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ABSTRACT Recent developments in image processing have greatly advanced our understanding of biomolecular processes
in vitro and in vivo. In particular, using Gaussian models to fit the intensity profiles of nanometer-sized objects have enabled their
two-dimensional localization with a precision in the one-nanometer range. Here, we present an algorithm to precisely localize
curved filaments whose structures are characterized by subresolution diameters and micrometer lengths. Using surface-immo-
bilized microtubules, fluorescently labeled with rhodamine, we demonstrate positional precisions of ~2 nm when determining the
filament centerline and ~9 nm when localizing the filament tips. Combined with state-of-the-art single particle tracking we apply
the algorithm 1), to motor-proteins stepping on immobilized microtubules, 2), to depolymerizing microtubules, and 3), to micro-
tubules gliding over motor-coated surfaces.
INTRODUCTION
Automated data analysis plays an essential role in collecting
statistically significant amounts of information about bio-
logical processes. Furthermore, computational methods
have greatly enhanced conventional microscopy methods
and allow investigating the functions of biological mole-
cules down to the nanometer level. For example, the
point-spread-function (PSF) of well-separated subresolution
particles can be evaluated by different algorithms, most
commonly by centroid (center-of-mass) estimation, sum-
absolute difference calculation, cross correlation, or by
approximating the PSF with a two-dimensional (2D)
Gaussian distribution (1). Using the latter, it has been shown
that the localization precision of fluorescent probes is only
limited by the number of photons collected (2). Among
other applications, the localization of individual dye mole-
cules with 1.5 nm precision (3) and the detection of 4 nm
steps in cargo movement by the collective operation of kine-
sin-1 motors (4) has been achieved. Combining this method
with photoswitchable fluorophores also led to the develop-
ment of super-resolution techniques (5), which practically
overcome the diffraction limit. Unfortunately, these single-
particle tracking methods cannot analyze the position and
dynamics of elongated filaments, such as actin filaments
(6) or microtubules (7).

In filament assays, which are important tools to study the
function of molecular motors in vitro (8), position or length
measurements of filaments are still commonly analyzed
manually (9). Another option is the manual evaluation of
kymographs (10), temporal-spatial representations of an
image sequence along a predefined path. First attempts of
automatic tracking algorithms for filaments use methods
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like center-of-mass calculation (11,12) or cross correlation
(13) to follow filaments in an image sequence, but a change
in shape of curved filaments can severely distort the
measurements. More recent methods include path recon-
struction (14) and open active contour models (15), which
are able to find the filaments even at low signal/noise ratio,
but are not able to automatically localize the filaments with
precision below the pixel size. The first approaches to detect
fluctuations of the filament centerline with nanometer preci-
sion have been undertaken by fitting one-dimensional (1D)
functions, in particular Polynomials (16) or Gaussians (17),
perpendicular to the filament, or by calculation of the sum-
square difference (18). Recently, 1D Gaussian fitting has
been used for semiautomated microtubule tip tracking
with an accuracy of 36 nm in vivo (19). However, because
all 1D methods require a transformation of the image data
(including interpolation) their results may be influenced
by the orientation of the filament.

Here, we present an algorithm capable of localizing
the centerlines and the tips of curved (possibly crossing)
filaments with nanometer precision. We combined our
algorithm with single-particle tracking methods to create
a so-called Fluorescence Image Evaluation Software for
Tracking and Analysis (FIESTA) (see the MATLAB source
code in the Supporting Material). The software includes
further analysis tools like drift correction, color offset calcu-
lation, path statistics, and mean-square-calculation. We
demonstrate the precision of our algorithm on fluores-
cently-labeled microtubules.
MATERIALS AND METHODS

Microtubule polymerization

Taxol-stabilizedmicrotubules were grown for 30 min at 37�C from a 6.25 ml

BRB80 (80 mM Pipes (Sigma, St. Louis, MO), pH 6.9 adjusted with KOH
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(Merck, Darmstadt, Germany), 1 mM EGTA (Sigma), 1 mM MgCl2
(Merck)) solution supplemented by 2 mM tubulin (66% unlabeled bovine,

33% Rhodamine labeled bovine, Cytoskeleton, Denver, CO), 4 mM

MgCl2 (Merck), 1 mM Mg-GTP (Sigma), and 5% DMSO (Sigma). After

polymerization, a volume of 494 ml BRB80T (BRB80 supplemented by

1 mM taxol (Sigma)) was added for further stabilization. 200 ml of the

microtubule solution was centrifuged in a Beckman Airfuge (A95 rotor) at

100,000 � g for 5 min. The pellet was resuspended in a volume of 200 ml

BRB80T. GMP-CCP-stabilized microtubules were grown for 2 h at 37�C
from a 80 ml BRB80 (80 mM Pipes (Sigma), pH 6.9 adjusted with KOH

(Merck), 1 mM EGTA (Sigma), 1 mM MgCl2 (Merck)) solution supple-

mented by 2 mM tubulin (66% unlabeled bovine, 33% Rhodamine labeled

bovine; Cytoskeleton, Denver, CO), 1 mM GMP-CPP (Jena Bioscience,

Jena, Germany) and 1mMMgCl2 (Merck). 70 ml of themicrotubule solution

was centrifuged in a Beckman Airfuge (see above). The pellet was resus-

pended in a volume of 200 ml BRB80. Double-stabilized microtubules

were grown like GMP-CCP-stabilized microtubules, but the pellet was

resuspended in a volume of 200 ml BRB80T for further stabilization. The

microtubule solution was diluted fourfold and centrifuged again.
Proteins

Full-length Drosophila melanogaster kinesin-1 was expressed in

Escherichia coli and purified using the published protocols by Hancock

and Howard (20). BCCP-rKin430GFP is a fusion protein that combines

the C-terminal of the biotin carboxyl-carrier-protein (BCCP) with the

N-terminal of a truncated kinesin-1. BCCP, a subunit of E. coli acetyl-

coA-carboxylase can covalently bind biotin via lysin. Streptavidin-coated

particles (e.g., quantum dots (QDs)) can then directly bind to the motor

domain of the kinesin. As template for the motor protein, a truncated

construct of rat kinesin-1 with an additional GFP (rKin430GFP; Rogers

et al. (21)) was used. BCCP (300 bp) was isolated from the biotinylated

kinesin construct K612-Bio (Berliner et al. (22)). Both fragments were

fused using the overlap extension polymerase chain reaction method

and expressed in E. coli in the presence of additional biotin (Sigma).

Human MCAK-His6 was expressed in Spodoptera frugiperda (Sf9) cells

(BAC-TOBAC expression system; Invitrogen, Carlsbad, CA), purified by

cation-exchange, metal-chelating, and desalting or gel-filtration chromatog-

raphy (23).
Microtubule and kinesin-1 assays

Surface immobilization of microtubules

Weperformed the experiments inflowchannels, self-built (24) from twoglass

coverslips (22 � 22 mm2 and 18 � 18 mm2; Corning, Inc., Corning, NY),

which were cleaned in piranha solution (H2O2/H2SO4, 3:5; both Sigma)

before silanization with 0.05% dichlorodimethylsilane in trichloroethylene

(Sigma) and glued together by heated pieces of ParafilmM (Pechiney Plastic

Packaging, Chicago, IL). The flow sequence was as follows: 1), The flow

cell was filled with a solution of TetraSpeck microspheres (diameter

200 nm; Invitrogen) diluted 20-fold in BRB80. 2), After 2 min, the solution

was exchanged with a BRB80 solution containing 0.5 mM monoclonal

anti-b-tubulin antibodies (cloneTUB2.1; Sigma). 3), After 5min, the surface

was blocked with a solution with 1% Pluronic F-127 (Sigma) in BRB80. 4),

Double-stabilized microtubles, diluted fourfold to prevent crossing microtu-

bules, were incubated for 5 min to bind to the tubulin antibodies. 5), Micro-

tubule solution was finally replaced by the imaging solution (BRB80

supplemented by 1 mM taxol, 20 mM glucose, 20 mg/ml glucose oxidase,

8 mg/ml catalase, 10 mM DTT; all from Sigma).

Stepping assay of QD-labeled kinesin-1

Tracking of GFP-labeled kinesein-1 motor proteins moving on immobilized

microtubules has been previously described in Korten et al. (25). We immo-
bilized double-stabilized microtubules as described before and added 3 ml

of a QD-kinesin mix to the imaging buffer supplemented by 0.2 mM ATP.

The mix contained 3 ml of 10 nM streptavidin-coated QDs (Qdot 705

ITK Streptavidin Conjugate; Invitrogen) that were incubated with 3 ml of

0.06 mg/ml BCCP-rKin430GFP for 5 min.

Microtubule depolymerization

The assay is based on the experiments previously done by Helenius et al.

(23). We immobilized GMP-CPP microtubules as described before and

added 10 nM of the kinesin-13 MCAK.

Microtubule gliding assay

An extensive description of the microtubule gliding assay can be found in

Nitzsche et al. (8), which also describes the Peltier element used for heating

the flow cell.
Optical imaging

Fluorescence images were obtained using an inverted fluorescence micro-

scope (Zeiss Axiovert 200M; Zeiss, Jena, Germany) with a 100� oil

immersion objective (Zeiss APOCHROMAT NA 1.46; Zeiss) with an addi-

tionally 1.6� magnifying optovar. The final pixel size was 100 nm.

Microtubules were observed by epifluorescence using a Lumen 200 metal

arc lamp (Prior Scientific Instruments Ltd., Fulbourn, UK) with a TRITC

(exc 535/50, em 610/75, dc 565 LP; all Chroma Technology, Rockingham,

VT) filterset. QDs were observed by total internal reflection fluorescence

microscopy using a mixed gas argon-krypton laser (Innova 70C Spectra;

Coherent, Santa Clara, CA) with a customized Qdot705 (exc 488/10, dc

488RDC; both Chroma; em BL710/40; Semrock, Rochester, NY) filterset.

Image acquisition was performed with 100 ms exposure in streaming mode

by an electron-multiplied charge-coupled device camera (iXon DV 897;

Andor, Belfast, Northern Ireland) in conjunction with a Metamorph

imaging system (Universal Imaging Corp., Downingtown, PA).
Image processing

The algorithm was implemented in MATLAB (The MathWorks, Natick,

MA) and includes a graphical-user-interface for user initialization and

data analysis after tracking. We used the bwmorph() function (image pro-

cessing toolbox) for the thinning algorithm and the lsqnolin() function

(optimization toolbox) for solving the nonlinear least-square problem.

For statistical analysis of the localization precision, we used the mle() func-

tion in the statistics toolbox for the maximum-likelihood-method.
ALGORITHM

Automated tracking algorithms analyze image sequences
where multiple images of the same field of view are
acquired in a temporally sequential manner. Each individual
image of an image sequence consists of a given number of
pixels associated with specific intensity values, represented
for example by 8 bit (values of 0–255) or 16 bit (values of
0–65535) integers. Being derived from the digital conver-
sion of the photons collected by the sensor chip on the front
end of the camera, the intensity values are linearly related to
the light intensity captured by the respective pixels. Typi-
cally, the intensity values are visualized by certain gray
levels varying from black for the lowest intensity value to
white for the highest intensity value. In fluorescence micros-
copy the objects of interest are labeled by fluorophores,
Biophysical Journal 100(11) 2820–2828
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which emit light upon excitation and thus appear with
higher intensity than the background.

Due to the limited resolution of an optical microscope,
the captured signals of the objects (further on denoted as
intensity profiles) are given by a convolution of the object
with the PSF of the imaging system. Given that the pixel
size should be at least a factor of two smaller than the lateral
dimension of the PSF (26), the captured light of any object
(even when being represented by just a single fluorophore)
will spread overmultiple pixels. Although a rough estimation
of the position of such objects can be obtained by searching
for the pixel with the highest intensity value, the localization
precision can be significantly increased when all pixels of the
intensity profile are included in the analysis. Image process-
ing methods toward this aim include center-of-mass calcula-
tions or fitting the intensity profile to an approximation of the
PSF. However, these methods fail if multiple emitters are in
close proximity, creating more complex intensity profiles.
For fluorescently labeled filaments characterized by subreso-
lution diameters and micrometer lengths, we overcome this
limitation by deriving a number of theoretical models based
on the Gaussian distributions given by Eqs. 1–4.
EQUATIONS 1–4
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Equation 1 represents a bivariate normal distribution or 2D G
iate normal distribution to two dimensions. The bx and by den
direction, and r the correlation coefficient between the x and
distribution or symmetric 2D Gaussian distribution that is
Equation 3 is adapted from Toprak et al. (27) where a Gauss
distribution, which can be used for tracking defocused single
distribution in the center and the Gaussian ring, respectively,
to the ring. Equation 4 represents a Gaussian wall, which is
perpendicular to a line. The l denotes the length of the Ga
and the x axis. Adapted transformations of these normaliz
background value, were used as models in our fitting proces
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Tracking algorithms that link the movement of objects
into trajectories without user interaction, can be categorized
into 1), feature-based tracking algorithms, where the objects
are detected in every image individually and then linked into
trajectories based on their features, or 2), region-based
tracking algorithms, where image regions are matched to
regions in other images by cross correlation. Whereas
both methods can achieve subpixel precision when detecting
the motion of particles and filaments, we find the feature-
based tracking algorithm more versatile for our applications,
which involve tracking the exact shapes of filaments.
Furthermore, by analyzing every image independently,
parallel processing on multiprocessor systems and clusters
is possible.

After user initialization (where a number of parameters
can be set manually), the tracking algorithm first evaluates
every image in an image sequence independently (Fig. 1)
and then links the detected objects into trajectories using
a graph-theoretic approach. The first part of the algorithm
is characterized by the following five steps: Thresholding,
Feature detection, Image segmentation, Fitting process,
and Interpolation.
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ed functions, including an amplitude parameter and a
s (see Section S.1 in the Supporting Material).
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FIGURE 1 Algorithm for tracking individual frames containing filaments and individual particles: (A) Workflow of the tracking algorithm with corre-

sponding images for every step. Plus (þ) symbols denote the center positions of individual particles, whereas center positions of filaments and filament

segments are marked with a cross (x). Red lines indicate the orientation of the model or the centerline of the filament. (B) Intensity profiles for different

regions (colors correspond to regions in Fig. 1 A), the corresponding model, and the residuals after fitting.
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Thresholding

To identify the objects to be analyzed, the gray scale images
are first converted into binary images with pixel values of 1
(true) when the original intensity value was above a user-
defined intensity threshold and 0 (false) otherwise. All
true pixels having at least one neighbor (any of the
surrounding pixels that have a true value) are connected to
patches. Alternatively, an automated threshold algorithm
using edge detection with different image operators and
filling the detected edges with morphological operations
on the binary image can be applied (see Section S.2 in the
Supporting Material). Additional transformations, such as
averaging the intensity values in the original gray scale
image by a kernel (size 3 � 3 pixel), can be optionally
applied to improve the quality of the binary image.

Feature detection

Point objects (individual particles) are searched for in patches
with an area below a user-defined patch area threshold. The
rough locations of the individual particles are derived, after
filtering the original intensity values in the patch area with
a Wiener filter (size 3 � 3 pixel), from the positions of the
local imagemaxima, each represented by a pixel that is exclu-
sively surrounded by pixels with lower intensity values. Line
Biophysical Journal 100(11) 2820–2828
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objects (filaments) are searched for in patches with an area
above the user-defined patch area threshold. The rough
centerlines of thefilaments are determined by applying a thin-
ning algorithm (28) to the patch. The resulting extended lines
with the width of one pixel, or networks thereof, are then as-
signed to different filament features that only depend on the
number of true pixel neighbors: 1), tip points have one
neighbor, 2), centerline points have two neighbors, and 3),
crossing points have more than two neighbors. If crossing
points are present in a network, three or more lines will
extend from the crossing points toward the tip points. The
smallest angle between these lines then determines which
true pixels belong to the same filament. Afterward, all de-
tected features are assigned to individual filaments.

Filaments with a total number of pixels ~n are now repre-
sented by an ordered set of points (parametric curve)
~Fp ¼ ð~xp;~ypÞ; p ¼ ð1; 2;.; ~nÞ where ~xp and ~yp denote the
pixel position of the true pixel with index p. The tip points,
~F1 and ~Fn, are referred to as start and end points, respec-
tively. Finally, the parametric curve ~Fp will be smoothed
with a moving average filter of size 2sþ 1 (rounded to an
integer number of pixels), where s denotes the user-defined
scale estimation. The scale estimation s characterizes the
dimension of the image features to be localized. For fila-
ments (or particles) it is derived from the measured full-
width half-maximum of a linescan perpendicular to the
filament (or across the particle) by s ¼ FWHM=2

ffiffiffiffiffiffiffiffiffiffiffiffi
2 In 2

p
:

Image segmentation

The features detected are used to segment the image into
quadratic regions. The side length, a, of these regions is
chosen based on the scale estimation by a ¼ 8 s (rounded
to an integer number of pixels). For point objects, the regions
are placed around the rough location of the object with the
brightest pixel in the center of the region. For line objects,
regions are first placed around the rough locations of the tip
and crossing points. The remaining centerline points are
covered by additional regions. The distance d between the
center points of these additional regions is chosen to be
d � 6 s allowing for an overlap of these regions. Finally,
all regions that overlapmore than 50% in areawill bemerged
and treated as clusters. Clusters are consequently described
by the sum of two or more theoretical models.
Fitting process

Every region that was created in the image segmentation is
now analyzed individually. Thereby the original intensity
profiles are approximated by numerical models (Fig. 1 B)
based on Gaussian distributions (Eqs. 1–4, see Section S.1
in the Supporting Material) with only a limited set of param-
eters: background, center position, orientation, amplitude,
width, and curvature. The starting values for these parameters
are estimated as follows: 1), the initial background value is
Biophysical Journal 100(11) 2820–2828
set by the average intensity of all pixels in the region that
are below the intensity threshold, 2), the initial center posi-
tion of themodel is givenby the position of the region’s center
pixel, 3), the initial amplitude of themodel is derived from the
original image intensity value at the center positionminus the
background value, 4), the filament orientation at the center
point of the region is determined by weighted averaging of
the angles between this point and all other points of the fila-
ment, and 5), the width is given by the scale estimation s.

The numeric models are compared to the original inten-
sity profiles and their parameters are optimized by mini-
mizing the sum of the squared residuals. Optimization is
done with either a subspace trust-region method, which is
based on the interior-reflective Newton method (29,30), or
the Levenberg-Marquardt method (31,32), if the former
fails. The algorithm can also calculate the errors of the
parameters using the Jacobian matrix of the model (see
Section S.3 in the Supporting Material).
Interpolation (only filaments)

For every filament, the algorithm connects the segments
and computes a refined centerline with subpixel resolution.
Therefore, a spline interpolation (see Section S.4 in the Sup-
porting Material) is performed using piecewise third-order
polynomials between consecutive segments defined by the
position and orientation derived in the fitting process. We
placed n points (approximately the length of one pixel
apart) on the spline curve to represent the centerline
Fp ¼ ðxp; ypÞ; p ¼ ð1; 2;.; nÞ. The length of the filament
and its center position (X, Y) are determined by the distance
along the curve between the two tips and the midpoint on the
curve between the two tips, respectively.
The second part of the algorithm links all tracked objects
in the image sequence into trajectories Tk ¼ ðXk; YkÞ;
k ¼ ð1; 2;.;NÞ using a modified feature point tracking
algorithm (33). To establish a temporal link between objects,
we calculate a cost function, which includes features like
center position, speed, direction of movement, and ampli-
tude or length of the objects. Different weights can be as-
signed by the user to different features. All weights have to
be between 0 and 1, and the sum of the weights has to equal
1. This way, linking the objects can be optimized including
the merging of trajectories with partial occlusions. For
example, direction and speed of movement can be given
a large impact for a processively movingmotor protein while
these features are less relevant for a diffusing molecule.
There, only the position (proximity) is of interest.
We tested the precision of our algorithm by analyzing an
image sequence (500 frames) of immobilized fluorescently
labeled microtubules (Fig. 2) in EPI-fluorescence (pixel
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FIGURE 2 Precision (68% confidence interval)

of filament tracking: The smallest error of the

values shown in the histograms is denoted as best

and the overall error of the microtubule distribution

is denoted as 68%. (A) Histogram of microtubule

centerline errors. (B) Histogram of microtubule

length errors. (C) Histogram of microtubule tip

position errors. (D) Centerline localization of one

microtubule compared to center position localiza-

tion of one TetraSpeck Fluorescent Microsphere

(diameter 200 nm) and one Qdot 705 ITK Strepta-

vidin Conjugate. Plus (þ) and cross (x) symbols

denote the center positions (500 frames) of the

microsphere and the QD. The black dot indicates

the centroid of the particles and the black dotted

lines the 68% confidence interval of the particle’s

centroid measurement. The red lines denote the

centerlines of the microtubule (11 of the 500

frames). The black line indicates the averaged

microtubule centerline and the black dotted line

the 68% confidence interval of the microtubule’s

averaged centerline measurement.
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size 100 nm, exposure time 100 ms, continuous streaming
acquisition mode). A total of 187 immobilized microtubules
were tracked in different fields of view to get sufficient
statistics on the precision. Additionally, we tracked the
center positions of 10 microspheres in every field of view.
Their average displacement was used to correct the tracked
positions of the microtubule centerline for lateral drift. For
each microtubule a number of characteristic errors were
calculated: 1), The centerline error (see Sections S.5 and
S.6 in the Supporting Material) is given by a value that
includes at least 68% of all centerline deviations (Fig. 2 A).
2), The length error is given by the standard deviation of
all tracked microtubule lengths (Fig. 2 B). 3), The tip error
is calculated by the width of the 2D tip position distribution
where we assumed a symmetric 2D normal distribution and
estimated the width using the maximum-likelihood method
(Fig. 2 C). The smallest error of the values shown in the
histograms is denoted as ‘‘best’’ and the overall error of
the microtubule distribution, denoted as ‘‘68%’’, is defined
by the error value that includes at least 68% of the tracked
microtubules. Thereby we estimate a positional precision
of 2.2 nm when determining the microtubule centerline
and 8.6 nm when localizing the microtubule tips. The length
measurements are mainly influenced by the tip error and we
estimate an overall length error of 13 nm. For illustrative
purposes, we compared the centerline error of one tracked
microtubule to the localization errors of a 200 nm large fluo-
rescent microsphere and a Qdot705 quantum dot (Fig. 2 D).

Using simulated microtubules (see Section S.5 in the Sup-
portingMaterial) at various signal/noise ratios, we compared
our 2D filament tracking algorithm with an approach based
on 1D fitting perpendicular to the filament (17). We found
that our 2D tracking algorithm, which does not depend on
any image rotation, generated more precise data and per-
formedmore than 10� faster (see Section S.7 in the Support-
ing Material).
APPLICATIONS

To demonstrate the high precision of the 2-D filament
tracking, we present three possible applications (Fig. 3).
2D tracking of kinesin-1 motors on immobilized
microtubules

Because microtubules consist of ~13 protofilaments their
lattice represents an extended surface to motor proteins.
To test if our algorithm can be applied to follow the stepping
Biophysical Journal 100(11) 2820–2828
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FIGURE 3 Applications of the filament tracking algorithm: (A) Kymograph of two QDs transported by kinesin-1. (B) Trajectory of both QDs and the

centerline of their corresponding microtubules (gray). (C) Distance to the track for both QDs, gray denotes the microtubule centerline. Positive values denote

the left hand side, negative the right hand side (in the direction of movement). (D) Kymograph of microtubule depolymerized by the kinesin-13 MCAK

(10 nM concentration). The dotted line marks the time when the MCAK solution was flowed in. (E) Decrease in microtubule length due to depolymerization.

(F) Movement of the microtubule tips in respect to the initial center position of the microtubule. (G) Kymograph of microtubule gliding over a kinesin-1

coated surface. The dotted line marks the time, when the temperature was increased from 22�C to 38�C (temperature of the Peltier element attached to

the flow cell containing the motility solution). (H) Distance along the path of the microtubule center position. (I) Instantaneous velocity of the microtubule

center position.

2826 Ruhnow et al.
of processive kinesin-1 motors on the microtubule lattice in
two dimensions, we immobilized rhodamine labeled micro-
tubules on a glass coverslip via tubulin antibodies (25). We
then added kinesin-1 motor proteins that were labeled with
streptavadin-coated QDs (emission at 705 nm) bound to
the biotinylated motor domain. In the presence of ATP,
we acquired an image sequence (100 frames) of the micro-
tubules in EPI-fluorescence and afterward imaged the
movement of single QDs using total-internal reflection fluo-
rescence microscopy (for both: pixel size 100 nm, exposure
time 100 ms, continuous streaming acquisition mode). Ten
Tetraspeck microspheres within the field of view (visible
in both image sequences) were used for drift correction
and for the correction of the color offset.

The persistent movement of kinesin-1 motors along two
microtubules is shown by the QD kymographs in Fig. 3 A.
Here, kymographs are space-time plots that display intensity
Biophysical Journal 100(11) 2820–2828
values along a predefined path (along the microtubule) over
time. We overlaid the QD trajectories with the tracked
microtubules (Fig. 3 B) and calculated the relative distance
of the QDs to the averaged microtubule centerline (Fig. 3
C). Although we did not find any abruptmotion of the motors
perpendicular to the microtubule centerline, we rather
observed a nonparallel movement of the motors with respect
to the microtubule centerline (see Section S.8 in the Support-
ing Material for more traces). This behavior is expected for
kinesin-1; it follows individual protofilaments of super-
twisted microtubules in a helical manner (34). In our case,
themicrotubuleswere grown in the presence of nonhydrolys-
able GTP analog GMP-CPP and most likely consisted of 14
protofilaments with a supertwist periodicity of ~8 mm (8).
Given the short run length of kinesin-1 (on average 1mm)
the observation of a complete rotation of the QD around
the microtubule was unlikely. None of the 43 tracked QDs
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was localized more than 60 nm away from the averaged
microtubule centerline. This is consistent with the molecular
geometry in our assay when considering a size of ~5 nm
for the kinesin-1 motor domain, ~10 nm for streptavadin,
and ~20 nm for the QD diameter. With these values one
estimates a maximum distance of the QD center from the
microtubule (diameter ~25 nm) centerline of ~37 nm. So
far, the helical movement of kinsein-1 on the microtubule
has not been reported for this so-called stepping geometry
and we are only able to resolve this movement due to the
high precision measurement of the microtubule centerline.
Tracking the lengths of microtubules
depolymerized by kinesin-13

In cells, microtubules are highly dynamic, i.e., alternating
phases of filament polymerization and depolymerization
can be distinguished. To test if our algorithm can be applied
to measure the length of depolymerizing microtubules
in vitro, we immobilized rhodamine labeled microtubules
on a glass coverslip via tubulin antibodies and added
kinesin-13 motor proteins (MCAK), which are known to
depolymerize microtubules (23). In the presence of ATP,
we acquired an image sequence of multiple microtubules
in EPI-fluorescence (pixel size 100 nm, exposure time
100 ms, time lapse acquisition mode at 2 frames per second)
before and after the addition of MCAK (indicated by flow
step in Fig. 3, E and F). Ten Tetraspeck microspheres within
the field of view were used for drift correction.

The kymograph of one shrinking microtubule is shown
in Fig. 3 D. We plotted the tracked length of the microtubule
in Fig. 3 E. Here, the high precision of the microtubule
tracking reveals fluctuations in the depolymerization rate.
When analyzing the movement of both microtubule tips
individually (Fig. 3 F), different depolymerization rates
become apparent (in accordance with (35)). So far, auto-
mated microtubule length measurements with nanometer
precision have not been reported and we demonstrate that
the high precision of our algorithm might help to reveal
distinct shrinking characteristics being missed otherwise.
Tracking the gliding motion of kinesin-1 driven
microtubules

In vitro gliding motility assays, where microtubules are
propelled over a surface of immobilized motors, are impor-
tant biophysical tools to study the behavior of single- and
multimotor transport (8). To test if our algorithm can be
applied to follow the motion of kinesin-1 driven microtu-
bules, we unspecifically bound full-length kinesin-1 motors
to a glass coverslip and added rhodamine labeled micro-
tubules. In the presence of ATP, we acquired an image
sequence of gliding microtubules in EPI-fluorescence (pixel
size 100 nm, exposure time 100 ms, continuous streaming
acquisition mode). During imaging we increased the
temperature of the solution from 22�C to 38�C, which led
to an increase of the gliding velocity. Five Tetraspeck
microspheres within the field of view were used for drift
correction.

The linear movement, before and after the temperature
increase, is shown by the kymograph (along the filament
path) in Fig. 3 G. We calculated the distance Dk (see Section
S.9 in the Supporting Material) of the center position along
the path and plotted the displacement of the microtubule
over time (Fig. 3 H). Here, different linear slopes at the
beginning (0–15 s) and at the end (30–40 s) of the image
sequence become visible. We then calculated the instanta-
neous velocity Vk (see Section S.9 in the Supporting Mate-
rial) of the microtubule (Fig. 3 I). The low noise in the curve
representing the instantaneous velocity indicates the high
precision in our 2D tracking of microtubules.
CONCLUSION

We have developed an algorithm capable of localizing the
centerlines and the tips of curved filaments with nanometer
precision. Instead of fitting 1-D functions perpendicular
to the filament (18,19), we implemented a Gaussian wall
model that does not require any image transformation.
Therefore, the localization precision of the centerline does
intrinsically not depend on the filament orientation (see
Section S.7 in the Supporting Material). Furthermore, the
tracking of filament tips and filament crossings with nano-
meter precision have not been reported previously. We
created a MATLAB software package called Fluorescence
Image Evaluation Software for Tracking and Analysis
(FIESTA) (see the MATLAB source code in the Supporting
Material). This package includes our filament tracking algo-
rithm, state-of-the-art single particle tracking, and a MAT-
LAB user interface for initialization and further analysis,
making it a useful tool for image analysis in many applica-
tions. In particular, tracking the 2D movement of motor-
proteins on their filaments proves to be a unique tool for
studying the function of these molecular machines. Because
the single particle tracking is not limited to QDs, labeling
motor-proteins with fluorescent beads or gold nanoparticles
will improve the time resolution of the experiment while
maintaining nanometer localization precision. Combined
with methods to measure nanometer heights above substrate
surfaces, such as fluorescence interference contrast (34) or
parallax (36), our algorithm presents a promising tool for
optical 3D-nanometry, not only applicable to cytoskeletal,
but also DNA/RNA and other filaments.
SUPPORTING MATERIAL

Nine sections, six figures, and references, as well as the MATLAB source

code, are available at http://www.biophysj.org/biophysj/supplemental/

S0006-3495(11)00467-X. Additional documentation on the usage of

FIESTA is available at http://www.bcube-dresden.de/fiesta.
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