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ssTEM registration

Fig. 4. Artificially generated evaluation dataset. The dataset simulates thin transilluminated volumes of 20 px thickness with membrane- and blob-like
structures at various scales. Structures are defined by volumetric density functions. Locations with higher density scatter more ‘light’ than those with lower
density and appear darker in the shadow projection. Two adjacent sections are shown to visualize the cross-section change of visible structures. In (a,b), the
full dataset (4096×4096 px) is shown at low magnification, an area of 512×512 px is marked and shown in (c,d) at high magnification.

Algorithm 3 Register TEM-dataset: principal procedure

Input: Set of tiles T
Output: Tile configuration R

� Extract interest points from all tiles.
1: for all t∈T do
2: Ft←extract interest points
3: end for

� Identify interest point correspondences for pairs of tiles.
4: C : empty set of correspondences
5: for all t∈T do
6: Ct : empty set of correspondences
7: for all o∈T \{t} do
8: Cto← identify correspondence pairs from Ft and Fo
9: Ct←Ct∪Cto

10: end for
11: C←C∪Ct
12: end for

� Estimate the optimal tile configuration R.
13: R←argminεR

Practically, since adjacent sections are related by a rigid
transformation Rs plus some non-rigid deformation Ds that is
to be compensated, we would like to use the transformation Rs
as initialization for the sought after configuration R and as a
hint which tiles to exclude from pairwise feature comparison.
Unfortunately, single sections do not always represent a single
landmark-interconnected graph of tiles, while the whole volume
eventually does. This is a typical scenario when imaging tree-like
structures and the operator following only the branches ignoring
the rest of the volume. That is, instead of the section as a whole,
all graphs of a section have to be tested against all graphs present
in the previous section. Two graphs that can be registered to each
other are then joined into a single one by matching and filtering
the features of overlapping tiles. Eventually, this will result in
one single graph representing the whole volume. After joining
two graphs, the configuration of the resulting graph is optimized

thus sequentially building up the optimal global configuration from
optimal intermediate configurations.

We applied this registration approach to test sets of TEM data of
the Drosophila first instar larval brain sectioned into 60 nm sections
imaged at 3.26 nm/px resolution. We developed a visualization
of the global optimization progress where for each iteration the
corresponding landmarks and the residual transfer error between
them are highlighted by green dots and red lines, respectively.
Movie 1 available as supplementary on-line material shows the
progress of the optimization for a single section dataset consisting
of 6×6 tiles.1 It highlights the ability of the method to correctly
place even tiles that contain mostly background (lower left corner
tile) and gain very little SIFT feature detections, as long as these are
attached to the graph. If a tile lacks SIFT correspondences altogether,
it represents an independent graph on its own. The user can choose to
drop or hide all but the largest graph from the dataset. Movie 2 shows
the progress of the optimization on three serial sections imaged as
4×4 tile mosaics demonstrating that the procedure for multiple
section is essentially the same as for a single section.2

3.2 Quantitative assessment of registration results on
synthetic evaluation data

We created an artificial dataset with the ray-tracing program
POV-ray (Cason et al., 2007) that allows to define the interior of
a volume as a density pattern based on an arbitrary volumetric
function, where high density scatters more light than low density
(Fig. 4).3 This simulates the imaging process in the Transmission
Electron Microscope where structures with a higher density of
heavy-metal atoms scatter more electrons than structures with lower
density and appear darker at the screen. The interior of the evaluation
dataset contains filamentous and ‘blob’-like structures, both over
three scale octaves with multiscale turbulence. In this way, it mimics
typical structures in the stained tissue, like membranes, nucleoli and
mitochondria.

To emulate the ssTEM data we generated 16 projections
of 4096×4096 px each through consecutive volumes of 20 px

1Movie 1: http://fly.mpi-cbg.de/saalfeld/36.avi
2Movie 2: http://fly.mpi-cbg.de/saalfeld/48.avi
3Evaluation-dataset: http://fly.mpi-cbg.de/saalfeld/tem-evaluation
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Fig. 5. Drosophila first instar larval brain ssTEM dataset. Two consecutive
registered sections from the dataset as red-cyan color merge. The diameter
of the brain is ∼60µm. (a) The section mosaics as a whole with the
areas zoomed in (b) marked. (c) A single perpendicular section through the
entire registered volume. Several sections were lost during sectioning and
collecting onto the electron microscopy grid and shown here as black rows.

thickness, which is roughly equivalent to the ratio of x,y versus
z resolution in typical TEM data. We split the synthetic ground
truth data into 1024×1024 px tiles with 102 px overlap resulting
in 25 images per section. We ran our registration program on the
resulting 400 images as if there was nothing known about the tiles
poses other than the section index. The registration results in a stack
that is anchored to a randomly selected tile in the world reference
frame. Thus, missing comparable world coordinates, we evaluate the
quality of the registration by estimating the coordinate translation
that gives the minimal average displacement when applied to the
registered stack. This identifies the world reference frame of the
registered stack and gives an average registration error of a pixel
relative to the original scene.

We select a random sample of 1000 locations in each tile and
transfer all locations into the world reference frame using the true
and the registered transformation model of the tile. The translation
between registration and ground truth domain is that between the
centroids of both point clouds. The average residual transfer error
serves as a quantitative measure of the registration process. We
estimated an average displacement ε̄ = 4.14 px, SD σε = 3.63 px and
maximal displacement εmax= 15.71 px for the registration result.
These results demonstrate that, with the proposed method, we can
both identify overlap in an unknown configuration of images and
register them.

3.3 Registration of the Drosophila first instar larval
brain ssTEM dataset

As an example of real biological data, we registered the Drosophila
first instar larval brain ssTEM dataset consisting of 85 sections of
60 nm thickness covering lateral neuronal layers and part of the
neuropile of the left hemisphere. Each section was imaged with
TEM using a moving stage operated by the Leginon software as
9×9 tiles overlapping by∼6%. Tiles have a size of 2048×2048 px
and a resolution of 4.68 nm/px. All 6885 tiles were registered fully

automatically. Intrasection configurations were initialized with the
odometry data of the microscope. Correspondence estimation using
SIFT descriptors and robust geometric consensus filters performed
very well even in presence of significant changes in illumination
and sharpness, dirty sections and significant gaps of up to six
sections in the stack. Visual inspection of the registered data shows
reliable continuity of biologically relevant structures such as axon
bundles within and across sections both at low and high scales
(Fig. 5a and b).4 Moreover, when the registered dataset is cut
perpendicularly, the resulting image, whose lateral resolution is
limited by section thickness, resembles electron microscopy data
without major discontinuities suggesting that the registration was
successful (Fig. 5c).5 For visualization and collaborative annotation,
we present the registered dataset on-line through the CATMAID web
interface (Saalfeld et al., 2009).6

4 DISCUSSION
We presented a fully automated method for registration of
large ssTEM image mosaics. The method identifies the optimal
configuration of image tiles regardless whether or not an initial guess
of the configuration is available. It is capable of correctly placing
tiles with only minimal image content provided that this content is
connected to the rest of the tile graph. Disconnected graphs of tiles
are registered independently. Thus, the approach is ideally suited
for alignment of ssTEM data generated either manually or using a
robotic setup.

We use SIFT to identify corresponding landmarks and use them
as a statistical sample for similar image content in the TEM
images. The scale invariance of SIFT is well suited to capture the
changing appearance of small structures at low scale levels and the
presence of meaningful similar features at multiple scales. Larger,
more distinctive local descriptors together with the requirement that
correspondence candidates must be geometrically consistent yields
reliably large sets of true matches.

The reduction of the registration task to a compact set of
corresponding landmarks enables global minimization of square
correspondence displacements for very large tile systems. Regis-
tering the 6885 tiles Drosophila larval brain dataset took ∼24 h
on an Intel® Xeon® computer with two 2.66 GHz dual-core-CPUs
and 8 GB of RAM, with the most time-consuming operation in the
procedure being the exhaustive nearest neighbor search in the 512 D
local descriptor space. Principally, there is no upper limit to the size
of the dataset other than the available storage space.

The described methods for robust outlier removal and global
optimization are applicable to a wide variety of microscopy
image mosaicking tasks. We used it successfully to register light
microscopy image mosaics including sets of overlapping 3D
confocal image stacks (Preibisch et al., 2009b) and applied it to
bead-based registration of Selective Plane Illumination Microscopy
(SPIM; Huisken et al., 2004) datasets consisting of 3D stacks of the
same specimen taken from different angles (Preibisch et al., 2009a).
In Preibisch et al. (2009b), we identify the pairwise 3D translation
between overlapping confocal image stacks by normalized cross-
correlation and globally minimize the translational offset of large

4Section series as a movie: http://fly.mpi-cbg.de/saalfeld/series.avi
5Resliced series as a movie: http://fly.mpi-cbg.de/saalfeld/resliced.avi
6Registered dataset on-line: http://fly.mpi-cbg.de/first-instar-brain
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sets of overlapping stacks. In Preibisch et al. (2009a), we proposed
the usage of fluorescent beads embedded in the rigid mounting
medium as fiduciary markers. We use the local constellations
of neighboring beads to automatically identify correspondences
invariantly to 3D rotation and scale. The model for the geometric
consistency constraint and global minimization of the square transfer
errors is a 3D affine transformation with one of the 3D stacks serving
as a template.

We generated a unique evaluation dataset designed to resemble
the appearance of biological tissue in ssTEM data for quantitative
comparison of the registration results. The evaluation framework can
be used to assess the performance of any registration scheme that
records its transformation model and could become the standard
for objectively measuring the performance of various registration
approaches. In future work, we will induce artificial deformation
and variance in section thickness to the dataset in order to examine
the limits of our registration method. As an alternative more realistic
ground truth evaluation dataset, we propose to use Serial Block-Face
Scanning Electron Microscopy data (Denk and Horstmann, 2004)
where consecutive sections are aligned per definition.

The presented registration method is non-rigid but as-rigid-as-
possible with a tile being the unit of rigidity for intrasection
alignment. This delivers an ssTEM image dataset amenable to
quantitative analysis, such as double dissector estimation of synaptic
density (Geinisman et al., 1996), which require volumes to be as
reliable as possible. On the other hand, rigid-per-tile registration
cannot compensate large-scale deformation by tile displacement
without introducing noticeable discontinuities at the tile borders.
The solution to this problem lies in extending the approach to
include arbitrary non-rigid deformation at scales below the tile level
preserving the regularization in terms of local rigidity. That means
deforming all images minimally. We are currently exploring various
ideas of how to express this regularization for a completely non-
rigid global registration. The evaluation dataset will be instrumental
in assessing the performance of such approaches with respect to
reflecting faithfully the ground truth data.

The globally optimal reconstruction of entire brains on TEM level
will enable registration of 3D light microscopy data onto electron
microscopy volumes. By that it will be possible to establish the
connection between brain macro (neuronal lineages) and micro
(synaptic connectivity) circuitry (Cardona et al., 2009).
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