
Eidgenössische
Technische Hochschule
Zürich

Ecole polytechnique fédérale de Zurich
Politecnico federale di Zurigo
Swiss Federal Institute of Technology Zurich

Institute of Computational Science

Ivo F. Sbalzarini

Diffusion in the Endoplasmic
Reticulum

Theoretical Foundation, Computer Simulations, Models

Diploma thesis at the

Institute of Computational Science

Principal Adviser: Prof. Dr. Petros Koumoutsakos, Computational Science

Co-Adviser: Prof. Dr. Ari Helenius, Institute of Biochemistry, ETHZ

February 2002

ii

iii

Abstract

Diffusion processes in the lumen of the endoplasmic reticulum of tissue derived cells
are investigated using a computational approach based on the method of particle
strength exchange. 3D reconstructions of the shape of the endoplasmic reticulum
are made from micrograph sections and are then used to conduct direct numeri-
cal simulations of fluorescence recovery experiments. The influences of the local
geometry (i.e. the restriction of diffusion to it) on the time behavior of diffusion
are discussed. Using concepts from fractal geometry, these influences are described
with a single parameter that is proven to be sufficient. Based on this theory and
physical principles, novel mathematical models for fluorescence recovery curves are
developed and validated. They are shown to approximate the recovery curve at
least one order of magnitude better than current models on the same geometry.

Zusammenfassung

Diffusionsprozesse im Lumen des Endoplasmatischen Retikulums lebender Zellen
werden mittels Rechnersimulationen untersucht, wobei die “particle strength ex-
change”-Methode verwendet wird. Basierend auf mikroskopischen Schnittbildern
werden 3D-Rekonstruktionen der Geometrie des Endoplasmatischen Retikulums
gemacht, welche dann benutzt werden, um direkte numerische Simulationen von
“fluorescence recovery”-Experimenten zu machen. Die Einflüsse der lokalen Geome-
trie (d.h. der Einschränkung der Diffusion auf diese) auf das zeitliche Verhalten der
Diffusion werden diskutiert. Unter Nutzung von Konzepten aus der fraktalen Ge-
ometrie werden diese Einflüsse dann mittels eines einzigen Parameters beschrieben,
welcher als dafür hinreichend bewiesen wird. Basierend auf dieser Theorie und
physikalischen Grundgesetzen werden neue mathematische Modelle für “fluores-
cence recovery”-Kurven hergeleitet und validiert. Es wird gezeigt, dass diese die
Kurven für die selbe Geometrie mindestens eine Grössenordnung besser wiedergeben
als die heute verwendeten Modelle.

iv

v

to my Mother

vi

vii

List of symbols

a First edge vector of a triangle, a = P2 − P1 / a coefficient / a point
(a, c) Lower-left corner coordinates of bleached box
â Least squares estimate of the slope
a0 A coefficient
A A set / integration constant/ bleached area
b Second edge vector of a triangle, b = P3 − P1 / a point
(b, d) Upper-right corner coordinates of bleached box
bx, by, bz Size of a bin or cell in all three directions

b̂ Least squares estimate of the y-axis intersection
B The bleached box / a set / integration constant
Bi,j Bin with indices (i, j)
c Concentration / centroid of a triangle / a constant
cc Concentration at centroid of a grid cell
cV Centroid of a voxel
Ci,j,k Cell with indices (i, j, k)
C(E) Set of all continuous functions on E
D Diffusion constant / a bounded open region
DB Box counting dimension
DH Hausdorff’s dimension
DM Minkovski dimension
Dxx, Dxy, . . . ,Dzz Components of the anisotropic diffusion tensor
ds Spectral dimension
dw Dimension of the walk
e(n) Parallel speed-up efficiency on n processors
E A set, geometrical object / quadratic error
Ek Pre-fractal Euclidean approximations of order k
ERMS RMS error
Eδ δ-neighborhood of E, δ-parallel body to E
E(·) Expectation value of a random variable
f A function
F A function / FRAP value
F0 Pre-bleach FRAP value
Fa FRAP value just after bleaching
F∞ Steady-state FRAP value for t → ∞
f− Negative part of a function
f+ Positive part of a function
g A function
G Green’s function / a function / number of grid points
h Grid spacing / inter-particle spacing
Hi,j,k Head of chain list for cell (i, j, k)
Hs The s-dimensional Hausdorff measure
i, j, k Indices, index counters / Integer grid coordinates in simulation
� Identity matrix
k A constant / particle index
K Heat Kernel (time dependent Green’s function) / convolution kernel
l Particle index
� Linked list / load distribution coefficient
L Edge length of cubic domain
Li,j Triangle list associated to bin (i, j)
Li,j,k Triangle list associated to cell (i, j, k)
Ln The n-dimensional Lebesgue measure
m Index / a matrix / an element / mass
mt Total mass in the domain
M Number of triangles in surface / a system matrix

number of terms in a finite series expansion

viii

M Family of µ-measurable sets
n Topological dimension of a space / outer normal vector / index

number of measurement points / number of processors
N Total number of particles in a simulation
NB Number of particles inside the bleached box, area
Ni Number of intersections
NIter Number of iteration steps
Nδ Measured length in multiples of δ
Ng Number of grid points inside the bleached box
N(λ) Eigenvalue distribution function
Nx, Ny , Nz Number of grid points, bins or cells in each direction
Ncx, Ncy , Ncz Number of mesh cubes in each direction
N Gaussian random variable (normal distribution)
�

n n-dimensional space of integer numbers
�

+
0 Set of all non-negative integer numbers

overlap Particle overlap parameter
p Particle index / triangle index / mass per particle
p(·) A positive periodic function
pt Transition density at time t
P A point / a particle / probability of an event
P1, P2, P3 Vertex points of a triangle
q Particle index / source term
Q A point
Qε Anisotropic integral operator for diffusion

Q
h

ε Discrete particle approximation to Qε

r Ratio of anisotropy (ratio of diffusion resistances in x and y)
Radial spherical coordinate / distance / order of a particle method

rc Cut-off radius
R Radius of a tube / mobile fraction
Rx

n(r), Ry
n(r) Effective diffusion resistances in x and y

�
n Euclidean space of dimension n
�

+ Set of all positive real numbers
s Dimension (of a Hausdorff measure) / random walk step vector
st Time stretch factor
S(n) Parallel speed-up on n processors
t Time
tE(n) Execution time on n processors
ti Time spent on processor i
t1/2 Half-time of fluorescence recovery
tfinal Final time of simulation
T Number of time steps / time constant
TOL Tolerance
U Uniformly distributed random variable
u Unknown variable of a differential equation / velocity vector
v A vector / volume of a particle
V Volume
Vk Vertex with index k
Vi,j,k Voxel with indices (i, j, k)
w Vertex index / quadrature weight
x Location vector / position / a point / argument to a function
x Mean displacement
ξ Location vector / position
xp Position of particle p
X A set

Xk(t) Random walk with step length 2−k

X(t) Brownian motion
x, y, z Coordinates in a cartesian system
ξ, η, ζ Coordinates in a cartesian system

ix

y Position / Argument to a function
Y Intersection point / vector of measured values
α Order of continuity / model parameter / line parameter
αk Time between subsequent steps in a random walk of order k
β Model parameter / line parameter
γ Order of continuity
δ Size of length scale / uniform grid spacing
δij The Kronecker delta symbol
δ(·) Dirac’s delta distribution
δt Time step size
δx, δy, δz Cartesian grid spacings in each direction
∆ Difference / determinant
∆k Triangle k
∆z Distance between subsequent slices
ε Kernel core size for particle method
ε Residual / error
η Number of voxels in a voxel representation / kernel function
ηε Regularized kernel function for a particle method
ηα, ηβ Learning rates for gradient descent
ϕ Eigenfunction / azimuthal angle / angular coordinate on tube
φ0 Volume-filling coefficient
Φ Regression matrix
ψ Spherically symmetric matrix cut-off function
ψε Regularized matrix cut-off function
κ Dimensionless constant
λ Eigenvalue / line parameter / ratio of a similarity transformation
µ A measure / Micro
ν Restriction of a measure / a distribution
π Ratio of circumference to diameter of a circle (= 3.14159265359 . . .)
σ Standard deviation / voxel edge length / source term / anisotropic kernel
σε Regularized anisotropic kernel
τ Time / time constant
ϑ Polar angle for spherical coordinates
Θ Vector of unknown parameters

Θ Scalar cut-off function
�ΘLS Least squares estimation of unknown parameters
ζ Particle mollifier function / axial coordinate on a tube
ζε Regularized particle mollifier function
χA Indicator function of set A
ω Particle strength (in general)
Ω Domain of solution
ℵ Triangulated surface, i.e. its set of triangles
∂ Partial derivative / boundary of domain
∇ Nabla Operator
∇2 Laplace Operator
∇2

ε Continuous integral approximation to the Laplace operator
∇2

ε,h Discrete sum approximation to the Laplace operator
∞ Infinity
|·| Absolute value / diameter of a set
‖·‖∞ Infinity norm of a function

(·) Upper dimension
(·) Lower dimension
�(·) Finite sum approximation of an infinite series

(·)� Matrix transpose

(·)h Particle approximation with inter-particle spacing h
(·)∗ True value (as opposed to model value)
(·)′ Derivative with respect to the function’s only variable
(·)0 Initial value, property at time zero

x

(·)∞ Steady-state value for t→ ∞
(·)x, (·)1 Cartesian x component or value in x direction
(·)y, (·)2 Cartesian y component or value in y direction
(·)z, (·)3 Cartesian z component or value in z direction
(·)l Lower bound of a variable
(·)h Upper bound of a variable
(·)min Minimum value of a variable
(·)max Maximum value of a variable
(·)opt Optimum value of a variable
(·)mirror Boundary mirror image
(·)n At time step n
(·)k At iteration step k
O(·) The Landau symbol
O(·) Operation count at the order of−→
AB Vector pointing from A to B
× Cartesian product / vector cross product
∀ For all
(·)! Faculty of a number
!
= Must be equal (requirement)
� Asymptotically equal
∈ In a set, member of a set
/∈ Not in a set
\ Set minus
∅ Empty set
spt(·) Support of a measure
int(·) Interior of a closed set
Voln(·) n-dimensional volume of an object or set
[a, b] Interval between a and b including its boundaries
(a, b) Interval between a and b excluding its boundaries
P(n:m) Sub-vector with components n to m of vector P�n

i=1 Multiset union of n sets�n
i=1 Sum of n terms�n
i=1 Product of n terms

inf Infimum of a set (multidimensional minimum)
sup Supremum of a set (multidimensional maximum)
min Minimum of a set
max Maximum of a set
lim Limit
log Natural logarithm (i.e. logarithm to the base e)
ceiling(x) Smallest integer larger or equal x
floor(x) Largest integer less or equal x
int(x) Integer part truncation of x
Tr(·) Trace of a matrix
#{·} Counting measure of a set (number of elements in the set)
⇒ Logical implication
⇐⇒ Only if (iff)
�→ Maps to (mapping or transformation)
→ To, towards
<.> Mandatory argument
[.] Optional argument

Further symbols may be defined in the text as they are encountered. Name conflicts
may occur. However, in such cases the meaning of a symbol is always clearly defined
in the text. Vectors are not printed in bold or otherwise marked as their occurrence
depends on the dimension of the underlying space.

xi

Acronyms

2D two-dimensional
3D three-dimensional
ASCII American Standard Code for Information Interchange
C The C programming language
CD Compact Disc
CD-ROM Compact Disc Read-Only Memory
CFL Courant-Friedrichs-Levy (condition)
DNA Desoxy-Ribonucleic Acid
DVI Device Independent Interface file
EPS Encapsulated Post-Script
ER Endoplasmic Reticulum (an organelle of a biological cell)
ETH Eidgenössische Technische Hochschule (Swiss Federal Institute of Technology)
FD Finite Difference
FFT Fast Fourier Transformation
FRAP Fluorescence Recovery After Photobleaching
GB Giga Byte
GFLOPS Billion Floating Point Operations Per Second
GFP Green Fluorescent Protein
ICoS Institute of Computational Science
IRIX The Silicon Graphics Operating System
kDa Kilo Dalton (a protein molecular mass unit)
MB Mega Byte
MBit Mega bit
MFLOPS Million Floating Point Operations Per Second
MIPS Million Instructions Per Second
MOPS Million Operations Per Second
MPI Message Passing Interface
MPEG Motion Picture Experts Group
ODE Ordinary Differential Equation
OpenDX A 3D data visualization tool
PDE Partial differential equation
PDF Portable Document Format
PS Post-Script
PSE Particle Strength Exchange
PSE3D Three-dimensional particle strength exchange method
RMS Root Mean Square
SGI Silicon Graphics, Inc.
ssGFP-KDEL ER resident signal sequence GFP
VERO Cell from green monkey intestine epithelium

Names of simulation runs

bip2 erp574 1
clx erp574 2
erp57 erp5722
erp572 erp5723
erp573 1 erp5724
erp572 2 8s
erp573 3 8.2

xii

Contents

Foreword xvii

1 Introduction 1

2 3D reconstruction of micrographs 5

3 Validating the reconstruction 9
3.1 Restatement of requirements . 9
3.2 Checking the topological validity . 10
3.3 Checking the syntactical validity . 11

4 Background on measures and dimensions 13
4.1 Measures and distributions . 13
4.2 Hausdorff’s measure and dimension 16
4.3 Other fractal dimensions . 18

4.3.1 The box counting dimension 19
4.3.2 The Minkovski dimension . 20

5 Measuring the fractal dimension 21
5.1 Generating a voxel representation . 21
5.2 A 3D box counting algorithm . 23
5.3 Results for the ER . 27

6 Diffusion on fractal sets 31
6.1 Preliminaries and definitions . 31
6.2 Sufficiency of Hausdorff’s dimension 32

6.2.1 Brownian motion on the Sierpinski gasket 32
6.2.2 Heat kernel and transition density 35
6.2.3 The Laplacian on the Sierpinski gasket 36
6.2.4 Eigenvalues of the Laplacian 37
6.2.5 Extension to infinitely ramified fractals 38
6.2.6 Extension to anisotropic diffusion 39
6.2.7 Diffusion on domains with fractal boundary 40

6.3 Conclusions . 41

7 Simulation techniques 43
7.1 Random walk . 43
7.2 Particle Strength Exchange . 44

7.2.1 The principles of particle methods 45
7.2.2 The isotropic PSE method 47
7.2.3 The anisotropic extension of the PSE method 49
7.2.4 Boundary condition handling 51
7.2.5 Geometry processing and initialization 51

xiii

xiv CONTENTS

7.2.6 Implementation notes . 56
7.3 Post-processing and visualization . 59

8 Tests and validation 63
8.1 Test case description . 63
8.2 The analytic solution . 64
8.3 A finite difference code . 71
8.4 Validation of random walk and PSE 73

9 FRAP simulations 79
9.1 PSE simulations in all ER samples 79
9.2 Influence of bleached box geometry 87
9.3 Timings and parallel speed-up estimation 89

10 Comparison to experiments 93

11 Towards a novel FRAP data model 99
11.1 Review of current models . 99
11.2 New models . 100

11.2.1 A power law model . 100
11.2.2 A second order physical model 101

11.3 Identification of the model parameters 102
11.3.1 The gradient descent algorithm 102
11.3.2 Model gradients . 103
11.3.3 Properties of the error functions 104
11.3.4 Fitting results for all ER samples 106

11.4 Linking model parameters to diffusivity 109

12 Comparison to currently used models 111
12.1 Comparison on the box test case . 111
12.2 Comparison on ER samples . 113
12.3 Comparison on experimental data 115

13 Conclusions and future work 119

A Contents of the companion CD-ROMs 127

B Fitted model parameters 129
B.1 Second order physical model fit . 129
B.2 Empirical model fit . 130

C The simulation codes 131
C.1 Calculating the analytic solution . 132

C.1.1 General description and usage notes 132
C.1.2 Source code listing . 132

C.1.2.1 Analytic solution (analyt.f90) 133
C.2 A finite difference code . 136

C.2.1 General description and usage notes 136
C.2.2 Source code listing . 138

C.2.2.1 Finite difference solver (fd.f90) 138
C.3 Post-processing . 142

C.3.1 General description and usage notes 142
C.3.2 Source code listing . 143

C.3.2.1 OpenDX grid file converter (res2dx.f90) 143
C.4 Gradient descent fitting . 147

CONTENTS xv

C.4.1 General description and usage notes 147
C.4.2 Source code listing . 148

C.4.2.1 Curve fitting using gradient descent (nlfit.f90) . . . 149
C.5 Geometry preprocessor . 153

C.5.1 Code structure and calling tree 153
C.5.2 Input files and parameters . 155
C.5.3 Output files . 156
C.5.4 Source code listings . 158

C.5.4.1 Global parameters and variables (globals.f90) 158
C.5.4.2 Main program (init part.f90) 159
C.5.4.3 Set global default values (Defaults.f90) 169
C.5.4.4 Read all input files (readinput.f90) 170
C.5.4.5 Read parameter input file (ReadParams.f90) 172
C.5.4.6 Read OpenInventor 3D files (readiv.f90) 174
C.5.4.7 Check validity of triangulation (chktriang.f90) . . . 177
C.5.4.8 Intersect a line with a triangle (intersect.f90) 181
C.5.4.9 Create bin lists and cell lists (SortT.f90) 182
C.5.4.10 Allocate dynamic list memory (AllocateLL.f90) . . . 186
C.5.4.11 Determine if point is in domain

(point in domain.f90) 189
C.5.4.12 Create voxel representation (Voxelize.f90) 193
C.5.4.13 Determine box counting dimension (BCdim.f90) . . 195
C.5.4.14 Convert text to upper case (UpperCase.f90) 199
C.5.4.15 Dynamic list structure handling (Util.f90) 200

xvi CONTENTS

Foreword

This report describes the work and presents the results of a diploma project that has
been hosted by the Institute of Computational Science (ICoS) at the Swiss Federal
Institute of Technology (ETH) in Zürich, Switzerland. A close collaboration with
the Institute of Biochemistry at ETH enabled the interdisciplinary and application-
related character of the project. The work is a direct continuation of the semester
project [Sbalzarini (2001)], to which frequent references will be made throughout the
text. The reader will be assumed to be familiar with the basic concepts, ideas and
results of [Sbalzarini (2001)]. Namely preliminary knowledge about the endoplasmic
reticulum (ER), its function and shape, the concept of fluorescence recovery after
photobleaching (FRAP), the green fluorescent protein (GFP) and the notions of
random walk, Brownian motion and diffusion is expected. Readers not familiar
with any of these subjects are advised to read chapters 2 (for the ER in general as
well as its function and shape), 3 (for the concept of FRAP analysis and GFP) and
4 (for diffusion and random walk) of [Sbalzarini (2001)] as an introduction to the
present work. It is electronically available from the e-collection of ETH library.1

The main purpose of this project is to further pursue the investigation of diffusion
processes inside the endoplasmic reticulum of tissue derived cells. Particularly, the
following goals are aimed at:

• Generation of 3D reconstructions of real ER geometries and representation as
triangulated surfaces in the computer

• Development of a 3D geometry preprocessor for use with existing simulation
codes

• Mathematical treatment of the theory of diffusion on fractal sets

• Identification of the relevant statistical geometry parameter and proof of its
sufficiency

• Investigation of the usefulness of fractal models to describe protein diffusion
in the ER

• Measurement of the fractal dimension of the ER surface in space and com-
parison to the findings in [Sbalzarini (2001)]

• Change of the simulation technique employed from random walk to the supe-
rior method of particle strength exchange

• Direct numerical simulations of FRAP experiments in full 3D reconstructions
of real ER structures

• Development of a novel FRAP data model to fit simulation and experiments

• Comparison of simulations and models to experiments
1http://e-collection.ethbib.ethz.ch/browse/alph/s.html

xvii

xviii FOREWORD

Due to the interdisciplinary nature of the project, this report is targeted at both
molecular biologists and applied mathematicians. In an effort to make it (at least
partially) comprehensive to both groups, certain repetitions and somewhat lengthy-
seeming explanations could not be avoided in the text. To keep it as clean and
general as possible, vectors are not printed in bold or otherwise marked as their
occurrence depends on the dimension of the underlying space. It is always clear
from the context which variables are vectors (e.g. position in spaces of more than
one dimension) and which are scalar (e.g. time).

Chapter 1 contains an overview of the current state and a survey of relevant litera-
ture. Moreover, it gives a concise introduction to the strategy that will be followed
for the rest of the work. Chapter 2 starts with a description of the process of
3D reconstruction of ER shapes from a stack of parallel microscopical sections.
Chapter 3 describes the algorithms that have been implemented in order to check
the resulting triangulation for topological and syntactical validity as defined in
[Sbalzarini (2001)].

Chapter 4 represents the first piece of the theoretical part of this work. It will
introduce and summarize some basic theoretical concepts along with their notation
and terminology for later use. Although all of this theory is commonly available
from literature, it is concisely summarized here in a single place using a notation
that is consistent with the rest of the work. However, readers are free to skip the
chapter if familiar with the notions presented therein or to consult their own books
of choice.

In chapter 5 the concepts previously introduced will be applied to measuring the
fractal dimension of the ER surface in 3D space. As every work should be built
on a sound theoretical foundation, chapter 6 will be concerned with the theory of
diffusion on fractal sets. This chapter relies on the information presented in chapter
4 in order to identify the geometrical parameter that is relevant to the time behavior
of diffusion and prove its sufficiency for two large classes of fractals.

This concludes the theoretical part of the report. Chapter 7 will describe the sim-
ulation methods that will be used to simulate protein diffusion in reconstructed
ER shapes. Particularly, the method of particle strength exchange (PSE) and its
anisotropic extension are presented. However, no anisotropic runs will be conducted
in this project since biologists do not yet know anything about the anisotropy of
the medium filling the ER lumen. However, all simulation algorithms are set up
to handle anisotropic diffusion in order to be prepared for future work. Due to
its many favorable properties, the PSE method will replace the random walk code
developed in [Sbalzarini (2001)] for the rest of this project. Before applying it to
real ER problems, it is validated on a test case against the analytic solution, a finite
difference code and the random walk simulation in chapter 8.

Chapter 9 contains results from the actual FRAP simulations in 3D reconstructed
ER samples from micrographs. Moreover, the influence of position and size of the
bleached spot is investigated. In order to validate the simulations, their results
are compared to experiments in chapter 10 and it is demonstrated how to obtain
numerical values for the diffusion coefficient out of such simulations. However, it
would be much too complex to run a full direct numerical simulation for every ex-
periment one wishes to evaluate quantitatively. Therefore, chapter 11 starts looking
into new mathematical models to describe FRAP curves with a small number of
parameters. In chapter 12 the new models derived are then compared to existing
ones for diffusion in a cubic box as well as diffusion in reconstructed ER samples
and experimental data.

In order to allow easy re-use of the simulation programs, result data sets and re-
sources of this work, all files are contained on two CD-ROMs that accompany this

xix

report. Besides the complete program source codes, the CDs also contain the text
files of this document (LATEX source, EPS and PS figures, xfig drawings and all
pixel images) as well as complete PostScript and PDF versions of it. Moreover,
color images, movies of certain runs, all simulation and experimental data as well
as the PowerPoint file of the final presentation can be found on them. Appendix A
contains the complete table of contents.

Appendix B lists the numerical values of the model parameters found by fitting
different FRAP data models to different ER samples. The Fortran source codes of
all the programs entirely developed in this work are given in appendix C. It also
contains basic information about the program structures and their usage. Since an
existing code has been adapted and extended for the PSE simulations, its source
code will not be given in the appendix but it is contained on CD #1 nevertheless.

Each algorithm presented in this report contains marginal numbers referring to the
corresponding statement labels in the Fortran routine that implements it. This
allows easy understanding of the Fortran programs and immediately links the algo-
rithms to their respective implementation for convenient reference and easy repro-
duction. To keep the notation consistent, all algorithms and formulae in this report
use Fortran index numbering starting at 1 rather than 0.

Acknowledgments

None of this work would have been possible without the generous support by various
people that I hereby like to acknowledge. Particularly, I wish to thank my adviser
Prof. Petros Koumoutsakos for hosting this project at his institute, for his continu-
ing support and the various important contributions he made to this project as well
as my co-adviser Prof. Ari Helenius for coaching the biological part of this project
and supporting me with both information and laboratory infrastructure. Thanks
to Anna Mezzacasa of Helenius’ group for all the days and nights she spent in the
laboratory to make the validation experiments and to prepare all the micrographs
and to Dr. Alicia Smith for supplying the experiment’s protocols as well as proof-
reading the biological part of this report. I am also indebted to ICoS’ Dr. Nicol
Schraudolph for helping me with model fitting and gradient descent techniques as
well as to Dr. Jens Walther for his continuing support in using our super-computing
facilities and codes. For developing the PSE simulation code and making it avail-
able to me as well as for proofreading parts of this thesis, I owe a debt of gratitude
to Stephanie Zimmermann of the institute of hydromechanics and water resources
management as well as to Dr. Jens Walther who developed the underlying framework
and MPI parallelism of the PSE code. Great thanks also to Prof. Urs Stammbach,
Prof. Christoph Schwab, Prof. Alain-Sol Sznitman, Prof. emer. Christian Blatter
and Dr. Michail Loulakis, all of the department of mathematics, for their various
discussions and literature pointers concerning the theory of fractals and diffusion
on fractal sets. And last but not least, special thanks to BitPlane, Inc. and particu-
larly to Dr. Patrick Schwarb for granting a free demo license for their 3D geometry
reconstruction tool Imaris for the duration of this project.

Zürich, February 2002

xx FOREWORD

Chapter 1

Introduction

The investigation of diffusion in complex-shaped organelles has become an impor-
tant area of research in recent biology and fluorescence recovery analysis is the
tool of choice (see [Lippincott-Schwartz, Snapp & Kenworthy (2001)] for a compre-
hensive review of the methods available). While early work applied 2D and even
1D models of homogeneous and isotropic diffusion to the problem of fluorescence
recovery after photobleaching (FRAP), doubts about their validity and a poten-
tial influence of the underlying geometrical structure of the ER arose soon (e.g.
stated in [Ölveczky & Verkman (1998)] or [Ellenberg et al. (1997)]) and biologists
started looking into mathematical models and computer simulations to capture the
effects (see e.g. [Ölveczky & Verkman (1998)], [Dayel, Hom & Verkman (1999)] or
[Siggia, Lippincott-Schwartz & Bekiranov (2000)]). However, the problem has been
taken up in applied physics long before. [Axelrod et al. (1976)] started developing
models for fluorescence recovery curves as early as 1976 and their publication might
have fallen into oblivion by now. In lack of simulation algorithms and computing
power however, they restricted themselves to two dimensional problems and simple
geometries whereas the present work will deal with 3D problems in real ER geome-
tries. Nevertheless, they discovered some important basics and were able to match
experimental data with high accuracy. By application of single particle tracking
methods, [Kusumi, Sako & Yamamoto (1993)] and recently [Dietrich et al. (2002)]
proposed an alternative to fluorescence recovery experiments if small statistical
samples are sufficient. A comparative summary of the methods available can for
example be found in [Cheezum, Walker & Guilford (2001)].

In order to be able to investigate the influence of geometrical factors on the time
behavior of diffusion (i.e. the eigenvalues of the Laplacian) of molecules inside the
lumen of the endoplasmic reticulum1, several building blocks from different scientific
disciplines are needed:

• Cell biology

• Biochemistry and biotechnology

• Physics of transport phenomena

• Numerics and applied mathematics

• Computer simulation techniques

• Theoretical mathematics
1Readers not familiar with the endoplasmic reticulum or diffusion are advised to read chapters

2 through 4 of [Sbalzarini (2001)] or the corresponding chapters of [Alberts et al. (1997)]

1

2 CHAPTER 1. INTRODUCTION

• Fractal and Euclidean geometry

• Image processing and reconstruction methods

• Fluorescence microscopy

• Optimization algorithms

Each of them is a well-known subject on its own. For an introduction to cell
biology and biochemistry, see for example [Alberts et al. (1997)]. The numerics
and computer simulation methods that will be applied are for example described
in [Hockney & Eastwood (1988)] or [Cottet & Koumoutsakos (2000)] as well as in
[Degond & Mas-Gallic (1989a)] and [Degond & Mas-Gallic (1989b)]. Alternative
methods can for example be found in [McCorquodale, Colella & Johansen (2001)]
and [Beaudoin, Huberson & Rivoalen (2001)]. The field of fractal geometry and the
theory of partial differential equations (PDE) involving it is subject to extensive
and ongoing research in theoretical mathematics. A good introduction to fractal
geometry in general can be found in [Mandelbrot (1982)]. More in-detail and math-
ematically profound information are given in [Falconer (1985)], [Falconer (1990)]
and [Falconer (1997)], which also contains some theory about PDEs on fractal do-
mains. A concise summary of theorems and definitions relevant for fractal geometry
is given in [Monks (2001)]. In addition, several research papers contain related in-
formation. They will be cited in the text where relevant. Information about image
processing and 3D reconstruction from parallel sections are for example contained
in [Baldock & Graham (2000)].

Despite all those efforts in the different fields, little work has been done in try-
ing to combine them. The three most noticeable projects are the very recent one
on cellular fluid mechanics by [Kamm (2002)], the application of fractal theory to
image compression ([Mitra, Murthy, Kundu & Bhattacharya (2001)]) or the first –
however somewhat aimless – application of fractal geometry to biological cell image
analysis by [Smith, Marks, Lang, Sheriff & Neal (1989)]. The present work aims at
combining all of the above areas in order to find a better understanding of molecu-
lar diffusion in the endoplasmic reticulum which hopefully will lead to novel FRAP
data models that can be used to determine diffusion constants from experimental
data.

Figure 1.1 shows the global picture of how these different techniques and areas of
science will be combined. The corresponding chapter numbers of where they are
treated in this report are printed in italics. Boxes with black print symbolize steps
of the present work whereas rounded boxes with blue print signify external inputs
to the process. The final goal is highlighted using red letters. The left and bottom
parts only need to be done once, the right top-down line describes the repeated
application in daily laboratory work.

The starting point for all mathematical modeling are stacks of micrographic slices
of stained ERs. These images are then used to perform a 3D geometry reconstruc-
tion in order to obtain a triangulated surface description (see [Sbalzarini (2001)])
of the real-world ER shape in the computer (see chapter 2). This triangulated
representation then needs to be checked for different criteria of validity in order to
make sure that it actually represents a valid ER structure (i.e. its interior needs to
be a connected closed subset of �3). The topological criteria and algorithms used
are described in chapter 3. The final and valid triangulated geometry can then be
used as a computational domain for subsequent numerical simulations of diffusion.
The simulation techniques employed and their validations are contained in chapters
7 and 8. Choosing appropriate initial conditions then allows realistic simulations
of FRAP experiments. Since for the simulation runs, the corresponding diffusion

3

3D reconstruction

Validity checking

Direct numerical
simulations

Reference FRAP curves

Nonlinear fit

Fluorescence recovery
model fractal dimension

Measurement of Diffusion on
fractal sets

Value of diffusion
coefficient

Micrographic sections FRAP experiment

Theoretical
foundation

Sbalzarini (2001)
Section 9.2

Physics

Model fit

D=f(p)Function f: parameters −> D

Model parameters p

Chapter 2

Chapter 3

Chapters 7 and 8

Chapter 9

Section 11.3

Chapter 11 Chapter 5 Chapter 6 Chapter 4

Section 11.4

Chapter 10

Section 12.3

Chapter 10 and
Section 12.3

parameters p

Figure 1.1: General research strategy outline

constant is known (it has to be passed to the simulation algorithm as a parameter),
these FRAP curves serve as reference curves with no unknown properties. Fitting
these curves to experimental data in the same ER geometry would in principle al-
low to directly determine the unknown real-world diffusion constant (dashed arrow).
Since it would be too complicated to always take a stack of micrographs and run
a full-fledged computer simulation for each cell one wishes to make a fluorescence
recovery experiment, data models are looked for.

The starting point to develop such models is the theoretical foundation given by
mathematical set theory, the physics of transport phenomena and fractal geome-
try, the most important concepts of which are summarized in chapter 4. Certain
knowledge about the solution of the diffusion equation on fractal domains (cf. chap-
ter 6) and the fractal properties of the specific ER geometries at hand (chapter
5) then allow to infer novel, physically motivated FRAP data models (see chapter
11). These models can be fitted to the simulated reference FRAP curves in order
to get numerical values for their parameters. As both the model parameters and
the underlying diffusion constant are known, it is in principle possible to find the
physically given functional relationship f between them (section 11.4).

For productive laboratory use, one starts from an experimentally measured FRAP
curve with unknown diffusion coefficient. Fitting the newly found fluorescence re-
covery model to such experimental data yields values for the model parameters.
Using the functional relationship f finally translates them into the sought-after
value of the diffusion constant.

4 CHAPTER 1. INTRODUCTION

Chapter 2

3D reconstruction of
micrographs

Since it is the goal of this project to take the ideas in [Sbalzarini (2001)] to the
third dimension, some 3D representation of the ER is needed. This should be in the
form of a triangulated surface in �3 meeting the topological requirements stated
in [Sbalzarini (2001)]. Fortunately, there exists a good commercial software pack-
age for 3D reconstruction from parallel sections called Imaris1. It not only handles
the reconstruction but also does the triangulation of the resulting surface. However,
the problems regarding aliasing due to insufficient resolution (see [Shannon (1948)])
and geometrical ambiguity2 remain. Imaris “solves” these problems by making some
best guesses such that the overall result is closed, connected and as smooth as pos-
sible. In addition, Imaris does a Gaussian filtering of the geometry to remove noise,
artifacts and geometrical details below a certain level of resolution. The minimum
size of the triangles can be controlled as well as the resolution and smoothness of
the resulting reconstruction. For the reconstructions made in this work, the data
are first filtered with a Gaussian filter of kernel size 2.208 in all three directions.
The reconstruction is then done using voxels3 of size 3.15 × 3.15 × 2.8. Moreover,
objects are required to be closed and contain more than 2000 triangles.

For illustration purposes, one example of the numerous reconstructions that have
been conducted is shown hereafter. All reconstructions were made using Imaris
3.1.3 by BitPlane, Inc. running on a Silicon Graphics Octane workstation under
IRIX 6.5. BitPlane kindly granted a demo license of Imaris for the duration of this
project.

Figure 2.1 shows the 16 plane parallel slices of stained ER of an example VERO cell
as they come from a Leica confocal microscope (see [Sbalzarini (2001)] chapter 9.2
for the detailed protocol). They are then fed to Imaris which does the reconstruction
and triangulation. The result is saved as an OpenInventor file (see [SGI (1992a)]
and [SGI (1992b)] for the file format specifications) which can be read by the simu-
lation programs developed in this project. Figure 2.2 shows an enlarged part of the
resulting triangulated surface; the view in figure 2.3 additionally has its hidden lines
removed. Finally, figure 2.4 shows a sample view of the outcome as a 3D shaded
surface.

1http://www.imaris.com
2two parallel lines on successive slices could for example stem from two parallel planes or from

a tube intersected twice parallel to its axis
3The 3D analogue of pixels

5

6 CHAPTER 2. 3D RECONSTRUCTION OF MICROGRAPHS

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Figure 2.1: Sample micrograph stack of stained ER used for 3D reconstruc-
tion. The slices are taken at vertical distances of ∆z = 0.1µm as described in
[Sbalzarini (2001)]. (Courtesy of Anna Mezzacasa)

7

Figure 2.2: Surface triangulation Figure 2.3: Surface triangulation with
hidden lines removed

Figure 2.4: Shaded surface view of 3D reconstruction

8 CHAPTER 2. 3D RECONSTRUCTION OF MICROGRAPHS

Chapter 3

Validating the reconstruction

Now having a triangulated 3D reconstruction of the ER surface, the question arises
whether this triangulation meets all the requirements stated in [Sbalzarini (2001)].
Therefore, a subroutine is written that performs some checks on the geometry. In
order to be able to describe its algorithms, the requirements are first restated in a
slightly different but topologically equivalent form.

3.1 Restatement of requirements

A triangulation is given by a set ℵ of triangles ∆i. Each triangle is described by the
location vectors of its three vertices P1, P2, P3. Since the ER membrane encloses
a closed, connected and contiguous subspace of �3, the triangulation has to meet
a minimal set of requirements. We call a triangulation ℵ topologically valid if and
only if it meets all of the following:

1. ℵ describes a closed, connected1 surface in �3

2. No ∆i must contain any edge of length � 0

3. No Pj(∆i) must be inside any other triangle

4. Two neighboring triangles must have exactly two vertices Pj in common

We call it syntactically valid if it is topologically valid and additionally satisfies:

1. The vector n =
−−−→
P1P2 × −−−→

P1P3, where “×” is the vector cross product, must
point outward (i.e. out of the domain enclosed by ℵ) for every ∆i.

The first point of the topological validity is particularly difficult to check. The code
therefore uses the following equivalent set of criteria:

A) All edges are of length > 0 (exclude degenerate cases).

B) No vertex lies inside any other triangle (only allow the minimum set).

C) Every triangle has exactly 3 neighbors sharing 2 vertices with each (ensure
continuity of surface).

D) No edge of any triangle intersects the face of any other triangle (exclude
overlaps).

1meaning that any point enclosed by ℵ can be connected to any other point enclosed by ℵ with
a continuous curve that never intersects ℵ

9

10 CHAPTER 3. VALIDATING THE RECONSTRUCTION

The check for syntactical validity is straightforward and the criterion is not refor-
mulated. However it can only be done for sets that are at least topologically valid
which means that the two checks are split into different subroutines whereas the
second can only be called when the first terminates without error. The two rou-
tines are briefly presented in turn below. It is worth mentioning that all floating
point comparisons are performed using a global geometry tolerance TOL. Thus
an edge is for example considered to be of length 0 if it is of length < TOL and
two numbers are considered equal if their difference is less than TOL. Typically,
TOL is about 10−10 for double precision numbers on a 32bit machine which ensures
sufficient robustness against round-off errors while still maintaining good accuracy.
The geometry checking routines give us a tool to validate the triangulated 3D re-
constructions made by Imaris (cf. chapter 2) in order to ensure proper functioning
of the simulation codes that rely on certain properties of the triangulation. If any
reconstruction fails the test, it is redone using different filter settings in Imaris until
a valid reconstruction results.

3.2 Checking the topological validity

The algorithms described hereafter are implemented in the function chk topology
in chktriang.f90. See appendix C.5.4.7 for a complete listing of the source code.
Marginal numbers in the following paragraphs conveniently refer to statement num-
bers of the listing in appendix C.5.4.7.

The check of requirement A) is trivial, the program just loops over all triangles and
calculates the lengths of all the edges. For requirement B), one uses the fact that17-37
for every point P inside a triangle, the following holds:

P1 + αa+ βb = P for α > 0, β > 0, α+ β < 1

where a = P2 − P1 and b = P3 − P1 are two edge vectors of the triangle. The
corresponding linear set of equations




| |
a b
| |



[
α
β

]
=




|
P − P1

|




is over-defined and will not have a solution for general P . To check whether the
system has a solution for a given P , the 2 × 2 subsystem




| |
a(1:2) b(1:2)
| |



[
α
β

]
=




|
P(1:2) − P1,(1:2)

|




is solved for α and β (the code directly contains the symbolic solution for per-
formance reasons) and then one checks if this solution also satisfies the omitted38-69
third equation. If this is the case, point P lies inside the triangle if α > 0, β > 0
and α + β < 1. This is checked for every vertex of every triangle against every
other triangle which makes this part of the algorithm O(3M2) when M is the total
number of triangles. This is acceptable since the number of triangles is typically
much smaller than the number of points and rarely exceeds 100’000. Moreover, the
algorithm is only run once per triangulation and optimization is often a source of
programming errors that should be avoided for a “checking” code.

Requirement C) is again easy to check. For every triangle, all the other triangles are
searched and the number of common vertices is counted. Then the number of its70-101

3.3. CHECKING THE SYNTACTICAL VALIDITY 11

P1

vλ

bβ
aα

v

P

a

b

Figure 3.1: Geometry of a line intersecting a triangle

neighbors (defined as triangles that share exactly 2 vertices) is determined. Every
triangle should have exactly 3 neighbors.

Condition D) is checked by explicitly calculating the intersection point of every edge
of every triangle with every other triangle. If such an intersection point is found, 102-129
the triangulation cannot be topologically valid. However, this method calls for a
fast triangle/line intersection subroutine. Such a general routine is implemented in
intersect.f90 (see appendix C.5.4.8). The task is to intersect a line P + λv with
a triangle, given by its first vertex P1 and the two edge vectors a and b according
to figure 3.1. The intersection point is given by the following equality:

P + λv = αa+ βb+ P1

for some α and β. This corresponds to the linear system of equations:



| | |
a b v
| | |




︸ ︷︷ ︸
M




α
β
−λ


 =




|
P − P1

|




If det(M) = 0 (up to the global tolerance TOL) no intersection point exists. Else 16
its position is given by P + λv and it lies in the triangle if α � 0 and β � 0 and
α+ β � 1. The routine returns -1 if no intersection point in the triangle exists and
|λ| if one is found. 31-32

3.3 Checking the syntactical validity

This check is implemented in the function chk orientation in chktriang.f90 (see
appendix C.5.4.7). First, the normal n = a× b of each triangle is calculated or read
from memory if this has been done earlier. The code then checks whether the point
that is reached by following the normal a “small distance” starting at the triangle’s
centroid c is inside the domain or not. “Small distance” is chosen to be 5 times the 140-146
geometrical tolerance, thus c+5TOL ·n has to lie outside of the domain for the tri-
angle to be properly oriented. This is checked using the function point in domain
which is discussed in section 7.2.5, algorithm 7.8. chk orientation returns .TRUE.
if all the triangles are oriented correctly, .FALSE. otherwise.

12 CHAPTER 3. VALIDATING THE RECONSTRUCTION

Chapter 4

Background on measures and
dimensions

4.1 Measures and distributions

Measures and distributions are a central tool in the mathematics of fractals. Since
some theoretical studies involving fractal sets will be conducted in later chapters,
a few basic concepts are introduced here. However, the basics of fractal geometry
and dimensionality as introduced in [Sbalzarini (2001)] will not be repeated but
assumed to be known. Only measures and distributions on the Euclidean �n are
needed for the rest of this text. Note that what will be called “measure” hereafter
is often termed “outer measure” in general texts on measure theory.

Simply put, a measure is a way of assigning a scalar numerical value to a set
such that the principle “the whole is the sum of its parts” applies1. Readers not
yet familiar with the concept of measures may find it helpful to imagine them as
physical “mass distributions” or “charge distributions”. By restricting this section
to measures on �n, many of the awkward features that can occur in more general
spaces are avoided.

Definition 4.1 (Measure). Let X ⊂ �n. We call µ : X �→ �
+ a measure on X

if µ assigns a non-negative number (possibly ∞) to each subset of X such that:

(a) µ(∅) = 0

(b) A ⊂ B ⇒ µ(A) � µ(B)

(c) if A1, A2, . . . is a countable sequence of sets, then:

µ

(∞⋃
i=1

Ai

)
�

∞∑
i=1

µ(Ai)

Thus (a) requires the empty set to have measure zero and (b) states that the bigger
set has the larger measure. Property (c) ensures that the measure of any set is no
more than the sum of the measures of the pieces in any countable decomposition.
Exact equality holds for “nice” disjoint sets Ai, in particular (but not only) if Ai

are disjoint Borel sets2.
1Strictly speaking this is only true if the set can reasonably be decomposed into a finite or

countable number of disjoint subsets.
2Every set that can be constructed starting with open or closed sets and taking countable

unions or intersections a finite number of times is a Borel set. All sets encountered in this text
are Borel sets.

13

14 CHAPTER 4. BACKGROUND ON MEASURES AND DIMENSIONS

This leads to the concept of measurability. Given a measure µ there is a family of
subsets of X on which µ behaves in a nice additive way such that property (c) in
definition 4.1 holds for equality. This family is called µ-measurable and termed M.
The exact definition is:

Definition 4.2 (Measurable). A set A ⊂ X is called µ-measurable if

µ(E) = µ(E ∩A) + µ(E \A) ∀ E ⊂ X

µ is termed a Borel measure on X ⊂ �n if all Borel subsets of X are µ-measurable.
It may be shown that µ is a Borel measure if and only if µ(A ∪B) = µ(A) + µ(B)
whenever A,B ⊂ X . A Borel measure is termed Borel regular if every subset of X is
contained in a Borel set of the same measure. All measures that will be encountered
in this text are Borel regular on�n or the pertinent subset thereof. Thus, to simplify
notation, the term “measure” will mean “Borel regular outer measure” and “set”
will mean “Borel set” throughout this report.

A measure µ on X with µ(X) <∞ is called finite; if µ(A) <∞ for every bounded
set A, it is locally finite. The support of µ is the set on which the “mass” of µ is
concentrated, thus the smallest closed set X such that µ(�n \X) = 0. The support
of any measure is always closed and termed spt(µ). Its definition is:

Definition 4.3 (Support). The support of a measure µ is the smallest closed set
with complement of measure zero, thus:

spt(µ) = X \ ∪{U : U is open and µ(U) = 0}
A measure on a bounded subset X of �n for which 0 < µ(�n) < ∞ is called
a distribution. Imagine for example a finite mass spread over the set X in some
way. Then, the mass contained in any subset A of X is given by µ(A ⊂ X). As
distributions are a subclass of measures, all properties for measures also hold for
distributions.

Sometimes, a restriction of a measure to a set E is used. Let µ be a measure on
�

n and E a Borel subset of �n. We can define a new measure ν on �n through
ν(A) = µ(E ∩ A) for all A. This new measure ν is called restriction of µ to E
and it is a measure on �n whose support is entirely enclosed in E. The restriction
is thus a method of defining a derived measure with support in a certain region.
Every µ-measurable set is also ν-measurable and, provided E is measurable and
µ(E) <∞, then ν is a Borel regular measure.

Some examples of frequently used used measures are given hereafter. The cor-
responding proofs that the described objects really are measures in the sense of
definition 4.1 are omitted to keep this section as compact as possible. They are well
known and contained in every book on measure theory.

Example 4.1 (Counting measure). For each subset A of �n, let µ(A) be the
number of points in A if A is finite and ∞ otherwise. µ is a measure on �n.

Example 4.2 (Point measure). Let a be a point in �n. Define µ(A) = 1 if a ∈ A
and µ(A) = 0 if a /∈ A. Then, µ is a measure with support {a} that we think of as
unit point mass concentrated at a.

Example 4.3 (Lebesgue measure). The Lebesgue measure on �n is the natural
extension to the terms “length”, “surface area” and “volume”. It is based on the
“n-dimensional Volume” of the coordinate parallelepiped A = {(x1, . . . , xn) ∈ �n :
ai � xi � bi} defined by:

4.1. MEASURES AND DISTRIBUTIONS 15

Voln(A) =
n∏

i=1

(bi − ai)

Then the n-dimensional Lebesgue measure Ln is defined by:

Ln(A) = inf

{ ∞∑
i=1

Voln(Ai) : A ⊂
∞⋃

i=1

Ai

}

where the infimum is over all coverings of A by countable collections of paral-
lelepipeds. With some effort it may be shown that Ln is indeed a Borel regular
measure on �n such that Ln(A) equals the n-dimensional volume of A if A is a
parallelepiped or any other set for which the volume can be calculated using the
usual rules of mensuration.

Later, integration with respect to a measure µ will also be used. Let f : X �→
�

+ ∪ {0} be a non-negative simple function, i.e. a function that only takes a finite
number of different values a1, . . . , ak ∈ �+ ∪ {0}. Then integration with respect to
the measure µ on X is defined as:

∫
f dµ =

k∑
i=1

aiµ{x : f(x) = ai}

Integration of more general functions is defined using approximation by simple
functions. We term f : X �→ � a measurable function if for all c ∈ � the set
{x ∈ X : f(x) < c} is a measurable set. In particular for a Borel measure µ all
continuous functions are measurable. The integral of any non-negative measurable
function f : X �→ �

+ ∪ {0} is defined by:

∫
f dµ = sup

{∫
g dµ : g is simple, 0 � g � f

}

This value may also be infinite. Finally, for a measurable function f : X �→ �

that can also take negative values, the definition is completed writing f+(x) =
max {f(x), 0} and f−(x) = max {−f(x), 0}, so that f(x) = f+(x) − f−(x), and
defining:

∫
f dµ =

∫
f+ dµ−

∫
f− dµ

provided both
∫
f+ dµ and

∫
f− dµ are finite. For integrals over measures, the

usual properties of integrals including their linearity and convergence theorems hold
unchanged. If A is a Borel subset of X , the definite integral over A ⊂ �n is defined
by:

∫

A

f dµ =
∫
fχA dµ

where χA : �n �→ � is the indicator function of A with χA(x) = 1 if x ∈ A and
χA(x) = 0 otherwise.

16 CHAPTER 4. BACKGROUND ON MEASURES AND DIMENSIONS

4.2 Hausdorff’s measure and dimension

Having now the basic knowledge of measures and distributions at hand, the special
Hausdorff measure can be introduced. This will lead to the definition of Hausdorff’s
dimension ([Hausdorff (1919)]) which is the oldest and most important metric di-
mension when studying fractal sets. This is due to the fact that it is defined for
any set and is mathematically practical as it is based on a comparatively simple
measure. Although [Sbalzarini (2001)] already gave a “free hanging” definition of
Hausdorff’s dimension, it is restated here based on the more fundamental and solid
background of measure theory since it is important to be familiar with Hausdorff’s
measure and dimension to understand the mathematics of fractals.

First, recall the following two definitions from basic set theory:

Definition 4.4 (Diameter). The diameter of a non-empty subset U of the n-
dimensional Euclidean space �n is defined as:

|U | = sup {|x− y| : x, y ∈ U}
This means that the diameter is the largest occurring Euclidean distance between
any two points in U .

Definition 4.5 (δ-cover). A finite or countable collection of subsets {Ui} of �n

is called a δ-cover of a set E ⊂ �n if 0 < |Ui| � δ ∀i and E ⊂ ⋃∞
i=1 Ui.

This means that E is completely covered by a countable collection of subsets of
diameter less or equal δ. Now let E be a subset of �n and s a non-negative number.
For all δ we define the quantity:

Hs
δ(E) = inf

{ ∞∑
i=1

|Ui|s : {Ui} is a δ-cover of E

}
(4.1)

As δ decreases, the class of valid δ-covers of E is reduced. The infimum therefore
increases and approaches a limit as δ ↓ 0. We write:

Hs(E) = lim
δ→0

Hs
δ(E) (4.2)

This limit exists for all E ⊂ �n, although its value can be 0 or ∞. We term Hs(E)
the s-dimensional Hausdorff measure of E. With considerable effort is has been
shown that the Hausdorff measure is a measure in the sense of definition 4.1. It is
even a Borel regular measure on �n.

Hausdorff’s measure generalizes Lebesgue’s measure, so that H0(E) gives the num-
ber of points in E, H1(E) the length of a smooth curve E, H2(E) the (normalized)
surface area of a region E, etc. In general, for every Borel subset E of �n, is holds:

Hn(E) = cnLn(E) where cn =
π

n
2

2n
(

n
2

)
!

Often, the Hausdorff measure of the image of a set under a Hölder mapping is
needed. Let E ⊂ �n and f : E �→ �

m a Hölder continuous3 function of order α, so
that

|f(x) − f(y)| � c |x− y|α

for all x, y ∈ E and some c, α > 0.
3A function is called Hölder continuous of order α if |f(x) − f(y)| � c |x − y|α ∀x, y

4.2. HAUSDORFF’S MEASURE AND DIMENSION 17

Then

H s
α (f(E)) � c

s
α Hs(E)

for all s. The proof of this can for example be found in [Falconer (1997)]. The
special case of a Lipschitz mapping f (i.e. α = 1) is particularly interesting. It also
comprises the case when f is a regular similarity transformation of ratio λ. Then:

Hs(λE) = λsHs(E)

which generalizes the familiar scaling properties of length, area, volume, etc. to the
fractal case. Also notice that Hausdorff’s measure is invariant under isomeries4,
translation and rotation as could be expected for a generalized “volume”.

It it easy to show from equations 4.1 and 4.2 that for all sets E ⊂ �
n there is a

critical number DH such that Hs(E) = ∞ if s < DH and Hs(E) = 0 if s > DH .
This number DH is called Hausdorff dimension of the set E and can be compactly
defined as follows:

Definition 4.6 (Hausdorff dimension). The number:

DH = inf {s : Hs(E) = 0} = sup {s : Hs(E) = ∞}
is called Hausdorff dimension of E.

Thus DH is the value of s for which the Hausdorff measure jumps from ∞ to 0 (see
figure 4.1). When s = DH , the Hausdorff measure can be either 0, ∞ or, in the
nicest situation, 0 < HDH (E) <∞.

�

�

∞
Hs

DH

s0
0 n

Figure 4.1: Behavior of the Hausdorff measure in the vicinity of DH

Definition 4.7 (s-set). A set E ⊂ �
n of Hausdorff dimension DH with 0 <

HDH (E) <∞ is called an s-set.

As an example, imagine a flat circular disk in �3 with radius 1. From known
properties of length, area and volume, we get: H1 = length = ∞, 0 < H2 = π

4 area <
∞ and H3 = π

6 volume = 0. Thus the disk is an s-set with Hausdorff dimension
DH = 2 which is consistent with the usual Euclidean definition of dimension.

4Mappings for which |f(x) − f(y)| = |x − y| ∀x, y

18 CHAPTER 4. BACKGROUND ON MEASURES AND DIMENSIONS

The transformation properties of Hausdorff’s dimension follow from the ones of
Hausdorff’s measure. In particular, for a Hölder mapping f : E �→ �

m of order α
we get:

DH(f(E)) � 1
α
DH(E)

A fundamental property of Hausdorff’s dimension is its invariance under Bi-Lipschitz
mappings5 as can easily be seen from above transformation property. This means
that if two sets have different Hausdorff dimensions, there is no Bi-Lipschitz map-
ping between them. Analogous to topology theory where two homeomorphic sets are
considered equivalent, two fractals are considered equivalent if they have the same
Hausdorff dimension, i.e. there exists a Bi-Lipschitz continuous mapping between
them.

Moreover, Hausdorff’s dimension fulfills a whole set of properties that are natural
to be expected from any meaningful definition of a dimension. [Falconer (1990)] for
example contains an exhaustive list of them. However, their details are not relevant
for this work and will not be stated here.

4.3 Other fractal dimensions

In addition to the very important Hausdorff dimension, there is an infinite number
of other possible definitions of metric dimensions, the most important of whitch is
the box counting dimension for this work. Although Hausdorff’s dimension comes
in very handy for theoretical considerations, it has a fundamental drawback: it is
not measurable or computable in most cases. The box counting dimension however
is quite easy to be estimated in computer simulations what makes it a valuable tool
for the investigations to come.

It is however important to keep in mind that fractals are dimensionally discordant
sets (cf. [Sbalzarini (2001)]), so that different meaningful definitions of dimension
can yield different numerical values for the same set and even “very similar” defi-
nitions can have grossly different properties. A common property of all dimensions
is that they are based on “measurements with respect to a scale δ” in a metric
space. For a large class of dimensions, a power law between the measured length in
multiples of δ (Nδ) and the metric size of δ is then assumed:

Nδ(E) ∼ cδ−s

The exponent s is called dimension of E and the constant c is referred to as s-
dimensional length of E. Using log-log-plots or statistical fitting allows to estimate
s from a number of measurements with different length scales δ. This way of defining
dimension is not based on measure theory which makes it awkward for theoretical
usage. It is however consistent with measure-based dimensions in the sense that the
numerical values for dimensionally concordant sets are equal. It happens however,
that the assumption of a power law is in fact wrong, in which case the points in a
plot of log(Nδ) vs. log(δ) will not be on a straight line. Dimensions that are based
on the power law assumption are then meaningless for the given set and should not
be used. This emphasizes the need to not blindly apply linear regression fitting to
such a data set but look at the distribution of points as well.

Moreover, when defining new dimensions, one should make sure that they meet
all the requirements for “meaningful” dimensions such as monotony, stability, Bi-
Lipschitz invariance, etc. as for example listed in [Falconer (1990)].

5A function f : E �→ �m is called Bi-Lipschitz if c1|x − y| � |f(x) − f(y)| � c2|x − y| for all
x, y ∈ E and certain 0 < c1 � c2 < ∞.

4.3. OTHER FRACTAL DIMENSIONS 19

The power law dimensions that will be used in this work are the box counting
dimension and the interior Minkovski dimension that will be described hereafter.
Another useful dimension is the packing dimension which is related to Hausdorff’s
dimension but instead of covering the set with δ-subsets, it is packed with disjoint
δ-balls. It will however not be used in this text and therefore its description is
omitted.

4.3.1 The box counting dimension

The box counting dimension has first been used in the 1930s. Due to its popularity,
a large number of different names for it exist, among them Kolmogorov entropy,
Pontrjagin-Kolmogorov dimension (as used in [Sbalzarini (2001)]), Entropy dimen-
sion, capacity dimension, logarithmic density or information dimension. To support
intuition, the term “box counting dimension” will be used in this text.

For E being a non-empty bounded subset of �n let Nδ(E) be the smallest number of
sets of diameter � δ that can cover E. The lower and upper box counting dimensions
of E are defined as:

DB = lim inf
δ→0

logNδ(E)
− log δ

and

DB = lim sup
δ→0

logNδ(E)
− log δ

respectively. If these are equal, the common value is simply called box counting
dimension of E:

DB = lim
δ→0

logNδ(E)
− log δ

(4.3)

Fortunately, there are a number of equivalent forms of this definition which are
practically useful. The values of above limits namely remain unaltered if Nδ(E) is
taken to be any of the following:

1. the smallest number of sets of diameter � δ that can cover E

2. the smallest number of closed balls of radius δ that can cover E

3. the smallest number of cubes of edge length δ that can cover E

4. the largest number of disjoint balls of radius δ with centers in E

5. the number of δ-mesh cubes6 that intersect E

Variant 5 is the one that has been used in [Sbalzarini (2001)] and will also be used
in the present work since the mesh needed for it is naturally given by the pixels in
a 2D image or their 3D equivalent, the voxels, in a 3D volume.

6a δ-mesh cube is a cube of the form [m1δ, (m1+1)δ)×. . .×[mnδ, (mn+1)δ) where m1, . . . , mn

are integers.

20 CHAPTER 4. BACKGROUND ON MEASURES AND DIMENSIONS

Although the box counting dimension is defined in a completely different way as the
Hausdorff dimension, there is a deterministic relationship between them as stated
in the following inequality:

DH � DB � DB (4.4)

This is due to the fact that the box counting dimension is (in variants 2 to 5) based
on covering the set with elementary subsets (balls, cubes, etc.) of equal and fixed
size whereas the Hausdorff dimension relies on a δ-cover with subsets of different
size smaller than δ. Therefore, Hausdorff’s dimension employs a finer covering with
the biggest subset having the size of the ones used for the box counting.

In practice, most definitions of dimensions take values between the Hausdorff and
upper box counting dimension, so if it can be shown thatDB = DH then all common
definitions of dimension will take this common value.

For a complete discussion of advantages and disadvantages of the box counting
dimension, see [Falconer (1990)] and [Falconer (1997)]. For our purposes it is suffi-
cient to state that the box counting dimension is unusable for sets that only consist
of a countable number of isolated points7. Since the ER and its triangulated de-
scription is a continuous set with no isolated points, the box counting dimension
can be used without danger.

4.3.2 The Minkovski dimension

A variant of the box counting dimension that is sometimes used for one-sided closed
sets is the Minkovski dimension. It is based on the n-dimensional volume of the
δ-neighborhood or δ-parallel body Eδ of E given by:

Eδ = {x ∈ �n : |x− y| � δ for all y ∈ ∂E}
Then for E ⊂ �n:

DM = DB = n− lim sup
δ→0

logLn(Eδ)
log δ

DM = DB = n− lim inf
δ→0

logLn(Eδ)
log δ

and if they coincide:

DM = DB = n− lim
δ→0

logLn(Eδ)
log δ

These definitions are actually equivalent to the ones of the box counting dimen-
sion. In the context of using the Lebesgue measure they are however referred to as
Minkovski dimensions.

Important variants are the inner and outer Minkovski dimension for which only the
inner or outer δ-neighborhood of a closed set is taken. This is for example useful to
study the influence of the fractality of the boundary of a domain on the solution of
a PDE solved in its interior (cf. section 6.2.7).

7this is due to the fact that the closure of a set E has the same box counting dimension as the
set E itself

Chapter 5

Measuring the fractal
dimension

Now having the necessary preliminaries on the notion of dimensions, the fractal di-
mension of the ER surface in �3 will be measured. As stated in [Sbalzarini (2001)],
this dimension could be an important parameter for any geometry model. It will
be shown later in this report that equality of the dimension is indeed a necessary
condition for a geometrical model to be valid. In principle, one would wish to mea-
sure Hausdorff’s dimension. However, this is not possible for arbitrary geometries
(cf. section 4.3) and therefore the box counting dimension as defined in section 4.3.1
will be used instead.

A box counting algorithm similar to the one described in [Sbalzarini (2001)] requires
the data to be in some sort of “box oriented form”. For 2D images, these “box units”
are naturally given by the image’s pixels. The triangulated 3D objects dealt with
now however pose some problems. According to section 4.3.1 there are various
equivalent ways of defining the box counting dimension. One possibility would for
example be to successively discard vertices of the triangulation at hand and re-
triangulate the surface at every step. Due to topological limitations (recall that
the ER’s surface has to be contiguous) this would be not only cumbersome but
also dangerous and geometry checking and possibly fixing would be needed at every
step. It is therefore easier to use, again, the “pixel” oriented approach. The 3D
analogue of a pixel is called a voxel and can be defined as a finite parallelepiped in
�

3, thus:

Vi,j,k = {(x, y, z) : (i− 1)δx � x− xl < iδx, (j − 1)δy � y − yl < jδy,

(k − 1)δz � z − zl < kδz}

where (xl, yl, zl) are the coordinates of the lower left corner of the bounding box.
This is an extension of what has been called a δ-mesh cube in section 4.3.1 to an
anisotropic mesh. Hence the first step will be a conversion of the triangulated
surface to a voxel set.

5.1 Generating a voxel representation

Recall that variant 5 of the definition of the box counting dimension in section 4.3.1
states that all voxels that intersect the geometry in question are to be counted. The
ER surface is given as a triangulated set ℵ as defined in [Sbalzarini (2001)], meeting

21

22 CHAPTER 5. MEASURING THE FRACTAL DIMENSION

all the requirements stated in section 3.1. The space �3 in which this triangulation
is embedded is covered with a regular cartesian grid with grid spacings δx, δy and
δz defining the voxels. All voxels that are intersected by ℵ are then set to one, the
others to zero thus yielding the required binary voxel representation. The algorithm
proceeds as follows:

Algorithm 5.1 (Voxelize).

Step 1: Generate cartesian grid with spacings δx, δy, δz and determine the bounding
box [xl, xh]× [yl, yh]× [zl, zh] of the geometry as: {x, y, z}l = minp{xp, yp, zp},
{x, y, z}h = maxp{xp, yp, zp} where p loops over all triangle vertices in ℵ.19-36

Step 2: Define voxels Vi,j,k = [xl + (i− 1)δx, xl + iδx) × [yl + (j − 1)δy, yl + jδy) ×
[zl + (k − 1)δz, zl + kδz) for i, j, k = 1, 2, 3, . . .

Step 3: Initialize all voxels to zero: Vi,j,k = 0 ∀ (i, j, k)33

Step 4: Loop over all triangles ∆ ∈ ℵ

4.1: For each vertex P of ∆ determine the voxel it is contained in: (i, j, k) =
int((Px − xl)/δx, (Py − yl)/δy, (Pz − zl)/δz) + (1, 1, 1) and set voxel
(i, j, k) to one159-69

4.2: Determine the bounding box of voxels for ∆: (iu, ju, ku) = max (i, j, k)
and (il, jl, kl) = min (i, j, k)70-75

4.3: For each voxel (i, j, k) in the bounding box {il � i � iu, jl � j �
ju, kl � k � ku} solve:




| | |
a b n
| | |





α
β
γ


 =




|
cV − P1

|




78-90

for α, β and λ where a = P2−P1 and b = P3−P1 are two edge vectors of
the triangle ∆, n is its outer normal and P1 the location vector of vertex
1 of triangle ∆. cV is the location vector of the centroid of voxel (i, j, k),
defined as: cV = [xl + (i− 1/2)δx, yl + (j − 1/2)δy, zl + (k − 1/2)δz]�

4.4: Set voxel (i, j, k) to one if α � 0 and β � 0 and α + β � 1 and Y =
cV +λn ∈ Vi,j,k which means that the centroid of voxel (i, j, k) is over the
triangle ∆ and the intersection point of the normal through the centroid
of the voxel with the triangle is inside the voxel. (see also figure 5.1)91-93

An implementation of this algorithm can be found in the subroutine Voxelize.f90
in appendix C.5.4.12. A few remarks are in place. The margin numbers refer to
the corresponding statements in the Fortran code. In step 4.3, a linear system of
equations is to be solved. To speed up the algorithm, this has been done symbolically
in advance and the general solution is programmed directly.. The condition in step48-58

88-90 4.4 can also be taken to be λ � 1
2 max {δx, δy, δz}. This however turned out to be

problematic if the voxels are elongated parallelepipeds rather than cubes. For near
cubic voxels and visualization purposes this condition is nevertheless sometimes
preferable since it yields nicer images containing less voxels. For the box counting
algorithm it is however useless. Figure 5.1 illustrates the condition of step 4.4.

1Special index treatment is needed for the rightmost voxel.

5.2. A 3D BOX COUNTING ALGORITHM 23

cV

P1

aα

bβ

nλ

a
n b

Y

Figure 5.1: Geometric situation of a voxel and a triangle

Validation

The algorithm has been tested for various simple shapes. As an example, figure 5.3
shows a voxel representation of the pyramid depicted in figure 5.2. Figure 5.4 shows
a sample picture of a triangulated ER surface and figure 5.5 its voxel representation.
The visualizations are made using the freely available OpenDX package (former IBM
DataExplorer)2.

0
0.5

1
1.5

2
2.5

3
3.5

4

x

0 0.5 1 1.5 2 2.5 3 3.5 4

y

0
0.5

1
1.5

2
2.5

3
3.5

4

z

Figure 5.2: Pyramid wireframe model Figure 5.3: Voxel representation

5.2 A 3D box counting algorithm

Now having a voxel set representation {(i, j, k) : Vi,j,k = 1} for the triangulated
set ℵ, the determination of the box counting dimension according to section 4.3.1
is straightforward. Algorithms for 2D images exist for quite some time (see e.g.
[Liebovitch & Toth (1989)]) however the first application to 3D systems has been

2http://www.opendx.org

24 CHAPTER 5. MEASURING THE FRACTAL DIMENSION

Figure 5.4: Triangulated surface Figure 5.5: Voxel representation

done by [Stoll, Stern & Stucki (1996)], who unfortunately did not publish the al-
gorithm as such. To ensure comparability of results and since we are dealing with
triangulated sets rather than point sets, the same procedure as in [Sbalzarini (2001)]
is used here but generalized to three dimensions. For details on why this method
works or why outlining and low-pass filtering are needed, the reader is referred to
that report. The algorithm is as follows:

Algorithm 5.2 (Box counting).

Step 1: Convert the triangulation ℵ to a voxel representation with voxels of size δx,
δy, δz using algorithm 5.1.37

Step 2: Determine the number of resolution reduction steps until the smallest dimen-
sion has less than 16 voxels: n = ceiling (log (min {δx, δy, δz}/16) / log 2).42

Step 3: For each reduction step i = 1 to n

3.1: Outline the voxel set: set all voxels to zero that are completely sur-
rounded by voxels of value 1.51-78

3.2: Count the number of voxels of value one: ηi = #{(i, j, k) : Vi,j,k = 1}
and store the edge length scale of the current voxels: σi = δx/2i−179-80

3.3: Discrete low-pass filter: replace each voxel by the average of its 26 neigh-
bors and itself.100-115

3.4: Binarize set: set all voxels with value < threshold to zero, all others to
one.120

3.5: Resolution reduction: delete every second row, column and z-plane from
the 3D voxel set.97-123

3.6: Reallocate voxel array to new size and update all variables.
124-146

Step 4: Get final values: ηn+1 = #{(i, j, k) : Vi,j,k = 1} and σn+1 = δx/2n147-148

Step 5: Let yi = log ηi and si = log
(

1
σi

)
∀ i = 1, 2, . . . , n+ 1149-152

Step 6: Do a linear least squares fit of yi vs. si to get the slope:158-169

â =
n+1∑
i=1

(
(n+ 1)si −

n+1∑
i=1

si

)
yi

5.2. A 3D BOX COUNTING ALGORITHM 25

Step 7: Deallocate all memory and return the estimated box counting dimension:
DB = â 177-181

This algorithm is implemented as a Fortran function in BCdim.f90 (see appendix
C.5.4.13, to which the statement numbers in above algorithm refer) which directly
returns the numerical value of the box counting dimension. With considerable
effort it could be optimized according to [Hou, Gilmore, Mindlin & Solari (1990)].
However it turned out that its performance is sufficient for the present application
so that one can do without further optimization. A few remarks to the algorithm
are useful: In step 2, the number of reduction steps is calculated until the smallest
occurring number of voxels in a row is less than 16. This is needed since for smaller
numbers the accuracy of the voxel representation deteriorates rapidly. Moreover, the
definition of the box counting dimension in equation 4.3 contains the limit of δ → 0
which means that too large voxels are not significant anyway. The outline operation
in step 3.1 removes all voxels that are not part of the hull. Since we are considering
a surface in space, this is needed to keep the geometry from “thickening” towards a
space-filling body which would grossly distort the value of its dimension. The way
this outlining is done is a 3D generalization of MATLAB’s bwperim command. In
step 3.4 the set is binarized again. The threshold used here is a user parameter and
should be chosen as high as possible such that the resulting dimensions are valid
(i.e. smaller than the topological dimension of the space the object is embedded in).
Some authors (e.g. [Liebovitch & Toth (1989)]) state that it is advisable to exclude
the first few measurement points (i.e. the ones at the finest resolution level) from the
least squares fit since they may contain artifacts and measurement noise. In our case
however this turned out to be not necessary since the initial voxel representation is
generated in the computer (thus free of noise) and already is quite coarse (due to
memory limitations). Moreover, the measurement points all lie on a straight line
pretty well. This means that there are no inaccurate points that should be excluded
and therefore they are kept in order to have more measurement points available.

The least squares fit in step 6 is done according to the following calculation. Let
Y = [yi]� ∈ �n+1 be the vector of the logarithms of the measured voxel numbers
and Θ = [a b]� ∈ �2 the vector of unknown parameters. According to equation 4.3
we now assume a linear relation between the logarithm of the voxel number and the
logarithm of the corresponding inverse voxel size: yi = asi + b. Since this will not
be exactly true for all i, we define the residual εi = asi + b− yi and require the sum
over all i of its squares to be minimum. Defining the matrix

Φ =
[
s1 s2 . . . sn+1

1 1 . . . 1

]�

the whole problem can be compactly formulated for all i using matrix vector nota-
tion:

Y = ΦΘ
ε = ΦΘ − Y

ε�ε != min

Inserting the definition of ε into the last equation gives:

ε�ε = (ΦΘ − Y)� (ΦΘ − Y) = Θ�Φ�ΦΘ − Θ�Φ�Y − Y �ΦΘ + Y �Y

The minimization condition requires the derivative with respect to Θ to vanish,
thus:

26 CHAPTER 5. MEASURING THE FRACTAL DIMENSION

∂

∂Θ
(
ε�ε

)
= 2Φ�ΦΘ − 2Φ�Y != 0

Solving this equation for Θ yields the least squares estimate:

Θ̂LS =
(
Φ�Φ

)−1
Φ�Y

This is however still not very useful for our purpose. Explicitly inserting the defi-
nition of Φ gives:

Φ�Φ =
[∑

s2i
∑
si∑

si n+ 1

]
∈ �2×2

where all the sums are taken over i = 1, . . . , n+ 1. Its inverse is then given by:

(
Φ�Φ

)−1
=

1
∆

[
n+ 1 −∑ si

−∑ si

∑
s2i

]
∈ �2×2

where the determinant ∆ is given by:

∆ = (n+ 1)
∑

s2i −
(∑

si

)2

Using this allows to explicitly calculate the least squares estimates of the unknown
line parameters a and b as:

â =
n+1∑
i=1

(
(n+ 1)si −

n+1∑
i=1

si

)
yi

b̂ =
n+1∑
i=1

(
n+1∑
i=1

s2i − si

n+1∑
i=1

si

)
yi

The slope â approximates the box counting dimensionDB according to its definition
in equation 4.3.

Validation

The algorithm as presented above is now validated using some simple Euclidean
shapes. The first case that is presented here consists of two plane parallel triangles3

(see figure 5.6) and the second of a cubic box of edge length 4 (see figure 5.7).

0 0.5 1 1.5 2 2.5 3 3.5 4
x 0

0.5
1

1.5
2

2.5
3

3.5
4

y

0
0.5

1
1.5

2
2.5

3
3.5

4

z

Figure 5.6: Two parallel triangles

0 0.5 1 1.5 2 2.5 3 3.5 4
x 0

0.5
1

1.5
2

2.5
3

3.5
4

y

0
0.5

1
1.5

2
2.5

3
3.5

4

z

Figure 5.7: Cubic box

3because a single triangle would not be a 3D object

5.3. RESULTS FOR THE ER 27

5

6

7

8

9

10

11

12

1 1.5 2 2.5 3 3.5 4 4.5 5

y

s

1.982729*x+2.846553

Figure 5.8: log η vs. log(1/σ) (red
crosses) for the triangles and its least
squares fit (black dotted)

6

7

8

9

10

11

12

13

14

1 1.5 2 2.5 3 3.5 4 4.5 5

y

s

2.016282*x+4.504479

Figure 5.9: log η vs. log(1/σ) (red
crosses) for the box and its least
squares fit (black dotted)

Figure 5.8 shows the result for the triangles. The measurement points of the box
counting algorithm are indicated as red crosses and the least squares fit as a dotted
black line. As expected for a dimensionally concordant set, the crosses lie on a
straight line since the power law assumption is exactly valid (cf. section 4.3). The
dimension of the triangles is measured to be 1.9827. For the box we get 2.0163 and
the points in figure 5.9 are no longer exactly on the straight line due to the higher
complexity of the shape. (but they are still very close to it.)

As it is known that both shapes are of dimension 2.0 for all meaningful definitions
of dimension (recall that we just consider their surface, not the volume), it can be
stated that the box counting algorithm yields the correct results up to one decimal
digit.

5.3 Results for the ER

The box counting algorithm described so far is now used to estimate the dimension
of the surface of the ER. It will then be possible to compare it to the theoretical
prediction made in [Sbalzarini (2001)] on page 64 that the dimension should be
between 2.8 and 3.0 with a higher probability for the lower bound.

Nine different triangulated 3D reconstructions of ER shapes are considered which
allows some statistical averaging. The following figures show views of these nine
samples together with their names.

bip2 clx erp57

28 CHAPTER 5. MEASURING THE FRACTAL DIMENSION

erp572
erp573 1

erp573 2

erp573 3

erp574 1
erp574 2

Figure 5.10: Shaded surface views of all reconstructed ER samples.

The threshold for the binarization step (step 3.4 in algorithm 5.2) is chosen accord-
ing to the rules in [Sbalzarini (2001)]. The largest value still yielding meaningful
results turns out to be 0.3 for most samples, 0.29 for erp573 2 and erp574 2 and 0.27
for erp573 3. Choosing only slightly larger values causes the measured dimension to
jump up to values larger than 3 which is impossible due to the Szpilrajn inequality.
The exceptions are caused by variations in the reconstruction of the micrographs.
Thus the right threshold seems to be around 0.3. The following values are obtained
for the different samples:

0.3 0.29 0.27
bip2 2.8166 2.5655
clx 2.7195 2.4906
erp57 2.4839 2.3379
erp572 2.9876 2.6684
erp573 1 2.9554 2.5391
erp573 2 3.4788 2.9704
erp573 3 >4 3.2033 2.9960
erp574 1 2.8836 2.5648
erp574 2 2.5628

Table 5.1: Measured box counting dimensions

The numbers in bold are the ones for the highest threshold still giving meaningful
results. These are the estimated dimensions. Their average value is 2.8195 which is
indeed between 2.8 and 3.0 and closer to 2.8, as predicted by the fractal projection
theorem in [Sbalzarini (2001)]. The final result to one significant decimal is thus:
DB = 2.8.

5.3. RESULTS FOR THE ER 29

Figure 5.11 finally shows the plots of log η vs. log (1/σ) for all samples. The red
crosses mark the measurement points of the reduction steps and the dotted lines the
least squares fit. The corresponding numerical values of the box counting dimension
are given along with the captions of the sub-figures. It can be seen that the crosses
lie on the lines pretty well such that the power law assumption seems to be valid.
The box counting dimension thus is a meaningful dimension for the ER and a good
estimate of Hausdorff’s dimension.

2

4

6

8

10

12

14

-3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5

y

s

2.816563*x+12.311958

bip2: DB=2.8166

3

4

5

6

7

8

9

10

11

12

13

14

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1

y

s

2.719539*x+11.011674

clx: DB=2.7195

4

5

6

7

8

9

10

11

12

13

14

-3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5

y

s

2.483900*x+12.197978

erp57: DB=2.4839

2

4

6

8

10

12

14

-3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5

y

s

2.987586*x+11.557319

erp572: DB=2.9876

2

4

6

8

10

12

14

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1

y

s

2.955395*x+11.607687

erp573 1: DB=2.9554

2

4

6

8

10

12

14

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1
y

s

2.970391*x+10.642901

erp573 2: DB=2.9704

0

2

4

6

8

10

12

14

-3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5

y

s

2.996043*x+11.220762

erp573 3: DB=2.9960

2

4

6

8

10

12

14

-3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5

y

s

2.883634*x+12.986642

erp574 1: DB=2.8836

4

5

6

7

8

9

10

11

12

13

14

-3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5

y

s

2.562817*x+12.881257

erp574 2: DB=2.5628

Figure 5.11: log η vs. log(1/σ) (red crosses) for all ER samples and their least
squares fits (black dotted). The numerical value of the box counting dimension is
given in the caption of each sub-figure.

30 CHAPTER 5. MEASURING THE FRACTAL DIMENSION

Chapter 6

Diffusion on fractal sets

6.1 Preliminaries and definitions

In [Sbalzarini (2001)] it was suspected that the fractal dimension of the ER could
be a defining geometrical property in the sense that a diffusion process on a model
geometry of equal dimension would exhibit “the same” behavior. The quotation
marks are there due to the fact that not point-wise identity is required but rather
equal time behavior of diffusion, since this is the quantity that is actually measured
in a FRAP curve. Model geometry and “real” ER should therefore yield the same
FRAP curve when starting from the same initial condition.

In mathematical terms this statement means that two equivalent (in the sense of
section 4.2) fractals are suspected to exhibit the same time constant of the solution
of the diffusion equation or, in other words, the same eigenvalues of the Laplacian
found as exponents in their heat kernel.

To investigate this assertion, some knowledge of the theory of partial differential
equations on fractal sets is needed. The PDE to be considered is the heat equation:

∂u

∂t
= D∇2u

which also governs diffusion. Moreover, one must define which dimension the above
statement refers to as there is a multitude of different definitions for fractal dimen-
sions. Here, Hausdorff’s dimension DH as defined in section 4.2 is used since a
wealth of literature exists for it and its corresponding measure.

All fractal dimensions quantify some sort of “space filling ratio” for the geometrical
object in question. For a surface in �3 it gives an intuitive measure for how much
of the volume is filled up by the surface. It is therefore intuitive to assume that
this dimension determines diffusion properties of the surface as the diffusion flux
increases with increasing surface area per volume. A very porous hot cube with
a rugged surface looses its heat faster than a solid cube of same size with smooth
surface. Equality of the fractal dimension in general and Hausdorff’s dimension in
particular is therefore a necessary condition for the equality of time constants. But
is it also sufficient?

To address this question, two preliminary definitions are needed. Fractal objects
can be subdivided into two main classes. Imagine a random walk on the fractal. If
the set of possible destination points for every step of Brownian motion is finite, the
fractal is called finitely ramified. If the random walker can choose among an infinite
number of places to visit within the next step, it is called infinitely ramified. These
loose definitions can be made mathematically rigorous as follows:

31

32 CHAPTER 6. DIFFUSION ON FRACTAL SETS

Definition 6.1 (Finitely ramified). A set for which the number of possible
different paths between any two points of the set is finite or countable is called
finitely ramified.

Definition 6.2 (Infinitely ramified). A set for which the number of possible
different paths between any two points of the set is infinite is called infinitely ramified

6.2 Sufficiency of Hausdorff’s dimension

Consider two different fractal sets of equal Hausdorff dimension, e.g. Koch’s curve
(see figure 6.1) and the cartesian product of two Cantor sets (figure 6.2) that both
have DH = log 4/ log 3. Looking at the two sets, it is hard to believe that diffusion
processes on them should have equal time constants. Already the fact that Koch’s
curve is completely connected whereas the 2D Cantor set consists of individual
disconnected areas gives rise to the suspicion that equality of Hausdorff’s dimension
may not be sufficient.

Figure 6.1: Koch curve at gener-
ation 2

Figure 6.2: 2D Cantor set at gen-
eration 2

To disprove that Hausdorff’s dimension is sufficient, it is enough to find a single
counter example. For reasons of simplicity, the following will be shown for finitely
ramified fractals. The results obtained can then be generalized to the more complex
class of infinitely ramified fractals that the ER belongs to. The Sierpinski gasket
has good enough regularity and connectivity properties to allow reasonable progress.
Therefore, it will serve as example.

First, the definition of Brownian motion on the Sierpinski gasket is considered,
which then leads to the heat kernel of the diffusion equation, the Laplacian and its
eigenvalues. The following arguments closely follow the ones in [Falconer (1997)].

6.2.1 Brownian motion on the Sierpinski gasket

First, some notation needs to be introduced which is best done by recalling the
definition of Brownian motion on �. One way to define Brownian motion is as a
limit of suitably scaled random walks. Let Xk(t) be the random walk on the real
set {j2−k : j ∈ �+

0 } starting with Xk(0) = 0 and taking steps at time intervals
of 4−k. Given the position Xk(m4−k) of the walker at time m4−k, his position
Xk((m + 1)4−k) at time (m + 1)4−k is equally likely to be Xk(m4−k) − 2−k or
Xk(m4−k)+2−k. It may be shown that as k → ∞ (infinitely small steps in infinitely
small time intervals; cf. also [Sbalzarini (2001)], p. 21), the sequence of random

6.2. SUFFICIENCY OF HAUSDORFF’S DIMENSION 33

walks Xk(t) converges to a continuous process X(t) on � named one-dimensional
Brownian motion. Notice that scaling the base of the time scale as two times the
base of the length scale is essential for convergence to a non-degenerate process.
Thus if k is sufficiently large, Xk(t) and X(t) look very similar on all but the finest
scales and the increments of Brownian motion, X(t + δt) − X(t), are normally
distributed with mean 0 and variance 2δt for all t and δt > 0. Typically, the motion
travels a distance of

√
δt in a time interval of duration δt. Moreover, Brownian

motion has independent increments, that is, there is no historical memory of the
path1. More generally, Brownian motion on �n may be constructed as the limit of
scaled random walks on n-dimensional cubic lattices.

We now attempt to mimic this construction of Brownian motion on the Sierpinski
gasket E following the findings of [Barlow & Perkins (1988)]. The Sierpinski gasket
is a fractal of Hausdorff dimension DH = log 3/ log 2 ≈ 1.585 embedded in the Eu-
clidean �2 (see figure 6.3). To avoid the need of regarding the three corner vertices
of the bounded Sierpinski gasket as exceptional, consider the extended Sierpinski

Waclaw

Sierpinski,

1882-1969

gasket, thus E extends outward to infinity using self-similarity as shown in figure
6.4. There is a natural sequence of Euclidean graphs E0, E1, . . . that approximate
the extended Sierpinski gasket (see figures 6.4 to 6.6). These graphs are called
pre-Sierpinski gaskets and it holds: E0 ⊂ E1 ⊂ E2 ⊂ . . . and E =

⋃∞
k=0 Ek.

Figure 6.3: Sierpinski gasket E

E0

Figure 6.4: Pre-Sierpinski gasket of
order 0

E1

Figure 6.5: Pre-Sierpinski gasket of
order 1

E 2

Figure 6.6: Pre-Sierpinski gasket of
order 2

1Such a random process is called a Markov chain.

34 CHAPTER 6. DIFFUSION ON FRACTAL SETS

Let Vk be the set of vertices of Ek. The graph of Ek has edges of length 2−k and
each vertex is adjacent to four others. For k = 0, 1, 2, . . . the vertices of Vk+1 are
obtained by augmenting Vk by additional vertices at the midpoints of the edges of
Ek, with appropriate additional edges added to form Ek+1.

Now define random walks Xk(t) on Vk by traveling along the edges of Ek, taking
steps at time intervals of αk (where αk is to be specified) and starting at Xk(0) = 0.
Thus if Xk(mαk) is the vertex of Vk occupied by the random walker at time mαk,
then Xk((m + 1)αk) is one of the four vertices of Vk adjacent to Xk(mαk) in Ek

chosen with equal probability 1
4 , independent of all previous steps.

For k � 1, this random walk Xk(t) on Ek induces a random walk on Ek−1
2. By the

symmetry of Ek there is equal probability of moving to each of the four adjacent
vertices of Vk−1, so this induced random walk is just Xk−1(t) undertaken with steps
of varying time interval. For the random walksXk(t) to have a chance of converging
to a reasonable limiting process, we should ideally choose the time intervals αk so
that, for each k, the time for Xk(t) to move from a vertex of Vk−1 to a neighboring
vertex of Vk−1 is αk−1. This can however only be achieved on average by ensuring
that the expected time of such a step is αk−1.

a3

a4

b2

a2

a1

Ek

b1x

c

Figure 6.7: Situation of the random walk on Ek from x

Consider a portion of Ek near vertex x. By the symmetry of Ek, this is always
equivalent to that shown in figure 6.7, where A = {a1, a2, a3, a4} and b1, b2 and
c are as indicated. Write E(p,A) for the expected number of steps in a random
walk on Ek to get from a point p ∈ Vk to any point of A. Given that the random
walker starts at x, symmetry allows us to assume without loss of generality that the
first step is to b1 when determining E(x,A). Examining the probabilities of possible
steps from b1, b2 and c, one finds:

E(x,A) = 1 + E(b1, A)

E(b2, A) = E(b1, A) = 1 +
1
4
E(x,A) +

1
4
E(b2, A) +

1
4
E(c, A) +

1
4
× 0

E(c, A) = 1 +
1
2
× 0 +

1
4
E(b1, A) +

1
4
E(b2, A)

Solving these equations for E(x,A) gives that E(x,A) = 5. Thus if the random walk
Xk(t) on Ek is undertaken with time intervals αk between each step, the induced
random walk on Ek−1 will have a mean time interval of 5αk between each step.

2Simply note the sequence of vertices of Vk−1 visited by Xk(t) ignoring consecutive occurrences
of the same vertex and regard these as the sequence of vertices visited by a random walk on Ek−1.

6.2. SUFFICIENCY OF HAUSDORFF’S DIMENSION 35

Whilst a coefficient of 4 might be expected since each vertex is adjacent to four
others, the topology of the Sierpinski gasket makes 5 the right number. To take
a non-degenerate limit as k → ∞, the random walk on Ek−1 induced by Xk(t)
must, at large scales, be close to the random walk Xk−1. To achieve this we need
αk−1 = 5αk for each k.

Hence to ensure scaling compatibility, we set αk = 5−k for k = 0, 1, 2, Then
it maybe shown, analogously to standard Brownian motion on � or �n, that the
sequence of random walks Xk(t) converges for k → ∞ to a random process X(t)
which we call Brownian motion on the extended Sierpinski gasket E.

While the basic properties of Brownian motion on � are mirrored in Brownian
motion onE, the exponents are different. AsXk(t) (and thus in the limitX(t)) takes
an average time of 5αk = 5−k+1 to move between adjacent vertices of Vk−1 which
are distance 2−k+1 apart, the Brownian motion X(t) typically moves a distance of
δtlog 2/ log 5 in a time interval δt. This should be compared to δt1/2 for standard
Brownian motion on �2. This leads to defining the dimension of the walk for the
extended Sierpinski gasket as dw = log 5/ log 2 ≈ 2.322. It is at least plausible that
the mean square of the increments satisfies:

E
(
|X(t+ δt) −X(t)|2

)
� δt2/dw

for δt > 0. � indicates that this strictly is only asymptotically true, an inevitable
consequence of the fractality of the domain. Again, this should be compare to
standard Brownian motion on �2 with E

(
|X(t+ δt) −X(t)|2

)
= δt.

Moreover it can be shown (see [Barlow & Perkins (1988)]) that the path of Brownian
motion on E is Hölder continuous of order γ, thus:

|X(t1) −X(t2)| � c |t1 − t2|γ

for all γ < 1/dw and 0 � t1 � t2 � T where the constant c depends on γ and T . The
Hausdorff dimension of the path of Brownian motion is log 3/ log 2 which is equal
to the Hausdorff dimension of E itself, so the path “fills” the set E completely.

6.2.2 Heat kernel and transition density

Having now some knowledge of the basic process of Brownian motion and the defi-
nition of the dimension of the walk, the transition density pt(x, y) can be derived.
It determines the probability density for position y ∈ E to be reached after time t
by Brownian motion starting at x ∈ E, thus for any measurable set A:

P (X(t+ δt) ∈ A|X(t) = x) =
∫

A

pδt(x, y) dµ(y)

where µ is the restriction of the DH -dimensional Hausdorff measure to E (thus
µ is the natural locally finite measure on E). A knowledge of pt(x, y) allows the
statistics of the motion to be studied. In particular, the transition density is the
stochastic analogue to the heat kernel. Using a procedure similar to the one in
[Sbalzarini (2001)], pp. 17-21, [Barlow & Perkins (1988)] derived bounds for the
transition density by careful analysis of the underlying random walk:

c1t
−DH/dw exp

{
−c2

(
|x− y| t−1/dw

)dw/(dw−1)
}

� pt(x, y)

� c3t
−DH/dw exp

{
−c4

(
|x− y| t−1/dw

)dw/(dw−1)
}

(6.1)

36 CHAPTER 6. DIFFUSION ON FRACTAL SETS

for certain constants c1, c2, c3, c4 > 0. For standard Brownian motion on �n the
dimension of the walk is dw = 2 and µ = Ln (the Lebesgue measure, which is equal
to the n-dimensional “volume” for any Borel set) and the transition density is given
by:

pt(x, y) = (4πt)−n/2 exp
{
− |x− y|2 /(4t)

}
(6.2)

which is the familiar Gaussian kernel of diffusion on an infinite domain. As illus-
trated in [Sbalzarini (2001)], Brownian motion is intimately connected with solu-
tions of the heat equation. Diffusion of heat on �n may be thought of as the ag-
gregate effect of a large number of “heat particles” following independent Brownian
paths. Let ν be the heat distribution on �n at time t = 0. Then, the temperature
at point x and time t is given by:

u(x, t) =
∫

�n

pt(x, y) dν(y) (6.3)

where pt(x, y) is the standard transition density or Green’s function (i.e. the heat
kernel evaluated at time t) given by equation 6.2. It may be checked by differenti-
ation that

∂pt

∂t
= ∇2

xpt

as required for Green’s function. Thus 6.3 satisfies the heat equation

∂u

∂t
= ∇2u

on �n with
∫

A u(x, t) dx → ν(A) as t → 0. In a similar way, Brownian motion
on the extended Sierpinski gasket E may be regarded as modeling diffusion on E.
Thus an initial heat distribution ν on E would yield the temperature distribution
at time t but with pt(x, y) now being the transition density given by 6.1.

6.2.3 The Laplacian on the Sierpinski gasket

To obtain a meaningful analogue of the heat equation on E, we must define the
Laplacian ∇2 on E. Again, we start with a discrete approximation on the pre-
Sierpinski gaskets Ek, which will in the limit give a continuous operator on E.
Recall that the Laplacian on � is the limit of differences:

d2f

dx2
= lim

h→0
h−2 [(f(x+ h) − f(x)) + (f(x− h) − f(x))]

= lim
h→0

h−2
∑

y=x±h

(f(y) − f(x))

For a continuous f : E �→ � we use discrete approximations via the geometric
graphs Ek (see figures 6.4 to 6.6). Writing C(E) for the set of all continuous
functions on E, [Falconer (1997)] defines ∇2f ∈ C(E) by the requirement that, for
every bounded set A:

lim
k→∞

sup
x∈A∩Vk

∣∣∣∣∣∣
5k ·

∑
w∈Vk(x)

(f(w) − f(x)) −∇2f(x)

∣∣∣∣∣∣
= 0 (6.4)

where Vk(x) comprises the four vertices of Vk adjacent to x and the number “5” is
exactly what is needed for this definition to be meaningful. This is a consequence

6.2. SUFFICIENCY OF HAUSDORFF’S DIMENSION 37

of the dimension of the walk of E being log 5/ log 2. We are now able to show that
the transition density function on E indeed satisfies the heat equation. For given k,
let x, y ∈ Vk. On the assumption that Brownian motion on E starting at x at time
0 reaches one of the four adjacent vertices of Vk at time δt = 5−k (we now know
that this is true on average), consideration of transition densities to y gives:

pt+δt(x, y) �
∑

w∈Vk(x)

1
4
· pt(w, y)

where x1, . . . , x4 ∈ Vk(x) are adjacent to x. This is true on average, due to the
symmetry of E. Thus by simple arithmetic:

(pt+δt(x, y) − pt(x, y)) /δt � 1
4
· 5k ·

∑
w∈Vk(x)

(pt(w, y) − pt(x, y))

Letting δt→ 0 and inserting this into equation 6.4 gives:

∂pt

∂t
(x, y) =

1
4
∇2pt(x, y)

Moreover, pt(x, ·) is concentrated around x when t is small since X(t) will not have
moved far. Therefore:

∫

A

u(x, t) dµ(x) → ν(A) as t→ 0

The last two equations mean that the transition density pt meets all the require-
ments for a Green’s function (see e.g. [Sbalzarini (2001)]) and therefore u, as given
by equation 6.3 with pt now being the transition density for Brownian motion on
E, satisfies the diffusion equation on the Sierpinski gasket E:

∂u

∂t
=

1
4
∇2u

Also notice the changed apparent diffusivity as compared to the Euclidean case.
With considerable effort, these arguments can be made more rigorous (see e.g.
[Barlow & Perkins (1988)]).

6.2.4 Eigenvalues of the Laplacian

We move on to the related problem of finding the eigenvalues of the Laplacian on a
fractal domain. Here we need the domain to be bounded, so from now on we take E
to be the non-extended usual Sierpinski gasket and adapt the previous notation in
an obvious way to the bounded setting. Thus Ek is the graph with a finite vertex set
Vk and edges of length 2−k that approximates E. The definition of the Laplacian
given by equation 6.4 is slightly modified to require ∇2f ∈ C(E) to satisfy:

lim
k→∞

sup
x∈Vk\V0

∣∣∣∣∣∣
5k ·

∑
w∈Vk(x)

(f(w) − f(x)) −∇2f(x)

∣∣∣∣∣∣
= 0

where Vk(x) is the set of vertices in Vk adjacent to x, other than the vertices of
V0. We are interested in eigenfunctions of the Neumann problem in this context,
that is, for functions with vanishing normal derivative on V0, the three corners of
E. The eigenvalues of Helmholtz’s equation

∇2u+ λu = 0 with u ∈ C(E) and ∇u = 0 for x ∈ V0 (6.5)

38 CHAPTER 6. DIFFUSION ON FRACTAL SETS

may be shown to be real and non-negative. We now seek estimates for the eigenvalue
distribution function:

N(λ) := #{k : λk � λ} (6.6)

where λk are the eigenvalues of problem 6.5. Define the spectral dimension as:

ds =
2DH

dw

where DH is Hausdorff’s dimension and dw is the dimension of the walk as defined
in subsection 6.2.1. Whereas dw indicates the scaling behavior of the rate of diffu-
sion through E, ds is defined in terms of the “density of states”. ds therefore can be
interpreted as the asymptotic frequency of the large eigenvalues of the Laplacian on
a bounded region E, which is related to is harmonic composition (hence the name
spectral dimension). [Barlow & Perkins (1988)] have shown that the eigenvalue dis-
tribution function satisfies:

N(λ) � λds/2

This should be compared to Weyl’s theorem3 for bounded open domains in �n

where ds is replaced by n. Again, one notices the fact that the basic laws remain
unchanged when going from Euclidean to fractal sets but the exponents change.

Much more precise information may be obtained on the asymptotics of N(λ) by
applying the renewal theorem (see e.g. [Falconer (1997)], section 7.2). This theorem
gives a periodic positive function p(·) with period log 5 such that:

N(λ) ∼ p(logλ)λds/2

6.2.5 Extension to infinitely ramified fractals

Up to this point, we have shown that Hausdorff’s dimension is not a sufficient
parameter to describe the time constants of diffusion on finitely ramified fractals.
The Sierpinski gasket has been used as a counter example to disprove the proposition
made in [Sbalzarini (2001)]. The ER however belongs to the class of infinitely
ramified fractals.

The Sierpinski carpet as depicted in figure 6.8 is a well suited example of this class
and will be taken as a model here. Its Hausdorff dimension is DH = log 8/ log 3 ≈
1.893. As shown in [Barlow & Bass (1992)], Brownian motion on the Sierpinski
carpet is a strong Markov process4 with continuous paths and state space. The
infinitesimal generator of the limiting process is again called a “Laplacian”. Using
similar techniques as in the previous subsections, the fundamental solution of the
diffusion equation on the Sierpinski carpet can be derived as the transition density
of the underlying Brownian motion. [Barlow & Bass (1992)] found:

c1t
−DH/dw exp

{
−c2

(
|x− y| t−1/dw

)dw/(dw−1)
}

� pt(x, y)

� c3t
−DH/dw exp

{
−c4

(
|x− y| t−1/dw

)dw/(dw−1)
}

for certain constants c1, . . . , c4. This is exactly the same as equation 6.1 for the
Sierpinski gasket. The only difference is that in the present case, the value of dw

3Weyl’s theorem states that if ∂Ω is sufficiently smooth, the eigenvalue distribution function on
Ω is N(λ) � cnLn(Ω)λn/2 where Ln means the n-dimensional “volume” and cn = (2π)−nLn(B)
with B being the unit ball in �n.

4meaning that all steps are independent and there is no historical memory on the paths

6.2. SUFFICIENCY OF HAUSDORFF’S DIMENSION 39

Figure 6.8: Pre-Sierpinski carpet of order 3

is unknown. For infinitely ramified fractals, it is not possible to get numerical
values for the dimension of the walk since Brownian motion is now a continuous
process. All that can be done is to derive limiting resistances for diffusion (see e.g.
[Barlow & Bass (1992)]).

Nevertheless, the identity of the two transition densities shows that the solution
of the diffusion equation is topologically equivalent to the one on finitely ramified
fractals but with possibly different numerical values for some constants. The basic
finding for finitely ramified fractals that Hausdorff’s dimension is generally not
sufficient to capture the time scales of the solution is therefore true for infinitely
ramified fractals as well. This can be intuitively seen if one imagines an infinitely
ramified fractal as the limiting case of a partially space-filling curve. Since the curve
itself is finitely ramified, it is natural that its infinitely ramified limiting case will
inherit the topological properties of the diffusion solution.

6.2.6 Extension to anisotropic diffusion

As real diffusion in the ER might be anisotropic, this case deserves some atten-
tion as well. As shown by [Barlow, Hattori, Hattori & Watanabe (1997)], the most
interesting aspects of the behavior of diffusion (e.g. the spectral dimensions) are
embodied in the asymptotic behaviors of effective resistances. These resistances are
defined as the H1 norm of a potential which in turn is the solution to a Laplace
equation with appropriate Neumann or Dirichlet boundary conditions. It is thus at
least plausible that resistance and diffusion are closely related.

Let Rx
n(r) and Ry

n(r) be the effective resistances of the pre-Sierpinski carpet at the
nth stage of its construction in x and y direction, respectively. The anisotropy of
the “material” it is made of is parametrized by the ratio of resistances for a unit
square: r = Ry

0/R
x
0 . [Barlow, Hattori, Hattori & Watanabe (1997)] have proven

that for sufficiently large n, the ratio Ry
n(r)/Rx

n(r) is bounded by a positive constant
independent of r. Furthermore, the ratio decays exponentially fast if r � 1. This
means that for the true Sierpinski carpet with n→ ∞ and large ratios of anisotropy,
isotropic conditions are weakly restored. Furthermore it is proven that the effective
resistances asymptotically grow exponentially with an exponent equal to that found
for the isotropic case. Therefore, the topological behavior of the diffusion solution
is the same and all deviations are bounded by a positive constant. The role of the
spectral dimension is obvious as it is embodied in the effective resistances. What has

40 CHAPTER 6. DIFFUSION ON FRACTAL SETS

been said in the previous sections remains therefore valid (at least asymptotically
for large r and n) for the anisotropic case as well.

6.2.7 Diffusion on domains with fractal boundary

The last missing piece in this survey of diffusion on fractal sets is the connection
to Euclidean domains. Recall that the ER is not a true fractal in reality but there
is a lower bound to the geometrical scales, given by the molecular structure of the
ER membrane. At larger scales though, the ER can be modeled using concepts from
fractal theory. The limiting case between the two scales corresponds to a Euclidean
domain with fractal boundary.

Then the question is how and whether diffusion inside the domain is influenced
by the fractality of its boundary. Again we will consider the eigenvalues of the
Laplacian as characteristic for the time scales of the solution. Let D ⊂ �n (n � 1)
be a bounded open region with boundary ∂D. Here we do not need D to be con-
nected (although the ER is). The eigenvalue problem is again given by Helmholtz’s
equation:

∇2u+ λu = 0 in D

with Neumann boundary condition ∇u(x) · n = 0 for x ∈ ∂D. The eigenvalues are
those λk for which there is a non-trivial solution. Again we are interested in the
eigenvalue distribution function as defined by equation 6.6. In particular how its
behavior reflects the nature of the domain boundary ∂D. A classical result of Weyl
states that is ∂D is sufficiently smooth then:

N(λ) ∼ cnLn(D)λn/2

as n → ∞, where cn = (2π)−nLn(B), B is the unit ball in �n and Ln is the
n-dimensional Lebesgue measure (n-dimensional “volume”). This asymptotic ex-
pansion can be continued as:

N(λ) = cnLn(D)λn/2 + bnLn−1(∂D)λ(n−1)/2 + o
(
λ(n−1)/2

)

for a constant bn depending only on n. Thus the “surface area” of the boundary ∂D
determines the second term in the expansion of N(λ). Notice that the exponent
(n − 1)/2 is half the dimension of the boundary. For fractal boundaries, it has
been shown by [Falconer (1997)], that there is a connection between the fractal
dimension of the boundary and the second term in the expansion of N(λ). One
can thus “hear” the dimension of an oscillating fractal membrane. It can be shown
that λs/2 is an upper bound for the second term where s is the interior Minkowski
dimension, a one-sided variant of the box counting dimension as defined in section
4.3.2.

6.3. CONCLUSIONS 41

6.3 Conclusions

Summarizing the previous sections it can be said that a model geometry for the
ER that has the same box counting or Hausdorff dimension will not necessarily
exhibit the same FRAP behavior. Equality in Hausdorff’s dimension is necessary
but not sufficient for the model to be valid. A necessary and sufficient set of
equalities would comprise Hausdorff’s dimension and the spectral dimension (see
section 6.2.4), since only then, the two objects will have the same dimension of
the walk as defined in section 6.2.1. It is this dimension of the walk that captures
the properties of Brownian motion and thus diffusion on a given geometry. For
Euclidean objects it is always equal to 2, for fractals it will be different. The
Sierpinski gasket for example has been shown to have dw = 2.322 The greater
value for the fractal indicates that diffusion on it is slower. The expected mean
square increment is δt2/dw . This makes sense since the topological structure of the
fractal set constrains the Brownian motion. On the other hand diffusion through a
fractal boundary is faster than through a Euclidean one since its effective surface
is larger (e.g. porous media). Moreover, the exponents in most physical laws, the
coefficients in the definition of the Laplacian and its eigenvalue distribution function
as well as the apparent diffusivity will be different for fractal and Euclidean domains.
Only if all of this is taken into account, models that capture the basic integral
time behavior can be derived. Unfortunately, the spectral dimension of any given
object cannot be easily measured. Indeed it is still unknown how to determine it
(or the dimension of the walk) for infinitely ramified fractals. This leads to the
conclusion that the idea of a fractal model geometry for the ER as proposed in
[Sbalzarini (2001)] is impracticable. Instead, the fact that the dimension of the
walk completely captures the influence of geometry (or the restriction of Brownian
motion to it) on the time behavior of diffusion will be used to directly infer FRAP
data models that appropriately account for the complexity of the ER geometry.
The results of this chapter show that this is possible using dw as a single numerical
parameter.

42 CHAPTER 6. DIFFUSION ON FRACTAL SETS

Chapter 7

Simulation techniques

7.1 Random walk

For all random walk simulations of diffusion, the 3D variant of the code developed
and described in [Sbalzarini (2001)] is used. However, the following improvements
have been made in the meantime:

1. The geometry description input files now contain a file header telling the
program whether it is an old-style *.surf file (cf. [Sbalzarini (2001)]) or an
OpenInventor 3D file according to [SGI (1992a)] and [SGI (1992b)]. Therefore
the input file read routines have been changed to implement this.

2. The global parameter file bdiff.dat has been changed to a more flexible
format now allowing comments and directives of the form KEYWORD = value in
arbitrary order (cf. appendix C.5.2). The new subroutine ReadParams (given
in appendix C.5.4.5) implements this. For all parameters not being explicitly
specified in the input file, default values are now set in Defaults.f90 (similar
to the one in appendix C.5.4.3).

3. The numerical value of π is computed to machine precision as π = 4 arctan(1)
rather than being hard-coded to a certain (fixed) precision.

4. Position and size of the bleached box are now read from the parameter file
bdiff.dat as bleachbox = <Xmin>, <Ymin>, <Xmax>, <Ymax> rather than
being hard-coded in the program.

5. A global tolerance parameter TOL has been added to make real value com-
parisons more robust against round-off errors. Two real numbers are now
considered equal if their difference is less than TOL.

6. The subroutine point in domain no longer needs the triangle’s normals but
explicitly counts the number of triangles intersected along a ray in x-direction
starting at the point in question. See algorithm 7.8 for further details on this.

7. Finally, the directions of the random walk steps are no longer chosen on the
unit sphere around the current position but on the unit semi-sphere. Conse-
quently, the step length is no longer of fixed sign but is now also allowed to be
negative to make the whole space reachable again. Thus, for space particles,
the algorithm now proceeds as follows:

43

44 CHAPTER 7. SIMULATION TECHNIQUES

Algorithm 7.1 (Space random walk).

Step 1: Choose a random point on the unit semi-sphere centered at the current posi-
tion {(r, ϕ, ϑ) : r = 1, 0 � ϕ < π, −π/2 � ϑ � π/2} according to:

ϕ = π · U(0, 1) ϑ = arcsin (2 · U(0, 1) − 1) +
π

2

where U(0, 1) is a uniformly distributed random number between 0 and 1.

Step 2: Choose the step variance according to σ2 = 2nDδt where D is the diffusion
constant (interpolated as described in [Sbalzarini (2001)]), δt the simulation
time step size and n the number of spatial dimensions (thus n = 3).

Step 3: Now the random walk step is given by:

s = N (0, σ2) ·



sinϑ cosϕ
sinϑ sinϕ

cosϑ




where N (0, σ2) means a Gaussian (normal) deviate with zero mean and vari-
ance σ2.

Step 4: Advance to the new position: xn+1 = xn + s

For surface particles the corresponding algorithm becomes:

Algorithm 7.2 (Surface random walk).

Step 1: Choose a random point on the unit semi-circle around the current position
{(r, ϑ) : r = 1, 0 � ϑ < π} according to: ϑ = π · U(0, 1)

Step 2: The step variance is again given by: σ2 = 2nDδt with n now being 2 and D
the surface diffusion coefficient on the tube in question.

Step 3: The polar angle (ϕ) and axial coordinate (ζ) of the new position are now given
by:

ϕn+1 = ϕn +
1
R
N (0, σ2) cosϑ mod 2π

ζn+1 = ζn + N (0, σ2) sinϑ

where R is the radius of the current tube.

Besides these changes, the program code as well as its input and output facilities
are the same as in [Sbalzarini (2001)]. A complete reference manual as well as a
printed version of the source code is included in Appendix C of [Sbalzarini (2001)]
and will not be reproduced in this report.

7.2 Particle Strength Exchange

In addition to the random walk code, the method of particle strength exchange
(PSE) is used. It is a Lagrangian particle method suited to solve diffusion or the dif-
fusive (viscous) part of other equations such as the Navier-Stokes equations in com-
plex geometries. For this work, the PSE method is preferred to other alternatives
such as embedded boundary methods ([McCorquodale, Colella & Johansen (2001)])

7.2. PARTICLE STRENGTH EXCHANGE 45

or the diffusion velocity method ([Beaudoin, Huberson & Rivoalen (2001)]). Ad-
vantages over the random walk method are that it converges much faster (as will
be shown in section 8.4) and yields smooth solutions. Being a particle method,
it is suited for simulations in arbitrarily shaped domains, just as the random
walk is. With prospect to future work, the fully anisotropic implementation of
[Zimmermann, Koumoutsakos & Kinzelbach (2001)] is used in this project.

7.2.1 The principles of particle methods

The method of particle strength exchange (PSE) is part of a larger family of par-
ticle methods widely used in various areas of computational physics such as fluid
mechanics, electrostatics, plasma physics, etc. A complete introduction and survey
of particle methods can for example be found in [Hockney & Eastwood (1988)], for
applications in fluid mechanics [Cottet & Koumoutsakos (2000)] is recommended.

governing equation
df
dt = g

exact ��

discretization error consistency

��
��

(1)

(2)

��

analytic solution
f =

∫
g(t) dt

accuracy quadrature error

��
fn−fn−1

δt = gn

discretized equation
accuracy

stability
��

f =
∑
wig(xi)

fn = fn−1 + δtgn

discrete solution

Figure 7.1: Ways to solve a differential equation numerically.

The basic idea of all of these methods consists of finding an integral approximation
of the differential operator under consideration, which is then solved by numer-
ical quadrature using the irregularly distributed particle locations as quadrature
points. Figure 7.1 depicts the general philosophy. Starting from the governing dif-
ferential equation (ODE or PDE) of the problem, two ways of solution exist. One
is to discretize the equation using a grid-based method such as finite differences,
finite elements or finite volumes. This discrete equation can then be solved nu-
merically. The issues to be concerned about include consistency and accuracy for
the discretization step as well as stability and accuracy for the solution step. If
either consistency or stability criteria are violated, the discretized equation will not
represent the original physical problem any more. This is possible since it is – in
principle – a completely new, artificial formula for which we are not a priori guar-
anteed that is has anything to do with the governing equation we started from. The
second way consists of writing the analytical solution of the equation (in integral
form using Green’s function or some kernel) even though we may not be able to ex-
plicitly solve it. This step is exact and no errors and constraints need to be worried
about. One then proceeds by numerical integration (sometimes called quadrature)
of this integral solution. The only issue of this step is accuracy. In fact, this way
of solving the equation is always stable, provided that the actual solution of the
governing equation is stable itself, and consistency is guaranteed by construction
of the method. The drawbacks however are that (i) quadrature converges slower
than numerical solutions of the discretized equation and (ii) the resulting system
of equations is an N -body problem making it potentially scaling of O(N2). It was

46 CHAPTER 7. SIMULATION TECHNIQUES

this high computational cost that long prevented the use of particle methods in
computational science. Fortunately, fast N -body solvers such as cell-list algorithms
or multipole expansions which make the methods O(N logN) or even O(N) are
available nowadays. See for example [Hockney & Eastwood (1988)] and appendix
B of [Cottet & Koumoutsakos (2000)] for detailed descriptions of those fast solvers.

Generally speaking, particle methods are a way of translating the governing PDE
of a physical problem to a set of N ODEs where N is the total number of particles
involved. These ODEs are called equations of motion since they describe the motion
of the particles as:

dxk

dt
= F (x, t, ω) k = 1, . . . , N

As we are interested in representing some smooth function (e.g. charge, concentra-
tion, probability, etc) by a particle distribution, the particles also carry a physical
quantity generally referred to as their strength ω. The strength is also allowed to
change in time as characterized by a second set of ODEs:

dωk

dt
= G(x, t, ω) k = 1, . . . , N

Thus, we define a particle as follows:

Definition 7.1 (Particle). A particle P is a mathematical object described by its
location xp and the strength ωp it is carrying: P = (xp, ωp).

xp1 xp2

ω1

ω2ε

ζε

ζε

x

Figure 7.2: Two particles of strength ω1 and ω2 carrying mollifier functions ζε

In order to be able to reconstruct a smooth function from the particles, they are
assigned mollifier functions ζε. A mollifier is a local (but not necessarily compact)
function centered at the particle’s position (see figure 7.2). It can be thought of
as a cloud of charge, mass, etc. that is carried around by the particle and has to
meet certain requirements (see [Cottet & Koumoutsakos (2000)] for details). The
core size ε of this mollifier determines the size of the particles. Introducing such
finitely sized particles is equivalent to fixing the particle interaction potential such
that is goes to zero if the distance between two particles vanishes1. The smaller the
particles are, the more accurate the representation of the smooth function gets.

1This unphysical fix is needed to prevent the particle interactions from becoming of infinite
magnitude. It will however not introduce a large error as the particles will not come that close in
real simulations anyway.

7.2. PARTICLE STRENGTH EXCHANGE 47

For the approximation to converge, it is however required that the distance h be-
tween any two particles is always less than their size2, thus:

h

ε
< 1

This means that more accurate function approximations can only be obtained by
increasing the number of particles when decreasing their size.

7.2.2 The isotropic PSE method

As for diffusion, the governing equation is given by

∂c

∂t
= D∇2c(x, t) (7.1)

the PSE method as introduced by [Degond & Mas-Gallic (1989a)] starts by finding
an integral formulation of the Laplacian that allows consistent evaluation on the
particle locations. To start with, consider the solution at a location y and expand
it into a Taylor series around x:

c(y) = c(x) +
r+1∑
i=1

1
i!

(y − x)i ∇ic(x) +O
(|y − x|r+2‖c‖∞

)

Subtracting c(x) on both sides, multiplying the whole equation by a regularized
kernel function ηε and integrating over y yields:

∫
(c(y) − c(x)) ηε(y − x) dy =

r+1∑
i=1

1
i!

∫
(y − x)i ∇ic(x)ηε(y − x) dy

+ ‖c‖∞O
(∫

|y − x|r+2ηε(y − x) dy
)

To get an approximation of the Laplacian, we have to ask the following general
requirement for the kernel function η (according to [Degond & Mas-Gallic (1989a)]):

∫

�n

n∏
i=1

xαi

i η(x) dx =





0, ∀α ∈ �n, α �= 2ei, 1 �
n∑

i=1

αi � r + 1

2, if α = 2ei, i ∈ [1, . . . , n]

where n is the dimension of the space, r is the order of the regularized kernel function
and x = (x1, . . . , xn) is a position in �n. α = (α1, . . . , αn) is an n-dimensional index
and (e1, . . . , en) is the canonical base of �n. In the 3D case, this requirement may
be expressed as:

∫
xixjη(x) dx = 2δij for i, j = 1, 2, 3 (7.2)

∫
xi1

1 x
i2
2 x

i3
3 η(x) dx = 0 if i1 + i2 + i3 = 1 or 3 � i1 + i2 + i3 � r + 1 (7.3)

∫
|x|r+2|η(x)| dx <∞ (7.4)

for i1, i2, i3 ∈ �+
0 . The first condition is to normalize the kernel function. The

second one requires all moments up to order r+1 to vanish and the third one is
2This is known as “particles must overlap”.

48 CHAPTER 7. SIMULATION TECHNIQUES

required to have the truncation error bounded. The regularized kernel is derived
from this kernel function as follows:

ηε(x) = ε−nη
(x
ε

)
, ε > 0

where n is the topological dimension of the space we wish to solve the diffusion
equation in. Using requirements 7.2 and 7.3, one notices that all terms of the form∫
(y−x)iηε(y−x) dy in above series expansion vanish. The only term remaining is:

∫
(c(y) − c(x)) ηε(y − x) dy = ∇2c(x)

∫
(y − x)2ηε(y − x) dy

+ ‖c‖∞O
(∫

|y − x|r+2ηε(y − x) dy
)

The term ∇2c(x) can be taken out of the integral as it does not depend on y. After
change of variables z = (y − x)/ε in the integrals, one obtains:

ε−n

∫
(c(y) − c(x)) ηε(y − x) dy = ∇2c(x) +O (εr)

due to the requirement 7.2 for the kernel function η. Thus the integral operator
that approximates the Laplacian is found to be:

∇2
εc(x) = ε−n

∫
(c(y) − c(x)) ηε(y − x) dy (7.5)

and the approximation error is O(εr) with r being the largest integer for which con-
ditions 7.3 and 7.4 are fulfilled (see [Cottet & Koumoutsakos (2000)] for a rigorous
error treatment). Using the particle locations as quadrature points leads to the
discrete version of the operator:

∇2
ε,hc

h(xh
p) = ε−n

∑
q �=p

(vqc
h
q − vpc

h
p)ηε(xh

q − xh
p) (7.6)

where vq and vp are the particle’s volumes such that vqc
h
q = c(xh

q) dy is the strength
(mass is this context). It is noteworthy that this operator is not the only possibility
of discretizing the Laplacian onto particles. Compared to another method (called
Fishelov’s scheme) it has however the big advantage of being conservative. As above
operator implicitly incorporates the conservation of mass, it is considered the better
choice for solving the diffusion equation.

The approximation ch to the continuous concentration c at any location and time
can be reconstructed from the strengths vpc

h
p of the particles using:

ch(x, t) =
∑

p

vpc
h
p(t)ζε(x− xh

p)

where ζε(x) = ε−nζ(x/ε) is the mollifier function that the particles “carry around”
(not to be confused with the PSE kernel ηε). In the simplest case of point particles
it is identical to the Dirac delta distribution: ζ(x) = δ(x). The final PSE scheme is
now easily obtained by inserting equation 7.6 into equation 7.1:

∂chp
∂t

= Dε−n
∑
q �=p

(vqc
h
q − vpc

h
p)ηε(xh

q − xh
p) ∀ p ∈ [1, . . . , N]

This is an N -body problem as for each particle it involves a sum over all other par-
ticles. However, since the kernel ηε is chosen to be local, only the nearest neighbors

7.2. PARTICLE STRENGTH EXCHANGE 49

of each particle significantly contribute to its sum. The simulation code therefore
implements a cell-list algorithm for nearest neighbor search and interactions are
only calculated between particles that are closer than a cut-off of 10ε. It can also
be seen from this equation, that in order to simulate diffusion, the strengths of
all the particles change (i.e. they exchange mass) while their locations remain the
same, i.e. they do not move. This means that all the geometry and boundary condi-
tion handling only needs to be done once when initializing the particles (cf. section
7.2.5). Moreover, it allows regular spacing of the particles inside the computational
domain in which case the particle volumes simply become: vp = h1h2h3 where h1,2,3

are the (constant) inter-particle spacings in all three spatial directions.

The anisotropic advection-dispersion equation

It is however possible to also take convection into account. In this case the particles
move as governed by the convection and they exchange strength according to dif-
fusion. It is this appealing physical problem separation character that makes part
of the beauty of particle methods. The simulation code used in this work directly
implements a solver for the advection-dispersion equation:

∂c(x, t)
∂t

+ ∇(u(x, t) · c(x, t)) − σ(x, t) = ∇(D(x, t) · ∇c(x, t)) (7.7)

where u is a given mean velocity field, c stands for the local concentration and σ is a
term to account for sources and sinks. Due to the anisotropy, D now is a symmetric
tensor of second rank that contains diffusion and dispersion coefficients.

Using the principles of particle methods, this equation is now transformed into the
following set of equations:

dxp

dt
= u(xp, t) (7.8)

∂c(x, t)
∂t

= ∇(D(x, t) · ∇c(x, t)) + σ(x, t) (7.9)

with u(x, t) being a given external mean velocity field which moves the particles
along their characteristics. The first equation describes the movement of the parti-
cles due to convection, the second equation describes the changes in their strength
due to diffusion and is solved using the anisotropic PSE method as described below.

7.2.3 The anisotropic extension of the PSE method

In order to have a PSE simulation that is functionally equivalent to the random
walk code, an extended anisotropic version of it is used. In this case, the diffusion
coefficient is no longer a scalar but a symmetric tensor of second rank that is allowed
to vary in space (in 3D):

D(x) =



Dxx(x) Dxy(x) Dxz(x)
Dxy(x) Dyy(x) Dyz(x)
Dxz(x) Dyz(x) Dzz(x)


 (7.10)

Similar to the derivations for the isotropic case in section 7.2.2, it has been shown
by [Degond & Mas-Gallic (1989b)] by means of Taylor series expansions that the
following integral operator Qε is an approximation of the differential diffusion op-
erator:

∇(D ∇c(x, t)) ≈ Qε(t) c(x, t) =
∫

�n

σε(x, y, t) [c(y) − c(x)] dy (7.11)

50 CHAPTER 7. SIMULATION TECHNIQUES

The regularized kernel σε = ε−nσ(x/ε) again satisfies certain moment conditions.
The discretized particle approximation Q

h

ε is obtained by applying a quadrature
rule to the integral operator Qε(t) using the particles as quadrature points:

Q
h

ε (t) chk(t) =
∑

l

σε(xk(t), xl(t), t) [cl(t) − ck(t)] · hn (7.12)

where h is the inter-particle spacing and n is the space dimension. The regularized
kernel is defined as:

σε(xk, xl, t) = ε−n
n∑

i,j=1

Mij(xk, xl, t)ψε
ij(xl − xk) (7.13)

where ε is again the core size of the particles and Mij(x, y, t) is a function of the
diffusion tensor Dij . With the spherically symmetric matrix cut-off (smoothing)
function:

ψε
ij(x) = ε−nψij

(x
ε

)

According to [Degond & Mas-Gallic (1989b)], the components of ψ are chosen to
be:

ψij = ε−(n+2)Θ
(|xk − xl|

ε

)
·

n∑
i,j=1

(x− y)i(x− y)j

with a scalar cut-off function Θ(x). Substituting everything into equation 7.13
yields the regularized anisotropic PSE kernel function:

σε(xk, xl, t) =
1

εn+4
Θ
(|xk − xl|

ε

) n∑
i,j=1

Mij(xk, xl, t)(xk − xl)i(xk − xl)j

Introducing the following constraint according to [Degond & Mas-Gallic (1989b)]:

4π
15

∫ ∞

0

r6 Θ(r) dr != 1

with r = (xi −xj), Θ(r) = a0 · e−βr2
and β = 1, we obtain the following normalized

2nd order cut-off function:

Θ
(|xk − xl|

ε

)
=

4
π
√
π
e−

(xk−xl)
2

ε2 (7.14)

[Degond & Mas-Gallic (1989b)] suggest M(xk, xl, t) to be of the form

M(xk, xl) =
1
2

(m(xk) +m(xl))

where

m = D − 1
n+ 2

Tr(D) · I

with Tr(·) standing for the trace of a matrix, and I for the identity matrix.
In 3D, the diffusion tensor is given by equation 7.10 and thus we get:

m =




1
5 (4Dxx −Dyy −Dzz) Dxy Dxz

Dxy
1
5 (4Dyy −Dxx −Dzz) Dyz

Dxz Dyz
1
5 (4Dzz −Dyy −Dxx)




7.2. PARTICLE STRENGTH EXCHANGE 51

where all coefficients can be functions of the location x. Finally, using a simple
Euler time discretization with time step size δt, the discretized form of equation 7.9
in 3D may be expressed as:

cn+1
k = cnk +

δt · h1h2h3

ε7

N∑
l=1

(cnl − cnk) · 4
π
√
π
e−

(xk−xl)
2

ε2

(
M11(xk − xl)21

+ 2 ·M12(xk − xl)1(xk − xl)2 + 2 ·M13(xk − xl)1(xk − xl)3

+M22(xk − xl)22 + 2 ·M23(xk − xl)2(xk − xl)3 +M33(xk − xl)23
)

As in the isotropic case, the sum is only to be taken over the nearest neighbors within
a distance of 10ε due to the local character of the interaction kernel (negative expo-
nential). This is efficiently done using a cell-list algorithm. The algorithm has been
implemented in a parallel simulation code using MPI by Dr. Jens Walther and
Stephanie Zimmermann (see [Zimmermann, Koumoutsakos & Kinzelbach (2001)]
for a reference application). The changes and additions needed to handle finite
domains with arbitrary triangulated boundaries and to make the code restartable
are however products of the present project.

7.2.4 Boundary condition handling

Since the PSE algorithm as described above strictly only applies to infinite domains,
some kind of boundary condition handling needs to be included. The easiest way
to do so consists of placing mirror particles in a rc-neighborhood outside of the
simulation domain Ω. The same technique is also used for analytically solving
partial differential equations using Green’s function. It is exact for domains whith
boundaries that can be described as a set of infinite straight planes (e.g. cubes,
boxes, etc.). This clearly is not the case for the ER, giving rise to some boundary
errors. Since such errors violate the no flux boundary condition, they will change
the total mass inside the domain Ω. Checking the conservation of mass therefore is
a way to monitor those errors.

The PSE code is extended to handle three different kinds of particles: real particles,
mirror particles for the boundary condition and ghost particles for inter-processor
communication, each kind is identified by a particle attribute which is positive for
real particles, negative for mirror particles and zero for ghost particles. To enforce
the boundary condition, the strength of all mirror particles is set to the one of their
corresponding real particle every time step directly after the PSE solver.

7.2.5 Geometry processing and initialization

Since no convection is present (we are simulating pure diffusion), the PSE algorithm
does not move the particles but only changes their strengths. This is an important
difference to the random walk technique and eliminates the need for geometry pro-
cessing (checking whether a particle is inside or outside the domain) at every time
step. Instead, the geometry handling needs to be done only once when initializing
the particles. Therefore, a preprocessor code is written that writes an input file
for the PSE solver containing all initial particle positions, strengths and attributes.
This preprocessor is the only algorithm that needs to know the triangulated surface
description of the domain Ω. Once the particles are initialized, the information
about the shape of the domain are contained in their positions since no particles
with positive attribute will be placed outside of Ω.

All geometry processing and particle initialization is concentrated in the program
init part. The particles are initialized on a regular cartesian lattice placing a

52 CHAPTER 7. SIMULATION TECHNIQUES

particle at the center of each grid cell3. The complete source code is given in
appendix C.5.4. The top-level algorithm proceeds as follows, marginal numbers
refer to statement labels in the main program (appendix C.5.4.2):

Algorithm 7.3 (Preprocessing).

Step 1: Set default values for all variables.36

Step 2: Read triangulation set and problem parameters.110

Step 3: Determine the bounding box of the triangulation [xl, xh]× [yl, yh]× [zl, zh] as:
{x, y, z}l = minp{xp, yp, zp}, {x, y, z}h = maxp{xp, yp, zp} where p loops over
all triangle vertices in ℵ.148-163

Step 4: Calculate centroids and normals of all triangles.231-240

Step 5: Set up triangle lists and sort triangles.241

Step 6: Check topological and syntactical validity of the triangulation according to
the algorithms presented in chapter 3.256-264

Step 7: Initialize particles on regular lattice by placing a particle at the center of each
grid cell that is inside the domain Ω.294-316

Step 8: Initialize strengths of all particles by setting the ones inside the bleached box
to zero, all others to c0. Initialize all attributes to any value > 0 (typically a
running index).402-414

Step 9: Add mirror particles for boundary condition handling.390-394

Step 10: Calculate and output some diagnostics.

Step 11: Write particle file to be read in by the PSE solver.417-424

Step 12: Deallocate memory and terminate.448-459

Some explanations to selected steps are in order. Step 5 is the core part of two
cell-list algorithms included for performance reasons. Without any sorting, step 7
would have to check every triangle for each grid cell to determine whether the cell’s
center is inside the domain or not, making it O(NM). This is computationally
not feasible for any surfaces containing more than just a few dozens of triangles.
Therefore, step 5 sets up two different lists of triangles: the first list sorts the
triangles into (y, z)-bins B of size [xl, xh] × by × bz:

Bi,j = {(x, y, z) : xl � x � xh, (i− 1)by � y − yl < iby, (j − 1)bz � z − zl < jbz}
It proceeds as follows (see appendix C.5.4.9 for the source code, marginal numbers
refer to the corresponding statement labels):

Algorithm 7.4 (Make bin lists).

Step 1: Subdivide the bounding box into Ny ×Nz cylindrical bins of size bx = xh−xl,
by = (yh − yl)/Ny, bz = (zh − zl)/Nz.21-27

Step 2: Associate a triangle list Li,j(k) with each bin (i, j)

Step 3: Loop over all bins and assign all triangles that intersect the parallelepiped
{(x, y, z) : xl � x � xh, yl + (i − 1)by � y < yl + iby, zl + (j − 1)bz � z <
zl + jbz} to the triangle list Li,j of bin (i, j).28-143

3This staggered arrangement is needed to avoid particle loss due to round-off errors if particles
sit exactly on the domain boundaries

7.2. PARTICLE STRENGTH EXCHANGE 53

Since a triangle typically belongs to several bins, regular lists have to be used instead
of linked lists4 (see section 7.2.6 for details on the list structure). The code efficiently
determines all bins that are intersected by a certain triangle ∆k using the following
algorithm:

Algorithm 7.5 (Sort triangles to bin lists).

Step 1: For each vertex P1,2,3 of ∆k, determine the index of the bin it is in: (i, j) =
ceiling ((Py − yl)/by, (Pz − zl)/bz), where ceiling(f) is the closest integer larger
or equal to f . If ∆k is not yet contained in the list Li,j , add it: Li,j(length(Li,j)+
1) = k. 41-63

Step 2: Determine the minimum and maximum bin indices for ∆k: {i, j}l = mini,j{(i, j) :
∆k ∈ Li,j}, {i, j}h = maxi,j{(i, j) : ∆k ∈ Li,j} 64-67

Step 3: Loop over all bins {(i, j) : i ∈ [il, ih], j ∈ [jl, jh]}
3.1: If any corner point of the bin’s projection onto the (y, z)-plane is inside

the triangle’s projection, add ∆k to Li,j if it is not already in this bin’s
triangle list. Go to step 3. 90-106

3.2: If any edge of the triangle’s projection onto the (y, z)-plane intersects
any edge of the bin’s projection, add ∆k to Li,j if it is not already in
this bin’s triangle list. 107-138

Steps 3.1 and 3.2 use 2×2 linear systems of equations to determine the intersection
points, analogous to the ones in chapter 3. Figure 7.3 depicts the geometrical
situation, taken from a real run with the erp572 ER sample. The point in question
is P = (401.2188 . . . , 387.6003 . . . , 5.2666 . . .). It is marked with a large light-blue
asterisk. The corresponding bin this point belongs to has indices (70, 38) and is
shown as a red box. All 49 triangles that intersect this bin (thus are elements of its
triangle list) are drawn in green. The 4 triangles that actually are intersected by
the ray starting at P and proceeding parallel to the x-axis are shown in pink, the
ray itself and all ray-triangle intersection points are colored blue. Due to the fact
that there are 4 intersected triangles, the point P is outside of the domain Ω.

The second list sorts the triangles into (x, y, z)-cells C of size bx × by × bz:

Ci,j,k = {(x, y, z) : (i− 1)bx � x− xl < ibx, (j − 1)by � y − yl < jby,

(k − 1)bz � z − zl < kbz}

It is only used for the creation of the boundary condition mirror particles as it
simplifies the search for points closer than rc to the surface and – for such points –
the search for the triangle closest to it (to mirror at). The creation of the lists is
done in AllocateLL (see appendix C.5.4.10) as:

Algorithm 7.6 (Make cell lists).

Step 1: Determine the number of cells needed: Nx = int((xh−xl)/rc), Ny = int((yh−
yl)/rc), Nz = int((zh − zl)/rc) where int(f) means the closest integer � f . 35-37

Step 1: Subdivide the bounding box into cubic cells of edge length bx = (xh −xl)/Nx,
by = (yh − yl)/Ny, bz = (zh − zl)/Nz. 41-43

Step 2: Associate a triangle list Li,j,k(p) with each cell (i, j, k) 45-66

Step 3: Loop over all cells and assign triangles to cell lists according to algorithm 7.7

54 CHAPTER 7. SIMULATION TECHNIQUES

50 100 150 200 250 300 350 400 450
x 383

384
385

386
387

388
389

390
391

392

y

5

5.5

6

6.5

7

7.5

z

Perspective view

5

5.5

6

6.5

7

7.5

50 100 150 200 250 300 350 400 450

z

x

Side view

5

5.5

6

6.5

7

7.5

383 384 385 386 387 388 389 390 391 392

z

y

Front view

383

384

385

386

387

388

389

390

391

392

50 100 150 200 250 300 350 400 450

y

x

Top view

Figure 7.3: Geometric situation for the bin list algorithm. See text for explanations

It is necessary to set up completely separate lists for bins and cells since neither the
size of the cells nor the criterion when a triangle is element of a certain cell’s list
are identical. Since the bins discussed above serve to determine whether a point is
inside or outside of the domain, all triangles that intersect the bin must be in its
lists. The cells discussed now however serve to determine whether a point is closer
than rc to a triangle. Therefore their size is not arbitrary but must be set to rc.
Furthermore, not all triangles that intersect a certain cell must be in its triangle list
but only those being closer than rc to the cell’s centroid (thus in the in-sphere of the
cell). To keep the lists as short as possible, the following algorithm is implemented
in SortT (appendix C.5.4.9) to sort the triangles ∆n to the cell lists:

Algorithm 7.7 (Sort triangles to cell lists).

Step 1: For each vertex P1,2,3 of ∆n, determine the index of the cell it is in: (i, j, k) =
ceiling ((Px − xl)/bx, (Py − yl)/by, (Pz − zl)/bz), where ceiling(f) is the clos-
est integer larger or equal to f . If ∆n is not yet contained in the list Li,j,k,
add it: Li,j,k(length(Li,j,k) + 1) = n.172-197

Step 2: Determine the minimum and maximum cell indices for triangle ∆n: {i, j, k}l =
mini,j,k{(i, j, k) : ∆n ∈ Li,j,k}, {i, j, k}h = maxi,j,k{(i, j, k) : ∆n ∈ Li,j,k}198-203

Step 3: Loop over all cells {(i, j, k) : i ∈ [il, ih], j ∈ [jl, jh], k ∈ [kl, kh]}
3.1: If triangle ∆n is not already in Li,j,k, calculate the intersection point of

the triangle’s normal through the cell’s centroid with the triangle (see
4In a linked list of objects, each object can only occur once

7.2. PARTICLE STRENGTH EXCHANGE 55

figure 5.1 for the geometrical situation). If this intersection point is inside
the triangle and inside the cell, add ∆n to Li,j,k. 222-241

Notice that the second algorithm (the cell lists) is only needed for boundary mirror
particles. It is therefore not executed when boundary condition handling is switched
off.

Using the described bin and cell list algorithms has the effect of reducing the execu-
tion time from several dozens of days to about one minute for a typical ER sample
consisting of about 8 · 104 triangles and 2 · 106 grid points.

Now having completed step 5 of the top-level algorithm 7.3, some comments on
steps 7 and 9 follow. These steps are concerned with the actual initialization of
the particles in the regular lattice cells. The core algorithm needed is the one to
determine whether a given point is inside or outside of the domain Ω. According to
the solution of the topological container problem given in [Sbalzarini (2001)], this
is done by counting the number of intersections of an arbitrary ray with the domain
boundary ∂Ω starting at the point in question. If this count is odd, the point is
inside Ω, else outside. Using the bin lists described above, this is implemented for
any given point Q in O(N logM). The code is given in appendix C.5.4.11 to which
the marginal statement labels refer.

Algorithm 7.8 (Point in domain).

Step 1: Determine indices of bin Q is in: (i, j) = ceiling ((Qy − yl)/by, (Qz − zl)/bz)
and set the intersection counter to zero: Ni = 0. 18-26

Step 2: Loop over all triangles in this bin’s triangle list, thus {∆k : ∆k ∈ Li,j} 61

2.1: Intersect the ray Q+ λ[1, 0, 0] with triangle ∆k by solving the following
linear system of equations:




| | 1
a b 0
| | 0






α
β
−λ


 =




|
Q− P1

|




73-86

where a = P2 −P1 and b = P3 −P1 are edge vectors of ∆k and P1,2,3 are
its vertices. Since the direction can be chosen arbitrarily, it is chosen to
yield a simple system of equations that can be solved at minimum cost.
For this reason, the general triangle-ray intersection routine described in
section 3.2 is not used but above system’s solution is hard-coded.

2.2: If α � 0 and β > 0 and α + β � 1 and λ > 0 (up to a tolerance TOL),
increment the intersection counter by 1: Ni = Ni + 1. 87,105

Step 3: If Ni is odd, the point Q is inside the domain Ω, else outside. 109-113

Finally, step 9 of algorithm 7.3 adds the mirror particles for the boundary condition
handling according to section 7.2.4. It is only invoked if needed and proceeds for
any given point Q ∈ Ω as follows:

Algorithm 7.9 (Add mirror particles).

Step 1: Determine the indices of the cell Q belongs to:
(i, j, k) = ceiling ((Qx − xl)/bx, (Qy − yl)/by, (Qz − zl)/bz). 119-127

Step 2: Loop over all triangles ∆n in this cell and its 26 nearest neighbors (i± 1, j ±
1, k ± 1) (if they exist). 128-131

56 CHAPTER 7. SIMULATION TECHNIQUES

2.1: Intersect the normal nn of ∆n through Q with ∆n using the general
intersection routine described in section 3.2: Q+λnnn = P1 +αan +βbn
⇒ λn. 134

Step 3: Find the closest triangle by selecting the one with the minimum λ: λmin =
minn λn and nmin = argminnλn.135-140

Step 4: If λmin � rc, mirror point Q according to: Qmirror = Q+ 2λminnnmin where
nnmin means the normal of the the closest triangle. Set the strength (mass) of142

main 391 Qmirror to strength ofQ and the attribute ofQmirror to the negative attribute
of Q.

This algorithm makes use of the cell list as described in algorithms 7.6 and 7.7 to
reduce the computational cost from O(MN) to O(N logM).

Now the preprocessing is completed and the particle locations, strengths and at-
tributes are written to a binary file which can be read by the PSE solver as an
initial condition.

7.2.6 Implementation notes

Some details on the technical implementation of the algorithms described in the
preceding section seem noteworthy. They mainly concern the data structures in-
volved and the methods of parallelization using the MPI message passing interface.
Readers not interested in such details can easily skip this subsection without loss
of essential information. Nevertheless, the following is included in this report for
the sake of completeness since the ideas presented hereafter are neither obvious nor
straightforward.

Dynamic list data structures

The algorithms presented in section 7.2.5 often involve lists of triangles associated
to cells or bins. The general structure is that the bounding box of the computational
domain is subdivided into a number of disjoint box-shaped sub-spaces. These sub-
spaces are called cells if the subdivision takes place in all three spatial dimensions
and bins if the space is only subdivided along two dimensions. Obviously, bins
are just cells with one index removed. Therefore they can be treated using the
same data structures. It was however necessary to distinguish between them in the
previous section since the criteria for a triangle to be a member of a bin or cell are
different. The following will only deal with cells, the application to bins (2-index
cells) is straightforward.

Assume the bounding box of the domain is subdivided into Nx ×Ny ×Nz cells that
are addressed using integer indices {(i, j, k) : 1 � i � Nx, 1 � j � Ny, 1 � k �
Nz}. To each cell, we associate a list Li,j,k that contains the indices p of all the
triangles that “belong” to the cell (i.e. meet all the criteria of the cell): Li,j,k(p).
The obvious way to implement such an object in Fortran 90 would be an array of
rank 4. Its size in the fourth dimension would have to be equal to the number
of triangles in the longest list of all cells. This is however not favorable for the
following two reasons:

1. One triangle will typically belong to several lists (i.e. it intersects several cells),
making the length of the longest list large.

2. The triangles are very inhomogeneously distributed in the bounding box (as
they are concentrated on the surface of the domain).

7.2. PARTICLE STRENGTH EXCHANGE 57

The latter point means that in fact most cells will not contain any triangles. Just
the ones intersecting the domain boundary will have lists of non-zero length. It
would thus be a huge waste of memory to allocate a cubic four dimensional array.

Instead, a new data structure is defined which can be seen as an array of pointers to
lists. A list is implemented as a 1D array of variable length. This allows the lengths
of all the lists to be individually set and it brought down the main memory usage
of the algorithm from about 500MB to 1MB. The following Fortran statements
define the new data type as implemented in globals.f90 (see appendix C.5.4.1,
statements 5 to 7 and 27, 29):

TYPE ptr_to_list
REAL(MK), DIMENSION(:), POINTER :: list

END TYPE
TYPE(ptr_to_list), DIMENSION(:,:,:), ALLOCATABLE :: cell

The following statements allocate an array of Nx ×Ny ×Nz empty triangle lists:

ALLOCATE(cell(Nx,Ny,Nz))
nullify(cell)

The current lengths of all the lists are stored in an additional array of integers:
ncell(Nx,Ny,Nz). Every time we wish to add an element to a list, we first check
whether the list is long enough to hold the new element. If this is not the case, it
is dynamically enlarged. The process of adding an element m to the end of a list
therefore is described by:

p = ncell(i,j,k)+1
if(ASSOCIATED(cell(i,j,k)%list)) then

if(p > size(cell(i,j,k)%list)) then
cell(i,j,k)%list=>reallocate(cell(i,j,k)%list,p)

end if
else

ALLOCATE(cell(i,j,k)%list(p))
end if
cell(i,j,k)%list(p) = m

The function reallocate encapsulates the work of dynamically resizing an object
while preserving its contents. It takes a pointer to an array and returns a pointer to
the new, resized array. According to [Numerical Recipes in Fortran 90 (1996)] it is
multiply overloaded for different array dimensions and data types and implemented
as a Fortran 90 module (see appendix C.5.4.15):

INTERFACE reallocate
MODULE PROCEDURE reallocate_rv,reallocate_rm,reallocate_iv, &

reallocate_im,reallocate_hv
END INTERFACE

Since all triangle lists are 1D arrays of integers, only the version for integer vectors
is used. It reads as follows (statements 22 to 35):

function reallocate_iv(p,n)
INTEGER(I4B), DIMENSION(:), POINTER :: p, reallocate_iv
INTEGER(I4B), INTENT(IN) :: n
INTEGER(I4B) :: nold, ierr

58 CHAPTER 7. SIMULATION TECHNIQUES

ALLOCATE(reallocate_iv(n), STAT=ierr)
if(ierr .NE. 0) then

WRITE(*,’(A)’) ’Error allocating memory in reallocate_iv’
return

end if
if(.NOT. ASSOCIATED(p)) return
nold = size(p)
reallocate_iv(1:min(nold,n))=p(1:min(nold,n))
DEALLOCATE(p)

END function reallocate_iv

To simplify the usage of these list types, the subroutine AllocateLL has been im-
plemented (see appendix C.5.4.10). It takes 5 integer arguments: a flag, the three
indices of the cell the operation should affect and an error status. Table 7.1 sum-
marizes possible ways of using it. After the subroutine returns, the value of the
fifth variable is zero if no error occurred, else it is non-zero.

Call Purpose
AllocateLL(0,0,0,0,istat) Initialize all lists and allocate memory
AllocateLL(1,0,i,j,istat) Enlarge bin list (i, j)
AllocateLL(1,i,j,k,istat) Enlarge cell list (i, j, k)
AllocateLL(2,0,0,0,istat) Clear all lists and free all memory

Table 7.1: Calling modi of AllocateLL

Paradigms of parallelism

For reasons of speed and to be prepared for larger problems, the particle preprocess-
ing algorithm 7.3 is parallelized using MPI. Examination of algorithm 7.3 reveals
that the most time consuming part is step 7 as it consists of invoking algorithm 7.8
for every grid point. Two different ways of parallelizing this step can be imagined:

1. Distribute grid points: all processors know all triangles but only check a
fraction of the grid points.

2. Distribute triangles: one processor loops over all the grid points but the tri-
angles to be intersected with are distributed among the other processors.

For the following reasons, the first possibility is better than the second:

• The number of points is typically more than an order of magnitude larger
than the number of triangles.

• Communication only happens once at the very beginning of step 7 and once at
its end (for possibility 2 one would have to collect the numbers of intersection
after every point).

The amount of data that has to be communicated is 9M + G for the first case
and G(logM + n) for the second with G being the number of grid points, M the
number of triangles and n the number of processors. Even though the amount of
data that has to be transmitted is larger in the first case, only two communication
channels have to be opened as opposed to G ≈ 106 is the second case. Since for
MPI, the latency of opening a channel is crucial rather than the bulk amount of
data transmitted once the channel is open, the first alternative will be faster.

The parallel algorithm therefore proceeds as follows (statement numbers refer to
the listing in appendix C.5.4.2):

7.3. POST-PROCESSING AND VISUALIZATION 59

Algorithm 7.10 (MPI parallelization).

Step 1: Start MPI and probe all channels and processors. 37-105

Step 2: Master processor reads all triangles from file. 110

Step 3: Master broadcasts all triangles to slaves. 127-147

Step 4: Master does cartesian domain decomposition and assigns a set of grid points
to check to each processor. 176-191

Step 5: Each processor loops over all grid points it got assigned and checks whether
they are inside or outside the domain (i.e. invokes algorithm 7.8). The results
are stored in a local flag array. 294-316

Step 6: Slaves communicate their results (flag) to master. 319-330

Step 7: Master concatenates flag arrays. 327

The array flag temporarily holds the local result of algorithm 7.8 for all grid points
on a processor. This is recommended to avoid the need of communicating them back
to the master after each grid point.

7.3 Post-processing and visualization

The PSE simulation code following the algorithms described in sections 7.2.2 and
following can write output files at certain time steps containing the positions and
strengths of all the particles. The files are in ASCII format and each line contains
the information of one particle as:

(4E16.8) xp(1,i), xp(2,i), xp(3,i), c(i)

where xp(1..3,i) are the x, y and z coordinates of the position of particle i and
c(i) is its strength (i.e. the local concentration).

In order to be able to use these output files to visualize concentration fields in
OpenDX5, they have to be post-processed. Just as other visualization tools, OpenDX
can only handle data when its connection structure is known. This means that the
data points either have to be on a grid or a triangulation of the scattered data
locations has to be performed, which is O(N4) however. Since the preprocessor
described in section 7.2.5 initializes the particles on a regular lattice and they do
not move during the PSE simulation (there is no convection), it is best to convert
the output files to a grid representation again. The grid will extend throughout the
bounding box of the particles. However, not all grid points will be occupied by a
particle since they have only been placed inside the ER geometry. The conversion
therefore consists of determining which grid points are associated to which particle
and which are empty.

The program res2dx as given in appendix C.3.2.1 performs this task for all the
input files passed to it as command line arguments. Before being able to translate
the PSE result files to OpenDX grid data, it has to recover the grid geometry from
the available data. Since the grid is known to be cartesian and regular, this only
includes the numbers of grid points Nx, Ny, Nz in all three spatial directions, the
bounding box of the data and the corresponding grid spacings δx, δy, δz. Using
this information, the OpenDX header file (called a general file) can then be written.
This file contains all the information about the data’s structure and organization.

5OpenDX is a freely available data visualization tool formerly known as IBM Visualization
Data Explorer. See http://www.opendx.org for further information.

60 CHAPTER 7. SIMULATION TECHNIQUES

For regular grid data, its syntax is:

file = <name of grid data file>

grid = <Nx> x <Ny> x <Nz>

format = ascii

interleaving = record

majority = row

field = c

structure = scalar

type = float

dependency = positions

positions = regular, regular, regular, <xl>, <dx>, <yl>, <dy>, <zl>, <dz>

end

where xl,yl,zl are the lower boundaries for x, y and z (i.e. the coordinates of the
lower left corner of the bounding box). Then, the strengths of all the particles are
written to a separate grid data file that simply contains one floating point number
per line:

c(i)

indicating the strength of the particle at grid point i. Hereby, the grid points are
listed in row-majority order, as declared in the header file. This means that for
each grid point, the conversion program has to find the particle that belongs to
it in order to write its strength to the output file. Since particles are only placed
where there is ER geometry, not every grid point will have a particle, so this check
is actually needed. Without further tricks, this would be O(NNxNyNz) and thus
unfeasible. A chaining mesh of cells is therefore established in the bounding box
of the data which is thus subdivided into Ncx × Ncy × Ncz mesh cubes C of size
bx × by × bz:

Ci,j,k = {(x, y, z) : (i− 1)bx � x− xl < ibx, (j − 1)by � y − yl < jby,

(k − 1)bz � z − zl < kbz}
Unlike for all the triangle lists discussed so far, a particle belongs to exactly one
such cell Ci,j,k. It is therefore possible to use a linked list of particles instead of the
dynamic list data structures presented in section 7.2.6. To do so, a head of chain
particle Hi,j,k is assigned to each cell Ci,j,k and a linked list of particles �(p) is set
up for p = 1, . . . , N such that each entry points to the next particle in the same cell.
The end of the list is marked by a zero entry. This cell-list algorithm brings the
computational cost for the conversion down from O(NNxNyNz) to O(NxNyNz).
Figure 7.5 illustrates this structure.

The following algorithm describes the conversion process in detail. The marginal
numbers refer to the statement labels in the source code as given in appendix
C.3.2.1.

Algorithm 7.11 (Conversion of particles to grid data).

Step 1: Determine number of particles in input file: N53

Step 2: Determine bounding box of data [xl, xh] × [yl, yh] × [zl, zh] as: {x, y, z}l =
minp{xp, yp, zp}, {x, y, z}l = minp{xp, yp, zp} where p loops over all input
particles: p = 1, . . . , N55-60

Step 3: Determine grid spacings as the minimum distances of all possible pairwise
distinct particles in all three spatial directions: δx = min(p,q),p�=q |xp − xq|,
δy = min(p,q),p�=q |yp − yq|, δz = min(p,q),p�=q |zp − zq|61-63

7.3. POST-PROCESSING AND VISUALIZATION 61

Figure 7.4: OpenDX visual program

2
p

(p)l p
1

0

H

H i,j,k

Figure 7.5: A linked list data structure

Step 4: Calculate the number of grid points as: (Nx, Ny, Nz) = floor((xh−xl)/δx, (yh−
yl)/δy, (zh − zl)/δz) 67-69

Step 5: Write data header file according to above syntax 74-87

Step 6: Nullify the linked list: Hi,j,k = 0 ∀ (1 � i � Ncx, 1 � j � Ncy, 1 � k �
Ncz), �(p) = 0 ∀ p ∈ [1, N] 88-99

Step 7: Determine the size of the cells: bx = (xh − xl)/Ncx, by = (yh − yl)/Ncy,
bz = (zh − zl)/Ncz 107-109

Step 8: For each particle xp, p = 1, . . . , N :

8.1: Determine the indices of the cell the particle is in: (i, j, k) = ceiling((xp−
xl)/bx, (yp − yl)/by, (zp − zl)/bz) 111-119

8.2: Add particle p to the linked list of cell Ci,j,k: �(p) = Hi,j,k, Hi,j,k = p 120-121

Step 9: For each grid point (x, y, z):

9.1: Determine the indices of the cell it is in: (i, j, k) = ceiling((x−xl)/bx, (y−
yl)/by, (z − zl)/bz) 133-141

9.2: Loop over all particles in the same cell by following the linked list. If
a particle is found that is closer to the grid point (x, y, z) than r =
1
2 min{δx, δy, δz}, write its strength to the output grid data file. If no
particle is found at all, output 0. 142-152

Step 9 loops over all grid points in row majority. This means that the innermost
loop is over z and the outermost is over x. Traversing the linked list in step 9.2 for
a cell Ci,j,k is done as follows:

62 CHAPTER 7. SIMULATION TECHNIQUES

f = 0
p = Hi,j,k

do while p �= 0 and f = 0
if ((xp, yp, zp) − (x, y, z))2 < r2 then

write c(p)
f = 1

end if
p = �(p)

end do
if f = 0 then

write 0
end if

Using the header and grid files produced by this algorithm, the visual program
shown in figure 7.4 can be used in OpenDX to produce 3D visualizations of the
concentration field. Figure 7.6 shows an example taken from a simulation run of
section 9.1.

Figure 7.6: Example visualization of a simulated concentration field

Chapter 8

Tests and validation

8.1 Test case description

In order to be able to validate the random walk and PSE simulation codes, a simple
test case for which an analytic solution exists is sought. To maintain the link to
FRAP analysis, the cubic box used throughout [Sbalzarini (2001)] is chosen, thus
the problem domain consists of the cube:

Ω = [0, L] × [0, L]× [0, L]

with boundary ∂Ω and interior int(Ω) = {Ω\∂Ω}. Since ER lumen proteins do not
cross the ER membrane, the biologically correct boundary condition is zero flux at
all walls, thus:

∂(·)
∂n

= ∇(·) · n = 0 on ∂Ω

where n is the outer normal on ∂Ω.

This cubic domain is intersected by the square cylinder:

B = [a, b] × [c, d] × [0, L]

which can be thought of as the area where photobleaching takes place at time t = 0−

(i.e. just before time zero). Therefore, the cylinder B will be called “bleached box”
hereafter. See figure 8.1 for an overview of this geometrical setting. The initial
condition that corresponds to a FRAP setting is:

u0(x) =
{

0 if x ∈ B
c0 if x ∈ int(Ω) \B (8.1)

The governing equation to be solved on this geometry with above initial and bound-
ary conditions is the diffusion equation:




∂u
∂t = D∇2u+ q(x, t) for x ∈ int(Ω), t > 0

α ∂u
∂n + βu = r(x, t) for x on ∂Ω

u(x, t = 0) = u0(x) for x ∈ int(Ω)

(8.2)

where ∇2 is the Laplacian operator and u(x, t) is the unknown function to be solved
for. Since we have zero flux boundary conditions and there are no sources to be
considered, the simplifications q ≡ 0, r ≡ 0, α = 1 and β = 0 are readily made.

63

64 CHAPTER 8. TESTS AND VALIDATION

8.2 The analytic solution

Eigenfunctions and Eigenvalues

The analytic solution of the test case as defined in the previous section can be
derived using the general approach of eigenfunction series expansions. The basic
domain Ω is the cartesian product of three identical intervals. Therefore, the nor-
malized eigenfunctions ϕ(x) and eigenvalues λ of Helmholtz’s equation on the 1D
domain [0, L] are needed. The eigenproblem to be solved is:

{ ∇2ϕ+ λϕ = 0 if x ∈ (0, L)
dϕ
dx = 0 for x = 0 and x = L

(8.3)

Writing ϕ′ for dϕ
dx , this becomes:

ϕ′′(x) + λϕ(x) = 0

which has the general solution

ϕ(x) = A cos
(√

λx
)

+B sin
(√

λx
)

using the boundary condition at x = 0 yields:

ϕ′(0) = B
√
λ

!= 0 ⇒ B = 0

since λ must not vanish in all cases. The second boundary condition at x = L leads
to:

ϕ′(L) = −A√λ sin
(√

λL
)

!= 0 ⇒ sin
(√

λL
)

= 0

⇒ √
λL = kπ ∀ k ∈ �+

0

since λ ≡ 0 is, again, not a valid solution. These eigenfunctions are now normalized
to unity by requiring:

∫ L

0

ϕ2(x) dx != 1

which is equal to setting their scalar products to one1. For k > 0, this corresponds
to:

A2

∫ L

0

cos2
(√

λx
)
dx

!= 1

⇒A2

[
1

2
√
λ

(
x+ sin

(√
λx
)

cos
(√

λx
))]L

0

=
1
2
A2L

!= 1

⇒A =

√
2
L

For k = 0, λ is zero as well and above condition becomes:

A2

∫ L

0

dx = A2L
!= 1 ⇒ A =

√
1
L

1We require the eigenfunctions to be an orthonormal basis of the solution space of problem 8.2

8.2. THE ANALYTIC SOLUTION 65

Therefore, the required normalized eigenfunctions and eigenvalues for this case are
given by:

2ϕk(x) =





√
2
L cos

(
kπ
L x
)

if k > 0√
1
L if k = 0

(8.4)

λk =
(
kπ

L

)2

k ∈ �+
0 (8.5)

It is easy to verify that the ϕ(x) fulfill

∫ L

0

ϕi(x)ϕj(x) dx = δij

which is necessary and sufficient for an orthonormal function base.

y
z

x

Ω

B

Figure 8.1: Geometry of test case

x0 b La

c

d

L

y

∂Ω

Ω

BIV

I

IIIII

Figure 8.2: Slice through domain with
integral areas

Solution by Eigenfunction series expansion

The general solution of problem 8.2 for α = 1 and β = 0 is given by:

u(x, t) =
∫

Ω

K(x, ξ, t)u0(ξ) dξ +
∫ t

0

∫

Ω

K(x, ξ, t− τ)q(ξ, τ) dξ dτ

+D
∫ t

0

∫

∂Ω

K(x, ξ, t− τ)r(ξ, τ) dsξ dτ

where dsξ means an infinitesimal segment of ∂Ω and K(x, ξ, t) is the heat kernel
(see also [Sbalzarini (2001)] pp. 20-21). According to the product space theorem,
the heat kernel of a product space is equal to the product of the heat kernels of its
cartesian factors. Since Ω is the cartesian product of three intervals in x, y and z,
one writes:

K(x, y, z, ξ, η, ζ, t) = Kx(x, ξ, t) ·Ky(y, η, t) ·Kz(z, ζ, t) (8.6)

where the individual factor kernels Kx,y,z are given by:

66 CHAPTER 8. TESTS AND VALIDATION

K(x, ξ, t) =
∞∑

k=0

ϕk(x)ϕk(ξ)e−Dλkt (8.7)

K(y, η, t) =
∞∑

k=0

ϕk(y)ϕk(η)e−Dλkt (8.8)

K(z, ζ, t) =
∞∑

k=0

ϕk(z)ϕk(ζ)e−Dλkt (8.9)

with ϕk and λk being above eigenfunctions and eigenvalues of Helmholtz’s equation
8.3. Using q ≡ 0 and r ≡ 0, the solution can formally be written as:

u(x, y, z, t) =
∫

Ω

K(x, y, z, ξ, η, ζ, t)u0(ξ, η, ζ) dξ dη dζ

Taking into account the special topology of the initial condition, this is equal to:

u(x, y, z, t) = c0

∫

Ω\B

K(x, y, z, ξ, η, ζ, t) dξ dη dζ

and basically consists of integrating the heat kernel over Ω \B. This is done by
splitting the integral into four parts according to figure 8.2:

u(x, y, z, t) =c0
∫ L

0

∫ c

0

∫ L

0

K dξ dη dζ

︸ ︷︷ ︸
I

+c0
∫ a

0

∫ d

c

∫ L

0

K dξ dη dζ

︸ ︷︷ ︸
II

(8.10)

+c0
∫ L

b

∫ d

c

∫ L

0

K dξ dη dζ

︸ ︷︷ ︸
III

+c0
∫ L

0

∫ L

d

∫ L

0

K dξ dη dζ

︸ ︷︷ ︸
IV

The only differences between these integrals are their limits. It is therefore sufficient
to know the general definite integral of the k-th Eigenfunction:

∫ b

a

ϕk(x) dx =





√
2
L

L
kπ

[
sin
(

kπ
L b
)− sin

(
kπ
L a
)]

if k > 0
√

1
L (b− a) if k = 0

(8.11)

The four integral terms are now treated in turn.

Integral I

Substituting the heat kernel from equations 8.6 to 8.9 into integral I gives:

∫ L

0

∫ c

0

∫ L

0

∞∑
k=0

∞∑
l=0

∞∑
m=0

ϕk(x)ϕl(y)ϕm(z)ϕk(ξ)ϕl(η)ϕm(ζ)e−D(λk+λl+λm)t dξ dη dζ

Switching the order of integration and summation and rearranging some terms this
becomes:

∞∑
k=0

∞∑
l=0

∞∑
m=0

ϕk(x)ϕl(y)ϕm(z)
∫ L

0

ϕk(ξ) dξ
∫ c

0

ϕl(η) dη
∫ L

0

ϕm(ζ) dζ e−D(λk+λl+λm)t

8.2. THE ANALYTIC SOLUTION 67

This can now be integrated using 8.11 three times with appropriate substitutions.
Then, since sin (kπ) ≡ 0 ∀k, only terms with k = m = 0 contribute to the sums.
Taking this into account, substituting explicit expressions for the eigenfunctions
using equation 8.4 and taking all terms for l = 0 out of the sum to get rid of the
case distinctions leads to the final result for integral I:

I =
c

L
+

∞∑
l=1

2
lπ

sin
(
lπ

L
c

)
cos

(
lπ

L
y

)
e−Dλlt (8.12)

Integral II

Substituting the heat kernel from equations 8.6 to 8.9 into integral II, switching the
order of integration and summation and doing some rearrangements of terms gives:

∞∑
k=0

∞∑
l=0

∞∑
m=0

ϕk(x)ϕl(y)ϕm(z)
∫ a

0

ϕk(ξ) dξ
∫ d

c

ϕl(η) dη
∫ L

0

ϕm(ζ) dζ e−D(λk+λl+λm)t

Using 8.11 for each integral in this expression and noticing that only terms with
m = 0 are non-zero leads to the following final expression for integral II:

II =
∞∑

k=0

∞∑
l=0

ϕk(x)ϕl(y)





√
2L

kπ sin
(

kπ
L a
)

√
1
La





︸ ︷︷ ︸
t1





√
2L
lπ sin

(
lπ
L d
)

√
1
L (d− c)





︸ ︷︷ ︸
t3

e−D(λk+λl)t

(8.13)
where the stacked notation in curly braces means that the upper expression is to be
used if the corresponding index variable (k or l) is > 0, the lower one if it is zero.

Integral III

Substituting the heat kernel from equations 8.6 to 8.9 into integral III, again switch-
ing the order of integration and summation and doing some rearrangements, one
finds:

∞∑
k=0

∞∑
l=0

∞∑
m=0

ϕk(x)ϕl(y)ϕm(z)
∫ L

b

ϕk(ξ) dξ
∫ d

c

ϕl(η) dη
∫ L

0

ϕm(ζ) dζ e−D(λk+λl+λm)t

Using 8.11 for each integral in this expression and noticing that only terms with
m = 0 contribute to the sum leads to the following final expression for integral III:

III =
∞∑

k=0

∞∑
l=0

ϕk(x)ϕl(y)




−
√

2L
kπ sin

(
kπ
L b
)

√
1
L (L− b)




︸ ︷︷ ︸
t2




√
2L
lπ sin

(
lπ
L d
)

√
1
L (d− c)




︸ ︷︷ ︸
t3

e−D(λk+λl)t

(8.14)

Integral IV

Substituting the heat kernel from equations 8.6 to 8.9 into integral IV and doing
the usual rearrangements gives:

68 CHAPTER 8. TESTS AND VALIDATION

∞∑
k=0

∞∑
l=0

∞∑
m=0

ϕk(x)ϕl(y)ϕm(z)
∫ L

0

ϕk(ξ) dξ
∫ L

d

ϕl(η) dη
∫ L

0

ϕm(ζ) dζ e−D(λk+λl+λm)t

Inserting explicit expressions for the eigenfunctions from 8.4 and again using equa-
tion 8.11 in its appropriate form and the fact that only for k = m = 0 all of the
three factors are non-zero, the final result for integral IV becomes:

IV =
L− d

L
−

∞∑
l=1

2
lπ

sin
(
lπ

L
d

)
cos

(
lπ

L
y

)
e−Dλlt (8.15)

Notice that the sum is to be taken starting from l = 1 rather than l = 0 since the
l = 0 terms have been explicitly taken out of the sum to get rid of case distinctions
(cf. also integral I).

Final solution and discussion

Now the final solution for u(x, t) is known from equation 8.10 by substituting all
integral expressions 8.12, 8.13, 8.14 and 8.15:

u(x, y, t) = c0 (I(y) + II(x, y) + III(x, y) + IV (y)) (8.16)

If is noteworthy that the exact solution to the test problem turns out to be in-
dependent of z. This is due to the zero flux Neumann boundary condition as it
allows free slip in directions tangential to the domain boundary ∂Ω. Dirichlet (no
slip) boundary conditions would in fact induce a z-dependence since the solution
would have to skew towards the two ends of the bleached box in order to maintain
u = 0 on ∂Ω. Using Neumann boundary conditions on the other hand, the concen-
tration front diffuses in orthogonal to ∂Ω and the solution will look the same on
all z-planes. This is no contradiction to the findings in [Sbalzarini (2001)] as the
apparent D values will be different in 2D and 3D since all moves parallel to the z
axis are missed by the observer. Nevertheless, the shape of the solution in 3D looks
the same on all z-planes. It will however not look the same as the 2D solution at
the same time. At different times though, the 2D and 3D solutions will in fact be
equal and it is exactly due to this time shift that the apparent diffusion constant is
different2

Numerical results and visualizations

The exact solution as given by equation 8.16 consists of an infinite series expansion in
a function space whose base functions are the eigenfunctions of Helmholtz’s equation
on the given domain Ω. In order to get useful results, a numerical evaluation of it
for certain locations in space and certain times is made. First implementations in
MATLAB turned out to be impracticable as the solution consists of double sums
which makes it O(M2) to be evaluated using M terms in the expansion. Therefore,
a Fortran program has been written to do the evaluation fast. The corresponding
source code is given in appendix C.1.2.1. The code is written to minimize its
execution time by pre-calculating as many terms as possible and using the fact that
the same terms appear in different places of the solution, e.g. t1, t2 and t3 as labeled
in equations 8.13 and 8.14. Moreover, it contains the compiler directives needed to
parallelize it on a vector processor.

2recall that the diffusion constant basically reflects the solution’s time scales for fixed lengths.

8.2. THE ANALYTIC SOLUTION 69

The solution is approximated on a regular cartesian grid with spacing δ in each
direction up to a certain number of terms in the series expansion and for discrete
time steps, thus:

u(x, y, t) ≈ ũ(xi, yj, tn)

where

xi = (i− 1)δ yi = (j − 1)δ

37
for i, j = 1, 2, 3, It turns out that taking 300 terms of the expansion is sufficient
to obtain a converged solution to machine precision. The program has been tested
to recover the initial condition for t ↓ 0. To be mathematically correct and to avoid
Gibbs oscillations (sharp corners in the initial condition !), the final code however
directly outputs the initial condition for t = 0 and only employs the series expansion
for t > 0. This is the mathematically correct way since to solution of a PDE is only
defined for t > 0 anyway.

To be able to check the boundary condition, the conservation of mass in the domain
Ω is considered. The total mass is hereby calculated as the sum of the masses of all
grid cells. A grid cell is defined as the parallelepiped between 4 grid points, thus:

Ci,j = {(i, j) : (i− 1)δ � x < iδ, (j − 1)δ � y < jδ}
and its mass m(Ci,j) is given by the concentration at its center times its volume
where the center concentration cc is taken to be the mean of the concentrations at
the surrounding grid vertices:

m(Ci,j , tn) = cc(tn)δ2

cc(tn) = 1
4 (ũ(xi, yj, tn) + ũ(xi + 1, yj, tn) + ũ(xi, yj + 1, tn) + ũ(xi + 1, yj + 1, tn))

110-116
This is the consistent way of evaluating the mass. Just taking the sum of ũ over all
grid points would not be sufficient (in fact, the results would be wrong).

In order to be able to get a reference FRAP curve, a corresponding output facility
is implemented in the code. The FRAP value at time tn is taken to be the mean
concentration in the bleached box B, thus:

F (tn) =
1

L3(B)

∑
(i,j)∈B

m(Ci,j , tn)

117
where L3(B) means the volume ofB. This is consistent with above way of evaluating
the mass and physically meaningful since the light intensity of the fluorescence
is proportional to the concentration of the fluorophore in the area in question.
Plotting F vs. t now approximates the exact FRAP curve of the test case to machine
precision.

For the concrete test case the numerical parameter values from [Sbalzarini (2001)]
are taken. Hence Ω is the cube of edge length 4 and the bleached box is B =
[2.0, 3.0] × [2.0, 3.0] × [0.0, 4.0]. The initial concentration in Ω \ B is chosen to be
unity, the diffusion coefficient is 0.03. For the numerical evaluation, a cartesian
41 × 41 grid is chosen and the solution is calculated on all grid points every 0.05 s.
Table 8.1 summarizes these problem parameters.

70 CHAPTER 8. TESTS AND VALIDATION

Parameter Value
a 2.0
b 3.0
c 2.0
d 3.0
L 4.0
c0 1.0
D 0.03
Grid 41 × 41
Time step 0.05
Number of terms 300

Table 8.1: Test case parameters

Figure 8.3 shows snapshots of the exact solution at times t = 0, t = 0.3, t = 1,
t = 5, t = 10 and t = 20. Figure 8.4 shows the reference FRAP curve F (tn). The
dashed blue line indicates the steady state value for t → ∞. Due to the no flux
boundary condition this is lower than 1 as Ω is initially not completely filled. Figure
8.5 shows the total mass inside Ω. As expected from the boundary condition, it
is conserved with an absolute error (due to the finite number of terms that have
been taken for the series expansion) of 10−14 which is comparable to the machine
epsilon. Moreover, a movie animation of the exact solution is available on volume
1 of the companion CD of this report (see appendix A).

0 0.5 1 1.5 2 2.5 3 3.5 4
x 0

0.5
1

1.5
2

2.5
3

3.5
4

y

0

0.2

0.4

0.6

0.8

1

z

t = 0.0

0 0.5 1 1.5 2 2.5 3 3.5 4
x 0

0.5
1

1.5
2

2.5
3

3.5
4

y

0

0.2

0.4

0.6

0.8

1

z

t = 0.3

0 0.5 1 1.5 2 2.5 3 3.5 4
x 0

0.5
1

1.5
2

2.5
3

3.5
4

y

0

0.2

0.4

0.6

0.8

1

z

t = 1.0

0 0.5 1 1.5 2 2.5 3 3.5 4
x 0

0.5
1

1.5
2

2.5
3

3.5
4

y

0

0.2

0.4

0.6

0.8

1

z

t = 5.0

0 0.5 1 1.5 2 2.5 3 3.5 4
x 0

0.5
1

1.5
2

2.5
3

3.5
4

y

0

0.2

0.4

0.6

0.8

1

z

t = 10.0

0 0.5 1 1.5 2 2.5 3 3.5 4
x 0

0.5
1

1.5
2

2.5
3

3.5
4

y

0

0.2

0.4

0.6

0.8

1

z

t = 20.0

Figure 8.3: Snapshots of the exact solution at different times

8.3. A FINITE DIFFERENCE CODE 71

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30

F
R

A
P

time

Figure 8.4: Analytic FRAP curve
(red) with asymptote 0.9375 (blue)

14.99

14.992

14.994

14.996

14.998

15

15.002

15.004

15.006

15.008

15.01

0 5 10 15 20 25 30

m
as

s

time

Figure 8.5: Total mass for analytic
solution

8.3 A finite difference code

To double-check the exact solution derived in section 8.2 and to have an additional
benchmark for the PSE simulation code, a simple high resolution finite difference
code is implemented for the test case presented in section 8.1.

To keep the possibility of programming errors as low as possible, the standard
CRAYFISHPAK library3 version 2.0 is used. This library contains fast solvers for
the non-homogeneous linear Helmholtz equation:

∇2u+ λu = f

Doing an implicit Euler time discretization of the diffusion equation leads to Helm-
holtz’s equation for un+1 as follows:

∂u

∂t
= D∇2u

Euler: un+1 = un +Dδt∇2un+1

⇒ ∇2un+1 − 1
Dδt

un+1 = − 1
Dδt

un

Solving Helmholtz’s equation with λ = −(Dδt)−1 and f = λun for the new solution
un+1 in every time step thus corresponds to solving the diffusion equation with
implicit time stepping.

Neumann zero flux boundary conditions are taken on all 6 walls of the cubic compu-
tational domain Ω, which is reflected by boundary condition type 3 and boundary
value 0 in CRAYFISHPAK. To set the initial condition given in equation 8.1, an
initialization routine (H3GCIS in this case) is called once. Inside the time loop, the
fast solver H3GCSS for regular cartesian 3D grids is called repeatedly. The complete
Fortran source is given in appendix C.2.2.1.

The test case is run with the geometry parameters given in table 8.1 on a regular
cartesian 81 × 81 × 81 mesh with time step δt = 0.005 and D = 0.03. Figure 8.6
shows the resulting FRAP curve in comparison to the one of the exact solution.
It can be seen that the finite difference code stays below the exact solution due
to numerical dissipation. The total mass in the domain is again calculated as the
sum of the masses of all grid cells where the mass of a grid cell is defined to be
the concentration at its center times its volume. The concentration at the center is

3Commercial library by Green Mountain software, Madeira Beach, FL.

72 CHAPTER 8. TESTS AND VALIDATION

taken to be the mean value of the concentrations of the 8 surrounding grid vertices
(cf. section 8.2). As a check, figure 8.7 shows the total mass vs. time. It is conserved
up to an absolute error of 10−9 which reflects the no flux boundary condition very
well.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30

F
R

A
P

time

Figure 8.6: FRAP curve of FD code
(red) compared to exact solution
(blue)

59.58

59.582

59.584

59.586

59.588

59.59

59.592

0 5 10 15 20 25 30

m
as

s

time

Figure 8.7: Total mass for the FD
code

The discretisation used is first order in time and second order in space and fails
to recover the error introduced by the very steep gradients of the initial condition.
This can be seen when running it with starting time t0 = 0.1 rather than from the
beginning. The initial condition given by equation 8.1 is now replaced with the exact
solution at time t0. Since this is smooth, the finite difference code now performs
very well indicating that the error observed in figure 8.6 indeed stems from the
initial condition. Figure 8.8 shows the corresponding FRAP curve in comparison to
the exact solution and the FRAP curve obtained when starting at t0 = 0. Figure
8.9 shows the total mass vs. time, which is conserved within an absolute error of
10−9 again.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30

F
R

A
P

time

Figure 8.8: FRAP curve of FD start-
ing at t0 = 0.1 (red) compared to ex-
act solution (green) and FD starting
at t0 = 0 (blue)

59.9999

60

60

60.0001

60.0001

0 5 10 15 20 25 30

m
as

s

time

Figure 8.9: Total mass for FD code
starting at t0 = 0.1

As the time discretization is implicit, it is possible to use very large time steps,
exceeding the CFL limit4 of the problem and still getting a bounded solution. To
check this, the previous run is repeated with δt = 1.0 which is about two orders of
magnitude larger than the CFL limit δt < δx2

2D = 0.041667 It can be seen from
figure 8.10 that the solution indeed is bounded and does not deviate grossly from
the previous one. The mass is still conserved up to an absolute error of 10−9.

4stating that 2Dδt/δx2 � 1 for x ∈ �n

8.4. VALIDATION OF RANDOM WALK AND PSE 73

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30

F
R

A
P

time

Figure 8.10: FRAP curve for δt =
1.0 (red) compared to FRAP curve
for δt = 0.005 (green) and exact so-
lution (blue)

59.58

59.582

59.584

59.586

59.588

59.59

59.592

0 5 10 15 20 25 30

m
as

s

time

Figure 8.11: Total mass vs. time for
the large time step δt = 1.0

8.4 Validation of random walk and PSE

In order to validate the PSE simulation method as described in section 7.2 as well
as the random walk method outlined in section 7.1, they are applied to the test case
introduced in section 8.1, again using the numerical parameter values given in table
8.1. Furthermore, comparative timings for the PSE and the random walk method
are made to estimate their performance.

Recall that the FRAP value is the normalized mean concentration in the bleached
box. Since the particles in a PSE simulation carry mass as their strength, it is
simply the sum of the strengths of all the particles in the bleached box divided by
the volume of the bleached box, thus:

F (tn) =
1

L3(B)

∑
p∈B

vh
p c

h
p(tn) =

1
#{p : p ∈ B}

∑
p∈B

chp(tn)

since all the particles have the same volume and they completely fill the bleached
box. Figure 8.12 shows a comparison of the FRAP curves from the analytic so-
lution (green) and the one obtained with the PSE algorithm (red). For the PSE,
64000 particles have been used, placed on a regular cartesian grid with grid spacing
0.1. The core size of the particles is determined from the following convergence
requirement:

h

ε
< overlap

where h is the inter-particle spacing (thus 0.1) and the overlap parameter is set to
0.9, which means that the particles are required to always overlap by at least 11%
of their core size. Evaluating this expression gives ε > 1/9, so it is set to ε = 0.1118
giving ε2 = 0.0125. The simulation is run for T = 600 time steps with a step size
of δt = 0.05 which is smaller than the time integration stability requirement

δt <
h2

2D
≈ 0.16667 . . .

with the diffusion constant D = 0.03 and the inter-particle spacing h = 0.1.

A very good coincidence of the FRAP curves of the PSE algorithm and the exact
solution can be observed even for small times. For times larger than 4 they hardly
differ, resulting in a relative error of −5.64 ·10−4 at time 30. This is about 20 times

74 CHAPTER 8. TESTS AND VALIDATION

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30

F
R

A
P

time

Figure 8.12: PSE FRAP curve (red) compared to analytic curve (green) and finite
difference result (blue). The asymptotic value 0.9375 is shown in pink

better than the finite difference result with a relative error of −1.10 · 10−2 (blue
curve). Both curves stay below the analytic one due to numerical dissipation.

The RMS error is defined as:

ERMS =

√√√√ 1
T

T∑
n=1

(F (tn) − F ∗(tn))

where F (tn) is the simulated FRAP value at time tn = (n − 1)δt, F ∗(tn) is the
exact value from the analytic solution at the same time and T is the number of
time steps. For the PSE, an RMS error value of ERMS = 5.705 · 10−3 results and
for the finite difference code one of ERMS = 2.131 · 10−2, again about an order of
magnitude worse. Figure 8.13 shows snapshots of the PSE simulation at different
times. The visualizations have been done using the techniques described in section
7.3.

Figure 8.14 shows the comparison between the FRAP curves of the random walk
code and the analytic solution. The random walk has been simulated using 106

particles initially placed at random locations. It is run for 4000 time steps with
a step size of δt = 0.005. However, since the random walk code simply outputs
the relative number of particles in the bleached box whereas the analytic curve
reflects the mean concentration, some post processing is needed to make the outputs
comparable. LetN be the total number of particles in a random walk simulation and
p the unknown mass (or strength) per particle. Due to the fact that the volume
of the bleached box is 1/16 of the total volume of the cubic domain, the initial
concentration outside the bleached box is given by:

c0 =
16 ·Np
15 · V

8.4. VALIDATION OF RANDOM WALK AND PSE 75

t = 0.05 t = 0.25

t = 1.5 t = 5.0

Figure 8.13: Snapshots of concentration distribution for a PSE simulation of the
box test case

with V being the total volume of the domain. As c0 = 1.0 by construction of the
problem, this can be solved for p. The instantaneous mean concentration (thus the
FRAP value) in the bleached box is then given by:

c(t) =
16 ·NB(t)p

V
= 15 · c0NB(t)

N

where NB(t) denotes the number of particles in the bleached box. Therefore, the
output of the random walk code NB/N has to be multiplied by 15 before comparing
it to any other FRAP curve. It can be seen from figure 8.14 that the random walk
curve follows the one of the analytic solution pretty well resulting in a relative
error of 4.66 · 10−3 at time 20 which is about 3 times less than the finite difference
code with a relative error of −1.41 · 10−2. The RMS error for the random walk is
3.976·10−3, thus of comparable accuracy as the PSE. The random walk results could
be further improved by performing several runs and subsequent ensemble averaging
to obtain smoother FRAP curves.

Another disadvantage of the random walk method besides the missing smoothness of
the results is its slow convergence for increasing numbers of particles. According to
[Cottet & Koumoutsakos (2000)], the error of a random walk simulation decreases
like

√
N if the number of particles N is increasing. Thus an increase in the number

of particles by a factor of 10 will only reduce the error by a factor of about 3 as
can be seen from the RMS error values in table 8.2. The PSE on the other hand
converges with N2 meaning that an increase in the number of particles by a factor

76 CHAPTER 8. TESTS AND VALIDATION

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30

F
R

A
P

time

Figure 8.14: Random walk FRAP curve (red) compared to analytic curve (green)
and finite difference result (blue). The asymptotic value 0.9375 is shown in pink

of 10 will reduce the error by a factor of 100. Figure 8.15 shows the FRAP result
for a random walk run with 104 particles and figure 8.16 for one with 105 particles.
Figure 8.14 has been created using 106 particles. Despite their variance, the means
of all curves follow the exact solution quite well, indicating that the random walk
code works correctly.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30

F
R

A
P

time

Figure 8.15: Random walk FRAP
curve with 10000 particles (red) com-
pared to analytical solution (green)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30

F
R

A
P

time

Figure 8.16: Random walk FRAP
curve with 100000 particles (red)
compared to analytical solution
(green)

To further compare the PSE and random walk methods, timings are made. Both
codes are compiled (using maximum optimization -O3 -fast and the Portland
Group Fortran 90 compiler) and run on the same machine, a 1.4GHz AMD Athlon

8.4. VALIDATION OF RANDOM WALK AND PSE 77

Run RMS error
Random walk, N = 104 0.02896
Random walk, N = 105 0.01076
Random walk, N = 106 0.003976
Finite difference 0.02131
PSE, N = 64000 0.005708

Table 8.2: RMS error comparison

yielding 2792 MIPS5. Table 8.3 summarizes the results. The first two PSE runs
with 64000 particles have been performed with an inter-particle spacing of 0.1 and
a particle core size of 0.1118, just as before. The difference is that for the first run
the code was compiled in its serial version whereas for the second run, the parallel
version including MPI has been used, although run on single processor. It can be
seen that the communication overhead added by MPI amounts to about 2.25 s per
time step. Therefore, running in parallel is only useful for problems at least as large
as this test case.

Run CPU time per time step
PSE without MPI, N = 64000 3.888 s
PSE with MPI, N = 64000 6.141 s
PSE without MPI, N = 10648 0.783 s
Random walk, N = 105 0.494 s
Random walk, N = 106 5.149 s
Random walk, N = 107 57.024 s

Table 8.3: Comparative timings

The first random walk run with 105 particles is faster than the PSE but cannot
be used without averaging, which makes more than one run necessary. The second
run with 106 particles is comparable to the PSE method in accuracy but already
slower than its serial version. The last run with 107 particles finally is about 15
times slower than the PSE.

In addition to this, it can be seen that the time needed for the random walk scales
almost linearly with the number of particles used. The PSE even scales sub-linear
due to the small number of particles compared to the computational cost of all
auxiliary and bookkeeping routines.

Taking all the results of this chapter into account leads to the decision that for the
simulations to come, the PSE is the algorithm of choice. The random walk will not
be used any further due to the following disadvantages:

• It is slower than the PSE at comparable accuracy

• Due to its
√
N convergence, the number of particles needed to simulate dif-

fusion in a full ER exceeds 1010 thus breaking all computer memory limits.
(fewer particles can be used if several runs are performed and averaged but
this will again cost time.)

• The random walk code is, at the current stage of development, not parallelized,
excluding the (necessary) use of distributed memory machines.

5Million instructions per second. Determined using the Linux kernel time calibration loop

78 CHAPTER 8. TESTS AND VALIDATION

• The geometry handling is the random walk code is not optimized. Thus the
code is O(TNM) where M is the number of triangles in the surface, N the
number of particles and T the number of time steps. This should be compared
to the PSE for which an optimized geometry preprocessor has been written
making it O(TN logN +N logM).

Random walk nevertheless has been applied by [Ölveczky & Verkman (1998)] and
[Sbalzarini (2001)] to the problem studied in this work and if future work makes the
use of sources, sinks, tubes or separator planes necessary, one would have to revert
to random walk simulations, optimizing the algorithm wherever possible.

Chapter 9

FRAP simulations

9.1 PSE simulations in all ER samples

In this chapter, the PSE simulation method as described in section 7.2 will be
applied to the simulation of diffusion in reconstructed ER geometries (cf. chapter
2). The random walk code will not be used hereafter for the reasons mentioned at
the end of section 8.4. The only difference to the PSE simulations conducted for
the text case in section 8.4 emerges from the fact that the bleached area is no longer
a box but rather the set intersection of a box with the space Ω enclosed by the ER
membrane. Thus we define the bleached area as:

A = B ∩ Ω

and the FRAP value is calculated as:

F (tn) =
1

L3(A)

∑
p∈A

vh
p c

h
p(tn) =

1
#{p : p ∈ A}

∑
p∈A

chp(tn)

This definition includes the box test case in the limit A = B. To initialize the
particles, all ER samples are preprocessed as described in section 7.2.5. As we wish
to simulate a FRAP experiment, the proper initial condition is given by:

ch0 (x) =
{
c0 if x ∈ int(Ω) \A
0 if x ∈ A

(9.1)

Without loss of generality, the constant initial concentration outside the bleached
are is chosen to be c0 = 1 as this simply corresponds to normalizing the FRAP
curves. Figure 9.1 shows the initial particle distributions for all the ER samples
considered. The blue points symbolize particles of initial concentration 1, the red
points those of initial concentration 0 (i.e. those inside A). The assumption of a
homogeneous initial concentration distribution outside the bleached area A seems
feasible due to the following facts:

1. After transfection, the cells are incubated for 12 hours. During this time they
express the green fluorescent protein which freely diffuses in the ER lumen
and fills it completely. The time scale of diffusion is about 5 s. Therefore a
homogeneous distribution inside the ER can be assumed after 12 hours.

2. The experimenter chooses “sane” cells, i.e. cells which exhibit homogeneous
fluorescence and do neither under- nor over-express the protein.

3. The pixel intensities of the pictures taken from the microscope are normalized
to the level of homogeneous concentration before any FRAP data is calculated.

79

80 CHAPTER 9. FRAP SIMULATIONS

150

200

250

300

350

400

450

0 50 100 150 200 250 300 350 400 450 500 550

y
 [

0.
1

um
]

x [0.1 um]

bip2

100

150

200

250

300

350

400

450

500

100 150 200 250 300 350

y
 [

0.
1

um
]

x [0.1 um]

clx

100

150

200

250

300

350

400

100 150 200 250 300 350 400 450 500 550

y
 [

0.
1

um
]

x [0.1 um]

erp57

100

150

200

250

300

350

400

450

500

550

50 100 150 200 250 300 350 400 450

y
 [

0.
1

um
]

x [0.1 um]

erp572

0

50

100

150

200

250

300

350

200 250 300 350 400 450 500 550

y
 [

0.
1

um
]

x [0.1 um]

erp573 1

100

150

200

250

300

350

400

450

500

550

50 100 150 200 250 300

y
 [

0.
1

um
]

x [0.1 um]

erp573 2

0

50

100

150

200

250

300

350

400

450

500

550

150 200 250 300 350 400 450 500 550

y
 [

0.
1

um
]

x [0.1 um]

erp573 3

200

250

300

350

400

450

500

-50 0 50 100 150 200 250 300 350 400 450

y
 [

0.
1

um
]

x [0.1 um]

erp574 1

9.1. PSE SIMULATIONS IN ALL ER SAMPLES 81

80

100

120

140

160

180

200

220

240

260

280

150 200 250 300 350 400 450 500 550

y
 [

0.
1

um
]

x [0.1 um]

erp574 2

Figure 9.1: Initial particle distributions for all ER samples. Blue points correspond
to particles of concentration 1, red points of those of concentration 0.

Please refer to figure 5.10 in section 5.3 for shaded surface views of the geometries.
The bounding boxes of all the samples are given in table 9.1 and table 9.2 states the
geometries of the bleached boxes used. All boxes are of the form [a, b]×[c, d]×[zl, zh]
(recall that the actual bleached area is the set intersection of the bleached box and
the effective ER geometry).

Sample xl yl zl xh yh zh

bip2 43.6768 171.4180 −1.7248 512.7590 421.4890 17.3869
clx 122.9590 99.3180 −2.0038 344.7140 477.0080 17.3165
erp57 142.7870 112.7570 −2.0900 513.4100 362.9470 15.5391
erp572 54.8070 102.2590 −1.8534 414.2720 512.7500 17.2687
erp573 1 225.6450 42.7788 −1.8912 513.1250 339.9230 18.3436
erp573 2 70.3277 131.2920 −1.9464 292.5250 512.5840 17.8942
erp573 3 160.5760 34.8480 −1.9580 512.8440 513.3540 17.9499
erp574 1 −1.5552 215.3650 −2.1574 419.5930 458.9890 30.0631
erp574 2 152.2640 90.8761 −2.0212 512.4500 270.2680 30.2559

Table 9.1: Bounding boxes of all ER sample domains

Sample a c b d

bip2 210.0 360.0 260.0 410.0
clx 175.0 125.0 225.0 175.0
erp57 190.0 260.0 240.0 310.0
erp572 250.0 125.0 300.0 175.0
erp573 1 230.0 90.0 280.0 140.0
erp573 2 225.0 450.0 275.0 500.0
erp573 3 300.0 400.0 350.0 450.0
erp574 1 300.0 385.0 350.0 435.0
erp574 2 270.0 95.0 320.0 145.0

Table 9.2: Positions and sizes of the bleached boxes B

All PSE simulations are run for the same value of the diffusion constant D = 7.5
in order to be able to study the influences of geometry. Running at a different
diffusion constant would simply correspond to stretching the time axis accordingly.

82 CHAPTER 9. FRAP SIMULATIONS

This can be seen when recalling that all possible solutions to the diffusion equation
are linear combinations of its elementary solution (i.e. its Green’s function). This
elementary solution is given by:

K(x, ξ, t) =
1

(4πDt)n/2
exp

[
− (x− ξ)2

4Dt

]

and only contains Dt as a product pair. Enlarging D by a certain factor and at
the same time reducing t by the same factor therefore leaves its function value
unchanged. Since diffusion is a linear problem, this applies not only to the single
elementary solutions but also to any linear combination of them, thus to all solutions
to the diffusion equation. Performing a diffusion run at 2 ·D is therefore the same
as running at D and replacing t by 1/2 · t.
The initial inter-particle spacings in x, y and z direction (termed h1, h2 and h3,
respectively) are chosen according to the geometrical resolution desired. Since the
domains are quite flat compared to their x and y extensions (cf. table 9.1), the
particles are placed denser in the z direction to have enough resolution. x and y
spacings are chosen so as to be smaller than the smallest occurring triangle edge.
This is recommended to resolve the whole geometry as described by the triangulated
surface and to increase the accuracy of the boundary condition handling1. Table 9.3
summarizes the particle grid spacings and the resulting total numbers of particles
for the different simulation runs.

Sample h1 h2 h3 N

bip2 2.0 2.0 0.4 493850
clx 2.0 2.0 0.4 488054
erp57 2.0 2.0 0.4 509578
erp572 2.0 2.0 0.4 545859
erp573 1 2.0 2.0 0.4 473466
erp573 2 1.3 2.0 0.4 495373
erp573 3 2.0 2.0 0.4 335480
erp574 1 2.0 1.7 0.4 481922
erp574 2 2.0 1.6 0.4 504770

Table 9.3: Inter-particle spacings and total numbers of particles

The time step for all the simulations is chosen according to the time integration re-
quirement requirement (see [Zimmermann, Koumoutsakos & Kinzelbach (2001)]):

δt <
mini=1,2,3 h

2
i

2D

where hi stands for the inter-particle spacing in the ith direction. As the smallest
occurring inter-particle spacing is 0.4 for all simulations and D is constant as well,
a time step of δt = 0.01 < 0.01067 . . . is chosen for all runs. All simulations are run
for T = 2000 time steps to a final time of tfinal = 20.0. The PSE kernel function’s
core size is determined using the requirement:

ε >
maxi=1,2,3 hi

overlap
1If the particles are too far apart, the core size ε becomes large and it will eventually be the

case that boundary image particles of one part of the domain overlap with real particles of another
part or – put differently – that particles in one ER filament directly interact with those in another
one.

9.1. PSE SIMULATIONS IN ALL ER SAMPLES 83

with overlap � 1, this is a generalized version of the requirement stated in section
7.2.1. For safety reasons, we choose overlap = 0.901 for all simulations. As the
maximum occurring inter-particle distance is 2.0 for all samples, the core size is
chosen to be ε = 2.222 for all runs. Table 9.4 summarizes the parameters that are
common to all simulations of this chapter.

Parameter ε δt D tfinal

Value 2.222 0.01 7.50 20.0

Table 9.4: Common parameters for all PSE runs

In order to be able to compare the FRAP curves of the simulation runs amongst
each other, they are normalized to their respective steady-state value. Since the
bleached areas of the different ER samples contain different numbers of particles
and the total number of particles also varies, the different FRAP curves will have
different asymptotic levels as t→ ∞. This is the case due to the no-flux boundary
condition2 and the fact that the total mass in the domain is conserved. Initially,
the total mass in the system is given by:

mt =
N∑

p=1

vpc
h
p = vp(N −NB)

where NB = #{p : p ∈ B} = #{p : p ∈ A} is the number of particles inside the
bleached area. The last equality makes use of the initial condition as given by equa-
tion 9.1. The asymptotic value of the concentration is now given by homogeneously
distributing this mass among all the particles, thus:

c∞ =
mt

Nvp
=
N −NB

N

Table 9.5 lists the values for the ER samples under consideration. The gap between
the asymptotic FRAP value and the pre-bleach level (1 in this case) is called im-
mobile fraction in biology. It is observed due to the no-flux boundary condition,
the conservation of mass and the finiteness of the domain. In fact, the simulations
conducted in this chapter have an average immobile fraction of 2.48%, which is in
nice coincidence with the experimentally observed 2 to 3% by Anna Mezzacasa.

Another interesting property to consider is the volume-filling coefficient of the ER
geometry in the bleached box. This number is the fraction of the bleached box’s
volume that is actually taken up by the ER lumen (i.e. is filled with particles). It
is formally defined as:

φ0 =
L3(Ω ∩B)
L3(B)

For the box test case considered in section 8.4, this value is φ0 = 1 by definition as
the domain Ω and its bounding box are identical. For the ER geometries however,
this is no longer the case and the volume-filling coefficient can be approximated as:

φ0 =
NB

Ng
=

h1 · h2 · h3 ·NB

(b− a) (d− c) (zh − zl)

where Ng stands for the number of grid points inside the bleached box B. The
values for all the ER samples are also listed in table 9.5. It can be seen that the ER

2This is the biologically correct boundary condition since ER lumen proteins do not sponta-
neously cross the ER membrane.

84 CHAPTER 9. FRAP SIMULATIONS

typically fills about 1/3 of the space in the area where the bleaching takes place.
The effects of geometry on diffusion are therefore expected to be significant since
diffusion is not free in space but restricted to about 1/3 of it.

Sample N NB Ng c∞ φ0

bip2 493850 11892 29375 0.9759 0.4048
clx 488054 12195 30000 0.9750 0.4065
erp57 509578 6396 27500 0.9874 0.2326
erp572 545859 7767 29375 0.9858 0.2644
erp573 1 473466 9950 31250 0.9790 0.3184
erp573 2 495373 12904 46550 0.9740 0.2772
erp573 3 335480 15942 30625 0.9525 0.5206
erp574 1 481922 12177 58000 0.9747 0.2099
erp574 2 504770 23284 62000 0.9539 0.3755

Table 9.5: Asymptotic FRAP values and volume-filling coefficients

Having now all the preliminary information, the simulation results can be discussed.
Figure 9.2 shows the resulting FRAP curves for all ER samples using the bleached
box geometries given in table 9.2. All curves are normalized using their respective
c∞ out of table 9.5. Therefore, they all asymptotically recover to 1.0 what makes
them comparable. Figure 9.3 shows all 9 normalized FRAP curves in a single plot.
As expected, they differ due to geometry influences (recall that all simulations have
been done using the same diffusion constant).

As already mentioned, a way to check if the boundary condition is treated well is
to consider the total mass in the system versus time. It turned out that for all
runs presented in this chapter, the total mass is conserved to machine precision
(plots are therefore omitted). This is possible due to the fact that (i) the particle
discretization of the Laplacian chosen in section 7.2.2 is conservative and (ii) the
geometrical resolution and curvature have been taken into account when choosing
the inter-particle spacings and the PSE kernel core size (i.e. the cut-off).

Figure 9.5 finally shows a comparison between the FRAP curves of the box test case
(drawn in red) and of the ER sample erp574 2 (in blue). Fluorescence recovery is
clearly faster for the box since diffusion is free and not limited to certain geometrical
structures. The half-recovery time for the ER sample is about 3 times the one for
the box test case. This is consistent with above observation that the typical volume-
filling coefficient is 1/3. Both curves have again been normalized by their asymptotic
value, so they ultimately recover to 1.0.

Figure 9.4 shows snapshots of the concentration distribution from the simulation
in the erp572 sample at times t = 0.25, 1.5, 3.0 and 5.0. They have been created
according to the techniques described in section 7.3. The concentration in a slice
through the center of the ER parallel to the xy-plane is plotted in the third direction
and color coded. The area of interest around the bleached box is enlarged.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 5 10 15 20

F
R

A
P

time

bip2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 5 10 15 20

F
R

A
P

time

clx

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 5 10 15 20

F
R

A
P

time

erp57

9.1. PSE SIMULATIONS IN ALL ER SAMPLES 85

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 5 10 15 20

F
R

A
P

time

erp572

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 5 10 15 20

F
R

A
P

time

erp573 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 5 10 15 20

F
R

A
P

time

erp573 2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 5 10 15 20

F
R

A
P

time

erp573 3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 5 10 15 20

F
R

A
P

time

erp574 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 5 10 15 20

F
R

A
P

time

erp574 2

Figure 9.2: Simulated normalized FRAP curves for all ER samples.

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

time

F
R

A
P

bip2
clx
erp57
erp572
erp573_1
erp573_2
erp573_3
erp574_1
erp574_2

Figure 9.3: Comparison of all normalized FRAP curves

86 CHAPTER 9. FRAP SIMULATIONS

t = 0.25 t = 1.5

t = 3.0 t = 5.0

Figure 9.4: Snapshots of concentration distribution for erp572 PSE simulation

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20

F
R

A
P

time

Figure 9.5: Comparison of box test case (red) and erp574 2 (blue)

9.2. INFLUENCE OF BLEACHED BOX GEOMETRY 87

9.2 Influence of bleached box geometry

It is expected that not only the geometry of the domain (i.e. the ER) influences the
resulting FRAP curve but also the position and size of the bleached box. Fluorescent
proteins that diffuse into the bleached area have to pass certain apertures defined
by the intersection of the bleached box’s surface and the ER membrane. These
apertures change in size and (possibly) number if the intersecting planes are shifted.
To investigate this, additional simulations are performed. All of them are to use
the same ER sample geometry, namely erp572. All simulation parameters except
the bleached box geometry are kept the same as for the original run in this sample
(cf. section 9.1). The new runs will be termed erp5722, erp5723 and erp5724. Table
9.6 contains the corresponding bleached boxes, figure 9.6 shows the initial particle
distributions. All relevant information of the original erp572 run is restated to allow
convenient comparisons. Compared to the original run (see figure 9.6a), the first
two have their bleached box placed at a different location. For the third one both
the location and the size of the bleached box are changed as its edge length is 75
instead of 50.

100

150

200

250

300

350

400

450

500

550

50 100 150 200 250 300 350 400 450

y
 [

0.
1

um
]

x [0.1 um]

a) erp572

100

150

200

250

300

350

400

450

500

550

50 100 150 200 250 300 350 400 450

y
 [

0.
1

um
]

x [0.1 um]

b) erp5722

100

150

200

250

300

350

400

450

500

550

50 100 150 200 250 300 350 400 450

y
 [

0.
1

um
]

x [0.1 um]

c) erp5723

100

150

200

250

300

350

400

450

500

550

50 100 150 200 250 300 350 400 450

y
 [

0.
1

um
]

x [0.1 um]

d) erp5724

Figure 9.6: Initial particle distributions for different bleached box geometries. Blue
points correspond to particles of concentration 1, red points to those of concentra-
tion 0.

88 CHAPTER 9. FRAP SIMULATIONS

Run a c b d

erp572 250.0 125.0 300.0 175.0
erp5722 80.0 300.0 130.0 350.0
erp5723 350.0 200.0 400.0 250.0
erp5274 225.0 125.0 300.0 200.0

Table 9.6: Comparison of bleached box geometries

Table 9.7 shows the steady-state FRAP values for all runs. The FRAP curves
will again be normalized by c∞ to be able to compare the influences of geometry.
Figure 9.7 shows the resulting normalized FRAP curves from all four runs. In
accordance with the theoretical predictions of [Axelrod et al. (1976)], it can be seen
that position and size of the bleached box indeed do have a significant influence
on the result. It seems that fluorescence recovers slower for the same value of the
diffusion constant if the bleached box is larger (this would make sense as the distance
a particle has to travel is larger, too). When developing new models in chapter 11,
this fact will become important.

Sample N NA c∞
erp572 545859 7767 0.9858
erp5722 545859 6459 0.9882
erp5723 545859 7447 0.9864
erp5724 545859 16886 0.9691

Table 9.7: Asymptotic FRAP values for the different bleached box geometries

0

0.1

0.2

0.3

0.4

0.5

0.6

0 5 10 15 20

F
R

A
P

time

Figure 9.7: Comparison of normalized FRAP curves for different bleached box
geometries. (red: erp572, green: erp5722, blue: erp5723, black: erp5724)

9.3. TIMINGS AND PARALLEL SPEED-UP ESTIMATION 89

9.3 Timings and parallel speed-up estimation

As the PSE simulation code is parallelized using MPI, it is insightful to conduct
some benchmark runs on different parallel machines to get comparative speed-up
figures. The two computers used are:

• asgard: A distributed memory machine of type Beowulf running SuSE Linux
6.3 (kernel 2.2.14-SMP) and MPICH 1.2.1. It consists of 251 nodes with 2
Intel Pentium III 500MHz processors and 1GB main memory each, making a
total number of 502 processors, interconnected by a 100MBit/s fast Ethernet.
The theoretical peak performance is 550MFLOPS per processor.

• prometeo: A shared memory NEC SX-5/10A vector supercomputer running
SUPER-UX R11.1 and MPI/SX 6.3.0. It has 10 processors sharing 64GB of
main memory. The peak performance is 8 GFLOPS per processor.

PSE simulations of the ER sample erp572 (545859 particles) are run for 20 time
steps with a step size of δt = 0.01 on both machines using different numbers of
processors. The time measurement on asgard is done using the MPI Walltime call,
on prometeo, the system’s tracing facility is used. When more than one processor
is used, the timing for the slowest one is reported since this is the speed-limiting
factor (all other processors will have to wait for the slowest one before a new time
step can be started). Tables 9.8 and 9.9 give the measured elapsed time per time
step for the PSE calculations, excluding all I/O and auxiliary routines. The third
column lists the speed-up figures as defined by:

S(n) =
tE(1)
tE(n)

(9.2)

where tE(n) means the execution time on n processors. The last column gives the
parallel speed-up efficiency:

e(n) =
S(n)
n

number of processors seconds per time step speed-up parallel efficiency
1 545.928
2 282.319 1.934 96.7%
4 241.087 2.264 56.6%
8 238.932 2.285 28.6%
16 194.855 2.802 17.5%
32 127.988 4.265 13.3%
64 63.994 8.531 13.3%

Table 9.8: Parallel scalability on asgard

number of processors seconds per time step speed-up parallel efficiency
1 37.327
2 19.542 1.910 95.5%
4 13.977 2.671 66.8%
6 11.723 3.184 53.1%

Table 9.9: Parallel scalability on prometeo

90 CHAPTER 9. FRAP SIMULATIONS

Figure 9.8 visualizes the timing results for asgard in a log-lin plot. Figure 9.9 shows a
plot of the parallel speed-up as defined by equation 9.2 vs. the number of processors.
The dashed blue curves indicate the ideal levels for perfect scalability. Figures 9.10
and 9.11 show the same for prometeo. It can be seen that both machines scale almost
perfectly when going from 1 to 2 processors. Using a higher number of processors
on asgard does not really improve things any more until going above 16 CPUs. On
prometeo, a more or less steady speed-up is observed even for 4 and 6 processors.
This is suspected to be caused by the fact that asgard is a distributed memory
machine whereas prometeo has a shared memory architecture. MPI communication
on asgard has to pass the slow and potentially congested Ethernet links, on prometeo
it just consists of copying within the main memory. Therefore it can be assumed that
MPI does not add any significant overhead to the program on prometeo (see tracing
results below), on asgard however it does. This accounts for the different scaling
behavior of the two machines. To explain the deviation from the blue optimum line
even on prometeo, one has to consider the quality of load balancing.

0

100

200

300

400

500

600

1 10 100

se
co

nd
s

pe
r

tim
es

te
p

number of processors

Figure 9.8: CPU time per time step
for asgard (red) vs. ideal line (blue)

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60 70

sp
ee

d-
up

number of processors

Figure 9.9: Parallel speed-up on as-
gard (red) compared to ideal speed-
up (blue)

0

5

10

15

20

25

30

35

40

1 10

se
co

nd
s

pe
r

tim
es

te
p

number of processors

Figure 9.10: CPU time per time step
for prometeo (red) vs. ideal line
(blue)

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7

sp
ee

d-
up

number of processors

Figure 9.11: Parallel speed-up on
prometeo compared to ideal speed-
up (blue)

The goal of load balancing is to equally distribute the amount of work to be done
among a certain number of processors. If one processor gets assigned more work
than its colleagues, they will have to sit idle and wait for it at the end of the time
step when the results are communicated.

9.3. TIMINGS AND PARALLEL SPEED-UP ESTIMATION 91

One parameter to measure the quality of load balancing is the load distribution
coefficient:

� =
maxi ti
mini ti

i = 1, . . . , n

where ti is the time spent on processor i out of n. Perfect load balancing would thus
result in value of � = 1. Table 9.10 lists the numbers for prometeo. In fact, the load
balance is almost perfect for 2 processors but then deteriorates rapidly. Already
using 6 processors causes an imbalance of a factor of 10. This explains the speed-up
curve shown in figure 9.11. Consider the following snapshot of total execution time
(i.e. for all 20 time steps) on two neighboring processors of the 4 processor case:

processor pse diag
--

1 103.682 sec 175.214 sec
2 279.548 sec 0.248 sec

It is noticeable that the difference of the two numbers for the pse routine pretty
much corresponds to the time spent in diag on the first processor. diag is the
subroutine that is called directly after pse and that collects the results from the
different processors to calculate the diagnostics (e.g. the FRAP value). It is there-
fore the first MPI communication call after the PSE calculation. Above figures show
that processor 1 – which gets assigned less work and therefore completes the PSE
earlier – has to wait for the results of processor 2 to arrive, thus spending a lot of
idle CPU time in the subroutine diag which normally only takes about 0.2 s.

The reason for such a poor load balance is the use of MPI’s built-in cartesian
domain decomposition routines. They only take into account the edge lengths of
the bounding box but not the particle densities. Since the bounding box of the
present ER problem is very flat compared to its x and y dimensions (cf. table
9.1) and the particles are not homogeneously distributed inside it (but only where
there is ER geometry), this is not a good way to decompose the domain. Some
processors might not get any particles at all while others might have densely filled
sub-domains. Load balancing thus is an issue to consider when trying to improve
the code’s performance. A custom load balancing algorithm would not equally
distribute the volume of the bounding box but rather the number of particles.

number of processors mini ti (i) maxi ti (i) �

2 17.525 (2) 19.542 (1) 1.115
4 5.184 (1) 13.977 (2) 2.696
6 1.170 (1) 11.723 (4) 10.020

Table 9.10: Load balance on prometeo

Using a single processor only, prometeo is about 14.6 times faster than asgard. This
is in good agreement with the fact that its peak performance is 14.5 times the one of
asgard, meaning that on both machines the code sustains about the same fraction of
the peak performance. To estimate this fraction, the program is traced on prometeo
using the -ftrace compiler option. The resulting output for a representative run
is:

92 CHAPTER 9. FRAP SIMULATIONS

/tmp.speed/ivo/PSEtrace ftrace -f ftrace.out.0.0

FLOW TRACE ANALYSIS LIST

Execution : Tue Feb 5 09:42:35 2002
Total CPU : 0:13’03"761

PROG.UNIT FREQUENCY EXCLUSIVE AVER.TIME MOPS MFLOPS V.OP AVER. I-CACHE O-CACHE BANK
TIME[sec](%) [msec] RATIO V.LEN MISS MISS CONF

pse 20 760.123(97.0) 38006.135 3647.5 2004.6 99.10 134.9 0.0706 0.9937 32.3171
init 1 12.147(1.5) 12146.724 85.2 0.4 1.92 5.2 1.9725 0.6545 0.0000
do_io 1 8.541(1.1) 8540.770 92.7 0.7 2.69 12.5 1.2781 0.0673 0.0000
sortp 20 1.908(0.2) 95.408 700.4 69.3 84.18 255.9 0.0004 0.4233 0.0013
updatep 20 0.641(0.1) 32.071 1671.5 34.0 92.67 255.9 0.0024 0.1088 0.0027
bc 21 0.183(0.0) 8.692 4631.0 378.2 99.35 255.8 0.0004 0.0002 0.0005
diag 21 0.084(0.0) 3.999 4954.6 819.3 99.22 255.5 0.0090 0.0031 0.0000
partalloc 63 0.081(0.0) 1.291 4896.5 0.0 98.70 255.9 0.0015 0.0007 0.0020
pwrite 189 0.039(0.0) 0.206 130.2 0.0 0.84 25.7 0.0053 0.0012 0.0000
readctrl 1 0.006(0.0) 5.921 127.7 0.0 1.34 40.4 0.0009 0.0002 0.0000
pse3d 1 0.002(0.0) 2.027 26.8 0.3 11.53 120.3 0.0011 0.0004 0.0000
aniso_coeff 1 0.002(0.0) 1.664 2641.6 0.0 99.35 255.9 0.0000 0.0000 0.0000
mktable 1 0.002(0.0) 1.659 8415.3 4897.4 99.51 255.8 0.0000 0.0000 0.0000
chkabort 20 0.001(0.0) 0.056 16.7 0.0 0.00 0.0 0.0007 0.0003 0.0000
mkmsh 1 0.001(0.0) 0.831 58.1 0.9 10.41 35.7 0.0003 0.0001 0.0000
finalise 1 0.001(0.0) 0.807 59.3 0.0 0.06 1.1 0.0002 0.0002 0.0000
inputarg 1 0.000(0.0) 0.317 155.4 0.0 0.06 8.0 0.0000 0.0000 0.0000
alloccp 21 0.000(0.0) 0.015 27.2 0.0 0.00 0.0 0.0001 0.0001 0.0000
substop 220 0.000(0.0) 0.001 30.9 0.0 0.00 0.0 0.0000 0.0000 0.0000
substart 219 0.000(0.0) 0.001 40.5 0.0 0.00 0.0 0.0000 0.0000 0.0000
chkbc 1 0.000(0.0) 0.114 29.7 0.1 0.36 3.0 0.0001 0.0000 0.0000
meshalloc 1 0.000(0.0) 0.084 49.9 0.1 6.89 72.5 0.0000 0.0000 0.0000
rmabort 1 0.000(0.0) 0.053 14.1 0.0 0.00 0.0 0.0000 0.0000 0.0000
mkmshsz 1 0.000(0.0) 0.052 30.7 0.3 0.38 1.0 0.0000 0.0000 0.0000
uppercase 17 0.000(0.0) 0.002 63.3 0.0 0.00 0.0 0.0000 0.0000 0.0000
defaults 1 0.000(0.0) 0.028 93.4 0.0 0.46 6.0 0.0000 0.0000 0.0000
const 1 0.000(0.0) 0.012 24.6 4.7 0.00 0.0 0.0000 0.0000 0.0000
mp_time 2 0.000(0.0) 0.004 15.7 0.3 0.00 0.0 0.0000 0.0000 0.0000
defneigh 1 0.000(0.0) 0.005 70.1 0.0 0.00 0.0 0.0000 0.0000 0.0000
updbc 1 0.000(0.0) 0.004 33.7 0.0 0.00 0.0 0.0000 0.0000 0.0000
neighproc 1 0.000(0.0) 0.003 31.1 0.0 0.00 0.0 0.0000 0.0000 0.0000

total 871 783.762(100.0) 899.841 3545.0 1944.5 99.02 135.0 3.3439 2.2542 32.3237

It can be seen that the PSE subroutine takes 97% of all execution time and almost all
main memory (as indicated by BANK CONF), making it clearly the most performance
relevant part of the code. It is called 20 times (according to the 20 time steps),
takes around 38 seconds per call and has a sustained performance of 2 GFLOPS,
thus 25% of the peak performance. It is interesting to note that the subroutine
mktable gets 4.9GFLOPS (61% of peak). This is due to the fact that it vectorizes
almost perfectly (99.51% vectorized with an average vector length of 255.8). The
task of this subroutine is to build a look-up table for the exponential function to
speed-up the numerous evaluations of the PSE kernel function. Also the PSE core
routine pse vectorizes 99.1%, but the average vector length is only 134.9 while 256.0
would be the maximum. On average, this routine thus uses only 52.7% of the vector
registers, which explains the difference in the operation count. It would be possible
to increase the vector length of the core routine by building particle interaction
lists prior to doing the actual interactions. This way, all interactions of one particle
would be combined into a huge vector and one could possibly improve the over-all
performance by a factor of two. Also the communication and memory allocation
subroutines updatep, bc, diag and partalloc vectorized almost completely.

Another interesting detail is to notice that the routines init and do io produce a
significant amount of instruction cache misses. This is due to the fact that they do
I/O on changing data. However they are only called once (init at the beginning,
do io at the end of the simulation) so it does not really harm.

Chapter 10

Comparison to experiments

The simulations conducted in chapter 9 will be validated against experiments in
this chapter. A FRAP experiment as well as a stack of micrograph sections at
∆z = 0.1µm has been made from the same cell by Anna Mezzacasa according to
the following protocol:

Cell culture:
VERO cells were cultured essentially as described in (Pelkmans et. al., Inst. of Biochemistry,
ETHZ), using a 100mm tissue-culture grade plastic dish at 37◦C with 5% CO2 in DMEM cell
culture media containing 10% FCS, and then passaged to 18mm glass cover slips. At 70% con-
fluence, a reporter gene containing the ER targeting signal sequence fused to GFP and the ER
retention sequence (KDEL) was transiently transfected using Superfect (Sigma) for expression in
mammalian cells. 12 – 16 hours post transfection, live cells were exchanged into CO2-independent
buffer for imaging.

Confocal microscopy:
Live cells were maintained at 37◦C during the FRAP experiment using a Zeiss stage warmer.
Confocal images were acquired with an inverted Zeiss LSM 510 (X63 PlanApo Nikon objective,
N.A. 1.4) using the 488 nm argon laser line and detected using a BP505-530 emission filter (488/543
dichroic) (pinhole setting at 1 Airy unit, image pixel size 80 nm). Images were acquired as 8-bit
tiff files (512×512 pixel frame), analyzed using Openlab 3.0.4 and processed in Photoshop 5.0
(Adobe).

�-series and Fluorescence Recovery After Photobleaching (FRAP):
Prior to FRAP, 55 0.1 µm optical z-sections were collected and processed for 3D reconstruction.
Experimental details of FRAP have been described in the protocols in [Sbalzarini (2001)]. To a
wild type cell expressing the fusion protein: ss-GFP-KDEL, image scans of the entire cell were
acquired at low laser power (30% power, 0.3% transmission). A defined region of interest (ROI)
(5×5 µm2) was photobleached at full laser power (100% power, 100% transmission, 50ms sampling
interval); recovery of fluorescence was monitored by scanning the whole cell at low laser power
(30% power, 0.3% transmission).

As indicated in the protocol, the cell was transfected to express a protein called
ssGFP-KDEL. Hereby, “ss” stands for “signal sequence”, a polypeptide needed for
the ribosomes to recognize the transcript and start synthesizing it into the ER
lumen. “GFP” means the familiar green fluorescent protein and “KDEL” is a tar-
geting sequence for ER resident proteins, which causes the protein to be retained
in the ER once it is synthesized (or being transferred back to the ER if it escapes).
The ssGFP-KDEL protein is soluble meaning that it freely diffuses within the ER
lumen (as opposed to membrane-bound proteins). This makes the results of the
simulations comparable as the PSE algorithm simulates diffusion inside the recon-
structed ER surface rather than diffusion on that surface. Figure 10.1 shows a
sample micrograph of a VERO1 cell with the ER shining in green. After filtering
the data with a Gaussian filter of kernel size 46.576, the reconstruction is done
according to chapter 2 with voxels of size 66.54 × 66.54 × 27.0. Figure 10.2 shows
a shaded surface view of the resulting triangulated 3D surface.

1Cell from green monkey intestine epithelium

93

94 CHAPTER 10. COMPARISON TO EXPERIMENTS

Figure 10.1: Micrograph of the ER
sample 8s (courtesy of Anna Mezza-
casa)

Figure 10.2: 3D reconstruction of ER
surface

The bounding box of the triangulated ER geometry is:

[6146.58, 27349.1]× [4502.35, 31204.9]× [−40.2303, 40.2303]

In the lateral directions x and y, one unit of length corresponds to 1.2 nm2, in the
z direction the unit is 67.1 nm3. The lateral resolution of the microscope is 220 nm,
which means that all the pictures have been taken at a 2.75-fold oversampling. The
depth resolution of the microscope is 500nm. Since the slices are taken at 100 nm
distance, they actually overlap, leading to a slightly blurred representation in the
third direction. Due to these resolution limitations and the fact that the unit length
is two orders of magnitude smaller than for all the runs in section 9.1, the global
geometry tolerance TOL is increased from 10−10 to 10−8.

To get a meaningful validation, two runs (and experiments) for different bleached
boxes are performed using this geometry. Table 10.1 lists the coordinates of the
bleached boxes used in the experiments and the subsequent simulations. The first
run, termed 8s features a small bleached box at the periphery of the cell, the second
run (8.2) a larger one closer to the nucleus.

Run a c b d

8s 23500 25000 26000 27500
8.2 16500 13000 20500 17000

Table 10.1: Comparison of bleached box geometries

2One pixel of the micrograph image represents a 80 × 80 nm square, the image has 320×407
pixel and the bounding box of the triangulation is 21202 × 26703.

3The z-distance between each of the 55 micrograph slices is 0.1 µm and the z-length of the
bounding box of the geometry is 80.46.

95

For the subsequent FRAP curve, the fluorescence intensity in the originally bleached
box was measured at a sampling interval of 50ms. The quantification has been
done by Anna Mezzacasa after properly normalizing the images and subtracting
any background noise. The resulting measured data are listed below and the FRAP
curves are shown in figure 10.3.

time FRAP 8.2 FRAP 8s

--

0.00 0.00000000 0.000000000

0.05 0.642359994 0.768091498

0.10 0.761357527 0.85031668

0.15 0.825385128 0.875191667

0.20 0.85971692 0.925180215

0.25 0.891158161 0.946877274

0.30 0.914321773 0.946250857

0.35 0.925693525 0.946139788

0.40 0.924324516 0.978810841

0.45 0.937138416 0.96555209

0.50 0.954323345 0.985550568

0.55 0.946796145 0.999120908

0.60 0.937829731 0.98808123

0.65 0.958437983 1.029331826

0.70 0.952619479 1.033946096

0.75 0.962860212

0.80 0.962289884

0.85 0.961190977

0.90 0.983247206

0.95 0.96625929

1.00 0.973192383

1.05 0.976437893

1.10 0.965600989

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1.2

F
R

A
P

time [s]

Figure 10.3: Measured FRAP curves for experiments 8s (red) and 8.2 (blue) (cour-
tesy of Anna Mezzacasa)

96 CHAPTER 10. COMPARISON TO EXPERIMENTS

One problem with the protein used for the experiments is its fast diffusion due to its
small size of ∼ 30 kDa and the free space diffusion. This means that the FRAP curve
will recover very quickly, asking for a large diffusion constant in the simulations.
According to the stability criterion given in section 9.1 this asks for a very small
time step which in turn requires a large number of time steps to be simulated. To
keep the simulations computationally feasible, the number of particles therefore is
drastically reduced compared to all previous runs. The inter-particle spacings are
chosen to be h1,2,3 = [100.0, 100.0, 20.0] which results in a total number of 46486
particles. This is roughly 1/10 of the numbers used so far. According to the timing
results given in section 9.3 this means that one time step will complete in about 1.5 s
on prometeo. The required number of 450000 time steps will thus approximately
need 187.5 hours on 4 processors (amounting to 750 CPU-hours !).

Table 10.2 lists the resulting numbers of particles inside the bleached area (NB),
the number of grid points inside the bleached box (Ng) as well as the asymptotic
steady-state FRAP value (c∞) and the volume-filling coefficient (φ0). Definitions
and explanations of all of these properties have been given in section 9.1. It can be
seem from the volume-filling coefficient that the second run takes place in an area
where the ER is much denser since it is closer the the nucleus.

Sample N NB Ng c∞ φ0

8s 46486 112 2500 0.9976 0.0448
8.2 46486 3556 6400 0.9235 0.5556

Table 10.2: Asymptotic FRAP values and volume-filling coefficients

According to the algorithms presented in section 7.2.5, the particles are initialized
and placed inside the reconstructed ER geometry. Figure 10.4 shows the corre-
sponding plots for both examples. As before, blue points signify particles of initial
concentration 1, red points such of concentration 0.

5

10

15

20

25

30

35

40

5 10 15 20 25 30 35

y
 [

um
]

x [um]

8s

5

10

15

20

25

30

35

40

5 10 15 20 25 30 35

y
 [

um
]

x [um]

8.2

Figure 10.4: Initial particle distributions for comparative simulations. Blue points
correspond to particles of concentration 1, red points to those of concentration 0.

The diffusion constant is arbitrarily set to D = 750.0 for all runs. This requires the
time step size to be less than 0.267 for the simulation to be stable. A time step of
δt = 0.1 is chosen for all runs. The simulations are performed using the techniques
introduced in chapter 7 in order to obtain simulated FRAP curves. Using MATLAB,
the normalized FRAP curves are then fitted to the experimental data such as to
minimize the quadratic error. This is done by allowing time scaling only which is –

97

as shown in section 9.1 – equivalent to varying the diffusion constant. Figure 10.5
shows the results for both examples along with the resulting time stretching factors
st. Both factors are about st = 2 · 10−5, indicating that both examples have been
run using the same diffusion constant. This is in fact true and can be considered a
consistency check for this validation.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.2

0.4

0.6

0.8

1

1.2

time [s]

F
R

A
P

8s: st = 2.0 · 10−5

0 0.2 0.4 0.6 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time [s]

F
R

A
P

8.2: st = 1.9 · 10−5

Figure 10.5: Simulated FRAP curve (red) compared to experimental measurement
data (blue circles). The time stretching factors are listed below the corresponding
figure.

The fitting error for sample 8s is 0.021 and thus much larger than the one for the
8.2 sample of 6.389 · 10−4. This has different reasons, among them:

• Fluorescence recovery in the first example is very fast, resulting in an almost
complete recovery after only three measurement intervals. This leads to large
measurement uncertainties since the speed of the process under observation
challenges the measurement equipment.

• Due to the large inter-particle spacing that had to be chosen in order to finish
the simulation runs on time, the resolution is quite poor having only 112
particles inside the bleached box (compared to 3556 for the 8.2 example).

• The simulation is done in an area where the ER is not very dense. This leads
to a high sensitivity to geometry errors due to picture noise or reconstruction
uncertainties.

• The measured FRAP curve for the first example recovers to values > 1, which
is not possible. This indicates a generally higher level of measurement uncer-
tainty for this run.

Taking these points into account, one has to state that the second run (8.2) is
more significant and reliable than the first one. The simulation should therefore be
validated against the 8.2 run and the 8s run should be taken as a consistency check
only. It is noticeable that the resulting time stretching factors are about the same,
despite the larger fitting error for 8s. This could mean that the method presented
is quite robust against measurement errors and simulation resolution. However,
to make a statement about this, more samples have to be considered of course.
Another explanation for the deviations in the first case could be that diffusion
in reality is anisotropic and thus the isotropic simulation results fail to match it
exactly. Running anisotropic simulations with different ratios of anisotropy would
be needed to address this question in future work (cf. chapter 13).

98 CHAPTER 10. COMPARISON TO EXPERIMENTS

Using the time stretch information and the known length scale of the micrographs it
is now even possible to calculate a numerical estimation for the diffusion constant.
The simulation has been run with a diffusion constant of 750 (units length)2/(unit
time). From the fitting of the resulting curve to the experimental data we know that
(unit time)=2 ·10−5 s and from the microscope settings (see page 94) we know (unit
length)=1.2 nm for the lateral directions. Inserting this yields a diffusion constant
of D = 54.0µm2/s. To compare with, the reported diffusion constant of pure GFP
in water is 87µm2/s.

In conclusion, one can say that the simulations have been shown to perform rea-
sonably well, even under unfavorable conditions. They generally exhibit good co-
incidence with experimental data and make estimations of the diffusion constant
possible.

Chapter 11

Towards a novel FRAP data
model

It has been shown in chapter 10 that it is possible to obtain numerical values for
the diffusion constant by fitting the FRAP curve from a simulation in the very
same geometry to the measured intensity values. However, it would be too time
consuming and require too much knowledge and resources to do so on a regular basis
in productive laboratory work. Therefore, we are looking for a mathematical model
that describes the time behavior of diffusion in the ER (i.e. the FRAP curve as a
function of time). The parameters of this model will then be identified using the
simulated FRAP curves for which we know the value of the diffusion constant. The
model should then be able to interpolate and – if based on first physical principles –
also extrapolate to new experimental FRAP curves of unknown diffusion constant
in order to extract the value thereof.

11.1 Review of current models

To start with, briefly recall the standard models used today as already presented in
[Sbalzarini (2001)]. Note that besides the ones presented hereafter, other models for
special cases such as strip bleaching experiments exist ([Ellenberg et al. (1997)]).
The first standard model is the exponential model emerging from the solution of
the diffusion equation on a square 2D plate assuming homogeneous and isotropic
diffusion. The fluorescence intensity in an initially bleached square region will then
recover as:

F (t) = F∞
(
1 − e−αDt

)
(11.1)

where F (t) is the intensity (FRAP value) at time t, F∞ is the asymptotic intensity
for t→ ∞ and α is a model parameter.

Another model commonly used is a purely empirical correlation originally proposed
by [Dayel, Hom & Verkman (1999)] and [Reits & Neefjes (2001)]. It is defined by:

F (t) = Fa +
[Fa +R (F0 − Fa)]

(
t/t1/2

)α
1 +

(
t/t1/2

)α (11.2)

where F0 is the intensity just before bleaching, Fa is the intensity just after bleaching
and α and t1/2 are model parameters. The mobile fraction R is defined as:

R =
F∞ − Fa

F0 − Fa

99

100 CHAPTER 11. TOWARDS A NOVEL FRAP DATA MODEL

where F∞ is the asymptotic fluorescence value for t→ ∞.

Both models described above lack a solid physical foundation and are thus ques-
tionable in their extrapolation capabilities. Due to this fundamental problem, there
are a number of practical insufficiencies. The models are for example not capable to
account for the fact that different ER geometries will yield different FRAP curves,
even at the same value of the diffusion constant (cf. figure 9.3 in section 9.1). They
will thus predict a difference in the apparent diffusion constant even though there
is none. This is simply due to the fact that they do not contain any information
about the geometry at hand (more accurate: about the restriction of diffusion to
the geometry at hand) and will interpret all variations in the FRAP curve as caused
by the diffusion constant.

Another problem with these models is that they do not include any information
about the position or the size of the bleached box. As shown in section 9.2 this
is however an important piece of information that indeed does have an influence
on the resulting FRAP curve (see figure 9.7). Current models will thus predict a
dependence of the diffusion constant on the geometry of the bleached box. This
however is completely unphysical and an artifact of the model used. The diffusion
constant is physically given by nature and it cannot be that it depends itself on the
method used to measure it. New models should thus take this into account.

11.2 New models

Now knowing the currently used models and their insufficiencies, two new models
as developed during this project are presented.

11.2.1 A power law model

In order to have a model that takes the ER’s local geometry into account, the
concepts of diffusion on fractal sets are used. It has been shown in section 6.2
that the dimension of the walk is a sufficient parameter to capture the influences
of geometry on the time behavior of diffusion. It has also been shown in the same
section that the mean square displacement of a particle undergoing Brownian motion
on a fractal is given by:

E
(
|X (t+ δt) −X (t)|2

)
� δt2/dw

where dw is the dimension of the walk for the specific geometry under consideration.
Using this parameter in a model would thus incorporate the sought-after geometrical
information and moreover it does this very efficiently using just a single parameter.
For unrestricted diffusion in a Euclidean shape, dw is always equal to 2. For fractals
(or geometrically restricted diffusion), we have dw �= 2. For the first model, we will
thus assume that the FRAP value is proportional to tα for some parameter α. In
order to meet the global model constraints that the FRAP curve starts at (0, 0) and
asymptotically goes to a steady-state value F∞, we set:

F (t) = F∞
(
1 − t−α

)

The problem now is that this would be −∞ for t = 0, so we shift the origin by one,
replacing t with (t+1). To account for the fact that the mean square displacement is
only proportional to t2/dw but not equal, we also introduce a proportionality factor
β. The final power law model is thus given by:

F (t) = F∞
(
1 − (βt+ 1)−α

)
(11.3)

11.2. NEW MODELS 101

with α and β being its parameters. Compared to the current models of section
11.1, this now incorporates some physical knowledge about the process and also
takes into account the influences of the local ER geometry on diffusion. However,
it still fails to include any information about the geometry of the bleached box and
will thus still be insufficient.

11.2.2 A second order physical model

The task is to now include some information about the bleached box into the model.
This is done by starting from a very simple and basic physical reasoning. Consider
the situation in the vicinity of the bleached box as depicted in figure 11.1. Instead of
looking at diffusion of fluorescent protein into the box, consider the complementary
problem of diffusion of bleached protein out of the box. This process is analogous to
the original one and also happens in reality, governed by the same laws and the same
diffusion coefficient. Considering it has however the advantage that the asymptotics
of the model will automatically come out right whereas a model for diffusion into
the box would need a fix (just as the previous power law model needed) to prevent
it from diverging to infinity.

x x

x

x

a

b
bleached box

x

y

z

Figure 11.1: Geometrical situation around the bleached box

Let a, b and c be the lengths of the edges of the bleached box in all three dimensions.
Without loss of generality, assume that the initial concentration of bleached protein
inside the box is 1. The total mass of bleached protein in the box is thus equal to abc.
After some time elapsed, the concentration front will have traveled a mean distance
of x in both the x and y direction due to diffusion. The new volume in which
the bleached proteins can distribute themselves is thus given by (a+ 2x)(b+ 2x)c.
Assuming a homogeneous distribution and using the conservation of mass, the new
mean concentration in the bleached box hence becomes:

abc

(a+ 2x)(b+ 2x)c

The second assumption to be made is that there is a finite and constant number
of places for particles to be. This means that if a bleached protein moves out
of the bleached box, a fluorescent one will come in for it in exchange. Under
this assumption, the fluorescence intensity (or the FRAP value) is given by the
complement of above concentration. At the same time we also rescale the model to
an asymptotic level of F∞ instead of 1, so it becomes:

F (x) = F∞

(
1 − ab

(a+ 2x)(b+ 2x)

)

To also take into account the influences of the local ER geometry, we set x2 = α2t2β

using the same concepts and proofs of diffusion on fractal sets as for the power law

102 CHAPTER 11. TOWARDS A NOVEL FRAP DATA MODEL

model. Inserting this into above equation leaves us with the final formulation of the
second order physical model:

F (t) = F∞

(
1 − ab

ab+ 2 (a+ b)αtβ + 4α2t2β

)
(11.4)

with parameters α and β. This model now includes both information about the ER
geometry (using the fractal concepts) and the bleached box (in a and b). Moreover,
it is based on first physical principles and can thus be expected to even have some
extrapolation capabilities. It is termed second order physical model since it contains
a second order polynomial in αt in the denominator.

To get the half-time of recovery from this model, one simply sets F (t) = 1
2F∞ and

solves for t taking into account that t > 0. This yields:

t1/2 =

[√
(a+ b)2α2 + 4abα2 − (a+ b)α

4α2

]1/β

(11.5)

This can now be used to compare the results to the ones of the empirical model
given by equation 11.2 or to draw certain physical conclusions (cf. also section 11.4).

11.3 Identification of the model parameters

In order for the models described in the previous sections to be of any use, their
parameters have to be identified (i.e. assigned some numerical value). This is done
by fitting them to the simulated FRAP curves obtained in section 9.1.

11.3.1 The gradient descent algorithm

To fit the (nonlinear) models to simulation or experimental data, a gradient descent
algorithm is used. Let F ∗(tn) be the given data to match at time tn = (n − 1)δt
and F (t = tn, α, β) the corresponding value of the model under consideration. Now
define the matching error as:

E =
nmax∑
n=1

E(tn) =
1
2

nmax∑
n=1

[F ∗ (tn) − F (t = tn, α, β)]2 (11.6)

The problem now consists of finding the pair of model parameters (α, β) that min-
imizes the error E. This is done by following the gradient of E with respect to α
and β:

∂E

∂α
=

nmax∑
n=1

∂E(tn)
∂α

∂E

∂β
=

nmax∑
n=1

∂E(tn)
∂β

11.3. IDENTIFICATION OF THE MODEL PARAMETERS 103

The algorithm thus proceeds as follows:

Algorithm 11.1 (Gradient descent).

Step 1: Choose starting values α0 and β0 35-36

Step 2: Iterate for k = 1, 2, . . .

2.1: Update α and β according to:

αk = αk−1 − ηα

nmax∑
n=1

∂E(tn)
∂αk−1

βk = βk−1 − ηβ

nmax∑
n=1

∂E(tn)
∂βk−1

112-139

2.2: If ∂E
∂αk−1

< TOL and ∂E
∂βk−1

< TOL: exit 149-151

The learning rates ηα and ηβ are chosen to maximize convergence but prevent
instability. The larger they are, the faster the algorithm will converge but at some
point is starts to become unstable or to miss the minimum because it takes too large
steps. Above algorithm is implemented as a Fortran program called nlfit.f90. See
appendix C.4.2.1 for its source code.

11.3.2 Model gradients

To be able to apply the gradient descent algorithm, the gradients of the error
function for all models are needed for all time steps. For the derivation of some of
the gradients, the following law of logarithmic differentiation has been used:

∂

∂β

(
tcβ
)

=
∂

∂β

(
ecβ log t

)
= c log tecβ log t = ctcβ log t

All the model equations including their gradients will in turn be given hereafter.

Exponential model

F (t) = F∞
(
1 − e−αDt

)

∂E(tn)
∂α

=
∂E(tn)
∂F (t)

∂F (t)
∂α

= (F (tn) − F ∗(tn)) (F∞ − F (tn)) tn

Empirical model

To represent the situation of the simulations, the empirical model has to be taken
with Fa = 0 and F0 = 1. Therefore, we have R = F∞ and the model becomes:

104 CHAPTER 11. TOWARDS A NOVEL FRAP DATA MODEL

F (t) =
F∞

(
t/t1/2

)α
1 +

(
t/t1/2

)α

∂E(tn)
∂α

= F∞ (F (tn) − F ∗(tn))
[(
tn/t1/2

)α log
(
tn/t1/2

) [
1 +

(
tn/t1/2

)α]−1

− (tn/t1/2

)2α [1 +
(
tn/t1/2

)α]−2
log
(
tn/t1/2

)]

∂E(tn)
∂t1/2

= F∞ (F (tn) − F ∗(tn))
[(
tn/t1/2

)α [1 +
(
tn/t1/2

)α]−2 α

t21/2

(
tn/t1/2

)α−1

− α

t21/2

(
tn/t1/2

)α−1 [1 +
(
tn/t1/2

)α]−1
]

Power law model

F (t) = F∞
(
1 − (βt+ 1)−α

)

∂E(tn)
∂α

= (F (tn) − F ∗(tn)) (F∞ − F (tn)) log (βtn + 1)

∂E(tn)
∂β

= (F (tn) − F ∗(tn)) (F∞ − F (tn))
αtn

βtn + 1

Second order physical model

F (t) = F∞

(
1 − ab

ab+ 2 (a+ b)αtβ + 4α2t2β

)

∂E(tn)
∂α

= F∞ab (F (tn) − F ∗(tn))
[
ab+ 2 (a+ b)αtβn + 4α2t2β

n

]−2

·
[
2 (a+ b) tβn + 8αt2β

n

]

∂E(tn)
∂β

= F∞ab (F (tn) − F ∗(tn))
[
ab+ 2 (a+ b)αtβn + 4α2t2β

n

]−2

·
[
2 (a+ b)αtβn log tn + 8α2t2β

n log tn
]

11.3.3 Properties of the error functions

To get an idea of what the error functions for the different model fits looks like,
the parameter space is sampled on a regular cartesian grid of 500× 500 grid points
for the models having two parameters and on 500 linear interval points for the
exponential model having just one parameter. At each grid point (αi, βj), the RMS
matching error is calculated as:67-99

ERMS =

√√√√ 1
nmax

nmax∑
n=1

[F ∗ (tn) − F (t = tn, αi, βj)]
2 (11.7)

and its logarithm is plotted. The ER sample clx has been taken for all visualizations.
Figure 11.2 shows the resulting functional shape for the exponential model, figures

11.3. IDENTIFICATION OF THE MODEL PARAMETERS 105

0 0.05 0.1 0.15 0.2 0.25
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

lo
g

(E
R

M
S
)

α

Figure 11.2: Logarithmic RMS match-
ing error for the exponential model

lo
g

(m
at

ch
in

g
er

ro
r)

−4

−3.5

−3

−2.5

−2

−1.5

0.4 0.6495 0.899
4

4.5

5

5.5

6

6.5

7

7.5

α

t 1/
2

Figure 11.3: Logarithmic RMS
matching error for the empirical
model

lo
g

(m
at

ch
in

g
er

ro
r)

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5 1 1.5 2 2.5 3 3.5 4 4.5

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

α

β

Figure 11.4: Logarithmic RMS
matching error for the power law
model

lo
g

(m
at

ch
in

g
er

ro
r)

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

2 3 4 5 6 7
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

α

β

Figure 11.5: Logarithmic RMS
matching error for the second order
physical model

11.3 to 11.5 show the contour plots for the empirical, power law and second order
physical model, respectively.

It can be seen from the plots that within the area of interest there is only one
minimum. This justifies the application of a gradient descent algorithm as there is
no danger for it to get stuck in local minima.

Figure 11.6 shows the model matching error for the current empirical model (blue
dashed line) and the second order physical model (red) as a function of the iteration
step number of the gradient descent algorithm. To be able to see anything at all,
logarithmic scaling is used on both axes.

Another interesting detail is that the error function for the power law model resem-
bles the Rosenbrock banana function1 in two characteristic properties:

1. It is very ill-conditioned with a narrow valley that has a soft slope on one side
of the minimum and a very steep one on the other side (notice the logarithmic
scaling).

2. The valley makes a banana-like turn.

These properties make the function very difficult to handle for optimization algo-
rithms as they might overshoot, miss the minimum or fail to follow the narrow

1A popular multimodal test function for minimization algorithms. In its 2-parameter form:
f(x) = 100(β − α2)2 + (1 − α)2

106 CHAPTER 11. TOWARDS A NOVEL FRAP DATA MODEL

0.01

0.1

1

1 10 100 1000 10000 100000

M
od

el
 m

at
ch

in
g

er
ro

r

Iteration step

Figure 11.6: Model matching error for empirical model (blue dashed) and second
order physical model (red). Notice the double logarithmic scaling.

turning valley. Therefore, Rosenbrock’s function is very popular as a test func-
tion for optimization techniques. The function shown in figure 11.4 exhibits the
same properties. However, it emerges from the real-world problem of fitting fractal
diffusion models to FRAP curves whereas the Rosenbrock function is something
completely artificial.

Looking at the same function one also notices that gradient descent is one of the
best methods to employ due to its robustness. Faster algorithms such as conju-
gate gradients would not be better as the main problem is the non-linearity of the
function and not its dimensionality (CG is optimal for linear problems of high di-
mension). Figure 11.3 however shows a different picture. This function is very flat
and regular with elongated ellipses as contour lines, such that a gradient descent
will have a very poor convergence rate and need a lot of iterations. Looking at the
results in appendix B in fact shows this.

11.3.4 Fitting results for all ER samples

Using all the knowledge about the models and the functional shapes, the second
order physical model is fitted to all experimental FRAP curves obtained in chapter
9. The power law model will not be pursued any further as it fails to account for
the influences of the bleached box geometry. All fitting runs are started from the
same initial point in parameter space, namely:

α0 = 4.0 β0 = 0.5

in order to be able to extract comparative information from the iteration counts.
The learning rates are fixed to ηα = ηβ = 10−3 for all runs and the tolerance for the
termination criterion is set to TOL = 10−6, meaning that both derivatives of the
error function have to be less than 10−6 for the solution to be considered converged.
The simulated FRAP curves all consist of nmax = 2001 data points for t ∈ [0 . . . 20].

Figure 11.7 shows the results. The simulated FRAP curves are shown in dashed
blue, the best model fit in red and the minimum value of the RMS fitting error as

11.3. IDENTIFICATION OF THE MODEL PARAMETERS 107

defined by equation 11.7 is included in the captions. The numerical values for the
best model parameters as well as the number of iterations it took for the solution
to converge are listed in appendix B.

0

0.1

0.2

0.3

0.4

0.5

0.6

0 5 10 15 20

F
R

A
P

time

bip2: ERMS = 4.259 · 10−3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 5 10 15 20

F
R

A
P

time

clx: ERMS = 3.021 · 10−3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 5 10 15 20

F
R

A
P

time

erp57: ERMS = 1.818 · 10−3

0

0.1

0.2

0.3

0.4

0.5

0.6

0 5 10 15 20

F
R

A
P

time

erp572: ERMS = 2.374 · 10−3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 5 10 15 20

F
R

A
P

time

erp573 1: ERMS = 3.917 · 10−3

0

0.1

0.2

0.3

0.4

0.5

0.6

0 5 10 15 20

F
R

A
P

time

erp573 2: ERMS = 2.886 · 10−3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 5 10 15 20

F
R

A
P

time

erp573 3: ERMS = 2.587 · 10−3

0

0.1

0.2

0.3

0.4

0.5

0.6

0 5 10 15 20

F
R

A
P

time

erp574 1: ERMS = 3.734 · 10−3

108 CHAPTER 11. TOWARDS A NOVEL FRAP DATA MODEL

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 5 10 15 20

F
R

A
P

time

erp574 2: ERMS = 1.236 · 10−3

0

0.1

0.2

0.3

0.4

0.5

0.6

0 5 10 15 20

F
R

A
P

time

erp5722: ERMS = 3.255 · 10−3

0

0.1

0.2

0.3

0.4

0.5

0.6

0 5 10 15 20

F
R

A
P

time

erp5723: ERMS = 5.009 · 10−3

0

0.1

0.2

0.3

0.4

0.5

0.6

0 5 10 15 20

F
R

A
P

time

erp5724: ERMS = 2.493 · 10−3

Figure 11.7: Second order physical model fit (red) to simulated FRAP curves
(dashed blue)

The plots show that the new model almost perfectly fits all of the ER samples and
even the runs erp5722, erp5723 and erp5724 with different bleached box geometries
are well captured. Recall from table 8.2 in section 8.4 that the RMS error of the
PSE simulations as compared to the analytic solution on the box test case is at the
order of 5.7 ·10−3 for the resulting FRAP curve. Since the fitting errors for the new
model are at the same order of magnitude (in fact always slightly below), they are
not significant. It is in principle even possible that the model perfectly describes the
physics and that above RMS errors stem from the PSE simulations only. It could
however also be possible that some contribution to the error comes from the PSE
and another one from the model. In the worst case they are both grossly wrong but
their error contributions cancel so to make the model fits look good. However, since
the PSE is well validated, it seems safe to assume that its error is small and thus
the model not only fits the simulation results but also the physical reality pretty
well.

Chapter 12 will be concerned with comparative studies of all the old and new models
described in this chapter for the box test case, for a sample ER structure and for
experimental data.

11.4. LINKING MODEL PARAMETERS TO DIFFUSIVITY 109

11.4 The link between model parameters and the
diffusion constant

Now having a new model that fits the simulated FRAP data, the question arises
of how its parameters α and β reflect the diffusion constant and the dimension of
the walk. Only this link would finally allow to draw information about real-world
quantities from the data model fits. We are thus looking for the following functions
for the second order physical model:

D = f1(α, β)
dw = f2(α, β)

The first function is the one we are actually interested in so as to be able to use the
new model for quantitative evaluations of real FRAP experiments in the laboratory.
The second one is just a “side effect” but nonetheless interesting. As mentioned
in section 6.3, there exists no algorithm to measure the spectral dimension or the
dimension of the walk for an arbitrary given geometry. Finding f2 however would
enable us to measure both the dimension of the walk and – since we can estimate
Hausdorff’s dimension using the box counting algorithm of section 5.2 – the spectral
dimension by simulating a FRAP experiment inside the geometry in question and
fitting the new model to the result.

The following constraints for the functions f1 and f2 are known from various com-
puter experiments:

• an increase in the diffusion constant leads to an increase in α and vice versa:
D ↑ ⇐⇒ α ↑

• an increase in the dimension of the walk leads to a decrease in β and vice
versa: dw ↑ ⇐⇒ β ↓

• β does not depend on D but only on the geometry dw since two runs in the
same geometry with different diffusion constants yield the same values for β:
dw = f2(β)

• α depends on both D and the geometry: D = f1(α, β)

• α depends quadratically on D: α2
1/α

2
2 = D1/D2

Furthermore, it turned out that f1 is not just a simple polynomial in α and β, nor
is it a polynomial in αtβ or any real rational function of such polynomials.

For the second order physical model to be dimensionally consistent, it has to yield
something that has the same measurement unit as intensity. Looking at equation
11.4 one notices that this means that the term in parentheses has to be dimen-
sionless. The number 1 trivially meets this requirement. The numerator of the
following fraction is of dimension (length)2, so the denominator must be of the
same dimension. This requires α to be of dimension (length)×(time)−β . β has to
be dimensionless as it is only found as an exponent to time. The simplest functions
that fulfill these requirements and meet all constraints stated above are:

D = f1(α, β) =

(
αT β

)2
τ

dw = f2(β) =
κ

β

110 CHAPTER 11. TOWARDS A NOVEL FRAP DATA MODEL

for some constants τ > 0 [time], T > 0 [time] and κ > 0 [dimensionless]. Unfortu-
nately, this set-up fails to recover the correct diffusion constants for the simulated
FRAP curves.

Due to time resource limitations it has not been possible to find the correct functions
f1 and f2 during this work. However, enough simulations in different ER geometries
have been conducted and it is possible to produce a large data set of (α, β) and
corresponding D values by proper time scaling of those simulated FRAP curves.
As mentioned in section 9.1 varying the diffusion constant simply corresponds to
rescaling the time and no new PSE simulation is necessary. This way, a few hundred
FRAP curves with different but known D values could be created for the various
ER samples considered. The model can then be fitted to each of these curves to get
the corresponding parameter values. This would finally yield enough data to use
techniques like neural networks, data assimilation or machine learning methods to
find the sought-after functional relationships.

Meanwhile, the new model can already be used to get recovery half-times accord-
ing to equation 11.5. Statements about relative differences and ratios of diffusion
constants in the same geometry are possible directly from the half-times as they are
linearly related to each other. However, this does not work across different geome-
tries since the geometry also has an influence on the functional relationship between
the recovery half-time and the diffusion constant. This becomes obvious when cal-
culating the half-times for all the model fits of section 11.3.4 giving 11.78+12.40

−6.08 .
However since all of them are simulation runs with the same diffusion constant,
they should be equal if geometry had no influence. Existing models such as the one
by [Dayel, Hom & Verkman (1999)] however completely neglect this fact using the
same calibration measurement for all experiments2. This still allows the diffusion
constants to be compared among each other for the same cell (since only ratios
are considered) but it makes them completely incomparable among different cells
that have differently shaped ERs or even among different groups that use different
calibration points.

2One such calibration point is that a recovery half-time of 100 ms corresponds to a diffusion
constant of 5 − 10 µm2/s

Chapter 12

Comparison to currently
used models

The new models developed in section 11.2 will be compared to the current models
as stated in section 11.1. All four models are to be compared to each other both for
the box test case as defined in section 8.1 and a simulated ER sample from section
9.1. In addition, the empirical and the second order physical model are compared
to each other on the experimental data of chapter 10. All model fits are made using
the gradient descent algorithm as descibed in section 11.3.1.

12.1 Comparison on the box test case

Table 12.1 gives the initial parameters, learning rates and tolerance settings used for
fitting the various models to the nmax = 601 data points of the analytical solution
of the box test case. Table 12.2 summarizes the optimal model parameters found,
the minimum value of the quadratic fitting error as defined by equation 11.6 and the
number of iterations it took for the gradient descent algorithm to converge below
the prescribed tolerance.

Model Initial parameters Learning rates Tolerance
Exponential α0 = 0.4 ηα = 10−5 10−6

Empirical α0 = 0.4, t1/2,0 = 2.0 ηα = ηt1/2 = 10−3 10−6

Power law α0 = 0.5, β0 = 0.9 ηα = ηβ = 10−3 10−6

2nd order physical α0 = 2.0, β0 = 0.5 ηα = ηβ = 10−3 10−6

Table 12.1: Parameter settings for box test case model fits

Model Optimal parameters Emin NIter

Exponential αopt = 0.23811 1.225543 8422
Empirical αopt = 0.94695, t1/2,opt = 1.58038 0.140867 14158
Power law αopt = 1.11405, βopt = 0.43515 0.085755 15115
2nd order physical αopt = 0.12707, βopt = 0.78848 0.030658 1704

Table 12.2: Optimal parameters for box test case model fits

Figure 12.1 shows the resulting plots of the fitted models (red curves) to the analyt-
ical solution for the box test case (blue curves). The corresponding minimum value

111

112 CHAPTER 12. COMPARISON TO CURRENTLY USED MODELS

of the quadratic fitting error is listed in each figure’s caption. It can be seen that
even for the simple (non-fractal, homogeneous and isotropic) test case, the current
models seem to be insufficient. For the exponential model this is due to the fact
that it is based on 2D plate diffusion whereas the box test case is a 3D problem. The
effects of dimensionality as investigated in [Sbalzarini (2001)] are thus reflected in
the resulting fitting error. In fact (after proper temporal scaling), the exponential
model’s plot below looks very similar to figure 5.2 (page 29) in [Sbalzarini (2001)]
which compares a 2D and a 3D random walk simulation. This is evidence that the
influence of dimensionality largely accounts for the error in the exponential model
fit. The empirical model on the other hand is completely based on measurement
data for the ER and lacks physical background. It is therefore not surprising that
its performance on the box test case (which is different from ER diffusion) is not
convincing as it fails to extrapolate to new geometries.

Both new models perform better than the current ones since they are based on
physical principles. In fact the RMS fitting error for the second order physical
model is again at the order of 10−3 as for all the ER samples considered in section
11.3.4. This indicates that it manages to extrapolate over a wide range of geometries
without grossly deteriorating in performance. It fits about one order of magnitude
better than the empirical model and two orders of magnitude better than the expo-
nential model. For the box test case, also the power law model seems quite usable.
However, we will see later that it gets slightly worse for the ER samples.

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30

F
R

A
P

time

Exponential model: Emin = 1.226

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30

F
R

A
P

time

Empirical model: Emin = 0.141

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30

F
R

A
P

time

Power law model: Emin = 0.086

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30

F
R

A
P

time

Second order physical model:
Emin = 0.031

Figure 12.1: Best fit of different models (red) to the analytic solution for the box
test case (blue dashed)

12.2. COMPARISON ON ER SAMPLES 113

12.2 Comparison on ER samples

Although many of the models’ features can already be observed on the box test case,
their performance on real simulated FRAP data from ER samples is what actually
counts. Therefore, the models are also fitted to the simulation results obtained in
section 9.1. Exemplarily, the results for the erp5724 run are given hereafter since
this run turned out to pose the hardest problem to the models because it has a
different bleached box size than all the other ones (cf. section 9.2). Table 12.3
lists the initial parameters, learning rates and tolerance settings used for fitting the
various models to the nmax = 2001 data points of the simulated FRAP curve. Table
12.4 summarizes the optimal model parameters found, the minimum value of the
quadratic fitting error as defined by equation 11.6 and the number of iterations it
took for the gradient descent algorithm to converge below the prescribed tolerance.

Model Initial parameters Learning rates Tolerance
Exponential α0 = 0.1 ηα = 10−5 10−6

Empirical α0 = 0.7, t1/2,0 = 6.5 ηα = ηt1/2 = 10−3 10−6

Power law α0 = 0.5, β0 = 1.0 ηα = ηβ = 10−4 10−6

2nd order physical α0 = 4.0, β0 = 0.5 ηα = ηβ = 10−3 10−6

Table 12.3: Parameter settings for erp5724 model fits

Model Optimal parameters Emin NIter

Exponential αopt = 0.04342 6.433889 24
Empirical αopt = 0.66775, t1/2,opt = 16.28989 1.36757 991209
Power law αopt = 0.18428, βopt = 1.38605 0.166035 344597
2nd order physical αopt = 3.61430, βopt = 0.45771 0.012437 18318

Table 12.4: Optimal parameters for erp5724 model fits

Figure 12.2 again shows the resulting plots of the fitted models (red curves) to the
simulated FRAP data (blue curves). The minimum values of the quadratic fitting
error are listed along with the figures’ captions. The picture is even more striking
as it was for the box test case. The exponential model now seems to completely fail
to capture the characteristics of the curve. Comparing this picture to the one of the
box test case shows that the influence of geometry accounts for an error of 5.208
whereas the influence of dimensionality caused an error of 1.226. The geometrical
structures (precise: the restriction of diffusion to them) thus have a large influence
on the resulting FRAP curve even at the same value of the diffusion constant. The
empirical model is also worse than it was for the box test case. One should however
note, that it usually performs better on ER samples (cf. table B.2 in appendix B).
This sample however features a bleached box that deviates in size and position
from the ones of the other samples. The large error of the empirical model for this
run indicates that it is incapable of dealing with different bleached box geometries,
as already stated in section 11.1. Another interesting detail is the fact that the
empirical model takes about 50 times as many iterations to converge as the second
order physical one. This is in agreement with the findings of section 11.3.3.

114 CHAPTER 12. COMPARISON TO CURRENTLY USED MODELS

0

0.1

0.2

0.3

0.4

0.5

0.6

0 5 10 15 20

F
R

A
P

time

Exponential model: Emin = 6.434

0

0.1

0.2

0.3

0.4

0.5

0.6

0 5 10 15 20

F
R

A
P

time

Empirical model: Emin = 1.368

0

0.1

0.2

0.3

0.4

0.5

0.6

0 5 10 15 20

F
R

A
P

time

Power law model: Emin = 0.166

0

0.1

0.2

0.3

0.4

0.5

0.6

0 5 10 15 20

F
R

A
P

time

Second order physical model:
Emin = 0.012

Figure 12.2: Best fit of different models (red) to simulated erp5724 FRAP curve
(blue dashed)

Again, both new models perform significantly better1 than the empirical model,
even for this worst case ER sample. The RMS error of the second order physical
model fit is again below the RMS error of the PSE simulations indicating a possibly
perfect match.

To allow further comparisons between the best currently used model (i.e. the empir-
ical model) and the best new model (the second order physical model), the fitting
results for all ER samples are given in appendix B. Apart from the exception
erp573 2, the new model constantly fits one to two orders of magnitude better than
the empirical model.

Figure 12.3 shows the model matching errors for the empirical model (blue dashed
curve) and the second order physical model (red curve) as a function of the iteration
step number k of the gradient descent algorithm 11.1. Both axes use logarithmic
scaling to get a clear plot.

1one order of magnitude for the power law model, two orders of magnitude for the second order
physical model

12.3. COMPARISON ON EXPERIMENTAL DATA 115

0.01

0.1

1

10

100

1 10 100 1000 10000 100000 1e+06

M
od

el
 m

at
ch

in
g

er
ro

r

Iteration step

Figure 12.3: Model matching error for sample erp5724 and empirical model (blue
dashed) as well as second order physical model (red). Notice the double logarithmic
scaling.

12.3 Comparison on experimental data

Finally, the two best models, i.e. the empirical one and the new second order physical
model, are compared with real experimental data (courtesy of Anna Mezzacasa).
Therefore, the same two experiments as presented in chapter 10 are used. Example
8s has 15 data points and 8.2 has 23 data points. Both experiments have been made
with a bleached spot of size 5µm×5µm. The initial parameters and optimization
settings are listed in table 12.5. Table 12.6 gives the optimal model parameters, the
minimum value of the quadratic fitting error and the number of iterations needed
for the 8s sample and table 12.7 for the 8.2 sample.

Model Initial parameters Learning rates Tolerance
Empirical α0 = 1.0, t1/2,0 = 0.05 ηα = 10−4, ηt1/2 = 5 · 10−5 10−6

2nd order physical α0 = 5.0, β0 = 0.8 ηα = 0.1, ηβ = 5 · 10−4 10−6

Table 12.5: Parameter settings for experimental data model fits

Model Optimal parameters Emin NIter

Empirical αopt = 11.19487, t1/2,opt = 0.01775 4.49922 · 10−3 1118631
2nd order physical αopt = 25.93876, βopt = 0.77531 3.90525 · 10−3 2794396

Table 12.6: Optimal parameters for 8s model fits

Figure 12.4 shows the corresponding plots. The measured data points are shown
as blue crosses, the optimally fitted model is drawn as a red line. Again, the
second order physical model performs better than the empirical one. However, the

116 CHAPTER 12. COMPARISON TO CURRENTLY USED MODELS

Model Optimal parameters Emin NIter

Empirical αopt = 11.02793, t1/2,opt = 0.02912 1.34563 · 10−3 523349
2nd order physical αopt = 17.49833, βopt = 0.78028 7.44625 · 10−4 677758

Table 12.7: Optimal parameters for 8.2 model fits

difference is smaller than for the simulated data sets. This was to be expected as
the empirical model is based on such experimental data and has been trained to fit
it (including its measurement errors and noise).

0

0.2

0.4

0.6

0.8

1

1.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

F
R

A
P

time [s]

8s with empirical model:
Emin = 4.499 · 10−3

0

0.2

0.4

0.6

0.8

1

1.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

F
R

A
P

time [s]

8s with second order physical model:
Emin = 3.905 · 10−3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1 1.2

F
R

A
P

time [s]

8.2 with empirical model:
Emin = 1.346 · 10−3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1 1.2

F
R

A
P

time [s]

8.2 with second order physical model:
Emin = 7.446 · 10−4

Figure 12.4: Best fit of different models (red) to experimental FRAP data (blue
crosses)

Again, the model matching error is plotted against the iteration step number of the
gradient descent algorithm using a double logarithmic scaling. The results for both
experimental data sets are shown in figure 12.5 where the blue dashed curve stands
for the empirical model and the red curve for the second order physical one.

According to equation 11.5, the recovery half-times for the second order physical
model can also be calculated. Table 12.8 lists the results and the relative deviation
from the empirical model. The models are in agreement insofar as their mutual
difference is less than the statistical scatter (as both experiments have been made
using the same ER, the diffusion constant and therefore the half-times for both
samples should be equal).

12.3. COMPARISON ON EXPERIMENTAL DATA 117

0.001

0.01

0.1

1

1 10 100 1000 10000 100000 1e+06 1e+07

M
od

el
 m

at
ch

in
g

er
ro

r

Iteration count

8s

0.0001

0.001

0.01

0.1

1

1 10 100 1000 10000 100000 1e+06

M
od

el
 m

at
ch

in
g

er
ro

r

Iteration step

8.2

Figure 12.5: Model matching error for empirical model (blue dashed) as well as sec-
ond order physical model (red) for both experiments. Notice the double logarithmic
scaling.

Sample t1/2 empirical t1/2 physical relative deviation
8s 17.75ms 15.70ms 11.5%
8.2 29.12ms 26.69ms 8.3%
average 23.4 ± 5.7ms 21.2 ± 5.5ms 9.4%

Table 12.8: Recovery half-times and their deviation

As stated in section 11.4, this would now allow one to deduce the diffusion con-
stant if the influence of geometry was known. Wrongly applying the calibration
point of [Dayel, Hom & Verkman (1999)]2 to the geometry of our samples yields
D = 21.8 − 43.5µm2/s for the empirical model and D = 23.6 − 47.2µm2/s for the
second order physical model. Comparing these numbers to the result D = 54µm2/s
obtained from direct numerical simulation in chapter 10 shows that they differ
by a factor of 1.2 to 2.5 for the empirical model and 1.1 to 2.3 for the second
order physical model. This difference is caused by neglecting geometrical influ-
ences. The fact that the deviation for the second order physical model is slightly
smaller is due to its better fitting behavior. Using the empirical model, various
papers (e.g. [Dayel, Hom & Verkman (1999)]) report diffusion coefficients between
25µm2/s and 30µm2/s for GFP in the cytoplasm, between 5µm2/s and 10µm2/s
in the ER lumen and between 20µm2/s and 30µm2/s in the mitochondrial matrix
(see [Lippincott-Schwartz, Snapp & Kenworthy (2001)] for a summary). The dif-
ference between these numbers and the one obtained with the old empirical model
for the present experiments is thus caused by differences in the cells, proteins or
experimental set-ups used and has nothing to do with the models involved.

2Stating that t1/2 = 100 ms corresponds to a diffusion constant of 5 − 10 µm2/s

118 CHAPTER 12. COMPARISON TO CURRENTLY USED MODELS

Chapter 13

Conclusions and future work

This project successfully extended the work of [Sbalzarini (2001)] to study not only
the influence of dimensionality but also the one of geometry on diffusion processes
in the endoplasmic reticulum. The use of fractal concepts and latest computer
simulation techniques made it possible to move on to three-dimensional realistic
ER shapes. Changing the simulation technique from random walk to the method
of particle strength exchange allowed accurate treatment of diffusion in arbitrary
domains. In order to do so, 3D reconstructions of real ER samples were made as
described in chapter 2. The triangulation defining their surface was then checked
for various validity criteria in chapter 3.

As stated in the future work list of [Sbalzarini (2001)], a sound mathematical treat-
ment of diffusion on fractal sets was needed in order to proceed with using concepts
from fractal geometry to find novel FRAP data models for diffusion in the endo-
plasmic reticulum. Towards this end, chapter 4 introduced and summarized some
of the theoretical foundations about measures and dimensions for later use. In this
context, different fractal dimensions such as the box counting dimension or Haus-
dorff’s dimension were properly introduced and defined, extending section 10.1 of
[Sbalzarini (2001)]. Chapter 6 then made use of this theoretical background to in-
vestigate diffusion on fractal sets. Starting from Brownian motion on the Sierpinski
gasket, a proof has been presented that Hausdorff’s dimension is not a sufficient
parameter to capture the time behavior of diffusion on fractals as was suspected in
[Sbalzarini (2001)]. Considering transition densities and eigenvalues of the Lapla-
cian, the dimension of the walk has been found to actually be the sought-after
sufficient geometry parameter. This finding has also been extended to infinitely
ramified fractals and anisotropic diffusion.

Chapter 5 was concerned with measuring the fractal dimension of the ER surface as
requested in [Sbalzarini (2001)]. Therefore, an algorithm to transform the triangu-
lated representation to a voxel set was presented and validated. A 3D generalization
of the box counting algorithm has then been developed and used to determine the
box counting dimension of the ER surface to be 2.8. This value is within the theo-
retically predicted range of [Sbalzarini (2001)].

Chapter 7 introduced the numerical simulation techniques used in this work. An
existing code for the anisotropic particle strength exchange method was success-
fully extended to handle bounded computational domains of arbitrary shapes with
either Neumann or Dirichlet boundary conditions. To this end, a fast geome-
try preprocessor has been developed as well as proper post-processing and vi-
sualization techniques. A new set of algorithms is now available that is much
more sophisticated and trustworthy than the 2D finite difference tools applied

119

120 CHAPTER 13. CONCLUSIONS AND FUTURE WORK

by [Siggia, Lippincott-Schwartz & Bekiranov (2000)], [Ellenberg et al. (1997)] and
[Dayel, Hom & Verkman (1999)].

To validate the simulation algorithms, a test case has been introduced in chapter 8
and its analytic solution derived and analyzed. A simple finite difference code served
as a cross-validation. Random walk and PSE simulations have been shown to yield
results close to the exact solution, justifying their use for productive simulations.
Comparative error considerations and timings have been made to analyze the codes’
performance.

Chapter 9 presented diffusion simulations in a number of ER samples in order to
obtain simulated FRAP curves. Moreover, the influence of the position and size of
the bleached box was investigated and shown to be relevant. The results obtained
for the ER geometry differ significantly from the one of the cubic box considered
in [Sbalzarini (2001)]. Comparative timings and parallel speed-up estimations con-
cluded this chapter.

In chapter 10, a simulation has been presented that was run in the exact same
geometry as used for a real laboratory experiment. Very good coincidence was
observed for sufficiently resolved simulations and still good coincidence for under-
resolved runs. Moreover, it has been shown that it is possible to determine diffusion
constants by fitting simulation data to experimental measurements. The diffusion
constant obtained this way differs from the one predicted by the current empirical
model of [Dayel, Hom & Verkman (1999)] by a factor of 1.2 to 2.5. Neglect of the
geometrical influences hereby accounts for 1.1 to 2.3, the rest is caused by using a
model that does not optimally fit the data.

In chapter 11, new FRAP data models have been proposed after briefly reviewing
some existing ones. The new models are based on physical principles. Using the
theory of diffusion on fractal sets as outlined in chapter 6, the new models also
take into account the local ER geometry which has been shown in chapter 9 to
significantly influence the FRAP results. One model also includes basic information
about the bleached box geometry which has been shown in section 9.2 to affect the
FRAP results. After noting some properties of the model matching error functions,
the new model’s parameters have been determined for all simulated FRAP curves
using a gradient descent method. For the new model, almost perfect correspondence
was observed for all ER samples with an RMS error which is below the one of the
PSE simulation itself. The chapter was concluded by some considerations on how
to interpret the models’ parameters in terms of real-world physical properties.

The new models have been compared to the current ones in chapter 12 on the box
test case, on ER samples and on experimental data. All comparisons show the same
picture: the new physical model is better than the current models while fully ac-
counting for geometry and bleached box influences. Comparing the fitting behavior
of the 2D exponential model for the box test case and the ER sample allowed to
make the observation that the influences of geometrical structures are some 4 to 5
times more important to the time behavior of diffusion (and thus the FRAP curves)
than the influences of dimensionality as investigated in [Sbalzarini (2001)].

In the limited time of this diploma thesis, it was of course not possible to address
all the questions in desirable detail. Namely the following points will have to be
subjects to future work:

• A functional relationship between the parameters of the new model and the
diffusion constant has to be found in order to complete the considerations of
section 11.4. Due to the required extrapolation capabilities, it is desirable
to find a physical relationship rather than using neural networks or machine
learning methods.

121

• Once such a function is known, a small and stable program for automatic
quantitative evaluation of experimental FRAP data has to be developed. Such
an application would allow robust and coherent determination of numerical
diffusion coefficients in daily laboratory use, making results comparable among
different groups.

• More accurate (i.e. higher resolution) simulations should be run in order to
compare them to experiments and investigate whether the deviations observed
in one case in chapter 10 stem from simulation or measurement errors.

• More accurate initial conditions using an initial fluorophore concentration pro-
file as proposed in [Axelrod et al. (1976)] should be included in the simula-
tions and their influence on the resulting FRAP curve should be investigated.

• More and better FRAP data models have to be found and evaluated.

• Finally, diffusion of membrane-bound proteins should be addressed. An ex-
tension of the method of particle strength exchange to surface-bound dif-
fusion will however first have to be theoretically derived. This consists of
finding a discretization of the Beltrami operator1 on particles as well as a set
of (local) mappings to theoretically describe the ER’s surface. The work of
[Spekreijse, Hagmeijer & Boerstoel (1996)] could serve as a starting point.

Ultimately, it is desirable to go beyond simulating existing experiments in order
to start investigating things not amenable to them and create novel knowledge by
using computer simulations only. Examples of such applications include:

• Investigations on whether the medium filling the ER lumen is anisotropic
(what ratio of anisotropy ?) or not. This can be done by conducting anisotropic
simulations (recall that all simulation codes already include the functionality
needed) and fitting their results to experimental data. If those results fit bet-
ter than the isotropic ones, this could be evidence that diffusion in reality is
anisotropic.

• Investigation on whether the ratio and spatial structure of anisotropy do have
an influence on the resulting FRAP curves at all (cf. chapter 10). This consists
of running different anisotropic simulations and comparing their FRAP curves.

• Use of the new data model to analyze experimental FRAP curves in order
to obtain diffusion coefficients that allow biological conclusions about protein
folding and sorting.

• Applications of the fractal diffusion theory to completely different fields such
as transport phenomena in porous media, complex electric systems or heat
conduction.

Altogether, a large step in understanding diffusion processes in the endoplasmic
reticulum as well as geometrical influences on diffusion in general has been made
when comparing to the state in [Sbalzarini (2001)] and all assigned goals of the
project have been achieved (cf. foreword). Nevertheless, some open points remain
and there is still work to do until the new models are ready for productive, unat-
tended laboratory use. A sound basis however exists by now and the hope remains
that the final goal is not too far any more.

1The Beltrami operator describes diffusion which is restricted to a curved surface in space just
as the Laplace operator describes free diffusion in space.

122 CHAPTER 13. CONCLUSIONS AND FUTURE WORK

Bibliography

[Alberts et al. (1997)] Alberts, B., Bray, D., Johnson, A., Lewis, J., Raff,

M., Roberts, K. & Walter, P., 1997, Essential Cell Biology, Garland
publishing, Inc., New York.

[Axelrod et al. (1976)] Axelrod, D, Koppel, D. E., Schlessinger, J., Elson,

E. & Webb, W. W., 1976, Mobility Measurement by Analysis of Fluorescence
Photobleaching Recovery Kinetics, Biophysical Journal, 16, 1055-1069.

[Baldock & Graham (2000)] Baldock, R. & Graham, J. (Eds.), 2000, Image
Processing and Analysis - A Practical Approach, Oxford University Press, New-
York.

[Barlow & Bass (1992)] Barlow, M. T. & Bass, R. F., 1992, Transition densities
for Brownian motion on the Sierpinski carpet, Probability Theory and related
fields, 91, Springer, 307-330.

[Barlow, Hattori, Hattori & Watanabe (1997)] Barlow, M. T., Hattori, K.,

Hattori, T. & Watanabe, H., 1997, Weak Homogenization of Anisotropic
Diffusion on Pre-Sierpinski Carpets, Communications in Mathematical Physics,
188, Springer, 1-27.

[Barlow & Perkins (1988)] Barlow, M. T. & Perkins, E. A., 1988, Brownian
Motion on the Sierpinski Gasket, Probability Theory and related fields, 79,
Springer, 543-623.

[Beaudoin, Huberson & Rivoalen (2001)] Beaudoin, A., Huberson, S. &

Rivoalen, E., Simulation of anisotropic diffusion by means of a diffusion
velocity method, submitted to J. Comp. Phys..

[Cheezum, Walker & Guilford (2001)] , Cheezum, M. K., Walker, W. F. &

Guilford, W. H., 2001, Quantitative Comparison of Algorithms for Tracking
Single Fluorescent Particles, Biophysical Journal, 81, 2378-2388.

[Cottet & Koumoutsakos (2000)] Cottet, G.-H. & Koumoutsakos, P. D.,
2000, Vortex Methods - Theory and Practice, Cambridge University Press.

[Dayel, Hom & Verkman (1999)] Dayel, M. J., Hom, E. F. Y. & Verkman, A.

S., 1999, Diffusion of Green Fluorescent Protein in the Aqueous-Phase Lumen
of the Endoplasmic Reticulum, Biophysical Journal, 76, 2843-2851.

[Degond & Mas-Gallic (1989a)] Degond, P. & Mas-Gallic, S., 1989, The
weighted particle method for convection-diffusion equations, Part I: The case
of isotropic viscosity, Math. Comp., 53, 485.

[Degond & Mas-Gallic (1989b)] Degond, P. & Mas-Gallic, S., 1989, The
weighted particle method for convection-diffusion equations, Part 2: The
anisotropic case, Math. Comp., 53, 509.

123

124 BIBLIOGRAPHY

[Dietrich et al. (2002)] Dietrich, C., Yang, B., Fujiwara, T., Kusumi, A. &

Jacobson, K., 2002, Relationship of Lipid Rafts to Transient Confinement
Zones Detected by Single Particle Tracking, Biophysical Journal, 82, 274-284.

[Ellenberg et al. (1997)] Ellenberg, J, Siggia, E. D., Moreira, J. E., Smith,

C. L., Presley, J. F., Worman, H. J. & Lippincott-Schwartz, J., 1997,
Nuclear Membrane Dynamics and Reassembly in Living Cells: Targeting of an
Inner Nuclear Membrane Protein in Interphase and Mitosis, Journal of Cell
Biology, Vol. 138, Nr. 6, 1193-1206.

[Falconer (1985)] Falconer, K. J., 1990, The Geometry of Fractal Sets, Cam-
bridge University Press.

[Falconer (1990)] Falconer, K. J., 1990, Fractal Geometry - Mathematical Foun-
dations and Applications, John Wiley & Sons, Chichester, UK.

[Falconer (1997)] Falconer, K. J., 1997, Techniques in Fractal Geometry, John
Wiley & Sons, Chichester, UK.

[Hattori, Hattori & Watanabe (1994)] Hattori, K., Hattori, T. & Watanabe,

H., 1994, Asymptotically one-dimensional diffusions on the Sierpinski gasket
and the abc-gaskets, Probability Theory and related fields, 100, Springer, 85-
116.

[Hausdorff (1919)] Hausdorff, F., 1919, Dimension und äusseres Mass, Mathe-
matische Annalen, 79, 157-179.

[Hockney & Eastwood (1988)] Hockney, R. W. & Eastwood, J. W., 1988,
Computer simulation using particles, Institute of Physics Publishing, Bris-
tol/Philadelphia.

[Hou, Gilmore, Mindlin & Solari (1990)] Hou, X.-J., Gilmore, R., Mindlin, G.

B. & Solari, H. G., 1990, An efficient algorithm for fast O(N*log N) box
counting, Physics Letters A, Vol. 151, No. 1 2, 43-46.

[Kamm (2002)] Kamm, R. D., 2002, Cellular Fluid Mechanics, Annual Revisions
in Fluid Mechanics, 34, 211-232.

[Kusumi, Sako & Yamamoto (1993)] Kusumi, A., Sako, Y. & Yamamoto, M.,
1993, Confined Lateral Diffusion of Membrane Receptors as Studied by Single
Particle Tracking (Nanovid Microscopy). Effects of Calcium-Induced Differen-
tiation in Cultured Epithelial Cells, Biophysical Journal, 65, 2021-2040.

[Liebovitch & Toth (1989)] Liebovitch, L. S. & Toth, T., 1989, A fast algo-
rithm to determine fractal dimensions by box-counting, Physics Letters A,
Vol. 141, No. 8 9, 386-390.

[Lippincott-Schwartz, Snapp & Kenworthy (2001)] Lippincott-Schwartz, J.,

Snapp, E. & Kenworthy, A., 2001, Studying Protein Dynamics in living
Cells, Nature Rev. Cell Biology, 2, 444.

[Mandelbrot (1982)] Mandelbrot, B. B., 1982, The fractal geometry of nature,
W. H. Freeman and Co., San Francisco.

[McCorquodale, Colella & Johansen (2001)] McCorquodale, P., Colella, P.

& Johansen, H., 2001, A Cartesian Grid Embedded Boundary Method for
the Heat Equation on Irregular Domains, Journal of Computational Physics,
173, 620-635.

BIBLIOGRAPHY 125

[Mitra, Murthy, Kundu & Bhattacharya (2001)] Mitra, S. K., Murthy, C. A.,

Kundu, M. K. & Bhattacharya, B. B., 2001, Fractal Image Compression
Using Iterated Function System with Probabilities, Proc. Intl. Conference on
Information Technology (ITCC’01), IEEE Computer Society, 191-195.

[Monks (2001)] Monks, K., 2001, Definitions and Theorems for Chaos and Frac-
tals, lecture monograph, Course Math-320, University of Scranton.

[Numerical Recipes in Fortran 90 (1996)] Press, W. H., Teukolsky, S. A.,

Vetterling, W. T. & Flannery, B. P., 1996, Numerical Recipes in For-
tran 90 - The Art of Parallel Scientific Computing, 2nd edition, Cambridge
University Press.

[Ölveczky & Verkman (1998)] Ölveczky, B. P. & Verkman, A. S., 1998, Monte
Carlo Analysis of Obstructed Diffusion in Three Dimensions: Application to
Molecular Diffusion in Organelles, Biophysical Journal, 74, 2722-2730.

[Reits & Neefjes (2001)] Reits, E. A. J. & Neefjes, J. J., 2001, From fixed to
FRAP: measuring protein mobility and activity in living cells, Nature Cell
Biology, Vol. 3, June 2001, E145-E147.

[Sbalzarini (2001)] Sbalzarini, I. F., 2001, On Protein Diffusion in the Endo-
plasmic Reticulum - a computational approach using particle simulations,
ICoS/ETHZ semester thesis, July 2001.

[SGI (1992a)] Silicon Graphics, Inc., 1992, How to write an IRIS Inventor File
Translator, Release 1.0.

[SGI (1992b)] Silicon Graphics, Inc., 1992, IRIS Inventor Nodes Quick Refer-
ence, Release 1.0.

[Shannon (1948)] Shannon, C. E., 1948, A Mathematical Theory of Communica-
tion, The Bell System Technical Journal, 27, 379-656.

[Siggia, Lippincott-Schwartz & Bekiranov (2000)] Siggia, E. D., Lippincott-

Schwartz, J. & Bekiranov, S., 2000, Diffusion in Inhomogeneous Media:
Theory and Simulations Applied to Whole Cell Photobleach Recovery, Bio-
physical Journal, 79, 1761-1770.

[Smith, Marks, Lang, Sheriff & Neal (1989)] Smith, T. G. Jr., Marks, W. B.,

Lang, G. D., Sheriff, W. H. Jr. & Neal, E. A., 1989, A Fractal Analysis
of Cell Images, Journal of Neuroscience Methods, 27, 173-180.

[Spekreijse, Hagmeijer & Boerstoel (1996)] Spekreijse, S. P., Hagmeijer, R. &

Boerstoel, J. W., 1996, Adaptive grid generation by usgin the Laplace-
Beltrami operator on a monitor surface, National Aerospace Laboratory Tech-
nical Report, TP 96297, Amsterdam, The Netherlands.

[Stoll, Stern & Stucki (1996)] Stoll, E. P., Stern, C. & Stucki, P., 1996, Frac-
tals in isotropic systems generated with attracting spheres, Physica A, 230,
11-18.

[Zimmermann, Koumoutsakos & Kinzelbach (2001)] Zimmermann, S., Koumou-

tsakos, P. & Kinzelbach, W., 2001, Simulation of Pollutant Transport
Using a Particle Method, Journal of Computational Physics, 173, 322-347.

126 BIBLIOGRAPHY

Appendix A

Contents of the companion
CD-ROMs

All data files that have been produced in digital form during this diploma project
are contained on the two attached CD-ROMs.

The CDs contain this report (source texts and final PS and PDF versions as well
as all pictures), all Fortran source code files, shell scripts and perl scripts, some
movies and the final PowerPoint presentation of the work. Moreover, all original
micrographs are included as well as the original input and output files of all the runs
presented in this report and all experimental data. Finally, the CDs also contain
some 3rd party papers that are related to this work.

All directories on both CDs contain README files with further information on the
files and their usage.

CD #2 only contains a single directory (runs) which holds compressed archive files
(.tar.gz) of all the simulation runs. They can be uncompressed using the command

$ tar zxvf <run>.tar.gz

This will create a directory called <run> that contains all the input and output files
of the simulation run according to the information in the README file.

127

128 APPENDIX A. CONTENTS OF THE COMPANION CD-ROMS

The file system of CD #1 is structured as follows:

DA02 Sbalzarini 1/

3div/ 3D reconstructions of all ER samples

codes/ Source code files of all programs

analytic/ Calculates the analytic solution (section 8.2)

bdiff3d/ Random walk simulation code (section 7.1)

run/ Input files and utilities

src/ Source code

concat/ Concatenates PSE3D output files

crayfishpak/ Fast finite difference solver libraries

FD/ Finite difference solver (section 8.3)

nlfit/ Gradient descent algorithm (section 11.3.1)

runs/ Results of all model fits made

src/ Source code

preproc/ Geometry preprocessor (section 7.2.5)

run/ Input files and visualization utilities

src/ Source code

PSE3D/ PSE simulation code (section 7.2)

run/ Input files

src/ Source code

experiments/ Experimental data and evaluation tools
used in chapter 10

micrographs/ Stained ER micrograph stacks

8s/ Stack of 8s and 8.2 experiments (chapter 10)

movies/ Movies of experiments and exact solution

utilities/ Scripts and helper programs to make movies

papers/ Some relevant 3rd party papers

postproc/ OpenDX converter and visualization tools
presented in section 7.3

presentation/ Final project presentation (PowerPoint)

report/ This report

source/ LATEX source files of this report

code/ Source code files of appendix C

pics/ All EPS and PS figures of this report

erp572/ Sample micrograph stack erp572 (chapter 2)

masters/ Original xfig drawings and pixel images

Appendix B

Fitted model parameters

B.1 Second order physical model fit

The following table lists the optimal model parameters αopt and βopt for the second
order physical model given by equation 11.4 in section 11.2.2 found for the different
simulation runs of chapter 9. In order not to loose any information, they are given
to one more significant digit than the accuracy they were computed with, well aware
of the fact that they cannot be trusted for more than 3 digits. The column Emin

lists the minimum value of the quadratic (not RMS !) fitting error E as defined by
equation 11.6 and NIter is the number of iterations it took for the gradient descent
algorithm to converge up to a tolerance of 10−6. Since all runs started from the same
initial point in parameter space, this number is a measure for the distance between
the initial and the optimal point. Details about the runs as well as comparative
plots are contained in section 11.3.4.

Sample αopt βopt Emin NIter

bip2 1.9440048 0.63324605 3.629066 · 10−2 7924
clx 3.3294665 0.58295736 1.825963 · 10−2 11773
erp57 2.4120744 0.63037812 6.61639 · 10−3 8881
erp572 2.8619264 0.48297255 1.12797 · 10−2 10586
erp573 1 3.2154385 0.62770381 3.07065 · 10−2 11444
erp573 2 3.4254690 0.46527276 1.66678 · 10−2 11758
erp573 3 2.9901725 0.63353217 2.574665 · 10−2 11356
erp574 1 2.7352222 0.51042596 2.789649 · 10−2 10467
erp574 2 3.8617008 0.56668043 3.05717 · 10−3 12512
erp5722 2.4727129 0.57562438 2.120234 · 10−2 9303
erp5723 1.6467670 0.66137837 5.019553 · 10−2 6922
erp5724 3.6143039 0.45770528 1.243710 · 10−2 18318

Table B.1: Fitting results for the second order physical model

129

130 APPENDIX B. FITTED MODEL PARAMETERS

B.2 Empirical model fit

Table B.2 lists the optimal model parameters αopt and t1/2,opt for the empirical
model given by equation 11.2 in section 11.1 found for the different simulation runs
of chapter 9. In order not to loose any information, they are given to one more
significant digit than the accuracy they were computed with, well aware of the fact
that they cannot be trusted for more than 3 digits. The column Emin lists the
minimum value of the quadratic (not RMS !) fitting error E as defined by equation
11.6 and NIter is the number of iterations it took for the gradient descent algorithm
to converge up to a tolerance of 10−6. Since all runs started from the same initial
point in parameter space, this number is a measure for the distance between the
initial and the optimal point.

Sample αopt t1/2,opt Emin NIter

bip2 0.74410405 12.882408 0.22977 401454
clx 0.66395129 6.6161354 0.0852237 43693
erp57 0.71880026 9.6646334 0.0514976 142477
erp572 0.56902663 13.142333 0.127082 735753
erp573 1 0.71491157 6.0489575 0.12589 38403
erp573 2 0.51711024 11.242306 0.0376993 695268
erp573 3 0.72134601 6.7077755 0.106629 46024
erp574 1 0.59855700 12.441742 0.163978 524343
erp574 2 0.65499708 5.4388216 0.0249841 37575
erp5722 0.66276097 11.301493 0.121126 285086
erp5723 0.80072016 14.398334 0.371151 546584
erp5724 0.66775435 16.289888 1.36757 991209

Table B.2: Fitting results for the empirical model

Appendix C

The simulation codes

For future reference and the purpose of complete transparency and reproducibility
of the algorithms developed and used in this work, the source code listings of some
programs are given in this appendix. Each section contains information about a
different program starting with a general description of the code and its usage,
syntax and explanation of all input and output files as well as an overview of the
code’s structure and calling tree (if meaningful). In all syntax examples, mandatory
values are enclosed by triangular brackets <.>, optional ones by square brackets [.].
The dollar sign $ symbolizes a command line prompt.

These explanations are then followed by a reprint of the source code listing. Each
subroutine is presented in a different subsection preceded by a descriptive header
stating its purpose and calling syntax. All programs have been written in the
Fortran 90 programming language. For easier reference and readability, statement
numbers have been included in the listings to which the algorithms described in
this report contain references. They are for documentation purposes only and not
present in the original “compilable” files. The files as printed hereafter are as of
February 21, 2002. Due to the ongoing nature of the project, they can and will be
altered and further developed in the future.

Please note that not all programs utilized in this project are given in this appendix.
The following codes are omitted for various reasons (but are contained on CD #1
nevertheless):

• The new version of the random walk code because it only contains minor
changes compared to the version that has been printed in [Sbalzarini (2001)]
and all the changes are fully documented in section 7.1.

• The PSE simulation code because it is too large and has mainly been devel-
oped by other people in other projects. Moreover, none of its algorithms are
presented in this report in detail making any references to it obsolete.

• The code that calculates FRAP value predictions based on current models
because it is too trivial.

• All the small MATLAB files for visualization and least squares fitting because
they are straightforward.

• The tools used to concatenate and average data files because they are imple-
mented in an obvious manner.

131

132 APPENDIX C. THE SIMULATION CODES

C.1 Calculating the analytic solution

C.1.1 General description and usage notes

This section contains the program code used to numerically calculate the analytic
solution for the box test case as derived in section 8.2. The code only consists of a
single source file and has the following input parameters that are directly hard-coded
into its header (statements 4 through 15):

Parameter Meaning
Len (L) Edge length of the cubic computational domain
a (a) Lower x-coordinate of the bleached box
b (b) Upper x-coordinate of the bleached box
c (c) Lower y-coordinate of the bleached box
d (d) Upper y-coordinate of the bleached box
dt (δt) Time step size
tfinal (tfinal) Final time of solution
t0 (t0) Starting time
Diff (D) Diffusion constant
c0 (c0) Initial concentration outside the bleached box
N (N) Number of grid points in each direction
M (M) Number of terms in the series expansion

Table C.1: Input parameters for analytical.f90

The output consists of a set of files called uXXX.out where XXX stands for the
corresponding time step number. These files contain the analytical solution at the
time steps indicated. Each line contains the solution at one grid point using the
following syntax:

<x-pos> <y-pos> <z-pos> <solution u>

They are used to visualize the exact solution at certain time steps such as in figure
8.3. Two other output files are called frap.out and mass.out and they contain the
FRAP values and the total mass in the system versus time using the syntax:

<time> <value>

on every line. They are used to create various FRAP curve plots as well as to
check the accuracy of the simulation using the principle of conservation of mass.
Examples are given in figures 8.4 and 8.5, respectively. Additionally, the program
prints a message like

Completed time step 20 of 601

to the system’s standard output every time it completes a time step. This is for
progress monitoring purposes only.

C.1.2 Source code listing

The following source code lists the complete program used to calculate the analytic
solution given in section 8.2 as an infinite sum over eigenfunctions. It already
contains the high performance Fortran directive needed to parallelize it on a vector
processor.

C.1. CALCULATING THE ANALYTIC SOLUTION 133

C.1.2.1 Analytic solution (analyt.f90)

1 program analytical

2 IMPLICIT NONE

!--
!analytical Calculates the analytic solution for the box test case.
! ANALYTICAL calculates the analytic solution for diffusion in a
! cube of side length L with zero flux boundary conditions. The initial
! condition is 1 everywhere except in the cylinder [a,b]x[c,d]x[0,L]
! where it is zero initially. The solution is for homogenious, isotropic
! diffusion. In addition, the resulting FRAP curve is calculated and
! written to the file frap.out.
!
! THIS IS OPTIMIZED FOR PGHPF HIGH PERFORMANCE FORTRAN (PARALLELISM)
!
!==
! DIPLOMA THESIS WS01/02 ICOS ETH-ZUERICH
!--
!
! PROTEIN DIFFUSION INSIDE THE ENDOPLASMIC RETICULUM
!
!============================= ivo f. sbalzarini ==============================
!

!--
! Declaration of parameters
!--

! precision (4=single, 8=double)
3 INTEGER, PARAMETER :: MK = KIND(1.0D0)

! edge length of the cube
4 REAL(MK), PARAMETER :: Len = 4.0

! lower x coordinate of bleached box
5 REAL(MK), PARAMETER :: a = 2.0

! upper x coordinate of bleached box
6 REAL(MK), PARAMETER :: b = 3.0

! lower y coordinate of bleached box
7 REAL(MK), PARAMETER :: c = 2.0

! upper y coordinate of bleached box
8 REAL(MK), PARAMETER :: d = 3.0

! time step size
9 REAL(MK), PARAMETER :: dt = 0.05

! final time to calculate solution up to
10 REAL(MK), PARAMETER :: tfinal = 30.0

! initial time to start from
11 REAL(MK), PARAMETER :: t0 = 0.0

! Diffusion coefficient
12 REAL(MK), PARAMETER :: Diff = 0.03

! initial concentration outside bleached box
13 REAL(MK), PARAMETER :: c0 = 1.0

! number of grid points in each direction to get solution at
14 INTEGER, PARAMETER :: N = 41

! number of terms to calculate in the solutions series expansion
15 INTEGER, PARAMETER :: M = 300

!--
! Declaration of local variables
!--

! loop counters
16 INTEGER :: i, j ,k, l, istep

! the four integral parts of the solution
17 REAL(MK) :: I1, I2, I3, I4

! intermediate terms
18 REAL(MK) :: t1, t2, t3, h, im, xm

! often used sqrt terms
19 REAL(MK) :: w2ul, w2l, w1ul

! grid spacing
20 REAL(MK) :: dx

! current time
21 REAL(MK) :: t

! current position
22 REAL(MK) :: x, y

134 APPENDIX C. THE SIMULATION CODES

! solution
23 REAL(MK), DIMENSION(:,:), ALLOCATABLE :: u

! coordinates of points at which solution is avaluated
24 REAL(MK), DIMENSION(:), ALLOCATABLE :: px

! error trap variable
25 INTEGER :: istat

! values of x and y eigenfunctions
26 REAL(MK) :: ukx, uly

! eigenvalue
27 REAL(MK) :: ll

! FRAP data of all time steps
28 REAL(MK), DIMENSION(:), ALLOCATABLE :: frap

! total mass of all times (to check conservation)
29 REAL(MK), DIMENSION(:), ALLOCATABLE :: mass

! name of current output file
30 CHARACTER(LEN=80) :: filename

! minimum and maximum time step
31 INTEGER :: Tmin, Tmax

! index boundaries of bleached box
32 INTEGER :: iblx, ibux, ibly, ibuy

! total number of grid points inside bleached box
33 INTEGER :: nb

! the inverse length of the domain
34 REAL(MK) :: Leninv

! guess what ...
35 REAL(MK) :: PI

!--
! Set up solution grid and allocate memory
!--

36 PI = 4.0_MK*datan(1.0_MK)
37 dx = Len/(N-1.0) ! grid spacing
38 Tmax = ceiling(tfinal/dt) ! number of time steps
39 Tmin = ceiling(t0/dt)
40 iblx = ceiling(a/dx)+1 ! boundary indices of bleached box
41 ibux = floor(b/dx)+1
42 ibly = ceiling(c/dx)+1
43 ibuy = floor(d/dx)+1
44 nb = (ibux-iblx+1)*(ibuy-ibly+1) ! number of pts in bleached box

45 istat = 0
46 ALLOCATE(u(N,N), px(N), frap(Tmax-Tmin+1), mass(Tmax-Tmin+1))
47 if (istat .NE. 0) then
48 WRITE(*,’(2A)’) ’Unable to allocate memory for solution.’
49 goto 9999
50 end if

51 px(1:N) = real((/(i,i=0,N-1,1)/))*dx ! coordinates of points

!--
! Calculate solution for all time steps and grid points
!--

! some expressions that occur often
52 w2ul = dsqrt(2.0_MK/Len)
53 w2l = dsqrt(2.0_MK*Len)
54 w1ul = dsqrt(1.0_MK/Len)
55 Leninv = 1.0_MK/Len

!HPF$ INDEPENDENT
56 do istep=Tmin,Tmax
57 t = real(istep)*dt
58 if(t .EQ. 0.0) then

! exact initial condition to avoid Gibbs oscillations
59 u(1:N,1:N) = 1.0_MK
60 u(iblx:ibux,ibly:ibuy) = 0.0_MK
61 else

!--
! Calculate solution for all points by Eigenfunction series expansion
!--

62 do j=0,N-1
63 y = px(j+1)
64 I1 = c*Leninv
65 I4 = (Len-d)*Leninv
66 do l=M,1,-1 ! sum in reverse order to avoid extinction
67 ll = dexp(-Diff*t*(real(l)*PI*Leninv)**2)
68 h = (2.0_MK/(real(l)*PI))*dcos(real(l)*PI*y*Leninv)

C.1. CALCULATING THE ANALYTIC SOLUTION 135

69 I1 = I1 + (h*dsin(real(l)*PI*c*Leninv)*ll)
70 I4 = I4 - (h*dsin(real(l)*PI*d*Leninv)*ll)
71 end do
72 do i=0,N-1
73 x = px(i+1)
74 I2 = 0.0_MK
75 I3 = 0.0_MK
76 do k=M,0,-1 ! sum in reverse order to avoid extinction
77 if(k .EQ. 0) then
78 ukx = w1ul
79 t1 = ukx*a
80 t2 = ukx*(Len-b)
81 else
82 ukx = w2ul*dcos(real(k)*PI*x*Leninv)
83 h = w2l/(real(k)*PI)
84 t1 = h*dsin(real(k)*PI*a*Leninv)
85 t2 = -h*dsin(real(k)*PI*b*Leninv)
86 end if
87 do l=M,0,-1 ! sum in reverse order to avoid extinction
88 ll = (real(k)*PI*Leninv)**2
89 ll = ll + (real(l)*PI*Leninv)**2
90 ll = dexp(-Diff*t*ll)
91 if(l .EQ. 0) then
92 uly = w1ul
93 t3 = uly*(d-c)
94 else
95 uly = w2ul*dcos(real(l)*PI*y*Leninv)
96 t3 = dsin(real(l)*PI*d*Leninv)
97 t3 = t3-dsin(real(l)*PI*c*Leninv)
98 t3 = (w2l/(real(l)*PI))*t3
99 end if
100 im = ukx*uly*t3*ll
101 I2 = I2 + im*t1
102 I3 = I3 + im*t2
103 end do
104 end do
105 u(i+1,j+1) = c0*(I1+I2+I3+I4)
106 end do
107 end do
108 end if

!---
! get current FRAP value and total mass
!---

109 frap(istep-Tmin+1) = 0.0_MK
! loop over all cells in the bleached box

110 do j=iblx,ibux-1
111 do k=ibly,ibuy-1
112 xm = u(j,k)+u(j+1,k)+u(j,k+1)+u(j+1,k+1)
113 frap(istep-Tmin+1) = frap(istep-Tmin+1)+xm
114 end do
115 end do

! multiply with cell volume to get total mass in bleached box
116 frap(istep-Tmin+1) = dx*dx*0.25_MK*frap(istep-Tmin+1)

! divide by bleached box volume to get concentration
117 frap(istep-Tmin+1) = frap(istep-Tmin+1)/((b-a)*(d-c))

118 mass(istep-Tmin+1) = 0.0_MK
! loop over all cells

119 do j=1,N-1
120 do k=1,N-1

! average the concentrations of all 4 corner vertices of the cell
! and multiply with the cells volume to get the mass

121 xm = u(j,k)+u(j+1,k)+u(j,k+1)+u(j+1,k+1)
122 mass(istep-Tmin+1) = mass(istep-Tmin+1)+xm
123 end do
124 end do
125 mass(istep-Tmin+1) = dx*dx*0.25_MK*mass(istep-Tmin+1)

!---
! Write solution at current time to file
!---

126 WRITE(filename,’(A,I3.3,A)’) ’u’,istep,’.out’
127 OPEN(30, FILE=filename, STATUS=’REPLACE’, ACTION=’WRITE’)
128 do j=1,N
129 do i=1,N
130 WRITE(30,*) px(i), px(j), u(i,j)
131 end do

136 APPENDIX C. THE SIMULATION CODES

132 WRITE(30,’(A)’)
133 end do
134 CLOSE(30)

135 WRITE(*,’(A,I5,A,I5)’) ’Completed time step ’,istep+1,’ of ’,Tmax+1

136 end do

!--
! Write FRAP data to file
!--

137 OPEN(30, FILE=’frap.out’, STATUS=’REPLACE’, ACTION=’WRITE’)
138 do i=Tmin+1,Tmax+1
139 WRITE(30,*) (i-1)*dt, frap(i-Tmin)
140 end do
141 CLOSE(30)
142 OPEN(30, FILE=’mass.out’, STATUS=’REPLACE’, ACTION=’WRITE’)
143 do i=Tmin+1,Tmax+1
144 WRITE(30,*) (i-1)*dt, mass(i-Tmin)
145 end do
146 CLOSE(30)

!--
! Deallocate and terminate
!--

147 if(ALLOCATED(u)) DEALLOCATE(u)
148 if(ALLOCATED(px)) DEALLOCATE(px)
149 if(ALLOCATED(frap)) DEALLOCATE(frap)
150 if(ALLOCATED(mass)) DEALLOCATE(mass)
151 9999 CONTINUE

152 END program analytical

C.2 A finite difference code

C.2.1 General description and usage notes

This finite difference code has been used in section 8.3 to validate the analytic
solution for the box test case. The code only consists of a single source file and has
the input parameters that are directly hard-coded in statements 30 through 49. A
list of them is given in table C.2.

The boundary condition types that can be chosen for LBDCND, MBDCND and NBDCND
are: 0 (for periodic boundary conditions), 1 (for Dirichlet) or 3 (for Neumann).
The boundary values are assumed to be zero but they could be explicitly set in
statements 88 to 93. The initial condition is chosen to be given by equation 8.1 if
INCOND is set to .FALSE.. If it is set to .TRUE., the initial condition is read from a
file called init.in that contains nv(1)*nv(2) lines giving the initial values on the
grid points as:

<x-pos> <y-pos> <value u0>

where the inner loop is over nv(2), the outer over nv(1). The initial condition is
then extruded in z direction (i.e. it is assumed to be the same on all z-planes). This
enables the exact solution to serve as an initial condition as was done for figure 8.8.

The output consists of the three files init.out, fd.frap and fd.mass. init.out
contains the positions of all the grid points that have an initial value of zero using
the following syntax:

for i=1,nv(1)
for j=1,nv(2)

for k=1,nv(3)
if(u(i,j,k)=0)

C.2. A FINITE DIFFERENCE CODE 137

<x-pos> <y-pos> <z-pos>
end if

end for
end for

end for

It mainly serves for control purposes. The files fd.frap and fd.mass contain the
FRAP values and the total mass in the system versus time using the syntax:

<time> <value>

on every line. They are used to create the various FRAP curve plots as well as to
check the accuracy of the simulation using the principle of conservation of mass.
Examples are given in figures 8.6 and 8.7, respectively. In addition to above output
files, the code also prints some messages to the system’s standard output. After
successful initialization, it prints:

Solver initialized.

Then, it prints a message like:

Completed time step 20 of 6000

every time a time step is completed. At the very end, the following output is given:

Solver finished.

Parameter Meaning
D (D) Diffusion constant
bblx (a) Lower x-coordinate of the bleached box
bbux (b) Upper x-coordinate of the bleached box
bbly (c) Lower y-coordinate of the bleached box
bbuy (d) Upper y-coordinate of the bleached box
dt (δt) Time step size
tfinal (tfinal) Final time of solution
mmin(1) Lower x-coordinate of cubic computational domain
mmin(2) Lower y-coordinate of cubic computational domain
mmin(3) Lower z-coordinate of cubic computational domain
mmax(1) Upper x-coordinate of cubic computational domain
mmax(2) Upper y-coordinate of cubic computational domain
mmax(3) Upper z-coordinate of cubic computational domain
nv(1) Number of grid points in x direction
nv(2) Number of grid points in y direction
nv(3) Number of grid points in z direction
LBDCND Boundary condition type in x direction
MBDCND Boundary condition type in y direction
NBDCND Boundary condition type in z direction
INCOND Read initial condition from file or not

Table C.2: Input parameters for fd.f90

138 APPENDIX C. THE SIMULATION CODES

C.2.2 Source code listing

The source code of the program used to calculate the finite difference solution for
the box test case in section 8.3 is given hereafter. It is based on the fast commercial
solver library CRAYFISHPAK by Green Mountain software, Madeira Beach, FL,
which is needed for the program to compile and run.

C.2.2.1 Finite difference solver (fd.f90)

1 program fd

2 IMPLICIT NONE

!--
!FD Calculates a high-resolution finite difference solution for the box
! FD uses CRAYFISHPAK solvers to get a finite difference solution
! for the box test case in order to validate the analytic solution.
!
! THIS NEEDS THE CRAYFISHPAK LIBRARIES
! (commercial and thus not included in this reprint)
!
! See also
!
! todo:
!
!==
! DIPLOMA THESIS WS01/02 ICOS ETH-ZUERICH
!--
!
! PROTEIN DIFFUSION INSIDE THE ENDOPLASMIC RETICULUM
!
!============================= ivo f. sbalzarini ==============================
!

! set precision
3 INTEGER, PARAMETER :: MK = KIND(1.0D0)

!--
! Declaration of local variables
!--

! loop conters
4 INTEGER :: i, j ,k, l

! lower and upper boundaries of physical domain
5 REAL(MK), DIMENSION(3) :: mmin, mmax

! number of grid points in all 3 directions
6 INTEGER, DIMENSION(3) :: nv

! boundary condition types (0: periodic, 1: dirichlet, 3: neumann)
7 INTEGER :: LBDCND
8 INTEGER :: MBDCND
9 INTEGER :: NBDCND

! boundary data arrays
10 REAL(MK), DIMENSION(:,:), ALLOCATABLE :: BDXS, BDXF, BDYS, BDYF, BDZS, BDZF

! dimensions
11 INTEGER :: LDIMF, MDIMF

! lambda in Helmholz equation
12 REAL(MK) :: lambda

! error trap
13 INTEGER :: info

! solution array
14 REAL(MK), DIMENSION(:,:,:), ALLOCATABLE :: u

! work arrays for CRAYFISHPAK
15 REAL(MK), DIMENSION(:), ALLOCATABLE :: wrk1, wrk2

! time step size
16 REAL(MK) :: dt

! final time of simulation
17 REAL(MK) :: tfinal

! number of time steps
18 INTEGER :: TMAX

! diffusion coefficient
19 REAL(MK) :: D

! dimension of work array needed by CRAYFISHPAK
20 INTEGER :: dim

! Perturbation returned from solver
21 REAL(MK) :: PERTRB

! grid spacing in x, y and z

C.2. A FINITE DIFFERENCE CODE 139

22 REAL(MK) :: dx, dy, dz
! lower/upper x/y coordinates of bleached box

23 REAL(MK) :: bblx, bbux, bbly, bbuy
! lower and upper indices of bleached box in solution grid

24 INTEGER :: il, ih, jl, jh
! number of points inside bleached box

25 INTEGER :: nb
! array to hold frap data

26 REAL(MK), DIMENSION(:), ALLOCATABLE :: frap
! array to hold total mass at each time step

27 REAL(MK), DIMENSION(:), ALLOCATABLE :: mass
! read initial condition from file?

28 LOGICAL :: INCOND
! moving sum for total mass

29 REAL(MK) :: xm

!--
! Problem initialization (THIS IS USER INPUT)
!--

! diffusion coefficient
30 D = 0.03_MK

! bleached box
31 bblx = 2.0_MK
32 bbux = 3.0_MK
33 bbly = 2.0_MK
34 bbuy = 3.0_MK

! time step and final time
35 dt = 0.005_MK
36 tfinal = 30.0_MK

! physical domain size
37 mmin(1) = 0.0_MK
38 mmin(2) = 0.0_MK
39 mmin(3) = 0.0_MK
40 mmax(1) = 4.0_MK
41 mmax(2) = 4.0_MK
42 mmax(3) = 4.0_MK

! number of grid vertices in all three directions
43 nv(1) = 81
44 nv(2) = 81
45 nv(3) = 81

! boundary condition: Neumann (3) on all sides
! (1 would be Dirichlet and 0 periodic)

46 LBDCND = 3
47 MBDCND = 3
48 NBDCND = 3

! read initial condition from file ?
49 INCOND = .false.

!--
! Initialize derived properties (NO USER INPUT BELOW THIS LINE)
!--

! grid spacings
50 dx = (mmax(1)-mmin(1))/real(nv(1)-1)
51 dy = (mmax(2)-mmin(2))/real(nv(2)-1)
52 dz = (mmax(3)-mmin(3))/real(nv(3)-1)

! number of time steps
53 TMAX = ceiling(tfinal/dt)

! lambda in Helmholtz equation
54 lambda = -1.0_MK/(D*dt)

! some dimensions (ex CRAYFISHPAK documentation)
55 LDIMF = nv(1) + 4
56 MDIMF = nv(2) + 4
57 dim = (nv(1)+1)*(nv(2))*(nv(3)) + &

7*(nv(1)-1) + 3*(nv(2)-1) + 4*(nv(3)-1) + 76

!--
! Allocate the memory needed
!--

140 APPENDIX C. THE SIMULATION CODES

58 ALLOCATE(u(LDIMF,MDIMF,nv(3)), STAT=info)
59 if(info .NE. 0) then
60 WRITE(*,’(A)’) ’Error allocating memory for solution array u.’
61 goto 9999
62 end if

63 ALLOCATE(wrk1(dim), wrk2(dim), STAT=info)
64 if(info .NE. 0) then
65 WRITE(*,’(A)’) ’Error allocating memory for work arrays.’
66 goto 9999
67 end if

68 ALLOCATE(BDXS(nv(2)+4,nv(3)+4), BDXF(nv(2)+4,nv(3)+4), STAT=info)
69 if(info .NE. 0) then
70 WRITE(*,’(A)’) ’Error allocating memory for x boundary arrays.’
71 goto 9999
72 end if

73 ALLOCATE(BDYS(nv(1)+4,nv(3)+4), BDYF(nv(1)+4,nv(3)+4), STAT=info)
74 if(info .NE. 0) then
75 WRITE(*,’(A)’) ’Error allocating memory for y boundary arrays.’
76 goto 9999
77 end if

78 ALLOCATE(BDZS(nv(1)+4,nv(2)+4), BDZF(nv(1)+4,nv(2)+4), STAT=info)
79 if(info .NE. 0) then
80 WRITE(*,’(A)’) ’Error allocating memory for z boundary arrays.’
81 goto 9999
82 end if

83 ALLOCATE(frap(TMAX+1), mass(TMAX+1), STAT=info)
84 if(info .NE. 0) then
85 WRITE(*,’(A)’) ’Error allocating memory for frap and mass arrays.’
86 goto 9999
87 end if

!--
! Set boundary and initial conditions
!--

! boundary condition values (s: lower boundary, f: upper boundary)
! here meaning zero gradient at the boundaries

88 BDXS = 0.0_MK
89 BDXF = 0.0_MK
90 BDYS = 0.0_MK
91 BDYF = 0.0_MK
92 BDZS = 0.0_MK
93 BDZF = 0.0_MK

! set initial condition
94 u = 1.0_MK
95 il = ceiling(bblx/dx)+1 ! boundaries of bleached box
96 ih = floor(bbux/dx)+1
97 jl = ceiling(bbly/dy)+1
98 jh = floor(bbuy/dy)+1
99 nb = (ih-il+1)*(jh-jl+1)*nv(3) ! number of particles in bleached box
100 if(INCOND) then
101 OPEN(40, FILE=’init.in’, STATUS=’OLD’, ACTION=’READ’)

! read initial condition from file
102 do i=1,nv(1)
103 do j=1,nv(2)
104 READ(40,*) xm, xm, u(i,j,1)
105 end do
106 end do
107 CLOSE(40)

! extrude to 3D
108 do i=1,nv(1)
109 do j=1,nv(2)
110 do k=2,nv(3)
111 u(i,j,k) = u(i,j,1)
112 end do
113 end do
114 end do
115 else
116 u(il:ih,jl:jh,:) = 0.0_MK
117 end if

! write initial condition to file for check
118 OPEN(40,FILE=’init.out’,STATUS=’REPLACE’,ACTION=’WRITE’)
119 do i=1,LDIMF

C.2. A FINITE DIFFERENCE CODE 141

120 do j=1,MDIMF
121 do k=1,nv(3)
122 if(u(i,j,k) .EQ. 0) WRITE(40,*) (i-1)*dx,(j-1)*dy,(k-1)*dx
123 enddo
124 enddo
125 enddo
126 CLOSE(40)

!--
! Initialize solver (CALL TO CRAYFISHPAK LIBRARY)
!--

127 CALL H3GCIS(mmin(1),mmax(1),nv(1)-1,LBDCND, &
mmin(2),mmax(2),nv(2)-1,MBDCND, &
mmin(3),mmax(3),nv(3)-1,NBDCND, &
lambda,LDIMF,MDIMF,info,wrk1)

128 if(info .NE. 0) then
129 WRITE(*,’(A)’) ’ERROR: Initialization of solver failed!’
130 WRITE(*,’(A,I5)’) ’H3GCIS returns: ’,info
131 goto 9999
132 else
133 WRITE(*,’(A)’) ’Solver initialized.’
134 end if

!--
! Main time step loop
!--

135 do i=1,TMAX

136 frap(i) = 0.0_MK
! loop over all cells in the bleached box

137 do j=il,ih-1
138 do k=jl,jh-1
139 do l=1,nv(3)-1
140 xm = u(j,k,l)+u(j+1,k,l)+u(j,k+1,l)+u(j,k,l+1) &

+u(j+1,k+1,l)+u(j,k+1,l+1)+u(j+1,k,l+1)+u(j+1,k+1,l+1)
141 frap(i) = frap(i) + xm
142 end do
143 end do
144 end do

! multiply with cell volume to get total mass in bleached box
145 frap(i) = dx*dy*dz*0.125_MK*frap(i)

! divide by bleached box volume to get concentration
146 frap(i) = frap(i)/((bbux-bblx)*(bbuy-bbly)*(mmax(3)-mmin(3)))

147 mass(i) = 0.0_MK
! loop over all cells

148 do j=1,nv(1)-1
149 do k=1,nv(2)-1
150 do l=1,nv(3)-1

! average the concentrations of all 8 corner vertices of the cell
151 xm = u(j,k,l)+u(j+1,k,l)+u(j,k+1,l)+u(j,k,l+1) &

+u(j+1,k+1,l)+u(j,k+1,l+1)+u(j+1,k,l+1)+u(j+1,k+1,l+1)
152 mass(i) = mass(i) + xm
153 end do
154 end do
155 end do

! multiply with the cells volume to get the mass
156 mass(i) = dx*dy*dz*0.125_MK*mass(i)

!---
! Call solver (CALL TO CRAYFISHPAK LIBRARY)
!---

! reset perturbation
157 PERTRB = 0.0_MK

! new right hand side
158 u = lambda*u

! solve
159 CALL H3GCSS(BDXS,BDXF,BDYS,BDYF,BDZS,BDZF,LDIMF,MDIMF,u(1,1,1), &

PERTRB,wrk1,wrk2)
160 if(PERTRB .NE. 0.0_MK) then
161 WRITE(*,’(A,I3,A,E15.5)’) ’Time step ’,i,’: Solver perturbation = ’,PERTRB
162 end if
163 WRITE(*,’(A,I5,A,I5)’) ’Completed time step ’,i,’ of ’,TMAX
164 end do

! get last value too

142 APPENDIX C. THE SIMULATION CODES

165 frap(TMAX+1) = 0.0_MK
166 do j=il,ih-1
167 do k=jl,jh-1
168 do l=1,nv(3)-1
169 xm = u(j,k,l)+u(j+1,k,l)+u(j,k+1,l)+u(j,k,l+1) &

+u(j+1,k+1,l)+u(j,k+1,l+1)+u(j+1,k,l+1)+u(j+1,k+1,l+1)
170 frap(TMAX+1) = frap(TMAX+1) + xm
171 end do
172 end do
173 end do

! multiply with cell volume to get total mass in bleached box
174 frap(TMAX+1) = dx*dy*dz*0.125_MK*frap(TMAX+1)

! divide by bleached box volume to get concentration
175 frap(TMAX+1) = frap(TMAX+1)/((bbux-bblx)*(bbuy-bbly)*(mmax(3)-mmin(3)))
176 mass(TMAX+1) = 0.0_MK
177 do j=1,nv(1)-1
178 do k=1,nv(2)-1
179 do l=1,nv(3)-1
180 xm = u(j,k,l)+u(j+1,k,l)+u(j,k+1,l)+u(j,k,l+1) &

+u(j+1,k+1,l)+u(j,k+1,l+1)+u(j+1,k,l+1)+u(j+1,k+1,l+1)
181 mass(TMAX+1) = mass(TMAX+1) + xm
182 end do
183 end do
184 end do
185 mass(TMAX+1) = dx*dy*dz*0.125_MK*mass(TMAX+1)

! write frap data to file
186 OPEN(40, FILE=’fd.frap’, STATUS=’REPLACE’, ACTION=’WRITE’)
187 do i=1,TMAX+1
188 WRITE(40,*) (i-1)*dt, frap(i)
189 end do
190 CLOSE(40)
191 OPEN(40, FILE=’fd.mass’, STATUS=’REPLACE’, ACTION=’WRITE’)
192 do i=1,TMAX+1
193 WRITE(40,*) (i-1)*dt, mass(i)
194 end do
195 CLOSE(40)

!--
! Free memory and terminate
!--

196 9999 CONTINUE

197 if(ALLOCATED(mass)) DEALLOCATE(mass)
198 if(ALLOCATED(frap)) DEALLOCATE(frap)
199 if(ALLOCATED(BDZF)) DEALLOCATE(BDZF)
200 if(ALLOCATED(BDZS)) DEALLOCATE(BDZS)
201 if(ALLOCATED(BDYF)) DEALLOCATE(BDYF)
202 if(ALLOCATED(BDYS)) DEALLOCATE(BDYS)
203 if(ALLOCATED(BDXF)) DEALLOCATE(BDXF)
204 if(ALLOCATED(BDXS)) DEALLOCATE(BDXS)
205 if(ALLOCATED(wrk2)) DEALLOCATE(wrk2)
206 if(ALLOCATED(wrk1)) DEALLOCATE(wrk1)
207 if(ALLOCATED(u)) DEALLOCATE(u)

208 WRITE(*,’(A)’) ’Solver finished.’

209 END program fd

C.3 Post-processing

C.3.1 General description and usage notes

As mentioned in section 7.3, the output files of the PSE simulation code have to
be converted to an OpenDX grid file format in order to visualize the concentration
fields. The code that implements the corresponding algorithm is given hereafter. It
consists of a single source file and does not need any input parameters. The files
one wishes to convert are passed to it as command line arguments upon invocation:

$ res2dx <file1.res> [file2.res [file3.res ...]]

C.3. POST-PROCESSING 143

Any number of files can be processed at the same call, shell wildcards are allowed.
The parameters NBX, NBY and NBZ on lines 4 to 6 give the numbers of cells in each
direction to be used for the linked list algorithm. They can be tuned for better
performance. The input files are PSE3D result files containing all the particles and
their strengths at a certain time step of the simulation. Each line in such a file
contains the information about one particle using the syntax:

<x-pos> <y-pos> <z-pos> <strength>

For each input file processed, the code outputs the two files <infile>.grid and
<infile>.general. The former contains just one number per line giving the con-
centration value at that grid position. Hereby it first loops over the z-direction,
then over the y-direction and last over the x-direction:

for i=1,Nx
for j=1,Ny

for k=1,Nz
<value(i,j,k)>

end for
end for

end for

The latter contains the OpenDX header according to section 7.3. This is the file
that is actually opened in OpenDX. No output is written to the standard output.

C.3.2 Source code listing

The source code of the converter program is given below. For a description of its
algorithms including the fast linked list sorting, see section 7.3 of this report.

C.3.2.1 OpenDX grid file converter (res2dx.f90)

1 program res2dx

2 IMPLICIT NONE

!--
!RES2DX Converts PSE3D result files to OpenDX grid input format.
! res2dx reads a file containing positions and strengths of particles
! and converts them to a regular cartesion grid file for OpenDX. It
! writes both the data file *.grid and the *.general file containing
! all the headers for OpenDX. The list of files to be processed is
! passed to res2dx as command line arguments. This program uses a
! fast o(N) box sorting with linked particle lists.
!
! See also PSE3D
!
! todo:
!
!==
! DIPLOMA THESIS WS01/02 ICOS ETH-ZUERICH
!--
!
! PROTEIN DIFFUSION INSIDE THE ENDOPLASMIC RETICULUM
!
!============================= ivo f. sbalzarini ==============================
!

!--
! Declaration of external functions
!--

! get number of command line arguments
3 INTEGER, EXTERNAL :: iargc

144 APPENDIX C. THE SIMULATION CODES

!--
! Declaration of local variables
!--

! number of boxes in x,y,z for chaining mesh
4 INTEGER, PARAMETER :: NBX = 10
5 INTEGER, PARAMETER :: NBY = 10
6 Integer, PARAMETER :: NBZ = 10

! accuarcy
7 INTEGER, PARAMETER :: MK = KIND(1.0D0)

! loop counters
8 INTEGER :: i,j,k,l,m

! grid spacings in x,y,z
9 REAL(MK) :: dx, dy, dz

! number of grid points in x,y,z
10 INTEGER :: Nx, Ny, Nz

! bounding box
11 REAL(MK) :: xl,xh,yl,yh,zl,zh

! number of points to be read in
12 INTEGER :: Np, Nw

! position
13 REAL(MK), DIMENSION(3) :: x, xold, xdiff

! strength
14 REAL(MK) :: s

! input file, output file, header file
15 CHARACTER(LEN=80) :: infile, outfile, headfile

! name of the program
16 CHARACTER(LEN=80) :: prgname

! number of command line arguments (input files)
17 INTEGER :: nargc

! position and mass data
18 REAL(MK), DIMENSION(:,:), ALLOCATABLE :: xp
19 REAL(MK), DIMENSION(:), ALLOCATABLE :: mass

! threshold for nearest grid point
20 REAL(MK) :: t

! is this grid point found in the data?
21 LOGICAL :: found

! error status
22 INTEGER :: istat

! head-of-chain for each box
23 INTEGER, DIMENSION(:,:,:), ALLOCATABLE :: HOC

! linked particle list
24 INTEGER, DIMENSION(:), ALLOCATABLE :: ll

! box sizes
25 REAL(MK) :: dbx, dby, dbz

! current box index
26 INTEGER :: idx, idy, idz

!--
! Process command line arguments
!--

! read program name from command line
27 CALL getarg(0,prgname)

! get number of input files
28 nargc = iargc()
29 if(nargc .LT. 1) then
30 print*,’Missing input file name(s). Usage: ’,TRIM(prgname),’ &

inputfile [inputfile ...]’
31 goto 9999
32 end if

!--
! Loop over all input files and translate them
!--

33 do i=1,nargc
! get input file name

34 CALL getarg(i,infile)
! derive other file names

35 WRITE(outfile,’(2A)’) TRIM(infile),’.grid’
36 WRITE(headfile,’(2A)’) TRIM(infile),’.general’
37 WRITE(*,’(2A)’) ’processing file: ’,TRIM(infile)

!---
! Scan file and determine grid geometry
!---

38 WRITE(*,’(A)’) ’Parsing data to determine grid geometry ...’

C.3. POST-PROCESSING 145

39 OPEN(40, FILE=infile, STATUS=’OLD’, ACTION=’READ’)
! first pass: scan file and count number of particles to be
! read in. also determine bounding box and grid spacings

40 Np = 0
41 xh = -HUGE(xh)
42 xl = HUGE(xl)
43 yh = -HUGE(yh)
44 yl = HUGE(yl)
45 zh = -HUGE(zh)
46 zl = HUGE(zl)
47 dx = HUGE(dx)
48 dy = HUGE(dy)
49 dz = HUGE(dz)
50 do
51 READ(40,’(4E16.8)’,END=110) x(1:3), s
52 if(Np .EQ. 0) xold = x
53 Np = Np + 1
54 xdiff = abs(x-xold)
55 if(x(1) .GT. xh) xh = x(1)
56 if(x(1) .LT. xl) xl = x(1)
57 if(x(2) .GT. yh) yh = x(2)
58 if(x(2) .LT. yl) yl = x(2)
59 if(x(3) .GT. zh) zh = x(3)
60 if(x(3) .LT. zl) zl = x(3)
61 if(xdiff(1) .LT. dx .AND. xdiff(1) .GT. 0.0_MK) dx = xdiff(1)
62 if(xdiff(2) .LT. dy .AND. xdiff(2) .GT. 0.0_MK) dy = xdiff(2)
63 if(xdiff(3) .LT. dz .AND. xdiff(3) .GT. 0.0_MK) dz = xdiff(3)
64 xold = x
65 end do
66 110 CLOSE(40)

! determine number of grid points
67 Nx = int((xh-xl)/dx)+1
68 Ny = int((yh-yl)/dy)+1
69 Nz = int((zh-zl)/dz)+1

! print terminal output
70 WRITE(*,’(3(A,F8.4))’) ’xl = ’,xl,’ / yl = ’,yl,’ / zl = ’,zl
71 WRITE(*,’(3(A,F8.4))’) ’dx = ’,dx,’ / dy = ’,dy,’ / dz = ’,dz
72 WRITE(*,’(3(A,I8))’) ’Nx = ’,Nx,’ / Ny = ’,Ny,’ / Nz = ’,Nz
73 WRITE(*,’(3(A,F8.4))’) ’xh = ’,xh,’ / yh = ’,yh,’ / zh = ’,zh

! write OpenDX *.general header file
74 OPEN(40, FILE=headfile, STATUS=’REPLACE’, ACTION=’WRITE’)
75 WRITE(40,’(2A)’) ’file = ’, TRIM(outfile)
76 WRITE(40,’(A,I4,A,I4,A,I4)’) ’grid = ’,Nx,’ x ’,Ny,’ x ’,Nz
77 WRITE(40,’(A)’) ’format = ascii’
78 WRITE(40,’(A)’) ’interleaving = record’
79 WRITE(40,’(A)’) ’majority = row’
80 WRITE(40,’(A)’) ’field = u’
81 WRITE(40,’(A)’) ’structure = scalar’
82 WRITE(40,’(A)’) ’type = float’
83 WRITE(40,’(A)’) ’dependency = positions’
84 WRITE(40,’(A,5(F8.3,A),F8.3)’) ’positions = regular,regular,regular, &

’,xl,’,’,dx,’,’,yl,’,’,dy,’,’,zl,’,’,dz
85 WRITE(40,’(A)’)
86 WRITE(40,’(A)’) ’end’
87 CLOSE(40)

!---
! Allocate memory and read all data
!---

! allocate arrays for positions and masses
88 ALLOCATE(xp(3,Np), mass(Np), STAT=istat)
89 if(istat .NE. 0) then
90 WRITE(*,’(A)’) ’Error allocating memory for data.’
91 goto 9999
92 end if

! allocate arrays for particle sorting and chaining mesh
93 ALLOCATE(HOC(NBX,NBY,NBZ), ll(Np), STAT=istat)
94 if(istat .NE. 0) then
95 WRITE(*,’(A)’) ’Error allocating memory for linked list.’
96 goto 9999
97 end if

! nullify lists
98 HOC(1:NBX,1:NBY,1:NBZ) = 0
99 ll(1:Np) = 0

146 APPENDIX C. THE SIMULATION CODES

! second pass: read points
100 WRITE(*,’(A)’) ’Reading data points ...’
101 OPEN(40, FILE=infile, STATUS=’OLD’, ACTION=’READ’)
102 do j=1,Np
103 READ(40,’(4E16.8)’) xp(1:3,j), mass(j)
104 end do
105 CLOSE(40)

!---
! Set up chaining mesh and sort the particles into boxes
!---

106 WRITE(*,’(A)’) ’Sorting particles in linked lists ...’

! determine box sizes
107 dbx = (xh-xl)/real(NBX)
108 dby = (yh-yl)/real(NBY)
109 dbz = (zh-zl)/real(NBZ)

! loop over all particles
110 do j=1,Np

! determine index of box we are in
111 idx = ceiling((xp(1,j)-xl)/dbx)
112 if(idx .EQ. 0) idx = 1
113 if(idx .EQ. NBX+1) idx = NBX
114 idy = ceiling((xp(2,j)-yl)/dby)
115 if(idy .EQ. 0) idy = 1
116 if(idy .EQ. NBY+1) idy = NBY
117 idz = ceiling((xp(3,j)-zl)/dbz)
118 if(idz .EQ. 0) idz = 1
119 if(idz .EQ. NBZ+1) idz = NBZ

! add particle to linked list of this box
120 ll(j) = HOC(idx,idy,idz)
121 HOC(idx,idy,idz) = j
122 end do

!---
! Write regular grid output
!---

! write output file
123 WRITE(*,’(A)’) ’Writing regular grid output file ...’
124 OPEN(50, FILE=outfile, STATUS=’REPLACE’, ACTION=’WRITE’)
125 Nw = 0

! threshold for nearest grid point
126 t = (0.5*minval((/dx,dy,dz/)))**2

! t = 0.1
! loop over all grid points

127 do j=1,Nx
128 do k=1,Ny
129 do l=1,Nz

! current position
130 xold(1) = xl+(j-1)*dx
131 xold(2) = yl+(k-1)*dy
132 xold(3) = zl+(l-1)*dz

! determine box index
133 idx = ceiling((xold(1)-xl)/dbx)
134 if(idx .EQ. 0) idx = 1
135 if(idx .EQ. NBX+1) idx = NBX
136 idy = ceiling((xold(2)-yl)/dby)
137 if(idy .EQ. 0) idy = 1
138 if(idy .EQ. NBY+1) idy = NBY
139 idz = ceiling((xold(3)-zl)/dbz)
140 if(idz .EQ. 0) idz = 1
141 if(idz .EQ. NBZ+1) idz = NBZ

! search for this grid point in the data
142 found = .FALSE.

! traverse linked list for all particles in the same box
143 m = HOC(idx,idy,idz)
144 do while (m .NE. 0 .AND. found .EQ. .FALSE.)

! if particle is close enough to grid point, take it and
! exit loop

145 if(sum((xp(1:3,m)-xold(1:3))**2) .LT. t) then
146 WRITE(50,*) mass(m)
147 Nw = Nw + 1
148 found = .TRUE.
149 end if
150 m = ll(m)
151 end do

C.4. GRADIENT DESCENT FITTING 147

! if not found, output zero
152 if(.NOT. found) WRITE(50,*) 0.0_MK
153 end do
154 end do
155 end do
156 CLOSE(50)

!---
! Terminate and deallocate memory
!---

! terminal output
157 WRITE(*,’(2(A,I8))’) ’Particles read: ’,Np,’ / Particles written: ’,Nw
158 WRITE(*,’(A)’)

! deallocate memory
159 DEALLOCATE(HOC, ll)
160 DEALLOCATE(xp, mass)

161 end do

162 9999 CONTINUE
163 if(ALLOCATED(HOC)) DEALLOCATE(HOC)
164 if(ALLOCATED(ll)) DEALLOCATE(ll)
165 if(ALLOCATED(xp)) DEALLOCATE(xp)
166 if(ALLOCATED(mass)) DEALLOCATE(mass)

167 END program res2dx

C.4 Gradient descent fitting

C.4.1 General description and usage notes

The program code for the gradient descent algorithm described in section 11.3.1
and used in section 11.3.4 and chapter 12 to fit the various FRAP data models to
both simulation and experimental data is given next. The program does a nonlinear
least squares fit of a model having 1 or 2 parameters called α and β. It uses the
slow but robust (cf. the considerations in section 11.3.3) method of gradient descent
and consists of a single source file. The following input parameters are specified in
statements 5 to 16:

Parameter Meaning
TOL (TOL) Tolerance for termination criterion
a Size (extension) of the bleached box in x-direction
b Size (extension) of the bleached box in y-direction
MODEL Model to be fitted to the data
VIZ Create visualization output of error function ?
Nalpha Number of visualization points in α-direction
Nbeta Number of visualization points in β-direction
alpha0 Lower α bound for visualization
beta0 Lower β bound for visualization
alphamax Upper α bound for visualization
betamax Upper β bound for visualization
POSTOUT Create PostScript figures or not

Table C.3: Input parameters for nlfit.f90

The parameter MODEL specifies which model to use. It can assume the following
values: 1 (exponential model given by equation 11.1), 2 (power law model given by
equation 11.3), 3 (second order physical model given by equation 11.4) or 4 (em-
pirical model given by equation 11.2). The parameter VIZ can be either .TRUE.
or .FALSE.. It specifies whether the error function should be probed on a regular

148 APPENDIX C. THE SIMULATION CODES

cartesian grid over the parameter space in order to visualize it prior to the gradi-
ent descent. This is for example useful in finding initial parameter values for the
optimization or to investigate shape and properties of the error function.

The initial parameter values for α and β need to be specified in statements 35 and
36 in variables alpha and beta. The corresponding learning rates ηα and ηβ are to
be defined in statements 37 and 38 in etaa and etab.

In addition to these parameters, the correct level of the theoretical steady-state
FRAP value F∞ for t → ∞ has to be set in y0. The values for all the samples
considered in this project are given around statement 34 and one only needs to
comment out the right one.

The files containing the data one wishes to fit the model to are passed to the program
as command line arguments upon invocation:

$ nlfit <file1.frap> [file2.frap [file3.frap ...]]

Any number of files can be processed at the same call, shell wildcards are allowed.
The input files contain FRAP data points using the following syntax on each line:

<time> <FRAP value>

The output files that are generated for each such input file are <infile>.grad,
<infile>.eta and <infile>.mac. The .grad file contains the model fitting error
E as defined by equation 11.6 and the error gradients ∂E

∂α and ∂E
∂β for each iteration

step as:

<error E> <dEdalpha> <dEdbeta>

This information can be used to create convergence plots such as the ones in figures
11.6, 12.3 or 12.5. In addition, these values are also printed to the standard output.
The .eta file contains the learning rates ηα and ηβ of each iteration step as:

<etaa> <etab>

The .mac file finally contains the gnuplot macro to plot the data and the best
model fit in a picture like figure 11.7 or 12.4. If POSTOUT is set to .TRUE., gnuplot
is instructed to generate PostScript figure files, otherwise the plot is output to a
graphics window.

If the parameter VIZ is set to .TRUE., an additional output file called E.out is
written that contains the values of the absolute and relative RMS matching errors
on a Nalpha×Nbeta grid for α between alpha0 and alphamax and β between beta0
and betamax:

for i=1,Nbeta
for j=1,Nalpha

<alpha> <beta> <E> <Erel>
end for

end for

This data can then be used to create contour plots of the “error landscape” such as
the ones in figures 11.3 to 11.5.

C.4.2 Source code listing

The program source code for the gradient descent algorithm and all the visualization
is given below.

C.4. GRADIENT DESCENT FITTING 149

C.4.2.1 Curve fitting using gradient descent (nlfit.f90)

1 program nlfit

2 IMPLICIT NONE

!--
!NLFIT Does a non-linear model fit using a gradient decent technique.
! nlfit reads simulated FRAP data from the file(s) specified on the
! command line and estimates the model parameters for various models
! to best fit the simulation results in a least squares sense.
!
! See also PSE3D
!
! todo:
!
!==
! DIPLOMA THESIS WS01/02 ICOS ETH-ZUERICH
!--
!
! PROTEIN DIFFUSION INSIDE THE ENDOPLASMIC RETICULUM
!
!============================= ivo f. sbalzarini ==============================
!

!--
! Declaration of external functions
!--

! get number of command line arguments
3 INTEGER, EXTERNAL :: iargc

!--
! Declaration of parameters
!--

! precision
4 INTEGER, PARAMETER :: MK = KIND(1.0D0)

! convergence tolerance (for termination criterion)
5 REAL(MK), PARAMETER :: TOL = 1e-6_MK

! x and y dimensions of bleached box
6 REAL(MK), PARAMETER :: a = 50.0
7 REAL(MK), PARAMETER :: b = 50.0

! Which model (1=exponential, 2=power law, 3=second order physical,
! 4=empirical as in SA,p.14)

8 INTEGER, PARAMETER :: MODEL = 3
! Do area bombing to visualize function?

9 LOGICAL, PARAMETER :: VIZ = .FALSE.
! Number of alpha and beta grid points for visualization

10 INTEGER, PARAMETER :: Nalpha = 500
11 INTEGER, PARAMETER :: Nbeta = 500

! lower boundary for alpha and beta for visualization
12 REAL(MK), PARAMETER :: alpha0 = 0.1
13 REAL(MK), PARAMETER :: beta0 = 0.01

! upper boundary for alpha and beta for visualization
14 REAL(MK), PARAMETER :: alphamax = 5.0
15 REAL(MK), PARAMETER :: betamax = 1.00

! Produce postscript gnuplot output?
16 LOGICAL, PARAMETER :: POSTOUT = .FALSE.

!--
! Declaration of local variables
!--

! loop counters
17 INTEGER :: i, j, k, l

! name of the program
18 CHARACTER(LEN=80) :: prgname

! name of the input and output files
19 CHARACTER(LEN=80) :: infile, outfile, gradfile, etafile

! number of command line arguments (input files)
20 INTEGER :: nargc

! simulated FRAP data from file
21 REAL(MK), DIMENSION(:), ALLOCATABLE :: frap

! number of data points
22 INTEGER :: N

! current model value
23 REAL(MK) :: y

! error status

150 APPENDIX C. THE SIMULATION CODES

24 INTEGER :: istat
! model parameters to be fitted

25 REAL(MK) :: alpha, beta, alphaold, betaold
! gradients of the error function

26 REAL(MK) :: dEda, dEdb, dEdaold, dEdbold
! time array

27 REAL(MK), DIMENSION(:), ALLOCATABLE :: t
! learning rates for alpha and beta, respectively

28 REAL(MK) :: etaa, etab
! steady-state value of frap curve

29 REAL(MK) :: y0
! value of the error function

30 REAL(MK) :: E, Erel
! sign of the dot product of subsequent gradients

31 INTEGER :: s
! intermediates

32 REAL(MK) :: den, dyda, dydb
! alpha and beta step sizes for visualization

33 REAL(MK) :: deltaa, deltab

!--
! steady state values
!--

! y0 = 0.9375 ! for Box test case
! y0 = 481958.0_MK/493850.0_MK ! for bip2
! y0 = 475859.0_MK/488054.0_MK ! for clx
! y0 = 503182.0_MK/509578.0_MK ! for erp57
! y0 = 538092.0_MK/545859.0_MK ! for erp572
! y0 = 463516.0_MK/473466.0_MK ! for erp573_1
! y0 = 482469.0_MK/495373.0_MK ! for erp573_2
! y0 = 319538.0_MK/335480.0_MK ! for erp573_3
! y0 = 469745.0_MK/481922.0_MK ! for erp574_1
! y0 = 481486.0_MK/504770.0_MK ! for erp574_2
! y0 = 539400.0_MK/545859.0_MK ! for erp5722
! y0 = 538412.0_MK/545859.0_MK ! for erp5723
! y0 = 528973.0_MK/545859.0_MK ! for erp5724

34 y0 = 477774.0_MK/480214.0_MK ! for 8s9
! y0 = 440104.0_MK/480214.0_MK ! for 8.2
! y0 = 0.98_MK

!--
! start values
!--

35 alpha = 1.0_MK
36 beta = 0.05_MK
37 etaa = 1e-4_MK
38 etab = 5e-5_MK

!--
! Process command line arguments
!--

! read program name from command line
39 CALL getarg(0,prgname)

! get number of input files
40 nargc = iargc()
41 if(nargc .LT. 1) then
42 print*,’Missing input file name(s). Usage: ’,TRIM(prgname), &

’ inputfile [inputfile ...]’
43 goto 9999
44 end if

!--
! Delete old result file
!--

45 OPEN(40, FILE=’All_Params.out’, ACTION=’WRITE’)
46 CLOSE(40, STATUS=’DELETE’)

!--
! Loop over all input files
!--

47 do i=1,nargc

!---
! Scan file and read its contents

C.4. GRADIENT DESCENT FITTING 151

!---

! get input file name
48 CALL getarg(i,infile)

! first pass: count points
49 OPEN(40, FILE=infile, STATUS=’OLD’, ACTION=’READ’)
50 N = 0
51 do
52 READ(40,*,END=110) y, y
53 N = N + 1
54 end do
55 110 CLOSE(40)

! allocate memory
56 ALLOCATE(frap(N), t(N), STAT=istat)
57 if(istat .NE. 0) then
58 WRITE(*,’(A)’) ’Error allocating memory for frap data.’
59 goto 9999
60 end if

! second pass: read data
61 OPEN(40, FILE=infile, STATUS=’OLD’, ACTION=’READ’)
62 do j=1,N
63 READ(40,*) t(j), frap(j)
64 end do
65 CLOSE(40)

!---
! Visualization of error function
!---

66 if(VIZ) then
67 OPEN(40, FILE=’E.out’, STATUS=’REPLACE’, ACTION=’WRITE’)
68 deltab = (betamax-beta0)/real(Nbeta-1,MK)
69 deltaa = (alphamax-alpha0)/real(Nalpha-1,MK)
70 do j=1,Nbeta
71 beta = beta0+(j-1)*deltab
72 do k=1,Nalpha
73 alpha = alpha0+(k-1)*deltaa
74 E = 0.0_MK
75 Erel = 0.0_MK
76 do l=1,N

! current model value
77 if(MODEL .EQ. 2) then

! POWER MODEL
78 y = y0*(1.0_MK-(beta*t(l)+1)**(-alpha))
79 elseif(MODEL .EQ. 1) then

! EXPONENTIAL MODEL
80 y = y0*(1.0_MK-exp(-alpha*t(l)))
81 elseif(MODEL .EQ. 3) then

! SECOND ORDER PHYSICAL MODEL
82 den = (a*b+2.0_MK*(a+b)*alpha*t(l)**beta &

+4.0_MK*alpha**2*t(l)**(2.0_MK*beta))
83 y = y0*(1.0_MK-a*b/den)
84 elseif(MODEL .EQ. 4) then

! EMPIRICAL MODEL FROM SA,P.14
85 den = (t(l)/beta)**alpha
86 y = y0*den/(1.0_MK+den)
87 else
88 print*,’Unknown model parameter specified !’
89 goto 9999
90 end if

! error function
91 E = E + (frap(l)-y)**2
92 Erel = Erel + ((frap(l)-y)/(y0-frap(l)))**2
93 end do
94 E = sqrt(E/real(N))
95 Erel = sqrt(Erel/real(N))
96 WRITE(40,’(4E12.4)’) alpha, beta, E, Erel
97 end do
98 end do
99 CLOSE(40)
100 end if

! open some output files
101 WRITE(gradfile,’(2A)’) TRIM(infile),’.grad’
102 OPEN(40, FILE=gradfile, STATUS=’REPLACE’, ACTION=’WRITE’)
103 WRITE(etafile,’(2A)’) TRIM(infile),’.eta’
104 OPEN(50, FILE=etafile, STATUS=’REPLACE’, ACTION=’WRITE’)

!---
! Gradient decent

152 APPENDIX C. THE SIMULATION CODES

!---

105 k = 0

! iterate for alpha and beta
106 do

! sum the gradients over all time points
107 dEdaold = dEda
108 if(MODEL .GT. 1) dEdbold = dEdb
109 dEda = 0.0_MK
110 dEdb = 0.0_MK
111 E = 0.0_MK
112 do j=2,N

! current model value
113 if(MODEL .EQ. 1) then

! EXPONENTIAL MODEL
114 y = y0*(1.0_MK-exp(-alpha*t(j)))
115 dEda = dEda + (y-frap(j))*(y0-y)*t(j)
116 elseif(MODEL .EQ. 2) then

! POWER MODEL
117 y = y0*(1.0_MK-(beta*t(j)+1)**(-alpha))
118 dEda = dEda + (y-frap(j))*(y0-y)*log(beta*t(j)+1)
119 dEdb = dEdb + (y-frap(j))*(y0-y)*((alpha*t(j))/(beta*t(j)+1))
120 elseif(MODEL .EQ. 3) then

! SECOND ORDER PHYSICAL MODEL
121 den = (a*b+2.0_MK*(a+b)*alpha*t(j)**beta &

+4.0_MK*alpha**2*t(j)**(2.0_MK*beta))
122 y = y0*(1.0_MK-a*b/den)
123 dyda = y0*a*b*den**(-2.0_MK)*(2.0_MK*(a+b)*t(j)**beta &

+8.0_MK*alpha*t(j)**(2.0_MK*beta))
124 dydb = y0*a*b*den**(-2.0_MK)*(2.0_MK*(a+b) &

*alpha*t(j)**beta*log(t(j))+8.0_MK*alpha**2*t(j) &
**(2.0_MK*beta)*log(t(j)))

125 dEda = dEda + (y-frap(j))*dyda
126 dEdb = dEdb + (y-frap(j))*dydb
127 elseif(MODEL .EQ. 4) then

! EMPIRICAL MODEL FROM SA,P.14
128 den = (t(j)/beta)**alpha
129 y = y0*den/(1.0_MK+den)
130 dyda = y0*(den*log(t(j)/beta)*(1.0_MK+den)**(-1.0_MK)- &

den*(1.0_MK+den)**(-2.0_MK)*den*log(t(j)/beta))
131 dydb = y0*(-alpha/(beta*beta)*(t(j)/beta)**(alpha-1.0_MK) &

*(1.0_MK+den)**(-1.0_MK)+den*(1.0_MK+den)**(-2.0_MK) &
*alpha/(beta*beta)*(t(j)/beta)**(alpha-1.0_MK))

132 dEda = dEda + (y-frap(j))*dyda
133 dEdb = dEdb + (y-frap(j))*dydb
134 else
135 print*,’Unknown model specified.’
136 goto 9999
137 end if
138 E = E + (frap(j)-y)**2
139 end do
140 E = 0.5_MK*E
141 WRITE(40,*) E, dEda, dEdb
142 WRITE(50,*) etaa, etab
143 WRITE(*,*) E, dEda, dEdb

! update model parameters
144 alphaold = alpha
145 if(MODEL .GT. 1) betaold = beta
146 alpha = alphaold - etaa*dEda
147 if(MODEL .GT. 1) beta = betaold - etab*dEdb
148 k = k + 1

! terminateion criterion
149 if(abs(dEda) .LE. TOL .AND. abs(dEdb) .LE. TOL) then
150 goto 200
151 end if
152 end do
153 CLOSE(40)
154 CLOSE(50)

!---
! Output results to terminal and result file
!---

155 200 WRITE(*,’(3A,I8,A)’) ’Input file: ’, TRIM(infile), ’ contains ’,N, &
’ data points’

156 WRITE(*,’(A,I8,A)’) ’Solution converged after ’,k,’ Iterations.’
157 WRITE(*,’(A,E16.8)’) ’Best parameters found: alpha = ’, alpha

C.5. GEOMETRY PREPROCESSOR 153

158 WRITE(*,’(A,E16.8)’) ’ beta = ’, beta

159 OPEN(40, FILE=’All_Params.out’, POSITION=’APPEND’, ACTION=’WRITE’)
160 WRITE(40,’(I4,3E16.8,I7)’) i, alpha, beta, E, k
161 CLOSE(40)
162 WRITE(*,’(A)’)

163 DEALLOCATE(frap, t)

!---
! Write gnuplot comparison macro
!---

164 WRITE(outfile,’(2A)’) TRIM(infile), ’.mac’
165 OPEN(40, FILE=outfile, STATUS=’REPLACE’, ACTION=’WRITE’)
166 WRITE(40,’(A)’) ’set nokey’
167 if(POSTOUT) then
168 WRITE(40,’(A)’) ’set term postscript eps color 14’
169 WRITE(40,’(3A)’) ’set output ’’’,TRIM(infile),’.eps’’’
170 end if
171 if(MODEL .EQ. 2) then

! POWER MODEL
172 WRITE(40,’(3A,F8.5,A,F8.5,A)’) ’p ’’’,TRIM(infile),’’’ w p, ’,y0, &

’*(1.0-(’,beta,’*x+1.0)\\’
173 WRITE(40,’(A,F8.5,A)’) ’**(-’,alpha,’)) w l’
174 elseif(MODEL .EQ. 3) then

! SECOND ORDER PHYSICAL MODEL
175 WRITE(40,’(3A,F8.5,A)’) ’p ’’’,TRIM(infile),’’’ w p, ’,y0,’*(1.0-(\\’
176 WRITE(40,’(6(F8.5,A)’) a,’*’,b,’)/(’,a,’*’,b,’+2.0*(’,a,’+’,b,’)* \\’
177 WRITE(40,’(3(F8.5,A)’) alpha,’*x**’,beta,’+4.0*’,alpha,’**2*x**(\\’
178 WRITE(40,’(F8.5,A)’) 2.0*beta,’))) w l’
179 elseif(MODEL .EQ. 4) then

! EMPIRICAL MODEL FROM SA,P.14
180 WRITE(40,’(3A,F8.5,A)’) ’p ’’’,TRIM(infile),’’’ w p, ’,y0,’*((x/ \\’
181 WRITE(40,’(4(F8.5,A))’) beta,’)**’,alpha,’)/(1.0+(x/’,beta,’)** &

’,alpha,’) w l’
182 elseif(MODEL .EQ. 1) then

! EXPONENTIAL MODEL
183 WRITE(40,’(3A,F8.5,A)’) ’p ’’’,TRIM(infile),’’’ w p, ’,y0,’*(1.0- \\’
184 WRITE(40, ’(A,F8.5,A)’) ’exp(’,-alpha,’*x)) w l’
185 else
186 print*,’Unknown model specified.’
187 goto 9999
188 end if
189 WRITE(40,’(A)’) ’pause -1’
190 CLOSE(40)

191 end do

192 9999 CONTINUE

193 END program nlfit

C.5 Geometry preprocessor

C.5.1 Code structure and calling tree

The geometry preprocessor code implements the algorithms described in chapters 3
and 5 as well as section 7.2.5. It is parallelized using MPI and uses C preprocessor
directives to encapsulate both the serial version and the parallel version of the code
in the same source files. The parallel version is built if the code is preprocessed
with MPI defined:

$ cpp -D__MPI__ -P init_part.f90 __init_part.f90

to build the serial version, no defines are needed:

$ cpp -P init_part.f90 __init_part.f90

init part.f90 then is the program to be compiled. The code consists of the
following modules at this stage of development:

154 APPENDIX C. THE SIMULATION CODES

Name Function
init part.f90 Main program
globals.f90 Global definitions and variables
Defaults.f90 Set default parameter values
readinput.f90 Reads all input files
ReadParams.f90 Read parameter input file
readiv.f90 Read OpenInventor 3D files
chktriang.f90 Check triangulation for validity
intersect.f90 Intersect a line with a triangle
SortT.f90 Sort triangles to bin lists and cell lists
AllocateLL.f90 Bin and cell list memory management
point in domain.f90 Check if a point is inside the computational domain
Voxelize.f90 Convert triangulation to voxel representation
BCdim.f90 Measure the box counting dimension
UpperCase.f90 Convert a string to upper case letters
Util.f90 Dynamic list resizing

Table C.4: Modules of the preprocessor code

The code’s structure given by its calling tree is:

init_part

chktriang.chk_topology

Util.reallocate

Util.reallocate

AllocateLL

SortT

readiv

UpperCase

ReadParams

readinput

Defaults

(Voxelize)

chktriang.chk_orientation

intersect

point_in_domain

AllocateLL

point_in_domain

(BCdim)

Voxelize

where “Util.reallocate” means a call to function reallocate that is contained in
module Util and “(BCdim)” means that function BCdim can be called if its services
are wanted but will generally be commented out (see lines between statement 289
and 290).

C.5. GEOMETRY PREPROCESSOR 155

C.5.2 Input files and parameters

The code reads two input files: preproc.in, which contains all parameters and
settings, and a geometry input file containing the triangulated surface description.
The parameter input file preproc.in uses the same syntax as the one for the PSE
code. It contains several lines like:

<keyword> = <value>

Additionally, it can contain any number of blank lines and comment lines beginning
with a hash symbol (#). Those lines are ignored by the program. Table C.5 lists
all supported keywords, their purpose and default values. If a certain keyword is
not explicitly specified in the parameter file, its default value will be assumed. The
keyword specifications can occur in any order in the parameter file

Keyword Meaning Default value
surfacefile Name of geometry input file to read box.surf
restartfile Name of particle output file to write restart.dat
dx Grid spacings in x, y, z 0.1, 0.1, 0.1
bleachbox xmin, ymin, xmax and ymax of bleached box 2.0, 2.0, 3.0, 3.0
cutoff PSE cutoff radius (for cell lists) 1.0
boundarycondition BC type: 0=none, 1=Dirichlet, 2=Neumann 0
gnuout Produce gnuplot output ? .FALSE.
checktopology Check triangulation for validity ? .FALSE.
tolerance Global geometry tolerance 10−10

NbinsY Number of bins in y-direction (for bin lists) 1
NbinsZ Number of bins in z-direction (for bin lists) 1

Table C.5: Keywords for preprocessor parameter file

For keywords that take more than a single number, a comma separated list is to be
given. For bleachbox, this list contains the x-coordinate of the lower left corner,
the y-coordinate of the lower left corner, the x-coordinate of the upper right corner,
the y-coordinate of the upper right corner of the bleached box. As an example, the
file for the erp572 simulation run of section 9.1 is given below.

Parameter file for preprocessing tool

=====================================

Name of the surface description file to read in:

surfacefile = ../3div/erp572.iv

Name of PSE3D restart file to be written

restartfile = restart.dat

Lattice spacing in x, y and z direction respectively:

dx = 2.0, 2.0, 0.4

Bleached box geometry: lower and upper boundaries in x and y

bleachbox = 250.0, 125.0, 300.0, 175.0

Cutoff radius as used in PSE (default: 10*eps)

cutoff = 22.23

Type of B.C. (0: none, 1: zero Dirichlet, 2: zero Neumann)

boundarycondition = 2

Produce additional ASCII output for gnuplot?

156 APPENDIX C. THE SIMULATION CODES

gnuout = .false.

Run topology check ?

checktopology = .true.

Geometry tolerance (at least 10 times smaller than smallest geometry struct.)

tolerance = 1e-10

number of bins in y and z

NbinsY = 100

NbinsZ = 100

The geometry input file specified using the surfacefile keyword in the parameter
input file can either be a triangulation .surf file as described in [Sbalzarini (2001)]
or an OpenInventor 3D file in ASCII format (see [SGI (1992a)] and [SGI (1992b)]).
The code recognizes the file type by the first line it contains. If it is

#ASCII triangulated surface description

the file is considered to be in .surf-format according to the specifications in ap-
pendix C.2.5 of [Sbalzarini (2001)]. If the first line is

#Inventor V2.1 ascii

the file is treated as an OpenInventor 3D file and handled by the subroutine readiv.
The only OpenInventor graphics primitives currently supported are triangulated
meshes as for example produced by Imaris (cf. chapter 2).

C.5.3 Output files

The main output file of the preprocessor is the binary restart file to be read by
the PSE simulation code. Its name is defined using the restartfile keyword in
the parameter input file (see above). The restart file contains the positions, initial
strengths and attributes1 of all the particles. Since it is a binary file, one has
to make sure that byte order and precision of the target platform are matched.
This means that if one wishes to produce initial restart files for a PSE simulation
running on a big endian machine, the preprocessor has to be compiled using the
-byteswapio option if it is running on a little endian and vice versa. Moreover, it
is advisable to use Fortran KIND inquiry functions to set the accuracy parameter MK
(see statements 3 and 4 in globals.f90) rather than hard-coding the bit width of
a certain machine architecture.

If the parameter gnuout in the global parameter input file is set to .TRUE., a
set of additional ASCII output files is generated that can be used to visualize the
geometry and the particle distribution using gnuplot or some other tool. The file
surface.gnu explicitly contains all the triangles to be visualized in gnuplot using
sp ’surface.gnu’ (see e.g. figures 5.2 and 5.7). The file mass0.gnu’ contains the
positions of all the particles of strength zero (i.e. the ones inside the bleached box)
and mass1.gnu contains the positions of all those with strength 1. These two files
can be used to visualize the initial particle distribution inside the ER geometry such
as in figure 9.1. The file ghost.gnu finally contains the positions of all boundary
condition image particles that are – by definition – in an rc-neighborhood outside
of the computational domain.

1> 0 for particles inside the computational domain and < 0 for boundary condition image
particles outside the computational domain. The value 0 is reserved for MPI communication layer
ghost particles in the PSE code and must not be used

C.5. GEOMETRY PREPROCESSOR 157

If the routines Voxelize.f90 and BCdim.f90 are switched on in order to estimate
the box counting dimension of the geometry at hand, three additional files are
produced. The first one, BC.gnu, contains the values si = log

(
1
σi

)
and yi = log ηi

for all reduction steps (see section 5.2):

<si> <yi>

The second one, plotit.mac, is a gnuplot macro to visualize the measured box
counting points and the best linear fit through them (recall that the slope of it
corresponds to the box counting dimension of the geometry). The plots in figure
5.11 have for example been made using such automatically generated macros. The
third file, voxels.gnu, contains the voxel representation of the geometry. Each
voxel of value 1 is given by its position in space on a line of the file. The innermost
loop is over z, the outermost over x. Thus the file’s syntax is

for i=1,NVoxx
for j=1,NVoxy

for k=1,NVoxz
<x-pos> <y-pos> <z-pos>

end for
end for

end for

This voxel representation can then be used to create glyph visualizations (e.g. using
OpenDX) such as the ones in figures 5.3 and 5.5.

For debugging and visualization purposes, additional output to create illustrations
like the one in figure 7.3 is possible from inside point in domain. Please see section
C.5.4.11 below for further information.

Besides the various file outputs, the program also writes some information about
the geometry to the system’s standard output (which is a terminal console in most
cases). A sample output from the erp572 simulation run of section 9.1 is given
hereafter.

Initializing particle positions on regular lattice

Spatial resolution (tolerance) is: 0.10E-09

Lattice spacing in x,y,z: 2.00 2.00 0.40

Bleached box has lower left corner at: 250.00 125.00

And x-,y-widths: 50.00 50.00

Reading surface description file: ../3div/erp572.iv

Surface triangulation contains 35810 vertices defining 72024 triangles

Triangles ... read.

Bounding box of domain: xmin = 54.8070 xmax = 414.2720

ymin = 102.2590 ymax = 512.7500

zmin = -1.8534 zmax = 17.2687

Calculating centroids and outer normals of triangles ...

Triangles sorted into 100x 100 bins.

Number of entries in largest bin list: 367

Total number of entries in bin lists: 505051

Determining indices of particles inside domain ...

5%. 10%. 15%. 20%. 25%. 30%. 35%. 40%. 45%. 50%. 55%. 60%. 65%. 70%. 75%. 80%. 85%.

90%. 95%.100%.

Initializing 545859 particles ...

158 APPENDIX C. THE SIMULATION CODES

Using Neumann boundary conditions.

done.

Wrote restart file restart.dat

Wrote gnuplot files.

C.5.4 Source code listings

The following subsections contain the program source of all the modules listed in
table C.4. Each section starts with a brief text header explaining the purpose of
the routine and highlighting special features of it.

C.5.4.1 Global parameters and variables (globals.f90)

The following module contains the definitions of global parameters and variables
used in more than one of the other routines.

1 module globals

2 IMPLICIT NONE

!--
!GLOBALS Global variables and definitions for all routines.
!
! See also INIT_PART
!
!==
! DIPLOMA THESIS WS01/02 ICOS ETH-ZUERICH
!--
!
! PROTEIN DIFFUSION INSIDE THE ENDOPLASMIC RETICULUM
!
!============================= ivo f. sbalzarini ==============================
!

!--
! Global parameters
!--

! Accuracy
3 INTEGER, PARAMETER :: MK = KIND(1.0D0)
4 INTEGER, PARAMETER :: I4B = SELECTED_INT_KIND(9)

!--
! Global TYPE declarations
!--

5 TYPE ptr_to_list
6 REAL(MK), DIMENSION(:), POINTER :: list
7 END TYPE

!--
! Declaration of global variables
!--

! Precision Tolerance for geometry handling (at least 10 times smaller
! than smallest occuring geometry structure)

8 REAL(MK) :: TOL
! Numer of surface elements

9 INTEGER :: M
! Cut-off radius for boundary condition handling (mirroring) and cell list

10 REAL(MK) :: rc
! Vertices of all oriented triangles of the domain surface

11 REAL(MK), DIMENSION(:,:,:), ALLOCATABLE :: triang
! centroids of all triangles

12 REAL(MK), DIMENSION(:,:), ALLOCATABLE :: c
! outer normals of all triangles

13 REAL(MK), DIMENSION(:,:), ALLOCATABLE :: normal
! inxed of closest triangle to every particle

14 INTEGER, DIMENSION(:), ALLOCATABLE :: clotri
! distance to boundary of each point

15 REAL(MK), DIMENSION(:), ALLOCATABLE :: dtb

C.5. GEOMETRY PREPROCESSOR 159

! Nr. of CPUs and rank of current CPU
16 INTEGER :: ncpu, rank

! Precision for MPI
17 INTEGER :: MPI_PREC

! Lattice spacings in x, y and z direction
18 REAL(MK) :: ldx, ldy, ldz

! produce ASCII output for gnuplot?
19 LOGICAL :: GNUOUT

! run topology check ?
20 LOGICAL :: CHKTOPO

! Bleached box. coordinates of lower left corner and widths
21 REAL(MK) :: bbllx,bblly, bbwx,bbwy

! upper boundaries in x and y of bleached box
22 REAL(MK) :: bbux, bbuy

! Name of PSE3D restart file to be written
23 CHARACTER(LEN=80) :: resfile

! Name of surface description file
24 CHARACTER(LEN=80) :: surffile

! Type of B.C. (0: none, 1: zero Dirichlet, 2: zero Neumann)
25 INTEGER :: BC

! math. constant
26 REAL(MK) :: PI

! triangle lists for y/z bins (point_in_domain)
27 TYPE(ptr_to_list), DIMENSION(:,:), ALLOCATABLE :: bin

! lengths of y/z lists
28 INTEGER, DIMENSION(:,:), ALLOCATABLE :: nbin

! array of triangle lists for x/y/z cells (boundary condition only)
29 TYPE(ptr_to_list), DIMENSION(:,:,:), ALLOCATABLE :: cell

! lengths of x/y/z lists
30 INTEGER, DIMENSION(:,:,:), ALLOCATABLE :: ncell

! Bounding box
31 REAL(MK) :: xmin, xmax, ymin, ymax, zmin, zmax

! number of bins in y and z
32 INTEGER :: NBINY, NBINZ

! y and z sizes of bins
33 REAL(MK) :: dby, dbz

! number of cells in x,y,z
34 INTEGER :: NCELLX, NCELLY, NCELLZ

! x, y and z sizes of cells
35 REAL(MK) :: dcx, dcy, dcz

! voxel representation of geometry
36 INTEGER, DIMENSION(:,:,:), ALLOCATABLE :: voxel

37 end module globals

C.5.4.2 Main program (init part.f90)

The main program of the geometry processing tool is given next. It is parallelized
using the MPI message passing library. Pay special attention to the MPI testing
in statements 45 to 104 which makes sure that all communication channels are up
and all processors ready. Load balancing is done in statements 182 to 227 including
a small load overview table that is printed to the system’s standard output. All
calls to MPI are encapsulated in the C preprocessor directives #ifdef MPI . . .
#endif to make them fully transparent. The region between statements 289 and
290 is commented out and contains the calls to the routines used to translate the
triangulation to a voxel representation and to determine its box counting dimension.

1 program init_part

2 USE globals

3 IMPLICIT NONE

4 #ifdef __MPI__
5 INCLUDE ’mpif.h’
6 #endif

!--
!init_part Geometry preprocessing and particle initialization for PSE3D.
! INIT_PART reads the triangulated geometry description, determines its
! bounding box and initializes the particles on a regular lattice.
! The particle distribution is then written to a file which can be read
! in by PSE3D as a restart file

160 APPENDIX C. THE SIMULATION CODES

!
! See also PSE3D
!
! todo:
!
!==
! DIPLOMA THESIS WS01/02 ICOS ETH-ZUERICH
!--
!
! PROTEIN DIFFUSION INSIDE THE ENDOPLASMIC RETICULUM
!
!============================= ivo f. sbalzarini ==============================
!

!--
! Declaration of external functions
!--

! checks whether a point is inside the domain
7 INTEGER, EXTERNAL :: point_in_domain

! Checks the topological validity of the triangulation set
8 LOGICAL, EXTERNAL :: chk_topology

! Checks the orientation of the triangles (syntactical validity)
9 LOGICAL, EXTERNAL :: chk_orientation

! returns the box counting dimension of the surface
10 REAL(MK), EXTERNAL :: BCdim

!--
! Declaration of local variables
!--

! loop counters
11 INTEGER :: i, j, k, n

! total number of particles on local processor and its global sum
12 INTEGER :: Npart, Npsum

! number of ghost partcles for B.C. handling and its global sum
13 INTEGER :: Nghost, Ngsum

! flag array of which particles are inside the domain
14 INTEGER, DIMENSION(:,:,:), ALLOCATABLE :: flag

! position of current lattice node
15 REAL(MK), DIMENSION(3) :: x

! positions of particles
16 REAL(MK), DIMENSION(:,:), ALLOCATABLE :: xp

! particle flags
17 INTEGER, DIMENSION(:), ALLOCATABLE :: ap

! concentrations at particle locations
18 REAL(MK), DIMENSION(:), ALLOCATABLE :: mass

! I/O status flag
19 INTEGER :: istat

! Number of grid points in x,y,z
20 INTEGER :: Nx, Ny, Nz

! number of triangles per slave
21 INTEGER :: Nxslave

! local number of triangles
22 INTEGER :: Nxlocal

! lower and upper boundary of Nx on local processor
23 INTEGER :: Nxlow, Nxhigh

! edge vectors and direction
24 REAL(MK), DIMENSION(3) :: a, b

! intermediate variables
25 REAL(MK) :: rx

! Return flag for READIV
26 LOGICAL :: success

! percentage done in multiples of 5%
27 INTEGER :: pert

! temporary local arrays for dtb and clotri
28 REAL(MK), DIMENSION(:), ALLOCATABLE :: dtbtemp
29 INTEGER, DIMENSION(:), ALLOCATABLE :: clotritemp
30 #ifdef __MPI__

! MPI init error and MPI status variable
31 INTEGER :: ierror, stat(MPI_STATUS_SIZE)

! number of characters in processor name
32 INTEGER :: ilen

! name of current processor
33 CHARACTER(LEN=80) :: pname
34 #endif

! for the voxel test

35 INTEGER :: voxx, voxy, voxz

C.5. GEOMETRY PREPROCESSOR 161

! ------------------------

!--
! Set all global parameters to their default value
!--

36 CALL Defaults

!--
! initialize and test MPI
!--

37 #ifdef __MPI__
! Define needed precision for MPI

38 if (MK .EQ. 4) then
39 MPI_PREC = MPI_REAL
40 elseif (MK .EQ. 8) then
41 MPI_PREC = MPI_DOUBLE_PRECISION
42 else
43 WRITE (*, ’(A,I4)’) ’Warning: Unknown precision: ’, MK
44 endif

! Initialize MPI
45 CALL MPI_Init(ierror)
46 if(ierror .NE. 0) then
47 WRITE(*,’(A)’) ’Error: Initializing MPI failed. Aborting.’
48 goto 9999
49 end if
50 CALL MPI_Comm_size(MPI_COMM_WORLD, ncpu, ierror)
51 if(ierror .NE. 0) then
52 WRITE(*,’(A)’) ’Error: Cannot determine number of processors. Aborting.’
53 goto 9999
54 end if
55 CALL MPI_Comm_rank(MPI_COMM_WORLD, rank, ierror)
56 if(ierror .NE. 0) then
57 WRITE(*,’(A)’) ’Error: Cannot determine CPU rank. Aborting.’
58 goto 9999
59 end if
60 if(rank .EQ. 0) then
61 WRITE(*,’(A,I3,A)’) ’MPI activated. Starting ’,ncpu,’ processors ...’
62 end if
63 CALL MPI_Get_Processor_Name(pname, ilen, ierror)
64 WRITE(*,’(3A,I3)’) ’ -> started on ’,pname(1:ilen),’ with rank =’, rank
65 CALL flush(6)
66 CALL MPI_Barrier(MPI_COMM_WORLD, ierror)
67 if(rank .EQ. 0) WRITE(*,’(A)’) ’All processors are up and ready.’

! test individual communication
68 if(rank .EQ. 0) then
69 do i=1,ncpu-1
70 WRITE(*,’(A,I3)’,ADVANCE=’NO’) ’Probing rank ’,i,’ ... ’
71 CALL MPI_SEND(i, 1, MPI_INTEGER, i, i, &

MPI_COMM_WORLD, ierror)
72 CALL MPI_RECV(j, 1, MPI_INTEGER, i, MPI_ANY_TAG, &

MPI_COMM_WORLD, stat, ierror)
73 if(j .EQ. i) WRITE(*,’(A)’) ’[passed]’
74 CALL flush(6)
75 end do
76 else
77 CALL MPI_RECV(j, 1, MPI_INTEGER, 0, MPI_ANY_TAG, &

MPI_COMM_WORLD, stat, ierror)
78 CALL MPI_SEND(j, 1, MPI_INTEGER, 0, rank, &

MPI_COMM_WORLD, ierror)
79 end if

! test broadcast
80 i = 0
81 if(rank .EQ. 0) then
82 i = 23
83 Npart = 0
84 WRITE(*,’(A)’)
85 WRITE(*,’(A)’,ADVANCE=’NO’) ’Probing broadcast to all ... ’
86 end if

87 CALL MPI_BCAST(i, 1, MPI_INTEGER, 0, MPI_COMM_WORLD, ierror)

88 if(rank .EQ. 0) then
89 do j=1,ncpu-1
90 CALL MPI_RECV(k, 1, MPI_INTEGER, j, MPI_ANY_TAG, &

MPI_COMM_WORLD, stat, ierror)

162 APPENDIX C. THE SIMULATION CODES

91 if(k .EQ. 23) then
92 WRITE(*,’(I3)’, ADVANCE=’NO’) j
93 Npart = Npart + 1
94 end if
95 end do
96 if(Npart .EQ. ncpu-1) then
97 WRITE(*,’(A)’) ’ [passed]’
98 else
99 WRITE(*,’(A)’) ’ [failed]’
100 goto 9999
101 end if
102 else
103 CALL MPI_SEND(i, 1, MPI_INTEGER, 0, rank, &

MPI_COMM_WORLD, ierror)
104 end if
105 #else
106 ncpu = 1
107 rank = 0
108 #endif

!--
! Read input files on ROOT
!--

109 if(rank .EQ. 0) then
110 CALL readinput(success)
111 if(.NOT. success) then
112 WRITE(*,’(A)’) ’Failed reading input files. Aborting.’
113 goto 9998
114 end if

! dump geometry for GNUPLOT (splot ’...’ w l)
115 if(GNUOUT) then
116 OPEN(30, FILE=’surface.gnu’, STATUS=’REPLACE’)
117 do i=1,M
118 do j=1,3
119 WRITE(30,*) triang(1,j,i), triang(2,j,i), triang(3,j,i)
120 end do
121 WRITE(30,’(A)’)
122 WRITE(30,’(A)’)
123 end do
124 CLOSE(30)
125 end if
126 end if

!--
! Broadcast geometry to slave processors
!--

127 #ifdef __MPI__
! broadcast number of triangles, global tolerance and grid spacings

128 CALL MPI_BCAST(M, 1, MPI_INTEGER, 0, MPI_COMM_WORLD, ierror)
129 CALL MPI_BCAST(TOL, 1, MPI_PREC, 0, MPI_COMM_WORLD, ierror)
130 CALL MPI_BCAST(ldx, 1, MPI_PREC, 0, MPI_COMM_WORLD, ierror)
131 CALL MPI_BCAST(ldy, 1, MPI_PREC, 0, MPI_COMM_WORLD, ierror)
132 CALL MPI_BCAST(ldz, 1, MPI_PREC, 0, MPI_COMM_WORLD, ierror)

133 if(rank .NE. 0) then
! allocate local memory for triangles on slave

134 istat = 0
! first index: x,y,z; second: point number; third: triangle number

135 ALLOCATE(triang(3,3,M), c(3,M), normal(3,M))
136 if (istat .NE. 0) then
137 WRITE(*,’(2A)’) ’Unable to allocate memory for triangles on ’ &

,pname(1:ilen)
138 goto 9999
139 end if
140 end if

! wait for all slaves to allocate memory
141 CALL MPI_Barrier(MPI_COMM_WORLD, ierror)

! Broadcast triangles
142 do k=1,M ! loop over all triangles
143 do j=1,3 ! loop over all vertices
144 CALL MPI_BCAST(triang(:,j,k), 3, MPI_PREC, 0, &

MPI_COMM_WORLD, ierror)
145 end do
146 end do
147 #endif

C.5. GEOMETRY PREPROCESSOR 163

!--
! Determine bounding box and set up grid
!--

148 xmin = HUGE(xmin)
149 xmax = -HUGE(xmax)
150 ymin = HUGE(ymin)
151 ymax = -HUGE(ymax)
152 zmin = HUGE(zmin)
153 zmax = -HUGE(zmax)
154 do i=1,M
155 do j=1,3
156 if (triang(1,j,i) .LT. xmin) xmin = triang(1,j,i)
157 if (triang(1,j,i) .GT. xmax) xmax = triang(1,j,i)
158 if (triang(2,j,i) .LT. ymin) ymin = triang(2,j,i)
159 if (triang(2,j,i) .GT. ymax) ymax = triang(2,j,i)
160 if (triang(3,j,i) .LT. zmin) zmin = triang(3,j,i)
161 if (triang(3,j,i) .GT. zmax) zmax = triang(3,j,i)
162 end do
163 end do

164 if(rank .EQ. 0) then
165 WRITE(*,’(A,F12.4,A,F12.4)’) ’Bounding box of domain: xmin = ’,xmin,’ &

xmax = ’,xmax
166 WRITE(*,’(A,F12.4,A,F12.4)’) ’ ymin = ’,ymin,’ &

ymax = ’,ymax
167 WRITE(*,’(A,F12.4,A,F12.4)’) ’ zmin = ’,zmin,’ &

zmax = ’,zmax
168 WRITE(*,’(A)’)
169 end if

! enlarge BBox by tolerance to avoid numerical problems at borders
170 xmin = xmin-TOL
171 xmax = xmax+TOL
172 ymin = ymin-TOL
173 ymax = ymax+TOL
174 zmin = zmin-TOL
175 zmax = zmax+TOL

! determine number of particle points
176 Nx = ceiling((xmax-xmin)/ldx)-1
177 Ny = ceiling((ymax-ymin)/ldy)-1
178 Nz = ceiling((zmax-zmin)/ldz)-1

! and adjust grid spacing if needed
179 ldx = (xmax-xmin)/real(Nx)
180 ldy = (ymax-ymin)/real(Ny)
181 ldz = (zmax-zmin)/real(Nz)

! local chunk sizes
182 Nxslave = nint(real(Nx)/real(ncpu))
183 if(rank .EQ. 0) then
184 Nxlocal = Nx-Nxslave*(ncpu-1) ! chunk size on ROOT
185 Nxlow = 1 ! lower x index
186 Nxhigh = Nxlocal ! upper x index
187 else
188 Nxlocal = Nxslave
189 Nxlow = (rank-1)*Nxslave+1+(Nx-Nxslave*(ncpu-1)) ! lower x index
190 Nxhigh = rank*Nxslave+(Nx-Nxslave*(ncpu-1)) ! upper x index
191 end if

192 #ifdef __MPI__
193 if(rank .EQ. 0) then

! print nice load allocation table
194 WRITE(*,’(A)’,ADVANCE=’NO’) ’ CPU # | ’
195 do i=0,ncpu-1
196 WRITE(*,’(A,I3,A)’,ADVANCE=’NO’) ’ ’,i,’ | ’
197 end do
198 WRITE(*,’(A)’)
199 WRITE(*,’(A)’,ADVANCE=’NO’) ’-----------|-’
200 do i=0,ncpu-1
201 WRITE(*,’(A)’,ADVANCE=’NO’) ’----------|’
202 end do
203 WRITE(*,’(A)’)
204 WRITE(*,’(A,I6,A)’,ADVANCE=’NO’) ’ Nxlocal | ’,Nxlocal,’ | ’
205 do i=1,ncpu-1
206 WRITE(*,’(I6,A)’,ADVANCE=’NO’) Nxslave,’ | ’
207 end do
208 WRITE(*,’(A)’)
209 WRITE(*,’(A,I6,A)’,ADVANCE=’NO’) ’ Nxlow | ’,Nxlow,’ | ’
210 do i=1,ncpu-1

164 APPENDIX C. THE SIMULATION CODES

211 WRITE(*,’(I6,A)’,ADVANCE=’NO’) (i-1)*Nxslave+1+ &
(Nx-Nxslave*(ncpu-1)),’ | ’

212 end do
213 WRITE(*,’(A)’)
214 WRITE(*,’(A,I6,A)’,ADVANCE=’NO’) ’ Nxhigh | ’,Nxhigh,’ | ’
215 do i=1,ncpu-1
216 WRITE(*,’(I6,A)’,ADVANCE=’NO’) i*Nxslave+(Nx-Nxslave*(ncpu-1)),’ | ’
217 end do
218 WRITE(*,’(A)’)
219 WRITE(*,’(A)’,ADVANCE=’NO’) ’-----------|-’
220 do i=0,ncpu-1
221 WRITE(*,’(A)’,ADVANCE=’NO’) ’----------|’
222 end do
223 WRITE(*,’(A)’)
224 WRITE(*,’(A)’)
225 CALL flush(6)
226 end if
227 #endif

!--
! Calculate centroids and normals
!--

228 if(rank .EQ. 0) then
229 WRITE(*,’(A)’) ’Calculating centroids and outer normals of triangles ...’
230 end if

231 do i=1,M
! calculate centroids of triangles

232 c(:,i) = (1.0/3.0)*(triang(:,1,i)+triang(:,2,i)+triang(:,3,i))
! calculate outer normals of triangles

233 a = triang(:,2,i)-triang(:,1,i)
234 b = triang(:,3,i)-triang(:,1,i)

! cross product => n
235 normal(1,i) = a(2)*b(3) - a(3)*b(2)
236 normal(2,i) = a(3)*b(1) - a(1)*b(3)
237 normal(3,i) = a(1)*b(2) - a(2)*b(1)

! normalize normals
238 rx = sqrt(sum(normal(:,i)**2))
239 normal(:,i) = normal(:,i)/rx
240 end do

!--
! Set up triangle lists and sort triangles
!--

241 CALL SortT
242 if(rank .EQ. 0) then
243 WRITE(*,’(A)’)
244 WRITE(*,’(A,I4,A,I4,A)’) ’Triangles sorted into ’,NBINY,’x’,NBINZ,’ bins.’
245 WRITE(*,’(A,I6)’) ’Number of entries in largest bin list: ’,maxval(nbin)
246 WRITE(*,’(A,I7)’) ’Total number of entries in bin lists: ’,sum(nbin)
247 if(BC .GT. 0) then
248 WRITE(*,’(A)’)
249 WRITE(*,’(A,I4,A,I4,A,I4,A)’) ’Triangles sorted into ’,NCELLX,’x’, &

NCELLY,’x’,NCELLZ,’ cells.’
250 WRITE(*,’(A,I6)’) ’Number of entries in largest cell list: ’,maxval(ncell)
251 WRITE(*,’(A,I7)’) ’Total number of entries in cell lists: ’,sum(ncell)
252 end if
253 WRITE(*,’(A)’)
254 end if

!--
! Check topology and orientation
!--

255 if(rank .EQ. 0 .AND. CHKTOPO) then
256 WRITE(*,’(A)’)
257 if(.NOT. chk_topology()) then
258 WRITE(*,’(A)’) ’Triangulation is not topologically valid. Aborting.’
259 goto 9998
260 end if
261 if(.NOT. chk_orientation()) then
262 WRITE(*,’(A)’) ’Triangulation is not syntactically valid. Aborting.’
263 goto 9998
264 end if
265 WRITE(*,’(A)’)
266 end if

!--

C.5. GEOMETRY PREPROCESSOR 165

! Initialize particles on regular lattice
!--

! determine number of particles
267 if(rank .EQ. 0) then
268 WRITE(*,’(A)’) ’Determining indices of particles inside domain ...’
269 end if

! allocate temporary flag array
270 if(rank .EQ. 0) then
271 ALLOCATE(flag(Nx,Ny,Nz))
272 if (istat .NE. 0) then
273 WRITE(*,’(A)’) ’Unable to allocate memory for flags on ROOT’
274 goto 9998
275 end if
276 else
277 ALLOCATE(flag(Nxlocal,Ny,Nz))
278 if (istat .NE. 0) then
279 WRITE(*,’(A,I3)’) ’Unable to allocate memory for flags on CPU’,rank
280 goto 9998
281 end if
282 end if

283 if(BC .GT. 0) then
! allocate temporary arrays for distances and triangle indices

284 ALLOCATE(dtbtemp(Nxlocal*Ny*Nz), clotritemp(Nxlocal*Ny*Nz))
285 if (istat .NE. 0) then
286 WRITE(*,’(A,I3)’) ’Unable to allocate memory for dtb, clotri on CPU’,rank
287 goto 9997
288 end if
289 end if

! uncomment this to get and save a voxel representation of the
! geometry (not needed for determining the box counting dimension
! as BCdim will call Voxelize on its own)
!!$rx = 0.05_MK ! voxel size
!!$CALL Voxelize(rx,rx,rx,voxx,voxy,voxz,istat)
!!$if(ALLOCATED(voxel)) then
!!$ print*,’vox allocated’
!!$ print*,’sum of voxels: ’,sum(voxel)
!!$ print*,’number of voxels in x,y,z: ’,voxx,voxy,voxz
!!$ OPEN(50, FILE=’voxels.gnu’, STATUS=’REPLACE’, ACTION=’WRITE’)
!!$ do i=1,voxx
!!$ do j=1,voxy
!!$ do k=1,voxz
!!$ if(voxel(i,j,k) .EQ. 1) WRITE(50,*) xmin+(i-0.5)*rx, &
!!$ ymin+(j-0.5)*rx, zmin+(k-0.5)*rx
!!$ end do
!!$ end do
!!$ end do
!!$ CLOSE(60)
!!$ print*,’wrote voxels to file’
!!$ DEALLOCATE(voxel)
!!$end if

! uncomment this to determine the box counting dimension of the geomerty
!!$print*,’invoking BCdim ...’
!!$rx = BCdim((xmax-xmin)/500.0_MK,(ymax-ymin)/500.0_MK, &
!!$ (zmax-zmin)/300.0_MK, 0.30_MK, istat)
!!$if(istat .NE. 0) then
!!$ WRITE(*,’(A)’) ’ERROR in BCdim’
!!$ STOP
!!$end if
!!$print*,’box counting dimension is: ’,rx

290 flag = 0 ! 0: grid point outside,
! 1: grid point inside,
! 2: grid point in rc-neighborhood of boundary

291 Npart = 0
292 Nghost = 0
293 pert = 0
294 do i=Nxlow,Nxhigh
295 x(1) = xmin+(real(i)-0.5_MK)*ldx ! use staggered mesh to avoid
296 do j=1,Ny ! having points exactly on the boundary
297 x(2) = ymin+(real(j)-0.5_MK)*ldy! as they would coincide with their
298 do k=1,Nz ! images => PSE would be unstable!
299 x(3) = zmin+(real(k)-0.5_MK)*ldz
300 if(BC .GT. 0) then
301 flag(i-Nxlow+1,j,k) = point_in_domain(x,dtbtemp(Npart+1), &

clotritemp(Npart+1))

166 APPENDIX C. THE SIMULATION CODES

302 else
303 flag(i-Nxlow+1,j,k) = point_in_domain(x,rx,n)
304 end if
305 if(flag(i-Nxlow+1,j,k) .GT. 0) Npart = Npart + 1
306 if(flag(i-Nxlow+1,j,k) .EQ. 2) Nghost = Nghost + 1
307 if(rank .EQ. 0) then

! print percentage status every 5%
308 if(((i-1)*Ny*Nz+(j-1)*Nz+k)/(Nxlocal*Ny*Nz+0.0) .GT. &

pert*0.05) then
309 pert = pert + 1
310 WRITE(6,’(I3,A)’,ADVANCE=’NO’) pert*5,’%.’
311 CALL flush(6) ! force immediate output
312 end if
313 end if
314 end do
315 end do
316 end do
317 WRITE(*,’(A)’)

! free memory of triangle lists
318 CALL AllocateLL(2,0,0,0,istat)

319 #ifdef __MPI__
! wait for all processors to terminate

320 CALL MPI_Barrier(MPI_COMM_WORLD, ierror)
! sum Npart onto ROOT

321 CALL MPI_Reduce(Npart, Npsum, 1, MPI_INTEGER, MPI_SUM, 0, &
MPI_COMM_WORLD, ierror)

! sum Nghost onto ROOT
322 CALL MPI_Reduce(Nghost, Ngsum, 1, MPI_INTEGER, MPI_SUM, 0, &

MPI_COMM_WORLD, ierror)
323 if(rank .NE. 0) then

! send local part of array flag to ROOT
324 CALL MPI_SEND(flag(:,:,:), Nxlocal*Ny*Nz, MPI_INTEGER, 0, &

rank, MPI_COMM_WORLD, ierror)
325 else

! receive flags from all slaves
326 do i=1,ncpu-1
327 CALL MPI_RECV(flag(Nxlocal+1+(i-1)*Nxslave:Nxlocal+i*Nxslave, &

1:Ny,1:Nz),Nxslave*Ny*Nz, MPI_INTEGER, i, i, &
MPI_COMM_WORLD, stat, ierror)

328 end do
329 end if
330 #else
331 Npsum = Npart
332 Ngsum = Nghost
333 #endif

334 if(BC .GT. 0) then
335 if(rank .EQ. 0) then

! allocate final arrays of correct size
336 ALLOCATE(dtb(Npsum), clotri(Npsum))
337 if (istat .NE. 0) then
338 WRITE(*,’(A,I3)’) ’Unable to allocate memory for dtb, clotri on ROOT’
339 goto 9997
340 end if

! copy root part into final arrays
341 dtb(1:Npart) = dtbtemp(1:Npart)
342 clotri(1:Npart) = clotritemp(1:Npart)
343 n = Npart ! initialize position counter
344 #ifdef __MPI__

! receive contributions of all slaves
345 do i=1,ncpu-1

! receive number of particles from slave i
346 CALL MPI_RECV(j, 1, MPI_INTEGER, i, i, MPI_COMM_WORLD, stat, ierror)

! receive distances to boundary for its points
347 CALL MPI_RECV(dtb(n+1:n+j),j , MPI_PREC, i, i, &

MPI_COMM_WORLD, stat, ierror)
! receive indices of closest triangles

348 CALL MPI_RECV(clotri(n+1:n+j),j , MPI_PREC, i, i, &
MPI_COMM_WORLD, stat, ierror)

349 end do
350 else

! send my number of particles to ROOT
351 CALL MPI_SEND(Npart, 1, MPI_INTEGER, 0, rank, MPI_COMM_WORLD, ierror)

! send the distances to boundary of my particles
352 CALL MPI_SEND(dtbtemp(1:Npart), Npart, MPI_PREC, 0, rank, &

MPI_COMM_WORLD, ierror)
! send indices of closest triangles

353 CALL MPI_SEND(clotritemp(1:Npart), Npart, MPI_PREC, 0, rank, &

C.5. GEOMETRY PREPROCESSOR 167

MPI_COMM_WORLD, ierror)
354 #endif
355 end if

! deallocate temporary arrays
356 DEALLOCATE(dtbtemp)
357 DEALLOCATE(clotritemp)
358 end if

359 if(rank .EQ. 0) then
! be nice and talk to the user

360 WRITE(*,’(A,I7,A)’) ’Initializing ’,Npsum,’ particles ...’
361 if(BC .EQ. 0) then
362 WRITE(*,’(A)’) ’Not using boundary conditions.’
363 end if
364 if(BC .EQ. 1) then
365 WRITE(*,’(A,I7,A)’) ’Using zero Dirichlet B.C. with ’,Ngsum, &

’ ghost particles’
366 end if
367 if(BC .EQ. 2) then
368 WRITE(*,’(A,I7,A)’) ’Using zero Neumann B.C. with ’,Ngsum, &

’ ghost particles’
369 end if

! add ghost particles to the number of particles
370 Npsum = Npsum + Ngsum

! global array to hold all particles
371 istat = 0

! first index: x,y,z, second index: particle number
372 ALLOCATE(xp(3,Npsum), mass(Npsum), ap(Npsum))
373 if (istat .NE. 0) then
374 WRITE(*,’(A)’) ’Unable to allocate memory for particles on ROOT’
375 goto 9997
376 end if

! initializing particle positions
377 n = 0 ! ID of current particle
378 Npart = 0 ! total number of particles so far
379 do i=1,Nx
380 x(1) = xmin+(real(i)-0.5_MK)*ldx
381 do j=1,Ny
382 x(2) = ymin+(real(j)-0.5_MK)*ldy
383 do k=1,Nz
384 x(3) = zmin+(real(k)-0.5_MK)*ldz
385 if(flag(i,j,k) .GT. 0) then
386 n = n + 1
387 Npart = Npart + 1
388 xp(1:3,Npart) = x(1:3) ! regular particle
389 ap(Npart) = Npart ! particle ID as attribute
390 if(flag(i,j,k) .EQ. 2) then

! boundary particle => needs mirror image as ghost
391 xp(1:3,Npart+1) = x(1:3)+2.0*dtb(n)*normal(1:3,clotri(n))

! negative particle index as attribute
392 ap(Npart+1) = -Npart
393 Npart = Npart + 1
394 end if
395 end if
396 end do
397 end do
398 end do
399 end if

! deallocate flags on all processors
400 DEALLOCATE(flag)

401 if(rank .EQ. 0) then

!---
! initialize particle strengths
!---

402 do i=1,Npsum
403 if(ap(i) .GT. 0) then ! regular particles
404 if((xp(1,i) .GE. bbllx) .AND. (xp(1,i) .LE. bbllx+bbwx) .AND. &

(xp(2,i) .GE. bblly) .AND. (xp(2,i) .LE. bblly+bbwy)) then
! no concentration inside bleached box

405 mass(i) = 0.0
406 else

! unit concentration c0 outside

168 APPENDIX C. THE SIMULATION CODES

407 mass(i) = 1.0
408 end if
409 end if
410 if(ap(i) .LT. 0) then ! ghost particles
411 if(BC .EQ. 1) mass(i) = -mass(-ap(i)) ! Dirichlet
412 if(BC .EQ. 2) mass(i) = mass(-ap(i)) ! Neumann
413 end if
414 end do
415 WRITE(*,’(A)’) ’done.’
416 WRITE(*,’(A)’)

!---
! Write new restart file for PSE3D
!---

417 OPEN(20, FILE=resfile, ACTION=’WRITE’, FORM=’UNFORMATTED’, IOSTAT=istat)
418 CLOSE(20, STATUS=’DELETE’)
419 OPEN(20, FILE=resfile, ACTION=’WRITE’, FORM=’UNFORMATTED’, IOSTAT=istat)
420 WRITE(20)Npsum, 0.0_MK
421 do i=1,Npsum
422 WRITE(20)xp(:,i), mass(i), ap(i)
423 end do
424 CLOSE(20)

425 WRITE(*,’(2A)’) ’Wrote restart file ’, trim(resfile)
426 WRITE(*,’(A)’)

!---
! Write gnuplot files for testing purposes
!---

427 if(GNUOUT) then
428 OPEN(20, FILE=’mass1.gnu’, STATUS=’REPLACE’, ACTION=’WRITE’)
429 OPEN(30, FILE=’mass0.gnu’, STATUS=’REPLACE’, ACTION=’WRITE’)
430 OPEN(40, FILE=’ghost.gnu’, STATUS=’REPLACE’, ACTION=’WRITE’)
431 do i=1,Npsum
432 if(ap(i) .GT. 0) then
433 if(mass(i) .EQ. 0.0) then
434 WRITE(30, *) xp(:,i)
435 else
436 WRITE(20, *) xp(:,i)
437 end if
438 end if
439 if(ap(i) .LT. 0) then
440 WRITE(40, *) xp(:,i)
441 end if
442 end do
443 CLOSE(20)
444 CLOSE(30)
445 WRITE(*,’(2A)’) ’Wrote gnuplot files.’
446 end if

447 end if

!--
! Deallocate memory and terminate
!--

448 9997 if(ALLOCATED(dtb)) DEALLOCATE(dtb)
449 if(ALLOCATED(clotri)) DEALLOCATE(clotri)
450 if(ALLOCATED(xp)) DEALLOCATE(xp)
451 if(ALLOCATED(ap)) DEALLOCATE(ap)
452 if(ALLOCATED(mass)) DEALLOCATE(mass)
453 9998 if(ALLOCATED(triang)) DEALLOCATE(triang)
454 if(ALLOCATED(c)) DEALLOCATE(c)
455 if(ALLOCATED(normal)) DEALLOCATE(normal)
456 9999 CONTINUE

457 #ifdef __MPI__
458 CALL MPI_Finalize(ierror)
459 #endif

460 END program init_part

C.5. GEOMETRY PREPROCESSOR 169

C.5.4.3 Set global default values (Defaults.f90)

The following subroutine assigns default values to all global parameters. This is
needed to make sure that all parameters contains meaningful values even if they are
not explicitly specified in the parameter input file described in section C.5.2.

1 subroutine Defaults

2 USE globals

3 IMPLICIT NONE

!--
!Defaults Assigns default values to all parameter variables.
! The settings of this file can be overridden by specifying a
! different value for a parameter in the parameter input file of
! the code.
!
! See also INIT_PART
!
! todo:
!
!==
! DIPLOMA THESIS WS01/02 ICOS ETH-ZUERICH
!--
!
! PROTEIN DIFFUSION INSIDE THE ENDOPLASMIC RETICULUM
!
!============================= ivo f. sbalzarini ==============================
!

!--
! Specify default values here
!--

! Precision Tolerance for geometry handling (at least 10 times smaller
! than smallest occuring geometry structure)

4 TOL = 1e-10_MK
! Cut-off radius for boundary condition handling (mirroring)

5 rc = 1.0_MK
! Nr. of CPUs and rank of current CPU

6 ncpu = 1
7 rank = 0

! Lattice spacings in x, y and z direction
8 ldx = 0.1_MK
9 ldy = 0.1_MK
10 ldz = 0.1_MK

! produce ASCII output for gnuplot?
11 GNUOUT = .FALSE.

! run topology check ?
12 CHKTOPO = .FALSE.

! Bleached box. coordinates of lower left corner and widths
13 bbllx = 2.0_MK
14 bblly = 2.0_MK
15 bbwx = 1.0_MK
16 bbwy = 1.0_MK

! Name of PSE3D restart file to be written
17 resfile = ’restart.dat’

! Name of surface description file
18 surffile = ’box.surf’

! Type of B.C. (0: none, 1: zero Dirichlet, 2: zero Neumann)
19 BC = 0

! number of bins in y and z
20 NBINY = 1
21 NBINZ = 1

! math. constant
22 if(MK .EQ. KIND(1.0D0)) then
23 PI = 4.0_MK*datan(1.0_MK) ! double prec version of arctan
24 else
25 PI = 4.0_MK*atan(1.0_MK) ! single prec version of arctan
26 end if

27 END subroutine Defaults

170 APPENDIX C. THE SIMULATION CODES

C.5.4.4 Read all input files (readinput.f90)

This routine is responsible for reading all the input files, i.e. the global parameter
file and the triangulated geometry. Its argument res serves as a status flag. If it is
zero upon completion of the routine, no errors occurred. Otherwise the input files
contained one or more errors.

1 subroutine readinput(res)

2 USE globals

3 IMPLICIT NONE

!--
!readinput Reads the parameter and geometry input files.
! READINPUT reads all input files for INIT_PART and initializes
! basic variables on the ROOT processor. res will be .TRUE. if
! everything was successful, else .FALSE.
!
! See also INIT_PART
!
! todo:
!
!==
! DIPLOMA THESIS WS01/02 ICOS ETH-ZUERICH
!--
!
! PROTEIN DIFFUSION INSIDE THE ENDOPLASMIC RETICULUM
!
!============================= ivo f. sbalzarini ==============================
!

!--
! Declaration of external functions
!--

! funtion to read and parse the global parameter file
4 INTEGER, EXTERNAL :: ReadParams

!--
! Declaration of input/output variables
!--

! .TRUE. if reading was succesful
5 LOGICAL, INTENT(OUT) :: res

!--
! Declaration of local variables
!--

! loop counter
6 INTEGER :: i

! Return flag for READIV
7 LOGICAL :: success

! File format description line
8 CHARACTER(LEN=80) :: filefmt

! I/O status flag
9 INTEGER :: istat

10 res = .TRUE.

!--
! Read parameter file
!--

11 if(ReadParams(’preproc.in’) .NE. 0) then
12 WRITE(*,’(A)’) ’Error reading parameter file restart.in! aborting.’
13 res = .FALSE.
14 return
15 end if

! if B.C. invalid: set to none
16 if((BC .NE. 0) .AND. (BC .NE. 1) .AND. (BC .NE. 2)) then
17 WRITE(*,’(A)’) ’Invalid boundary condition specified. Disabling it.’
18 BC = 0
19 end if

C.5. GEOMETRY PREPROCESSOR 171

20 WRITE(*,’(A)’)
21 WRITE(*,’(A)’) ’Initializing particle positions on regular lattice’
22 WRITE(*,’(A,E12.2)’) ’Spatial resolution (tolerance) is: ’, TOL
23 WRITE(*,’(A)’)
24 WRITE(*,’(A,3F6.2)’) ’Lattice spacing in x,y,z: ’,ldx,ldy,ldz
25 WRITE(*,’(A)’)
26 WRITE(*,’(A,2F8.2)’) ’Bleached box has lower left corner at: ’,bbllx,bblly
27 WRITE(*,’(A,2F8.2)’) ’ And x-,y-widths: ’,bbwx,bbwy
28 WRITE(*,’(A)’)

!---
! Read in triangulated geometry
!---

29 WRITE(*,’(2A)’) ’Reading surface description file: ’, trim(surffile)
30 OPEN(20, FILE=surffile, STATUS=’OLD’)

! determine file format
31 READ(20,’(A)’) filefmt
32 if(filefmt .EQ. ’#ASCII triangulated surface description’) then
33 READ(20,’(A)’)
34 READ(20,’(A)’)
35 READ(20,’(A)’)
36 READ(20,’(A)’)
37 READ(20,’(A)’)
38 READ(20,’(A)’)
39 READ(20,*) M
40 READ(20,’(A)’)
41 READ(20,’(A)’)
42 READ(20,’(A)’)
43 READ(20,’(A)’)
44 READ(20,’(A)’)
45 READ(20,’(A)’)
46 WRITE(*,’(A,I6,A)’) ’Surface triangulation contains ’,M,’ triangles’

47 istat = 0
! first index: x,y,z; second: point number; third: triangle number

48 ALLOCATE(triang(3,3,M), c(3,M), normal(3,M))
49 if (istat .NE. 0) then
50 WRITE(*,’(A)’) ’Unable to allocate memory for triangles’
51 res = .FALSE.
52 return
53 end if

54 do i=1,M
55 READ(20,*) triang(:,1,i), triang(:,2,i), triang(:,3,i)
56 end do
57 CLOSE(20)
58 WRITE(*,’(A)’) ’Triangles ... read.’
59 WRITE(*,’(A)’)

60 else if(filefmt(1:9) .EQ. ’#Inventor’) then
! read OpenInventor file format

61 if(filefmt(16:20) .EQ. ’ascii’) then
62 CLOSE(20) ! readiv expects closed file
63 CALL READIV(surffile, success) ! read Inventor file
64 if(.NOT. success) then
65 WRITE(*,’(A)’) ’Failed reading Inventor file.’
66 res = .FALSE.
67 return
68 end if
69 end if
70 if(filefmt(16:21) .EQ. ’binary’) then
71 WRITE(*,’(A)’) ’The surface file is a binary Inventor file.’
72 WRITE(*,’(A)’) ’Binary files are not supported. Please convert it to an’
73 WRITE(*,’(A)’) ’ASCII file using ivcat on a SGI workstation.’
74 res = .FALSE.
75 return
76 end if
77 else
78 WRITE(*,’(A)’) ’Unknown geometry file format.’
79 res = .FALSE.
80 return
81 end if

82 CLOSE(20)

83 return

84 END subroutine readinput

172 APPENDIX C. THE SIMULATION CODES

C.5.4.5 Read parameter input file (ReadParams.f90)

The routine ReadParams.f90 is called by readinput.f90 in order to read and parse
the global parameter input file according to the syntax rules stated in section C.5.2.
The name of the file to be read it passed to it in the argument variable ctrlfile.
ReadParams is a function and it returns zero if no errors occurred, 1 otherwise.

1 function ReadParams(ctrlfile)

2 USE globals

3 IMPLICIT NONE

!--
!ReadParams Reads the parameter file "ctrlfile"
! returns 0 if no errors occured, 1 otherwise.
!
! See also init_part, readinput
!
! todo:
!
!==
! DIPLOMA THESIS WS01/02 ICOS ETH-ZUERICH
!--
!
! PROTEIN DIFFUSION INSIDE THE ENDOPLASMIC RETICULUM
!
!============================= ivo f. sbalzarini ==============================
!

!--
! Input/Output arguments
!--

! name of the file to be read
4 CHARACTER(LEN=*), INTENT(IN) :: ctrlfile

! return flag
5 INTEGER :: ReadParams

!--
! Declaration of local variables
!--

! loop counters
6 INTEGER :: i,j

! position index
7 INTEGER :: idx,i1,i2

! read buffer
8 CHARACTER(LEN=256) :: cbuf

! file unit to be used for reading the parameter file
9 INTEGER :: iUnit

! string length, I/O error flag
10 INTEGER :: ilen,ios

! length of filename
11 INTEGER :: ilenctrl

! line counter
12 INTEGER :: ibc,iline

! value and argument of current assignment statement
13 CHARACTER(LEN=256) :: cvalue,carg
14 CHARACTER(LEN=256) :: bcloc,tvalue

! flag to indicate whether the file exists at all
15 LOGICAL :: lExist

!--
! Definition of file unit
!--

16 iUnit = 20

!--
! Check that the parameter file exists
!--

17 ilenctrl = LEN_TRIM(ctrlfile) ! length of filename string
18 INQUIRE(FILE=ctrlfile(1:ilenctrl), EXIST=lExist)
19 if(.NOT. lExist) then
20 WRITE(*,’(2A)’)’No such file: ’,ctrlfile(1:ilenctrl)

C.5. GEOMETRY PREPROCESSOR 173

21 ReadParams = 1
22 goto 9999
23 end if

!--
! open the file
!--

24 OPEN(iUnit, FILE=ctrlfile(1:ilenctrl), IOSTAT=ios, ACTION=’READ’)
25 if(ios .NE. 0) then
26 WRITE(*,’(2A)’)’Failed to open file: ’,ctrlfile(1:ilenctrl)
27 ReadParams = 1
28 goto 9999
29 end if

!--
! scan file
!--

30 iline = 0
31 do
32 iline = iline + 1 ! increment line
33 READ(iUnit,’(A)’,END=100,ERR=200) cbuf
34 ilen = LEN_TRIM(cbuf)

!--
! Skip comment or empty lines
!--

35 if(ilen .GT. 0 .AND. cbuf(1:1) .NE. ’#’) then

!---
! Remove all spaces
!---

36 j = 0
37 do i=1,ilen
38 if(cbuf(i:i) .NE. ’ ’) then
39 j = j + 1
40 cbuf(j:j) = cbuf(i:i)
41 end if
42 end do
43 ilen = j ! update length of string

!---
! Find position of =
!---

44 idx = INDEX(cbuf,’=’)

!---
! Exit if = is missing
!---

45 if(idx .LT. 0) then
46 WRITE(*,’(A,I5)’)’Incorrect line: ’,iline
47 ReadParams = 1
48 goto 9999
49 end if

!---
! Get argument and value
!---

50 carg = ADJUSTL(cbuf(1:idx-1))
51 cvalue = ADJUSTL(cbuf(idx+1:ilen))

!---
! Convert to upper case
!---

52 CALL UpperCase(carg,idx-1)

!---
! Parse and read input data
!---

53 if(carg .EQ. ’SURFACEFILE’) then
54 READ(cvalue,’(A)’,IOSTAT=ios,ERR=200) surffile
55 elseif (carg .EQ. ’RESTARTFILE’) then
56 READ(cvalue,’(A)’,IOSTAT=ios,ERR=200) resfile
57 elseif (carg .EQ. ’DX’) then
58 READ(cvalue,*,IOSTAT=ios,ERR=200) ldx,ldy,ldz
59 elseif (carg .EQ. ’BLEACHBOX’) then
60 READ(cvalue,*,IOSTAT=ios,ERR=200) bbllx,bblly,bbux,bbuy
61 bbwx = bbux-bbllx
62 bbwy = bbuy-bblly

174 APPENDIX C. THE SIMULATION CODES

63 elseif (carg .EQ. ’CUTOFF’) then
64 READ(cvalue,*,IOSTAT=ios,ERR=200) rc
65 elseif (carg .EQ. ’BOUNDARYCONDITION’) then
66 READ(cvalue,*,IOSTAT=ios,ERR=200) BC
67 elseif (carg .EQ. ’GNUOUT’) then
68 READ(cvalue,*,IOSTAT=ios,ERR=200) GNUOUT
69 elseif (carg .EQ. ’CHECKTOPOLOGY’) then
70 READ(cvalue,*,IOSTAT=ios,ERR=200) CHKTOPO
71 elseif (carg .EQ. ’TOLERANCE’) then
72 READ(cvalue,*,IOSTAT=ios,ERR=200) TOL
73 elseif (carg .EQ. ’NBINSY’) then
74 READ(cvalue,*,IOSTAT=ios,ERR=200) NBINY
75 elseif (carg .EQ. ’NBINSZ’) then
76 READ(cvalue,*,IOSTAT=ios,ERR=200) NBINZ
77 end if
78 end if
79 end do

!--
! Something went wrong if we got here
!--

80 200 CONTINUE
81 WRITE(*,’(A,I5,2A)’) ’Error reading line: ’,iline, &

& ’ of file: ’,ctrlfile(1:ilenctrl)
ilen = LEN_TRIM(cbuf)

82 WRITE(*,’(A)’) cbuf(1:ilen)
83 ReadParams = 1
84 goto 9999

!--
! End of file
!--

85 100 ReadParams = 0

!--
! Close file
!--

86 CLOSE(iUnit)

!--
! Return
!--

87 9999 CONTINUE

88 return

89 END function ReadParams

C.5.4.6 Read OpenInventor 3D files (readiv.f90)

The following routine implements the elementary OpenInventor 3D file reader needed
to be able to read Imaris’ triangulated output (cf. chapter 2) according to the syntax
standards given in [SGI (1992a)] and [SGI (1992b)]. The name of the OpenInventor
file to be read is passed to this subroutine in the argument variable ivfile. The
other argument success is the return value of type LOGICAL which contains .TRUE.
if the file was successfully read, .FALSE. otherwise.

1 subroutine readiv(ivfile, success)

2 USE globals

3 IMPLICIT NONE

!--
!readiv Reads the ASCII OpenInventor file ivfile.
! READIV is a very minimal Inventor file reader that only contains the
! Nodes and objects found in imaris output. The variable success is
! .TRUE. if reading the file was successful, .FALSE. otherwise.
!
! See also INIT_PART
!
! todo:
!
!==

C.5. GEOMETRY PREPROCESSOR 175

! DIPLOMA THESIS WS01/02 ICOS ETH-ZUERICH
!--
!
! PROTEIN DIFFUSION INSIDE THE ENDOPLASMIC RETICULUM
!
!============================= ivo f. sbalzarini ==============================
!

!--
! Declaration of input/output variables
!--

! Name of file to read
4 CHARACTER(LEN=80), INTENT(IN) :: ivfile

! Read successful?
5 LOGICAL, INTENT(OUT) :: success

!--
! Declaration of local variables
!--

! loop counters
6 INTEGER :: i

! I/O error trap
7 INTEGER :: istat

! read buffer
8 CHARACTER(LEN=80) :: buf

! separator dummy
9 INTEGER :: dummy

! Number of points
10 INTEGER :: Npts

! Coordinates of vertices
11 REAL(MK), DIMENSION(:,:), ALLOCATABLE :: pts

! vertex indices of current triangle
12 INTEGER, DIMENSION(3) :: vertex

13 success = .TRUE.
14 istat = 0
15 buf(:) = ’ ’

!--
! first pass through file to count number of points and triangles
!--

16 OPEN(80, FILE=ivfile, STATUS=’OLD’, ACTION=’READ’, IOSTAT=istat)
17 if(istat .NE. 0) then
18 WRITE(*,’(A)’) ’Could not open file ’, trim(ivfile)
19 success = .FALSE.
20 goto 900
21 end if

! Skip file header
22 do while(index(buf, ’point’, .FALSE.) .EQ. 0)
23 READ(80, ’(A)’) buf
24 end do

! determine number of vertices
25 Npts = 0
26 do while(index(buf, ’}’, .FALSE.) .EQ. 0)
27 Npts = Npts + 1
28 READ(80, ’(A)’) buf ! read next line
29 end do

! skip normals section
30 do while(index(buf, ’coordIndex’, .FALSE.) .EQ. 0)
31 READ(80, ’(A)’) buf
32 end do

! determine number of triangles
33 M = 0
34 do while(index(buf, ’}’, .FALSE.) .EQ. 0)
35 if(index(buf, ’-1’, .FALSE.) .EQ. index(buf, ’-1’, .TRUE.)) then
36 M = M + 1
37 else
38 M = M + 2
39 end if
40 READ(80, ’(A)’) buf
41 end do
42 WRITE(*,’(A,I6,A,I6,A)’) ’Surface triangulation contains ’,Npts, &

’ vertices defining ’,M,’ triangles’

176 APPENDIX C. THE SIMULATION CODES

43 CLOSE(80)

!--
! allocate memory for points and triangles
!--

44 istat = 0
! first index: x,y,z; second: point number; third: triangle number

45 ALLOCATE(triang(3,3,M), c(3,M), normal(3,M), pts(3,Npts))
46 if (istat .NE. 0) then
47 WRITE(*,’(A)’) ’Unable to allocate memory for triangles and vertives’
48 success = .FALSE.
49 goto 900
50 end if

!--
! second pass through file to read data
!--

51 OPEN(80, FILE=ivfile, STATUS=’OLD’, ACTION=’READ’, IOSTAT=istat)
52 if(istat .NE. 0) then
53 WRITE(*,’(A)’) ’Could not open file ’, trim(ivfile)
54 success = .FALSE.
55 goto 900
56 end if

! Skip file header
57 do while(index(buf, ’point’, .FALSE.) .EQ. 0)
58 READ(80, ’(A)’) buf
59 end do
60 buf = buf(index(buf,’[’)+1:)

! read point coordinates
61 do i=1,Npts
62 READ(buf,*) pts(1:3,i) ! parse string for numbers
63 READ(80, ’(A)’) buf ! read next line
64 end do

! skip normals section
65 do while(index(buf, ’coordIndex’, .FALSE.) .EQ. 0)
66 READ(80, ’(A)’) buf
67 end do
68 buf = buf(index(buf,’[’)+1:)

69 i = 1
70 do while(i .LE. M)
71 if(index(buf, ’-1’, .FALSE.) .EQ. index(buf, ’-1’, .TRUE.)) then

! only one triangle on this line
72 READ(buf,*) vertex(1:3)
73 triang(1:3,1,i) = pts(1:3,vertex(1))
74 triang(1:3,2,i) = pts(1:3,vertex(2))
75 triang(1:3,3,i) = pts(1:3,vertex(3))
76 i = i + 1
77 else ! two triangles on this line
78 READ(buf,*) vertex(1:3)

! +1 because .iv file has C style ordering starting at zero
79 triang(1:3,1,i) = pts(1:3,vertex(1)+1)
80 triang(1:3,2,i) = pts(1:3,vertex(2)+1)
81 triang(1:3,3,i) = pts(1:3,vertex(3)+1)
82 i = i + 1
83 buf = buf(index(buf,’-1’)+3:)
84 READ(buf,*) vertex(1:3)
85 triang(1:3,1,i) = pts(1:3,vertex(1)+1)
86 triang(1:3,2,i) = pts(1:3,vertex(2)+1)
87 triang(1:3,3,i) = pts(1:3,vertex(3)+1)
88 i = i + 1
89 end if
90 READ(80, ’(A)’) buf ! read next line
91 end do

92 CLOSE(80)

93 WRITE(*,’(A)’) ’Triangles ... read.’
94 WRITE(*,’(A)’)

95 900 if(ALLOCATED(pts)) DEALLOCATE(pts)
96 return

97 END subroutine readiv

C.5. GEOMETRY PREPROCESSOR 177

C.5.4.7 Check validity of triangulation (chktriang.f90)

The following file contains the two function chk topology and chk orientation.
They check the triangulation for its topological and syntactical validity, respectively,
according to the criteria and algorithms given in chapter 3. Both functions return a
value of type LOGICAL which is .TRUE. if all criteria are fulfilled and .FALSE. if one
of them is not. Notice that chk orientation needs the centroids and normals of
all the triangles and cannot be called before they have been calculated in the main
program (statements 231 to 240). Moreover, it expects the triangulation to be at
least topologically valid and should thus always be called after chk topology.

1 function chk_topology()

2 USE globals

3 IMPLICIT NONE

!--
!chk_topology Checks topological validity of a triangulation set
! CHK_TOPOLOGY checks the following requirements:
! A) All edges must be of length > 0
! B) No vertex must be inside another triangle
! C) Every triangle must have exactly three neighbors sharing 2 vertices
! D) No edge of any triangle must intersect any other triangle
! if all points are met, the triangulation describes a closed coherent
! surface in space. Attn.: this is o(M**2)!
!
! RETURN VALUE: .TRUE. if set is topologically valid, else .FALSE.
!
! See also INIT_PART
!
! todo:
!
!==
! DIPLOMA THESIS WS01/02 ICOS ETH-ZUERICH
!--
!
! PROTEIN DIFFUSION INSIDE THE ENDOPLASMIC RETICULUM
!
!============================= ivo f. sbalzarini ==============================
!

!--
! Declaration of input arguments and return value
!--

! return value: .TRUE. if set is topologically valid
4 LOGICAL :: chk_topology

!--
! Declaration of external functions
!--

! intersects a line with a triangle
5 REAL(MK), EXTERNAL :: intersect

!--
! Declaration of local variables
!--

! loop counters
6 INTEGER :: i ,j, k, l

! edge vectors
7 REAL(MK), DIMENSION(3) :: a, b, g

! determinant of a matrix
8 REAL(MK) :: det

! Number of common vertices of two triangles
9 INTEGER :: Nvert

! Number of neighbors of a triangle
10 INTEGER :: Neigh

! Matrix of a 2x2 system
11 REAL(MK), DIMENSION(2,2) :: S

! line coefficients
12 REAL(MK) :: alpha, beta

! local condition variable

178 APPENDIX C. THE SIMULATION CODES

13 LOGICAL :: lcond

14 chk_topology = .TRUE.

15 WRITE(*,’(A)’) ’Checking topology of triangulation set ...’
16 WRITE(*,’(A,I6,A)’) ’Set contains ’, M, ’ triangles.’

!--
! a) All edges must be > 0
!--

17 lcond = .TRUE.
! Main loop over all triangles

18 do i=1,M
19 if(sum((triang(:,2,i)-triang(:,1,i))**2) .LT. TOL) then
20 WRITE(*,’(A,I6,A,E12.2)’) ’*** WARNING: Edge between vertices 1 &

and 2 of triangle ’,i,’ is < ’, TOL
21 chk_topology = .FALSE.
22 lcond = .FALSE.
23 end if
24 if(sum((triang(:,3,i)-triang(:,1,i))**2) .LT. TOL) then
25 WRITE(*,’(A,I6,A,E12.2)’) ’*** WARNING: Edge between vertices 1 &

and 3 of triangle ’,i,’ is < ’, TOL
26 chk_topology = .FALSE.
27 lcond = .FALSE.
28 end if
29 if(sum((triang(:,3,i)-triang(:,2,i))**2) .LT. TOL) then
30 WRITE(*,’(A,I6,A,E12.2)’) ’*** WARNING: Edge between vertices 2 &

and 3 of triangle ’,i,’ is < ’, TOL
31 chk_topology = .FALSE.
32 lcond = .FALSE.
33 end if
34 end do

35 if(lcond) then
36 WRITE(*,’(A)’) ’Topology[A] Good: All edges are of length > 0.’
37 end if

!--
! b) No vertex must be inside any other triangle
!--

38 lcond = .TRUE.
! Main loop over all triangles

39 do i=1,M
40 do j=1,M ! loop over all the other triangles
41 if(j .NE. j) then ! loop over all vertices of triangle i
42 do k=1,3
43 a = triang(:,2,j)-triang(:,1,j)
44 b = triang(:,3,j)-triang(:,1,j)
45 det = a(1)*b(2)-a(2)*b(1)
46 if(abs(det) .GE. TOL) then
47 det = 1.0/det ! 2x2 subsystem
48 S(1,1)= b(2)*det
49 S(1,2)=-b(1)*det
50 S(2,1)=-a(2)*det
51 S(2,2)= a(1)*det
52 g(1:2)= triang(1:2,k,i)-triang(1:2,1,j)

! Solution
53 alpha = S(1,1)*g(1)+S(1,2)*g(2)
54 beta = S(2,1)*g(1)+S(2,2)*g(2)

! point is in same plane if third equation is also
! fullfilled with this solution

55 if(alpha*a(3)+beta*b(3)+triang(3,1,j)-triang(3,k,i) .LE. &
TOL) then

56 if((alpha+beta .LT. 1.0+TOL) .AND. (alpha .GE. TOL) &
.AND. (beta .GE. TOL)) then ! point is insde triangle

57 WRITE(*,’(A,I1,A,I6,A,I6)’) ’*** WARNING: Vertex ’,k &
,’ of triangle ’,i,’ lies inside triangle ’,j

58 chk_topology = .FALSE.
59 lcond = .FALSE.
60 end if
61 9 end if
62 end if
63 end do
64 end if
65 end do
66 end do

67 if(lcond) then

C.5. GEOMETRY PREPROCESSOR 179

68 WRITE(*,’(A)’) ’Topology[B] Good: No vertex is inside any other triangle.’
69 end if

!--
! c) Every triangle must have exactly three neighbors sharing 2 vertices
!--

70 lcond = .TRUE.
! Main loop over all triangles

71 do i=1,M
72 Neigh = 0 ! reset neighbor counter
73 do j=1,M ! loop over all the other triangles
74 if(j .NE. i) then
75 Nvert = 0 ! reset number of common vertices
76 do k=1,3 ! loop over all vertices of triangle i
77 do l=1,3 ! loop over all different vertices of triangle j
78 if(sum((triang(:,k,i)-triang(:,l,j))**2) .LE. TOL) then
79 Nvert=Nvert+1 ! one common vertex found
80 end if
81 end do
82 end do
83 if(Nvert .GT. 2) then
84 WRITE(*,’(A,I6,A,I6,A,I1,A)’) ’*** WARNING: Triangles ’,i, &

’ and ’,j,’ have ’,Nvert,’ vertices in common!’
85 chk_topology = .FALSE.
86 lcond = .FALSE.
87 end if
88 if(Nvert .EQ. 2) then ! increment neighbor counter
89 Neigh=Neigh+1
90 end if
91 end if
92 end do
93 if(Neigh .NE. 3) then
94 WRITE(*,’(A,I6,A,I1,A)’) ’*** WARNING: Triangle ’,i,’ has ’ &

,Neigh,’ neighbors instead of 3.’
95 chk_topology = .FALSE.
96 lcond = .FALSE.
97 end if
98 end do

99 if(lcond) then
100 WRITE(*,’(A)’) ’Topology[C] Good: All triangles have 3 neighbors.’
101 end if

!--
! d) No edge of any triangle must intersect any other triangle
!--

102 lcond = .TRUE.
! Main loop over all triangles

103 do i=1,M
104 a = triang(:,2,i)-triang(:,1,i)
105 b = triang(:,3,i)-triang(:,1,i)
106 g = triang(:,3,i)-triang(:,2,i)
107 do j=1,M
108 if(j .NE. i) then
109 if(intersect(triang(:,1,i), a, j) .GE. 0.0) then
110 WRITE(*,’(A,I6,A,I6)’) ’*** WARNING: Edge between vertices 1 &

and 2 of triangle ’,i,’ intersects with triangle ’,j
111 chk_topology = .FALSE.
112 lcond = .FALSE.
113 end if
114 if(intersect(triang(:,1,i), b, j) .GE. 0.0) then
115 WRITE(*,’(A,I6,A,I6)’) ’*** WARNING: Edge between vertices 1 &

and 2 of triangle ’,i,’ intersects with triangle ’,j
116 chk_topology = .FALSE.
117 lcond = .FALSE.
118 end if
119 if(intersect(triang(:,2,i), g, j) .GE. 0.0) then
120 WRITE(*,’(A,I6,A,I6)’) ’*** WARNING: Edge between vertices 1 &

and 2 of triangle ’,i,’ intersects with triangle ’,j
121 chk_topology = .FALSE.
122 lcond = .FALSE.
123 end if
124 end if
125 end do
126 end do

127 if(lcond) then
128 WRITE(*,’(A)’) ’Topology[D] Good: No edge intersects any other triangle.’

180 APPENDIX C. THE SIMULATION CODES

129 end if

130 return

131 END function chk_topology

!--

132 function chk_orientation()

133 USE globals

134 IMPLICIT NONE

!--
!chk_orientation Checks syntactical validity of a triangulation set
! CHK_ORIENTATION checks whether all normals point out of the domain.
! Needs centroids and normals to be calculated first!
! Assumes triangulation to be topologically valid.
!
! RETURN VALUE: .TRUE. if set is syntactically valid, else .FALSE.
!
! See also INIT_PART
!
! todo:
!
!==
! DIPLOMA THESIS WS01/02 ICOS ETH-ZUERICH
!--
!
! PROTEIN DIFFUSION INSIDE THE ENDOPLASMIC RETICULUM
!
!============================= ivo f. sbalzarini ==============================
!

!--
! Declaration of external functions
!--

! checks whether a point is inside the domain (needs topological validity !)
135 LOGICAL, EXTERNAL :: point_in_domain

!--
! Declaration of input arguments and return value
!--

! return value: .TRUE. if set is syntactically valid
136 LOGICAL :: chk_orientation

!--
! Declaration of local variables
!--

! loop counters
137 INTEGER :: i

! point in question
138 REAL(MK), DIMENSION(3) :: pt

139 chk_orientation = .TRUE.
! main loop over all triangles

140 do i=1,M
! follow the normal for a small distance (but larger than TOL
! for the difference to be detected by the comparison operator

141 pt = c(:,i)+5*TOL*normal(:,i)
142 if(point_in_domain(pt)) then
143 WRITE(*,’(A,I6,A)’) ’*** WARNING: Triangle ’,i,’ is not properly oriented.’
144 chk_orientation = .FALSE.
145 end if
146 end do

147 if(chk_orientation) then
148 WRITE(*,’(A)’) ’Orientation Good: All normals point outward.’
149 end if

150 return

151 END function chk_orientation

C.5. GEOMETRY PREPROCESSOR 181

C.5.4.8 Intersect a line with a triangle (intersect.f90)

intersect implements the algorithm given in section 3.2 to intersect a line P +λv
with a triangle given by its index t in the current triangulation set. The function
takes the two vectors P ∈ �3 and v ∈ �3 as well as the integer triangle index t as
input arguments and returns the absolute value of the line parameter λ (lambda)
at the point of intersection or -1 if no intersection point inside the triangle exists.

1 function intersect(P, v, t)

2 USE globals

3 IMPLICIT NONE

!--
!INTERSECT Intersects line P+lambda*v with triangle t
! Returns the absolute value of lambda.
! If no intersection point inside triangle t exists, -1 is returned.
!
! See also INIT_PART, CHK_TOPOLOGY, POINT_IN_DOMAIN
!
!==
! DIPLOMA THESIS WS01/02 ICOS ETH-ZUERICH
!--
!
! PROTEIN DIFFUSION INSIDE THE ENDOPLASMIC RETICULUM
!
!============================= ivo f. sbalzarini ==============================
!

!--
! Declaration of input and output variables
!--

! Starting point of line
4 REAL(MK), DIMENSION(3), INTENT(IN) :: P

! direction vector
5 REAL(MK), DIMENSION(3), INTENT(IN) :: v

! triangle number
6 INTEGER, INTENT(IN) :: t

! return value
7 REAL(MK) :: intersect

!--
! Declaration of local variables
!--

! line parameters
8 REAL(MK) :: alpha, beta, lambda

! edge vectors of triangle t
9 REAL(MK), DIMENSION(3) :: a, b

! System matrix
10 REAL(MK), DIMENSION(3,3) :: S

! determinant of system matrix and its inverse
11 REAL(MK) :: det, detinv

12 intersect = -1.0
! edge vectors

13 a = triang(:,2,t)-triang(:,1,t)
14 b = triang(:,3,t)-triang(:,1,t)

! determinant of system matrix
15 det = -a(3)*b(2)*v(1)+a(2)*b(3)*v(1)+a(3)*b(1)*v(2)- &

a(1)*b(3)*v(2)-a(2)*b(1)*v(3)+a(1)*b(2)*v(3)
16 if(abs(det) .GE. TOL) then ! intersection point exists

! inverse of determinant
17 detinv=1.0/det

! inverse of system matrix
18 S(1,1)=(b(2)*v(3)-b(3)*v(2))*detinv
19 S(1,2)=(b(3)*v(1)-b(1)*v(3))*detinv
20 S(1,3)=(b(1)*v(2)-b(2)*v(1))*detinv
21 S(2,1)=(a(3)*v(2)-a(2)*v(3))*detinv
22 S(2,2)=(a(1)*v(3)-a(3)*v(1))*detinv
23 S(2,3)=(a(2)*v(1)-a(1)*v(2))*detinv
24 S(3,1)=(a(2)*b(3)-a(3)*b(2))*detinv
25 S(3,2)=(a(3)*b(1)-a(1)*b(3))*detinv
26 S(3,3)=(a(1)*b(2)-a(2)*b(1))*detinv

! solution of linear system

182 APPENDIX C. THE SIMULATION CODES

27 a(1:3)= P(1:3)-triang(:,1,t)
28 alpha = S(1,1)*a(1)+S(1,2)*a(2)+S(1,3)*a(3)
29 beta = S(2,1)*a(1)+S(2,2)*a(2)+S(2,3)*a(3)
30 lambda= S(3,1)*a(1)+S(3,2)*a(2)+S(3,3)*a(3)

! check whether intersection point is inside triangle t
31 if((alpha+beta .LE. 1.0) .AND. (alpha .GE. 0) &

.AND. (beta .GE. 0)) then
32 intersect = abs(-lambda)
33 end if
34 end if

35 return

36 END function intersect

C.5.4.9 Create bin lists and cell lists (SortT.f90)

This subroutine sets up the bin lists and cell lists as described in section 7.2.5 and
sorts the triangles into them. The data structures needed are explained in section
7.2.6.

1 subroutine SortT

2 USE globals
3 USE Util

4 IMPLICIT NONE

!--
!SORTT Sorts triangles and builds lists.
! SortT sets up the bin lists for point_in_domain by assigning the
! triangles to bins of equal y and z coordinates as well as the cell
! lists for the nearest triangle search (if needed).
!
! See also INIT_PART, POINT_IN_DOMAIN, ALLOCATELL
!
!==
! DIPLOMA THESIS WS01/02 ICOS ETH-ZUERICH
!--
!
! PROTEIN DIFFUSION INSIDE THE ENDOPLASMIC RETICULUM
!
!============================= ivo f. sbalzarini ==============================
!

!--
! Declaration of local variables
!--

! loop counters
5 INTEGER :: i, j, k, l, p, ix1, ix2

! minimum and maximum indices in x, y and z
6 INTEGER :: minbinx, maxbinx, minbiny
7 INTEGER :: maxbiny, minbinz, maxbinz

! x, y and z indices of current bin/cell
8 INTEGER :: idxx, idxy, idxz

! lower and upper boundaries of bin
9 REAL(MK), DIMENSION(4) :: bb

! error trap
10 INTEGER :: istat

! edge vectors of triangle projections, vertex 1
11 REAL(MK), DIMENSION(2) :: a, b, x1, y1, v1, v2

! three dimensional vectors for cell list
12 REAL(MK), DIMENSION(3) :: x13, a3, b3, n3, y13

! determinants
13 REAL(MK) :: det, det2

! line parameters
14 REAL(MK) :: alpha, beta, lambda

! system matrix
15 REAL(MK), DIMENSION(3,3) :: mat

! lower and upper boundaries of cell and its centroid
16 REAL(MK), DIMENSION(3) :: bbl, bbu, bbc

! flag whether a certain triangle already belongs to a bin or not
17 LOGICAL :: NotIn

! all three edge vectors of a triangle
18 REAL(MK), DIMENSION(2,3) :: edge

C.5. GEOMETRY PREPROCESSOR 183

! all edge vectors of a bin
19 REAL(MK), DIMENSION(2,2) :: side

!--
! Initialize
!--

20 istat = 0
! initialize lists and arrays

21 CALL AllocateLL(0,0,0,0,istat)
22 if(istat .NE. 0) then
23 WRITE(*,’(A)’) ’Error in AllocateLL: returning from SortT.’
24 return
25 end if
26 dby = (ymax-ymin)/real(NBINY)
27 dbz = (zmax-zmin)/real(NBINZ)

!--
! Assign triangles to linear bins for point_in_domain
!--

28 do i=1,M ! loop over all triangles
29 minbiny = NBINY+1
30 maxbiny = 0
31 minbinz = NBINZ+1
32 maxbinz = 0
33 x1 = triang(2:3,1,i)
34 edge(:,1) = triang(2:3,2,i)-x1
35 edge(:,2) = triang(2:3,3,i)-x1
36 edge(:,3) = triang(2:3,3,i)-triang(2:3,2,i)
37 a = edge(:,1)
38 b = edge(:,2)
39 det = a(1)*b(2)-a(2)*b(1)
40 det = 1.0_MK/det
41 do j=1,3 ! loop over all vertices

! determine index of bin of this vertex
42 idxy = ceiling((triang(2,j,i)-ymin)/dby)
43 if(idxy .EQ. 0) idxy = 1 ! include boundaries at walls
44 if(idxy .EQ. NBINY+1) idxy = NBINY
45 idxz = ceiling((triang(3,j,i)-zmin)/dbz)
46 if(idxz .EQ. 0) idxz = 1 ! include boundaries at walls
47 if(idxz .EQ. NBINZ+1) idxz = NBINZ

! add this triangle to list of this bin if not already there
48 if(.NOT. ASSOCIATED(bin(idxy,idxz)%list)) then
49 CALL AllocateLL(1,0,idxy,idxz,istat)
50 end if
51 NotIn = .FALSE.
52 if(nbin(idxy,idxz) .EQ. 0) then
53 NotIn = .TRUE.
54 elseif(bin(idxy,idxz)%list(nbin(idxy,idxz)) .NE. i) then
55 NotIn = .TRUE.
56 end if
57 if(NotIn) then
58 p = nbin(idxy,idxz)+1
59 nbin(idxy,idxz) = p

! enlarge this list if nedded
60 if(p .GT. size(bin(idxy,idxz)%list)) then
61 CALL AllocateLL(1,0,idxy,idxz,istat)
62 end if
63 bin(idxy,idxz)%list(p) = i

! update bounding box of cells
64 if(idxy .LT. minbiny) minbiny = idxy
65 if(idxy .GT. maxbiny) maxbiny = idxy
66 if(idxz .LT. minbinz) minbinz = idxz
67 if(idxz .GT. maxbinz) maxbinz = idxz
68 end if
69 end do

! loop over all bins in the bounding box of the vertices
70 do j=minbiny,maxbiny
71 bb(1) = ymin+(j-1)*dby ! lower y
72 bb(2) = ymin+j*dby ! upper y
73 do k=minbinz,maxbinz

! if no list for this bin is yet associated, create one
74 if(.NOT. ASSOCIATED(bin(j,k)%list)) then
75 CALL AllocateLL(1,0,j,k,istat)
76 end if
77 NotIn = .FALSE.

! if this triangle doesnt already belong to this bin, check it
78 if(nbin(j,k) .EQ. 0) then
79 NotIn = .TRUE.

184 APPENDIX C. THE SIMULATION CODES

80 elseif(bin(j,k)%list(nbin(j,k)) .NE. i) then
81 NotIn = .TRUE.
82 end if
83 if(NotIn) then
84 bb(3) = zmin+(k-1)*dbz ! lower z
85 bb(4) = zmin+k*dbz ! upper z

! edge vectors of this bin (projected onto y/z plane)
! only store two since the other two are identical

86 side(1,1) = bb(2)-bb(1)
87 side(2,1) = 0.0_MK
88 side(1,2) = 0.0_MK
89 side(2,2) = bb(4)-bb(3)
90 do ix1=1,2
91 y1(1) = bb(ix1)-x1(1)
92 do ix2=3,4
93 y1(2) = bb(ix2)-x1(2)
94 alpha = det*(b(2)*y1(1)-b(1)*y1(2))
95 beta = det*(-a(2)*y1(1)+a(1)*y1(2))
96 if((alpha .GE. 0.0_MK) .AND. (beta .GE. 0.0_MK) &

.AND. (alpha+beta .LE. 1.0_MK)) then
! point is inside triangle: add triangle to this bin

97 p = nbin(j,k)+1
98 nbin(j,k) = p

! enlarge this list if nedded
99 if(p .GT. size(bin(j,k)%list)) then
100 CALL AllocateLL(1,0,j,k,istat)
101 end if
102 bin(j,k)%list(p) = i
103 goto 250 ! next bin
104 end if
105 end do
106 end do

! if no vertex of the bin is inside the triangle, check
! whether any edge of the triangle intersects any edge of
! the bin

107 do ix1=1,3 ! loop over triangles edges
108 v1 = edge(:,ix1)
109 do ix2=1,4 ! loop over bins edges

! choose adge vector mod 2 since bin is axis parallel
110 v2 = -side(:,mod(ix2,2)+1)

! system determinant (do not overwrite det !!)
111 det2 = v1(1)*v2(2)-v1(2)*v2(1)
112 det2 = 1.0_MK/det2

! determine rhs (starting points of lines depending
! on what edge we are at

113 if(ix2 .EQ. 1) then
114 y1 = (/bb(1), bb(3)/)
115 elseif(ix2 .EQ. 2) then
116 y1 = (/bb(1), bb(3)/)
117 elseif(ix2 .EQ. 3) then
118 y1 = (/bb(2), bb(3)/)
119 elseif(ix2 .EQ. 4) then
120 y1 = (/bb(1), bb(4)/)
121 end if
122 if(ix1 .EQ. 1 .OR. ix1 .EQ. 2) then
123 y1 = y1 - x1
124 else
125 y1 = y1 - triang(2:3,2,i)
126 end if

! solve for intersection point
127 alpha = det2*(v2(2)*y1(1)-v2(1)*y1(2))
128 beta = det2*(-v1(2)*y1(1)+v1(1)*y1(2))

! if intersected, add triangle to this bin
129 if((alpha .GE. 0.0_MK) .AND. (beta .GE. 0.0_MK) .AND. &

(alpha .LE. 1.0_MK) .AND. (beta .LE. 1.0_MK)) then
! point is inside triangle: add triangle to this bin

130 p = nbin(j,k)+1
131 nbin(j,k) = p

! enlarge this list if nedded
132 if(p .GT. size(bin(j,k)%list)) then
133 CALL AllocateLL(1,0,j,k,istat)
134 end if
135 bin(j,k)%list(p) = i
136 goto 250 ! next bin
137 end if
138 end do
139 end do
140 250 end if
141 end do
142 end do

C.5. GEOMETRY PREPROCESSOR 185

143 end do

!--
! prune bin lists to actual size to save memory
!--

144 do i=1,NBINY
145 do j=1,NBINZ
146 bin(i,j)%list=>reallocate(bin(i,j)%list,nbin(i,j))
147 end do
148 end do

!--
! Assign triangles to cell lists for nearest neighbor search
!--

! cell lists only needed for boundary condition handling
149 if(BC .GT. 0) then
150 do i=1,M ! loop over all triangles
151 minbinx = NCELLX+1
152 maxbinx = 0
153 minbiny = NCELLY+1
154 maxbiny = 0
155 minbinz = NCELLZ+1
156 maxbinz = 0
157 x13 = triang(1:3,1,i)
158 a3 = triang(1:3,2,i)-x13
159 b3 = triang(1:3,3,i)-x13
160 n3 = normal(1:3,i)
161 det = -a3(3)*b3(2)*n3(1)+a3(2)*b3(3)*n3(1)+a3(3)*b3(1)*n3(2)- &

a3(1)*b3(3)*n3(2)-a3(2)*b3(1)*n3(3)+a3(1)*b3(2)*n3(3)
162 det = 1.0_MK/det
163 mat(1,1) = -b3(3)*n3(2)+b3(2)*n3(3)
164 mat(1,2) = b3(3)*n3(1)-b3(1)*n3(3)
165 mat(1,3) = -b3(2)*n3(1)+b3(1)*n3(2)
166 mat(2,1) = a3(3)*n3(2)-a3(2)*n3(3)
167 mat(2,2) = -a3(3)*n3(1)+a3(1)*n3(3)
168 mat(2,3) = a3(2)*n3(1)-a3(1)*n3(2)
169 mat(3,1) = -a3(3)*b3(2)+a3(2)*b3(3)
170 mat(3,2) = a3(3)*b3(1)-a3(1)*b3(3)
171 mat(3,3) = -a3(2)*b3(1)+a3(1)*b3(2)
172 do j=1,3 ! loop over all vertices

! determine index of cell of this vertex
173 idxx = ceiling((triang(1,j,i)-xmin)/dcx)
174 if(idxx .EQ. 0) idxx = 1 ! include boundaries at walls
175 if(idxx .EQ. NCELLX+1) idxx = NCELLX
176 idxy = ceiling((triang(2,j,i)-ymin)/dcy)
177 if(idxy .EQ. 0) idxy = 1 ! include boundaries at walls
178 if(idxy .EQ. NCELLY+1) idxy = NCELLY
179 idxz = ceiling((triang(3,j,i)-zmin)/dcz)
180 if(idxz .EQ. 0) idxz = 1 ! include boundaries at walls
181 if(idxz .EQ. NCELLZ+1) idxz = NCELLZ
182 if(.NOT. ASSOCIATED(cell(idxx,idxy,idxz)%list)) then
183 CALL AllocateLL(1,idxx,idxy,idxz,istat)
184 end if
185 NotIn = .FALSE.
186 if(ncell(idxx,idxy,idxz) .EQ. 0) then
187 NotIn = .TRUE.
188 elseif(cell(idxx,idxy,idxz)%list(ncell(idxx,idxy,idxz)) .NE. i) then
189 NotIn = .TRUE.
190 end if
191 if(NotIn) then
192 p = ncell(idxx,idxy,idxz)+1
193 ncell(idxx,idxy,idxz) = p

! enlarge this list if nedded
194 if(p .GT. size(cell(idxx,idxy,idxz)%list)) then
195 CALL AllocateLL(1,idxx,idxy,idxz,istat)
196 end if
197 cell(idxx,idxy,idxz)%list(p) = i

! update bounding box of cells
198 if(idxx .LT. minbinx) minbinx = idxx
199 if(idxx .GT. maxbinx) maxbinx = idxx
200 if(idxy .LT. minbiny) minbiny = idxy
201 if(idxy .GT. maxbiny) maxbiny = idxy
202 if(idxz .LT. minbinz) minbinz = idxz
203 if(idxz .GT. maxbinz) maxbinz = idxz
204 end if
205 end do

! loop over all cells in the bounding box of the vertices
206 do j=minbinx,maxbinx

186 APPENDIX C. THE SIMULATION CODES

207 bbl(1) = xmin+(j-1)*dcx ! lower x
208 bbu(1) = xmin+j*dcx ! upper x
209 do k=minbiny,maxbiny
210 bbl(2) = ymin+(k-1)*dcy ! lower y
211 bbu(2) = ymin+k*dcy ! upper y
212 do l=minbinz,maxbinz

! if no list for this cell is yet associated, create one
213 if(.NOT. ASSOCIATED(cell(j,k,l)%list)) then
214 CALL AllocateLL(1,j,k,l,istat)
215 end if
216 NotIn = .FALSE.

! if this triangle doesnt already belong to this cell, check it
217 if(ncell(j,k,l) .EQ. 0) then
218 NotIn = .TRUE.
219 elseif(cell(j,k,l)%list(ncell(j,k,l)) .NE. i) then
220 NotIn = .TRUE.
221 end if
222 if(NotIn) then
223 bbl(3) = zmin+(l-1)*dcz ! lower z
224 bbu(3) = zmin+l*dcz ! upper z
225 bbc(1:3) = 0.5*(bbl(1:3)+bbu(1:3)) ! voxels centroid
226 y13(1:3) = bbc(1:3)-x13(1:3)
227 alpha = det*(mat(1,1)*y13(1)+mat(1,2)*y13(2) + &

mat(1,3)*y13(3))
228 beta = det*(mat(2,1)*y13(1)+mat(2,2)*y13(2) + &

mat(2,3)*y13(3))
229 lambda = det*(mat(3,1)*y13(1)+mat(3,2)*y13(2) + &

mat(3,3)*y13(3))
! if intersection point is inside triangle

230 if((alpha .GE. 0.0_MK) .AND. (beta .GE. 0.0_MK) &
.AND. (alpha+beta .LE. 1.0_MK)) then

! point where normal through centroid intersects triangle
231 y13(1:3) = bbc(1:3)+lambda*n3(1:3)

! if this point is inside the cell, add triangle to cell
232 if((y13(1) .LT. bbu(1)) .AND. (y13(2) .LT. bbu(2)) .AND. &

(y13(3) .LT. bbu(3)) .AND. (y13(1) .GE. bbl(1)) .AND. &
(y13(2) .GE. bbl(2)) .AND. (y13(3) .GE. bbl(3))) then

233 p = ncell(j,k,l)+1
234 ncell(j,k,l) = p

! enlarge this list if nedded
235 if(p .GT. size(cell(j,k,l)%list)) then
236 CALL AllocateLL(1,j,k,l,istat)
237 end if
238 cell(j,k,l)%list(p) = i
239 end if
240 end if
241 end if
242 end do
243 end do
244 end do
245 end do

!---
! prune cell lists to actual size to save memory
!---

246 do i=1,NCELLX
247 do j=1,NCELLY
248 do k=1,NCELLZ
249 cell(i,j,k)%list=>reallocate(cell(i,j,k)%list,ncell(i,j,k))
250 end do
251 end do
252 end do
253 end if

254 END subroutine SortT

C.5.4.10 Allocate dynamic list memory (AllocateLL.f90)

AllocateLL is a helper routine for the handling of the bin and cell lists by SortT
and the main program. It implements the whole memory management for the
dynamic list data structures as described in section 7.2.6. The input argument
flag determines the action to be taken. If the routine is called with flag=0, the
initial memory allocation and general set-up of the lists is done. With flag=1, the
list associated with cell ix, iy, iz (or bin iy, iz if ix is zero) is enlarged by a

C.5. GEOMETRY PREPROCESSOR 187

certain number of elements defined by the parameter STEP. If called with flag=2,
all lists are deallocated and the memory is freed again. The variable info is a status
flag and contains 0 if everything was successful, 1 if an error occurred.

1 subroutine AllocateLL(flag, ix, iy, iz, info)

2 USE globals
3 USE Util

4 IMPLICIT NONE

!--
!ALLOCATELL allocates memory for triangle lists.
! AllocateLL allocates memory for the bin and cell lists. If called with
! flag=0, initial allocation is done. Calling with flag=1 results in
! enlargement of existing arrays. Calling with flag=2 deallocates all
! memory. info returns 0 if allocation was successful, 1 otherwise.
!
! See also INIT_PART, POINT_IN_DOMAIN, SORTT, UTIL
!
!==
! DIPLOMA THESIS WS01/02 ICOS ETH-ZUERICH
!--
!
! PROTEIN DIFFUSION INSIDE THE ENDOPLASMIC RETICULUM
!
!============================= ivo f. sbalzarini ==============================
!

! enlarge arrays by STEP entries everytime allocatell(1,ix,iy,iz,info) is called
5 INTEGER, PARAMETER :: STEP = 10

!--
! Declaration of input/output variables
!--

! flag: 0=initialize, 1=reallocate, 2=deallocate
6 INTEGER, INTENT(IN) :: flag

! info: 0=everything OK, 1=error occured
7 INTEGER, INTENT(OUT) :: info

! x,y,z indices of cell/bin to (re)allocate list for
8 INTEGER, INTENT(IN) :: ix, iy, iz

!--
! Declaration of local variables
!--

! loop counters
9 INTEGER :: i, j, k

! error status
10 INTEGER :: istat

! length of list
11 INTEGER :: llen

12 info = 0

!--
! flag=0: Initialize
!--

13 if(flag .EQ. 0) then

!---
! Bin lists for point_in_domain (contain all triangles inside bin)
!---

14 istat = 0
! allocate matrix to hold lengths of lists
! first index: biny, second index: binz

15 ALLOCATE(nbin(NBINY, NBINZ), STAT=istat)
16 if (istat .NE. 0) then
17 WRITE(*,’(2A)’) ’Unable to allocate memory for nbin.’
18 info = 1
19 return
20 end if
21 nbin(1:NBINY,1:NBINZ) = 0
22 istat = 0

! allocate array of pointers to lists

188 APPENDIX C. THE SIMULATION CODES

! first index: biny, second index: binz
23 ALLOCATE(bin(NBINY, NBINZ), STAT=istat)
24 if (istat .NE. 0) then
25 WRITE(*,’(2A)’) ’Unable to allocate memory for bin lists.’
26 info = 1
27 return
28 end if

! nullify all pointers (associate no lists at the beginning)
29 do i=1,NBINY
30 do j=1,NBINZ
31 nullify(bin(i,j)%list)
32 end do
33 end do

!---
! Cell lists for nearest tri. search (contain only triangles in in-sphere)
!---

! cell list for nearest triangle search is only needed if boundary
! condition handling is enabled

34 if(BC .GT. 0) then
! calculate number of cells in each direction based on cut-off radius

35 NCELLX = int((xmax-xmin)/rc)
36 NCELLY = int((ymax-ymin)/rc)
37 NCELLZ = int((zmax-zmin)/rc)
38 if(NCELLX .EQ. 0) NCELLX = 1 ! make at least one cell
39 if(NCELLX .EQ. 0) NCELLX = 1
40 if(NCELLX .EQ. 0) NCELLX = 1

! cell sizes
41 dcx = (xmax-xmin)/real(NCELLX)
42 dcy = (ymax-ymin)/real(NCELLY)
43 dcz = (zmax-zmin)/real(NCELLZ)

44 istat = 0
! allocate matrix to hold list lengths
! first index: cellx, second: celly, third: cellz

45 ALLOCATE(ncell(NCELLX,NCELLY,NCELLZ), STAT=istat)
46 if (istat .NE. 0) then
47 WRITE(*,’(2A)’) ’Unable to allocate memory for ncell.’
48 info = 1
49 return
50 end if
51 ncell(1:NCELLX,1:NCELLY,1:NCELLZ) = 0
52 istat = 0

! allocate array of pointers to lists
! first index: cellx, second: celly, third: cellz

53 ALLOCATE(cell(NCELLX,NCELLY,NCELLZ), STAT=istat)
54 if (istat .NE. 0) then
55 WRITE(*,’(2A)’) ’Unable to allocate memory for cell lists.’
56 info = 1
57 return
58 end if

! nullify all pointers in the beginning
59 do i=1,NCELLX
60 do j=1,NCELLY
61 do k=1,NCELLZ
62 nullify(cell(i,j,k)%list)
63 end do
64 end do
65 end do
66 end if

!--
! flag=1: Enlarge lists
!--

67 elseif(flag .EQ. 1) then
68 if(ix .EQ. 0) then

! no x index given: operation affects bin list only
69 istat = 0
70 if(ASSOCIATED(bin(iy,iz)%list)) then

! if list is already assigned, reallocate it
71 llen = size(bin(iy,iz)%list)
72 bin(iy,iz)%list=>reallocate(bin(iy,iz)%list,llen+STEP)
73 else

! if there is no list yet, allocate one
74 ALLOCATE(bin(iy,iz)%list(STEP), STAT=istat)
75 if(istat .NE. 0) then
76 WRITE(*,’(A,I5,A,I5,A)’) ’Error reallocating bin list &

(’,iy,’,’,iz,’)’

C.5. GEOMETRY PREPROCESSOR 189

77 info = 1
78 return
79 end if
80 end if
81 else

! x index given: operation affects cell list only
82 if(BC .GT. 0) then
83 istat = 0
84 if(ASSOCIATED(cell(ix,iy,iz)%list)) then
85 llen = size(cell(ix,iy,iz)%list)
86 cell(ix,iy,iz)%list=>reallocate(cell(ix,iy,iz)%list,llen+STEP)
87 else
88 ALLOCATE(cell(ix,iy,iz)%list(STEP), STAT=istat)
89 if(istat .NE. 0) then
90 WRITE(*,’(A,I5,A,I5,A,I5,A)’) ’Error reallocating cell &

list(’,ix,’,’,iy,’,’,iz,’)’
91 info = 1
92 return
93 end if
94 end if
95 end if
96 end if

!--
! flag=2: Deallocate all lists
!--

97 elseif(flag .EQ. 2) then
! bin lists: always

98 do i=1,NBINY
99 do j=1,NBINZ
100 if(ALLOCATED(bin(i,j)%list)) DEALLOCATE(bin(i,j)%list)
101 end do
102 end do
103 if(ALLOCATED(bin)) DEALLOCATE(bin)
104 if(ALLOCATED(nbin)) DEALLOCATE(nbin)

! cell lists: only if boundary condition handling is active
105 if(BC .GT. 0) then
106 do i=1,NCELLX
107 do j=1,NCELLY
108 do k=1,NCELLZ
109 if(ALLOCATED(cell(i,j,k)%list)) DEALLOCATE(cell(i,j,k)%list)
110 end do
111 end do
112 end do
113 if(ALLOCATED(cell)) DEALLOCATE(cell)
114 if(ALLOCATED(ncell)) DEALLOCATE(ncell)
115 end if
116 endif

117 return

118 END subroutine AllocateLL

C.5.4.11 Determine if point is in domain (point in domain.f90)

The next function determines whether the point given by its input argument p ∈ �3

is inside or outside the closed surface described by the triangulated set. If the point
is inside, the value 1 is returned, 0 if it is outside. If boundary condition handling
is switched on (i.e. the parameter boundarycondition in the input file is > 0), a
value of 2 is returned if the point is inside the domain and closer than cutoff to its
boundary. These are the points that need to be mirrored to the outside. In order
to be able to do so, the function in this case also returns the index of the closest
triangle in closest and the orthogonal distance of the point from this triangle in
lammin. Bin and cell lists are used to accelerate the regular triangle handling and
the search for the closest triangle, respectively.

If the parameter debug is set to .TRUE., a set of additional files is created every
time the function is invoked. The file bin.deb contains the edges of the current
bin to be visualized with gnuplot. The file tlist.deb contains the vertices of
all the triangles that belong to this bin, triang.deb contains the vertices of the

190 APPENDIX C. THE SIMULATION CODES

triangles that actually have been intersected by the line P + λ[1, 0, 0], points.deb
contains the coordinates of all the intersection points and coeff.deb contains the
distances from point P to all the intersection points with the triangles. All files can
be visualized using gnuplot and the sp command. Figure 7.3 has for example been
created this way.

1 function point_in_domain(p, lammin, closest)

2 USE globals

3 IMPLICIT NONE

!--
!POINT_IN_DOMAIN checks whether a point is inside the domain or not.
! if the point given by p(1:3) is inside the closed surface
! defined by triang(...), the function returns 1, otherwise
! 0. If the point is inside AND closer to the boundary than rc,
! the value 2 is returned. The return valiable lammin contains the
! orthogonal distance to the closest triangle and closest is its index.
! The latter two are only calculated if BC is not 0.
!
! See also INIT_PART, SORTT
!
!==
! DIPLOMA THESIS WS01/02 ICOS ETH-ZUERICH
!--
!
! PROTEIN DIFFUSION INSIDE THE ENDOPLASMIC RETICULUM
!
!============================= ivo f. sbalzarini ==============================
!

!--
! Declaration of external functions
!--

! intersects a triangle with a given line
4 REAL(MK), EXTERNAL :: intersect

!--
! Declaration of input and output variables
!--

! point in question
5 REAL(MK), DIMENSION(3), INTENT(IN) :: p

! return value
6 INTEGER :: point_in_domain

! distance to closest triangle
7 REAL(MK), INTENT(OUT) :: lammin

! index of closest triangle
8 INTEGER, INTENT(OUT) :: closest

!--
! Declaration of local variables
!--

! loop counter
9 INTEGER :: i, j, k, l, tri

! angles in spherical coordinates
10 REAL(MK) :: phi, theta

! edge vectors and direction
11 REAL(MK), DIMENSION(3) :: a, b

! system matrix
12 REAL(MK), DIMENSION(3,3) :: mat

! number of intersection points
13 INTEGER :: nip

! line parameter lambda
14 REAL(MK) :: lam

! x, y and z indices of current bin/cell
15 INTEGER :: idxx, idxy, idxz

! produce debuging output ?
16 LOGICAL :: debug

!--
! Follow x direction and intersect with all triangles
!--

C.5. GEOMETRY PREPROCESSOR 191

17 debug = .false.
!if(p(1) .gt. 400.0_MK .and. p(1) .lt. 402.0_MK .and. &
! p(2) .gt. 386.0_MK .and. p(2) .lt. 388.0_MK .and. &
! p(3) .gt. 5.0_MK .and. p(3) .lt. 5.5_MK) then
! debug = .true.
! print*,’point is: ’,p
!end if

18 nip = 0
19 mat(1,1) = 0.0
20 mat(2,1) = 0.0
21 idxy = ceiling((p(2)-ymin)/dby)
22 if(idxy .EQ. 0) idxy = 1 ! account for boundary points
23 if(idxy .EQ. NBINY+1) idxy = NBINY
24 idxz = ceiling((p(3)-zmin)/dbz)
25 if(idxz .EQ. 0) idxz = 1 ! account for boundary points
26 if(idxz .EQ. NBINZ+1) idxz = NBINZ
27 if(debug) then
28 print*,’bin indices: ’,idxy,idxz
29 print*,’nbin=’,nbin(idxy,idxz)
30 open(70,file=’bin.deb’,status=’replace’)
31 WRITE(70,*) xmin, ymin+(idxy-1)*dby, zmin+(idxz-1)*dbz
32 WRITE(70,*) xmin, ymin+(idxy)*dby, zmin+(idxz-1)*dbz
33 WRITE(70,*) xmin, ymin+(idxy)*dby, zmin+(idxz)*dbz
34 WRITE(70,*) xmin, ymin+(idxy-1)*dby, zmin+(idxz)*dbz
35 WRITE(70,*) xmin, ymin+(idxy-1)*dby, zmin+(idxz-1)*dbz
36 WRITE(70,’(A)’)
37 WRITE(70,’(A)’)
38 WRITE(70,*) xmax, ymin+(idxy-1)*dby, zmin+(idxz-1)*dbz
39 WRITE(70,*) xmax, ymin+(idxy)*dby, zmin+(idxz-1)*dbz
40 WRITE(70,*) xmax, ymin+(idxy)*dby, zmin+(idxz)*dbz
41 WRITE(70,*) xmax, ymin+(idxy-1)*dby, zmin+(idxz)*dbz
42 WRITE(70,*) xmax, ymin+(idxy-1)*dby, zmin+(idxz-1)*dbz
43 WRITE(70,’(A)’)
44 WRITE(70,’(A)’)
45 WRITE(70,*) xmin, ymin+(idxy-1)*dby, zmin+(idxz-1)*dbz
46 WRITE(70,*) xmax, ymin+(idxy-1)*dby, zmin+(idxz-1)*dbz
47 WRITE(70,’(A)’)
48 WRITE(70,’(A)’)
49 WRITE(70,*) xmin, ymin+(idxy)*dby, zmin+(idxz-1)*dbz
50 WRITE(70,*) xmax, ymin+(idxy)*dby, zmin+(idxz-1)*dbz
51 WRITE(70,’(A)’)
52 WRITE(70,’(A)’)
53 WRITE(70,*) xmin, ymin+(idxy)*dby, zmin+(idxz)*dbz
54 WRITE(70,*) xmax, ymin+(idxy)*dby, zmin+(idxz)*dbz
55 WRITE(70,’(A)’)
56 WRITE(70,’(A)’)
57 WRITE(70,*) xmin, ymin+(idxy-1)*dby, zmin+(idxz)*dbz
58 WRITE(70,*) xmax, ymin+(idxy-1)*dby, zmin+(idxz)*dbz
59 CLOSE(70)
60 end if

! intersect with all triangles in the same bin
61 do j=1,nbin(idxy,idxz)

! get index of next triangle
62 i = bin(idxy,idxz)%list(j)
63 if(debug) then
64 open(70,file=’tlist.deb’,position=’append’)
65 WRITE(70,*) triang(:,1,i)
66 WRITE(70,*) triang(:,2,i)
67 WRITE(70,*) triang(:,3,i)
68 WRITE(70,*) triang(:,1,i)
69 WRITE(70,’(A)’)
70 WRITE(70,’(A)’)
71 CLOSE(70)
72 end if

! edge vectors
73 a = triang(:,2,i)-triang(:,1,i)
74 b = triang(:,3,i)-triang(:,1,i)

! determinant of system matrix
75 phi = -a(3)*b(2)+a(2)*b(3) ! for v=(1,0,0)
76 if (abs(phi) .GE. TOL) then ! if intersection point exists
77 phi = 1.0/phi

! inverse of system matrix
78 mat(1,2) = phi*b(3)
79 mat(1,3) = -phi*b(2)
80 mat(2,2) = -phi*a(3)
81 mat(2,3) = phi*a(2)
82 mat(3,1) = phi*(-a(3)*b(2)+a(2)*b(3))
83 mat(3,2) = phi*(a(3)*b(1)-a(1)*b(3))

192 APPENDIX C. THE SIMULATION CODES

84 mat(3,3) = phi*(-a(2)*b(1)+a(1)*b(2))
! right hand side

85 a = p-triang(:,1,i)
! solution of 3x3 system

86 b = (mat(:,1)*a(1))+(mat(:,2)*a(2))+(mat(:,3)*a(3))
! intersect inside triangle ?

87 if ((b(1)+b(2) .LE. 1.0_MK) .AND. (b(1) .GE. 0.0_MK) &
.AND. (b(2) .GE. TOL) .AND. (b(3) .GE. TOL)) then

88 if(debug) then
89 print*,’intersected triangle ’,i
90 OPEN(70,file=’triang.deb’,position=’append’)
91 WRITE(70,*) triang(:,1,i)
92 WRITE(70,*) triang(:,2,i)
93 WRITE(70,*) triang(:,3,i)
94 WRITE(70,*) triang(:,1,i)
95 WRITE(70,’(A)’)
96 WRITE(70,’(A)’)
97 CLOSE(70)
98 open(70,file=’points.deb’,position=’append’)
99 write(70,*) triang(:,1,i)+b(1)*(triang(:,2,i)-triang(:,1,i)) &

+b(2)*(triang(:,3,i)-triang(:,1,i))
100 close(70)
101 open(70,file=’coeff.deb’,position=’append’)
102 write(70,*) b
103 close(70)
104 end if
105 nip=nip+1
106 end if
107 end if
108 end do

!--
! Odd or even number of intersections ?
!--

109 if(mod(nip,2) .EQ. 0.0) then
110 point_in_domain = 0
111 else
112 point_in_domain = 1
113 end if
114 if(debug) print*,’point_in_domain=’,point_in_domain

!--
! For the points inside: check if they are close to the boundary
! and find the nearest triangle as well as the distance to it
!--

115 if(BC .GT. 0) then ! only do this if needed for the B.C.
116 if(point_in_domain .EQ. 1) then
117 lammin = HUGE(lam)
118 closest = 0

! determine indices of cell we are in
119 idxx = ceiling((p(1)-xmin)/dcx)
120 if(idxx .EQ. 0) idxx = 1 ! account for boundary points
121 if(idxx .EQ. NCELLX+1) idxx = NCELLX
122 idxy = ceiling((p(2)-ymin)/dcy)
123 if(idxy .EQ. 0) idxy = 1 ! account for boundary points
124 if(idxy .EQ. NCELLY+1) idxy = NCELLY
125 idxz = ceiling((p(3)-zmin)/dcz)
126 if(idxz .EQ. 0) idxz = 1 ! account for boundary points
127 if(idxz .EQ. NCELLZ+1) idxz = NCELLZ

! loop over all triangles in this cell and its nearest neighbors
128 do i=idxx-1,idxx+1
129 do j=idxy-1,idxy+1
130 do k=idxz-1,idxz+1

! if this is a valid cell ...
131 if((i .GT. 0 .AND. j .GT. 0 .AND. k .GT. 0) .AND. &

(i .LE. NCELLX .AND. j .LE. NCELLY .AND. k .LE. NCELLZ)) then
! ... loop over all triangles in this cell

132 do l=1,ncell(i,j,k)
! get nextr triangle from the cell list

133 tri = cell(i,j,k)%list(l)
! intersect normal through point with triangle

134 lam = intersect(p, normal(1:3,tri), tri)
135 if(lam .GE. 0) then ! if intersection pt. exists
136 if(lam .LE. lammin) then

! if this is closer than anything before
137 lammin = lam
138 closest = tri ! => update data
139 end if

C.5. GEOMETRY PREPROCESSOR 193

140 end if
141 end do

! if point is closer to surface than rc, set return
! value to 2. NOTE: normal(:,:) are unit vectors

142 if(lammin .LE. rc) point_in_domain = 2
143 end if
144 end do
145 end do
146 end do
147 end if
148 end if

149 return

150 end function point_in_domain

C.5.4.12 Create voxel representation (Voxelize.f90)

This routine converts the triangulated surface to a voxel representation according
to algorithm 5.1. The geometry is covered by voxels of extension vx×vy×vz. resx,
resy and resz are output variables containing the actual number of voxels that
have been generated in each spatial direction. info finally is a status flag which
contains 0 on success, 1 otherwise. The binary voxel representation where all the
voxels that are intersected by the surface triangulation are set to 1, all others to
zero is contained in the global array INTEGER voxel(resx,resy,resz) (see section
C.5.4.1) after the call to this routine.

1 subroutine Voxelize(vx,vy,vz,resx,resy,resz,info)

2 USE globals

3 IMPLICIT NONE

!--
!Voxelize converts the surface to a 3D voxel representation.
! VOXELIZE finds a voxel representation of the surface
! using voxels of size vx*vy*vz. The representation is contained in
! the global binary 3D array voxel (int). resx, resy, resz return the
! actual number of voxels used in it. info returns 0 on success, else 1
!
! See also INIT_PART, BCDIM
!
!==
! DIPLOMA THESIS WS01/02 ICOS ETH-ZUERICH
!--
!
! PROTEIN DIFFUSION INSIDE THE ENDOPLASMIC RETICULUM
!
!============================= ivo f. sbalzarini ==============================
!

!--
! Declaration of input/output variables
!--

! desired voxel size (in x, y, z)
4 REAL(MK), INTENT(INOUT) :: vx, vy, vz

! number of voxels in x,y,z
5 INTEGER, INTENT(OUT) :: resx, resy, resz

! error varaible
6 INTEGER, INTENT(OUT) :: info

!--
! Declaration of local variables
!--

! loop counters
7 INTEGER :: i, j, k, l, ix1, ix2, ix3

! minimum/maximum voxel indices in x,y,z of a given triangle
8 INTEGER :: ixmin, ixmax, iymin, iymax
9 INTEGER :: izmin, izmax

! indices of voxel
10 INTEGER :: ixx, ixy, ixz

194 APPENDIX C. THE SIMULATION CODES

! vertex one of triangle, right hand side of eqs
11 REAL(MK), DIMENSION(3) :: x1, y1

! triangle edge vectors and normal
12 REAL(MK), DIMENSION(3) :: a, b, no

! lower and upper boundaries of voxel and its centroid
13 REAL(MK), DIMENSION(3) :: bbl, bbu, bbc

! error trap
14 INTEGER :: istat

! system matrix
15 REAL(MK), DIMENSION(3,3) :: mat

! determinant
16 REAL(MK) :: det

! system solution
17 REAL(MK) :: alpha, beta, lambda

!--
! Initialize
!--

18 info = 0
19 resx = ceiling((xmax-xmin)/vx)
20 resy = ceiling((ymax-ymin)/vy)
21 resz = ceiling((zmax-zmin)/vz)
22 if(resx .EQ. 0) resx = 1
23 if(resy .EQ. 0) resy = 1
24 if(resz .EQ. 0) resz = 1
25 istat = 0

! initialize array
26 if(ALLOCATED(voxel)) DEALLOCATE(voxel)
27 ALLOCATE(voxel(resx,resy,resz), STAT=istat)
28 if(istat .NE. 0) then
29 WRITE(*,’(A)’) ’Error in Voxelize: cannot allocate voxel array’
30 info = 1
31 return
32 end if
33 voxel(1:resx,1:resy,1:resz) = 0
34 vx = (xmax-xmin)/real(resx)
35 vy = (ymax-ymin)/real(resy)
36 vz = (zmax-zmin)/real(resz)

!--
! Discretize geometry onto voxels
!--

37 do i=1,M ! loop over all triangles
38 ixmin = resx+1 ! reset bounding box indices
39 ixmax = 0
40 iymin = resy+1
41 iymax = 0
42 izmin = resz+1
43 izmax = 0
44 x1 = triang(1:3,1,i) ! vertex one of this triangle
45 a = triang(1:3,2,i)-x1 ! edge vectors
46 b = triang(1:3,3,i)-x1
47 no = normal(1:3,i) ! triangles normal
48 det = -a(3)*b(2)*no(1)+a(2)*b(3)*no(1)+a(3)*b(1)*no(2)- &

a(1)*b(3)*no(2)-a(2)*b(1)*no(3)+a(1)*b(2)*no(3)
49 det = 1.0_MK/det
50 mat(1,1) = -b(3)*no(2)+b(2)*no(3) ! system matrix (see notes)
51 mat(1,2) = b(3)*no(1)-b(1)*no(3)
52 mat(1,3) = -b(2)*no(1)+b(1)*no(2)
53 mat(2,1) = a(3)*no(2)-a(2)*no(3)
54 mat(2,2) = -a(3)*no(1)+a(1)*no(3)
55 mat(2,3) = a(2)*no(1)-a(1)*no(2)
56 mat(3,1) = -a(3)*b(2)+a(2)*b(3)
57 mat(3,2) = a(3)*b(1)-a(1)*b(3)
58 mat(3,3) = -a(2)*b(1)+a(1)*b(2)
59 do j=1,3 ! loop over all vertices

! determine index of voxel of this vertex
60 ixx = ceiling((triang(1,j,i)-xmin)/vx)
61 if(ixx .EQ. 0) ixx = 1 ! include boundaries at walls
62 if(ixx .EQ. resx+1) ixx = resx
63 ixy = ceiling((triang(2,j,i)-ymin)/vy)
64 if(ixy .EQ. 0) ixy = 1 ! include boundaries at walls
65 if(ixy .EQ. resy+1) ixy = resy
66 ixz = ceiling((triang(3,j,i)-zmin)/vz)
67 if(ixz .EQ. 0) ixz = 1 ! include boundaries at walls
68 if(ixz .EQ. resz+1) ixz = resz

! set this voxel to one
69 voxel(ixx,ixy,ixz) = 1

C.5. GEOMETRY PREPROCESSOR 195

! update bounding box of voxels
70 if(ixx .LT. ixmin) ixmin = ixx
71 if(ixx .GT. ixmax) ixmax = ixx
72 if(ixy .LT. iymin) iymin = ixy
73 if(ixy .GT. iymax) iymax = ixy
74 if(ixz .LT. izmin) izmin = ixz
75 if(ixz .GT. izmax) izmax = ixz
76 end do

! loop over all voxels in the bounding box of the vertices
77 do j=ixmin,ixmax
78 bbl(1) = xmin+(j-1)*vx ! lower x
79 bbu(1) = xmin+j*vx ! upper x
80 do k=iymin,iymax
81 bbl(2) = ymin+(k-1)*vy ! lower y
82 bbu(2) = ymin+k*vy ! upper y
83 do l=izmin,izmax
84 bbl(3) = zmin+(l-1)*vz ! lower z
85 bbu(3) = zmin+l*vz ! upper z
86 bbc(1:3) = 0.5*(bbl(1:3)+bbu(1:3)) ! voxels centroid
87 y1(1:3) = bbc(1:3)-x1(1:3)
88 alpha = det*(mat(1,1)*y1(1)+mat(1,2)*y1(2) + &

mat(1,3)*y1(3))
89 beta = det*(mat(2,1)*y1(1)+mat(2,2)*y1(2) + &

mat(2,3)*y1(3))
90 lambda = det*(mat(3,1)*y1(1)+mat(3,2)*y1(2) + &

mat(3,3)*y1(3))
91 y1(1:3) = bbc(1:3)+lambda*no(1:3)

! if centroid is over triangle and intersection point
! with triangle is inside voxel, set it to one

92 if ((alpha .GE. 0.0_MK) .AND. (beta .GE. 0.0_MK) &
.AND. (alpha+beta .LE. 1.0)) then

93 if(y1(1) .GE. bbl(1) .AND. y1(1) .LE. bbu(1) .AND. &
y1(2) .GE. bbl(2) .AND. y1(2) .LE. bbu(2) .AND. &
y1(3) .GE. bbl(3) .AND. y1(3) .LE. bbu(3)) voxel(j,k,l) = 1

94 end if
95 end do
96 end do
97 end do
98 end do

99 END subroutine Voxelize

C.5.4.13 Determine box counting dimension (BCdim.f90)

BCdim calculates the box counting dimension of the geometry according to algorithm
5.2. The geometry is first converted to a voxel representation of initial voxel size
vx0×vy0×vz0 using the previous routine. The input parameter thresh contains
the threshold value for the binarization step as described in section 5.2. info is a
status flag that contains 0 if the function returns without errors and 1 otherwise.
The return value of the function BCdim is the least squares estimation of the box
counting dimension.

1 function BCdim(vx0, vy0, vz0, thresh, info)

2 USE globals

3 IMPLICIT NONE

!--
!BCdim Calculates the box counting dimension of a triangulated shape.
! BCDIM first translates the triangulated surface to a voxel
! representation with voxels of size vx0*vy0*vz0 and then performs successive
! resolution lowering. Voxels with a value lower than thresh are removed
! after the low-pass filter. The box counting dimension is estimated as a
! linear least-squares fit trough all the measurement points.
! info returns 0 on success, else 1.
!
! See also INIT_PART, VOXELIZE
!
!==
! DIPLOMA THESIS WS01/02 ICOS ETH-ZUERICH
!--
!
! PROTEIN DIFFUSION INSIDE THE ENDOPLASMIC RETICULUM

196 APPENDIX C. THE SIMULATION CODES

!
!============================= ivo f. sbalzarini ==============================
!

! Factor by which the box size is increased every reduction step
4 REAL(MK), PARAMETER :: fact = 2.0_MK

!--
! Declaration of input/output variables
!--

! box counting dimension
5 REAL(MK) :: BCdim

! initial voxel size
6 REAL(MK), INTENT(IN) :: vx0, vy0, vz0

! threshold for voxel values
7 REAL(MK), INTENT(IN) :: thresh

! error varaible
8 INTEGER, INTENT(OUT) :: info

!--
! Declaration of local variables
!--

! loop counters
9 INTEGER :: redstep, i, j, k, isx, isy, isz

! index of current voxel
10 INTEGER :: idx, idy, idz

! indices of voxel in reduced data set
11 INTEGER :: ired, jred, kred

! number of voxels in x,y,z
12 INTEGER :: nvx, nvy, nvz, npix, nones

! new number of voxels after reduction step
13 INTEGER :: nvxred, nvyred, nvzred

! number of reduction steps to perform
14 INTEGER :: nred

! error trap
15 INTEGER :: istat

! Array to hold the voxel counts after each reduction step and its log
16 INTEGER, DIMENSION(:), ALLOCATABLE :: Nvox
17 REAL(MK), DIMENSION(:), ALLOCATABLE :: logN

! array to hold the box size of each step
18 REAL(MK), DIMENSION(:), ALLOCATABLE :: s

! accumulated voxel values for low-pass average and their total number
19 REAL(MK) :: val
20 INTEGER :: nval

! temporary voxel array for resolution reduction
21 INTEGER, DIMENSION(:,:,:), ALLOCATABLE :: voxtmp

! sum of all reduction steps and sum of their squares
22 REAL(MK) :: sumi, sumi2

! determinant and its inverse
23 REAL(MK) :: det, detinv

! slope and y-axis intersect of linear fit
24 REAL(MK) :: a, b
25 LOGICAL, DIMENSION(:,:,:), ALLOCATABLE :: flag

! voxel size at current reduction step
26 REAL(MK) :: vx, vy, vz

!--
! Initialize and allocate memory
!--

27 if(thresh .GT. 1.0_MK .OR. thresh .LT. 0.0_MK) then
28 WRITE(*,’(A)’) ’Threshold for BCdim must be between 0 and 1’
29 info = 1
30 return
31 end if

32 info = 0
33 BCdim = 0.0_MK
34 vx = vx0
35 vy = vy0
36 vz = vz0

! convert surface to voxel representation
37 CALL Voxelize(vx0,vy0,vz0,nvx,nvy,nvz,info)
38 if(info .NE. 0) then
39 WRITE(*,’(A)’) ’Error in Voxelize called from BCdim.’
40 return
41 end if

! reduce until the smallest dimension contains less than 16 voxels

C.5. GEOMETRY PREPROCESSOR 197

42 nred = ceiling(log(real(minval((/nvx,nvy,nvz/)))/16.0_MK)/log(fact))

43 istat = 0
44 ALLOCATE(Nvox(nred+1), s(nred+1), logN(nred+1), STAT=istat)
45 if(istat .NE. 0) then
46 WRITE(*,’(A)’) ’Error allocating memory for Nvox in BCdim’
47 info = 1
48 return
49 end if

!--
! Box counting algorithm by successive reduction of resolution
!--

50 do redstep=1,nred
51 ALLOCATE(flag(nvx,nvy,nvz))
52 flag = .FALSE.

! outline voxel set: only keep outer layer of voxels
53 do i=1,nvx ! loop over all voxels
54 do j=1,nvy
55 do k=1,nvz
56 if(voxel(i,j,k) .NE. 0) then ! if a voxel is 1, count

! the number of its
57 npix = 0 ! neighbors that are 1 too
58 nones = 0
59 do isx=-1,1
60 idx = i+isx
61 do isy=-1,1
62 idy = j+isy
63 do isz=-1,1
64 idz = k+isz
65 if((idx .GT. 0 .AND. idx .LE. nvx) .AND. &

(idy .GT. 0 .AND. idy .LE. nvy) .AND. &
(idz .GT. 0 .AND. idz .LE. nvz)) then

! if inside array: check it
66 npix = npix + 1
67 if(voxel(idx,idy,idz) .EQ. 1) nones=nones+1
68 end if
69 end do
70 end do
71 end do

! if all its neighbors are one, mark it for deletion
! since it is not a border voxel

72 if(nones .EQ. npix) flag(i,j,k) = .TRUE.
73 end if
74 end do
75 end do
76 end do

! delete all interior voxels
77 where(flag) voxel=0
78 DEALLOCATE(flag)

79 Nvox(redstep) = sum(voxel)
80 s(redstep) = vx
81 vx = fact*vx
82 vy = fact*vy
83 vz = fact*vz

84 WRITE(*,’(A,I2,A,I2,A,I7)’) ’BCdim: reduction step ’,redstep,’ of &
’,nred,’. voxels: ’,Nvox(redstep)

! new voxel numbers after reduction step
85 nvxred = ceiling((1.0_MK/fact)*real(nvx))
86 nvyred = ceiling((1.0_MK/fact)*real(nvy))
87 nvzred = ceiling((1.0_MK/fact)*real(nvz))

! memory for reduced voxel array
88 ALLOCATE(voxtmp(nvxred,nvyred,nvzred), STAT=istat)
89 if(istat .NE. 0) then
90 WRITE(*,’(A)’) ’Error allocating temporary voxel array in BCdim’
91 info = 1
92 return
93 end if

! low-pass filtering: repalce each pixel by the average of its neighbors
94 ired = 0
95 jred = 0
96 kred = 0

! loop over every second voxel
97 do i=1,nvx,2
98 do j=1,nvy,2
99 do k=1,nvz,2

! reset mean values

198 APPENDIX C. THE SIMULATION CODES

100 val = 0.0_MK
101 nval = 0

! loop over its neighbors
102 do isx=-1,1
103 idx = i+isx
104 do isy=-1,1
105 idy = j+isy
106 do isz=-1,1
107 idz = k+isz
108 if((idx .GT. 0 .AND. idx .LE. nvx) .AND. &

(idy .GT. 0 .AND. idy .LE. nvy) .AND. &
(idz .GT. 0 .AND. idz .LE. nvz)) then
! if inside array: update sliding mean

109 val = val+real(voxel(idx,idy,idz))
110 nval = nval + 1
111 end if
112 end do
113 end do
114 end do

! mean of surrounding voxel values
115 if(nval .GT. 0) val = val/real(nval)

! set corresponding voxel in reduced data set to one if mean
! is larger than threshold, else zero

116 ired = ceiling((1.0_MK/fact)*i)
117 jred = ceiling((1.0_MK/fact)*j)
118 kred = ceiling((1.0_MK/fact)*k)
119 voxtmp(ired,jred,kred) = 1
120 if(val .LT. thresh) voxtmp(ired,jred,kred) = 0
121 end do
122 end do
123 end do

! resize voxel array to reduced sizes
124 DEALLOCATE(voxel, STAT=istat)
125 if(istat .NE. 0) then
126 WRITE(*,’(A)’) ’Error deallocating voxel array in BCdim’
127 info = 1
128 return
129 end if
130 ALLOCATE(voxel(nvxred,nvyred,nvzred), STAT=istat)
131 if(istat .NE. 0) then
132 WRITE(*,’(A)’) ’Error reallocating voxel array in BCdim’
133 info = 1
134 return
135 end if

! assign new voxel values
136 voxel = voxtmp
137 nvx = nvxred
138 nvy = nvyred
139 nvz = nvzred

! deallocate temporary voxel array
140 DEALLOCATE(voxtmp, STAT=istat)
141 if(istat .NE. 0) then
142 WRITE(*,’(A)’) ’Error deallocating temporary voxel array in BCdim’
143 info = 1
144 return
145 end if
146 end do

! also get last data point
147 Nvox(nred+1) = sum(voxel)
148 s(nred+1) = vx

!--
! Logarithms of results and output to file
!--

149 do i=1,nred+1
150 s(i) = log(1.0_MK/s(i))
151 logN(i) = log(real(Nvox(i)))
152 end do

153 OPEN(60, FILE=’BC.gnu’, STATUS=’REPLACE’, ACTION=’WRITE’)
154 do i=1,nred+1
155 WRITE(60,*) s(i), logN(i)
156 end do
157 CLOSE(60)

!--
! Least squares fit to estimate the dimension (slope)
!--

C.5. GEOMETRY PREPROCESSOR 199

158 sumi = sum(s)
159 sumi2 = sum(s(:)**2)
160 det = sumi2*(nred+1.0_MK)-sumi*sumi
161 detinv = 1.0_MK/det
162 a = 0.0_MK
163 b = 0.0_MK
164 do i=0,nred
165 a = a + ((nred+1.0_MK)*s(i+1)-sumi)*logN(i+1)
166 b = b + (sumi2-s(i+1)*sumi)*logN(i+1)
167 end do
168 a = detinv*a
169 b = detinv*b

170 WRITE(*,’(A,F8.5,A,F8.5)’) ’Box counting results: a = ’,a,’, b = ’,b
! the slope is the box counting dimension

171 BCdim = a

!--
! Write gnuplot macro (invoke using: gnuplot plotit.mac)
!--

172 OPEN(60, FILE=’plotit.mac’, STATUS=’REPLACE’, ACTION=’WRITE’)
173 WRITE(60,*) ’set key top left’
174 WRITE(60,’(A,F9.6,A,F9.6,A)’) ’p ’’BC.gnu’’ w p, ’,a,’*x+’,b,’ w l’
175 WRITE(60,*) ’pause -1’
176 CLOSE(60)

!--
! free memory and terminate
!--

177 DEALLOCATE(Nvox)
178 DEALLOCATE(s)
179 DEALLOCATE(logN)
180 if(ALLOCATED(voxel)) DEALLOCATE(voxel)

181 return

182 END function BCdim

C.5.4.14 Convert text to upper case (UpperCase.f90)

UpperCase.f90 takes the two input arguments, string and ilen, and converts the
character string string of length ilen to all upper case letters. The result is again
contained in the variable string.

1 subroutine UpperCase(string,ilen)

2 IMPLICIT NONE

!--
!UpperCase Converts a string to all upper case characters.
! UPPERCASE takes the string "string" of length ilen and converts
! every character of it to upper case.
!
! See also ReadParams
!
! todo:
!
!==
! DIPLOMA THESIS WS01/02 ICOS ETH-ZUERICH
!--
!
! PROTEIN DIFFUSION INSIDE THE ENDOPLASMIC RETICULUM
!
!============================= ivo f. sbalzarini ==============================
!

!--
! Input/Output arguments
!--

! the string to be converted
3 CHARACTER(LEN=*), INTENT(INOUT) :: string

! length of the string

200 APPENDIX C. THE SIMULATION CODES

4 INTEGER, INTENT(IN) :: ilen

!--
! Declaration of local variables
!--

! loop counter
5 INTEGER :: i, j

! alphabet boundaries and shift lower->upper
6 INTEGER :: i1,i2,i3,iadd

!--
! uppercase
!--

! determine alphabet boundaries
7 i1 = IACHAR(’a’) - 1
8 i2 = IACHAR(’z’) + 1
9 i3 = IACHAR(’A’)

! shift to upper case
10 iadd = i3 - i1 - 1

! shift all lower case characters to upper case
11 do i=1,ilen
12 j = IACHAR(string(i:i))
13 if (j.GT.i1.AND.j.LT.i2) then
14 string(i:i) = CHAR(j+iadd)
15 end if
16 end do

!--
! return
!--

17 9999 CONTINUE
18 return

19 END subroutine UpperCase

C.5.4.15 Dynamic list structure handling (Util.f90)

Util.f90 contains an overloaded set of dynamic list reallocation functions as de-
scribed in section 7.2.6 and [Numerical Recipes in Fortran 90 (1996)]. Currently,
the function is overloaded for real vectors (reallocate rv), real matrices (re-
allocate rm), integer vectors (reallocate iv), integer matrices (reallocate im)
and character vectors (reallocate hv). However, only the one for integer vectors
is used in this work.

1 module Util

2 USE globals

3 IMPLICIT NONE

!--
!Util contains common utility functions.
! UTIL currently only implements an overloaded dynamic array
! reallocation function
!
!
! See also INIT_PART, SORTT
!
! todo:
!
!==
! DIPLOMA THESIS WS01/02 ICOS ETH-ZUERICH
!--
!
! PROTEIN DIFFUSION INSIDE THE ENDOPLASMIC RETICULUM
!
!============================= ivo f. sbalzarini ==============================
!

!--
! Interface declaration of contained functions

C.5. GEOMETRY PREPROCESSOR 201

!--

4 INTERFACE reallocate
5 MODULE PROCEDURE reallocate_rv,reallocate_rm,reallocate_iv, &

reallocate_im,reallocate_hv
6 END INTERFACE

7 CONTAINS

!--
! Reallocate a pointer to a new size preserving its previous contents
!--

! for real vectors
8 function reallocate_rv(p,n)
9 REAL(MK), DIMENSION(:), POINTER :: p, reallocate_rv
10 INTEGER(I4B), INTENT(IN) :: n
11 INTEGER(I4B) :: nold, ierr

12 ALLOCATE(reallocate_rv(n), STAT=ierr)
13 if(ierr .NE. 0) then
14 WRITE(*,’(A)’) ’Error allocating memory in reallocate_rv’
15 return
16 end if
17 if(.NOT. ASSOCIATED(p)) return
18 nold = size(p)
19 reallocate_rv(1:min(nold,n))=p(1:min(nold,n))
20 DEALLOCATE(p)
21 END function reallocate_rv

! for integer vectors
22 function reallocate_iv(p,n)
23 INTEGER(I4B), DIMENSION(:), POINTER :: p, reallocate_iv
24 INTEGER(I4B), INTENT(IN) :: n
25 INTEGER(I4B) :: nold, ierr

26 ALLOCATE(reallocate_iv(n), STAT=ierr)
27 if(ierr .NE. 0) then
28 WRITE(*,’(A)’) ’Error allocating memory in reallocate_iv’
29 return
30 end if
31 if(.NOT. ASSOCIATED(p)) return
32 nold = size(p)
33 reallocate_iv(1:min(nold,n))=p(1:min(nold,n))
34 DEALLOCATE(p)
35 END function reallocate_iv

! for character vectors
36 function reallocate_hv(p,n)
37 CHARACTER(1), DIMENSION(:), POINTER :: p, reallocate_hv
38 INTEGER(I4B), INTENT(IN) :: n
39 INTEGER(I4B) :: nold, ierr

40 ALLOCATE(reallocate_hv(n), STAT=ierr)
41 if(ierr .NE. 0) then
42 WRITE(*,’(A)’) ’Error allocating memory in reallocate_hv’
43 return
44 end if
45 if(.NOT. ASSOCIATED(p)) return
46 nold = size(p)
47 reallocate_hv(1:min(nold,n))=p(1:min(nold,n))
48 DEALLOCATE(p)
49 END function reallocate_hv

! for real matrices
50 function reallocate_rm(p,n,m)
51 REAL(MK), DIMENSION(:,:), POINTER :: p, reallocate_rm
52 INTEGER(I4B), INTENT(IN) :: n, m
53 INTEGER(I4B) :: nold, mold, ierr

54 ALLOCATE(reallocate_rm(n,m), STAT=ierr)
55 if(ierr .NE. 0) then
56 WRITE(*,’(A)’) ’Error allocating memory in reallocate_rm’
57 return
58 end if
59 if(.NOT. ASSOCIATED(p)) return
60 nold = size(p,1)
61 mold = size(p,2)
62 reallocate_rm(1:min(nold,n),1:min(mold,m))=p(1:min(nold,n),1:min(mold,m))
63 DEALLOCATE(p)

202 APPENDIX C. THE SIMULATION CODES

64 END function reallocate_rm

! for integer matrices
65 function reallocate_im(p,n,m)
66 INTEGER(I4B), DIMENSION(:,:), POINTER :: p, reallocate_im
67 INTEGER(I4B), INTENT(IN) :: n, m
68 INTEGER(I4B) :: nold, mold, ierr

69 ALLOCATE(reallocate_im(n,m), STAT=ierr)
70 if(ierr .NE. 0) then
71 WRITE(*,’(A)’) ’Error allocating memory in reallocate_im’
72 return
73 end if
74 if(.NOT. ASSOCIATED(p)) return
75 nold = size(p,1)
76 mold = size(p,2)
77 reallocate_im(1:min(nold,n),1:min(mold,m))=p(1:min(nold,n),1:min(mold,m))
78 DEALLOCATE(p)
79 END function reallocate_im

80 END module Util

