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Abstract. We implement multiobjective evolutionary algorithms for
the optimization of micro-fluidic devices. In this work we discuss the
development of multimembered evolution strategies with step size adap-
tation in conjunction with the Strength Pareto Approach. In order to
support targeting, an extension of the Strength Pareto Evolutionary Al-
gorithm is proposed. The results suggest a novel design for micro-fluidic
devices used for DNA sequencing.

1 Introduction

Evolutionary Algorithms (EAs) such as Evolution Strategies or Genetic Algo-
rithms have become the method of choice for optimization problems that are
too complex to be solved using deterministic techniques such as linear program-
ming or gradient (Jacobian) methods. The enormous number of applications
([Beasley (1997)]) and the still growing interest in this field are due to several
advantages of EAs compared to gradient based methods for complex problems.
EAs require little knowledge about the problem being solved, they are easy
to implement, robust and inherently parallel. To solve a certain optimization
problem, it is enough to require that one is able to evaluate the objective (cost)
function for a given set of input parameters. The property of parallelism becomes
more and more important with the increasing power and availability of large
parallel computer systems. Because of their universality, ease of implementation
and fitness for parallel computing, EAs often take less time to find the optimal
solution than gradient methods. However, most real-world problems involve
simultaneous optimization of several, often mutually concurrent objectives.
Multiobjective EAs are able to find optimal trade-offs in order to get a set of
solutions that are optimal in an overall sense. In multiobjective optimization,
gradient based methods are often impossible to apply. Multiobjective EAs
however can always be applied and they inherit all of the favorable properties
from their single objective relatives.

Section 2 of this paper introduces main concepts of single objective EAs. Sec-
tion 3 extends these ideas to multiobjective cases and introduces the principles
of dominance and Pareto optimality. Section 4 describes the Strength Pareto
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Approach used in this work and in section 5 we extend it with a targeting capa-
bility. In section 6 the results of both single and multiobjective optimization of
a microchannel flow are shown and discussed.

2 Single Objective Evolutionary Algorithms

The basic idea for single objective EAs is to imitate the natural process of
biological evolution. The problem to be solved is therefore described using a
certain number of parameters (design variables). One then creates a group of
λ(> 0) different parameter vectors and considers it as a population of individuals.
The quantity λ is called the population size. The quality of a certain vector of
parameters (i.e. an individual in the population) is expressed in terms of a scalar
valued fitness function (objective function). Depending on whether one wants to
minimize or maximize the objective function, individuals (i.e. parameter vectors)
with lower or greater fitness are considered better, respectively. The algorithm
then proceeds to choose the µ, (µ < λ) best individuals out of the population
to become the parents of the next generation (natural selection, survival of the
fittest). Therefore, µ denotes the number of parents. The smaller µ is chosen
compared to λ, the higher the selection pressure will be. Out of the µ individuals
chosen to be parents for the next generation, one then creates a new population
of λ offspring xg+1

i by applying mutation on the parents xg
j as follows:

xg+1
i = xg

j + N (0, Σ) , i = 1, . . . , λ , j ∈ {1, . . . , µ} (1)

where N (0, Σ) denotes a vector of jointly distributed Gaussian random num-
bers with zero mean and covariance matrix Σ. The standard deviations (i.e. the
square roots of the diagonal elements σ2

i of Σ) of the additive random num-
bers determine “how far away from its parent a child will be” and are called
step sizes of the mutation. Now, the first iteration is completed and the al-
gorithm loops back to the evaluation of the fitness function for the new in-
dividuals. Several different techniques for adaptation and control of the step
size have been developed (see e.g. [Bäck (1997a)], [Bäck (1997b)], [Bäck (1993)],
[Hansen & Ostermeier (1996)] or [Hansen & Ostermeier (1997)]). In the follow-
ing subsections, some of the single objective Evolution Strategies used in this
work are outlined.

2.1 The (1+1)-ES

One of the simplest and yet powerful evolution strategies is the “one plus one
evolution strategy”, denoted by (1+1)-ES. In this strategy, both the number
of parents and the population size (i.e. number of offspring) are set to one:
µ = λ = 1. Mutation is accomplished by adding a vector of usually uncorrelated
Gaussian random numbers, i.e. Σ = diag(σ2

i ) is a diagonal matrix. Step size
adaptation can be performed according to Rechenberg’s 1/5-rule: if less than
20% of the generations are successful (i.e. offspring better than parent), then
decrease the step size for the next generation; if more than 20% are successful,
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then increase the step size in order to accelerate convergence. This adaptation
is done every N · LR generations where N is the number of parameters (i.e.
dimension of search space) and LR is a constant, usually equal to one. Selection
is done out of the set union of parent and offspring, i.e. the better one of the
two is chosen to become the parent of the next generation.

2.2 The (µ, λ)-ES

A slightly more advanced method is to take one or more parents and even
more offspring, i.e. µ ≥ 1 and λ > µ. Mutation is accomplished in a sihyper-
ellipsoidmilar way as with the (1+1)-ES. Besides the 1/5 rule, another method
for step size adaptation becomes available which is called self-adaptive muta-
tion ([Bäck (1997a)]). In this method, the mutation steps are adapted every
generation. They are either increased, decreased or kept the same, each with a
probability of 1/3. On the average, 1/3 of the offspring will now be closer to their
parents than before, 1/3 keeps progressing at the same speed and 1/3 explores
further areas. Depending on how far away from the optimum we currently are,
one of these three groups will do better than the others and therefore, more
individuals out of it will be selected to the next generation, where their step
sizes are inherited. The algorithm adapts the step size by itself, i.e. by means of
mutation and selection.

2.3 The (µ/µI , λ)-CMA-ES

The Covariance Matrix Adaptation is a sophisticated method for online adap-
tation of step sizes in (µ, λ)-ES with intermediate recombination (i.e. averaging
of parents). It was first described by [Hansen & Ostermeier (1996)] and further
improved and evaluated by [Hansen & Ostermeier (1997)]. For a complete de-
scription of the algorithm, the reader is referred to the latter publication. The
basic idea is to adapt step sizes and covariances in such a way, that the longest
axis of the of mutation distribution always aligns in the direction of greatest
estimated progress. This is done by accumulating information about former mu-
tation steps and their success (evolution path) and searching it for correlations.
Besides this very sophisticated method for step size adaptation, a CMA-ES also
includes mutation (with Σ now being a full matrix) and selection.

3 Multiobjective Evolutionary Algorithms

As soon as there are many (possibly conflicting) objectives to be optimized si-
multaneously, there is no longer a single optimal solution but rather a whole set
of possible solutions of equivalent quality. Consider for example the design of an
automobile. Possible objectives could be: minimize cost, maximize speed, mini-
mize fuel consumption and maximize luxury. These goals are clearly conflicting
and therefore there is no single optimum to be found. Multiobjective EAs can
yield a whole set of potential solutions - which are all optimal in some sense - and
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give the engineers the option to assess the trade-offs between different designs.
One then could for example choose to create three different cars according to
different marketing needs: a slow low-cost model which consumes least fuel, an
intermediate solution and a luxury sports car where speed is clearly the primer
objective. Evolutionary Algorithms are well suited to multiobjective optimiza-
tion problems as they are fundamentally based on biological processes, which
are inherently multiobjective.

After the first pioneering work on multiobjective evolutionary optimization in the
eighties ([Schaffer (1984)], [Schaffer (1985)]), several different algorithms have
been proposed and successfully applied to various problems. For comprehensive
overviews and discussions, the reader is referred to [Fonseca & Fleming (1995)],
[Horn (1997)], [Van Veldhuizen & Lamont (1998)] and [Coello (1999)].

3.1 Dominance and Pareto-Optimality

In contrast to fully ordered scalar search spaces, multidimensional search spaces
are only partially ordered, i.e. two different solutions are related to each other in
two possible ways: either one dominates the other or none of them is dominated.

Definition 1: Consider without loss of generality the following multiobjec-
tive optimization problem with m decision variables x (parameters) and n objec-
tives y:

Maximize y = f(x) = (f1(x1, . . . , xm), . . . , fn(x1, . . . , xm))

where x = (x1, . . . , xm) ∈ X
y = (y1, . . . , yn) ∈ Y

(2)

and where x is called decision (parameter) vector, X parameter space, y
objective vector and Y objective space. A decision vector a ∈ X is said to
dominate a decision vector b ∈ X (also written as a � b) if and only if:

∀i ∈ {1, . . . , n} : fi(a) ≥ fi(b)
∧ ∃j ∈ {1, . . . , n} : fj(a) > fj(b) (3)

Additionally, we say a covers b (a � b) if and only if a � b or f(a) = f(b).

Based on this convention, we can define nondominated, Pareto-optimal solu-
tions as follows:

Definition 2: Let a ∈ X be an arbitrary decision (parameter) vector.

1. The decision vector a is said to be nondominated regarding a set X ′ ⊆ X if
and only if there is no vector in X ′ which dominates a; formally:

@a′ ∈ X ′ : a′ � a (4)
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2. The decision (parameter) vector a is called Pareto-optimal if and only if a
is nondominated regarding the whole parameter space X.

If the set X ′ is not explicitly specified, the whole parameter space X is
implied.

Pareto-optimal parameter vectors cannot be improved in any objective with-
out causing a degradation in at least one of the other objectives. They represent
in that sense globally optimal solutions. Note that a Pareto-optimal set does not
necessarily contain all Pareto-optimal solutions in X. The set of objective vec-
tors f(a′),a′ ∈ X ′, corresponding to a set of Pareto-optimal parameter vectors
a′ ∈ X ′ is called “Pareto-optimal front” or “Pareto-front”.

3.2 Difficulties in Multiobjectve Optimization

In extending the ideas of single objective EAs to multiobjective cases, two major
problems must be addressed:

1. How to accomplish fitness assignment and selection in order to guide the
search towards the Pareto-optimal set.

2. How to maintain a diverse population in order to prevent premature conver-
gence and achieve a well distributed, wide spread trade-off front.

Note that the objective function itself no longer qualifies as fitness func-
tion since it is vector valued and fitness has to be a scalar value. Different ap-
proaches to relate the fitness function to the objective function can be classified
with regard to the first issue. For further information, the reader is referred to
[Horn (1997)]. The second problem is usually solved by introducing elitism and
intermediate recombination. Elitism is a way to ensure that good individuals
do not get lost (by mutation or set reduction), simply by storing them away in
a external set, which only participates in selection. Intermediate recombination
on the other hand averages the parameter vectors of two parents in order to
generate one offspring according to:

x′
j = αxg

j1 + (1 − α)xg
j2 , j, j1, j2 ∈ {1, . . . , µ}

xg+1
i = x′

j + N (0, Σ) , i = 1, . . . , λ , j ∈ {1, . . . , µ} (5)

Arithmetic recombination is a special case of intermediate recombination
where α = 0.5.

4 The Strength Pareto Approach

For this work, the Strength Pareto Approach for multiobjective optimiza-
tion has been used. Comparative studies have shown for a large number of
test cases that, among all major multiobjective EAs, the Strength Pareto
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Evolutionary Algorithm (SPEA) is clearly superior ([Zitzler & Thiele (1999)]
[Zitzler, Thiele & Deb (2000)]). It is based on the above mentioned princi-
ples of Pareto-optimality and dominance. The algorithm as proposed by
[Zitzler & Thiele (1999)] was implemented in a restartable, fully parallel code
as follows:

Step 1: Generate random initial population P and create the empty external
set of nondominated individuals P ′.

Step 2: Evaluate objective function for each individual in P in parallel.
Step 3: Copy nondominated members of P to P ′.
Step 4: Remove solutions within P ′ which are covered by any other member of

P ′.
Step 5: If the number of externally stored nondominated solutions exceeds a

given maximum N ′, prune P ′ by means of clustering.
Step 6: Calculate the fitness of each individual in P as well as in P ′.
Step 7: Select individuals from P + P ′ (multiset union), until the mating pool

is filled.
Step 8: Adapt step sizes of the members of the mating pool.
Step 9: Apply recombination and mutation to members of the mating pool in

order to create a new population P
Step 10: If maximum number of generations is reached, then stop, else go to

Step 2.

4.1 Fitness Assignment

In Step 6, all individuals in P and P ′ are assigned a scalar fitness value. This
is accomplished in the following two-stage process. First, all members of the
nondominated set P ′ are ranked. Afterwards, the individuals in the population
P are assigned their fitness value.

Step 1: Each solution i ∈ P ′ is assigned a real value si ∈ [0, 1), called strength.
si is proportional to the number of population members j ∈ P for which
i � j. Let n denote the number of individuals in P that are covered by
i and assume N to be the size of P . Then si is defined as: si = n

N+1 .
The fitness fi of i is equal to its strength: fi = si ∈ [0, 1).

Step 2: The fitness of an individual j ∈ P is calculated by summing the strengths
of all external nondominated solutions i ∈ P ′ that cover j. Add one to
this sum to guarantee that members of P ′ always have better fitness
than members of P (note that the fitness is to be minimized):

fi = 1 +
∑

i,i�j si , fi ∈ [1, N) (6)
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4.2 Selection and Step Size Adaptation

Step 7 requires an algorithm for the selection of individuals into the mating
pool and Step 8 includes some method for dynamical adaptation of step sizes
(i.e. mutation variances). For this paper, selection was done using the following
binary tournament procedure:

Step 1: Randomly (uniformly distributed random numbers) select two individ-
uals out of the population P .

Step 2: Copy the one with the better (i.e. lower for SPEA) fitness value to the
mating pool.

Step 3: If the mating pool is full, then stop, else go to Step 1

Adaptation of the step sizes was done using the self-adaptive mutation
method (c.f. section 2.3). Each element of P and P ′ is assigned an individ-
ual step size for every parameter, i.e. Σ = diag(σ2

i ) is a diagonal matrix for
each individual. The step sizes of all members of the mating pool are then either
increased by 50%, cut to half or kept the same, each at a probability of 1/3.

4.3 Reduction by Clustering

In Step 5, the number of externally stored nondominated solutions is limited to
some number N ′. This is necessary because otherwise, P ′ would grow to infinity
since there always is an infinite number of points along the Pareto-front. More-
over, one wants to be able to control the number of proposed possible solutions,
because from a decision maker’s point of view, a few points along the front are
often enough. A third reason for introducing clustering is the distribution of
solutions along the Pareto-front. In order to explore as much of the front as pos-
sible, the nondominated members of P ′ should be equally distributed along the
Pareto-front. Without clustering, the fitness assignment method would probably
be biased towards a certain region of the search space, leading to an unbalanced
distribution of the solutions. For this work, the average linkage method, a clus-
tering algorithm which has proven to perform well on Pareto optimization, has
been chosen. The reader is referred to [Morse (1980)] or [Zitzler & Thiele (1999)]
for details.

5 Strength Pareto Approach with Targeting

Compared to other methods like for example the Energy Minimization Evo-
lutionary Algorithm (EMEA) (c.f. [Jonathan, Zebulum, Pacheco & Vellasco
(2000)]), the SPEA has two major advantages: it finds the whole Pareto-front
and not just a single point on it and it converges faster. The latter is a univer-
sal advantage, whereas the former is not. There are applications where a target
value can be specified. One then wants to find the point on the Pareto-front
which is closest to the user-specified target (in objective space). This eliminates
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the need to analyze all the points found by SPEA in order to make a decision.
EMEA offers such a possibility, but it converges slower than SPEA and it is un-
able to find more than one point per run. Hence we wish to extend SPEA with
some targeting facility that can be switched on and off depending on whether
one is looking for a single solution or the whole front, respectively. We added
this capability to SPEA by the following changes to the algorithm:

1. Between Step 6 and Step 7 the fitness values of all individuals in P and P ′

are scaled by the distance D of the individual from the target (in objective
space) to some power q:

fi = fi · Dq
i

This ensures that enough nondominated members close to the target will be
found so that the one with minimal distance will appear at higher probability.
The parameter q determines the sharpness of the concentration around the
target.

2. Another external storage Pbest is added, which always contains the individual
out of P ′ which is closest to the target. Therefore, between steps 4 and 5,
the algorithm calculates the distances of all members of P ′ to the target
and picks the one with minimal distance into Pbest. At all times, Pbest only
contains one solution.

3. At the end of the algorithm, not only the Pareto-front is output, but also the
solution stored in Pbest. Note that due to clustering and removal in P ′, the
solution in Pbest is not necessarily contained in P ′. It is therefore an optimal
solution which otherwise would not have appeared in the output.

The algorithm has been implemented and tested for convex and nonconvex
test functions. Figures 1 to 4 show some results for the nonconvex test function
T2 as proposed in [Zitzler, Thiele & Deb (2000)]:

Minimize T2(x) = (f1(x1), f2(x))
subject to f2(x) = g(x2, . . . , xm)h(f1(x1), g(x2, . . . , xm))

where x = (x1, . . . , xm)
f1(x1) = x1
g(x2, . . . , xm) = 1 + 9 · ∑m

i=2 xi/(m − 1)
h(f1, g) = 1 − (f1/g)2

(7)

where m is the dimension of the parameter space and xi ∈ [0, 1]. The exact
Pareto-optimal front is given by g(x) = 1. The parameters of the algorithm were
set as summarized in table 1.

The chosen target value is slightly off-front. Therefore, the targeting error will
never be zero. Figure 1 shows the final population after 250 generations without
targeting. The diamonds indicate members of the external nondominated set
(Pareto-optimal front), whereas members of the regular population are denoted
by crosses. In figure 2 the same run has been repeated with targeting. Figure 3
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Table 1. Settings for targeting SPEA

Parameter Value
Dimension of parameter space (m) 5
Size of population (λ) 50
Size of mating pool (µ) 30
Size of nondominated set (N ′) 70
Number of generations 250
Target value for (f1, f2) (0.5, 0.7)
Concentration parameter q 4

shows the targeting error as a function of the generation number. The dashed
line indicates the theoretical minimum of the distance. After about 80 to 100
generations, the point on the front which is closest to the target has been found
with good accuracy. Figure 4 shows the path of Pbest towards the target. The
jumps are due to the fact, that the individual stored in Pbest gets replaced as
soon as another individual is closer to the target.
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The best objective value that was achieved was: f(Pbest) = (0.5265, 0.7247),
its Euclidean distance from the target is 3.6287 · 10−2, which is equal to the
theoretical minimal distance within the given computational accuracy.

6 Microchannel Flow Optimization

Both single and multiobjective EAs have been applied to a fluidic microchan-
nel design problem. Bio-analytical applications require long thin channels for
DNA sequencing by means of electrophoresis. In order to pack a channel of sev-
eral meters in length onto a small square plate, curved geometries are required.
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However, curved channels introduce dispersion and therefore limit the separa-
tion efficiency of the system. The question is now how to shape the contour of
the channel in order to minimize dispersion. A detailed description of the prob-
lem as well as an optimization solution using gradient methods can be found in
[Mohammadi et al. (2000)].

6.1 Single Objective Optimization

The goal of this optimization run was to minimize the final skewness of the flow
inside the channel, i.e. it was required that the iso-values of the advected species
a be normal to the flow field U by time T when they exit the channel. The
objective function defined by [Mohammadi et al. (2000)] is therefore:

J =
∫

Ω

(∇a(x, T ) × U(x))2 dx (8)

with Ω being the cross section of the channel exit. The shape of the 90 degrees
turn is described by 11 parameters. Therefore, the parameter search space is of
dimension 11. The objective space is scalar since it is a single objective problem.

The calculation of the flow field and evaluation of the objective function was
done by an external flow solver provided by [Mohammadi et al. (2000)]. Both
a (1+1)-ES and a (3/3I ,12)-CMA-ES were applied to the problem and their
convergence was compared. The results were statistically averaged from 5 runs
with different initial conditions, i.e. starting points.

Since the CMA-ES has a population size of 12, it performs 12 function eval-
uations per generation. Figure 5 shows the convergence normalized to the same
number of function calls. Figures 6 and 7 show the corresponding solutions after
20 and 180 generations of the best 1+1 run out of the ensemble (the lines are
iso-potential lines of the electric field). After 20 generations the contour of the
channel gets a clearly visible dent in it. After 80 evaluations of the objective
function, the algorithm has found a double-bump shape to be even better and
after 180 calls to the solver, no further significant improvement is observed. The
value of the objective function has dropped to about 10−6 for the best run out
of the ensemble. This means, that dispersion is almost zero and the channel will
have very good separation properties.
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6.2 Multiobjective Optimization

We then introduced the total deformation of the channel contour as a second
objective to be minimized simultaneously in order to minimize manufacturing
costs. The second objective thus reads:

K =
11∑

i=1

p2
i (9)
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where pi are the shape parameters of the channel as introduced by [Mo-
hammadi et al. (2000)]. The first objective remained unchanged. The algorithm
used for this optimization was a SPEA with a population size of 20, a maximum
size of the external nondominated set of 30 and a mating pool of size 10.

Figure 8 shows the Pareto-optimal trade-off front after 80 generations of the
algorithm and figures 9 and 10 show the corresponding solutions, i.e. optimized
shapes of the channel. One is now free to choose whether to go for minimal
skewness at the expense of a higher deformation (c.f. figure 9), choose some
intermediate result or minimize deformation in order to minimize manufactur-
ing costs and still get the lowest skewness possible with the given amount of
deformation (c.f. figure 10).
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Fig. 8. Pareto-front of nondominated solutions after 80 generations

6.3 Comparison with Gradient Based Methods

Figures 11 and 12 show two classes of optimized shapes obtained by [Mohammadi
et al. (2000)]. using gradient methods. It is interesting that the gradient tech-
nique offers the same two designs, namely the single-dented (fig. 11) and the
double-dented (fig. 12) shapes, which we found with the evolution strategy after
40 or 180 generations, respectively. Therefore, we obtain qualitatively similar
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gradient methods

results from both methods. Using the gradient method, the skewness is reduced
by one order of magnitude [Mohammadi et al. (2000)] which is comparable to
the numbers obtained by evolutionary optimization. While trial and error pro-
cedures were used in the gradient methods to obtain various solutions, evolution
strategies provide us with a number of solutions (Pareto front) in a fully au-
tomated fashion. Unlike the gradient based methods which require an explicit
formulation of the optimization problem in hand, the evolution strategy provides
a straightforward optimization procedure. Moreover, the small cost of compu-
tation implies that evolution strategies are a reliable method leading to greater
flexibility and shorter “time-to-solution”.

7 Conclusions and Future Work

Single and multiobjective evolutionary algorithms have been implemented and
assessed. The SPEA has successfully been extended to support targeting in ob-
jective space. It has been shown that these algorithms are easy to apply to fluid
dynamical problems and that their solutions are comparable to those found by
gradient based methods. In cases where gradient methods cannot be applied
or where they would involve too complex mathematical calculations, evolution
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strategies are a good alternative to solve an optimization problem or reduce the
time needed to do so as part of hybrid processes.

Future and present work addresses the acceleration of convergence of these
algorithms and their implementation in hybrid processes.
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