
 is a Gaussian distributed random variable with

mean zero and variance one, Fj! i is the interaction force due to all other particles j, and

! is the viscous drag coefficient. A quadratic box with periodic boundary conditions was

used. The box-size was chosen to give the desired particle densities for the 1000 particles.

The pair-wise interaction among particles is determined by the potential V  in Fig. 18D.

The experimental measured values for D and R were used. The only free parameter,

V
0
/ ! , was chosen to match the experimentally obtained curve in Fig. 18C. I averaged the

results of six simulations.

To generate simulated movies I assigned to the position of each particle in the

equilibrium configuration a spermatozoon head with circling radius, angular velocity,

square head, and a random starting phase in the swimming circle. Radius and velocity

where randomly chosen from the experimentally measured distributions. Head size was

chosen to equal the number of pixels observed for a sperm head in an experimentally

obtained movie.

3.4. Results

3.4.1 Vortex liquid – spatial correlations

I assessed the packing-order of the vortex array by measuring various correlation

functions of the vortex centers. The pair-correlation function and the triplet-distribution

function(Zahn, Maret et al. 2003) revealed a local hexagonal order with an average vortex

spacing of 49 ± 9 µm (Fig.16). Furthermore, the bond-angular correlation function(Zahn,

Lenke et al. 1999) (data not shown) showed an exponential decay revealing the absence of

long-ranging order. This characterizes the array as being liquid-like in contrast of being

hexatic or crystalline(Zahn, Lenke et al. 1999).
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3.4.2. Quantized rotating waves

I asked how the spermatozoa within a vortex (Fig.17A and movie M4) influence

each other. Interactions could lead to changes in the circling radius, the swimming

velocity or the beat frequency. However, within experimental errors, I found no

differences in these parameters whether spermatozoa were in a vortex or isolated (data not

shown). On the other hand, I found a particular form of synchronization of the beating

patterns of spermatozoa within a vortex, indicating that interactions do indeed take place.

I described each spermatozoon by two variables: the phase of the oscillation of the head

during the beat of the spermatozoon, "(t) (this oscillation is driven by and has the same

frequency as the oscillation of the tail, Fig.17B); and the angular position of the head in

its trajectory around the vortex, !(t) (Fig.17C). No correlation in !(t) between any two

spermatozoa in the same vortex was found (data not shown). The same was true for "(t)

(data not shown). In other words, spermatozoa within a vortex swim at different speeds

and beat at different frequencies. However, there is a strong correlation between the

differences #"(t) and #!(t) between pairs of spermatozoa in the same vortex (Fig.17D-

Figure 16: The vortex array shows local hexagonal order and is liquid-like. (A)
Pair-correlation function and (B) triplet-distribution function of the vortex centers.
Insets illustrate how the functions were calculated. Arrows denote position and
relative weight of the maxima for an ideal hexagonal lattice. Solid fit-lines were
obtained by convoluting these maxima with Gaussians whose standard deviations
increase linearly from the origin. Error bars equal one standard error of the mean.
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E). Such a correlation implies that, for example, if one spermatozoon swims twice as fast

as another then it also beats at twice the frequency. This means that locally the tails are

beating in synchrony and that a trailing sperm follows in the wake of the leading one.

Consequently, because the spermatozoa swim in closed circular paths, there must be an

integral number of wavelengths along the circumference of the vortex. The slope, #"/#!,

Figure 17: Hydrodynamic coupling among spermatozoa within a vortex leads to
quantized rotating waves. (A) Position and orientation of seven sperm heads (colored
dots) within a vortex were traced. Frame rate: 250 fps. (B) The phases of the head
oscillation were represented with circling pointers (arrow of clock, "). (C) Angular
positions of sperm heads within the vortex were projected onto a unit circle (center of
clock, !; Note that the reference frame for " changes with ! - see Methods). (D)

Histogram of phase differences #" vs. #! among any pair of spermatozoa over the
observation time (color-coding: relative frequency in a.u.). (E) In each !"  channel (D)
the circular mean was obtained (errors contain 95% of the density). Linear fit (red line)
!" = (4.2 ± 0.2) # !$+ (%0.7 ± 0.4) corresponding to a quantized wave with wave
number 4 (errors denote 68% confidence in fit parameters). (F) Illustration of the
dynamics: While the spermatozoa swim around the vortex their heads and tails oscillate.
These oscillations couple hydrodynamically and form a quantized wave (note the
similarity to (A)).
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was 4.2 ± 0.2 (Fig.17E). This is consistent with a wave number of 4 which is determined

by the geometry of the vortex: dividing the circumference of the path (2%R, where R=11.6

± 3.0 µm was the swimming radius within this particular vortex) by the beat wavelength

on the sperm tail (&=17.6 ± 1.3 µm along the curved centerline of the flagellar waveform,

not along the tail) gives 4.1 ± 1.4. Thus I conclude that hydrodynamic coupling of the

sperm tails within a vortex leads to a quantized rotating wave with wave number 4

(Fig.17F).

This hydrodynamic interaction between sperm tails within a vortex is a

generalization of the synchronization of the beats of two spermatozoa swimming close to

one another (Gray 1928; Taylor 1951; Gray and Hancock 1955). My rotating waves are

related to the metachronal waves observed on the surfaces of ciliates and ciliated epithelia

and which are respectively important for swimming motility and the movement of mucus

(Okamoto and Nakaoka 1994; Gueron and Levit-Gurevich 1998). In contrast to the three-

dimensional metachronal wave, however, the waves described here are two-dimensional

and hence much easier to analyze. Therefore such a vortex may serve as an

experimentally accessible model system for metachronal waves.

3.4.3. Pattern formation via a bifurcation

I now address the question of how the spermatozoa self-organize into an array of

vortices. Because I did not observe vortex arrays at low sperm surface densities, I

suspected that density might play a role in the self-organization process. To quantify the

order at the different densities I defined a novel order-parameter !  as follows. The binary

images of each movie showing only sperm heads were summed such that each pixel value

in the resulting image was proportional to the number of different spermatozoa that swam

over that pixel (see Methods, Fig.18A). If the swimming paths of different spermatozoa

are uncorrelated, then these pixel values are binomially distributed. However, if

spermatozoa accumulate in a vortex they trail each other and the distribution differs from

a binomial one because low and high pixel values (corresponding to centers of the

vortices and swimming trails respectively) will be over-represented (Fig. 18B). In this

case, the variance of the measured distribution (!
m

2 ) will be larger than that of the



79

binomial distribution (!
b

2 ). This motivated my definition of the order parameter:

! = "
m

2
/"

b

2 #1. $ has the expected properties of an order parameter: it is zero for a

Figure 18: The formation of the vortex array at a critical sperm density is associated
with a bifurcation. (A) Summed-up images of a binary movie showing only sperm
heads (see Methods) used for the calculation of the order-parameter $. Colors
correspond to the number of spermatozoa that were swimming over each pixel.
Frame rate: 17 fps. (B) Example of the expected binomial distribution (blue) vs. the
measured distribution (red) in (A) from which the variances !

b

2  and !
m

2  are obtained.

(C) Dependence of $ on the density of spermatozoa (black crosses). Note the
transition at a sperm density of about 2500/mm2 (red lines were inserted for visual
guidance). $ obtained with the model is given as green diamonds. Asterisk and
arrowhead denote data presented in (A, B) and (E, F) respectively. Errors correspond
to 1 std (see Appendix A2). (D) Sketch of the radial pair-interaction potential V  used
in the model with its repulsive and attractive components. R is the circling radius of
the spermatozoon. (E) Result of a simulation with point particles (see Methods): The
hexagonal arrangement of clusters containing about 10 particles is apparent. (F)
Average of a simulated movie generated from (E) (see Methods). It resembles
Fig.15B.
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random configuration, and is greater than zero if spermatozoa share similar swimming

paths. The value of $ depends on the average number of spermatozoa per vortex and how

well the centers of their circular swimming paths co-localize. $ is a robust measure for the

correlation among the objects and is related to the pair-correlation function (see Appendix

A2). Furthermore $ has the advantage that no labor-intensive object tracking is required.

$ may be a useful tool for quantifying order in other spatiotemporal patterns involving

tracks of multiple particles or signals such as intracellular organelle transport (Nielsen,

Severin et al. 1999) or ant trails (Hoelldobler and Wilson 1990).

I measured the order parameter $ for various sperm surface densities and found

two regimes (Fig.18C). Below 2500 cells/mm2, $ was independent of the surface density

and was almost zero, indicating that the swimming paths of the spermatozoa were

random. Above about 2500 cells/mm2, $ increased linearly with density indicating that the

correlation among the swimming paths increased. At 6000 cells/mm2 the ordered state

corresponding to Fig. 15B was reached. The discontinuity in the slope of the curve

suggests a bifurcation separating a disordered and an ordered regime. The critical sperm

density corresponds to about 4 sperm/vortex.

3.4.4. Equilibrium model

In order to gain insight into the physical mechanisms underlying the pattern

formation, I propose a simplified model. The model incorporates a short-range attraction

between pairs of spermatozoa, arising from the hydrodynamic forces that lead to the

observed synchronization (see ref. (Fauci and McDonald 1995)), and a longer-range

repulsion that could be of steric or even hydrodynamic origin (Lenz, Joanny et al. 2003). I

represent each spermatozoon by a point particle located at the centre of its circular path.

These particles move randomly with an apparent diffusion coefficient of D=9.0 ± 2.0

µm2/s measured for isolated sperm. This apparent diffusion coefficient is much larger than

the thermal diffusion coefficient D=0.06 µm2/s of a disk similar in size to a vortex

(D = kT / ! , ! = (32 / 3) "#R = 7 "10
$8
Ns/m , radius R=13 µm, friction in water

'=1mPas) (Berg 1993). The enhancement of the randomly directed motion is due to the
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active propulsion of the spermatozoa (Wu and Libchaber 2000; Darnton, Turner et al.

2004) and indicates that the system is not in thermodynamic equilibrium. Furthermore,

circular flow is not describable by a potential (Landau and Lifshitz). Nevertheless, as I

show below, several important features of the pattern formation are captured by an

equilibrium model with the pair-wise interaction potential shown in Fig. 18D.

Stochastic simulations of this model (see Appendix A2) reveal two regimes: a

random distribution of particles at low densities and a hexagonal array of clusters at high

densities (Fig. 18E). Assigning to each particle a spermatozoon circling around that

position, I generated simulated movies (see Methods). A time-average of such a movie

(Fig.18F) mimics the experimentally observed vortex array (Fig.15B). Moreover the order

parameter $ computed for different simulated sperm densities also shows a discontinuity

in the slope as was observed experimentally (Fig.18C). These numerical results are

supported by a one-dimensional mean-field analysis (see Appendix A2) that indicates the

existence of a critical density associated with a supercritical pitchfork bifurcation

(Strogatz 2000). This critical density is proportional to the interaction strength and

inversely proportional to the diffusion coefficient, where the latter is associated with the

noise in the system.

3.5. Discussion and conclusions

Fitting the model to the data allows me to estimate the strength of the interaction

force, F
int

, between two spermatozoa. The only free parameter in my model (the ratio of

the maximum interaction potential to the drag coefficient,V
0
/ ! = 5 "10

#12
m/s , see

Methods) was chosen to match the critical density. Assuming a viscous drag coefficient of

a disk as estimated earlier, I find F
int
= grad(V ) = (V

0
/ ! ) "! / R  = 0.03 pN. This force is

about 1% of the forward propulsion force of a spermatozoon F
for

= 5 pN (Howard 2001)

and appears to be of the correct order of magnitude for hydrodynamic forces between

particles of this size moving at these velocities (e.g. two rotating spheres (Landau and

Lifshitz 1987), page 65). Though this force is small, it is evidently large enough to lead to

synchronization and attraction.
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I conclude with a discussion of potential implications of my findings. It is unlikely

that the vortex array that I have described is directly exploited by any organism for

reproduction because it is formed at a surface whereas spermatozoa normally swim in

three dimensions. However, I speculate that related patterns might exist in three

dimensions and be of biological importance. For instance, the adhesion of spermatozoa

can lead to the formation of sperm trains(Moore, Dvorakova et al. 2002) in a process

called sperm cooperation that is important for reproduction. My work has shown that

hydrodynamic interactions are also capable of coordinating large numbers of spermatozoa

and hence could provide a second mechanism for sperm cooperation. On a more

conceptual level, my finding of a threshold density for the vortex array suggests that

cooperation of large numbers of cilia and flagella can be achieved and regulated via a

critical process. For instance the metachronal waves seen in ciliates and ciliated epithelia

(Sleigh 1974; Okamoto and Nakaoka 1994) also comprise large numbers of axonemes

that can be switched on and off, and changed in form or direction through modulatory

processes that are still poorly understood. I propose that physiologically controlled

changes of the activity of the individual cilia can change the value of the critical cilial

density compared to the actual cilial density and therefore can provide a switching

mechanism for the metachronal wave. In summary, I have described a dynamic pattern of

cells that forms by hydrodynamic interaction without the need of chemical signaling and

may illustrate important concepts for how activity of collective biological processes can

be switched.
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Outlook

What have we gained? In this thesis two different, though related projects, where

presented. The results of both were already discussed and summarized in the

corresponding chapters. Hence I do not find it worthwhile to be repetitive at this point.

Instead I want to take a step back and comment on some general lessons I can draw from

the two projects.

The waveform analysis of beating spermatozoa in the first part brought a deeper

understanding for the theory and lead to new insights. I clearly did not solve the problem

of axonemal beating as such, hence the achievements might seem incremental from a

broader perspective. This is no surprise since it has been a longstanding problem where a

lot of work has been carried out already. Making another substantial step in a mature field

requires a solid foundation on this earlier work, which usually is not even sufficient.

Looking back I think that a longstanding question should only be approached with a really

novel idea or technique. This was also the initial intention by building a force transducer

for spermatozoa, which unfortunately did not work out. However, even when the initial

plan fails there is still a possibility to make a solid contribution to the field.

The analysis of the vortex array formed by spermatozoa was based on a

phenomenon that one could call a lucky finding. Looking back and thinking about the

term “luck”, I think there is a lesson on how to discover something. It is hard to believe

that no one has seen this pattern before since sea urchin spermatozoa have been used in

many labs for decades; furthermore I observed this pattern for two different species.

Hence discovering is not simply being lucky and seeing an effect. It also requires actively

noticing it and making the decision that it might be an interesting subject being worth

studying. And there is also the opposite way of how to discover something. One can

rather quickly form a hypothesis and then try to prove it, which in turn might need lots of

persistence. That the formation of this pattern should be associated with some sort of

transition is rather obvious. But it took me a lot of trial and error until the right idea came

along on how to measure the order in the system in an efficient way, as well as to make

the necessary controls to prove that this idea was actually correct.
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Finally I want to admit that one of my strongest motivations to switch from

physics to biology was the impression that the phenomena under study were much more

lively. I never regretted my decision since this turned out to be true, actually in a double-

sense: These phenomena are what we call “live” but they are also so fascinating,

enjoyable and even funny to fully compensate for the frustrations we experience when

trying to unravel them.
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Appendices

A1 Coordination of axonemal beating

The goal of this section is to describe the algorithm that was used to detect the

outline of a spermatozoon within a single image. This outline was converted into a one-

dimensional description, where the outline is given by the tangent angle along the curve.

This waveform was measured in many successive frames of a movie corresponding to

typically 10 frames per beat cycles and 100 beating cycles in total. This time-series,

which shows a very regular beat, was then subjected to a Fourier analysis. This leads to an

averaged waveform of higher precision than what could be obtained from a single beat-

cycle. Finally I estimate the precision of this averaged waveform.

Movie acquisition

Figure 10A shows a typical image of a movie taken at 250 fps. The movies were

taken at 10x Phase-contrast and under standardized light intensity leading to similar

contrasts and resolution in the final movies. All movies showed only a single

spermatozoon. If dirt particles of significant contrast were observed within the movie the

movie was rejected, since this dirt could lead to detection failure, e.g. detecting the dirt-

particle instead of the tail.

Wave form detection

A detection algorithm usually does not work by measuring the feature of interest

in an image straight away with the desired precision. If a person is asked to measure the

length of an object in an image, one might think that this person just measures this length

within one step. But instead the person first has to spot the object, decide on its

orientation, and decide where the beginning and end is. Then it puts the ruler along, and

before reading off any number checks again whether the ruler is properly aligned. Hence

it is actually quite a complex task that is broken up in a few sub-steps that one is usually

not aware off. Accordingly I also designed the detection algorithm in such a way, that the

desired objects are detected coarsely first, and then re-measured with a few iterations and
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increasing precision. I also want to mention, that the development of such an algorithm

also involves a lot of trail and error to obtain a certain robustness and precision in the

algorithm. All programming was carried out in Matlab (Mathworks Inc.) The algorithm

works as follows:

First, the whole image is searched for that square-pixel-matrix of a certain size

(6x6 pixels) that has the lowest total intensity. This spot corresponds roughly to the head.

Around this square an area of a bigger size is thrasholded and an ellipse is fitted to it.

Hence the outline and the center of the head are roughly known, but so far it is not clear,

into what direction the tail starts. Therefore, around the center of the head a circle is

drawn, with the radius being clearly larger than the size of the head. Along the

circumference of this circle for the highest intensity is searched, which coincidences with

some basal part of the tail. Hence this point together with the center of the head give

roughly the symmetry line of the head including the direction of tail.

This leads to the task to detect the head more precisely: Perpendicular to the head

orientation slices through the head are analyzed. Each of these slices corresponds to a

cross-section of the head, which is symmetric in the case of a bull spermatozoon.

Therefore, each of these slices gives a point of the centerline of the head. 9 of these

centerline points are obtained and a line is fitted through them leading to a very precise

orientation of the head. Along this orientation the tip of the head is measured by

interpolating for the point were the intensity is half way between the intensity of the head

and the intensity of the image in the surrounding of the head.

Knowing the tip and the orientation of the head precisely, the base of the tail is

also known, since all bull sperm heads look very similar in size and shape. Actually, the

point where the tail starts in absolute terms is not detectable in such a 10x Phase-contrast

image, since the tail grows out of the head and the circumference of the tail seems to

shrink smoothly to the thickness of the tail. Hence I use an arbitrary but fixed distance

from the tip of the head, which is in agreement with the distance that was measured from

a higher-resolution image (40x) of a bull spermatozoon. The orientation of the tail in the

very basal region coincidences with the orientation of the head as far as I can tell, even

from higher resolution images.
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Now I detect the outline of the tail. Starting from this first basal tail-point, for the

second tail-point is searched in the following way: Along the head orientation at a given

distance (corresponding to the length of 2 pixels or 1.4 µm) the next tail-point is

suspected. Through this point a line is drawn perpendicular to the presumed tail outline.

Along this line a gauss is fitted, with its maximum corresponding to the second tail point.

Such fitting finally leads to a sub-pixel resolution in the detection of the tail-center. The

vector connecting the first and the second tail-point points towards the third tail-point,

which is then found as the second one before. This procedure is repeated 44 times, which

corresponds to the total length of the tail.

Unfortunately, no robust detection algorithm could be developed that reliably

detects the very tip of the tail. This is due to the fact that the tail gets thinner towards the

end leading to a decrease in contrast, furthermore the tail end is the piece of the

spermatozoon that moves fastest through the fluid hence it is also smeared out during the

exposure time of the camera. Since it was not possible to find the end of the tail by eye

reliably, I decided that it was not likely to find a reliable way to detect it automatically.

The tails of all bull spermatozoa are very similar in length L = (58.3 ± 0.6)µm  (mean and

standard deviation) hence I have an uncertainty in length of 1%. I detected the tail along

44 points where 3 points were still inside the head. Hence I measured a tail-length of

41 !1.4µm = 57.4µm  meaning that on average I miss about 1 µm. This uncertainty has to

be taken into account if in later analysis the waveform ! (s)  is integrated or a derivative

at the tip is computed.

So far, the tail-points are not equally spaced, especially if the tail undergoes high

curvature. Furthermore their center-positions are noisy and off to both sides of the tail-

symmetry line. This noise is reduced by filtering the x and y coordinates of the tail with a

Savitzky-Golay-Filter (Press, Vetterling et al. 2002) with a span of 9 and a degree of 5  (A

discussion on the optimal choice of the span and degree can be found in (Press, Vetterling

et al. 2002). Their values depend on the noise and the typical size of a curved region.).

This filtered outline is now interpolated with splines (Press, Vetterling et al. 2002).

Starting from the base of the tail, equally spaced points along this outline are determined

by integrating the distance between any two points along the arc-length. Hence the tail-
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points are centered now with very high precision on the tail, and are also equally spaced.

(I will estimate the associated errors in the next subsection.)

The data points obtained in this way are than stored as absolute positions within

the image, furthermore tangential orientations of the head and tail relative to the x-image

axis are calculated. These tangential orientations are obtained by fitting local Chebyshev

polynomials of 9th degree with span 5 through the x-y-coordinates, from where the

derivatives and hence the tangents could be calculated analytically via the Chebyshev

coefficients. (For more detail see (Press, Vetterling et al. 2002), also a discussion on the

optimal parameter choice can be found there.)

Hence finally, the tip-position of the head, the orientation of the head, and the

orientations of the tangents on each tail-point lead to a full description of the outline. Here

the arc-length of the tail is denoted by s and the tangent is ! (s) . Re-plotting the outline of

the waveform starting from the tip of the head and using only the tangents on these tail-

points ! (s)  leads to very good visual agreement with the initial waveform (not shown).

Note that this outline in angular representation is one-dimensional, which makes the

following analysis very convenient compared to a description of the waveform in (x,y)-

coordinates.

The typical time it takes to detect the waveform within one image is in the order of

3 sec on a standard desktop PC. Hence, even very long movies, such as 30.000 frames,

can be processed within 10 hours, hence no additional expensive computer power is

needed concerning the overall data needed for this and possible follow up projects.

Since the spermatozoon had to be observed in comparatively long movies (up to

30.000 frames, for the presented analysis only 1024 were used) and one can never

guaranty that the detection does not fail within some of the images, e.g. due to some dirt

particle flowing through, an error-check was built in to judge whether the detection was

successful. The critieria were that the maximum curvature of the tail did not exceed a

certain value or that the tail did not cross itself. In such cases a place holder was kept in

the whole data set taking care than in subsequent analysis, such as the Fourier analysis, no

data points were used from these images. Usually, in all of the 1024 frames the

spermatozoon was detected correctly, the failure rate in general is certainly much less than
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1 in 100 frames. Therefore, if care is taken while acquiring a movie, the final detected

data is of sufficient quality and completeness to do a time series analysis.

So far I did not discuss the detection uncertainty quantitatively. This will be done

in the coming subsection.

Errors in waveform detection

The error on the waveform, which is given by ! (s) , is due to two main

influences: On one hand the tangent-angle ! (s)  has some uncertainty itself (d!
1
),

furthermore the position of the tail-point s at which ! (s)  is measured, can only be

detected between different frames with some uncertainty (d!
2
). Both influenced are

quantified as follows: (All values are given as mean and 1 standard error of the mean

(SEM).)

The first source of error stems from the fact that the points along the tail do not

exactly lay on the center of the tail. For convenience I assume in the following that the tail

is parallel to the x-axis end estimate the error for slight deviations. (Generally, the tail can

have any orientation of course, but the error in the tangent angle has to be independent of

this orientation, hence I can estimate the error for this particular case.) Since a Gaussian

was fitted to the tail-cross-section and the positions of the tail-points were filtered (see

previous section) the precision of the position in y has sub-pixel resolution and is

estimated to be !y = 0.1pixel . Now the tangent on the tail at the ith tail-point is given by

! (s
i
) = arctan y

i+1
" y

i( ) / xi+1 " xi( )#$ %& . For a tail parallel to the x-axis ! (s
i
) = 0 and the

uncertainty in ! (s
i
)  is found by the lowest order Taylor expansion, where yi+1 ! yi( ) = dy

is small and x
i+1

! x
i( ) = "L : d! (si ) = dy / "l . Hence I find

d!
1
= dy / "l = 0.1pixel / 2pixel = 0.05rad = 3° .

Second, the position s of each tail-point along the arc-length differs between

different frames. This is due to the uncertainty of detecting the tip of the head, which is

estimated to be !shead = 0.5pixel , furthermore due to the uncertainty in distance of any

two neighbored points along the arc-length. This second influence was largely reduced by

filtering the (x,y)-positions as described before and than fitting a spline (Press, Vetterling
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et al. 2002) through it, along whose arc-length the successive points were found (see

previous section). The uncertainty in distance between neighbored points was fixed to be

not larger than 0.05 pixel. The uncertainty in the position in neighbored frames increases

towards the end of the tail in a random walk like fashion, since some of the inter-point

distances are too large and some are too small. Hence I find for the uncertainty!s
L

at the

tip of the tail (s=L, where L is the length of the tail):

!sL = !l " N = 0.05pixel " 44 = 0.3pixel . Adding the variances of !s
head

 and !s
L

 I

find !stotal = 0.9pixel . Together with the upper limit for the average curvature

!s" = 5° / pixel  (the waveform at the tip is approximated by an arc with a circumference

of about 50 µm where one pixel corresponds to 0.7 µm) I can estimate the maximum error

due to uncertainties in position s at the tip of the tail by d!
2
= "

s
! # $s

total
= 3° . Towards

the base this uncertainty is less since the maximum curvatures gets smaller and the

uncertainty in tail-position s is also less. In principle at the base this contribution to the

total uncertainty is zero. Hence it is reasonable to reduce this value to

d!
2
= "

s
! # $s

total
= 2° as an estimate being valid on average everywhere along the tail.

Taking both errors d!
1
 and d!

2
 together by adding up their variances I find

d!
total

= 4° . A visual inspection of raw data curves such as in (see figure 10D) reveals

that this is a reasonable value. This uncertainty can be significantly decreased by

averaging over the waveforms obtained over many successive beat-cycles as described in

the following section.

Fourier analysis

A visual inspection of a beating spermatozoon under physiological conditions

reveals a very periodic pattern. (This is not necessarily the case, e.g. at unphysiologically

low temperatures a rather erratic movement of the sperm tail can be observed.) This

periodic pattern makes the Fourier analysis an ideal tool to average the waveform over

many beating cycles. The Fourier analysis is carried out at each tail-point s separately

using a Hanning window and a fast Fourier algorithm as described in the methods.

The Fourier analysis revealed clear peaks at the main frequency and its higher

harmonics. It was found that at the tip 95% of the power in the Fourier spectrum was



91

contained within the first mode. At more basal parts of the tail this value is typically

higher. Since the power is !
2

, these 95% correspond already to 10% in ! , which is still

comparatively small but might become an important influence for spermatozoa beating

under slightly different conditions. Hence for the presented data the waveform ! (s,t)  for

a given s changes nearly sinusoidal in time, and the higher modes only lead to smaller

corrections and consequently all further analysis is only executed at the lowest Fourier-

mode.

Besides restricting myself to this lowest mode, the Fourier analysis also filters out

fluctuations in the beating pattern and detection noise. Since I average over N=100 beat

cycles these fluctuations are reduced by N = 10  and I obtain an uncertainty in the

waveform of d!
total

= 4° / 100 = 0.4° .

Hence I conclude, that the Fourier averaged waveform has an uncertainty of

d!
total

= 0.4° corresponding to about 0.5% at the maximum values of the tangent angles

 
!! (s) . This high precision (compared to data obtained earlier by other groups such as

(Rikmenspoel 1965; Brokaw 1993)) now allows the computation of various functionals in

 
!! (s)  with a reasonable error, since especially the derivatives 

 
!
s

n
!" (s)  increase in their

uncertainty with increasing n, as I will discuss in the next two sub-sections.

Computing functionals of 
 
!! (s)

To carry out the fits according to chapter 2 I need to compute certain functionals

from 
 
!! (s) , that is derivatives and integrations. Especially the numerical computation of

derivatives is a delicate issue (Press, Vetterling et al. 2002). In order to do so I

approximate 
 
!! (s)  by an expansion in Chebyshev coefficients, which form a complete set

of orthogonal basis functions based on polynomials (Press, Vetterling et al. 2002). They

also have the advantage that from the coefficients the derivatives and integrals can be

computed analytically.

This leads to the question of how many of the basis functions to take into account.

Taking too few the curve is not well approximated, taking too many (in the extreme case

as many as there are data-points) I also fit the noise and hence the successively computed
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derivatives are meaningless. I estimated the cut-off in two ways, which are essentially

based on the same idea and lead to a similar cut-off.

On one hand I computed the root-mean-squared difference between 
 
!! (s)  and an

expansion with a given cut-off. I then use that cut-off where this difference corresponds to

the total measurement uncertainty since taking more coefficients into account effectively

fits the noise. I checked that the coefficients in the expansion decayed reasonably fast

with increasing order, that is I find a reasonable approximation with a few coefficients.

(This was not the case with a sine-cosine-expansion, which is therefore not a suitable

basis set for my problem.) I also checked that the root-mean-squared difference is

distributed roughly equally for all points along the tail. If it would stem from a very few

or even a single point this would indicate that the chosen basis functions due not converge

equally well and hence are not suited for this problem.

On the other hand I did a chi-squared test (Press, Vetterling et al. 2002) for each

cut-off to determine at what cut-off this approximation goes from an unsatisfactory

(insignificant) fit towards being over-fitted. (Since this statistical test compares the

difference between original data and fit in contrast to the measurement and fitting

uncertainties this is basically the same as the other estimation discussed before. This

second one might be seen on a more solid basis since it also accounts for the number of

free parameters, that is the cut-off, that are used for the expansion.)

Both estimations gave similar answers and I chose the cut-off to be 12 to compute

the desired functionals of 
 
!! (s) .

Uncertainties in functionals of 
 
!! (s)

By knowing the uncertainty in 
 
!! (s)  I can estimate the resulting uncertainty in the

derivatives in 
 
!! (s)  and other functionals (generally called 

 
F( !! (s)) ) such as the double-

integration. I estimated these errors in two ways:

First I did an analytical estimation: I assumed that two neighbored points among

which the derivative needs to be calculated independently vary with d!
total

= 0.4° . Given

the distance between the points of !L = 1.4µm  I find

d(!
s
" ) = 2 #d"

total
/ $L = 0.4° / µm . The same holds for higher derivatives leading to
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d(!
s

2" ) = 0.4° / µm2 , d(!
s

3" ) = 0.4° / µm3  etc. (This assumes that the uncertainties in

neighbored points are independent, also for in the derivatives. This assumption might be

questionable.) The uncertainty of an integral is much less critical than the one for a

derivative. Summing over N=44 points with uncertainty d!
total

= 0.4° leads to an

uncertainty of d( !" ) = N # $L #d!
total

= 4°µm  and

d( !"" ) = N # $L #d( !" ) = 40°µm2 .

Alternatively I can estimate these errors by simulations. I randomly generate a

large set of waveforms 
 
!!
j
(s) that is consistent with the error-statistics on 

 
!! (s) . For each

of the 
 
!!
j
(s)  the desired functional 

 
F( !!

j
)  is computed by fitting Chebyshev polynomials

of the 1st kind to 
 
!!
j
(s)  and explicitly taking all coefficients into account to exactly fit the

noise. From these Chebyshev coefficients the functional 
 
F( !!

j
(s))  were then computed

analytically. The statistics in the sample 
 
F( !!

j
(s))  leads to the uncertainty in computing

 
F( !!

j
(s)) . This protocol has the advantage, that it is straight forward especially in the

case of more complicated functionals or in cases where the uncertainty is different at

different parts of the function. The simulation also reveals that the uncertainty in the

derivatives at the boundaries is higher then within the bulk. This is very reasonable since

no constraint exists how the polynomials should be extrapolated outside the tail.

As stated in an earlier subsection the detection of the tip of the tail is associated

with an uncertainty of !L = 1µm . If one wants to measure 
 
!! (s)  or its derivatives at the

tip in order to check the boundary conditions these values have to be extrapolated via

 
!
s

n
!" (s) = !

s

n+1
!" (s) # $L . Hence I find

 
d !! (L) = 4°µm / "1µm = 2° ,

 
d ! !" (s)

s=L( ) = 0.75°µm2
/ #1µm = 0.75°µm ,

 
d !

s

2
!" (s)

s=L
( ) = 0.05°µm3

/ #1µm = 0.05°µm2 , where the higher derivative is estimated

from its typical half maximum value. This is an additional source of error that has to be

added by adding the variances of the uncertainties,

Table A1 summarizes the relative and absolute uncertainties obtained with this

approach.
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Functional Unit Typical
max
value

Bulk
absolute
error

Bulk
max
relative
error

Uncertainty
at the tip
from
simulation

Corrected
uncertainty
at tip

Relative
uncertainty
at the tip
compared
to typical
maximal
value

Tangent
angle !

 ! 90 0.4 0.4% 0.4 1.5 2%

!
s
"

 
! / µm 8 0.4 5% 1.2 1.4 17%

!
s

2"
 
! / µm2 1.5 0.4 27% 4 4 270%

!
s

3"
 
! / µm3 0.1 0.4 400%

ds '!
0

s

"
 
! !µm 800 4 0.5%

ds ''!
0

s '

"
s

L

"  
! !µm2 10000 40 0.4%

Table A1: Overview over the uncertainties of different functionals based on ! (s)  at

different parts of the tail

As can be read off from the table A1, the relative uncertainties in the higher

derivatives get larger, furthermore the uncertainty for the derivatives at the tip are higher

than in the bulk. Both are very reasonable. From the values one can see that fitting

anything up to the second derivative in bulk is possible, for higher derivatives the

uncertainties get too large. The fit that has been carried as out described in the main thesis

and the uncertainties in the fit parameters are mainly determined by the uncertainties in

the second derivative.

The uncertainties in the boundary conditions at the base as given in table A1 are

the same as in bulk. This is due to the fact that first three points belong to the back part of

the head instead of to the tail itself. This constrains the fitted polynomials at the assumed

position of the base, which is in contrast to the tip. But this constraint can lead to artifacts

because it is not clear whether the basal part of the tail inside the head is really following

the symmetry line of the head. Actually as discussed in the main text it is very reasonable

that additional conformational changes take place in this region. Accordingly the values

of the derivatives are not trustworthy when it comes to proofing the validity of the
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boundary conditions at the base. As discussed in the main thesis I only have confidence in

two boundary conditions namely concerning the 
 
!! (s)  at the base and its first derivative at

the tip.

Summary

To summarize, I developed a new tool to automatically detect the outline of a

spermatozoa within the frames of a movie, where the outline is described by the tangent

angle ! (s,t)  along the arc-length s of the sperm tail. The initial detection in an individual

image is reasonably precise, but can be significantly enhanced by succeeding Fourier

analysis in the case of periodic beating leading to an approximation of the wave form by

the first Fourier component 
 
!! (s) . This high precision waveform than allows the

computation of various functionals
 
F( !! (s))  appearing in theories describing the axonemal

beat, with the uncertainty in these functionals still being reasonably small to allow to test

certain predictions of these theories.

In case where the beating is rather erratic instead of periodic this automated

detection algorithm allows the measurement of long time series (in the order of 30.000

frames being the limit of the camera used), which could be used for time series analysis to

study this erratic behavior.
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A2 Self-organized vortex array

Order parameter

In this section I investigate the relationship between the order parameter $ and the

pair-correlation function in the case of cycling sperm. I find that both carry the same

information with respect to the packing order and the bifurcation. Furthermore I

demonstrate that $ is robust in its information content against changes in the parameters

used to compute $.  This makes $ a useful tool for studies of systems involving trails of

multiple particles or signals.

Note that the tracks in other studied systems do not have to be circular. Any shape

of trace is possible. Generally, $ measures whether the trails are random or correlated.

Furthermore $ is also sensitive to anti-correlation, e.g. when similar path are explicitly

avoided. The precise meaning and usage of $ in a particular system has to be checked

with control data.

Measuring order among point particles: pair-correlation function

A standard analysis tool for the description of point-particles is the pair-correlation

function g2(r):

g
2
(r ± dr) =

1

r
!( ri " rj " r + dr / 2) #!(r + dr / 2 " ri " rj )

j>i

$
i

$ , Eq. S1

where r is the pair-wise distance of the point-particles, !  is the Heavyside function, r
i

are the center positions of the particles, i and j are the indices running over all particles,

and dr is the bin-width of the histogram.

The pair-correlation function measures the probability of finding a particle at a

given distance from another one. Fig. S1a-c show the pair-correlation functions (blue) for

the model simulation corresponding to three different densities. These densities are

chosen such that one is below (Fig. S1a), one in the vicinity (Fig. S1b), and one far above

(Fig. S1c) the critical density. The red lines correspond to the pair-correlation for a

homogenous particle distribution at the same total particle density.
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Figure S1: Pair-correlation function below (a), in
the vicinity of (b), and above (c) the critical density.
For further details see text.

Below the critical density (Fig. S1a, 500 particles/mm2) the distribution is

homogenous except close to the

origin. The two peaks (arrow and

arrowhead) with the sandwiched

minimum are determined by the

interaction potential among the

particles. If a particle diffuses

towards another it has a lower

probability of staying in the high

potential region. It gets pushed

away into regions of lower

potential where the probability

increases.

At the critical density

(Fig. S1b, 2400 particles/mm2) a

second minimum shows up

(arrow), followed by further

maximums and minima with

rapidly decaying amplitudes.

Furthermore the peak at zero

increases in its relative height to

the average (arrowhead). The

emergence of the second minimum and the increase of the maximum at the origin indicate

the formation of clusters of particles, and the onset of packing of these clusters,

respectively.

At densities much higher than the critical density  (Fig. S1c, 5700 particles/mm2)

the peak at zero has become very sharp, indicating that the particles within a cluster are

tightly packed. Furthermore, the alternating minima and maximums have become more

pronounced.
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To summarize, the critical density where the formation of clusters and their closed

packing sets in can be read off from the pair-correlation function by measuring the heights

of the zero peak and the second minimum relative to the average pair-correlation.

Definition of $

In this paragraph I define in mathematical terms how the order parameter $ is

computed.

Consider a stack of N binary frames of size X by Y pixels, let F(x,y,n), where x=1,…X,

y=1,…,Y, n=1,…,N, denote the occupancy of the pixel at position (x,y) of the nth  frame.

Here, F=0 for an unoccupied pixel and F=1 in the opposite case. The relative intensity in

each frame is given by

p(n) =

F(x, y,n)
y

!
x

!

X "Y
Eq. S2

Here p(n) is a real number between 0 and 1. The quantity p(n) is the probability for a pixel

being set to 1. p(n) is independent of the frame number n as the number of objects and

hence of occupied pixels is the same in all frames, that is p(n)=p for all n.

The number of frames a pixel is occupied is given by

A(x, y) = F(x, y,n)
n

! Eq. S3

where A(x,y) is an integer between 0 and N for all x and y.  A(x,y)=0,…,N and A(x,y)

being integer values. Let Hm be the histogram of the values in A(x,y). If the distribution of

the objects within the stack were random the entries in the histogram would be distributed

according to a binomial distribution Hb, where Hb(a) =pa(1-p)N-a with 0<=a<=N.

To measure the amount of order of the objects in the stack I compare the two histograms

Hm and Hb. Both distributions have the same expectation value p(N, but differ is the

variances !
m

2  and !
b

2  respectively. From these variances I define the order parameter $

as:

! = "
m

2
/"

b

2 #1 . Eq. S4

The subtraction of 1 ensures that $ is zero for a random distribution.
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Relation between pair-correlation function and order parameter $

I investigated the relation between the pair-correlation function and the order-

parameter $ by computing both for the simulated data presented in Fig.4e in the paper. I

found that the height of the zero peak in the correlation function (Fig. S2a), the height of

the second minimum in the correlation function (Fig. S2b), and $ itself (Fig. S2c) all

indicate the same general dependence on the particle density: An initial plateau phase is

followed by a transition towards an increasing phase with a constant slope. The transition

happens at the same density (dashed red lines). Plotting all three variables pair-wise

against each other (Fig. S2d-f) I find correlations between them. The only exception is the

second minimum, which levels off at higher densities. This can be understood from the

Figure S2: Relation between pair-correlation function (PCF) and order parameter $. a,
Relative height of the zero maximum of the PCF vs. sperm density. b, Relative height
of the second minimum of the PCF vs. sperm density. c, Order parameter $ vs. sperm
density. d, Relative height of the zero maximum of the PCF vs. order parameter $. e,

Relative height of the second minimum of PCF vs. order parameter $.f, Relative height
of the second minimum of the PCF vs. relative height of the zero maximum of PCF.
(a-c) Crossing point between dashed red lines and the zero order parameter indicate the
critical values.
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fact that at very high ordered states the second minimum in the pair-correlation becomes

zero and therefore does not change anymore with increasing overall density.

The relation between the order parameter $ and the pair-correlation function can

be understood as follows. The peak at zero in the pair-correlation function is equal to the

convolution of the average particle density of a cluster with itself. Then from the total

particle density and the average particle density within a cluster the statistics of spatial

particle configurations can be deduced. For this statistic and the parameter choices used in

the experiments, e.g. frame rate, number of frames, size of the objects, the corresponding

$ can be found.

I conclude that $ and the pair-correlation function contain the same information

with respect to the clustering and packing order for the simulated data.

Robustness of $

Next I discuss how $ depends on the parameters needed to compute it from the

experimental data. These parameters are the head size of the sperm, the number of frames

used for the summing up process, and the frame rate of the movies.

To test these influences I used the simulated data on which Fig. 4e in the paper

was based on. I studied the influence of each parameter by increasing and decreasing its

value by 50%. From this data I computed the corresponding dependencies of $ on sperm

density. I explicitly tested:

1. Head size of sperm: The size was varied between 2x2, 4x4, and 6x6 pixels, 4x4

pixels being the one used for all simulation and corresponding very closely to the

experimental data.

2. Number of frames added up: The number was varied between 5, 10, and 15

frames, 10 being the ones used for all simulation and the experimental data. For the

experimental data 10 frames correspond on average to a full swimming cycle of a sperm.

This is in contrast to 5 frames, where two sperms swimming in the same vortex might not

overlap at all, and 15 frames, where individual sperm swim over their own path and hence

leading to self-overlap.



102

3. Frame rate at which the movies were acquired: The frame rate was varied

between 8.5, 17, and 25.5 frames per second (fps). For the all simulations and

experimental data 17 fps were used. For the frame rate of 17 fps a sperm head has moved

on average so much not to overlap with itself in successive frames but also not leaving a

large gap.

Fig. S3a shows $ vs. particle density for all these scenarios. I find that the absolute

value of $ depends on each of the chosen parameters. But all curves contain initial plateau

followed by an approximately linear increase staring at the same density. Fitted lines

through the data points (not shown) in each phase intersect at the same critical density

(arrow). Hence there is a critical density and its values is independent of the parameter

choice.

Fig. S3b shows the pair-wise correlation between $ calculated with the original

parameter choice vs. $ for each one of the parameters changed. I find linear dependencies

between all of them.

I interpret that a

certain chosen

parameter set has a

systematic

influence. Any

parameter set

systematically over-

or underestimates

the amount of

trailing in the

system. But the

information content

for a given

parameter set is

very robust. The

order in the system

Figure S3: a, Comparison of different parameter sets used for
computation of the order parameter $ b, Correlation among
order parameter $ computed with different parameter sets.
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and the transition point are revealed for all different parameter choices as long as they are

kept constant in a series of experiments. Furthermore it is advantageous to minimize these

systematic influences by aiming at a parameter choice where the self-overlap is

minimized. This was also the rational in my parameter choice.

Error estimates on the order parameter $

During the course of the experiment presented in Fig. 4 not only the surface sperm

density changed. Also the circling radius of the spermatozoa changed from initially

R=33.1 ± 8.3 µm to R=14.8 ± 2.0 µm. The same effect is observed for isolated

spermatozoa and is very likely due to the lack of Ca2+ in the artificial seawater, which is

known to influence the asymmetry of the waveform (see ref.(Brokaw 1986)). Hence this

effect is independent of the pattern formation. Furthermore the swimming speed changed

from v=123 ± 16 µm/s to v=99 ± 27 µm/s, presumably due to the use-up of the internal

ATP.

This raises the questions, how these changes influence the order parameter $. As

discussed in the proceeding analysis of this supplementary material, the order parameter $

measures the correlation among the paths of particles independently of the shape of these

paths, hence also at different swimming radii. Furthermore, it was shown, that a given

parameter set needed to compute $ is optimized for the characteristics of the particle

motion such as the swimming speed. If these parameters are not chosen optimally,

systematic errors onto the value of $ are introduced. If for instance a sperm swims much

slower than expected, then it overlaps in successive frames with itself and hence the

amount of trailing is overestimated. If now the swimming characteristics of the objects

during the course of the experiment change – as radii and swimming speed in my case –

not all $ are measured on equal footing. Therefore I analyzed, how much uncertainty in $

is associated with these changes in the circling radii and swimming velocity.

Initially I estimated the error in $ by evaluating different areas within a movie

separately and doing statistics on them. The error on the sperm density was estimated the

same way. Since the variations in $ found by the controls described below were slightly

larger in some cases (within a factor of two) I doubled the initially estimated error on $.
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These error bars are the ones shown in Fig. S4 (black crosses), as well as in the paper in

Fig. 4c.

I did the following controls. First, I generated simulated data as described in the

paper, but now the circling radius and the swimming velocity were adjusted accordingly

with density as observed in the experiment. As can be read off from Fig. S4 this leads to

changes in the absolute value of the order parameter $ that are in the same range as the

fluctuations among experimental measurements. Second, I estimated the influence

accordingly to the conclusions drawn in Fig. S3 (data not shown). Again I found that

changes are comparatively small. Third, I computed $ for the experimental data with the

larger swimming radii by averaging over 25 frames instead of 10. (If the radius is larger it

takes more frames for a sperm to complete a full circle.) The results agreed with the initial

ones (data not shown). To conclude, the initial plateau, the transition and then the increase

in $ was revealed for all controls and hence is a real feature of the experimental data and

also of the pattern forming process.

Finally I want to point out that the circling radius might influence the interactions

among the spermatozoa and hence the critical density might change as well, depending

what the actual radius at the bifurcation point was. I estimated this effect to be within a

factor of 1/2-2, leaving my earlier conclusions unchanged.

Figure S4: Controls on the influences of variations in circling radius and swimming
speed.
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Mean field description

In this section I perform a meanfield analysis of the model in one spatial

dimension. In the meanfield limit, the state of the system is given by the particle density

! . The evolution in time of the density is given by

!
t
"(x,t) = D!

x

2"(x,t) # !
x
J(x,t)

J(x,t) = "(x,t)$ #1
dx

#2R

2R

% '"(x + x ',t)V (x ',t)
Eq. S5

where t  is time, x is position,D is the diffusion constant, J  is the density current,

!  is a constant with dimensions of a friction constant, and V  the interaction potential.

The interaction potential is given by V (r) =

V
0
! r                  r < R

V
0
! (2R " r ) for R< r < 2R

0                         r > 2R

#

$
%

&
%

'

(
%

)
%

 (see also Fig.

4d), where r is the pair-wise distance.

Note, however, that the qualitative behavior of the model is independent of the

detailed shape of the potential, but depends only on some of its features, such as the

existence of an attractive and a repulsive part, furthermore the minimum at the origin

being not below zero.

Figure S5: Results of the 1D mean-field analysis of the model. a, Spatial density
distribution at three different average densities. b, First mode of spatial density
distribution depending on the average density. Solid, dashed and dotted-dashed line
correspond to the densities in a.
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The homogenous density distribution ! = !
0  is a stationary state of the dynamics.

Now I analyze the stability of this state with respect to small sinusoidal perturbation. I

find that a critical density exists. Below that critical density the perturbation decays and

the homogenous distribution is stable. Above the critical density the perturbation

increases and an inhomogenous stationary solutions appears. This transition is categorized

further to be a supercritical pitchfork bifurcation (Strogatz 2000).

The following relation governs the critical point:

! "
V
0

D
"
R

#
= 1.05 Eq. S6

The first wavelength that becomes unstable is determined by the following equation:

k
c
=
2cosk

c
(cosk

c
!1)

sin k
c
(1! 2cosk

c
)

, Eq. S7

which has the solution kc = 2.67 .

Fig. S5a shows the spatial density distribution at three different average

distributions (below, very close but above, and far above the critical density). Fig. S4b

shows the amplitude of the first spatial Fourier mode. In the vicinity of the bifurcation

point it increases with a square-root dependence, which is generic for a supercritical

pitchfork bifurcation. The arrows (solid, dashed, and dotted-dashed) correspond to the

densities shown in Fig. S1a. The solutions shown in Fig. S5 were obtained by numerical

integration of Eq. S5. A one-dimensional box with periodic boundary conditions and size

32R was chosen.

The relation in Eq. S6 states that the bifurcation can set in by changing any one if

these parameters, not only by varying the density as done experimentally. I tested whether

this relation is compatible with the simulated data from simulations with the 2D model

presented in the paper (same as described in Methods, except this time only 300 particles

were used). Fig. S6a shows $ vs. density for four different forces. (Here the force is

related to the potential by the relation F = !grad(V ) = !V
0
/ R .) The critical density

(arrows) changes with the force. For zero force I do not find a critical density at all. I also

notice that for zero force $ is the same at all densities. Hence $ is not an artifact due to the
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particle density; instead it depends on the order among the particles as already shown in

the previous section of this supplementary material.

If I keep the diffusion constant and the density fixed, but vary the force I also find

a transition (Fig. S6b). The same holds if I fix the force and the density but vary the

diffusion coefficient (Fig. S6c). Therefore I find a qualitative agreement between the 2D

simulation presented in the paper and the analytical 1D analysis presented in the

supplements.

To conclude, the 1-D mean-field description of the model predicts a supercritical

pitchfork bifurcation. This bifurcation is associated with a transition from a homogenous

distribution to a periodic arrangement of regions with higher densities separated by

regions with lower densities. In my 2D simulation this corresponds to the formation of

hexagonal arranged clusters. These clusters correspond to the experimentally observed

formation of closely packed vortices containing about 10 sperm.

Figure S6: Simulation results for different choices on the interaction force and
diffusion constant. a, Order parameter $ vs. sperm densities for different interaction

forces. b,. Order parameter $ vs. interaction force c, Order parameter $ vs. inverse of
diffusion constant. Crossing point between dashed red lines and the zero order
parameter indicate the critical values.
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A3 Supplementary movies

Movie V1: Phase contrast movie showing a bull spermatozoon clamped at its head to the

surface beating at 20Hz. Scale: Length of head is about 10 µm. Original frame rate: 250

fps; replay: 5 fps. (QuickTime; 0.7 MB)

Movie V2: Phase contrast movie showing a bull spermatozoon hinged at its head to the

surface beating at 20Hz. Scale: Length of head is about 10 µm. Original frame rate: 250

fps; replay: 5 fps. (QuickTime; 0.5 MB)

Movie V3: Phase contrast movie showing a bull spermatozoon swimming close to a

surface and beating at 20Hz. Scale: Length of head is about 10 µm. Original frame rate:

250 fps; replay: 10 fps. (QuickTime; 3.4 MB)

Movie V4: Phase contrast movie showing a bull spermatozoon swimming close to a

surface at approx. 10 fold increased viscosity. Note the shorter wavelength on the tail

compared to Movie V3. The frame size demonstrates the maximum field of view of the

used camera. Scale: Length of head is about 10 µm. Original frame rate: 250 fps; replay:

30 fps. (QuickTime; 8.9 MB)

Movie V5: Phase contrast movie showing a bull spermatozoon clamped to a suction

needle that is driven by a piezo. The driving frequency is 12 Hz while the spermatozoon is

beating with approximately 20 Hz. Scale: Length of head is about 10 µm. Original frame

rate: 250 fps; replay: 10 fps. (QuickTime; 8.9 MB)

Movie V6: Phase contrast movie showing a human spermatozoon attached to the surface.

Scale: Length of head is about 10 µm. Original frame rate: 250 fps; replay: 15 fps.

(QuickTime; 18.2 MB)
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For the movies M1 to M5 the circling motion of the spermatozoa appears clockwise or

anti-clockwise in the videos, depending on whether the spermatozoa where imaged at the

upper or lower surface. From inside the water-phase the spermatozoa always appear to

circle clockwise.

Movie M1: Dark field movie showing a vortex array of sperm cells at a surface density of

6000 cells/mm2. Scale: Length of head is about 10 µm. Original frame rate: 250 fps;

replay: every 8th frame shown at 30 fps hence roughly real time. (QuickTime; 5.1 MB)

Movie M2: Same movie as (Movie M1), but replayed slower. Original frame rate: 250

fps; replay: all frames shown at 10 fps. (QuickTime; 3.8 MB)

Movie M3: Phase contrast movie showing a single spermatozoon swimming close to a

surface. Scale: Length of head is about 10 µm. Original frame rate: 250 fps; replay: all

frames at 7.5 fps. (QuickTime; 1 MB)

Movie M4: Phase contrast movie showing seven spermatozoa within a single vortex at a

surface density of 4000 cells/mm2. This movie was used for the data presented in Fig.3.

Scale: Length of head is about 10 µm. Original frame rate: 250 fps; replay: all frames at

15 fps. (QuickTime; 9 MB)

Movie M5: Dark field contrast movies at different sperm surface densities (700, 2500,

4700 cells/mm2) corresponding to values below, in the vicinity of, and above the critical

density. These movies (among others) where used to generate the data in Fig.4e. Original

frame rate: 17 fps; replay: all frames shown at 15 fps. (QuickTime; 6.1 MB)
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