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ABSTRACT

Landmark correspondences can be used for various tasks in image processing such as image alignment, recon-
struction of panoramic photographs, object recognition and simultaneous localization and mapping for mobile
robots. The computer vision community knows several techniques for extracting and pairwise associating such
landmarks using distinctive invariant local image features. Two very successful methods are the Sale Invariant
Feature Transform (SIFT)1 and Multi-Scale Oriented Patches (MOPS).2

We implemented these methods in the Java programming language3 for seamless use in ImageJ.4 We use
it for fully automatic registration of gigantic serial section Transmission Electron Microscopy mosaics. Using
automatically detected landmark correspondences, the registration of large image mosaics simplifies to globally
minimizing the displacement of corresponding points.

We present here an introduction to automatic landmark correspondence detection and demonstrate our
implementation for ImageJ. We demonstrate the application of the plug-in on generic and biological image data.
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1. INTRODUCTION

Automatic detection of landmark correspondences is crucial for several computer vision tasks. Such tasks include
for example automatic image alignment, reconstruction of panoramic photographs, object recognition and simul-
taneous localization and mapping for mobile robots. While—in principle—arbitrarily selected sets of landmarks
do not provide additional information compared to the image as a whole, they allow to focus on a handful stable
and meaningful properties of the image at a low level of processing. Simplifying the abovementioned recognition
problems to a moderate number of corresponding points helps to reduce the computational cost significantly
while preserving in most cases sufficient generality.∗

Landmark correspondence detection requires detection and matching of interest points. Ideally, matching
is performed invariantly to the transformation that maps one image (or a part of it) to the other. State of
the art techniques1,5–7 allow both automatic detection of interest points and extraction of affine invariant local
descriptors for these points. Accordingly, affine invariant matching is nearest neighbour search in such a local
feature descriptor space.

It was shown8 that the local descriptor as used in the Scale Invariant Feature Transform (SIFT)1 outperforms
competing techniques in both distinctiveness and robustness with respect to significant image deformation. The
SIFT descriptor was published in combination with the Difference of Gaussian (DoG) detector (a scale invariant
blob detector) and a robust orientation detection thus realizing similarity invariant feature extraction.1 The
author provides his implementation as closed source binaries for free academic use. Meanwhile, several open
source implementations for MATLAB, C, C++ and C# are available however an implementation in the Java
programming language is missing.

We developed this Java implementation and integrated it into ImageJ as a plug-in. We carefully separated
the scale invariant interest point detection from local descriptor extraction such that different detectors and
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descriptors may be combined in future implementations. We demonstrate this flexibility with the implemen-
tation of Multi-scale Oriented Patches (MOPS)2 as an alternative local feature descriptor. We subsume here
the implemented Difference of Gaussian interest point detector1 as well as the SIFT and MOPS local feature
descriptors. We demonstrate the functionality of the plug-in for registration of images as an example of biological
application.

2. MATERIALS AND METHODS

The Scale Invariant Feature Transform was described for 2d intensity images in the range [0–1]. All incorporated
operations on intensities require floating point accuracy. Because our implementation is intended to be used as a
library independently from ImageJ, our basic image container is the simplest imaginable—a float[] that knows
about its width and height. For this container, we implemented the required basic filters: accurate Gaussian
smoothing and gradient extraction.

2.1 Interest Point Detection

Intensity invariant interest points in an image I(x, y) are structures that are 2d-localizable. That is, the principal
curvatures being the eigenvalues α and β of the Hessian matrix H(I(x, y)) both run through a local maximum.
Homogeneous areas are indicated by two low principal curvatures, edges by one high and one low curvature
and corners, junctions, corners or blobs by two high curvatures. Both principal curvatures being at a local
maximum implies the Laplacian ∇2I(x, y) being at a local extremum. It is thus appropriate to preselect extrema
of ∇2I(x, y) as interest point candidates and reject edge responses with one low principal curvatures afterwards
instead of evaluating the Hessian eigenvalues explicitly for each pixel location.1

Scale invariance is guaranteed by inspecting the image at all scales. This ensures that the detection of a
local structure depends on the size of the structure only, regardless of the scale of observation. The linear scale
space9 L(σ, x, y) is an elegant way to represent the image I(x, y) with multiple scales embedded as an explicit
parameter. As this parameter increases, finer details are increasingly suppressed. It was shown9 that Gaussian
smoothing is the exclusive operator for this task and thus the sole possible scale space kernel. That is, the scale
space L(σ, x, y) is constructed by smoothing the image I(x, y) with Gaussians G(σ, x, y) with increasing σ

L(σ, x, y) = G(σ, x, y) ∗ I(x, y) with G(σ, x, y) =
1
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The difference of two scales† that are separated by a constant factor k approximates a scale normalized
Laplacian9

D(σ, x, y) = L(kσ, x, y)− L(σ, x, y) ≈ σ2∇2G(σ, x, y).

Scale invariant interest point candidates are local extrema of D(σ, x, y), that is they have a specific location
and size. Such a local extremum is either larger or smaller than each of its 26 neighbours D(kaσ, x + b, y + c)
with a, b, c ∈ {−1, 0, 1}. Each detected extremum is located with sub-pixel accuracy by fitting a 3d-quadratic
function to D(σ, x, y) and its local neighbourhood. In order to virtually unify the sampling distance in each
dimension, the scale index i being the exponent of k : σi = kiσ0 is used as the scale parameter here. The
offset ~o = (oi, ox, oy)T from the original extrema detection at ~d = (di, dx, dy)T is given by

~o = −∂
2D

∂~d2

−1
∂D
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.

In case that at least one dimension of ~o has an absolute value of more than 0.5, the localization is repeated
at the sample point that is closest to the estimated location. Potentially unstable detections with low contrast
are rejected using the interpolated value D̂(dσ + oσ, dx + ox, dy + oy). Our implementation uses the suggested
absolute value |D̂|min = 0.03.1

†This is where the term Difference of Gaussian comes from.
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Figure 1. Illustration of the described discrete scale space representation1 Lo(σ, x, y) and its Differences of Gaus-
sians D(σ, x, y) showing a Transmission Electron Micrograph. The first two scale octaves with s = 3 scale steps per
octave are shown. Adjacent scales are separated by constant factor k : σi+1 = kσi with k = 21/s. Each scale octave has
s+ 3 entries with the last three entries representing the same scales as the first three entries of the next octave. This is
required for extrema detection in the scale domain of D(σ, x, y).

The resulting interest point candidates of these detection steps are either blobs or edges, whereas edge
responses are poorly localizable alongside the edge. Therefore, edge responses are rejected by principal curvature
comparison.10 The ratio r of the two eigenvalues α = rβ is related to the trace tr(H) and the determinant det(H)
of the Hessian matrix H(I(x, y))1

tr(H)2

det(H)
=

(α+ β)2

αβ
=

(rβ + β)2

rβ2
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(r + 1)2

r
.

As suggested in the original publication,1 our implementation rejects detections with r > 10 as edge responses.

Having spatial frequencies < σ suppressed, an image with σ > 2.0 can be represented sufficiently with half the
sampling frequency of the original image. Lowe1 suggests to create the scale space as a pyramid of scale octaves
each covering the scale range [σ0, 2σ0] with a fixed number of scale steps s, such that k = 21/s. An octave’s first
entry L(σ0, u, v) is created from L(2σ0, u, v) of the previous octave by sampling its even pixel coordinates. The
octave is then generated by convolving the first image with a fixed set of differential Gaussians. In order to be
able to detect DoG-extrema without gaps in the scale domain, each octave has s+3 entries in which the last three
entries represent the same scales as the first three entries of the next octave (see Fig. 1). In our implementation,
scale octaves act independently from each other with each octave being a scale space on its own. The number
of scale steps s per octave and the initial Gaussian smoothing σ0 are parameters of the implementation. Lowe1

found s = 3 and σ0 = 1.6 to be appropriate for stable interest point detection.

2.2 Orientation detection
The orientation of a detection is defined as the dominant orientation of the gradients in a local neighbourhood
of the detection. This local neighbourhood is given by a Gaussian mask with σm = 1.5σ that of the detection
weighting the gradient amplitudes. It is sufficient to sample a region of 9.0σ px sidelength. As suggested,1 we
gather a 36-bin gradient histogram per detection and identify the largest bin being the dominant orientation
of the region. For each other bin larger than 80 % of the largest, the detection is duplicated. These dominant
orientations are sub-bin localized by fitting a quadratic function to its two neighbouring bins similar to the
sub-pixel localization for DoG extrema as described above.

2.3 Local feature description
The above steps result in a set of stable interest points and a specific similarity transformation for each of them.
This similarity defines a local feature coordinate frame that guarantees similarity-invariance for the local feature



descriptor to be extracted.

MOPS-descriptors as described by Brown2 are intensity patches of fixed sidelength l that are sampled around
the interest point locations. l is a parameter of the implementation whereas larger descriptors are typically more
distinctive while also being more sensitive with respect to occlusion and other artifacts. In order to be more
robust against inaccurate detections and minor image deformations, Brown2 suggests to sample the descriptor
with a significantly higher spacing than the detected σ. Instead of the suggested 5σ, we use 4σ which means a
spacing of σ in the corresponding entry of the scale octave after the next. By stretching the sampled intensities to
the range [0, 1], the descriptor is invariant to exposure variance and contrast changes (see Fig. 2 for an illustration
of the MOPS-descriptor).

Instead of sampling smoothed intensities, Lowe1 proposed to sample w×w : w = 4l gradients in the original
σ-spacing. The amplitudes of the sampled gradients are weighted with a Gaussian mask with σ = l/2. From each
4× 4 sample block, a gradient histogram with b histogram bins is built such that each gradient contributes to its
two closest bins linearly. By this, the spatial image information is smoothed comparable to what was described for
MOPS while preserving more structural content. Illumination invariance is ensured by stretched all histograms
to the range [0, 1] and furthermore cutting all bins above a threshold value t = 0.2. The number of 4× 4-sample
blocks per side l and the number of orientation histogram bins b are parameters of the implementation with l = 4
and b = 8 being the originally suggested values.1

2.4 Local descriptor matching

Corresponding interest points are expected to be nearest neighbours in such a local descriptor space. Whereas
more efficient techniques for approximate nearest-neighbour search in high-dimensional spaces exist,11 we use an
exact solution implemented as exhaustive search here. A such constructed set of correspondence candidates C =
{(~ai,~bi) : i = {1, 2, . . . , |C|}} typically includes a large number of false matches as not all detections are present
in both images. Since no global distance-threshold exists which would separate true from false matches, Lowe1

suggests to threshold on the ratio rNN of the distances to the nearest and next-nearest neighbours. True
matches are expected to have a significantly lower distance than false matches such that rNN is small while
going towards 1.0 for false matches. This threshold is a parameter of the implementation with 0.8 being the
suggested value.1

2.5 Image registration with consistent landmark correspondences

Depending on the images, the remaining set of false positives may still be significantly larger than the set of true
matches. In registration applications, the images, and so the set of true matches, are related by an unknown
transformation T : R2 7→ R2. The transformation class is a parameter of the implementation with 2d-affine,
2d-rigid and 2d-translation being implemented currently. Regarding this transformation, true and false matches
are called inliers CT ⊂ C and outliers C \ CT. The tool of first choice for robust inlier-/ outlier-separation in
presence of many outliers is the Random Sample Consensus (RANSAC)12 that works as follows: For a fixed
number of iterations, randomly select a minimal set of correspondence candidates Cmin ⊂ C and estimate T for
them. The residual error of all candidates in terms of T is calculated and candidates with a residual error lower
than some εmax, which is a parameter of the implementation, are collected as inliers. The largest set of inliers
found is used to estimate the optimal T by means of least square residual errors

arg min
T

∑
(~a,~b)∈C

∥∥∥T~a−~b∥∥∥2

.

If the number of inliers is smaller than some minimal fraction of all candidates, no transformation is returned.
This minimal fraction is a parameter of the implementation with 5 % of all candidates as default.

In our implementation, RANSAC is followed by a a robust regression filter that iteratively removes corre-
spondences with a residual error larger than 3× the median of all residual errors. By this, usually εmax can be
set to very tolerant values. The plug-in suggests 5 % of the image size by default.

The estimated transformation maps one landmark set to the other and since these landmarks act as a statistic
for the whole image, it can be used to map the images into each other. Even in presence of significant artifacts



masking substantial areas of the images as usual in serial section microscopy, local image features provide robust
results. Linear transformations from robust landmark correspondences as described above can be used as an
initialization for non-linear registration schemes.13,14

3. RESULTS

We implemented an ImageJ-plug-in which automatically extracts corresponding landmarks in two images that
are approximately related by a 2d-affine, 2d-rigid or 2d-translation transformation. The plug-in uses our imple-
mentation of the DoG interest point detector, SIFT and MOPS feature descriptors, RANSAC and the mentioned
transformation classes. Corresponding landmarks are added as PointRois to both images whereas corresponding
points have the same index. As an example of use, we implemented an ImageJ-plug-in that uses such land-
mark correspondences for calculating a 2d-affine, 2d-rigid or 2d-translation transformation for an image and
mapping it respectively. Meanwhile, there are more plug-ins available14 that can utilize the extracted landmark
correspondences for non-rigid image registration.

Our implementation of SIFT is included into TrakEM215 for automatic registration of large serial section
microscopy mosaics. We were able to register the Drosophila first instar larval brain data set by Albert Cardona
fully automatically.16 The data set consists of 85 sections of 60 nm thickness. Each section was imaged with
9× 9 images of 2, 048× 2, 048 px2 with approximately 6 % image overlap resulting in 6, 885 images.‡

4. CONCLUSIONS
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Example 1. Serial section TEM, approx. rigid consecutive sections, 22× 22 MOPS. Rigid mapping

Example 2. Lab shelf photograph, approx. affine viewpoint change, 16× 16 MOPS. Affine mapping

Figure 2. Results of the ImageJ-plug-in on different types of images. Both examples show two 400× 300 px2 images with
common content under different transformation. This transformation is approximated with a rigid/affine mapping. The
images are overlaid with automatically extracted consistent landmark correspondences using the MOPS descriptor. One
correspondence example is selected and its respective descriptors is shown. The upper left corner of the descriptor patch
is marked with an arrow. On the right, both images are mapped into each other with the approximate transformation
estimated from the extracted landmark correspondences.
Example 1 shows two TEM images from consecutive serial sections of the Drosophila first instar larval brain data set by
Albert Cardona. Both sections are related by an approximately rigid transformation separated by 60nm section thickness.
Example 2 shows a lab shelf imaged from different viewpoints approximated by an affine mapping. Note that the
implementation performs well even in presence of moderate 3d viewpoint change that introduces significant variance in
occlusion.
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