Identifying satellites in nucleic acid sequences

Marie-France Sagot 1.3

! Service d’Informatique Scientifique

Institut Pasteur
28, rue du Dr. Roux - Paris

Fugene W. Myers 2

? Department of Computer Science
University of Arizona
Tucson, AZ 85721-0099

3 Institut Gaspard Monge

Université de Marne la Vallée
2, rue de la Butte Verte - Noisy le Grand

Abstract

We present in this paper an algorithm for identifying satel-
lites in DNA sequences. Satellites (simple, micro, or mini)
are repeats in number between 30 and as many as 1,000,000
whose lengths vary between 2 and hundreds of base pairs
and that appear, with some mutations, in tandem along the
sequence. We concentrate here on short to moderately long
(up to 30-40 base pairs) approximate tandem repeats where
copies may differ up to € = 15-20% from a consensus model
of the repeating unit (implying individual units may vary
by 2e from each other). The algorithm is composed of two
parts. The first one consists of a filter that basically elimi-
nates all regions whose probability of containing a satellite
is less than one in 10* when ¢ = 10%. The second part
realizes an exhaustive exploration of the space of all possi-
ble models for the repeating units present in the sequence.
Thus it has the advantage over previous work of being able
to report a consensus model, say m, of the repeated unit
as well as the span of the satellite. The first phase was de-
signed for efficiency and takes only O(n) time where n is
the length of the sequence. The second phase was designed
for sensitivity and takes time O(n - N(e, k)) where k is the
length of the repeating unit m, e = |ek| is the number of
differences allowed between each repeat unit and the model
m, and N(e, k) is the maximum number of words that are
not more than e differences from another word of length .
That is, AV'(e, k) is the maximum size of an e-neighborhood
of a string of length k.

Keywords : DNA satellites, tandem repeats, approz-
tmate match, consensus model.

1 Introduction

We present an algorithm for identifying a series of tandem
repeats in DNA sequences, that is a sequence of repeats that
are adjacent in the sequence. Such tandemly repeated units
are divided into three categories depending on the length
of the repeated element, the span of the repeat region, and
location within the chromosome [2]. Repeats occurring in or
near the centromeres and telomeres are called simply satel-

lites. Their span is large, up to a million bases, and the
length of the repeated element varies greatly, anywhere from
5 to 100 base pairs. In the remaining, euchromatic region,
of the chromosome the kinds of tandem repeats found are
classified as either micro or mini satellites, according to the
length of the repeated element. Micro satellites are com-
posed of short units, of 2 to 5 base pairs, in copy numbers
typically around 100. Mini satellites on the other hand in-
volve slightly longer repeats, around 15 base pairs, in clus-
ters of variable sizes, comprising between 30 and 2000 ele-
ments. The functional role of satellites is not currently un-
derstood, but they tend to be highly polymorphic, and thus
at a minimum are very useful as genetic markers. Searching
for these repeats in new DNA sequence is standard practice
amongst sequence analysts.

The few previous papers on this problem can be divided
into three categories. The first concerns repeats that are
exact (Karp [7] and Milosavljevic [10]) or involve only two
elements, that is, are of the form ## where 4 and @ are
two words, either at some maximum edit distance from one
another (Landau [8]), or, more generally, having a highest
scoring alignment under a real-valued scoring system (Kan-
nan and Myers [5]). Algorithms of the second group assume
knowledge of the repeating unit or assume their length is
short enough that all words of that length can be generated
and fitted to the sequence (Delgrange [3], Fischetti [4] and
Rivals [12]). Finally, the third kind of approach has none of
the previous limitations but resorts to heuristics in order to
find the repeats (Benson [1], Leung [6] [9] and Rivals [13]).

Our algorithm makes no assumptions about the repeat
other than than its length be moderately short (up to 30-40
bases) and that the difference ratio € between instances of
the units and a consensus model of the repeat is not too
high (up to 15-20%). It consists of two phases: a rapid,
probabilistic filtering phase that eliminates 80% or more
of the sequence from further consideration, followed by a
model-driven backtrack search that is guaranteed to find all
satellites in the remaining regions by exhaustion.

The filtering phase is not exact in the sense that it can-
not guarantee with absolute certainty that satellites are not
present in the regions it eliminates. However, given a set
of parameters (as, for instance, repeats length and number
of repetitions), and assuming nucleotides occur with equal
probability, we can and have estimated by simulation the
chance of missing a satellite. Typically, this chance is very
low, on the order of 1 in 10*. On the other hand, real se-
quences tend to have significant bias in the frequency of
bases over considerable stretches, e.g. some regions are 70-
75% “GC-rich”. These biases do not change the chance of

false negatives, but can greatly increase the number of false
positives that are reported, significantly reducing filtration
efficiency. Even in such situations, the filter still eliminates
as much as 80% of the sequence. The filter takes O(nk) time
where n is the length of the sequence and & is the maximum
repeat unit length of the satellites sought.

The second phase of our algorithm effects an exhaus-
tive search of the space of possible models for the repeat-
ing units present in the sequence. The essential feature is
that this phase compares potential satellite models against
the sequence to see if they could be the prefix of a con-
sensus model of a satellite, and then exhaustively considers
their extensions if so. Such a wvalid model prefix must ap-
proximately match a series of instances within the sequence
within threshold e = |ek] that are furthermore uniformly
separated along the sequence. We call each matching in-
stance a wagon and the sequence of wagons a train. A
form of progressive dynamic programming between the pre-
fix model and the sequence is used to keep track of the set
of possible wagons and trains, and to effect the efficient ex-
tension of a promising prefix. To keep the search efficient
it must be guided by a number of parameters, namely, one
must specify a range [min_range, maz_range] for the length
of the repeated unit and a minimum number, min_repeat of
units to be found in the satellite. But additional flexibil-
ity is introduced by allowing up to maz_jump wagons of a
train to be missing between two wagons that do match the
model. This effectively allows us to find matches where some
of the repeat instances are more than e-differences from the
model. This second phase algorithm takes O(n-maz_jump-
maz_range® - N (e, maz_range)) time and O(n - maz_range -
e) space, where N(e,k) is the maximum number of words
at edit distance at most e from another word of length k.

The second phase of the algorithm does not require the
filtering stage, so that one may, if desired, apply it directly
to the sequence when exhaustiveness of the search is abso-
lutely required. The algorithm becomes of course slower in
this case, but where time is not a critical issue, the five to
tenfold increase that is usually observed will not appear un-
reasonable. Forgoing the first phase enables us also to deal
with repetitions that are not tandem, and even allows us to
take into account the presence of inverted repeats flanked
by direct ones[17].

2 Definitions and Statement of the Problem

In all that follows, we let s be the DNA target sequence
in which satellites are being sought. We assume that s is
of length n and over the DNA alphabet ¥ = {A,C,G,T}.
A prefir model of a satellite is a string m, not necessarily
present itself in s, that approximately matches a train of
wagons as alluded to in the introduction. Proceeding for-
mally, let the e-neighborhood of m, N(e,m), be the set of
all strings not more than e differences away from m, i.e.,
strings that can be transformed into m in at most e inser-
tions, deletions, and substitutions. Recall that e is termed
the edit-distance between the strings in question. Any sub-
string of s that is also in A(e, m) is called a wagon of m. A
train of m is a set of wagons u1,us, ... up such that:

Property 1: p > min_repeat where min_repeat is a pa-
rameter chosen by the user that indicates the minimum
number of elements a repeating region must contain.

Property 2: leftulJr1 — left,, € JUMP where left,, is the po-
sition of the left-end of wagon u in s and JUMP = {zy :

z € [1, maz_jump] and y € [min_range, maz_rangel}

with the three parameters min_range, max _range and
max_jump chosen by the user.

A prefix-model m is said to be wvalid if there is at least
one train of m in the sequence s. Similarly, a train, when
viewed simply as a sequence of substrings of s, is valid if it is
the train for some model m. A prefix-model represents the
invariant that must be true as we progressively search for
a consensus model of a satellite. Our final goal is to arrive
at a consensus-model which is a prefix model that further
satisfies the following:

Property 3: leﬁu,+1 — right, € GAP where right, is the
position of the right-end of wagon u, and GAP = {zy :
x €[0, maz_jump—1]and y € [min_range, maz_range|}.

Note that 0 € GAP.

Observe that, as a by product of our approach, we will
find all valid prefix-models and these represent approximately
or exactly periodic, but non-contiguous repeats in s. If de-
sired, one could easily develop a criterion for deciding which
such prefix-models are significant and worthy of reporting.
Secondly, note that the parameter maz_jump allows us to
deal with very badly conserved elements inside a satellite
(by actually not counting them) while we require that the
satellite be relatively well conserved overall. Finally, one
can further extend the model m to be what was called a
weighted combinatorial cover over ¥ as in [15], effectively
permitting one to find repeated patterns including the class
of limited-regular expressions [18].

We conclude this section with the statement of our ver-
sion of the satellite problem:

The Satellite Model Problem: Given a se-
quence s and parameters min_repeat, min_range,
max_range, mar_jump, and e, find all consen-
sus models m that are valid for s, and for each
such m, report a set of disjoint “fittest” trains
realizing it.

3 Filtering

When an exhaustive search through progressively longer pre-
fix models fails to end at a final model, then we can be guar-
anteed that a repeat meeting the constraints of the prob-
lem parameters does not occur. While we show that such
searches can be performed surprisingly efficiently, it is still
desirable to first attempt to filter out all portions of s from
further consideration with a certain empirical guarantee that
little may be missed by doing so.

The basic idea behind the filtering step is that if there
is a satellite m” where p = |m/|, then in the dynamic pro-
gramming matrix of s against itself, there should be a local
alignment of length p - (r — ¢) centered on diagonal 1 - p for
i € [1,r—1]. The similarity in these local alignments and the
extent to which they lie on the given diagonal or at least near
it, depends on the fidelity of the repeat units in the satel-
lite. Generally, these off-diagonal alignments, corresponding
to offset copies of the satellite, are strong enough to detect,
provided the difference between the offset copies is at most
30-40%, which translates to a 15-20% difference between the
repeat prototype and the instances in the satellite.

The specific heuristic we arrived at is to incrementally
compute the local dynamic programming matrix of s versus
itself in a scan of s, where after scanning s; we have the

matrix in the triangle (: — band, ¢ — band) to (i — band, 1) to
(¢,1). The parameter band is chosen so that it is at least
max{3.5 - mazr_range, 50}, thus guaranteeing that at least
three of the off-diagonal alignments of the satellite will be
in the triangular region. Clearly, the total time taken by a
scan of s is O(n - maz_range) as the computation, in total,
computes an O(maz_range) band about the diagonal.

For each potential period p of interest we compute the
sum, S(p), of the values in all the cells in diagonals {p -+
d :1 €[1,|band/p]] and § € [—w(p), w(p)]} where w(p) =
max{2,e-p}. Effectively, we are taking the sum of the values
in a 2 - w(p) strip about each off-diagonal at
period p, within the triangle. We keep this sum for each
p € [min_range, maz_range] at an additional factor of
O(w(maz_range) —w(min_range)) over the cost of dynamic
programming in the band. What one expects is that in re-
gions occupied by a satellite of period p, S(p) is significantly
larger than it is when the sequence is random, to the point
where one can distinguish between the two.

Table 1 shows the results of a number of experiments.
We ran 1000 trials on either a random sequence, or one
containing a length 4, 8, or 16 repeat at various fidelities e.
For the local alignment objective we used a scoring scheme
that scored matches 1, and differences —2. In all cases, it
is only when one raises € to 20% that the distribution of
random scores and those of the satellite filter scores begin
to overlap, and only then by .2% of the 1000 trials with the
indicated separating values. On several experiments with
10,000 trials, we were able to get only 1 overlap with € at
10%, supporting our claim that the filter misses only 1 in
10* satellites at that fidelity.

4 Identifying the Satellites

4.1 |Idea

As in previous papers where a simpler form of models was
used [14] [15], satellite models are constructed by increasing
lengths, that is, a valid prefix-model of length k& + 1 is ob-
tained from its prefix of length k. In order to determine if
a model is valid, we must have some representation of the
train or wagons that make it so. There are two possibilities:

e we can keep track of each validating train and its as-
sociated wagons, or

e we can keep track of individual wagons, and, on the
fly, determine if they can be combined into validating
trains.

The first possibility is appealing because model extension is
straightforward. However, there are generally many overlap-
ping trains involving many of the same wagons for a given
model. So this approach entails redundancies that lead to
an inefficient algorithm. We thus take the second approach
of keeping track of wagons, and determining if they can be
assembled into trains as needed.

The rules of prefix-model extension are given in Lemma 4.1
below. A wagon is identified by a triple (i, j, d) indicating
that it is the substring siy1si42...s; of s and is d < e differ-
ences from its model. Thus ¢ is the position of the left-end
of the wagon, and j its right-end. Note carefully that in our
convention, position ¢ is between s; and s;41.

Lemma 4.1: The triple (2,2 + h,d) encodes a
wagon of m' = am with o € ¥ and m € 2F if
and only if at least one of the following conditions
is true:

(match & insert)

(i+g,i+h,d—(g—1))is a wagon of m and siy4 = a.

(substitute)

(i+1,i4+ h,d—1) is a wagon of m and s; # a.
(delete)

(i,24+ h,d — 1) is a wagon of m.

For each prefix-model m we keep a list of the wagons of
m that are in at least one train validating m. We describe
such wagons as being valid, with respect to m. When we
extend a model (to the left) to m’' = am, we perform two
tasks:

e First, determine which valid wagons of m can be ex-
tended as above to become wagons of m’.

e Second, of these newly determined wagons of m’, keep
only those that are valid with respect to m’. This re-
quires effectively assemblying wagons into trains, some-
thing that is not needed in an approach that keeps
track of trains directly.

Note that we need not actually enumerate the trains in the
second step, we simply must determine if a wagon is part
of one. This will allow us to perform an extension step in
linear time.

As a final insight, consider the directed graph G = (V, E)
where V' is the set of all valid wagons, and there is an edge
from wagon u to v if left, — left, € JUMP. Then a wagon
u is valid if it is part of a path of length min_repeat or
more in G. Determining this is quite simple as the graph is
clearly acyclic. In the computation that will follow, we will
effectively compute the length of the longest path to u in
Lent, and the length of the longest path from u in Rent,,.
If Lenty, + Renty, > man_repeat then u is valid.

4.2 Basic Procedure

We encode the collection of all wagons of m in a set, L., C
{0,1...,n}, and an (n+ 1) X (2e + 1)-element array D,, as
follows:

1. ¢ € Ly, if and only if 7 is the left-end of at least one
wagon valid with respect to m.

2. for each i € Ly, the value Dy, [i, 6] for § € [—e, €] is the
least edit distance of m from wagon sji8i2. . Sit|mps-

We adopt the convention that a wagon consisting of symbols
SiSi41 ...S; has its left-end at index 1 —1 and its right-end at
index j, i.e. a position is between symbols, position ¢ being
between s; and s;41. Intuitively, L,, gives the left-ends of
all valid wagons which is what we need to verify Properties
1 and 2. D, gives us the distances we need for extending
models and the right-ends needed for verifying Property 3.
Formally, (7,24 |m|+ 46, d) is a valid wagon of m if and only
if i € L, and d = Dy[1,8] <e.

The complete algorithm is given in Figure 1. When
Extend(am) is called, it is assumed that L,, is known along
with the relevant D, values. The routine computes these
items for the extension am and recursively for the extensions
thereof. Lines 0-5 compute the set of left-ends of wagons
for am derivable from wagons of m that are valid. While
Lemma 4.1 gives us a way to do so, we instead use dynamic
programming to compute all extensions simultaneously. We
thus prefer to think of the algorithm as adding the last row
to the dynamic programming matrix of s versus am. At the
start L., gives all the positions in row |m| that have value

int Lent[0..n], Rent[0..n]

procedure Extend(am)
{ Lam<«0

1. for i+ 1€ Ly, (in decreasing order) do

2. { foré e[—ee]do

Dpli+1,6]+ (if s; = o then 0 else 1),

ifi € Ly, then Dp[i, 6+ 1]+ 1,

ifi+1 € Lam then Dom[i +1,6 — 1]+ 1

3. Daml[i, 8] < min
4. if mins{Dam[i, 0]} < e then
5. Lam ¢ Lam U {1}
}
6. for i € Lam (in decreasing order) do
7. Rent[i] < maxye(iy JTUMP)ALa. 1 FCNHE]} + 1
8. for i € Lam (in increasing order) do
9. Lent[d] « max,e(i—JUMP)n Lo, L Lent[k]} 4+ 1
10. for : € Lam do
11.

12. if Lam # 0 then

if Lent[i] + Rent[i] < min_repeat then Loy, ¢« Lam — {1}

13. { if |am| € [min_range, maz_range] then

14. Record(am) (see Section 5)
15. if |am| < maz_range then

16. for 8 € ¥ do

17. Extend(Bam)

Figure 1: Sketch of procedure for satellite model extension.

e or less (and are Valid) and D,, gives their values. From
these, we compute the positions in row |m|+1 in the obvious
sparse fashion to arrive at Lom and the values Dgap,.

Once wagons have been extended when possible, we have
to eliminate those that are no longer valid. This is performed
by Lines 6 to 11. We compute, for each position ¢ € Lam,
the maximum number of wagons in a train starting with
a wagon whose left-end is at 7 in Rent[z] (including itself),
and the maximum number of wagons in a train ending with
a wagon whose left-end is at 7 in Lent[i]. The necessary
recurrences are given in Lines 7 and 9 of the algorithm where
we recall that JUMP = {zy : ¢ € [1, maz_jump] and y €
[min_range, maz_range]} and i + JUMP denotes adding i
to each element of JUMP. Observe that Rent[i] + Leni[i] is
the length of the longest train containing a wagon whose left-
end is at position 1. Clearly Lines 6-9 take O(|Lam||JUMP])
time. However, when L., is a very large fraction of n,
one can maintain an Rcnt(Lcent)-prioritized queue of the
positions in (i+JUMP)N Lam, to obtain an O(n-max_jump-
log |JUMP|) bound.

Finally in the remaining steps, Lines 12-17, the algorithm
calls Record to record potential models and then recursively
tries to extend the model if possible. The routine Record to
be described in the next section, confirms that the model is
a consensus model by verifying Property 3 and recording the
intervals spanned by trains valid for the consensus model, if
any.

4.3 Sketch of Complexity

While it is difficult to characterize the number of times the
procedure Faztend is called, it is still possible to arrive at
an upper bound on the time taken by the algorithm of Fig-
ure 1 by starting with the observation that O(|JUMP| + €)
time is spent on a given left-end position for each prefix
model matching the string beginning at that position. The
number of such prefixes that could match the given posi-
tion with e or less errors is by definition X}*7"“"9*N (e, k)

= O(maz_range - N'(e, maz_range)). Thus the total time
taken by the algorithm is bounded above by O(n-(|JUMP|+
e) - maz_range - N(e, maz_range)) = O(n - maz_range

maz_jump-N (e, maz_range)) as e < maz_range. We showed
in earlier work, [16], that N (e, k) is bounded from above by
k°|X|e.

The space requirement is that of keeping all the infor-
mation concerning at most maz_range models at a time (a
model m and all its prefixes). It is therefore on the order
of at most O(n - maz_range - €) as only O(ne) storage is re-
quired to record the left-end positions and least edit-distance
at each possible right-end.

The worst-case time analysis just given is very pessimistic.
Essentially, the algorithm explores the trie of all words. As
it gets deeper into the trie it is very likely that no validating
train will exist for the current model and one will backtrack.
A probabilistic analysis is beyond the scope of the current
paper, but the times reported in the empirical section cer-
tainly confirm this intuition.

5 Evaluation

5.1 Consensus Model Verification and Its Spans

The call to the routine Recordin Step 14 of Figure 1 requires
that we verify Property 3 for a model m whose length is
in the interval [min_range, max_range] and which satisfies
Properties 1 and 2. We start with L., and D,,, and note
that if + € L, is the left-end position of a valid wagon, then
Right(1) = {i+|m|+6 : Du[i,6] < e} is the set of right-end
positions of valid wagons whose left-end is at 2. Similarly
Left(5) ={j — |m| — 6 : D[y — |m| — 4,8] < e} is the set
of left-end positions of valid wagons whose right-end is at j.
It follows that R,, = Uicr,, Right(i) is the set of right-ends
of valid wagons of m and it is easy to compute this set in
O(ne) time given Ly, and Dp,.

Consider a directed bipartite graph Gy, = (Lym U Ry, E)
whose vertices are the positions at which the left- and right-
ends of valid wagons occur. Let there be a wagon edge: — j
if and only if j € Right(7). Further let there be a gap edge
7 — k if and only if £ — 3 € GAP. Thus the edge sequence
t - 3 — k occurs in G,, if and only if there are valid
wagons u and v such that u = siy1si42---55, left, =k,
and left, — right, satisfies Property 3. It follows that a
position/vertex which is on a path of length 2min_repeat or
more is part of a valid train satisfying all three properties,
and is called a final position. Let G, be the graph induced
by the set, F,, of all final vertices. If G/, is non-empty then
m is a consensus model.

Each weakly-connected component of G, corresponds to
a collection of overlapping trains. One should note that such
a set of overlapping wagons/trains for a given model does
indeed frequently occur. For example if s = AGAAAAAAA-
GAATTTAGAAGAACAA, and the search parameters are
e = 1, minrepeat = 3, min_range = 2, mar_range =
4, and maz_jump = 1, then G’ for the model m = AGA
consists of two components whose trains span the inter-
vals [1,12] and [16,25]. For example, the left-end posi-
tion sequences (0,3,6), (0,3,6,9), (3,6,9), (0,3,5,7,9), (0,2,5),
(0,2,5,8), (2,5,8), (15,18,21), (15,17,19,21) among others are
all valid train-occurrences. Let [I, .J] be the interval spanned
by a weakly-connected component, C C F,,, where I =
min;cc t and J = maz;ec j. Thisinterval, called a satellite
span of m, clearly contains every substring corresponding to
a valid train within the component.

The routine Record is responsible for determining if m
is a consensus model and if so, then determining all satel-
lite spans of m. The graph G, has at most O(n) vertices
and O(n(e + GAP)) edges. Thus we could explicitly build
the graph G,, and then compute, with conventional linear
graph algorithms, (1) the set of final positions Fi,, (2) the
subgraph G, it induces, and (3) the satellite spans for m, in
O(n(e + |GAP|)) time and space. We can improve space to
O(n) by determining the edges of G, on the fly, as follows.
As for the basic procedure, we compute arrays Lent, Lmrk,
Rent, and Rmrk in ordered sweeps of the merge of L,, and
R,,. In this context we count both left and right ends, so
that, for example, Rcnt[i] for i € L, will be the number
of endpoints in the longest train (satisfying all 3 properties)
starting at 7, and Rmrk[j] for j € R,, will be the number
of endpoints in the longest train starting at j. After this
computation in lines 1-6, it is clear that a left end 1 € Ly,
is final iff Lent[t] + Rentt] > 2min_repeat and a right end
j € Ry, is final iff Lmrk[i] + Rmrk[i] > 2min_repeat. In
steps 7-12, with the aid of the recursive routines RMark
and LMark, we effect a marked traversal of G}, that com-
putes the satellite span [/, .J] of each connected component

as 1t is traversed. After completing the traversal of a com-
ponent, its span is stored with all other such spans (Step
12) as sketched in the next subsection.

5.2 Selecting Models to Report: Model Fitness

It often happens that the same, or approximately the same
region corresponds to more than one consensus model, e.g.
models ACA, ATA, and AAA are also valid for the two inter-
vals of the example of the previous subsection. Furthermore,
it is also often the case that the models are permuted ver-
sions of one another, e.g. models AGA, GAA and AAG. The
models covering a given span can also have different lengths,
e.g. AGAA also covers the span [1,12] above. It can also
happen that one model is a power of the other. As an exam-
ple, if the minimum number of repeats is lowered to 2, then
both AGA and AGAAGA = AGA? are valid models, and
we say that AGA is a root of AGAAGA. Frequently, models
having overlapping satellite spans will differ in terms of a
few wagons at the beginning or end of trains, and possibly
of a few wagons in the middle when jumps are allowed.

In light of these observations, we have chosen to com-
bine all overlapping spans into one large span and associate
with it all the models contributing satellite spans to it. This
merging of the intervals takes place as the spans for individ-
ual models are found by Record so that at the completion of
the algorithm of Figures 1 and 2, we have a list of disjoint
intervals of s called satellite regions and for each region R,
the set, Mg, of models having a satellite span within R.

Given that Mg frequently contains more than a single
model, we rank each m € Mg according to the fitness of its
match to R which we define as the best scoring alignment
between (m)* and a substring of R under a user-specified
scoring scheme 6. The efficient comparison of the regular
expression (m)* (matching zero or more repetitions of m)
was introduced by Myers and Miller [11] for any regular
expression, and a later reincarnation of their work for the
case of this special pattern type became popularly known as
wrap around dynamic programming [8]. A ranking of mod-
els according to such a fitness score for the region relegates
secondary model matches, due to a fidelity mismatch be-
tween e and that of the satellite, to the back of the list.
Moreover, we further avoid reporting permutations or pow-
ers or roots of one another, by always picking the fitter of
any two such models and removing the other. The complex-
ity of this post-processing is dominated by the search for
consensus models.

6 Some Applications

We evaluated our algorithm by searching all the chromo-
somes of yeast Saccharomyces cerivisiae for satellites. The
sequences were retrieved from the following WEB address:
ftp://ftp.mips.embnet.org/pub/yeast/. Various param-
eter sets were tried and these are listed in Table 2. In Ta-
ble 3, we give the execution times obtained on a Dec Alpha
4000 5/466 for each run of our algorithm combined with
the filter prepass. Finally, Table 4 presents a summary of
the satellite models found (all parameter sets considered to-
gether) that have a score above 100 under either of two
different scoring schemes for the wrap-around dynamic pro-
gramming fitness evaluation. Score 1 is that used by Benson
[1] and scores matches, +2, and differences, —6. Score 2, of
our own design, scores matches, +1, mismatches, —1, and
indels, —2. It is thus more permissive of mismatches than
indels.

set of [0..n] R
int I, J, Lmrk[0..n], Rmrk[0..n]

procedure RMark(y)
{ “Mark 57
if 3 > J then J « 35

for i € (Left(j)U (j + GAP) O Ly do
if “s is unmarked” and Lent[i] + Rent[i] > 2min_repeat then

LMark(z)
}

procedure LMark(z)

procedure Record(m)
{ R« Uier, Right(i)

“Similar to Rmark above.”

for i € L,, U R (in decreasing order) do

if 1 € R then

Rmrk[i] « maxke(¢+GAp)an{R0nt[k]} +1

if: € L,, then

“Similarly compute Lent[i] for all i € Ly, and Lmrk[i] for all : € R.”

“All positions in R and L,, are unmarked.”

for y € R do

1
2
3
4
5. Rent[i] < maxierigne(iy {Rmrk[k]} +1
6
7
8
9

if “j is unmarked” and Lmrk[j] + Rmrk[j] > 2min_repeat then

10. { I+«J+y
11. RMark(j)

12. “Merge satellite span (I, J,m) with global region-and-models list.”

}

Figure 2: Procedure to determine if m is a consensus model and calculate its satellite spans.

Note that even after removing powers and selecting the
best model of a given length, there can still be more than
one model for a satellite region. It is interesting that in these
cases it 1s not clear what template or prototype sequence the
repeated units came from.

We have as yet not explored the results of the table for
biological significance and we have not attempted to eval-
uate the statistical pertinence of the models found. This
is a significant aspect of the analysis of the results of our
algorithm and will be undertaken in a subsequent work.

7 Extensions

As mentioned in the introduction, if we forgo the use of the
first phase filter, we can use the second phase to identify
repeats that are not tandem yet occur with, approximately
or exactly, the same period. Of course, wrap-around dy-
namic programming cannot be used to examine the fitness
of the trains reported. A simple alternative would be to se-
lect the train for which the sum of the scores of the wagons
is optimal.

Although not presently implemented, we may also treat
the presence of inverted repeats among the direct ones when
these occur in tandem. The exercise of doing so entails dis-
tinguishing between direct and inverted wagons, and extend-
ing properties 2 and 3 to accommodate the inverted wagons,
and then modifying the basic algorithm of Figures 1 and 2
accordingly. For this version of the problem, fitness would
be measured by comparing the regular expression (m|m)*
against the satellite span where m denotes the inverse of
model m.

8 Future Work

We have presented an algorithm for identifying tandem re-
peats that is both efficient and sensitive. It requires only
approximate knowledge of the length of the repeating unit
and no knowledge at all of the repeat itself. A model for
such a repeat, that may itself not occur in the sequence, is
constructed simultaneously with the search. The approach
introduced here may also handle periodic repetitions that
are not contiguous and/or involve inversions.

A subtle problem not considered here concerns the ability
to more finely analyze the mutational structure of a repeat.
Answers to questions such as: is there a regularity in the
distribution of mutated positions of a tandem array, or in
the nature of the mutations observed, may prove interesting
biologically. These are challenging problems, as we have
seen here that it is often difficult even to decide which model
among those found best represents the possible originator of
a repeat. These issues are biologically important but we do
not know yet how to treat them algorithmically.

Acknowledgments

Both authors would like to thank Alain Viari, Maxime
Crochemore, Laurent Bloch and Antoine Danchin from, re-
spectively, the Atelier de Biolnformatique of the University
of Paris VI, the Institut Gaspard Monge from the University
of Marne-la-Vallée, and both the Service d’Informatique Sci-
entifique and the Laboratoire de Régulation de I’Expression
Génétique of the Institut Pasteur in Paris for their warm
hospitality during Gene’s stay in Paris in May 1997 while

this work was being developed.

Thanks is also due to Guy-Franck Richard for having

provided some very useful bibliographic indications on satel-
lites and Frédérique Galisson from the Service d’Informatique
Scientifique for having pointed us out to Guy-Franck Richard.

per

Finally, the first author would like to dedicate this pa-

to Alain Viari. The discussions she had with him in

the earlier stages of the work were, as always, inspiring and
extremely fruitful.

References

(1]

(2]

(5]

(10]

(11]

(12]

(13]

G. Benson and M. Waterman. A method for fast database
search for all k-nucleotide repeats. Nucleic Acids Research,
22:4828-4836, 1994.

B. Charlesworth, P. Sniegowski, and W. Stephan. The evo-
lutionary dynamics of repetitive DNA in eukaryotes. Nature,
371:215-220, 1994.

O. Delgrange. Un algorithme rapide pour une compression
modulaire optimale. Application a ’analyse de séquences
génétiques. PhD thesis, 1997. Thése de doctorat - Université
de Lille T.

V. Fischetti, G. Landau, J. Schmidt, and P. Sellers. Identi-
fying periodic occurrences of a template with applications to
protein structure. In Z. Galil A. Apostolico, M. Crochemore
and U. Manber, editors, Combinatorial Pattern Matching,
volume 644 of Lecture Notes in Computer Science, pages
111-120. Springer-Verlag, 1992.

S. K. Kannan and E. W. Myers. An algorithm for locating
non-overlapping regions of maximum alignment score. In
Z. Galil A. Apostolico, M. Crochemore and U. Manber, ed-
itors, Combinatorial Pattern Matching, volume 684 of Lec-
ture Notes in Computer Science, page 7486. Springer-Verlag,
1993.

S. Karlin, M. Morris, G. Ghandour, and M.-Y. Leung. Effi-
cient algorithms for molecular sequence analysis. Proc. Natl.
Acad. Sci. USA, 85:841-845, 1988.

R. M. Karp, R. E. Miller, and A. L.. Rosenberg. Rapid iden-
tification of repeated patterns in strings, trees and arrays. In
Proc. 4th Annu. ACM Symp. Theory of Computing, pages
125-136, 1972.

G. Landau and J. Schmidt. An algorithm for approximate
tandem repeats. In Z. Galil A. Apostolico, M. Crochemore
and U. Manber, editors, Combinatorial Pattern Matching,
volume 684 of Lecture Notes in Computer Science, pages
120-133. Springer-Verlag, 1993.

M.-Y. Leung, B. E. Blaisdell, C. Burge, and S. Karlin. An
efficient algorithm for identifying matches with errors in mul-
tiple long molecular sequences. J. Mol. Biol., 221:1367-1378,
1991.

A. Milosavljevic and J. Jurka. Discovering simple DNA se-
quences by the algorithmic significance method. Comput.
Appl. Biosci., 9:407-411, 1993.

FE. W. Myers and W. Miller. Approximate matching of reg-
ular expressions. Bull. Math. Biol., 51:5-37, 1989.

E. Rivals and O. Delgrange. A first step toward chromosome
analysis by compression algorithms. In N. G. Bourbakis, edi-
tor, First International IEEE Symposium on Intelligence in
Neural and Biological Systems, pages 233-239. IEEE Com-
puter Society Press, 1995.

E. Rivals, O. Delgrange, J.-P. Delahaye, M. Dauchet, M.-O.
Delorme, A. Hénaut, and E. Ollivier. Detection of significant
patterns by compression algorithms: the case of approximate
tandem repeats in DNA sequences. Comput. Appl. Biosci.,
13:131-136, 1997.

(14]

15]

(16]

(17]

(18]

M.-F. Sagot, V. Escalier, A. Viari, and H. Soldano. Searching
for repeated words in a text allowing for mismatches and
gaps. In R. Baeza-Yates and U. Manber, editors, Second
South American Workshop on String Processing, pages 87—
100, Vinas del Mar, Chili, 1995. University of Chili.

M.-F. Sagot and A. Viari. A double combinatorial ap-
proach to discovering patterns in biological sequences. In
D. Hirschberg and G. Myers, editors, Combinatorial Pat-
tern Matching, volume 1075 of Lecture Notes in Computer
Science, pages 186—208. Springer-Verlag, 1996.

M.-F. Sagot, A. Viari, and H. Soldano. Multiple com-
parison: a peptide matching approach. Theoret. Comput.
Sci., 180:115-137, 1997. presented at Combinatorial Pat-
tern Matching 1995.

R. D. Wells and R. R. Sinden. Defined ordered sequence
DNA, DNA structure and DNA-directed mutation. In K. E.
Davies and S. T. Warren, editors, Genome Analysis, vol-
ume 7 of Genome Rearrangement and Stability, pages 107—
138. Cold Spring Harbor Laboratory Press, 1993.

S. Wu, U. Manber, and E. Myers. A sub-quadratic algorithm
for approximate limited expression matching. Algorithmica,
15:50-67, 1996.

Repeat Random e = 10% e =15% e = 20% Separating
Period (p) | Maximum | Min(Overlap) | Min(Overlap) | Min(Overlap) Value
1 1803 8947(0%) 3797(0%) 1741(.2%) 1800
8 1422 7947(0%) 2879(0%) 1311(.2%) 1350
16 1023 5777(0%) 2354(0%) 467(.2%) 850

Table 1: Filter discrimination between random and satellite sequence.

| Parameter Set ||

| min_repeat |

min_range |

maxr_range |

mazx_jump

1

O 00~ Ut i WY

e
1
1
2
2
1
2
2
3
4

50
100
30
30
10
100
10
100
100

2

5
10
20
5

15
15
25
35

5

15
20
30
15
25
25
35
45

[SCRN SR SR VR VR S N

Table 2: Satellite parameter sets for the exhaustive algorithm.

Chromosome Parameter set

1 [2]3 [4 [5 [6 [7 [8]9
1 23 5 24 46 28 3 400 4 5
2 73 14 | 61 147 70 42 | 1228 | 14 17
3 36 8 33 95 49 12 | 998 7 8
4 139 | 26 | 112 | 255 202 | 27 | 2403 | 26 32
5 57 12 | 50 134 62 12 | 941 11 13
6 29 6 28 55 37 4 493 5 7
7 105 | 22 | 93 172 102 | 15 | 1725 | 20 25
8 53 11 | 44 107 66 8 994 10 12
9 44 13 | 378 | 1224 | 351 | 77 | 738 469 | 10
10 60 11 | 49 133 66 56 | 1130 | 11 14
11 64 13 | 57 103 78 9 980 12 14
12 101 | 23 | 89 252 86 16 | 2390 | 19 23
13 86 28 | 70 222 113 | 34 | 2100 | 16 20
14 73 13 | 60 118 53 11 | 1243 | 14 17
15 101 | 22 | 85 252 114 | 17 | 2607 | 19 24
16 86 18 | 72 187 68 14 | 1906 | 17 20

Table 3: Execution times (in seconds) on a Dec Alpha 4000 5/466

| Chromosome || Pos. Start | Pos. End | Model | Score 1 | Score 2
2 1 486 2 403 GTTGGTAGTTGCAGTAGT - 215
68 181 68 551 ATT 134 -
72 248 72 603 AAC 112 -
464 053 464 249 GCTTGTGCTTGTGCTTGT 264 164
541 275 542 091 ATC or ATT 142 122
780 106 780 769 AAC 108 130
4 149 040 149 241 AAAT 120 77
161 386 161 848 ATT 62 126
384 256 385 692 GAAAGTAGTAGAGGAT 454 239
390 319 390 881 ATT 128 126
441 152 441 601 TTG - 126
778 640 779 123 ATT 182 104
1 290 850 1291 293 | AAT 116 134
5 1434 2829 AGT - 156
142 656 143 393 AAT 148 107
6 4 673 4 957 ACACCC 168 111
7 431 305 431 878 ATT 126 93
529 844 530 351 ATC 100 131
8 252 652 253 266 ATC 102 116
365 146 365 725 ATC 96 101
391 282 392 244 AAT 104 133
556 785 556 983 GGGTGT 202 120
9 1652 3420 AGT - 174
105 188 106 079 AAT 118 152
334 072 334 882 CTT - 109
391 338 392 719 GCAGAAGAGCTTTCAGTGGTAGAGCTGGAG | 234 -
391 338 392 720 CAGAAGAGCTTCAGTAGTAGAG - 606
391 338 392 720 GGTACTGGAGCAGAAGAGCTT - 594
391 338 392 718 GGAGCAGAAGAGCTTTCAGA - 567
10 1 635 3 404 AGT - 174
469 723 470 067 AAT 108 70
713 889 715 701 AGT 64 293
714 438 715 059 GAAGTGGTAG 138 278
11 15 834 16 346 AATAT - 136
15 697 16 395 AAT - 133
63 864 64 942 CTT 344 268
240 214 240 647 ATC 66 101
336 847 337 693 GTT 106 161
576 031 576 506 CGT 106 100
12 1647 2 963 AGT - 126
11 109 12 131 AC 162 125
823 330 823 862 AG 128 72
13 86 858 87 418 ATT 228 123
120 428 121 213 CTT 80 106
130 001 130 535 CTT - 113
587 545 588 026 ATT 140 90
14 454 038 454 801 AAG - 135
454 236 454 787 AAGA - 120
783 847 784 330 GGGTGT 378 231
15 236 184 236 438 AGCACA - 137
236 184 236 379 AGCACA 136 -
427 781 428 424 CGT 152 131
16 187 226 187 841 CTT - 132
252 136 252 618 CTT 126 105
520 646 521 491 AAT 118 149
536 587 537 032 CTT 172 104
650 301 650 928 ATT 170 127
945 909 947 236 ACT - 126

Table 4: Satellite models scoring above 100 in at least one of the two scoring systems adopted.

