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Abstract

Diffusion processes constitute a key mechanism for tramspdoiological cells.
Nutrition, organization, growth, and signal transduciionells are largely determ-
ined by diffusion mechanisms. The complex three-dimeraishapes of intracel-
lular structures and the confinement of certain moleculesdmbranes however
complicate the experimental analysis and computatiomaiilsition of diffusion
in live cells. This thesis is concerned with the developrard implementation
of computational methods to analyze, model, and simuldfesitin processes in
realistic cell environments.

In cell biology, mobile particles such as molecules, iorssises, or viruses
diffuse within the confines of the cell geometries. Two cemesconsidered: in-
dividually tracked particles, and their mean collectivetimmm. The former case
entails single particle tracking methods to directly fallthe motion of individual
particles. We present an accurate and computationallyiesffiatnage processing
algorithm to determine trajectories of moving particlemfrdigital videos. These
trajectories are then analyzed with respect to their mqtimperties. We extend
existing analysis methods to cases of anomalous diffusidnshow that both the
speed and the confinement of the motion can be quantified émdiemntly.

Automated trajectory analysis enables high throughpestahinimizes human
bias, and increases reproducibility. We therefore devalwg apply methods for
automatic trajectory classification, detection of motiaiterns within trajector-
ies, and adaptive data encoding to maximize classificatesfopnance. The de-
veloped computational tools are used in two studies of vitaton on the plasma
membrane of live cells.

Analysis and simulation of the collective motion of abundparticles is based
on continuum theory, which yields a model equation for thelion of the res-
ulting concentration field. Solving this governing equatis challenging for real-
istically complex cell geometries. We present particle mds to handle these
complex geometries, and extend them to computations afgiliffh on curved and
moving surfaces.

The capability of numerically simulating diffusion both épaces and on sur-
faces of complex shape allows to investigate the accuraftyarescence recovery

experiments. We present for the first time the measurememtobdcular diffu-
sion constants in the endoplasmic reticulum of live cellsabyng into account the
complex geometry of the organelle.

All methods are implemented on the basis of a newly develspédare library
for hybrid particle-mesh simulations on parallel compsitd@rhe library is presen-
ted in this thesis and its parallel efficiency and scalgbdite demonstrated on a
range of test cases.



Zusammenfassung

Diffusion ist einer der wichtigsten Transportmechanisnireiiologischen Zel-
len. Erréhrung, Organisation, Wachstum und Sigtmermittlung in Zellen sind
weitgehend von Diffusionsprozessen bestimmt. Die kongglie dreidimensiona-
le Form vieler innerzell@rer Strukturen, sowie die Bindung einzelner Maikek
an Membranen, erschweren jedoch die experimentelle Amalypsl numerische
Simulation von Diffusionsprozessen in lebenden Zellere @rliegende Disser-
tation befasst sich mit der Entwicklung und dem Einsatz \exhnergesitzten
Verfahren zur Analyse, Modellierung und Simulation vonfllsfonsprozessen in
realen Zellen.

Diffusion in der Zellbiologie ist verbunden mit der Beweguvon Teilchen wie
z.B. Molekillen, lonen, Vesikeln oder Viren. Wir unterscheiden zwigié= die in-
dividuelle Bewegung einzelner Teilchen, und die kolle&t®ewegung einer gros-
sen Anzahl von Teilchen. Im ersteren Fall benutzen wir \feda, die es uns er-
lauben den Bahnkurven einzelner Teilchen zu folgen undediesanalysieren.
Wir prasentieren ein effizientes und genaues Bildverarbeitentgwen, um die
Bahnkurven der Teilchen aus digitalen Videoaufzeichnargeextrahieren. Die-
se Bahnkurven werden dann lighich ihrer Bewegungseigenschaften untersucht.
Wir erweitern dabei existierende Analysemethoden aliieFanomaler Diffusion
und zeigen, dass hiermit sowohl die Schnelligkeit als aueh-ceiheit der Bewe-
gung unabhngig quantifiziert werdendannen.

Eine durch@ngig automatisierte Analyse edglicht hohen Datendurchsatz, re-
duziert menschgemachte Verzerrungen in den Daten urithiedie Wiederhol-
barkeit. Wir entwickeln daher Methoden zur automatischéasgifizierung von
Bahnkurven, zur Identifikation von bestimmten Bewegungsetn, sowie zur ad-
aptiven Darstellung der Dateiifmaximale Klassifikationsge. Die entwickelten
Verfahren werden in zwei Studidiber die Bewegungen von Viren auf der Zell-
membran verwendet.

Die Analyse und Simulation der kollektiven Bewegung einsysgen Anzahl
von Teilchen basiert auf der Kontinuumstheorie, welche &flodellgleichung dir
die Evolution des resultierenden Konzentrationsfeldeteit. Das lbsen dieser
Gleichung in realistisch komplexen Zellgeometrien ist euisth herausfordernd.

vi

Wir prasentieren Partikelmethodsir Diffusionssimulationen in komplexen Geo-
metrien, und erweitern diese auf den Fall der Diffusion acti §ewegenden ge-
krimmten Oberichen.

Die Fahigkeit zur numerischen Simulation von Diffusionspraassin Riumen
sowie auf Oberichen von komplexer Gestalt ebglicht es uns, die Genauigkeit
von experimentellen Methoden der Fluoreszenzmikroskepiantersuchen. Wir
prasentieren die erste Messung einer molekularen Diffuk@mrstanten im endo-
plasmatischen Retikulum lebender Zellen unter explizBericksichtigung der
Geometrie der Organelle.

Samtliche Simulationsprogramme wurden auf der Basis eieer entwickel-
ten Softwarebibliothekifr Partikel-Gitter-Simulationen auf Parallelrechnern im
plementiert. Diese Bibliothek wird in der vorliegenden &gtation beschrieben,
und ihre Effizienz und Skalierbarkeit werden anhand mehrggstfalle demon-
striert.
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Introduction

With the availability of increasingly more quantitativepeximental methods in
biology and the life sciences, both the complexity of thetesys and the amount
of data produced are increasing. Over the past years the fogsi shifted from

considering isolated subsystems or individual chemicattiens to investigating
the cell-wide interplay of processes and the internal degdion of cells. Methods
such as fluorescence microscopy, confocal microscopyialritdernal reflection

microscopy are becoming standard tools to investigatadettular transport phe-
nomena. The prevalent lack of predictive theories as wethas/ast amount of
data available from these apparatuses make data analgsisfarence from data
one of the core challenges in the creation of knowledge.

A large number of cellular processes depend on the diffusiamacromolecules
and substances of small molecular weight, such as metabalitd ions. Mechan-
isms such as convective flow and active transport do playeaimoke.g., vesicular
transport or microtubule-dependent trafficking. Diffustwowever constitutes the
dominant mechanism for transport in important cell funasisuch as nutrition, or-
ganization, and signal transduction. The presence ofriatenembranes usually
restricts diffusion to specific organelles or domains witttie cell [8].

Computational tools are needed to analyze the data, exiedtgrns and fea-
tures, or store and retrieve them. In diffusion analysi® $tandard methods are
widely used: single particle tracking and fluorescencevegoafter photobleach-
ing. Single particle tracking starts by recording videoshef motion of individual
labeled particles. This technique can be applied to spasteras, where the in-
dividual particles can be distinguished, and is coveredairt Fof this thesis. Part
Il discusses the case where the collective motion of abungarticles is con-
sidered using continuum models. We focus on the case whemthplex-shaped
internal structures of the cell complicate the analysisl where the absence of
suitable models has long hampered fluorescence recovehodset This thesis
reviews and extends computational methods to simulatéercamh diffusion pro-
cesses both in complex-bounded domains and on complexdcswéaces.

The thesis is structured as follows:

XVII CHAPTER 0. INTRODUCTION

Chapter 1. Automated Trajectory Acquisition by Video Analysis

We consider the problem of reconstructing the trajectooiemoving particles
from a digital video recording of their motion. This so-eallfeature point track-
ing is a crucial step in diffusion analysis of sparse systasisdetermines the data
throughput as well as the accuracy and the statistical fgignce of the results.
Most of the existing feature point tracking algorithms malke of a-priori know-
ledge about the type of motion, such as, e.g., the trajectorgothness. Other
existing programs are computationally very expensive @dre lot of memory,
thus preventing the processing of large amounts of longogd®&lany landmark
studies in biology have therefore used manual or semiautortracking meth-
ods. Can we construct an automatic feature point tracking pragedhat is at
the same time accurate and computationally efficieAffer presenting the sug-
gested solution in Section 1.2, we test our claims of acguamtl efficiency in
various benchmark cases in Section 1.3. We find that the mrefgorithm is at
least as accurate and robust against image noise than theréésusly available
solutions, while being significantly faster.

Chapter 2. Trajectory Analysis

In Chapter 2 we consider a number of data analysis methodsafectories. This
starts from global methods that perform certain averagipgrations along the
whole trajectory. After reviewing the classical mean squdisplacement analysis
method, we illustrate its limitations in analyzing anomeaaiffusion processes.
Is there a global statistical analysis method that can beldeeall types of motion
and allows accurate classificationf Subsection 2.1.2 we propose the moment
scaling spectrum, originally introduced by Ferratral. [101], as a new, key meas-
ure for motion analysis.

Due to their averaging nature, global analysis methods arsuited to detect
changes in the motion pattern within a single trajectory. ilé/h certain level
of time resolution can be achieved by applying the analyss imoving window
frame (Section 2.2), such analyses suffer from an inheradetoff between resol-
ution and accuracy as shorter and shorter trajectory peeeanalyzed at smaller
window widths.

As we might for example be interested in analyzing resideinces of particles
that are temporarily stationary, trajectories are fretjyesecomposed into pre-
defined segments. Such trajectory decomposition or segiim@ants usually done
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by hand, thus biasing the analysis result by the experimenthoices and de-
cisions. In analogy to the automated feature point trackifieying many advant-
ages over manual tracking, we ask the questidan this biasing limitation be
overcome by automatically decomposing the trajectory pmeadefined segments?
This would not only eliminate the bias, but also enable ladgta sets and better
reproducibility of the results. In Section 2.3 we proposeathud to automatically
detect and isolate certain patterns in trajectories. Thsgnted trajectory seg-
mentation technique is based on a neural network that isetiadn demonstration
samples before it is used on the actual data set.
Using the so-identified trajectory components enablemnt-based analyses

described in Section 2.4. We present three different cogrdand normalization
strategies for intra-trajectory events, and explain themgitwo example events.

Chapter 3. Trajectory Classification

In Chapter 3, bias-free high-throughput analysis is ex@dnid whole trajector-
ies. This is complicated by the fact that trajectories dtutst dynamic data,
viz. ordered time series of position vectors. Data encodingeeded to exploit
the temporal information and to reduce the dimensionalithe data. Moreover,
trajectories exhibit multiple invariances with regard tarislation, rotation, and
symmetry, as rigid-body rotations or translations of aecigyry leave the motion
patterns unchanged.

We fist introduce the problem of automatic classificationavhplete trajectories
and survey the most frequently used computational (madbaraing) techniques
for automatic classification. Using a non-trivial data genf biology, we ask:
Which of the methods are suited for trajectory classificatmd how does their
performance compare to human classificatigk&®a basis for our comparisons we
introduce a measure to quantify the intrinsic separatigrabgity of a classifier,
machine or human. Human classification is done both by doeaerts such as
the experimenters themselves, and laypersons.

We find that the classification success critically dependsamthe trajectories
are represented in the computer. Using all the points thatitate the trajectory
would lead to a very high-dimensional classification probleequiring tremend-
ous amounts of training data in order to achieve acceptattoimance. Data
compression and dimensionality reduction are thus mangatmcepts. Buhow
can we systematically find a good/optimal data represemtaith a given number
of dimensions?n Section 3.2 we present a framework consisting of an aaljlist
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encoder and an optimizer forming a closed loop with the diassThe optimizer
continuously adapts the encoder such as to maximize thsifactasion perform-
ance. We test the influence of different classification gperfmce measures and
optimizer parameters on the outcome. The proposed algoighbenchmarked
on both synthetic and experimental trajectories, and traditgjuof the result is
compared to human-found data encodings.

Chapter 4. Applications and Results

In Chapter 4, the feature point tracking, trajectory analyasnd trajectory classi-
fication methods presented thus far are applied to variocaislgms of biological
interest. While the case studies in Section 4.1 demonstrateapabilities of the
tracking algorithm, Sections 4.2 and 4.3 relate to collabee research projects
with two groups in biology. Both projects are concerned wihité analysis of the
motion of virus particles on the outside of the plasma memdu live cells prior

to internalization. Understanding these first steps ofl uif@ction yields import-
antinformation about the uptake pathways that lead into thé, @dout the in-
ternal organization of the plasma membrane, and about thielae machinery
involved in virus uptakeThe first project considers Polyomavirus and was carried
out in close collaboration with the group of Prof. Helenitghe second project
makes use of the automatic segmentation and classificatotmigues described
earlier to investigate the role of the secondary receptohénuptake pathway of
human Adenovirus. This project was done in close collalmmatith Prof. Gre-
ber at the University of drich and it exemplifies the statistical potential of large
unbiased data sets.

Chapter 5. Particle Methods to Simulate Diffusion in Comple
Geometries and on Curved Surfaces

Computationally solving the diffusion equation in realloggéometries is com-
plicated by several factors. Resolving the complex gedesetequires adaptive
schemes and, in parallel simulations, adaptive domainrdpositions. The com-
putational efficiency of grid-based methods is drasticediguced when discret-
izing complex geometries, because the resulting lineaghaiic systems fail to
have the favorable structure associated with simpler ga@seresulting in fuller

systems whose solution often scales with the square or éeecube of the num-
ber of computational elements. Moreover, the generatioolmist computational
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meshes in complex geometries remains a non-trivial tagpitiethe availability
of several automatic procedures.

In this thesis we exploit the properties of mesh-free plrtioethods to simu-
late diffusion in complex cell geometries. A large numbepafblems in physics
and engineering is most naturally described by particles,atoms in molecular
dynamics simulations, charged particles in plasma phygiesitational particles
in astrophysics, or fluid elements in smooth particle hygnasnics and vortex
methods. Particle methods are not limited to their evideetin discrete systems,
but can also be employed to simulate continuum systems.biyletemputational
particles are used to discretize the continuous functignsméans of weights as-
signed to the particles. In continuum particle methodsptmticles remain intim-
ately linked to the physics they represent, as the goveraduation is solved by
appropriately evolving the locations and properties ofghagicles [160].

In Chapter 5 we summarize the fundamental concepts of aantinparticle
methods and proceed by reviewing existing particle metfmd$se solution of the
diffusion equation in space. Motivated by the biologicaportance of membrane-
bound molecules we then askiow can we construct a particle method to solve
the diffusion equation on complex curved surfacéstPinsic diffusion on mani-
folds has recently received considerable attention in agerpgraphics. In Sec-
tion 5.3 we adopt a technique developed for video inpaintamgl formulate it in
the particle framework. Convergence and accuracy of thénodeare assessed
in test cases before it is extended to the solution of readaiffusion problems
on moving and deforming surfaces in Section 5.4. Reprasgithmplex-shaped
surfaces at fixed resolution requires a large number of gbesti rendering the
method expensive. By means of the adaptive global mappaimigue by Berg-
dorf et al.[27], we thus use multi-resolution particles, viz., pdg&whose size is
locally adapted to the geometry that is to be resolved (Se&i4).

Chapter 6. Simulations of Diffusion in Organelles of Live Cdis

The method of fluorescence recovery after photobleachirfigeégiently used in
biological experiments to observe the diffusive transmdra molecule. In this
method, the molecule of interest is fluorescently taggedexpdessed in the cell.
Using intense laser light, a well-defined portion of the églbleached by irre-
versibly destroying the fluorophore. Influx of non-bleachedlecules into the
bleached region is recorded in a digital video. From suchagtne wishes to infer
the molecular diffusion constant of the molecule, as fadiféusion would lead to
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faster fluorescence recovery. This analysis is however Goated if the space in
which the fluorescent molecules are confined does not coetyfdt the bleached

volume, i.e. if the bleached region is larger than the gedm&tructures within the

cell, thus bleaching across domain boundaries. Moreokernticroscope video
only shows a two-dimensional slice or projection of the ¢hdémensional cellular
structures. Present methods to derive molecular diffusmwstants from fluor-

escence recovery videos neglect these geometrical effé¢tsmt are the errors

made by neglecting the spatial organization of the cell iorscence recovery
experimentsAnd can we correct for them?

In Chapter 6 we consider diffusive fluorescence recovenh@Endoplasmic
Reticulum (ER). The ER is a very complex-shaped organekeld, generally de-
picted as a convoluted network of connected tubular andllansgtructures. These
structures are much smaller than the size of the bleachéthragd we expect that
the complexity of the boundary shape has an influence on theredd recovery
dynamics. To investigate these influences, we reconstrage¢ometry of real ER
samples from microscope image data (Section 6.2). In Se6tidthe complexity
of the shapes is quantified using the concept of fractal déwes. This leads to
the conclusion that the observed diffusion behavior agpgaalitatively altered.

In Section 6.4 we describe the standard experimental tqabnised in fluor-
escence recovery assays and review currently used anaigsisls to determine
diffusion constants from such measurements. The fractaing&y analysis al-
lows us to derive a model that explains the data much betéer pinevious ones.
Using the simulation techniques described in Chapter 5 wea tuantify the
geometry-induced uncertainty in these classical analypsithods and propose a
novel, geometry-safe method in Section 6.5. The presentttiad enables us
to determine corrected molecular diffusion constants fflumrescence recovery
data in complex geometries, and to assess existing ansdygsisiques.

Chapter 7. PPM— A Software Framework for Parallel Particle-
Mesh Simulations

Particle methods formally amount to @h-body problem with a computational
cost that potentially increases with the square of the nuwiggarticles. Although
several strategies exist to reduce the computational castale linearly with the
number of particles, their wide-spread use is prohibitegdweral complications in
the parallel implementation of such methods. For grid-dasethods a number of
flexible software libraries exists. These libraries prevédstandard set of common
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functions and greatly simplify the development of paradli@hulation codes. To
our knowledge, no such library or framework existed for ig@tmethods.

Why don'’t we develop oneParticle methods also share a common set of op-
erations and data structures, and a large number of apptisah many fields of
science and technology would benefit from an easy-to-useefrark to develop
robust and efficient computer simulations using particlehmgs. In Chapter 7
we describe a novel parallel particle mesh libramym, that was developed in the
group of Prof. Koumoutsakos in order to enable flexible amidraode develop-
ment for particle methods and hybrid particle-mesh methafter presenting the
fundamental concepts and functions of the library, we desirate its parallel ef-
ficiency and computational performance on a number of tedilems. This was
a collaborative effort of five members of our group and manyusation programs
using theppmlibrary have been written by other people.
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Sparse Systems: Single
Particle Analysis



Overview

In this part of the thesis we consider motion analysis in spaystems. Such
systems are characterized by the property that the motieadi particle can be
followed individually. An efficient and accurate computeial method to track
particles in video recordings is described in Chapter 1hw#tails about the al-
gorithm as well as benchmark results presented in Secti@éharid 1.3, respect-
ively. Chapter 2 describes methods for analyzing the resmbtrhjectories. Start-
ing from global (whole-trajectory) analysis methods, thealution is gradually
refined using moving window and segmentation techniquesptehn 3 considers
the problem of automatic classification of trajectoriesigsnethods from machine
learning. In Section 3.1 the performance of different dfassdion algorithms is
assessed on a biological data set, and compared to therparfoe of human clas-
sification. In order to apply machine learning techniqules,ttajectory data need
to be encoded. To find good data representations for clagsific we introduce a
self-optimizing encoding strategy in Section 3.2. In Cleagt all methods presen-
ted in this part are applied to problems of biological inser&he main application
considers the motion of virus particles on the plasma mengbaoé live cells prior
to internalization. The examples demonstrate how the upanticle tracking and
trajectory analysis can lead to biologically significanbclosions.

Single particle tracking in cell biology

Motion analysis on the single-particle scale starts froetthjectories of the mov-
ing objects. Atrajectoryis hereby defined as the “trace of positions followed by
an object moving through spacde’Before such trajectories can be analyzed, they
often need to be reconstructed from video recordings oféhbmoving objects.
This (automatedfeature point trackingtep crucially determines the accuracy and
the scope of the whole process. Feature point tracking stsnsf detecting the
images of the particles in the digital video sequence, ardrg those detections
over time in order to follow the individual traces. The restncted trajectories

Isource: www.wikipedia.org

can then be used to extract information about the behavithieoparticles, their
interactions, and their environment (cf. Chapters 2 and 3).

Besides biology, SPT has numerous applications in manysfigldcience and
technology such as fluid mechanics (e.g. particle imagitgrimetry and particle
tracking velocimetry [316]), computer vision (e.g. roadldaing [196], human
limb tracking [165]), navigation (e.g. vehicle navigatif#87]), and material sci-
ence (e.g. colloids [68]).

With increasing spatial and temporal resolution of the o8copy equipment,
and with the wide-spread availability of techniques sucmagticolor video mi-
croscopy androtal Internal Reflection Fluorescen¢&IRF, cf. Chapter 4) mi-
croscopy [287]Single Particle TrackindSPT) is becoming indispensable in cell
biology. The gquantitative analysis of the resulting trégeies provides important
information about working mechanisms and structures imdicells [76]. SPT
has been used first for descriptive studies of plasma mermahranein and lipid
diffusion [329, 12, 110, 136, 106], and subsequently to esElmore complex is-
sues of molecular transport [88, 235, 319, 100, 70]. Using BMas become
possible to analyze cell motility [267], determine diffosicoefficients of single
molecules [116], or measure the step displacements of malemotors such as
kinesin [108]. Descriptions and overviews of the employegjettory analysis
methods are available in the review by Saxton and Jacobg@j.[2

Video microscopy of fluorescently labeled virus particlesving on cell mem-
branes and into internal organelles led to the pioneeringlysof Pelkmans
et al.[212, 213]. Using frames from videos, they visualized andiyred many
of the key steps in the early pathway of the caveolar entr$\640into live cells
[212]. This analysis was performed by tracking the indigbparticles by hand,
a procedure that becomes impossible when one needs to atlg/multitude of
trajectories available by today’s fast video techniques.



Chapter 1

Automated Trajectory Acquisition by Video Analysis

In biology, a nhumber of specialized, often applicationesfie, algorithms and
computer programs for single particle tracking is ava#ald5, 53, 298]. Most
of them make use of a-priori knowledge about the physicseptioblem in order
to construct effective and robust feature point trackingcpdures. Real applica-
tions however often involve the tracking of objects whogeetgf motion may not
be known explicitly in advance. In these cases the trackisg is hindered by the
absence of a suitable mathematical model, by the possitidéasitic character of
the motion, or by trajectories containing several modesation (e.g. smooth and
non-smooth parts). While some of the existing feature poadking algorithms
are very accurate, they are also computationally intenkéhaprohibits tracking
of long video sequences as often encountered in biologpgaications.

After defining the terminology of SPT in Section 1.1, we presefeature point
tracking algorithm that was particularly developed for laggiions in cell biology
(Section 1.2). The presented algorithm is fast and efficiehile attaining ac-
curacy and precision that are comparable to far more coripogdly intensive
algorithms (cf. Section 1.3). It is robust against imagimgse and intermittent
detection of particles, making it suitable for tracking ofig§ videos of mobile
objects such as viruses on the plasma membrane, fast dimactton such as traf-
ficking along microtubules, and particles with strong isignfluctuations such as
guantum dots (cf. Section 4.1). The presented algorithrapalsle of processing a
video of several thousand frames within a few seconds omadatd desktop com-
puter. The algorithm relies on a minimum set of assumptiowsraduced prior
knowledge of the physical process, making it applicableaoking problems with
no a-priori information about the type of motion. Finallgetalgorithm uses only
few user-defined parameters, thus providing ease of useseTerameters are:
the particle radiusv, the intensity percentile, the cutoff scorel; for the non-
particle discrimination (see Subsection 1.2.1), the maxmiink length L, and
the number of future frameB for the linker. All parameters have a direct phys-
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ical meaning and can easily be determined by inspection efvafifames of the
movie. Moreover, the graphical user interface describekhipendix A.3 provides
additional guidance and support for determining parametieres.

1.1 Definitions and problem statement

Before describing the tracking algorithm and its applimatio biological video
sequences, we formally state the problem of feature painking and define the
terms that are used throughout this chapter.

Consider physicaparticlesthat are mobile in a two-dimensional plane. Their
motion isobservedusing imaging equipment and a digital (CCD) camera which
generates a sequence of digital images at discrete timéspditle call this se-
guence anovieand an individual image from itfiame In each frame the images
of the particles are visible dgature pointgor pointg. The goal is to approx-
imately reconstruct the motion of the observed particles. e&particlep, such a
reconstruction consists of an ordered series of pointies{x}, = («!, )},
over the recording time points= 1, ..., T of the individual frames, and is called
a (discrete)}rajectory. To generate the trajectories, tfeature point trackingal-
gorithm has to perform two distinct steps: first it haslétectthe feature points in
every frame and then it hasliok these point detections into trajectories. If a point
is detected where there is none, we call fakse detection The term“spurious
detection” on the other hand refers to a correctly detected point whene twas
no particle of the desired kind in the real scene. Finalhkilig two points that
are not images of the same physical particle is calléase link If a trajectory
does not extend throughout the whole movie it is calleéhaomplete trajectory
The following sections describe and test an algorithmféature point tracking
which is a sub-problem dfingle particle trackingand does not include treatment
and analysis of the physical system under observation oetty@oyed imaging
equipment.

1.2 Feature point tracking algorithm

The automated reconstruction of trajectories from digitdéos is developed un-
der the assumptions of small feature points (compared tletiggh scale of back-
ground variations), limited speed, and short occlusiomg gresented algorithm is
self-initializing and capable of handling occlusion, eaitd entry. Itis in the same
functional class as th&AN trackerintroduced by Chetverikov and Verésgt[55],
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except that the present work makes no assumptions aboutthetisness of the
trajectories. We present the algorithm in its two-dimenaldorm. It however also
applies to tracking in three dimensions, provided threeedisional video data are
available. The only adaptation that needs to be made is tpagton vectors with
three components instead of two.

1.2.1 Feature point detection

The algorithm is initialized by determining the globahinimum I, and max-
imum Imax Of all intensity values occurring in the movie. All pixel erisity values
I are then normalized ad — Imin)/(Imax — Imin). The use of global extrema
preserves intensity variations across frames, serving asgortant source of in-
formation in the linking step. The feature point detectiongists of four steps:

1. Image restoration

2. Estimation of the point locations
3. Refinement of the point locations
4. Non-particle discrimination

The implemented algorithm has as a starting point the woRrdaogker and Grier
[68] for the detection of colloidal spheres in micrograpius.the following, the
normalized frame image at observation tirrie represented as a matti’ (z, )
of floating point intensity values between 0 and 1. The integ®rdinater =
1 N, is the pixel row index ang = 1, ..., N, the pixel column index.

geeey

The image restoration step corrects for imperfections in the frame images.

There are two different effects accounted for: (1) long-@exmgth modulations of
the background intensity due to non-uniform sensitivityoaig the camera pixels
or uneven illumination, and (2) discretization noise frdm tigital camera. The
former is straightforward to correct for since we assumeféfagure points to be
small compared to background variations and thus well sépdrin spatial fre-
quency. The background is removed bp@xcar averageover a square region
with extent of2w + 1 pixel:

Al (z,y) = o +12 Z Z Atz +iy+7), (1.1)

t=—w j=—w

1i.e. across all the frames of the movie rather than withirndeame individually
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where the user-defined parameieis an integer larger than a single point’s appar-
ent radius but smaller than the smallest inter-point s¢joaral he camerdiscret-
ization noisé is modeled as homogeneously Gaussian with a correlatigtHeni

M\, = 1 pixel. Thede-noising filtethus consists of a convolution of the imagé
with a Gaussian surface of revolution of half width [68]:

Al ( AY( it 1.2
Z,Z,w;w wrrvter () 42
with normalization
w 2
B= Z exp (— (22/(4/\3)))] . (1.3)

Both Eqg. (1.1) and Eqg. (1.2) amount to convolving the imageh Wwernels of
support2w + 1. The steps are thus combined and the final image restoration
consists of a convolution of the original frame image with Kernel

1 ( i2 +j2> 1
exp | — -
B\ T Qu+1)°

The normalization constant

2
- i2 B
2 (‘m)] Gy 9

i=—w

K(i,j) = 1.4)

Ko

1

KO:E

allows comparison among images filtered with different galofw. The filtered
image after restoration is given by:

w w

Al(z,y)= Y Y Alw—iy—)K(,)). (1.6)

t=—w j=—w

To perform above convolution, the image is temporarily mattb size(V, +
2w) x (N, + 2w) by repeating the first and last row and columsfold outward

“Digital (CCD) cameras generaghot pixel noiseduring the process of photoelectron counting.
Due to its discrete counting nature, this is a Poisson psof233]. The parametex in the Poisson
probability density function is equal to the expected nundfeletected photoelectrod$. For N > 9
the Poisson distribution is well approximated by a Gausdiatribution (with errors< 1 %), and the
discrete photon counts can be interpreted as continuoeissiiies.
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each. Negative pixel values generated by the convolutiemeset to 0. They are
an artifact of the approximation of the camera noise by a &aodistribution,
which breaks down at small intensity levels.

Estimating the feature point locationsis done by finding local intensity max-
ima in the filtered imageﬁl’}. A pixel is taken as the approximate location of a
point if no other pixel within a distance af is brighter, and if its intensity is in the
upperr percentile of the frame’s intensity distribution. Timtensity percentiles
are determined on a per-frame basis in order to be robustgtgaissible global
drift in image intensity over time, e.g. due to unspecificalsleing of the observed
particles. Thedocal maximum selectiois implemented as grayscale dilation
[146] followed by the selection of all pixels that have thensavalue before and
after the dilation. If such a pixel is in the uppef percentile of intensity values,
it is taken as the candidate location of a point. The perkeeatiterion is needed
to prevent the algorithm from selecting background pixglat have low intensity
both before and after the dilation.

The local maximum selection of point centers suffers frora teficiencies: (1)
it is unable to reject noise, which leads to errors in thetiocaestimate, and (2) it
may include spurious detections such as random bright painthe background
of the image or images of particle aggregates. This neegéssiboth a refinement
of the detected locations and a subsequent non-partideardigation.

Refinement of the point locationgeduces the standard deviation of the position
measurement. Other information gathered in the proces$uctrermore be re-
used later to reject spurious detections. We assume thé&duhd local maximum
of a pointp at (&,, §,) is near the true geometric center,,y,) of the particle.
An approximation of the offset is given by the distance tolilightness-weighted
centroid in the filtered (to reduce noise-induced positigrérrors) imageﬁl} [68]:

[i283] :vnip>ﬁ;;%w2[§}-A?@a-%uyp+j>. (1.7)

The normalization factoim (p) is the sum of all pixel values over the feature point
p, i.e. itsintensity moment of order. 0

mo(p) = Y A%(Ep+i9p+7). (1.8)
i2+j2<w2

The location estimate is refined a&t,, §,) = (Zp + €2(p), Up + €4(p)). If
either|e,(p)| or |e,(p)] is larger than 0.5 pixel, the candidate locatidn, g,) is
accordingly moved by 1 pixel and the refinement re-calcdlate
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Thenon-particle discrimination rejects spurious detections such as unspecific
signals, dust, or particle aggregates. The implementeskifileation algorithm
after Crocker and Grier [68] is based on the intensity mosehbrders 0 and 2.
The 0™ order moment of each poipthas already been calculated in the previous
step. Thesecond order intensity momeatcomputed as:

map) = —— S (2 +7%) AL+ i+ ). (1.9)

i2+j2 ng

The underlying assumption is that the majority of the detabservations cor-
responds to correct particles such that they form a densgeclin the(mg, ms)-
plane. Larger and dimmer or brighter structures such aseggtgs or accumula-
tions have different intensity moments and fall outsidehef inain cluster. Such
outliers are identified by having each pojntcarry” a 2D Gaussian

1 p ( (mo —mo(p))®  (ma — mQ(p))2> (1.10)

——ex
2wogoo N; 200 209

P,(mo, mg) =

with standard deviations, andos, and N, the total number of detected points.
The contributions of all other pointg # p are summed for each poiptat its
location, giving ascore

Sp =Y Py (mo(p), ma(p)) - (1.11)
q#p

Every point detection having a scofg above a certain user-provided threshold
T, is considered an observation of a “true” particle, all osheme discarded.
Notice that the standard deviationg and o, define the length scale of the
clustering and can be chosen such as to normalize the clugtdrs. Let I
be the maximum intensity in the movidy,ax = 1 if the images are normal-
ized as described earlier. We then have the bounds my < Imaaw? and
0 < my < Imaxrw®/2, which can be used to estimate valuesdgrando,. In
our experience, a value of abolitl I,omw? seems to be a fair choice. Fig. 1.1
illustrates the non-particle discrimination clusterirpbed to a confocal image
of fluorescently labeled Polyomavirus particles iRBK2 cell(Helenius group).
The image shows a confocal slice through the cell and thustenobservations
of virus particles both on the plasma membrane and in theantef the cell. The
clustering is used to discard virus particles packed tageathendocytic organelles,
allowing analysis of individual free particles.
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Figure 1.1: Left panel: Example of the non-particle disanation clustering in the
(mo, m2)-plane. Each symbol represents one detected feature poire.clustering with
oo = o2 = 0.1, andTs = 2.0 (images normalized tdmnax = 1) classifies the points
marked by a plus symbol as “true” particles. Points outsithe tluster are marked by
circles and are classified as spurious detections. RighepaBonfocal image of fluores-
cently labeled Polyomavirus particles in a PTK2 cell (Hélengroup; image intensity is
inverted for printing purposes). The confocal slice consaboth extracellular and intracel-
lular regions. Some internalized virus particles are pati@gether in endocytic organelles
that appear as larger fluorescent structures and are to béueec from the trajectory link-
ing. The result of the clustering shown in the left panel lissirated with plus symbols
marking “true” particles. Inset shows enlargement as iratied.
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1.2.2 Trajectory linking

The feature point detection algorithm is applied to eacinéamageA’ and yields
a set ofT (total number of frames in the movie) matric€$ € R™V+*2 with rows
[Zp, gjp]ﬁf:fl, wherelN, is the total number of points detected in frame

The linking algorithm identifies points corresponding te tsame physical
particle in subsequent frames and links the positip6$}7._, into trajectories.
This involves finding a set odissociationdetween thepoint location matrices
{C"}L_, such that a cost functional is minimized. The present impletation is
based on a particle matching algorithm [71, 72, 73] usingaplgtheory technique
[135] to determine optimal associations between two sétis dlgorithm is exten-
ded so that each linking step may consider several framesctwuat for particle
occlusion.

Let P the set of pointp;, i = 1,..., N, in framet and R a user-defined integer
parameter specifying how many future frames are to be ceresid For all sets
Q,,r=1,...,R, of pointsg;, j = 1,..., Neyr, in framet + r anassociation

matrix G. is defined:

1 if p; in framet andg; in
o framet + r are produced by
G.(i,]) = gij = the same physical particle, (1.12)
0 otherwise.

We assume that there is always exactly one physical pagrcéucing a single
point detection. Note that this is a limiting assumptioncsirparticles could in
principle coalesce or come so close that they are indishgble by the used
imaging equipment, giving rise to one single point obséovat

In order to allow the number of points to vary between framesN; # Ny,
every association matrix is augmented with both a ggywand a columry;, for
dummy particlesit timest andt + r, respectively. Linking a point to the dummy
means that the corresponding particle disappeared froroliberved part of the
scene between frameésandt + r, and linking the dummy to a point means that
the corresponding particle newly appeared. This leadsedatowing topology
constrainton the matrice&'.:

Constraint 1 Every rowi > 0 of G!. and every columgi > 0 of G*. must contain
exactly one entry of value 1, all others are zero. Only row @ anlumn O are
allowed to contain more than one entry of value 1.
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To find an optimal set of linkgg;, }, we need to define theost functionalto
be minimized. In order to be able to use the efficient soluitgorithm based
on the transportation problem [135, 72], this functionatdaeto be linear in the
association variableg; and may thus be written as theear combination

N¢ Niyr

o = Z Z GijGij » (1.13)

i=0 ;=0

whereg;; represents thelementary cosvf associating poinp; in framet with
pointg; in framet + r. The definition ofp typically involves the point positions,
point characteristics, or, if available, temporal and isppanowledge about the
physics of the process. For the above functional to be ljngdiself must not
depend on the association variabjes In our case, we use the quadratic distance
betweenp;, ¢ > 0, andg;, j > 0, as well as the quadratic differences in the
intensity moments of order 0 and 2, thus:

ij = (Tp, — Tq;) "+ (Fps — Ga;) A (mo(p:) — mo(az))”+(ma(pi) — ma(gy))?
(1.14)

for i,5 > 0. The cost of linking a point to one of the dummy particles=
0orj = 0is set equal to:po; = (rL)? j > 0, andg;o = (rL)?, i > 0.
This effectively places a limit to the allowed cost for poagsociations, since
no association of cost larger th&nL)? can occur between regular points as the
dummy association would be more favorable. The specialafds&king a dummy
to a dummy, i.ei = j = 0, is of no concern and is arbitrarily set¢g, = 0. The
parametet. is specified by the user and represents the maximum distgpaiata
is allowed to travel between two subsequent frames, giweimiénsity moments
remain constant. To accelerate the linking process, alsdags; : ¢;; > (rL)?}
are set taxo and the corresponding; is never considered in the following.
Initialization. The linking process starts by creating an arbitrary set sbeis
ations{g;, } which satisfies the topology constraint. Any valid asséaiamatrix
G is acceptable since the linear naturebognsures that the minimum of the cost
function is unique [72]. Clever choice of the initial assdmns can however sig-
nificantly reduce the number of iterations needed in the esnt optimization
process. The initial set of links is thus determined as ¥adlo For each pair of
frames(t,r), r = 1,..., R, the association matri&". is initialized by assigning
each pointin frameits nearest neighbor, usirgas the distance measure, in frame
t + r that is not already assigned to some other point. This mdetddr every
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giveni = I, j = J is chosen such that; ; is the minimum of ally;; for which
no othery; ; is already set to one. Thig s is then set to one. If no such minimum
is found, the point is linked to the dummy;, igy is set to one. After having done
this for all the pointg;, everyJ for which all g; ; are 0 is determined and the cor-
respondingo; are set to 1. This initialization generates a magik that fulfills
the topology constraint. For low point densities this aigolution is already very
close to optimal since only few conflicts occur, viz. the asastion that would have
had the lowest elementary cost was already blocked by anotige To cope with
regions of high point density, the association matrix isiteely optimized.

Optimization. For each iteration, we scan throughgll, including the dummy
particles, that are equal to zeand have finite associated cogi;. For these we
determine theeduced cosbf introducing that association into the matrix. The re-
duced cost of an associatign; = 0, I, J > 0, is calculated from the elementary
costsg for ¢, j > 0 as follows: Letg;;, = 1 andgx; = 1, since every row and
column must contain a 1 according to the topology constr@otv if g;; was to
be set to one, theyy;;, andgx ; must turn zero, otherwise poings andq; would
be in two places at once. Further, as point detectioasK andj = L must be
related to some physical particle, it is necessary tgget= 1. The reduced cost
of settingg; s, I, J > 0, to 1 thus is:

z1) = ¢r; — 1L — ¢xy +¢xr 1, JJ>0. (1.15)

If the reduced cost; ; is negative, introducing the associatigry into the solution

is favorable, as it decreases the value of the cost fundtibnadn the case of a
newly appearing particle, the association under condiderds atg,; for some

J > 0, and only the 1 in the same columngt;, K > 0, is turned into a 0 and
the dummy entryy i is set to 1. The reduced cost for an appearing particle thus
is:

205 = ¢og — GKJ T PKO J, K >0,L=0. (1.16)
For a disappearing particle we similarly have:
210 = ¢10 — ¢1L + PoL I,L>0,K=0, (1.17)

settinggro, I > 0, to 1, turningg;, L > 0, from 1 to 0, and setting the dummy
gor to 1 as well. The special cage= J = 0 is set tozgy = 0. After calculating
the reduced costs{(¢, j) : gi;; = 0 A ¢;; < oo}, thegr; which corresponds to
the most negative reduced casl = min; ; z;; is set to 1, the correspondingr,
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(if I # 0) andgg s (if J # 0) to zero, andyk 1, to one. All the reduced costs are
then re-calculated and the iteration is repeated upti> 0, V (4, j), which means
that theoptimal set of associationsvith cutoff L, between framesand¢ + r has
been found.

After doing so for allr = 1,..., R and a fixed specifi¢, all points inC" that
have been linked to the dummy particleGH ™ are closer analyzed to re-connect
broken trajectories as caused e.g. by particle occlusisensitive non-particle dis-
crimination, or a particle being close to the intensity eetde threshold. For each
such point; in framet, all association matriceG",, » = 2, ..., R are scanned for
valid associations to non-dummy points. If there are susb@ations, the one that
has the smallest reduced cost is accepted and the corrésgquaint detections
are linked.

Repeating the whole procedure for every fratnieads to an optimal (in the
sense of the chosen cost functiodgllinking of the detected point locations into
trajectories over time. The computational cost of thisiligkalgorithm formally
scales a®)(R(N? — N)) and the algorithm need9(RN?) memory. Associ-
ations between well-separated particles are howevealigitharked by an infinite
cost and are never considered during optimization. Thiatlyrénproves the com-
putational efficiency. The number of possible associatigitis finite cost values
¢i; is > max (N¢, Nyr), but much less tha(V; + 1)(Ny, + 1), depending
on the actual distribution of the particles. In practices tomputational time for
the present algorithm increases only slightly more rapiddn O(RN) and R is
usually small & 5). The trajectory linking hence takes less time than theufeat
point detection in most practical applications. A typicatimization of the asso-
ciation matrixG". needs on the order of 10 iterations until the optimum seni&li
is found.

1.2.3 Computer implementation

The described feature point tracking algorithm is impletadnin ANSI C as
a multi-tier application using thelient-serverparadigm. The communication
between the server and the clients is controlled by a simgd&gi-based protocol
as specified in Appendix A.2.5. This makes it possible to e server from
any remote computer that provides access to the network.
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Server

Theserverapplication is completely written in standard ANSI C withcompiler-
specific extensions. This ensures portability of the codeasnpiles and runs on
every operating system that provides an ANSI C compiler.

The server consists of two parts: communication and paieking. The point
tracking part provides aApplication Programming InterfacAPI) that is used
by the communication part. This APl implements the alganittlescribed in this
section plus a set of functions for setting the tracking peaters, submitting a list
of images, and retrieving the results. The technical docuatien of the API is
contained in Appendix A.2.3. The communication part cotméire tracker API
with multiple, potentially concurrent, clients. This isatized bymulti-threading
under the Microsoft Windows operating system, amdlti-processingn all other
platforms. The server accepts new connections from clients$ a pre-defined
maximum is reached. Further connection requests are degisénding an ap-
propriate protocol message to the client.

After establishing a connection, the server is listeningetpuests from the client.
Initialization of the tracking procedure involves uploagliall frame images of the
movie. To avoid memory limitations, the server stores thets on its hard disk.
After at least two images of a valid file format are uploadéd,dlient can initiate
the tracking process. The server then detects all pariitlegery frame and links
the positions over time as described above. The trackingoeanterrupted any
time by areset signalcf. Appendix A.2.5).

The complete users manual of the server application is owddan Appendix
Al.1l.

Client

Both a graphical and text-mode clientre provided. The latter is a lightweight
implementation for efficient batch use, the former providasy interactive use.
Both clients are portable to a number of operating systentls thie text mode
client entirely written in ANSI C, and the graphical cliemt Java. Both clients
have been tested on MacOS X, Windows, and Linux operatingsys

The client application provides an implementation of thenownication pro-
tocol and a user interface. It sets the user-defined parasyadtthe tracking server,
reads and submits an image sequence either as a series affidg€s or directly
from an MPEG-1 movie file, and receives the resulting trajées from the server.

The text-mode client reads all information from input fileglatores the results
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in output files. The users manual in Appendix A.1.2 specifiedfite formats.
Thegraphical clientprovides interactive use and assisted parameter choices. A

preview functionality is available to easily test the effe€ a parameter change.

The graphical client also allows to filter the trajectoriesl do directly analyze

their motion properties, diffusion constants [223], or nemrhscaling spectra [101]

(cf. also Section 2.1). Furthermore, the graphical cliemt icnport and export tra-

jectory data and parameter settings, and it also suppe@rigrihting and exporting

of analysis plots. The complete users manual of the grabtiieat is contained

in Appendix A.3.

Communication protocol

The packet-based communication protocol between the rsangethe clients is
based onTCP/IP and uses a fixed-length packet header followed by a body of
limited length (cf. Appendix A.2.5). The header specifiestiessage type and the
length of the packet body. Receipt of every package is acletyed to prevent
loss of data. Since packet size is limited, it can be necessaplit an uploading

file across multiple packets. They can be sent in any orden ewerlaced with
parameter packets. The server reconstructs the file atdagh packet has been
received.

Supported file types

TIFF images and MPEG-1 movie streams are currently supghoridne support
for TIFF images is provided by the open-source libtiff [28@PEG-1 streams are
handled by the open-source mpeglib [283].

1.3 Benchmarks

1.3.1 Computational cost

This section presents benchmark results testing the catipuodl performance
of the feature point tracking software. We also assess thmaneusage of the
program and describe a heuristic that is used to find thestaaligorithm for com-
puting the convolution in the image restoration step of 8absn 1.2.1.
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Timing results

The timing benchmarks are performed using movies congistfrd0 frames of
size 512512 pixel showing 24 particles moving along parallel stnaighes. The
kernel radius is set ta = 6 pixel, the maximum displacement fo = 20 pixel,
and the threshold percentile to= 0.1%. The complete tracking process takes 25
seconds and uses 8 MB of main memory on a 1.8 GHz AMD Athlon eaerpvith
256 MB of memory, running Microsoft Windows 2000 Professibimhe software
was compiled using Microsoft Visual Studio 6 with releasenpder settings.

Usingw = 3, a sequence of 100 frames of size X188 pixel showing 10
horizontally moving particles is tracked in less than 1 secon a 3.06 GHz Intel
Pentium 4 computer running Linux. A movie of 3000 frames aks?14<214
pixel is processed in 14 seconds on the same machine.

A heuristic for time-optimal convolution

The convolution needed in the image restoration step camimpuated either by
direct evaluation of the sum or usirkgast Fourier TransformgFFT). For small
kernel radii, the direct evaluation is faster, whereas th€ Fethod is preferable
for large kernels. In order for the program to choose the @mmte method, we
derive a simple heuristic from our timing results. Table §hbws the computa-
tional time in milliseconds required by either method fdfetient kernel sizes. We
find the cross-over point at a kernel radius of 10 pixel.

The results for a constant kernel radius and varying image aie shown in
Table 1.2. The cross-over point far = 12 is around an image edge length of
400 pixel. For larger kernel radii, the cross-over poinftstibward smaller image
sizes. Forw = 20 it is at 256x256. For kernel sizes 10 the direct method is
always faster than the FFT (data not shown).

Using information about both the image size and the kerrgilisa the time-
optimal method of convolution is chosen by the program atiogrto the follow-
ing rules:

e Forw < 10, the direct sum is used for all image sizes.

e For10 < w < 20, the choice depends on the size of the image. If the image
edge length is smaller than the mean of the two nearest pafén®, the
direct method is used, otherwise the FFT. The larger powéwrofis used
as the effective image size since the FFT needs to pad theeimag

e For20 < w, the FFT method is used for all image sizes.
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Radiusw [pixel] | Direct sum [ms]| FFT [ms]
1 4 15
2 4 16
3 5 16
4 8 17
5 11 20
6 17 24
7 21 26
8 25 29
9 30 31
10 35 35
11 40 38
12 47 42

Table 1.1: Computational time in milliseconds to calcul#tte convolution. For a fixed
image of size 500500 pixel, the kernel radius; is gradually increased. All results are
averaged from 30 independent measurements.

Although these rules constitute a very simple model, theyeffiective enough to
provide the proper choice of convolution method.

1.3.2 Accuracy and precision

The quality of the feature point detection is evaluated gisynthetic frame se-
quences of moving point blobs. This method of evaluationréfegred over the
common experimental practice of tracking a stationarydfigarticle and use the
variance of the detected point positions as a measure digaquality. The true
accuracy of the algorithm is given by its bias [53], which cant be estimated
unless the precise and correct relative position of thegbanvith respect to the
elements of the imaging system is known. The only way to aetdech conditions
is the use of numerical simulations.

A good tracking algorithm has to meet two independent measofr quality: it
should minimizedeterminate errorsesulting from inaccuracies inherent to the al-
gorithm and it should also minimizadeterminate errorfrom measurement fluc-
tuations and imaging noise. While determinate errors ayatieally bias the po-
sition detections toward incorrect values, indetermiraters fluctuate randomly.
Following the terminology of Cheezumt al. [53], we refer to the measure of
determinate errors axcuracyand the one of indeterminate errorspascision
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Image size [pixel]| Direct sum [ms]| FFT [ms]
256x 256 13 20
300x300 17 23
350x 350 23 27
400x 400 30 31
450x 450 38 36
500x500 a7 42

Table 1.2: Computational time in milliseconds to calcultte convolution. For a constant
kernel radius ofw = 12 pixel, the image size is gradually increased.

Both accuracy and precision are estimated for a moving gointce at different
Signal-to-Noise Ratio§SNR) and pixel displacements per frantex). Synthetic
frames are created, showing particles moving along strdigtizontal lines with
a constant speed dkz pixel/frame, cf. Fig. 1.3. Observation is simulated by
centering a 20Gaussian blob

2 2
I(x,y) = Io - exp <— (z =) 4?:2@ — ) ) (1.18)

of standard deviation = 1 pixel [284] at the current particle locatigix,,, v,)
and sampling its value at the centers of all pixels= 1/2,3/2,5/2,...; y =
1/2,3/2,5/2,.... Gaussian blobs are used as an approximation to (1) the-sinus
oidal intensity distribution of radially emitting sphegicheads and (2) the square
Bessel point spread function of a sub-resolution particlaged using a micro-
scope.

In order to model different SNR, a background (black) le¥él & 10 is added to
all pixels and the peak intensityof the blobs is varied by settiny = v —b before
adding the blobs to the images. For the noise model we ashatihe images are
acquired using a digital CCD camera. Such cameras proéoisson-distributed
shot pixel noisalue to the discrete nature of photoelectron counting [2B8jel
noise is thus simulated by replacing the intensity valuef each pixel with a
random number from a Poisson distribution of expectatidneva = I. Fig. 1.2
illustrates the effect of such noise on a Gaussian blob. &itlom numbers are
generated independently for every trial and frame, anddkelting frame images
(cf. Fig. 1.3) are stored as unscaled 16-bit TIFF files.

The SNRis calculated as the difference in expected intensity sebetween
the particle peaks and the background, divided by the noise levet, on the
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Figure 1.2: Example of a simulated particle observatioropefleft panel) and after (right
panel) addition of Poisson noise. Insets show the particiages whose pixel intensity
distributions are depicted in the surface plots below. Txaenegple shown uses a peak level
ofv = 23.9 and a background level &f= 10, resulting in a signal-to-noise ratio & 846.

particles. For the employed Poisson noise this,is= \/v and thus:
v—>
7

This is the most conservative definition of SNR possible asguthe noise level
of the image background would lead to much larger values.s@ terger values
are however inappropriate [53] since the stronger noiséebtight blobs is what
affects the feature point detection and causes its inacguv¥ihen measuring the
SNR of real images, the noise ought to be estimated from fghtipoints instead
of from the dark background. The peak pixel levels used irpteeent benchmark
cases are given in Table 1.3 along with the correspondingtieg SNR values
according to Eqg. (1.19).

Accuracy and precision of the algorithm are quantified féfedent SNR and
Az using respectively the tradkas

bias= (d — a) (1.20)

SNR=

(1.19)

and itsstandard deviation
o ={(a—(a)*)"*. (1.21)

Hereby,(-) denotes the ensemble average over independent &riafs, the recon-
structed particle displacements from the tracking algoritanda the actual exact
displacements.
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Figure 1.3: Example benchmark tracks. Each test case dsnsisan image sequence of
100 frames with 10 moving points, yielding 1000 independmsmiacement measurements
a with known exact values = Ax. The first (left panel) and last (right panel) frame of
an example wittAz = 0.27 pixel, peak leveb = 23.9, and background level = 10
(SNR= 2.846) are shown with lines depicting trajectories as reconsteddy the present
tracking algorithm. All 10 trajectories are of full lengtt0Q. Insets show enlargements as
indicated.

Fig. 1.3 shows both the first and the last frame at SNR.85. The trajectories
as reconstructed by the tracking algorithm are shown ad $aks in the right
panel. The bold circles in Fig. 1.4 show the results for a@cyirand precision
versus SNR for a fixed displacement &fr = 0.27 pixel. Fig. 1.5 shows bias
and standard deviation versus the magnitude of the truelgadisplacement per
frame between 0 and 1 pixel in stepslgfi1 pixel at a fixed SNR of 31.3.

The critical SNRfor the accuracy to become better than 0.1 pixel is around 4.2
for the present algorithm, indicating its good capabilityhiandle noisy images.
The precisiory is better than 1 pixel for all SNR larger than 1.3, cf. Table For
all SNR above 7.5, both the standard deviation and the babelow 0.1 pixel.
The present algorithm shows about the same accuracy as tteecmmplex and
computationally intense Gaussian fit and cross-correlati@thods, while hav-
ing better precision. The smooth and monotonic decay of b@th and standard
deviation with increasing SNR are additional favorableperties of the present
method, and the bias is virtually constant (and low) for &Hpsdisplacements
Az > 0.1 pixel. The fact that the present algorithm avoids fitting acsfic point
spread function shape to the blobs in the frame images ngtresllts in faster
execution speed, but also renders it more general with cetpsize and shape of
the tracked objects.

In a second test, the simulated points are moving alonggbtrines of random
angular orientation, thus exhibiting truly two-dimensabmotion. Trajectories
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peak level SNR

15 1.291059
18.58 1.990510
23.9 2.846111
28.73 3.494379
38.1 4.556798
60.8 6.516668
97 8.832892
154.7 11.632132
246.6 15.067460
393.3 19.326731
627.1 24.642859
1000 31.306549

Table 1.3: Peak pixel levels and resulting SNR used for the test cases in Fig. 1.4. The

background level is fixed at= 10.

Bias [pixel]

CY (b)
Figure 1.4: (a) Bias versus Signal-to-Noise Ratio (SNR)d&dBaussian blob moving at
0.27 pixel/frame. (b) Standard deviation versus SNR forsémae cases. Each point is
averaged from 1000 independent measurements. The prdgentlam (bold circles) is
compared to four existing algorithms as benchmarked by @lreeet al. [53]: Gaussian
fit (squares), Centroid (triangles), Sum of absolute dffifiees (stars), Cross-correlation
(diamonds).
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Figure 1.5: (a) Bias versus actual distance moved per fraoreaf Gaussian blob at
SNR = 31.3. (b) Standard deviation versus actual distance moved pnér for the
same cases. Each point is averaged from 1000 independersiureezents. The present
algorithm (bold circles) is compared to four existing algbms as benchmarked by Chee-
zum et al. [53]: Gaussian fit (squares), Centroid (triangleSum of absolute differences
(stars), Cross-correlation (diamonds).

Algorithm SNR)y 1bias SNR; oo
Present work 4.2 <1.3
Gaussian fit [53] 4.2 4.0
Centroid [53] 7.8 6.6
Sum of absolute differences [53] 6.9 8.1
Cross-correlation [53] 4.2 6.3

Table 1.4: Simulated SNR beyond which the bias remains b@lbwixel ando below 1
pixel. Comparison of the present algorithm with the oneteteby Cheezum et al. [53].
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Figure 1.6: (a) Bias versus Signal-to-Noise Ratio (SNR)lforGaussian blobs moving at
random angular orientations with 0.27 pixel/frame. (b)8tard deviation versus SNR for
the same cases. Each point is averaged from 3500 indepentEagurements. Circles
indicate thexr component, squares tlecomponent of the respective measures.

can intersect and points can leave the image, in which caserdappear on the
opposite sideferiodic boundary conditionsand a new trajectory starts. This test
mimics the situation ofinite dilution The same background and peak values are
used as for the previous test (cf. Table 1.3), but bias armtlatd deviation are
computed on the actual positio(s, y) — rather than the displacements- as:

bias, = (z — z) bias, = (7 — v) (1.22)

and

00 = (@ —a) — (@ -2))D> o= (G —y)— (G- »))",
(1.23)

where(-) now denotes the ensemble average over all point detecticmsnovie.
The results are shown in Fig. 1.6. While the standard deviasicomparable to the
onein Fig. 1.4, the bias values are much lower than in thaquevest. This is due
to the fact that bias and standard deviation are correlatd¢idel one-dimensional
case, whereas they are independent here.

To test the trajectory linking in the case where two partiabeoss, we con-
sider test movies showing 10 horizontally moving points d@dertically moving
points, such that each pair of points exactly coincides irean frame. The
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Figure 1.7: Sequence of two moving points with the upper oissing in two frames,
e.g. due to occlusion or tight thresholding. The link rangeki = 3, thus taking 3 sub-
sequent frames into account for each linking step. The pantie very right shows the
correct recovery of the broken trajectory. (Image inteesitare inverted for printing pur-
poses.)

background intensity is again fixed at 10, and the peak iitieofthe horizontally
moving points is fixed at 23, corresponding to an SNR of 2.Me peak intens-
ity of the vertically moving points is gradually increasélhenever two particles
coincide, only one point observation is detected. Sincditlkéng algorithm does
not allow a point to be part of multiple links in any frame, asfethe two traject-
ories must end. In the case where the two point sets are of brjghtness, the
choice is random. In 50% of the cases, the vertical trajgagrcontinuous and
the horizontal one pauses, and vice versa for the other 50%e lpoint intens-
ities (i.e.mq) however differ, the trajectory of the brighter particlec@nsistently
continued, whereas the dimmer one breaks. This is due tcattieydar choice of
linking cost function, Eq. (1.14), where differencesiry are taken into account,
and the fact that the brighter particle “masks” the dimmeg onthe local max-
imum selection. A difference in SNR @15 is sufficient for this to happen in
100% of the cases.

The case where a particle temporarily escapes detectiomsidered in Fig. 1.7.
Extending the link range t& > 1 future frames (cf. Section 1.2.2) successfully
prevents gaps in the resulting trajectories, as both pamtsvailable for linking.
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Trajectory Analysis

The automated reconstruction of trajectories from videgueaces provides us
with a wealth of information that can be exploited to quantiie particles’ mo-
tions. Rather than a-priori distinguishing between “ranfi@and “deterministic”
types of motion, we use a single method of analysis for ajettaries. This is
motivated by the fact that every motion can be viewed as écpéat realization of
astochastic processf particle positionse(t). The motion process is hereby com-
pletely characterized by the probability of a particle oraly atx to be atr after
some timejt. The resulting probability densiti? (x|xo, 6t) is called theransition
densityof the process. For unrestricted isotropic diffusiomidimensional space,
the transition density is analytically known [48] to be thauSsian

o 2
P(x|zo, 6t) = exp [—M} , 2.1)

(4mvét)d/2 4vdt

with v the diffusion constant of the process. This result is oletifnom thecent-
ral limit theoremfor a large number of independently moviBgownian particles
[40, 92]. The same theory also applies to, e.g., an objecimgaleterministically
along a straight line with constant velocity Its transition density is given by the
Dirac distribution P(x|x, 6t) = §(x — x¢ — vot). This type of formulation thus
allows us to use the same analysis methods for all types abmand to con-
sider trajectories of particles that change their behawimr time, a phenomenon
frequently observed in biological applications.

In this chapter we present a hierarchy of trajectory anslgsethods. Starting
from global whole-trajectory methods, more locally resol\types of analyses
are constructed. The global analysis is based on operdtatsaduce complete
trajectories — or parts of a larger trajectory — to scalar Iners, employing certain
averaging techniques along the trajectories (Section Aftgr briefly reviewing
the classical mean square displacement method [223, 2&jbeection 2.1.1, we
extend the global analysis by an additional operator theaged on the Moment
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Scaling Spectrum (MSS) [101] of the trajectory (Subsecf8dn2). We show in
Chapter 4 that the combination of these two parameters sltovguantify both
the “speed” and the “freedom” of the moving object indepétiye A simple
analysis of the angle changes between subsequent disglateateps can also
provide valuable information, as outlined in Subsectidn2.

Temporal resolution can be achieved by considering an sisalyindow that
moves along the trajectory. Within the moving window, ineeegent global ana-
lyses are performed, resulting in a (smoothed) time sefiggi@ntification para-
meters, which allows to study their evolution along theecéyry as outlined in
Section 2.2.

Moving window methods are limited by the inherent tradekaffween temporal
resolution, given by the width of the window, and statidtioacertainly. This
can be overcome by decomposing the trajectory into pre-etfegments. Such
trajectory segmentatiotechniques may be used to detect periods of immobility or
super-random motion within a trajectory. In Section 2.3 wespnt an automatic
trajectory segmentation procedure that is based on neeabrks. The segments
identified by such an algorithm can then be quantified seglgrad measure, e.g.,
the distribution of residence times in arrest zones or themspeed during periods
of directed transport.

Based on a segmentation of the trajectory, it becomes pessildefineevents
as particular sequences of segments (Section 2.4). Evantschowever need to
be normalized by the expected number of events under puartjom conditions.
We present a Monte Carlo simulation technique and an andatmghemistry as
ways to provide such normalization.

2.1 Global trajectory analysis

The objective ofjlobal trajectory analysiss to reduce a complete trajectory to one
or several scalaquantification parameterslescribing certain characteristics of the
motion. These quantification parameters can be defined aagmgeof functions
of the trajectory data points, thus

1 M—-An—1
®(An) = N ; [ (i), (i + An)), (2.2)
whereM is the total number of points in the trajectory af\ek = 1,...,M/T}
is the frame shift. Combining several such parameters allowepresent the tra-
jectory as a point ipphase spaceSince the number of parameters is usually much
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smaller than the number of points in the trajectory, thimensionality reduction
operation has to be designed to preserve the most impoeatoirés of the motion.
After reviewing the classical mean square displacemenhodeand its limita-
tions, we propose an extension that is based on the work bar-et al. [101].
This extension allows to treat a wide range motion typesguaisingle theory.

2.1.1 Mean square displacement and diffusion constant

The second moment of the individual step displacements cfcagte trajectory is
the most commonly used quantification parameter.

To define this parameter and its relation to the diffusiorstant, letz,(n) € RY
the position vector on trajectofyat timenAt forn = 0,1,2,..., M, — 1, where
M, is the total number of points in trajectofyi.e. itslength At is the real-time
difference between two subsequent frames, viz stmapling timeof the discrete
trajectory. TheMean Square Displaceme(ISD) during a specific time interval
o0t = AnAt is defined as

p2(6t) = (||lz(6t) — x(0)[3) - (2.3)

The average-) is taken over an ensemble of independent trajectories ofethee
motion process and can only be analytically computed fosdhspecial cases
where the transition density is known. For isotroBiownian motionthe trans-
ition density is given by Eq. (2.1) as long 85 < L?/(2d/v), whereL is the
diameter of the space available for diffusion. For thisipatar transition density,
the MSD can be analytically computed as [223]

o (9t) = //P(a:o)Hw — xg||3P(x|x0, 0t) d day = 2vddt . (2.4)

Measuring the MSD of a trajectory of a diffusion process tallswvs to determine
its diffusion constant from the slope of:, versusit.

Diffusion with an overlaid deterministic drift of velocity is treated similarly,
leading to the expressiqm, = 2vddt + (||v]|20t)? [48]. The drift speed|v||» can
be determined from the curvature pf versusit, or the slope in a logarithmic
plot.

For most practical applications, the transition dengttyc|x, 6t) is however
unknown. The ensemble average is thus replaced by a timagajeassuming that
the process istationaryandergodic[164]. This allows to compute the MSD for
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any given trajectory as

My—An—1

S e (n+ An) —a ()] - (2.5)

n=0

1
An)= —
p2(An) M, — An
If the trajectory has a finite length/ < oo, the above average is interpreted as
the mean of a set of random variables. As such, it hattistical uncertainty
guantified by its variance [223]

2
var(uz(An)) = % , (2.6)
where
O 3An (M — An+1) 2.7)

2An? +1

corrects for the fact that the samples in the time averagéZEs) are correlated.
The resulting variance for the measured diffusion conssi223]

2An
var(v) = 3

SO1— A (2.8)

From Eg. (2.6) it is obvious that the error in the MSD increasg\n approaches
M. We thus compute the MSD using Eq. (2.5) onlyfor = 1,..., M /T witha
factorT; > 1. UsuallyTy = 5, which bounds the standard deviation of the MSD
at 40%.

2.1.2 Anomalous diffusion and moment scaling spectrum

The MSD as introduced in the previous section allows therdetetion of diffu-
sion constants and velocities for normal Brownian diffasppocesses and diffu-
sion with superimposed uniform driftNormal diffusionprocesses are character-
ized by an MSD that grows linearly with time shift, thus « d¢. If this is not the
case, the process is calladomalous diffusioi240]. Anomalous diffusion can
for example originate from finite diffusion spaces, i.e. faoement, or long-tailed
transition densitied(x|x). For the former case, it is clear that the MSD can not
continue to grow linearly as soon as the particles startttthhiboundary. Instead,
we have the finite limit [223]

Jimpa(3t) = 2 ({2]3) — (2112)?) . (2.9)
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which is proportional to the size of the space accessibléffiostbn. The case of
long-tailed distributions”(x|x() was first studied by &vy [166]. It corresponds
to a motion process where the particles occasionally “boedkand “fly” over a
long distance. Thedeévy flightsare, e.g., observed in turbulent fluid flows [311],
or in biological systems involving active transport by mqtooteins. Mathematic-
ally, Lévy flights are characterized by a transition density: |z ) with an infinite
second moment. In this case, the central limit theorem ngdoapplies and the
diffusion constant is not defined [311]. These cases aredsillperdiffusiorand
their MSD grows faster than linear with times, oc 672 with 1 < ~(2) < 2.
Cases withD < v(2) < 1 are termedsubdiffusionand can for example originate
from confinement of the particles. The special cagdaimal diffusionis included
with v(2) = 1.

Ferrariet al. have shown that anomalous cases wijtR) = 1 exist, so that
the inversion of above characterization of normal diffasémes not hold. They
considered a generalized version of tekegraph mod€]197, 101], describing the
correlated random walks of an ensemble of particles thakmauhy switch between
moving with velocity+wv, 0, or —v. The switching probabilities between these
three states depend on the elapsed time since the last switghparticles thus
carry an “age”, making the process non-Markovian. We repecedthe results
of Ferrariet al. [101] by simulating the telegraph model in the computer. The
MSS as determined from these simulations is plotted in Fifya2, and shows
thaty(2) = 1. Standard MSD analysis would thus classify this processoas n
mal diffusion. The transition density shown in Fig. 2.1(lwever reveals the
non-Gaussian character of the process, certainly notsyoreling to normal dif-
fusion. This finding means that the MSD is not a sufficieneciin to distinguish
Gaussian from non-Gaussian processes.

A sufficient criterion can be found by extending the trajegtanalysis to the
whole spectrum oflisplacement momenis01]:

My—An—1

> e (n+ An) —x (n) 5. (2.10)

n=0

1

pip(An) = M, — An

The MSD is included as the special caseof 2. Each moment obeysszaling
power law[101]

i oc 6t7P) (2.11)

for which thescaling coefficienty(p) can be determined frorog p, (6t) versus
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log 0t using linear regression. The function
7€C Ry — Ry, p— (p) (2.12)

is called theMoment Scaling Spectru(MSS) of the trajectory. Since(0) = 0,
the MSS always starts at the origin. Considering the corapgpectrum of mo-
ments allows unambiguous classification of the processgnZiL as anomalous
diffusion.

Ferrariet al. have introduced a classification of dispersion processesdiag
to their MSS. Processes with linear MSS are cadigdngly self-similaythose with
non-linear MSS are calledeakly self-similar Mathematically, the distinction is
based on the observation that the transition densities ateyitally collapse to a
self-similar form

P(z|zo,6t) x 6t PP (&iﬁ) for 5t — . (2.13)
A process is strongly self-similar if and only# = d~(p)/dp = constVp, mean-
ing that the MSS is linear with slop@ For normal diffusion we hav® a Gaus-
sian ands = 1/2. For ballistic motion we havg = 1. Subdiffusive processes
are characterized by < 5 < 1/2, and superdiffusive processes b2 < 5 < 1.
Any process with non-constafi{p) is weakly self-similar.

Despite the fact that the diffusion constant is mathemijicat defined if P is
a Lévy density, we artificially extend its definition by analagyEq. (2.4):

thp = prpddt’®) (2.14)

The diffusion constant of a discrete trajectory is thus ioleté from they axis
intercepty, of the linear regression abg p,,(9t) versudlog dt as

vp = (dp) ™" - exp(yo) - (2.15)

In the case of normal diffusion;, corresponds to the regular diffusion constant
and we often omit the indeXand simply writev.

Determiningg for an experimentally recorded trajectory provides a systée
characterization of particle motion, enabling more riggrquantification and clas-
sification of biological dispersion processes [96]. To detae the slopes of a
measured MSS, a linear least-squares fit is used. We do nstraonthe regres-
sion toy(0) = 0, since this would increase the residual in all weakly seifilar
cases, while it is of no effect for strongly self-similar pesses. This choice seems
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Figure 2.1: (a) Moment scaling spectrum determined from antddCarlo simulation of
the generalized telegraph model [101]. The MSS values frensimulation are shown as
crosses ). The dotted lines mark the slopes 1/2 and 1, the dashedtlirgeasymptotes.
The second order moment (MSD) is proportional to time, batgtocess is weakly self-
similar as indicated by the non-constant MSS sldp@dp. (b) The self-similar transition
density p = 1) of the simulated process for large. The similarity exponent = 1/3
corresponds to the slope of the lower asymptote in the M3BtsRoarked by crosses-)
are determined from the Monte Carlo simulation.
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appropriate as it avoids manifesting the non-universarmf linearity. An MSS
analysis typically combine8 andv» in a two-dimensionaphase spaceo repres-
ent the motion. While, provides a measure of motion spegdquantifies the
motion type. Representing a trajectory in the, 3)-plane thus allows to observe
both quantities simultaneously, as illustrated in Fig. 2.2

Besides reduced ambiguity in anomalous diffusion casedWtBS analysis has
the additional advantage of better accuracy. Since higtdgr moments are taken
into account, the MSS curve is less noisy than the correspgndSD curve
(cf. Fig. 2.2). The linear regression typically used to deiee the curve’s slope
is thus more robust. In addition, tistatistical truncation uncertaintfrom finite
trajectory lengths is reduced compared to the MSD. AnalegolEg. (2.6), the
variance of the moment of ordgiis given by

(prpdAnAt)?

C b
with the normalization constait defined in Eq. (2.7). For the generalized diffu-
sion constants we have

var(u,(An)) = (2.16)

var(v,) = ﬁ . (2.17)
Assuming thatv,, and~, = ~(p) are uncorrelated, we find

var(log p1,) = var(log v,) + log 2t var(~y,)
and thus

var(y,) = [var(log 1,) — var(log v,)] log™*(AnAt) . (2.18)

Since all terms in the above expression are non-negateeaiiance ofy, is smal-

ler than the variance qf,, makingg the more accurate measure than= v(2).

For general motion processes with unknown transition dgrisis impossible to
express vdtog -) in terms of the known vdr). Fig. 2.3 shows the experiment-
ally determinedy, and for trajectories of Polyomavirus particles on the plasma
membrane of live cells (cf. Chapter 4). The error bars ingi¢he standard de-
viation as determined numerically from the variance of trmmants (Eq. (2.16)).
The error bars for, are within the theoretical worst case of 40% for the used
Ty =5, as predicted by Eq. (2.8). These results illustrate tteaMBS provides a
more robust and accurate indicator than the MSD. For thedhudyirus trajector-
ies in Fig. 2.3, it would be impossible to distinguish a fyeelobile virus particle
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Figure 2.2: lllustration of the moment scaling spectrum lgses. The panel in the upper-
left corner shows an experimentally recorded trajectorpfAdenovirus-2 particle on the
plasma membrane of an M21 cell (Greber group, arrow head magjectory beginning).
The mean square displacement according to Eq. (2.5) is shrothie upper-right panel. The
moment scaling spectrum as defined in Eq. (2.12) is showreilotirer-left panel with the
dashed lines indicating the slop&g2 and 1. The resulting representation of the trajectory
in the (12, 3) phase plane is shown in the lower-right panel.
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Figure 2.3: Comparison of the statistical uncertaintied$D analysis and MSS analysis.
(a) MSD analysis of Polyomavirus particle motion on the plasnembrane of live 3T6 cells
(Helenius group). Error bars indicate the standard dewatiaccording to Eq. (2.16) and
numerical calculation of the downstream parameters. Thgel@rror bars of the MSD slope
make itimpossible to accurately classify the motion tyfl@dMSS analysis of the same data
set. The accuracy of the MSS slope is much better, enablengbiguous classification.

from a completely stationary one using standard MSD arglgsice the standard
deviation bars of the two classes significantly overlap. M&S analysis, how-
ever, enables classification with a very high probabilitguécess. Moreoves is
determined from a linear plot whereas is the slope in a logarithmic plot. This
means that the MSS analysis linearly weights the differantispf a trajectory, en-
abling unambiguous classification also in otherwise imigtishable cases such
as the ones depicted in Fig. 4.13.

In the present work we usgto classify different modes of motion or to quantify
the “freedom” of a motion. If a particle is confined in a cemtaggion, the pro-
cess appears subdiffusive, which is robustly detecte@ i€ombinings and v,
provides a classification plane that allows to quantify kbthtype and the speed
of the motion simultaneously. Classical MSD analysis wawdtiallow us to dis-
tinguish between a particle that is confined in a moving negiod a stationary
particle [96]. As shown in Fig. 4.13, the MSS slope adds theiat second di-
mension needed to discriminate these cases.



2.2. MOVING WINDOW ANALYSIS 37

Figure 2.4: Definition of the signed anglebetween subsequent steps of a trajecteryis
negative o, positive.

2.1.3 Direction angle histograms

An direct way of quantifying the degree of confinement of gettory is to con-
sider thedistribution of angular direction changdsetween subsequent displace-
ment steps. The angles are defined by the direction vectdvgooddjacent steps
as illustrated in Fig. 2.4.

In a Brownian random walk [40], the direction of steps is anifly distributed
as there is no influence of previous steps on the presenter&@v procesg The
histogram of angles of a random walk thus shows a flat distribution. Confined
motion is characterized by a dip in the histogram center.ll&angles — leading to
larger end-to-end displacements — are less frequent thgamdagles. This corres-
ponds to the tendency of the particle to “turn around” whéhitg the boundary of
the region to which it is confined. Superdiffusive motiongsaciated with a center
peak in the angle distribution with forward steps being npmebable than turns.
This is illustrated in Fig. 2.5 using directed segments ahasps of immobility
of Adenovirus-2 trajectories (cf. Section 4.3). Since tiedgrams are built from
individual displacements, the number of samples is ladgmying better statistics.

2.2 Moving window analysis

A straightforward way of extending any global analysis no€tho allow for tem-
poral changes in the quantification parameters consistgyiag it in amoving
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Figure 2.5: Distribution of angle changes for different &gof motion. (a) shows the histo-
gram for segments of directed motion, (b) for phases of cemfant.

window Suppose the global analysis computes the functional

M—An—1
@(An):ﬁ S f(),ali+ An)). (2.19)
1 =0

Applying it in amoving windowof lengthn,, and starting at point then involves
the functional

k4+n.,—An—1
Op(An) = —
k(An) Ny — An ~

(2.20)

Using f = |lz(i+ An) —x(7)||5 generates the spectrum of displacement moments
pp(An) in the moving window frame.

The moving window analysis defines an averaging operatogalue trajectory,
and only variations of length scalé¥n,,) or larger can be resolved i (An).
Increasing the time resolution comes at the expense ofrlatggistical uncertainly.
This is evident from the error estimates in Egs. (2.6) anti§)?.since the number
of sampling points per window decreases with increasingteal resolution.

Using the MSS analysis of Subsection 2.1.2 in a moving windlbews to detect
changes in the motion type within a trajectory. This is intant when analyzing
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trajectories of unsteady processes as they often occunliogyi. Fig. 2.6 shows an
example trajectory of an Adenovirus-2 particle on the plasnembrane of a live
M21 cell after binding to the receptor (Greber group, SectiB). The process is
clearly not stationary as the virus seems to pause severasti Theséransient
confinement zone=n be seen as drops in the moving-window MSS (Fig. 2.6(c)).

2.3 Trajectory segmentation

In biological applications, a trajectory is often composdch sequence of dif-
ferent types of motion. The examples in Fig. 2.7 illustrdiis tising trajectories
of Polyomavirus particles on the plasma membrane of 3T ¢eliélenius group,
[96]). Many trajectories exhibit complex patterns of ti@n$ confinement zones,
random motions, and segments of directed transport.

While the moving window MSS analysis provides a means ofadietg longer
periods of a certain type, it is not appropriate to detectt$enjuences. Detectable
sequences have to be at least of the size of the window as thad We lost in the
averaging otherwise. The statistical uncertainty (cf. @qL6)) however imposes
a lower limit to meaningful window sizes.

In trajectories of biological motion, short periods of eqiment or active trans-
port contain important information about the existenceasfain molecular mech-
anisms. In addition, we are often interested in answerirgstions likewhat is
the mean residence time in entrapmentRat is the diffusion constant of the free
motion? or what deterministic velocity is contained in the biasedtstres?

Both, detecting short sequences and addressing quesfitins above type, re-
quires a pattern-based decomposition of the trajectoor poi analysis. Thigle-
composition or segmentationcuts the trajectory into pieces of pre-defined type.
The segments of the individual types can then be analyzespamtently, without
the blurring effect of the moving window average.

Thedynamic classificatioproblem defined by the above task can be approached
usinglearning algorithmg54]. In this section, we use artificial neural network
as described in Subsection 2.3.1. This network is trainedegectories segmented
by hand, and is then used on other trajectories of unknowmsetation (Subsec-
tion 2.3.2). Particular attention is payed to teneralizabilityof the results from
the training data to the real data (Subsection 2.3.4), amdjtiality of classifica-
tion is assessed using cross-validation on a disjoint sietsbfdata(cf. Subsection
2.3.5).
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Figure 2.6: Moving window analysis of a trajectory of Adeinos-2 on the plasma mem-
brane of a live M21 cell (experiments: Greber group). (a) Tiagectory recorded at 20 Hz
time resolution. The start of the trajectory is indicatedthy arrowhead. (b) Diffusion con-
stant in a moving window of width,, = 100 frames. (c) MSS slope in the same windows.
Five transient confinement zoneg*+-to C5 — can be identified as highlighted in the plots.
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Figure 2.7: Two example trajectories of Polyomavirus paées (Helenius group) on the
plasma membrane of live 3T6 mouse fibroblast cells. Theesrdsplay complex motion
patterns with several transient confinement zones, didestgments, and random walks.
Arrow heads mark trajectory beginnings.

2.3.1 Neural networks for classification

In classification problems, artificial neural networks canused to represent a
function that maps the data from a high-dimensianplt spaceto a scalarclas-
sification valueindicating theclassthat the object belongs to [190, 42, 30].

The elements of an artificial neural network are modeled #fteimage of bio-
logical neurons. They mimic cells that communicate withirtineighbors using
electric signals. Similar to biological neuroratificial neuronshave a certain
level of activity and defined connections with a set of other neurons. The $um o
all signals received over these connections determineketieé of activity of the
neuron. Once this level exceeds a certhireshold the neuron sends an output
signal to all its connected neighbors. Depending on the ectivity structure, a
network of artificial neurons can represent certain famitiéclassification func-
tions between the input (data) space and the classification vdlhe. particular
function does need to be explicitly known. Rather, the nekistrained to “learn”
it from a set oftraining datawith known classification.

The standard artificial neuron as depicted in Fig. 2.8 ctmsisatransfer func-
tion to which other neurons are connected. Timgut level 4 of the neuron is
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Figure 2.8: Transfer function model for artificial neurons.

computed from the activitieg; of its upstream neighbors by the weighted sum
H— ZwiZi ) (2.21)
i=1

The set ofweights{w,} determines the particular classification function that is
represented by the network. These weights are determingagdthe training
phase The level of activityZ of each neuron is computed as a function of its input
level H as

Z = f(H,0). (2.22)

This involves a particulaactivation functionf which determines the transfer char-
acteristic of the neuron. Typical choices of activationdiions are thestep func-
tion 2H — 1 or anysigmoidsmoothly increasing from-1 to 1. If the value of
the activation function exceeds a fixed thresh®ldhe neurons sends its level of
activity Z to all downstream neighbors.

A neural network can consist of any number of neurons withiatgrconnec-
tions. Typically, the neurons are organizedagers The simplest structure con-
sists of two layers: input neurons and output neurons. laerky networks, the
neurons are only connected to neighbors in other layers)diwvithin a layer.

Special case: the multi-layer perceptron

Multi-Layer PerceptrondMLP) are a special type of layered neural networks,
characterized by a one-way signal flow [30]. Informationn$y@ropagated in the
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Figure 2.9: Example structure of a multi-layer perceptrdmformation is only transmitted
from left to right. The activities of the input neurons "I” ardefined by the input data,
whereas the activities of the neurons in the intermediayers "Z" and in the output
layer "O” result from the activities of their respective upsam neighbors according to
Egs. (2.21) and 2.22. Each connectiois characterized by an independent weight

forward direction, from the input layer to the output laydeither feed-back loops
nor connections within the same layer are present in thearkt(ef. Fig. 2.9).

2.3.2 Learning decision boundaries

Thedecision boundargeparates data of one class from data of other classes. Geo-
metrically, the boundary is a manifold cb-dimensiorone in the input data space.
A good decision boundary separates data from differensetasvithout errors.
The goal is to attain this property not only for the trainirgtal but for all pos-
sible future data that are not known a-priori. This tradigsetween generality and
training performance is discussed further in Subsectidri2.

In a neural network classifier, the decision boundary is icitht defined by
the connection weights); as learned on the training data. For linear activation
functionsf, a two-layer network implementsliaear classifierand is only able to
distinguish data from two classes if they are separable liyear function, i.e. a
hyper-plane in the input space. More complex decision batiesl can be realized
using additional layers between the input and the outpwdrigyor by non-linear
activation functionsf. One intermediate layer allows convex decision boundaries
two layers are sufficient to represent arbitrary decisiomngiaries.

A common way tdearn the weights is to define lss function e.g. the sum
of incorrectly classified points, that is to be minimized iotlee training data set.
The weightsw; are then found by a standamainimization algorithm In the case
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of a linear classifier, there is a single unique minimum whgkasily found by
a gradient descent. In non-linear classifiers, several lng@ma may exist and a
global optimizer is needed.

In the case of MLPs, an efficient training algorithm existsdtbitrary network
structures. This so-calledackpropagation algorithnj232] exploits the feed-
forward structure of the network to find the optimal weighysdajusting them
in the backward direction.

2.3.3 Selection of training data

The training set must be sufficiently diverse to contain afigible forms of motion
from a certain class. We thus use real trajectories frompkeiic application to
train the classifier, rather than using artificially genedasamples. Samples of all
allowed lengths have to be present in the training data, artétplar care is taken
that short segments can unambiguously be attributed tcsa.clhis ensures that
the segmentation is not misled by statistical fluctuations&ndom walks.

A second requirement concerns the size of the training seed&ch input neuron
> 10 samples are needed [30]. The effect of the size of the tigigét on the
learning success is illustrated in Fig. 2.14.

2.3.4 Model selection

The complexity of the decision boundary is limited by the memof layers and
the number of connections (weights). Accordingdocam'’s razoy the decision
boundary should be as simple as possible to achieve goaglfdason perform-
ance on data that are not contained in the training set. Terlbound for the
simplicity is given by the desired performance on the tragnilata, i.e. the toler-
ance used in the minimization algorithm when learning theneation weights.
Completely adapting the decision boundary to the trainiag dften leads to loss
of generalization. This phenomenon is calterfitting Its opposite underfit-
ting, refers to the situation where the decision boundary is bople and both
training performance and generalization degrade. Thitetddf is depicted in the
illustration in Fig. 2.10.

2.3.5 Cross-validation

A good method to avoid overfitting is to stop learning oncegéreralization cap-
ability of the classifier has reached a certain level. Thesgaization capability



2.3. TRAJECTORY SEGMENTATION 45

Figure 2.10: Planar distribution of sample data of two clasqcrosses and circles). The
decision boundary given by the dotted line corresponds écsttuation of overfitting, the
dashed line illustrates underfitting. A good decision bamds depicted by the solid line.

can be estimated by disjointly dividing the data with knovassification into a
training setandtest set The network is trained using the training set and then
evaluated on the test set. The mean classification errorkodéferent partition-
ings of the data is used as an estimate forgdeeralization capabilitylncreasing
mean errors in thig-fold cross-validationindicate overfitting.

2.3.6 Segmentation of directed motion

We wish to detect segments of faditected motionor “flights” (cf. Subsection
2.1.2) in a trajectory. Hereby, we are particularly intézdsin short segments
(shorter thar1t0A¢) that are not detectable in a moving window MSS analysis.

Criteria

Since there is no a-priori definition of what “directed” meawe have to invoke an
operational definitiorby means of a set of criteria derived from expert knowledge.
The goal is to reproducibly quantify the criteria used by anan domain expert
to segment a trajectory. To construct an effective classtfie criteria have to be
independent of direction and scale and invariant with reg@arigid-body rotations
and translations.

The term “directed” implies that the segment is composedtepssthat are
roughly headed in the same direction, Fig. 2.11(a). We tha®se the sum of
the angles between the individual steps as the first criteritis criterion is not
sufficient as it would result in misclassification of the ashown in Figs. 2.11(c)
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(@) (b) (©) (d)

Figure 2.11: Sample segments for classification criteree(gext). The dashed line indicates
the net path.

and (d). Additional criteria, relating the net displacemtnthe lengths of the
individual steps, are needed to capture them. For a trajesgment consist-
ing of n points the following three criteria are found to yield goddssification

performance for directed motion:

e linearity:

1 n—2
Z cos(q;), (2.23)
i=1

n—24

whereq; denotes the angle between siggnd: + 1 as defined in Fig. 2.4.

e relative net displacement:

[&(n) — z(D)]2

- . ) (2.24)
(lx(@) —x(i — (n = 1))l[2)i=1..n
wherezx (i) denotes thé™" position in the segment.
o efficiency:
_ 2
[&(n) —2(1)[3 (2.25)

(n =13 i+ 1) —2()]3

Using above criteria, the-dimensional trajectory data are mapped onto a three-
dimensional input data space for the classifier.
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Figure 2.12: Flow chart of the trajectory segmentation aigfum.

Algorithm

The MLP for the detection of directed motion has four inputineas, four neur-
ons in an intermediate layer, and one output neuron. All oresiuse the same
activation function (cf. Subsection 2.3.1), namely thersid

1

FUH) = 1+exp(—H) "

(2.26)

The structure of the complete algorithm is shown in Fig. 2T2e first step con-
sists of computing the criteria given by Egs. (2.23)—(2.25bhis is done for all
possible segments, yielding — (n — 1) sets of criteria.

The computed criteria constitute the first three input valokan MLP that is
trained to recognize the signature of directed motion. Dheth input is the length
n of the segment. The scalar output of the MLP represents tiraagsd probab-
ility that the segment shows directed motion. Outputs alib9eare classified as
directed.

The whole procedure is repeated for different segmenttengt= 5,...,10 to
detect directed stretches of different durations.
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Figure 2.13: Example trajectories segmented by the premigotithm (data: Jo Helmuth).
Dashed lines correspond to identified directed segmeritd,Is@s mark diffusive segments,
and thin lines with dots correspond to confinement zones.

Performance

Fig. 2.13 shows typical segmentation results using exant@gctories of
Adenovirus-2 particles on the plasma membrane of live M2l ¢ef. Section
4.3). Visually, the classification is in good agreement weitbert knowledge in all
of the cases.

The convergence of the fraction of misclassificaticakj during typical learn-
ing phases is shown in Fig. 2.14 for different sizes of thming set. 23 samples
are not sufficient to learn the weights and the classifieessiffrom overfitting as
described in Subsection 2.3.4. Increasing the trainings87 samples allows
perfect classification of the training data. Further insesaof the set size result
in faster convergence. For all following applications, vée & training set of 100
samples.

Convergence of the cross-validated classification errdndwa typical training
phase is shown in Fig. 2.15(a). While the training set isquly classified, the
error on the test set remains around 18%.
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10° 10* 10

iteration

6

Figure 2.14: Dependence of the learning process on the $iteedraining set for directed
motion (data: Jo Helmuth). While 23 samples are not sufftqi@otted curve), 37 samples
allow perfect classification (solid curve). Increasing #iee to 74 training samples results
in faster convergence (dashed curve).

2.3.7 Segmentation of arrest zones
Criteria

In arrest zonesthe particle is tightly confined. Arrest zones are thus thgosite
of directed segments, such that the same three criteriavans by Eqgs. (2.23)-
(2.25) are used.

Algorithm

The MLP for immobility detection has three input neurongresponding to the
three criteria. It has three neurons in the intermediater|and one output neuron.
The activation function for all neurons is given by Eq. (3.ZBhe structure of the
segmentation algorithm remains unchanged as shown in Hig. 2

Random walks can only be discriminated from arrest zonéeif tliffusion con-
stant is large enough to cause particle motion larger thatréttking uncertainly.
Very slow random walks within the imaging noise are indigtilshable from ar-
rest zones. The segment lengths used in the algorithm asekttmsen much larger
than for the directed motion, i.e. = 40, ..., 100.
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Figure 2.15: Performance of the MLP for classification ofedited motion (a) and phases
of immobility (b) (data: Jo Helmuth). The fraction of misss$éication (risk) is shown for
both the training set (dashed) and the test set (solid) inoastvalidation.

Performance

A typical result of the segmentation is shown in Fig. 2.13.n@&wgence of the
cross-validated classification error during a typicalrigg phase is shown in
Fig. 2.15(b). While the training set is perfectly classifitide error on the test
set remains around 2%.

2.4 Event-based trajectory analysis

Having a classification of trajectory segments as outlimethé previous section
enables searching the trajectory for spedfientsdefined as particular sequences
of segments. While detection of such events is straighticiwthe interpretation
of the resulting counts requires normalization with theestpd number of events
under purely random conditions.

In this section we present three different ways of normétira an analogy to
chemistry, a Monte Carlo simulation, and an analytic wayeylare exemplified
using two different events: a “sit-down” event, consistof@ segment of directed
motion followed by an arrest zone, and a “pass-by” event ofected segment of
one trajectory passing by an arrest zone of another one. drieeptual difference
is that the sit-down event is defined in a single trajectorgnghs the pass-by event
involves a pair of trajectories.
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2.4.1 “Sit-down” event

The intra-trajectongit-down evenis defined as a segment of directed motion that
is followed by a phase of immobility within the next five frameThe absolute
count of such events depends on the number of segments eff eitiss, and does
therefore require normalization.

Analogy to chemistry

The situation is analogous tosecond order chemical reactiasf two reactants.

By [d.m] and[p.o.] we denote the “concentrations” of segments of directed mo-
tion and phases of immobility, respectively. The “rate ¢ant r of successful
encounters in a single trajectory is proportional to thedpot of the concentra-
tions, viz.

r=k-[d.m]-[p.o.. (2.27)

Theconcentrationsre naturally defined as the number of classified segments per
unit trajectory length, thus:

B #{d.m}
[d-mj = #{trajectories - (M), (2.28)
[p.0.i] = #{p.0.i} (2.29)

~ #{trajectorie$ - (M,),’

where(My), is the mean trajectory length. The number of events is giyethé
rater and the number of attempts as:

#{d.m} - #{p.o.i} — kp. (2.30)

#events= r-(M,),-#{trajectoriey = k'#{trajectories} YA

This allows to determiné from the observed number of events. The valué of
is used as theormalized event count

Monte Carlo simulations

The number of expected events under random conditions cdeteemined by a
Monte Carlo simulation. Hereby, the segments of a trajgctoe repeatedly ran-
domized and the average number of observed events ratidemized trajectories
is used to normalize the count in the original trajectory.
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Figure 2.16: Situation for the randomization algorithm.ré& segments are placed, giving
rise to at most four random stretchesto s.

The length of the randomized trajectories is fixed and equtie length of the
original trajectory. The directed and immobile segmentgydperally not cover
the whole trajectory, as they may be separated by randonmephkaas shown in
Fig. 2.16. In the Monte Carlo simulations, the separatioaspls; are randomly
determined from uniformly distributed random numb&rdetween 0 and 1 as

Ui s

Mean and variance of the number of expected events are detefrftom many
realizations of randomized trajectories. The number ofloanized trajectories
used to compute the mean is determined by a prescribed teagance. The
normalized count is computed from the count in the original trajectory and the
mean event count from all randomized realizations as

#{counted

k= (#{events in randomizeqy - (2.32)

Compared to the chemical analogy, the Monte Carlo simuidtas the advantage
of straightforward generalization to systems with largembers of “reactants”.

2.4.2 “Pass-by” event

The inter-trajectoryass-by everis defined as a directed segment passing by an-

other particle that is immobile during the time of passagassageas defined by

the distance between the two particles being below a cartaraction threshold.
The segments from the trajectories are arranged in a thineendional space,

where two dimensions correspond to physical space and ititeathe to time. A

pass-by event is characterized by the center of one objew) béthin theinterac-

tion sphereof another object.



2.4. EVENT-BASED TRAJECTORY ANALYSIS 53

Tm
|field of view|

Figure 2.17: A segment of directed motion with the inteactarea defined by circles
around its nodes. Any phase of immobility within a circleresponds to a pass-by eventin
space if the two segments are from different trajectories.

The total number of counted pass-by events in a set of tajestdepends on
the number of segments and the lengths of the trajectomelstheerefore needs to
be normalized.

Estimator for the number of expected events

The expected number of pass-by events under uniformly ranclanditions is
given by theexpectation value

E = #{d.m} - #{p.0.i.} - peiose- (2.33)

The numbers of directed segments and phases of immobiétg@unted over the
whole set of trajectories, angljose is the probability of a directed segment being
close to an immobile phase in space and time.

Assuming statistical independence, the probabifyse is computed from the
probability of encounters in spacg,§ and in time p;) aspcose = psp:. The
value ofp, can be estimated from the average length of directed segnagick
the interaction radius,, as illustrated in Fig. 2.17. The averaigeraction area
around directed segments is hereby approximated as

<Am> = <Mdirectedé>£ < 2rm + 7”"3” y (2-34)

where the average is taken over all directed segments inethef grajectories.
Assuming a uniform distribution of directed segments incepdhe probability of
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an encounter in space hence becomes

<Am> <Mdirected€>€ <21y, F 72
= = m - 2-
Ps = Ifield of view] field of view] (2.35)

The temporal distribution of segments can not be assumesliaiform over the
time of observation. Let; andt, be the starting times of a directed segment or an
arrest zone, respectively. The probabijitycan be computed from the probability
distributionsP(t,) and P(t,) by integration over the time intervdl of a spatial
encounter, thus

Pt = /T/T P(td)P(ta) dtd dta . (236)

The probability densitie®(t,) andP(t,) are estimated from the relative frequen-
cies in the data and represented Aso#der interpolation polynomials for integra-
tion.

The normalized count

_ #{counted

g E

(2.37)

is computed from the actual count and the expected nuiibépass-by events in
uniformly random trajectories according to Eq. (2.33).



Chapter 3

Trajectory Classification

Automatic classification of trajectories is an importantt jpé high-throughput and
bias-free motion analysis. The tetas-freerefers to the absence of selection of
“representative” trajectories by a human experimentee gdal of bias-free data
analysis is to provide a reproducible algorithm and to aehiatistical signific-
ance by large sample sizes.

The classification of trajectories using machine learngahhiques is complic-
ated by several factors: Trajectories constitute dynarata,dviz. ordered time
series of position vectors. Data encoding is needed to éxptemporal inform-
ation and to reduce the dimensionality of the data. Moredvajectories exhibit
multiple invariances with regard to translation, rotatiand symmetry, as rigid-
body rotations or translations of a trajectory leave theiomgpatterns unchanged.
In order to effectively extract these patterns, encoding @dassification methods
have to be robust against invariances.

The application of machine learning techniques for aute@assification of
trajectories mainly serves three scientific goals: Firag wishes to identify the
biological or physical processes underlying the obsenrehpmenon by relating
changes in the trajectory to perturbations in the experisl@onditions ¢ausality
detection. Second, the information contents of a given trajectohwéspect to
a certain property of interest may be estimatedp@city estimationand third,
automatic identification and classification of vast amowitexperimental data
can facilitate the process of interpretatiaaia mining.

Model-free classification of trajectories traditionallysas neural networks,
e.g. to find invariant patterns within trajectories [15%t@ classify encoded tra-
jectories in feature space [204]. More recent approachd® imareasing use of
self-organizing map§gl58] for trajectory classification. Applications includiee
detection of suspicious activity in trajectories of pedast as recorded by sur-
veillance cameras [208] or the classification of user agtifrom the traces in a
virtual world [238]. Fuzzy logicand maximum likelihoodHidden Markov Mod-
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els (HMM) have also been successfully applied to the classifinadf pedestrian
trajectories [183]. Other applications include biologdficanspired motion classi-
fication schemes using vector quantization [147], speexdgration using mixture
models of trajectories [114], and vehicle trajectory dlésation using HMM with
binned data encoding [104]. Automatic trajectory clasatfan also has emerging
applications in credit card fraud detection [182], ecommsfiLl43], and financial
markets [144, 257].

In this thesis, we consider applications of machine legréchniques to the
supervised classification of biological trajectories, idey to assess the suitability
of various methods for biological applications [247], angtovide an automatic
procedure for optimal data encoding. We first introduce ttedlem of trajectory
classification using the particular example of keratocyérootility. After form-
alizing the problem, we assess the performance of a numis¢armdard classifica-
tion algorithms [54] on this application. The algorithmsdascribed in Appendix
B are compared among each other as well as to human classificiatng a separ-
ation measure from signal detection theory [120], thatti®tfuced in Subsection
3.1.4.

The representation of the trajectories in data space playental role in all
motion classification problems. Finding a set of highly disénative character-
istics is not only required for efficient classification, also contains important
information about the physical process that created thectay. In Section 3.2,
we consider the problem of automatically finding an optinedlaf characteristics
for any given classification problem. This is done by usingl&aptimizing data
encoder which is adjusted to maximize the classificatiorityua he concept is
demonstrated using the keratocyte motion data and compartbe handcrafted
encoding of Section 3.1.

3.1 Automatic classification of keratocyte trajectories

We employ various machine learning techniques to the taaktoimatically classi-
fying trajectories of movingeratocytecells. The different algorithms as described
in Appendix B are compared among each other as well as totepenon-expert
test persons using concepts fraignal detection theory120]. We find the al-
gorithms to perform well when compared to humans, suggestirobust tool for
trajectory classification in biological applications.

We start by describing the sample data used in this sectimhpeceed to form-
ally stating the problem of classification. The differentaniae learning tech-
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niques are then assessed starting from clustering methotfe ii-dimensional
real spacéR?, proceeding to risk-optimal separationRf, and dynamic signal
source models ilR? x T, whereT denotes the discrete ordered time space.

3.1.1 Keratocyte trajectory data

Experimentally recorded trajectories of live cells movimg glass coverslips are
used to test and assess the different classification digusit The cells are epi-
dermal keratocytes(Theriot group, Stanford Medical School), taken from the
scales of the fiskillichthys mirabilis commonly called “longjawed mudsucker”.
Isolated cells are cultured on glass coverslips and obdewgéng an inverted
phase-contrast microscope connected to a video camera.twbhdimensional
trajectories of the cells are extracted from the videos wittampling time of

At =15s. The observations are the position/time points along the trajectories.

The raw data space thusis= R? x T.

Two different experiments are performed: For tamperature data sefish are
acclimated at 18C, i.e. they are kept in water of this temperature for at I@ast
weeks prior to cell isolation. The movement of the isolated cedlghien recorded
at 10C, 20°C, and 30C using a temperature-controlled microscope stage-
138 trajectories (46 at each of the three observation tempesgjttrom 60 different
cells are collected (shown in Fig. 3.1).

For theacclimation data setall cells are observed at 20, but they are taken
from three different fish populations acclimated at@p16°C, and 25C, respect-
ively. From this acclimation datdy = 174 trajectories (58 for each acclimation
temperature) of 60 different cells are recorded (shown gn 8i2). Both data sets
contain samples from = 3 classes.

Our hypothesis states that the reaction rates of the biochéprocesses that
contribute to cell motility depend on temperature. Tempeeais therefore sus-
pected to influence the motion. Using automatic classificative want to address
the questions:

e Can the trajectories recorded at different temperaturedistehguished?
(temperature data)

e Are there persistent adaptations to temperature that aree¢imbered” by
the cells? (acclimation data).

LAfter this time, the adaptive changes in liver lipid contarg complete.
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Figure 3.1: Temperature data set. 46 trajectories of mokearatocytes are used per class.
The classes are defined by the three temperatures at whiadbgevations are taken. All
trajectories are shifted such that they start at the originhe coordinate system.
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Figure 3.2: Acclimation data set. 58 trajectories of movkegatocytes are used per class.
The classes are defined by the three temperatures at whidistheere acclimated for 3
weeks prior to the experiment. All trajectories are shifsedh that they start at the origin
of the coordinate system.
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3.1.2 The classification problem

Given some sample trajectories framclasses, we wish to assign any new, pre-
viously unseen, trajectory to the proper class. The proldambe formalized as
follows: We are givenn empirical data points

(3317?;1),---7(33m,ym) cxXxY, (31)

that are independent and identically distributedd.) realizations of an unknown
probability distributionP(x, y). X is the non-empty set from which tldoserva-
tions (sometimes callegatterng are taken an@ = {1,...,n}. They, € Y are
calledlabelsand specify the class a particular pattern belongs to. ffitzsson
aims atgeneralizatiorto unseen data poinaswith unknown labels,. We want to
predict they € ), given some new observatiane X. Formally, this amounts to
estimating a functiorf : X — Y,z — y = f(x), such thatf optimally classifies
unseen patterng € X. The criterion of optimality is to minimize thexpected
risk, which is the expectation value of the fraction of miscliedisamples

Rm:Lywwmwmmm (3.2)

wherel denotes a suitably chosdoss function A common choice is th@/1-
loss for whichi(f(x),y) is O if (x, y) is a correct classification and 1 otherwise.
The expected risk can not be minimized directly, since thrdedging probability
distribution P(x, y) is unknown. Machine learningalgorithms thus approximate
R|[f] based on the available information from the input-outipaining data of
Eq. (3.1). The most common approximation is #mepirical risk

m

RS = S 1 @) 33)

Classification algorithms are distinguished by the différapproximations to
Eq. (3.2) they use, and the different methods employed tinmie these approx-
imations.

3.1.3 Trajectory encoding

For most classification algorithms of Appendix B, the tréggesaz € R? x T
need to be transformed to vectorslkd. This encodingdetermines the data rep-
resentation seen by the classifier and is of great importemtee classification
process.
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For Hidden Markov Model§HMM), we encode the trajectories by their mo-
mentary speed of motion, which is discretized into four dtiéant bins for dis-
crete HMMs (dHMM). One HMM is trained for each of the 3 classafer eval-
uating the probabilityP [x|A;] of a new observation: against the modela; for
all classes = 1,2, 3,  is assigned to the class that has the highest probability.

For all other algorithms, we find a good encoding by considgetihe following
catalog ofcharacteristics

e average speed,

e standard deviation of speed,

e mean angle of direction change between 2 subsequent steps,

e standard deviation of those angles,

e net distance between first and last point of trajectory coagpo the total
path length,

e decay of the autocorrelation functions of speed and doeangle change,
and

e minimum and maximum of speed and angle change.

Histograms of the distributions of these properties amdegdifferent classes
of trajectories give evidence about the discriminatioratalty of each character-
istic. For the present data, we find the mean and the minimutheo§peed of a
trajectory as gooéncoding featuresallowing to represent the trajectories as vec-
tors inIR2. Fig. 3.3 shows the encoded data sets for both the temperaorthe
acclimation cases. It can be seen that the clusters mostiapy making the data
non-separablén this encoding space.

3.1.4 Assessment of classification performance

LetD = {(x;,y;), j = 1,...,N} be the complete data set of &l recorded
trajectoriese; with corresponding class labejs, a randonil” C D with #{7} =
m thetraining set and€ C D with #{£} = N — m and€ N 7 = () thetest set
An algorithm, trained or?, classifies the trajectories; € £ without knowing
the correcty;. The outcome of this classification . The hit rate for class:
is defined asi;, = #{x; € £ : y; = y; = i}/#{x; € £ : y; =i} € [0,1].
The false alarm rate(also called “false positives”) for clagsis given by f; =
#x, €€y =iNy; #i}/#{x; € € :y; #1i} € 0,1]. The complementary
quantitiesm; = 1 — h; andr; = 1 — f; are termedniss rateandcorrect rejection
rate, respectively. In each classification experiment, bothhibeate and the false
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Figure 3.3: Encoded data sets. Both the temperature datdefttand the acclimation data
set (right) are encoded using the mean and the minimum ofptbedsalong a trajectory.
Data points from the 10C temperature and T@ acclimation classes are denoted by circles
(o), those from the 2UC temperature and T& acclimation classes by triangled\j, and
those from the 3UC temperature and 2% acclimation classes by crosses)(

alarm rate are recorded for each temperature class as theseat the minimal
sufficient set of quality measures.

The different classification algorithms of Appendix B ar&itied on a subsét
of m = N/2 data points from each class and then tested on the remaifittez o
data. For the KNN (Appendix B.1) we sgét= 5, and for the SVM (Appendix
B.3) a Gaussian kernel with standard deviatior= 0.05 is used. The procedure
is repeated 4 times for different partitionings of the data training and test sets
(cross-validation cf. Subsection 2.3.5).

Measuring the classification quality

To quantify thediscrimination capabilityof a classifier, we use ththeory of signal
detection[120], which was originally developed in psycho-physicsl ésmwidely
used in experimental psychology. In this theory, the o@nwees of observations
that belong to class and observations that do not belong to classe assumed
to be governed by two different Gaussian probability disttions as illustrated in
Fig. 3.4. During training, the classifier learns a threst@ladbove which it assigns
all observations to clags If, after transformation to standard normal distribusipn
C = 0, the classifier is said to beeutral for C' < 0 it is calledprogressiveand
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Figure 3.4: Schematic of the theory of signal detection.@bations that belong to a class
1 occur with a certain probability density (solid); obseri@ts that do not belong to that
class occur with a different probability density (dashethe classifier chooses a threshold
C and assigns all observations abogéto classi. The discrimination capability of the
classifier is given by the normalized distance meagletween the two density functions.

for C' > 0 conservative

Thediscrimination capabilityof the classifier is given by the separation distance
d’ between the two normalized (by their standard deviatiostyiutions. A value
of d = 0 corresponds to uniformly random guessing, where hits aisd &arms
grow at equal rates, anl — oo characterizes a perfect classifier.

In Fig. 3.4, the hit raté; corresponds to the area under the solid curve aligve
and the false alarm ratg is the area under the dashed curve abGvd-or each
classi, bothC; andd;, can thus be computed frol and f; as

d; =2 (erf ™! (2h; — 1) —erf ' (2f; — 1)) (3.4)
e T ~1(9f _
Ci = 7 (erf™h (2n; — 1) +erf~ ' (2f; — 1)) . (3.5)

Classifiers are compared baseddinsince algorithms that are capable of better
separating the two probability distributions have a lowgyezted riskR.
Performance on the temperature data set

The temperature data set, introduced in Subsection 34 dlassified using all
the algorithms outlined in Appendix B. The results are extd according to the
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class h;[%] f;[%] d O hi %] fi[%] 4 C
1°C 1000 22 oo - 1000 22 oo -

20°C 544 245 0.8 0.29 54.3 157 11 0.46
30°C  46.7 229 07 041 68.5 20.7 1.3 0.15

Table 3.1: KNN on temperature data Table 3.2: GMM on temperature data

class h; [%] f;[%] & O W% fi[%] d O
1°C_ 1000 22 oo - 1000 33 o -
20°C 511 272 06 029 772 283 13 -0.09
3°C 413 244 05 046  37.0 114 09 0.77

Table 3.3: SVM on temperature data  Table 3.4: dHMM on temperature data

class h;[%] fi[%] d C
1¢°C  100.0 22 o0 —

2cC 76.1 305 1.2 -0.10
30°C  34.8 119 0.8 0.79

Table 3.5: cHMM on temperature data

previous paragraph. Tables 3.1 to 3.5 state the averagerage of hits and false
alarms over all different partitioning of the data into tviaig and test sets, as well
as the normalized discrimination capabilitisand threshold§’ of the classifiers
for each temperature class.

Fig. 3.5 displays the hit and false alarm rates of the classifior the three
temperature classes. The averages over all data partg®aire depicted by solid
bars, the error bars indicate the minima and maxima in thesarements. The’
values of the different classification methods are comperé&iy. 3.6.

Performance on the acclimation data set

All classification experiments are repeated using the meatlon data set as intro-
duced in Subsection 3.1.1. The results are summarized ieg8l6 to 3.10.
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Figure 3.5: Hit rate and false alarm rate for all classifierEhe percentage of hits (left) and
false alarms (right) on the temperature data is shown fohealassifier in each of the three
temperature classes: 1@ (“c”), 20 °C (“n”), and 30°C (“w”). The error bars range from
the smallest observed rate to the largest one (min—max bars)
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Figure 3.6: d’ values of all classifiers. The value of the discriminatiopalaility ' on
the temperature data is shown for each classifier in eachethiree temperature classes:
10°C (“c”), 20°C (“n"), and 30°C (“w"). The bars for “c” range to infinity, indicating
the (almost) perfect separability of the data in this clasfsFig. 3.3).
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class hi[%] f;[%] d C hi %] fi[%] 4 C

1°C 776 233 15 -002 880 211 20 -0.19
16°C 595 155 1.3 039 586 43 19 0.75
25°C 414 220 0.6 050 61.2 2068 1.1 027

Table 3.6: KNN on acclimation data Table 3.7: GMM on acclimation data

class h; [%] f,[%] &  C W% f;[%] d O
1°C 862 203 19 -013 845 203 1.8 -0.09

16°C 629 9.9 16 048 71.6 224 1.3 0.09
25°C  54.3 181 1.0 040 35.3 116 08 0.79

Table 3.8: SVM on acclimation data Table 3.9: dHMM on acclimation data

class h; [%] f.[%] d C n % fi%] 4 C

1°C__ 750 194 15 009 885 248 19 -0.26
16°C 560 69 1.6 0.67 473 165 09 052
25C 619 272 09 015 338 238 0.3 057

Table 3.10: cHMM on acclimation data Table 3.11: Humans on acclimation data

Fig. 3.7 shows the average hit and false alarm rates of tksifitxs for the three
temperature classes, along with their min—-max bars. BasdHea!’ values, the
classifiers are compared among each other in Fig. 3.8.

In addition to machine learning algorithms, the acclimaiiata set is also clas-
sified by humans. After training on a set of 30 trajectoried treir labels, the
test personare presented one unknown trajectory at a time. Individoaltipn
measurement points are symbolized by circles in order taigecspeed informa-
tion. All trajectories are shifted to start at the origin bétcoordinate system, and
they are rotated by a random angle prior to presentationh Racson classifies
174 trajectories appearing in random order. The averagdt @ger 5 test persons
is given in Table 3.11. The best-performing person who dedlafter the exper-
iment to have looked at speed information only reacifes- 2.0 for the 10C
class,d’ = 1.6 for the 16C class, andl’ = 0.7 for the 25C class. The globally
best person reachds = 2.1, d’ = 1.9, andd’ = 1.0, respectively, by taking into
account both speed and shape (curvature) information. oitesk result of the test
groupisd’ =1.9,d =0.1,d = —0.6.
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Figure 3.7: Hit rate and false alarm rate for all classifierEhe percentage of hits (left) and
false alarms (right) on the acclimation data set is showndach classifier in each of the
three temperature classes: M (“c”), 16 °C (“n”), and 25°C (“w"). The error bars range
from the smallest observed rate to the largest one (min—-raes) b

1.5F my e

d/

0.5r

cnw cnw Ccnw Ccnw Ccnw
KNN GMM SVM dHMM cHMM

Figure 3.8:d’ values of all classifiers. The value of the discriminatiopataility d’ on the
acclimation data set is shown for each classifier in each efthree temperature classes:
10°C (“c”), 16 °C (“n"), and 25°C (“w").
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Conclusions

From the results of this section we see that on non-sepachldters, GMM (Ap-
pendix B.2) and SVM (Appendix B.3) perform best. This pragdcevidence that
the data are actually normally distributed. All classifiars close to neutral with
low normalized threshold valugs. Compared to human classification, we find
that the automatic classifiers are at least as good or bettdle providing un-
biased analysis and fast processing of large data sets. tuane biased by prior
expectations and suffer from fatigue and inaccuracy. Thetfeat the best human
classification is as good as the best automatic classificatiticates that the data
encoding (Subsection 3.1.3) captures most of the releméormation.

3.2 Maximizing classification performance by encoding opin-
ization

Classification performance strongly depends on the datadémg. Manually en-
listing all interesting properties and finding a good enngddy exhaustive search
as done in Subsection 3.1.3 is not a practical strategy ér-tlimensional encod-
ing spaces. Moreover, the manually found encoding may b@ptitmal or biased
by prior expectations.

In this section, we consider the problem of automaticallgifig an optimal
encoding. We present a solution that usesta-optimizatiorand demonstrate its
performance on synthetic data with known optimal encodisigvall as on the
keratocyte data introduced in Subsection 3.1.1.

The method is based on defining a sesighalsthat are explicit functions of the
trajectory position sequender;}. Using a set obperatorsthat mapR» — R,
these signals are reduced to scalaaracteristics such as the mean velocity, the
minimum step length, etc. Encoding is performed id-dimensionalencoding
space where each Cartesian axis is defined by a linear combinaficharacter-
istics. These linear combinations are cafiegtures and theencodelis completely
described by the set of weights used therein. Since usda#ty M, the encoder
performs adimensionality reductiothat is optimized with respect to the separab-
ility of the data in the encoding space.

The encoded trajectories are classified using a standasifeda, and the classi-
fication quality is measured. An optimizer adjusts the wisgt the encoder such
as to maximize the classification quality. This procedusedepicted in Fig. 3.9,
finds the set of most discriminating characteristics for gimgn classes of traject-
ories. Besides the actual classification, this satis€riminating featuress itself
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Figure 3.9: Outline of the principle: Dynamic data is encdd@ order to use machine
learning techniques such as classification. To find a goodding, an optimizer is added
to maximize the classification quality in an outer learningp. The shaded blocks denote
software modules that are easily replaceable.

interesting. Knowing in what respect two classes of trajees differ the most
possibly enables conclusions about the physical or bicldgirocess underlying
the motion.

The self-optimizing encodds implemented in a modular software framework,
where both the classifier and the optimizer are easily replale. The modules as
depicted in Fig. 3.9 perform the following tasks:

e Adjustable encoder: Compute the signals and characterisfiall traject-
ories and combine the characteristics to features usiegdinombinations
with certain weights.

e Classifier: Separate the data into classes.

e Evaluation of classification quality: Quantify the classafion quality using
a set of test data and compute a measure of quality.

e Optimizer: Adjust the weights of the encoder to maximizedbality meas-
ure.

These modules are discussed in turn below.

3.2.1 A parametric encoder

Theencodemperforms the dimensionality reduction in a sequence ofstgarting
from a signalkc R, it applies a set of operatof$" — R. Each signal-operator
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pair (2, j) defines acharacteristice;;. From the set of all possible characteristics,
d scalar featureg; are computed as linear combinations. The weightsof the
linear combinations form the set of parameters that dessiiee encoder.

Signals

Signalsare explicit functions of the trajectory point sequerag}. A signal is a
time series and usually of the same or similar length (dinoenss the trajectory
itself. Commonly used signals include:

1. the path{x;} M,

2. the speed along the trajectaly ~' {||&; 41 — z4][2} 277,

3. the acceleratioht ' {||x; o — 22,41 + 2} 2, and

4. the path length per net displacemeﬁE;:1 lej+1 — zjll2/lle: —

S|Py P

Operators

Operatorsare mapping function®? — R that can be applied to signajs;}.
Commonly used reduction operations include:

a. the minimummin; || s;||2,
b. the maximumnax; ||s;|2,

c. themeas =1/M - Zi]\il l|sill2,

o

. the standard deviatiory (M — 1) - Y (||si]l2 — 5)2, and

e. the median; : #{||sill2 < sr} = #{l|s:ll2 > s1}-

Characteristics

A characteristicis defined as the result of applying a particular operattar a
particular signalj. All characteristics are normalized to the closed intefval]

and stored in a matriC' = ¢;;, whose columns correspond to the signals and the
rows to the operators. If we hawéop different operators angsig signals, the

matrix of characteristics thus @ € IR?SOF]X #sig
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Features

A featureis a scalar value computed as a linear combination of clenstits.
Each dimension of thencoding spacés formed by one feature, such thatin-
early independent features are required to spdrdenensional encoding space.
The features are computed by element-wise multiplicatfdth@matrixC' with a
weight matrixW = w;; of the same size, thus:

#0p #sig

(€)=Y wije;  L=1,....d. (3.6)

i=1 j=1

Non-linear featuresvith continuous derivatives are approximated by tfaiylor
seriesexpansion around:

1 1 .

F(C) = F(0)+ f(0)C + 5 f(0)C* + ...+ = f"(0)C" +h.ot, (3.7)
where all matrix operations are element-wise. The unknoenivatives are ab-
sorbed into the weights anf{0) = 0. Taking terms up to ordet, the matrixC
is thus augmented with all poweks= 2, ..., r of the characteristics;;, and the
weight matrix is enlarged accordingly:

r  #Op #sig

@) =3 wiker L=1,....d. (3.8)
k=11i=1 j=1
3.2.2 Measuring the classification quality

To estimate the quality of classification, we uséold cross-validatioras outlined
in Section 2.3.5. The following quantities are either kndvwam the data or from
the classifier output:

class labelsy; ,

predicted class labelg; ,

reliability for the class label prediction; ,
probability for a trajectory to belong to clagsp;.

The following set ofitness functionis used to quantify the classification quality
that is to be maximized:
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1. Quadratic Distance: The quadratic Euclidean distance between the true
class labels and the predicted ones, thus:

~lly - gl3- (3.9)

2. Weighted Quadratic Distance: The quadratic distance weighted with the
reliability, i.e. the estimated probability that the cliéisation is correct:

—Z (vi — ) ai.- (3.10)

3. Penalty: A user-defined penaltil is assigned to each miss and false alarm:

=) IgEss# {misses + 5% {false alarms. (3.11)

class

4. (Empirical) risk: The relative frequency of misclassification:
1
———#{i Y i L 3.12
e {i: ¥ # yi} (3.12)
5. Cross entropy: From the estimated probability vector that a sample belongs

to a class, and the true class membership indidgtet §;,, we compute
thedifference of informatioffior each sample as:

ti n 1-— tz n

The fitness function is given by the negative cross entropy:

_ Z A, . (3.14)

6. Probability Distance: The quadratic Euclidean distance between the estim-
ated and the true vector of class membership probabilities,

—[lt —pli5 - (3.15)

7. d’: The discrimination capability of the classifier as introeddn Subsec-
tion 3.1.4 is directly used as fitness function. To avoid nticnaverflow, it
is saturated ady,,, = 1000.
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3.2.3 The classifier

In the classifiermodule, we us&upport Vector Machine§SVM, cf. Appendix
B.3). A multi-class SVM is constructed as a tree of binary S/Mnd the class
probabilities are formed by summation of the node probiEslialong the tree. In
our software implementation we make use of the freely abkllibSVM [49].

We use two different variants of the SVM classifier: C-SVMdanSVM. The
parameters C and control the “softness of the decision boundary”, i.e. the-pe
alty assigned to a false classification in the training sdie hfluence of these
parameters on the overall performance is tested in Subse®2.5.

The ratio between the mean risk on the training sets and tha nik on the test
sets in the cross-validation is used to control the modelptexity and to perform
model selectiorbased on the width of the SVM kernel function. For raties3
the complexity is decreased, whereas it is increased fasrat 1. This rule is
based on the fact that the ratio between the true risk andhipérieal risk, R/ R,
is approximately equal tb + 2¢, wherec is thecompression ratio This theorem
is known as theShibata criterion[260]. The compression ratio hereby quantifies
how much of the original data’s complexity is retained by thedel. In the case
of SVM, complexity is quantified by the Vapnik-ChervonenHisnensiond, as
defined in Appendix B.3. A compression ratecof= 1 means that no learning
occurs,c > 1 indicates overfitting (cf. Section 2.3.4).

3.2.4 The optimizer

The optimizationof the encoder weights is done using tbevariance Matrix Ad-
aptation(CMA) evolution strategy [125].

The CMA optimization algorithm has three parameters: thp sizer, the num-
ber of offspring\ per generation, and the number of parenis the population.
The standard choice of = 2u is used in all cases. For smooth fitness functions,
we useu = d, otherwiseu = 1. The influence of these parameters is considered
in Subsection 3.2.5.

Since only the relative values of the encoder weights arepitapt, they are
normalized td—1, 1] to prevent the optimizer from drifting off. This normaliiar
involves dividing all weights by the value of the absolutey&st one and running
the optimization process on the remainiNg- 1 independent variables.
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| Fitness function | Fitness | Risk | lterations|
Quadratic Distance 0.01356 | 0.0121212| 2438
Weighted Quadratic Distancg 0.01107 | 0.0121212| 1058
Penalty Il = 1 1.101e-4| 0.0060606| 5751
Risk 0.00606 | 0.0060606| 2280
Cross entropy 45,5254 | 0.0121212| 2014
Probability Distance 0.47998 | 0.0181818 258
d’ 0.33194 | 0.0060606| 8146

Table 3.12: Comparison of the final risk for the differentdia functions.

3.2.5 Parameter studies

We compare the effects of different parameter choices uwitiiicially generated
trajectories of biased random walks. The data set condidtyee classes with
step displacement lengths taken from the normal distobuti’(E, s?). The three
classes are defined by different pdiEs s) as:

e class1E=20,s=5
e class2.E=30,5s=6
e class 3:E = 20, s = 10.

The trajectories are encoded in two dimensions using theaxrepaed and the
standard deviation of the speed as characteristics in arli@ecoder. The total
number of unknown weights thus is four. In order to gain aifgefor proper
parameter choices in practical applications, we consitfierent fithess functions,
different classifiers, and different parameter valuestier@MA optimizer.

Comparison of different fitness functions

The feasibility of the different fithess functions introgacin Subsection 3.2.2 is
tested using the CMA optimizer with = 4, A = 8, and a C-SVM with C=1000.
Table 3.12 summarizes the results.

The fitness functiond’, penalty, and risk work best, with the risk function re-
quiring the minimum number of iterations for convergence.
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| Parameters | 4 | Risk | Iterations]

C-SVM, C=100 0.33214| 0.0121212 100
C-SVM, C=1000 || 0.33214| 0.0121212 215
C-SVM, C=10000|| 0.33194| 0.0060606| 10790
v-SVM, v =04 1000.00 0.0 17548
v-SVM, v = 0.6 0.33214| 0.0121212| 2496

Table 3.13: Performance comparison for different classpg@rameter values.

Comparison of different classifier parameter values

Using the same three-class data set, we estimate the infludnibe classifier
parameters on the overall performance. We test both the K-&W ther-SVM
for different values of C and, using the fitness functiod .

The parameter C of the C-SVM defines the penalty assigned tis@assific-
ation in the training data. Its value ranges between O@ndTrhe v-SVM takes
a different approach with the parametelimiting the training error per support
vector.

Table 3.13 shows the different optima found. Th&VM with v = 0.4 results
in data separability. The performance of the C-SVM improwéh increasing C,
at the expense of more iterations and increasing tendenoyenfitting. At the
same risk level, the C-SVM needs less iterations than{B&M.

Comparison of different optimizer parameter values

Again using the same data set angt8VM with v = 0.6, we assess the effects of
the optimizer parameters. The step sizis internally adjusted by the CMA and
only its initial value needs to be specified.

We find the CMA withy = 1 to converge much faster (852 iterations instead
of 2496) to the same fitness value (risk 0.0121212) than thé\ @lth ¢ = 2.
This indicates that the fitness function is mono-modal, diheth the averaging
between the two parents does not add to the performanceidfmridimensional
examples, larger values of ~ d are however expected to be beneficial. All
optimizers use\ = 2y offspring.

Concerning the initial step size, we find that= 0.01 performs slightly better
thano = 0.1. This however strongly depends on the particular problerch shat
no general recommendation can be deduced.
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Figure 3.10: Data encoded by the mean speed and the stané=idtabn of the speed. The

symbols from the different classes are not linearly separahder this a-priori encoding.

3.2.6 Benchmarks
Synthetic data

We first illustrate the functioning of the algorithm on syetilc test data. Artifi-
cial trajectories of biased random walks are generated. ifidieidual step dis-
placements have uniformly random directions and theirttemgre sampled from
the normal distributionV/(E, s?). Four different(E, s)-pairs are used for the four
classes:

e class 1.E=20,s=5
e class 2.E =20,s =25
e class3E=60,s=5
e class 4.E = 60, s = 25.

This defines am-priori encodingbased ork ands in a two-dimensional encod-
ing space. Fig. 3.10 shows the encoded data set using tbikpowledge. Notice
that the data are not linearly separable under this encoding

The data are processed by the self-optimizing encoderibedcso far, using a
two-dimensional encoding space with linear features. Véethis signal “speed”
and the operators “mean” and “standard deviation”, crgadiix 2 weight matrix
to be optimized. The initial encoding is defined by randomsgas for the weights
and is shown in Fig. 3.11(a). We use a C-SVM with C=1000 and &@lgtimizer

76 CHAPTER 3. TRAJECTORY CLASSIFICATION

(b)

Figure 3.11: (a) Initial data encoding with random weigh&: = 0.0267 - mear{speed —
0.0078 - stddeyspeed and fo = —0.1276 - mear{speed — 0.1167 - stddeyspeed. (b)
Optimal data encoding found after 9 iterations of the CMAimjter: f; = —0.1358 -
mear{speed — 0.1096 - stddeyspeed, and fo = —0.1833 - mear{speed — 0.0521 -
stddeyspeed. The classes become linearly separable.

with . = 1, A = 2, ando = 0.1. After 9 iterations of the CMA, the data encoding
shown in Fig. 3.11(b) is found, where the two optimal feasiaee:

f1 = —0.1358 - mear{speed — 0.1096 - stdde\(speed (3.16)
f2 = —0.1833 - mearf{speed — 0.0521 - stdde\(speed . (3.17)

Under this encoding the data become linearly separable erfielgh classification

is possible. Using the same number of encoding space diorensand the same
signal-operator space, the automatic encoder is thus afgerform much better
than the direct use of prior knowledge.

Keratocyte trajectory data

We compare the self-optimizing encoder to the manually dodata encoding of
Subsection 3.1.3 for the acclimation data set (Subsectibd)3

We use the signals “path”, “speed”, and “acceleration”, #agdoperators “min”,
“max”, “mean”, and “standard deviation”. Furthermore, waetwa &' order non-
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| [ & | Risk [ lterations]

C-SVM, C=100|| 0.99898| 0.306306| 115521
v-SVM, v=0.4 || 0.99918| 0.342342| 79243

Table 3.14: Performance comparison on the keratocyte dztta s

linear encoder, keeping terms upsito= 4 in Eq. (3.7), and an encoding space
of dimension four. The total number of weights thus is 192dleg to a high-
dimensional optimization problem. As fitness function we tiee measuré’, and
the optimizer parameters are sebte= 0.1, u = 1, and\ = 2.

Table 3.14 summarizes the results. After 115521 iteratihesC-SVM is able
to classify the data with a residual risk of about 31%. Thisipares well to the
minimal risk of 34% for the SVM with manual encoding (cf. Sabgon 3.1.4).
The presented automatic encoding method thus seems &e&sifihd good rep-
resentations for biological trajectories, and it enablghér-dimensional encoding
spaces where manual search becomes prohibitively exgensiv

Chapter 4

Applications and Results

This chapter presents applications and case studies ointje particle tracking

and trajectory analysis methods described so far. We sitirttiaree application

cases from cell biology, demonstrating the feasibility loé tracking algorithm

presented in Chapter 1 for purely random motion, fast diaehotion, and the
tracking of objects with strong intensity fluctuations. Thid is used to demon-
strate how the multi-frame linking algorithm (Subsectio8.2) recovers connec-
ted trajectories from intermittent point detections.

The complete spectrum of methods, from global analysis ¢gmnsatation to
event-based analysis, is then demonstrated on trajextiri@rus particles on the
extracellular surface of the plasma membrane of live c&is different viruses —
Polyomavirus and Adenovirus-2 — are fluorescently labetetalded to live cells.
After binding to their respective receptors in the plasmanimene, the virus-
receptor complexes exhibit intricate motion dynamics befieing internalized by
the cell.

ThePolyomavirusstudy presented in Section 4.2 was done in collaboratiom wit
the group of Prof. A. Helenius and considers the motion afisAreceptor com-
plexes under different chemical treatments of the cells.alyzing the motion
patterns under perturbations of the cytoskeleton or thd pmposition of the
plasma membrane provides important information about tbkecolar mechan-
isms of virus uptake and the organization of the plasma manbr

The Adenovirus-2study of Section 4.3 is a collaboration with the group of
Prof. U. Greber, and it entails a particularly large dataveih several tens of
thousands of trajectories that were acquired, analyzedl classified in a com-
pletely automatic way. This illustrates the suitability tbf presented methods
for high-throughput studies and enables the detection akvrgeractions by stat-
istical analysis. The large number of samples and the uathidata processing
permit significant statistics even for cases that would motiétectable otherwise.
Adenovirus-2 relies on a duo of receptors to bind to the tHist associates with
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Figure 4.1: Total reflection at the glass-water interfacedahe evanescent field on the
water side form the principles of TIRF microscopy. The illuation depthd is defined by
the1/e decay of the evanescent field intensity and is about halfeofvdivelength\ of the
incident light.

a primary receptorand then transfers tosecondary receptadbefore internaliza-
tion. The present study compares the motion of viruses ahtyile cells with the
motion on cells that lack the secondary receptor. This Iéad®nclusions about
the interplay of the two receptors and the virus transfewbenh them.

The videos underlying all of the studies presented in thagtér were recorded
in the groups of Prof. Helenius and Prof. Greber usiotal Internal Reflection
FluorescencgTIRF) microscopy. This microscopy technique makes uséef t
evanescent fielth total beam reflection to achieve higlepth selectivity

Total internal reflection occurs at interfaces from opticalense to optically
less dense media, if the incidence angle of the beam excesit&cal threshold.
In the microscope, the quartz glass of the coverslip forneh sun interface with
the water of the sample atop. For this quartz-water intetfttee critical angle is
about 62. In TIRF microscopy as illustrated in Fig. 4.1, the anglenmstn the
interface and the laser beam used to excite the fluorescekermas larger than
this critical angle. On the low-density side of the integfaan evanescent field
with exponentially decaying intensity develops. The depth of penetratior)
of this field is about half the wavelength of the incident tighlence, only a few
hundred nanometers at the bottom of the sample are imaged b microscopy
[288, 287].

The use of TIRF microscopy in the present application erssthrat only the
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virus particles within the evanescent field are imaged. @lae the viruses on
the plasma membrahe Free viruses in solution and internalized viruses inside
the cell are not illuminated, and are thus excluded from tiseovation. The depth
selectivity of TIRF microscopy is an enabling feature of phesent studies of virus
motion on the plasma membrane of live cells.

4.1 Three case studies from cell biology

The feature point tracking algorithm described in Secti¢hahd the global MSS
analysis method (Subsection 2.1.2) are demonstrated tisiag different case
studies from cell biology. The three examples highlighfedént capabilities of
the data analysis procedure:

1. Tracking of freely diffusive motionendosomes containing fluorescently
labeled Low-Density Lipoprotein (Dil-LDL) molecules,

2. tracking of fast directed motiontrafficking of internalized Adenovirus-2
(Ad-2) particles moving along microtubules, and

3. tracking of objects with strong intensity fluctuatiorsgaantum dots (Qdot)
on the plasma membrane.

These case studies help verify the robustness and aptiticaifithe algorithms
for a wide variety of problems in cell biology.

4.1.1 Moment scaling spectrum of endosome motion

In the first applicationendosomesf 3T6 mouse fibroblagstells are imaged. LDL
is fluorescently labeled with Dil-red. Endosomes contajrinl-LDL are imaged
using TIRF microscopy at 20 Hz with 80 nm/pixel resolutione(éhius group),
and 2000 16-bit TIFF frames are recorded. Fig. 4.2 shows asémple frames.
The parameters used in tracking are listed in Table 4.1. @nhgfe is successfully
traced over 1446 frames before it fades out. The extractgectory is shown in
Fig. 4.3(a).

The results of the MSS analysis (cf. Subsection 2.1.2) aye/sln Fig. 4.3(b,c).
The MSS shows an almost perfectly straight line of slop2 The particle thus
undergoes free and normal diffusion. The diffusion cortsimaetermined from
the second moment, to bev, = 1.8-10~3 um?/s. Fig. 4.7(a) shows the intensity

1The diameter of the Polyomavirus particle is about 45 nmeteeof Adenovirus-2 is about 90 nm.
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Figure 4.2: Time-lapse frame image sequence of a Dil-LDhtaming endosome (arrow
head) in a 3T6 mouse fibroblast observed using TIRF micrgsabp0 frames/second. Each
image shows a 12m x 12 um region on 156150 pixels, corresponding to a resolution of
80 nm/pixel. The time difference in seconds to the first inod¢fge sequence is given in the
lower-right corner of each frame. Using = 1 the particle is tracked over 1446 frames
before fading out. (Image intensities are inverted for prig purposes.)

parameter Dil-LDL Ad-2 Noc Qdot
particle radiusw [pixel] 4.0 2.0 3.0 3.0
intensity percentile: [%)] 0.1 20 1.0 0.05
cutoff scoreTy [-] 0.0 1.0 4.0 0.0
max step lengtiL [pixel] 5.0 5.0 1.0 1.0
link rangeR [frames] 1 4 2 lor10

Table 4.1: Summary of the tracking algorithm parameterisgst used in the examples of
this section.

of the endosome over time. The continuous fading could bealpkotobleaching
or the endosome moving into the cell and thus out of the ecamedield.

4.1.2 Tracking and analysis of Adenovirus-2 trafficking

The tracking of microtubule-dependent trafficking of iHdular Adenovirus-2
(Ad-2) serves as a test for the algorithm in cases of fasttticemotion. We ana-
lyze the original 16-bit frame images of Suomalairetral. [276] (courtesy of
Prof. U. Greber) that were tracked by hand for the origindlligation. Fluores-
cently labeled internalized Ad-2 particles in wild typ€7 cellsare imaged using
a wide-field fluorescence microscope. 104 frames are redavith a resolution
of 0.15um/pixel, and a 1.3 seconds time interval between frames.cohglete
protocol is contained in Ref. [276]. Fig. 4.4 shows a timeskapequence of some
frames with the unspecific photobleaching clearly visifleacking is done using
the parameter values given in Table 4.1, and yielded 73dratlengths between
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Figure 4.3: Tracking of an endosome containing fluorescei.DL. (a) xy-path of the
particle as tracked from the video recording. (b) Mean sgudisplacement of the track,
computed according to Eq. (2.5). The dashed line is the tefuhe linear least squares
fit used to determine the slope and the diffusion constamig¢gegiven in the figure). (c)
Moment scaling spectrum of the trajectory with dashed Imesking sloped /2 and1.

60 and 104 frames. Three example tracks are shown in Figa)4d{d the intens-
ity of virus particle (a) over all 104 frames is shown in FigZ@).

The control experiment of Suomalainehal. [276] considers Ad-2 irHeLa
cellsthat are treated witinocodazolea microtubule depolymerizing drug. The
tracker parameters are given in column “Noc” of Table 4.1e Tdtal length of the
control movie is 275 frames. 27 tracks of lengths between@0252 frames are
extracted by the tracking algorithm, and MSS analysis alnewdtin Subsection
2.1.2 is performed for all of them.

Fig. 4.5 shows a scatter plot of all diffusion constant@and MSS slopeg for
the two experiments. The existence of biased or directeibmat the wild type
experiment is evident from thé values above 0.5. Still a significant fraction of
trajectories with3 around or below 0.5 exists, which means that those particles
are not always transported actively. As can be seen fromdFiga), intermediate
pauses or changes in direction occur, causing the gldtmatrop. The nocodazole
control never exhibits directed motion and particles armast freely diffusive,
which is evidence for the directed motion to depend on mitdyoles [276].

4.1.3 Tracking of Quantum Dots

We consider the tracking of quantum dots (Qdots) to dematesthe function of
the multi-frame linking algorithm as described in Subsattl.2.2 forR > 1.
Quantum dotgQuantumDot Corp., www.qdots.com) are extremely brighd an
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Figure 4.4: Time-lapse frame image sequence of Ad-2 movorgyanicrotubules in TC7
cells observed using wide-field fluorescence microscopyt &skconds/frame. Each image
shows a 37.6am x 37.65um region on 25k 251 pixels, corresponding to a resolution of
0.15um/pixel. The time difference in seconds to the first imaghesequence is given in
the lower-right corner of each frame. All indicated parésl(arrow heads) are tracked over
the full 104 frames. (Image intensities are inverted fonfirig purposes.)

60 ;
(a)
40 0.8 \ /(b)
T (©) °
Laran ] @
5 | 0.6 R QO ogoogO
820 S IR I Ll
> : X X% Lo & o
% X o o°° o
0 0.2 o L o o
. X
0 3 2 -1
10 10 10 10
10 0 10 20 30 40 )
x [pixel] vo [um*/s]
(@) (b)

Figure 4.5: Trafficking of Ad-2 particles along microtubslga) zy-paths of three sample
particles as tracked over all 104 frames of the movie. Aletctories are shifted to start at
point (0,0). Stretches of directed motion with intermegli@ndom segments are visible. (b)
Scatter plot of the global diffusion constamtsand MSS slopes for all tracks of the wild
type experiment (circless) and the nocodazole control (crosses).
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Figure 4.6: Time-lapse frame image sequence of a quanturfadoiv head) on the plasma
membrane of 3T6 mouse fibroblasts observed using TIRF mapgsat 20 frames/second.
Each image shows a 1@n x 12 um region on 15& 150 pixels, corresponding to a resolu-
tion of 80 nm/pixel. The time difference in seconds to thélbétg of the sequence is given
in the lower-right corner of each frame. Using = 1 the particle can be tracked over
21 frames; withR = 10 the longest trajectory spans 1068 frames. (Image interssiie
inverted for printing purposes.)

photo-stable fluorescentno-particles They however exhibit strong fluctuations
in their emission intensityblinking), which complicates the linking of point de-
tections into trajectories.

Biotinylized ConcanavalinA is bound to 3T6 cells for 30 sedsin PBS. Cells
are dipped in imaging medium. Q.21 Streptavidin-coupled 25 nm Qdots are ad-
ded. Using TIRF microscopy at 3€ (Helenius group), 2000 frames are recorded
at 20 Hz video rate with 80 nm/pixel resolution. The imagesstored as uncom-
pressed 16-bit TIFF files.

Fig. 4.6 shows a few sample frames from the movie. The blmigrclearly vis-
ible as the Qdot has vanished in the second image. Good ptareseéings for the
tracking algorithm are determined using the graphical ugerface documented
in Appendix A.3. Their values are given in Table 4.1. Using taubsequent
frames to perform trajectory linking (i.d2 = 1), the longest track that can be
extracted is 21 frames in length. SettiRg= 10 increases the track length to 1068
frames. This is a clear advantage since tracks as short ssith¢heR = 1 case
would not allow to determine diffusion constants or othearties of the motion
with significant statistics (cf. Subsection 2.1.2).

Fig. 4.7(c) shows the time evolution of the fluorescencensitg of the sample
Qdot. The strong fluctuations (“blinking”) are clearly i, as well as its photo-
stability and brightness. The Qdot in this example is alnstetionary. The MSS
shows a straight line of slope 0.083 (figure not shown), aeditfiusion constant
is below the detection limit.
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Figure 4.7: Particle intensitiesno over time as returned by the tracking algorithm. The
time evolution of the intensity is shown for each of the thest cases. The sum of all
pixel values within the particle radius is computed as intensity measuig, cf. Eq. (1.8).
The strong intensity fluctuations (“blinking”) of the Qdaare clearly be seen in (c). The
continuous intensity decay of Dil-LDL and Ad-2 could be dughotobleaching or the
particle moving out of focus.

4.1.4 Experimental assessment of the tracking accuracy

In order to assess the tracking quality, the SNR of the imagegstimated using
the noise in the bright image regions as outlined in Submedti3.2. The program
used to estimate the SNR is tested on the synthetic imagesosfrk SNR from
Subsection 1.3.2. The SNR values of these test images arrtiprmeasured to
within +7%. The mean measured SNR of both the Dil-LDL and the Qdot sample
is 3.1, averaged over all frames. The background intensity of tbet®@ideo is
more than 3 times larger than the one of the Dil-LDL case. {J#ire results from
Subsection 1.3.2, this SNR corresponds to both a trackiogracy and precision
of about 0.2 pixel (16 nm). The experimentally measurecktstandard deviation
in the Qdot example is 0.4 pixel, which is consistent withtkey small value of
its MSS slope and illustrates the sensitivity of the latteasure.

Positioning errors result in observeghparent subdiffusiofl87]. Using the
model of Martinet al. [187], the measured diffusion constant for the Dil-LDL-
containing endosome, and above estimate of the positiomiray, the apparent
slope in the double logarithmic MSD plot of Dil-LDL (Fig. 418) is predicted to
be0.933 < v, < 1. This is in excellent agreement with our measuyeaf 0.973
and supports the conclusion that the motion of the endosemerimal diffusion,
as properly indicated by the MSS slope.
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4.2 Analysis of Polyomavirus motion on the plasma membrane

The present section reports the summarized results of iagpllge feature point
tracking and trajectory analysis methods outlined so fantayzing the motility of
murinePolyomavirugPy) on the extracellular surface of the plasma membrane of
live cells [96]. Polyomavirus is a small (45 nm diameterjngie, non-enveloped
DNA tumor virus [272] that uses either one of tangliosides GD1ar GT1b
as itsreceptor[291] and relies on clathrin-independent, cholesterqemelent en-
docytosis to deliver its genome into the host cell for regiian [112]. Instead
of the infectious virus, we usdarus-like particles(VLPs) that resemble the virus
structurally, but do not contain the DNA genome [115].

Fluorescently labeled VLPs are added to B&6 Swiss albino mouse lung fibro-
blast cells After binding to the receptor, the motion of the VLPs is awoédically
tracked using the method described in Chapter 1. The goalusé the labeled
VLPs as molecular probes to investigate the organizatidheoplasma membrane
and the interplay of integral membrane proteins (such asithe receptors) with
the cytoskeleton. The study makes use of different cherpiedirbations of the
cell:

e untreatedwild type(wt) cells,

e cells treated witHatrunculin A (LatA), an actin polymerization inhibitor,
and

o cells treated withmethyls-cyclodextrin(MCD), a cholesterol sequestration
agent that reduces cellular cholesterol to levels below 40formal [96].

Control experiments also consider treatments Jagplakinolide a drug that
inhibits actin depolymerization and stabilizes actin fieats, andyenistein a tyr-
osine kinase inhibitor that blocks virus uptake. Furthertoas involve caveolin-
deficient cells and quantum dots (cf. Subsection 4.1.3) ledu cholera toxin
6, which binds to the same receptor as Py. Since TIRF micrgsoegords the
motion of particles on the bottom membrane of the cell, agotiet of control
experiments considers the top surface of the cell to maletbat the dynamics,
as quantified by the global MSS analysis, do not differ. Freeestricted diffu-
sion of the virus-receptor complex is measured in artifibiRIPE lipid bilayers
All experimental work was done in the group of Prof. A. Heleniprotocols and
controls are contained in the original publication [96].
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Figure 4.8: Time-lapse frame image sequence of Py VLP maurirthe plasma membrane
of a 3T6 cell, imaged using TIRF microscopy (Helenius grat®0 frames/second. Three
Py VLP are exemplarily highlighted by arrowheads. Each immaows a 12Zmx 12um
region on 15 150 pixels, corresponding to a resolution of 80 nm/pixek fitme difference
in seconds to the firstimage of the sequence is given in therdoght corner of each frame.
The total movie extends over 2000 frames. (Image intessitie inverted for printing
purposes.)

4.2.1 Virus particle tracking

Fluorescently labeled Py VLPs are bound to the plasma meratoélive 3T6
cells and imaged using TIRF video microscopy with a resotutf 80 nm/pixel
and a frame rate of 20 Hz. All movies are 2000 frames long; afeample frames
are shown in Fig. 4.8 for illustration. Feature point trackis done using the
algorithm described in Section 1.2 with parameters= 3 pixel, R = 1 frame,
L = 10 pixel, Ts = 0, andr = 0.1%. Only trajectories longer than 100 frames
are retained. We record a total of 220 trajectories on wsc@H with LatA treat-
ment, and 256 with added MCD. A few example trajectories Gédknt motion
behaviors are shown in Fig. 4.9.

The feature point tracking quality is assessed using thehmark results of
Subsection 1.3.2. The estimated mean SNR of the frame iniadet + 0.28,
corresponding to a tracking accuracy and precision of 0dba# pixel, respect-
ively. The SNR is properly estimated from the bright padicenters as outlined
in Subsection 1.3.2. The estimation procedure was prelyidasted on bench-
mark images of known SNR and found to measure the values withcauracy
of £7% (cf. Subsection 4.1.4). The smallest detectable diffusionstant is de-
termined from trajectories of five stationary particlesttai@ directly attached to
the glass coverslip. The standard deviation of these trecks3 pixel, corres-
ponding to a lower limit ofvg min = 1.9 - 10~7 um?/s. The upper bound for the
diffusion constant is given by the control experiments itifiaial membranes as
Vomax = 3.2- 1072 £2.3- 1072 um?/s (8 = 0.42 + 0.1, N = 39), so that the
dynamic range of the measurements spans about 5 orders oftousy
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Figure 4.9: Five sample trajectories of Py VLP motion on thesma membrane of 3T6
cells after binding to the receptor. Different modes of wtare observed: (1) biased
motion, (2) mixtures of different segments, (3) confinetnemslowly moving area, (4) free
and normal diffusion@ = 0.49), and (5) arrest zones. The trajectories are represented to
scale, but arbitrarily shifted for presentation purposes.

4.2.2 Global analysis results

Examination of the recorded trajectories starts with aglSS analysis (cf. Sub-
section 2.1.2) for all three drug treatments. Fig. 4.10 shitve(v», 3) scatter plot
of all trajectories. Circles mark wt cases, diamonds cpoed to MCD treatment,
and crosses to LatA treatment. Itis evident from this scatte that LatA causes a
general increase in mobility and diffusion speed, where@DMompletely elim-
inates freely diffusive motion.

This can be further quantified by the MSS sloph histograms as shown in
Fig. 4.11 for all three cases. Treatment with LatA causesardhift to larger
0, indicating a decrease in confinement. Treatment with MCDBhenother hand
causes almost all trajectories to be confined (sifiphnd completely eliminates
the occurrence of free diffusiof(= 1/2). The histogram of step angle changes
(Fig. 4.12, cf. Subsection 2.1.3) consistently confirms ttiservation.

The global MSS analysis in the., 5) phase spacalso enables unambiguous
classification of the motion types of virus-receptor p&esc In Fig. 4.13, the three
main classes of motion — free diffusion, stationary pagclnd particles that are
confined in moving areas — are indicated by boxes. The lalielealasses cor-
respond to the numbers in Fig. 4.9, where representativages from each class
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Figure 4.10: Scatter plot of globdl,, 3) for all drug cases: wt (circlesN = 220), LatA
(crosses N = 74), MCD (diamonds N = 256). Addition of MCD completely eliminates
free diffusion and shifts the population to smallgr LatA shows the opposite effect.
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Figure 4.11: Histograms of the global MSS slop®ver all trajectories of the three drug
cases (see text for description). The total number of ttajées is: N = 220 for wt,
N = 74 for LatA, andN = 256 for MCD.
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Figure 4.12: Histograms of angle changes between two ssbeeslisplacements. The
counts are taken over all displacements of all trajectoiiegach drug case (see text for
description). A more pronounced the center dip correspdondsiore confined motion.
Brownian motion would generate a uniform distribution.

are shown. The error bars in Fig. 4.13 indicate the standewthtion according

to Egs. (2.16) and (2.17). It can be seen that the present M8Igsis enables
the discrimination between stationary particles and gladithat are confined in a
slowly moving area. Using only MSD analysis, these two @assould be indis-

tinguishable since they overlap in their diffusion contsdBa6].

VLPs that are confined to slowly moving zones, such as the roiégi. 4.9(3),
are frequently observed in wt cells. To show that the slowiananacroscopically
corresponds to free diffusion, we analyze the correspantiajectory segments
separately. After smoothing with a runnifpxcar averagdilter of 10 frames
width in time, these segments exhibit a macroscopic MSSesté = 0.5 + 0.1
and amacroscopic diffusion constaof v, = 0.5...1.5 - 10~ um?/s, indicating
free, but very slow, diffusion of the arrest zone itself.

4.2.3 Moving window analysis results

Virus binding and internalization is a dynamic process &ed¢sulting trajectories
are not expected to be realizations of a stationary rand@oess. They rather
change their mode of motion at least once during their damatirhese changes
contain important correlations with biochemical processeherefore we wish to
gain an impression of the time evolution of the quantificaparameters along the
trajectories. We apply a moving-window MSS analysis withiadew width of

n, = 120 frames, as introduced in Section 2.2. This yields smootreszes in

the (12, B) phase spacerepresenting the change over time. In the case depicted
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Figure 4.13: Scatter plot of globdl-, 3) for Py trajectories on wt cells. The boxes indicate

regions that correspond to particular motion types (soU@®)). Representative examples
for each type are shown by the corresponding numbers in Fay.Brror bars indicate the
standard deviation of the statistical uncertainty accaglio Eq. (2.16).

in Fig. 4.14, the VLP-receptor complex is initially more @ss freely mobile.
The mobility then decreases as the particle becomes mofimedn After a short
period of immobility, the complex is confined in an arrestedmat is itself mobile
(highlighted by the shaded ellipse in Fig. 4.14). This is tiéyeninal arrest zone
for this example and the VLP disappears from the movie aftemaseconds of
residence time.

4.2.4 Trajectory segmentation results

As suggested by the moving window analysis, the VLPs exfailsharacteristic
motion pattern in which free mobility is followed by one owvseal (possibly mo-
bile) arrest zones before the particle disappears frommttagé. In combination
with the drug treatments of the cells, we use the trajectegyreentation technique
outlined in Section 2.3 to investigate the nature of thisiomopattern and pos-
sible molecular mechanisms for it. The segmentation arsaiggolves detection
of short periods of directed motion as wellagest zones

To quantify the fraction of directed motion in function oftdrug treatment, we
compare the cumulative length of all directed segments rajadtory to the total
length of the trajectory. The resulting histograms, as showFig. 4.15, clearly
show that MCD effectively prohibits directed motion, a fingithat is consistent
with the MSS analysis in Fig. 4.11. Also consistently, Lai&reases the directed
fraction to an average of about 1/5 of the total length of thgttories.

92 CHAPTER 4. APPLICATIONS AND RESULTS

vo [pm?/s]

Figure 4.14: Moving window MSS analysis of an example Pyttajry on a wt cell. The
inset image shows the trajectory in thg-plane. The trace of this trajectory in th{e-, 3)
phase space is shown in the main plot. The arrow head markstahisof the trajectory and
the terminal confinement zone is highlighted by the shadgi$el After being trapped in
this mobile arrest zone for a while, the virus disappearsifthe movie.
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Figure 4.15: Histograms of the fraction of directed segmsénteach drug case (see text for
description).
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Figure 4.16: Histograms of speed in the directed segmenésl afrug cases (see text for
description). The MCD case contained only 20 directed seggne
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Figure 4.17: Histograms of residence time in transient atreones for those particles that
leave the zone again.

Knowing the directed segments in each trajectory allowseteminine the trans-
port speeds in all of them. The measured distribution of d@peée shown in
Fig. 4.16. Application of LatA shifts the distribution toster speeds with a mean
around0.8 um/s. The MCD data set contains only 20 directed segmentdah to
with all but four having a very low speed.

The segmentation algorithm is also used to identépsient arrest zoneshere
the VLP temporarily pauses (within the accuracy of the tiaglalgorithm) be-
fore moving on. Fig. 4.17 shows the distribution of residetimes in such arrest
zones. Only the zones from which the particle leaves aga&ic@nsidered, as the
residence time for the others can not be quantified (the etiteafovie is arbit-
rary). While LatA virtually eliminates residence timed5 seconds, MCD causes
a spread to longer times.
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Figure 4.18: Histograms of the size of transient arrest zofoe all drug cases.
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Figure 4.19: Histograms of the fraction of the total traject length spent in arrest zones
for all drug cases.

The distribution of the sizes of the arrest zones is showngn4=18 for all three
classes. The size is measured as the standard deviatioa todjictory inside the
arrest zone and typically is around 1 pixel in wt cells. Agitof MCD does not
change this typical size, but increases its frequency. laithinates most arrest
zones of finite size.

Fig. 4.19 shows the distribution of the fraction of the whindgectory length that
is spent in arrest zones. In wt cells, around 45% of all ttajées do not contain
arrest zones at all, while the fraction of those spending thibole life in arrest
zones is around 25%. The LatA treatment causes 55% of the Yi_Rsver pause
and the set of trajectories containing arrest zones onlywhashed. MCD has
the opposite effect with the fraction of permanently imnielgarticles rising to
almost 50%.

The statistics of arrest zone sizes and VLP residence timgestenmarized in
Table 4.2. Addition of LatA causes the zones to grow (loosefinoement) and the
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Case zone size [nm] residence time [s]
wt 36.8916+ 21.6861 17.39176@ 16.322162
LatA | 60.3758+ 28.3590  4.716092 3.452447
MCD | 29.1014+ 9.48400 26.806853 21.170700

Table 4.2: Averaget standard deviation of arrest zone sizes and residence tioresl|
cases.

residence time is drastically reduced. MCD tightens thdinement and signific-
antly increases the mean residence time.

425 Conclusions

Based on the presented global and local analyses, differedés of motion can
consistently be identified for the VLPs [96]. Immediateljeatinding, the VLPs
display 5 to 10 seconds of rapid, free diffusion at a rate cmaipe to the one
observed in artificial lipid bilayers. The period of freefdgion ends with an
abrupt decrease in mobility, and the particles become cehfin areas with a
diameter of 30 to 60 nm. Occasionally, VLPs break loose amer emother phase
of free diffusion, before being trapped again in the samedifferent arrest zone.
From the control experiments we see that the arrest zonestdovarlap with
clathrin-coated pits or caveolae and that the process dineanent does not seem
to be directly linked to endocytosis [96]. Moreover, we fitgit inhibition of
actin polymerization by LatA prevents confinement. It se¢imesefore likely that
the confinement of particles reflects a basic property of thsnpa membrane,
and may be attributed to the general phenomenaonfpartmentalizationf the
membrane by the cytoskeleton [258]. The “fence” or “corrsdénario involves
partitioning of the cytosolic surface of the plasma membrhn tightly apposed

dynamicactin filamentsforming a grid on the inside surface. The filaments pre-

vent free diffusion of proteins and complexes with bulkyoptasmic protrusions.
While such proteins and complexes are free to diffuse wiglaich partition of the
grid, inter-compartment movement is restricted [235, &B,277].

In the case of VLPs, the receptors to which they bind are heweonstrained
to the outer bilayer leaflet. It is not obvious how the trareambrane coupling
that leads to actin-mediated confinement occurs in this. c&sgious evidence
[96] points to the explanation that each VLP clusters sé\gaaglioside recept-
ors and that these clusters induce the formatiolipad rafts [263] in the plasma
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membrane, such that lateral diffusion is subsequentlyicésd to those rafts.

We find that the initial phase of free diffusion is eliminategddepletion of cel-
lular cholesterol by MCD. The fact that cholesterol deplettan lead to immob-
ilization of plasma membrane components is not unprecedentthe literature.
A reduction in lateral mobility of several GPl-anchoredtpios, trans-membrane
proteins, and lipids has been reported [304, 155, 162, 126k mechanism put
forward to explain the effect is actin-independent, reldesagglutination of lip-
ids into large, stable, ordered lipid domains [304, 155,]1Z8n the other hand,
it has been proposed that cholesterol depletion causespairtithe P14 5y P»-
level, which in turn affects the cortical actin cytoskeletand thus lowers lateral
mobility of membrane components [162]. Since LatA did naterse the effect
of cholesterol depletion, the lack of VLP mobility in chadlesol depleted cells is
most likely due to the formation of large immobile membraaéches containing
the receptors and the bound VLP. The latter explanatiorssspeobable.

Taken together, our results lead to a model that begins visittidy of the in-
coming VLP to the receptor. The lateral mobility of the compformed is not
constrained until some form of trans-bilayer coupling asdhat imposes strict,
actin polymerization-dependent confinement of the VLReptar complex. The
change is most likely caused by the addition of further conepds to the com-
plex. These may form a direct bridge to the actin filaments, dnange in size or
structure of the complex alone may suffice for it to becomestraimed. Regard-
less of whether the complex is trapped by actin or not, kinasel other signaling
factors are recruited and proceed to turn on a cascade thatually leads to the
endocytic internalization of the VLPs.

Following and analyzing the motion of VLPs allowed us to sigate plasma
membrane organization and the interplay between membreoteis and the
cytoskeleton [96].

4.3 High-Throughput analysis of Adenovirus motion

We wish to use the presented computational tools to providenapletely auto-
mated setup for data acquisition and analysis without angualaselection of
samples. The large number of unbiased data points thensatim@chieve high
statistical significance even for small detectable changes

This section considers hum#&aenovirus-AAd-2), a non-enveloped icosahed-
ral DNA virus of about 90 nm diameter. Ad-2 infects epithktialls of the respir-
atory and gastrointestinal tracts, using receptor-mediatathrin-dependent en-
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docytosis to enter the cells [141, 259]. Ad-2 relies on twifedent receptors: a
primary receptor{28] and asecondary receptowhich is anintegrin). The virus
first binds to the primary receptor from where it later transfto the secondary
receptor before internalization. The aim of the preserdysts to investigate the
role of the secondary receptor and its influence on virus\iehan the plasma
membrane. We therefore analyze the motion patterns of AfteR lsinding to the
primary receptor on human melanof&1 cellsunder three different conditions:
wild type (wt) M21 cells, genetically modified cells that kathe secondary re-
ceptor (M21L), and M21L cells with re-inserted secondagepor (M21L4) as a
control. Furthermore, we consider the following drug tneemts of the cells:

nocodazolea microtubule-depolymerizing drug,

latrunculin A an actin-fiber polymerization inhibitor,

blebbistatin a myosin Il inhibitor,

methyl{-cyclodextrin a cholesterol sequestration agent,

e jasplakinolide a drug inhibiting actin fiber depolymerization,

wiskostatin a drug that reversibly and selectively blocks actin polsinze
tion, and

cytochalasin Da fungal toxin that disrupts actin filaments and inhibitsrac
polymerization.

Additional perturbations consider temperature (room teragre versus 3Z),
and mutations of the virus: Ad-2-RAE, lacking integrin bimgl sites, and Ad-
2-TS1, expressing a functionally defective protease. Aflezimental work was
done in the Group of Prof. U. Greber at the University &figh.

The different movies were recorded at various time pointhiwione hour after
addition of the virus particles to the cells. To verify thia¢te is no systematic bias
due to transient effects, all analyses presented in thigoseare repeated, grouping
the movies according to their time of recording. Doing thisfimd no correlation
between the time after virus addition and any of the analgsislts. This allows
us to consider the whole data set at once, regardless oftleeofi recording.

4.3.1 Virus patrticle tracking

Movie frames are recorded using TIRF microscopy at a reisoldf 80 nm/pixel
and frame rates of either 20 Hz or 50 Hz (Greber group). A wit&842 movies is
recorded at 20 Hz, and 3286 movies at 50 Hz. All movies aregssed in a fully
automated way using the feature point tracking algorithitireed in Section 1.2
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Figure 4.20: Sample trajectories of Ad-2 motion on the plasmembrane of M21 cells
after binding to the primary receptor, observed using 50 HRF microscopy. Different
modes of motion are observed: (1) free diffusion, (2) confar in a slowly moving area,
(3) subdiffusion, (4) arrest zones, (5)/(6) intermitteahftnement, and (7) biased motion.
The trajectories are represented to scale, but arbitrasijfted for presentation purposes.

with parametersy = 2 pixel, Ty, = 0, 7 = 0.5%, L = 5 pixel, andR = 1 frame.
Fig. 4.20 shows some examples of recorded trajectories aeNgtwithout drug
treatment. In total, we record 9035 trajectories at 20 Hz461079 trajectories at
50 Hz. The 20 Hz movies consist of 1000 frames each, the 50 Hzescontain
2535 frames each. The total number of frame images to prdoessaamounts to
8.7 million.

The smallest detectable diffusion constant, measured frajactories of sta-
tionary particles on glass, i mn = 107% um?/s. The tracking uncertainty is
estimated from the SNR and lies around 0.3 to 0.5 pixel inadks.

4.3.2 Global analysis results

In the global MSS analysis according to Subsection 2.1.2¢cavepute the diffu-
sion constants, and the MSS slope8 of all trajectories. Fig. 4.21 shows the
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Figure 4.21: Scatter plot of globdl», 3) for the 20 Hz data/N = 9035 trajectories from
the classes M21 (light gray), M21L (dark gray), and M21L4lftigray) are shown (see text
for details). The distributions of the three classes laygmlerlap.
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Figure 4.22: Histograms of the global MSS slopef all 20 Hz trajectories from the three

cases (see text for description). The total number of ttajées is: N = 3313 for M21,
N = 3208 for M21L, andN = 2514 for M21L4.
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(v2, ) scatter plot for the 20 Hz data sV (= 9035 trajectories). The distribu-
tions of the three classes mostly overlap, with wt M21 cedigihg a larger super-
diffusive sub-population. This is evident from the histas of the MSS slopes
shown in Fig. 4.22, and indicates that the mobility of thausireceptor complex
is reduced in M21L cells lacking the secondary receptoreifie-addition of the

secondary receptor, the wt distribution is recovered, Wwkerves as a control for
undesired side effects in the creation of the M21L cells.

4.3.3 Statistical data analysis

To investigate if the differences suggested by the globaEM8Balysis arstatist-
ically significant we usehypothesis testinfR71]. The proper test method test
statisticis selected based on information about the distributiomefdata and the
sample variances.

Data representation

The trajectories are encoded by their global diffusion tams, and MSS slope

3. Statistical analysis is performed in tibase spacadentified withR2. In stat-
istical terminology, the observations are tipasred, of interval type and sampled
from continuous random variablegurthermore, they are randomly selected since
no human bias was introduced in tracking and analysis, arasaueme the samples
to be independent. The latter is a reasonable assumptioatsia trajectories come
from different cells and were recorded on different days.

The standardbox plotfor the two variables is shown in Fig. 4.23. The diffusion
constantys is plotted logarithmically for better visibility. We obser that the
Chambers notchefor the two classes do not overlap in any variable, providing
strong evidence that the two medians differ. This is muchengwonounced for
0 than it is for v, indicating the bettediscrimination capabilityof the former
measure.

Distribution of the data

Are the observations normally distributed? We perfor8hapiro-Wilk tesfor the

null hypothesig H) of a normal distribution. From the results as summarized in
Table 4.3 it is evident that the null hypothesis of normatityn be rejected for all
variables with a confidence 99%. This is confirmed by thguantile-quantile
plots for all variables and cases (figures not shown). Even wittstaltionary
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Figure 4.23: Standard box plot with Chambers notches forM&S slope (left) and the
base-10 logarithm of the diffusion constaat(right) of M21 and M21L cells.

particles (characterized by < 0.1) discarded, the data are far from a normal
distribution.

Sample variance

A standardFligner-Killeen testreveals that the variances of the two classes M21
and M21L are not the same, again with a confidenced%. Among all tests for
variance homogeneity, the Fligner-Killeen test is the orith ¥he largest robust-
ness against departures from normality [61].

variable test statistic p-value
6 M21 0.9289 2.2-10716
BM21L 0.8062 2.2-1016
vy M21 0.2082 2.2-10716
vo M21L 0.1709 2.2.10716
log v, M21 0.9884 9.8-1071
log vo M21L 0.9583 2.2-10716

Table 4.3: Results of the Shapiro-Wilk normality test. Tk mypothesis of normal distri-
bution is rejected with a very high probability.
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Figure 4.24: Quantile-quantile plots for the MSS slope&) and the diffusion constants
log,, v2 (b) of M21 versus M21L cells.

Hypothesis testing

We test the null hypothesiH, that both classes are realizations of the same distri-
bution against the two-sideadternative hypothesi#l 4 that they are sampled from
different distributions. Since the data are not normalstrithuted and have differ-
ent variances, standateests and ANOVA tests must not be applied. Instead, we
use the more generblmogorov-Smirnov tesThe only assumption in this test —
besides randomness and independence — is that the obseswaté sampled from
continuous distributions, which is obviously the case fétering the test we find
that the p-values for all variables are bel@®-10~1¢, indicating thatf,, is highly
unlikely. In other words, the two classes come from diffémistributions with a
probability close tal. The MSS analysis values of motion on M21 cells are thus
significantly different from those of motion on M21L cellsin8e the presence or
absence of the secondary receptor is the only differeneedaetthe two cases, we
can state that the receptor does significantly influenceitis trajectories.

A visual way of analyzing the differences in distributiortlween the two classes
is to plot thequantilesof M21 versus the quantiles of M21L, which is done in
Fig. 4.24. Due to the large number of samples, even slighardeges from the
straight line are significant.
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Data correlations

We test whether significagbrrelationsbetweenv,, 3)-pairs exist in the two data
sets. UsingPearson’s product moment correlatidthe “normal” » value), we
find that the two variables are correlated. The null hypdgh&g that there is no
correlation betweem, and g3 is rejected with a p-value df.2 - 10716, The 95%
confidence interval for the correlation coefficient is foundbe [0.34, 0.40] for
M21 and[0.33,0.39] for M21L, explaining about 14% of the variance in the data
sets.

Pearson’s correlation is however only appropriate if thea dame from a bivari-
ate normal distribution, which is not the case here (seegbdVe thus also com-
pute Kendall's rank correlation confirming that the two variables are correlated
(p-value2.2 - 10710 for uncorrelatedH,, rejected). The correlation coefficients
are 0.36 for M21 and 0.20 for M21L. The difference in the claien coefficients
is significant. This result indicates that confined motiamdeto be slower with a
weak correlation in M21L, and a moderate one in M21.

Results

The tests show that the two classes M21 and M21L differ sicarifly. This is sub-
stantiated by three independent pieces of evidence: thedra notches indicate
that the medians of the two classes are different, Fligribkedt tests indicate that
the variances are different, and the Kolmogorov-Smirnststénally indicate that
the functional shape of the two distributions differs, witne of them being a nor-
mal distribution. All tests are highly significant with piuas well below10=.
This striking clarity can be attributed to the large numbfeavailable data points.

Wild type M21 cells have a larger medfaman secondary-receptor-devoid cells.
This applies to both variables andg3, but is more pronounced for the latter.

We furthermore find that, and( are positively correlated, with a significantly
stronger correlation in M21 cells.

4.3.4 Trajectory segmentation results

As confirmed by the statistical analysis, the secondaryptecénas an influence
on the virus motion. We use the trajectory segmentationnigcle presented in
Section 2.3 to quantify the corresponding changes in thedi@y patterns.

2The mean would be meaningless due to the long tails of thetuiibns
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Figure 4.25: Histograms of the fraction of the total trajent length that is spent in arrest
zones for each drug case (see text for description).

In the 20 Hz data set, about 4000 arrest zones are identifidddncells, also
about 4000 on M21L cells, and about 3000 on M21L4 cells. Irepfdr an ar-
rest zone to be distinguishable from a slow random walk, atted must have an
absolute MSD> 0.1pixel?, corresponding to abo6t nm?.

The histograms for the fraction of time spent anrest zonesare shown in
Fig. 4.25. We find that trajectories on M21L cells are moremfinmobile than
trajectories on the other two cell types. The fraction ofectories that are never
immobilized is about 10% in M21/M21L4 cells and drops to 2%N21L cells.
Moreover, we see that the distributions for M21 and M21L4aneost identical,
confirming that the removal of the integrin receptor did natédsignificant irre-
versible effects.

The distribution of residence times fransient arrest zonethat ended before
the end of the trajectory is shown in Fig. 4.26. The M21L4 oaintlass is again
similar to the wt distribution. Removal of the secondaryegor seems to enhance
confinement with long residence times becoming more frefjuEme size of the
arrest zones is around 0.3 pixel in all three cases. Sinseetjuals the tracking
uncertainty due to imaging noise, the particles can be cetslglistationary during
arrest phases. The fraction of particles that escape ast aoee drops from 57%
to 40% if the secondary receptor is absent.

The absence of the secondary receptor also influences dutadirtrajectory seg-
ments. The distribution of the lengths of directed segmeiittsn the trajectories
of a class is shown in Fig. 4.27. While secondary-recepficint cells exhibit
directed motion in only about 10% of the cases, the raticeiases to around 30%
for the other two cell types. The speed during directed segsgnis on average
2um/s in all three cases.
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| celltype | #events| (M) | #traj | #d.m.[ #p.oi. || p | k |
M21 72 406 | 2923 | 4004 | 4237 || 14.3| 5.03
M21L 17 536 | 3110| 1234 | 4275 || 3.17 | 5.36
M21L4 43 459 | 2280 | 3257 | 3383 || 10.5| 4.10

Table 4.4: Statistics of the sit-down event (see text) anchtirmalized counts as com-
puted from the chemical analogy.

4.3.5 Event-based trajectory analysis

As outlined in Section 2.4, we can use the trajectory segatientresults to look
for certain events. Arrest zones might be related to clatboated pits, directed
segments to actin stress fibers. We are thus specificallyrigdbkr “sit-down”
events, i.e. viruses moving in a directed fashion that soigdeecome immobil-
ized, and “pass-by” events, i.e. virus particles moving diracted fashion toward
or away from another, immobile virus. The counted numbereaaiurrence of
these events are normalized using the methods presentedtinis2.4.

Chemical analogy for the sit-down event

The absolute numbers of countsittdown eventi the 20 Hz data set are given in
column “#events” of Table 4.4 for all three cell types. Usthg absolute number
of directed motion segments (#d.m.), the number of phasiesobbility (#p.o.1.),
the number of trajectories in each class (#traj), and thenntegectory length
(M), we can compute the normalization constangnd thenormalized countg
according to Eq. (2.30).

Even though the absolute event counts significantly difesmeen the classes,
the normalized frequencies are about the same. The occerdrthe sit-down
event does therefore not seem to depend on the secondapyaiece

Monte Carlo simulation for sit-down event

Using a Monte Carlo simulation, the result of the chemicallagy is revisited.
The number of events in the randomized trajectories (#naixkx) is used to
compute thenormalized count as shown in Table 4.5. The Monte Carlo res-
ults predict a decrease in sit-down events when the secpnelzgptor is removed.
This contradiction to the chemical analogy indicates thedated segments and
arrest zones are not statistically independent in Ad-2¢tajies. The occurrence
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| celltype | #events| #randomized] k |
M21 72 163.8+15.2 || 0.402 to 0.485
M21L 17 64.9+-7.6 0.235t0 0.297

M21L4 43 113.8£7.8 | 0.354 to 0.406

Table 4.5: Monte Carlo simulation results for the numberibfiswn events in randomized
trajectories (#randomized: meah standard deviation) with normalized courits

| celitype | #events| E | k |
M21 31 6.34 | 4.9
M21L 4 162 2.5
M21L4 21 46 || 4.6

Table 4.6: True and estimatedt) number of pass-by events in the three classes. The
estimate is done for uniform conditions and represents tipeeted number of events in a
random trajectory.

of arrest zones seems to be less likely after segments dftelitenotion than it
would be anywhere else in the trajectory.

Estimator for the pass-by events

We use the estimator from Subsection 2.4.2 with an interactidius ofr,, = 3
pixel, corresponding to the size of a particle in the framages. The effectively
counted number gfass-by eventgtevents) and the expected value under uniform
conditions E) are given in Table 4.6. From this, the raids computed as the
normalized count

The effective number of events in all cases is significarahgér than the ex-
pected value for uniformly random trajectories. Furthementhere seems to be a
difference between M21 and M21L cells. The control M21L4niggbod agree-
ment with the wt cells. These results suggest that the passdnt might have an
underlying deterministic mechanism. The higher frequenayt cells is consist-
ent with the observation that the absence of the secondegpter largely prevents
directed motion (cf. Subsection 4.3.4).
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4.3.6 Conclusions

We have demonstrated the feasibility ofibiased automated high-throughput
particle tracking studies in cell biology. The large numbkobservations leads to
statistically highly significant results for small deviais. For Ad-2 it can thus be
stated with a probability close to 1 that the secondary imegceptor has a signi-
ficant influence on the motion of the virus bound to the primageptor. In cells
lacking the secondary receptor, the mobility of the pagticks reduced. This is
manifested by a drastic decrease in directed segments alwhged residence in
arrest zones. Neither the size of the arrest zones nor tleel gfehe directed mo-
tion do however seem to change. These findings could indicat¢he presence of
the secondary receptor facilitates (or enables) directetibm, which is supported
by the observation that the upper quartile for M21 reacheseb = 0.5, whereas
the one for M21L does not (Fig. 4.23). Furthermore, wt céilsvg a stronger cor-
relation between the speed of motion (measdjend its freedom (measufs, as
determined by Kendall's rank correlation for non-normaligtributed data. This
could signify that fast motion in wt cells is more likely to bkirected, whereas
receptor-devoid cells exhibit fast motion only by chancke Tolecular nature of
these effects will have to be addressed in future studies.

While no clear conclusion about the sit-down events can enthere seems to
be a deterministic tendency in the pass-by events. The riaadaounts provide
evidence that the secondary receptor enhances these, enestdikely by increas-
ing the probability of directed motion. This might suggdsittbound viruses are
transported or biased toward clathrin-coated pits, antttigtransport or bias is
mediated by integrins.
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Dense Systems: Continuum
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Overview

In the second part of this thesis we consider the collectie¢ian of abundant
diffusing particles for observation times that are muckgkmthan the Brownian
step time. In these cases, the continuum description haldisva focus on numer-
ical methods for computationally solving the governing a&tpn. We are using
particle method$138] to simulate diffusion in complex-shaped spaces a$ agel
on curved surfaces. After presenting in Chapter 5 partic¢hods for diffusion
in space and on surfaces, we apply these techniques to sionglaf diffusion
both in the lumen and in the membrane of the Endoplasmic Retit (ER). The
ER is a cell organelle of highly complex shape, generallyicted as a convo-
luted and interconnected meshwork of tubular and lameltactires [280]. We
reconstruct realistic ER shapes from microscopy imagesti(®e6.2), quantify
their geometric complexity (Section 6.3), and present aehaimulation-based
method to accurately determine molecular diffusion cartstérom Fluorescence
Recovery After Photobleaching (FRAP) experiments in liedsc(Section 6.5)
[246, 245].

All computer programs used for the simulations in this pegttaased on a novel,
efficient parallel software framework for the portable iemplentation of particle
methods. This framework is presented and assessed in ChHapte

Governing equation of the continuum model

We consider a set aN — oo particles undergoindgrownian motion[40, 92].
From continuum theory [202] we can define the particle voludeasity as the
mean number of particles per unit volume. This density ifedaioncentration
and forms the kegield quantityin diffusion problems.

The spatio-temporal evolution of the concentration fielet,t) in a closed,
bounded subse® of the d-dimensionalEuclidean spacez is modeled by the
Partial Differential Equation(PDE)

%:V(D(w,t)Vu(w,t)) fore e {Q\0Q}, 0<t<T,
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where D(z,t) denotes thaliffusion tensorand V is the Nabla operatorin E<.
This equation is termed theiffusion equationsince it constitutes a second or-
der approximation to the mean field dynamics of a Browniarcgse [243]. Its
Green'’s functiomaturally corresponds to theansition densityof the underlying
Brownian process, thus connecting the single-particlerpretation to the con-
tinuum model.

Terminology classifies diffusion problems based on thectitine of the diffusion
tensor:

e If D is proportional to the identity matrid) = 1,1, diffusion is calledso-
tropic, otherwiseanisotropic Isotropic diffusion is characterized by a flux
whose magnitude does not depend on its direction, and it eatebcribed
using a scaladiffusion constant,. Microscopically, the diffusion constant
is defined from the mean step displacement lerg#nd the mean time
between steps of the underlying Brownian motionvasx a?/(27). This
ratio remains finite in the limit — 0, 7 — 0.

e The case of a time-independditis denoted astationary diffusiona time-
dependenD gives rise taunsteady diffusion

e A D that does not depend on space definesiogeneous diffusionf D
varies in space, diffusion is callédhomogeneous

At t = 0 the concentration field is specified by iaitial condition
u(x,t =0) = ugp(x) rxe, t=0.

The system is completed by problem-specific boundary ciomdiprescribing the
behavior ofu alongdf?, the boundary of2. The most frequently used boundary
conditions are thdNeumannand Dirichlet conditions. The Neumann boundary
condition fixes the normal derivative at the boundauyig the outer unit surface
normal on the boundary):

ou

%:Vu(w,t)~n:fN(m,t) fore e 00, 0<t<T,

whereas the Dirichlet condition prescribes the concentratalue
u(x,t) = fp(x,t) forx e o, 0<t<T.

If the boundary functionf is 0 everywhere or9f2, the boundary conditions are
calledhomogeneous



Chapter 5

Particle Methods to Simulate Diffusion in Complex
Geometries and on Curved Surfaces

In this chapter we briefly review particle methods for theusioh of the diffusion
equation in space, and extend them to simulations of ddfuehn curved surfaces.
After outlining the fundamental concept of continuum paetimethods in Section
5.1, we recall the stochastic method of random walk (Sulseé&t.2.1) and the
deterministic method dParticle Strength Exchang@SE) (Subsection 5.2.2) for
simulating diffusion in space. Exploiting recent advantesomputer graphics,
we then introduce a method for simulating diffusion on cdrgerfaces (Section
5.3) and assess its accuracy and convergence. In Sectioth®&.dew method is
extended to reaction-diffusion processes on moving androfig surfaces, and
to employingmulti-resolutionconcepts as introduced by Bergdetfal.[27].

5.1 Fundamentals of continuum particle methods

Continuum particle methodare based on the approximation of smooth func-
tions by integrals that are being discretized onto comurtat elements called
particles A particle p occupies a certain positiom, and carries an extensive
physical quantityw,, referred to as itstrength Theparticle attributes- strength
and location — evolve so as to satisfy the underlying gowereiquation in d.ag-
rangian frameof reference [160]. The simulation of the physical systemsth
amounts to tracking the dynamics of &ll computational particles that carry the
physical properties of the system that is being simulatede dynamics of the
particles are governed by sets@fdinary Differential EquationgODE) that de-
termine the trajectories of the particlesand the evolution of their properties,
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Figure 5.1: Two particles of strengths, andw., carrying mollification kernelg,.

thus:
&——v(mpt)—— gN K(x,, T, w, w,) p=1,...,N
dt ) p prrgsW*¥pryWq)H 9 9
&:E F(x, c;w,w,) p=1,...,N (5.1
dt pyLgyW*pyWq ) ) )

q=1

wherewv, is the velocity of particlep. The dynamics of the simulated system
are completely defined by the functiohS and F' that represent the physics of the
problem. Inpure particle methodsK andF' emerge from integral approximations
of differential operators; itybrid particle-mesh methogthey entail solutions of
field equations that are discretized on a superimposed mesh.

If the functionsK and F' are local, thealgorithmic complexityof the sums in
Eq. (5.1) isO(N). For long-range interactions, fast algorithms such asipuolé&
expansions [122] are available to reduce the complexit§{d/) also in these
cases. The issue of efficient parallel implementation ofigdarmethods is ad-
dressed in Chapter 7.

5.1.1 Function approximation by particles

The approximation of a continuous functiaiz) : R? — R by particles can be
developed in three steps:
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e Step 1: Integral Representation.Using the Dirac-function identity, the
functionu can be expressed in integral form as

u(x) = /u(y) oy —x)dy forxz, y € Q. (5.2)

In point particle methodsthis integral is directly discretized on the set of
particles using a quadrature rule with the particle locetias quadrature
points. Such a discretization does however not enable twveey of the
function values at locations other than those occupied byéticles.

Step 2: Integral Mollification. Smooth particle methodsrcumvent this
difficulty by regularizing thed-function by amollification kernel{. =
e~ 4¢(x/e), with lim. o (. = J, that conserves the first— 1 moments
of the §-function identity (see Ref. [63] for details). The kermglcan be
thought of as a cloud or blob of mass, centered at the patticktion, as
illustrated in Fig. 5.1. Theore sizee defines the characteristic width of
the kernel and thus the spatial resolution of the method. rébalarized
function approximation is defined as

uela) = / w(y)Ce(y — =) dy (5.3)

and can be used to recover the function values at arbitragtitmsz. The
approximation erroris of ordere”, hence

ue(x) = u(x) + O(e), (5.4)

wherer depends on the vanishing moments of the mollification kejég|
160]. For positive symmetric kernels, such as a Gaussian? [63].

Step 3: Mollified Integral Discretization. The regularized integral is dis-
cretized overV particles using the quadrature rule

N
ul(@) =Y whC(xh —x), (5.5)
p=1

Wherewg andwg are the numerical solutions of the particle positions and
strengths, determined by discretizing the ODEs in Eq. (lvX)me. The
strengthw, of particlep is anextensive propertthat depends on the partic-
ular quadrature rule. In this thesis we use the rectangular thus setting
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wp = u(x,)V, whereV, is the volume of particle. Using this discretiza-
tion we obtain the function approximation

W (@) = uc(@) + O (g) — w(@) + O() + O (g) . (58

wheres depends on the number of continuous derivatives of the ficali
tion kernel¢, [63, 160], andh is the inter-particle distance. For a Gaussian
s — OQ.

From theapproximation errorin Eq. (5.6), we see that it is imperative that the
distanceh between any two particles be always less than their mollgfigzporte,
thus maintaining

h <1 (5.7)
€

at all times. If this particle overlag condition is violated, the approximation error
becomes arbitrarily large, and the method ceases to be v

5.1.2 Operator approximation

To evaluate differential operators on particles, two efyets are distinguished:
pure particle methods and hybrid particle-mesh methods.

Pure particle methods

In pure particle methodddifferential operators on functions that are represented
on particles are approximated bytegral operators The functionsK and F' in
Eqg. (5.1) thus represent the discretized versions of thasgrial operators. For
diffusion, we are interested in the operatdf$ andV - (DV). A conservative
approximation by integral operators that allow consistmluation on scattered
particle locations is reviewed in Section 5.2.2. Beyondudibn, a general de-
terministic framework is available to approximate any efiéntial operator by a
corresponding integral [93].

In this thesis we use pure particle methods to simulate gldfuin space, as
described in Section 5.2.
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Hybrid particle-mesh methods

In hybrid Particle-Mesh(PM) methods, as pioneered by Harlow [127], some
(but not all) of the differential operators are evaluatedaocsuperimposed regu-
lar Cartesian mesiil38]. The functionsK and F' in Eg. (5.1) may thus contain
contributions corresponding to the solutiongiefd equation®n the mesh. Hybrid
methods require:

¢ theinterpolationof thew, carried by the particles from the irregular particle
locationsz,, onto theM regular mesh points(,,) by:

N
wh :ZQ(mmfmZ)wZ m=1,..., M, (5.8)
p=1

¢ and thenterpolationof the field solutionF',,, (and similarly K ,, if present)
from the mesh to the (not necessarily same) particle logstb',):

M
Fi= 3 Rla)—wn)Fh  p=1,...N. (5.9

m=1

The accuracy of the method depends on the smoothnekS arfid F', on thein-
terpolation functiongy and R, and on the mesh-based discretization scheme em-
ployed for the solution of the field equations. To achieventagcuracy, the inter-
polation functions) and R must be smooth to minimidecal errors and conserve
the moments of the interpolated quantity to minimfiaefield errors[160]. In ad-
dition, it is necessary tha} is at least of the same order of accuracyraso avoid
spurious contributions t(FZ [138]. This can be easily achieved by selecting the
same type of interpolation}’, for both operations@) = R = W. Accurate inter-
polation functions that conserve the moments of the intatpd quantity up to a
certain order can be constructed in a systematic way [194].

In this thesis we use hybrid particle-mesh methods to sireutéfusion on
curved and moving surfaces, as described in Section 5.3.

5.2 Particle Methods for diffusion in space

The simulation of spatial diffusion processes by partickthods can be formu-
lated in the above framework, where the particles carry raagbeir strengthy
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and collectively represent the concentration fieldn the following, we first re-
view the stochastic method of random walk and the detertiéri®article Strength
ExchangdPSE) method. Using a one-dimensional test problem we toepare
the accuracy and the convergence behavior of the two methods

5.2.1 The method of Random Walk (RW)

The method oRandom WalkRW) [57] is based on the probabilistic interpretation
of the Green’s function solution of the diffusion equation:

oo

u(est) = [ Glayitiun(y)dy. (5.10)

In the case ofl-dimensional isotropic free-space diffusion, il®@.= v, 1, Green’s
function is explicitly known to be:

1
G(xz,y,t) = exp {—
( ) (477'1/2t>d/2

41/2t

Probabilistically, G corresponds to th&ansition densityas given in Eq. (2.1).
This directly connects the continuum model to the singldigardescription of
diffusion processes as described in Chapter 2. The RW méthddlimensions
thus starts by either uniformly or randomly placiNgparticlesp at initial locations
asg, p=1,...,N. Each particle is assigned a strength.gf= Vpuo(mg), where
V}, is the particle’s volume. The particles then undergo a remdalk by changing
their positions at each positive integer time stepccording to:

o) =a + NT(0,2056t) (5.12)

where N/ (0, 2,4t) is a vector ofi.i.d. Gaussian random numbers with each
component having mean zero and variagegdt; v» is the molecular diffusion
constant andt is the simulation time step. Homogeneous Neumann boundary
conditions can be satisfied by reflecting the particles abthendary.

The method is consistent since the expected distributiqmadicle strength in
space converges to the integral solution in Eq. (5.10) aet® |— co. RW is a
stochastic method. This limits its convergence capaddlisince the variance of the
mean ofN 4.i.d. random variables is given by v/N times the individual variance
of a single random variable. Moreover, the solution detatas with increasing
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diffusion constants, since the variance of the random variables becomes larger.

In the case of small,, the motion of the particles can be masked by the sampling
noise.

The RW method however readily extends to anisotropic ddfuprocesses and
diffusion on curved manifolds, where the individual stegpificements are simply
projected onto the manifold [58].

5.2.2 The PSE method

The method ofarticle Strength ExchangdSE) [79, 80] is aleterministic pure
particle methodo simulate diffusion in space. As we show in Subsection35.2.
the PSE method is orders of magnitude more accurate than B&/idPbased on
approximating the diffusion operator by an integral oparé#tat allows consistent
evaluation on the particle locations. The PSE scheme hasdeésed by Degond
and Mas-Gallic for both isotropic [79] and anisotropic [@fusion.

Isotropic diffusion by PSE

Theisotropic PSEmethod [79] obtains an integral approximation to tiaplace
operatorby considering the solution at a locatigrand expanding it into &aylor
seriesaroundzx:

+§ { (v - m/>iu(a:’)]

O (Ily =3 lull) -

(5.13)

z'=x

Subtractingu(z) on both sides, multiplying the whole equation byegularized
kernel function).(z) = e~9n(z/¢) of sizee > 0, and integrating ovey yields:

/(Mw—uwhmw—wmy=
Rd

§ il /]Rd { w’)iu(wl)] ne(y —x) dy
+Ww0(4Jw—wM”mw—wﬁw>-(5M)

CHAPTER 5. PARTICLE METHODS TO SIMULATE DIFFUSION IN
120 COMPLEX GEOMETRIES AND ON CURVED SURFACES

For the approximation to be consistent, we have to ask thexfislg requirement
for the kernel function [79]:

=1

d 4 . '
Hz?in(m)dm{o’ VaelN* a#2e, 1< > a;<r+1

Ra =1 2, if a=2e;, ie{l,...,d},

(5.15)
whered is the dimension of the space,is the order of the approximation, and
x = (11,...,24) € R% a = (ay,...,04) € N?is ad-dimensional index and
(e1,...,eq) is thecanonical basiof RY. In the three-dimensional case, above
requirement can be expressed as:

/xixjn(w) dx = 20;; fori,j=1,2,3 (5.16)
/xlllx;"’x?n( Yde =0 ifig+is+ig=10r3<ig+is+iz<r+1

(5.17)
/HmH’“” x)|dx < oo (5.18)

for iq,is0,13 € ]Na“. The first condition is to normalize the kernel function. The
second one requires all moments up to onder 1 to vanish, and the third one is
required for a bounded truncation error. Using requireséntl6) and (5.17), the
only remaining terms in Eq. (5.14) are

[ uly) -~ u(e) nly - o) dy = Vu(@) +O() . (519

JR

and theintegral operatorthat approximates the Laplacian is found as
Vaulw) = [ (uly) — ula)) nly — o) dy. (5.20)

While this operator is not the only possibility of discrétig the Laplacian onto
particles, it has the big advantage of conserving mass lg{&&]. The approx-
imation error isO(e") with r being the largest integer for which conditions (5.15)
are fulfilled (see Ref. [63] for a rigorous error treatmeiy). (5.20) is discretized
using the particle locations as quadrature points, thus:

V2 ,u 2 Z (Voul ") ne(al — by, (5.21)
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whereV/, is the volume of particle. The finalPSE scheme for isotropic diffusion
then reads

N
d
“p = Ve~ QZ ng(w fa:;f) Vp=1,...,N. (5.22)

q=1

Since thePSE kernel). is local, only the neighbors within a certain cut-off
distancer, significantly contribute to the sum of each particle. Thiduees the
algorithmic complexity ta?(N') when neighbor lists such asll lists(Subsection
7.2.4) orVerlet lists[301] are used. It can also be seen from Eq. (5.22) that irrorde
to simulate diffusion the strengths of all the particlesrafg i.e. they exchange
mass, while their locations remain the same, i.e. they donoee. This is dual to
the method of RW and has the benefit that all the geometry amadaoy condition
processing only needs to be done once when initializing #mégtes. Therefore,
we often simplify the notation by writing,, instead ofwg.

Anisotropic diffusion by PSE

In the case of a full diffusion tensab(x,t), an analogous derivation can be
applied to find a deterministic particle representationhaf diffusion operator

V - (DV). Degond and Mas-Gallic [80] have shown that the followingular-
izedintegral operatorQ). is a consistent approximation of the anisotropic diffusion
operator on a set of particles:

V-(DVu(e, 1) ~ Qu(t) ula.t) = ¢ 2 /R July)—u(@)on (@ y.0) dy . (523)

The regularized kernet, = ¢~ %o (x/¢) again satisfies certain moment conditions
[80]. The discretized particle approximatig* is obtained by applying a quad-
rature rule to the integral operatéy. (¢) using the particles as quadrature points:

N
QU ul(t) = 23 Viug (1) = Viup(Doc(ay (1), g t),1). (5.24)

The regularized kernel is defined as:

d
oc(Tp, Tq, t) = Z M;; (Tp, Tq, t)wij (g —xp), (5.25)

i,j=1
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whereM = (M;;(x,y,t)) is a matrix function of the diffusion tensdp. For
spherically symmetric kernels, a matrix smoothing functiath elements
Vi = 6_2ﬁ5 (xp —xg) - (& —y)i(z —y); (5.26)

is used [80], wheréx); denotes theé" component of a vectae. This reduces the
system to a scalar kernel functign = ¢~ 97(x/¢). Substituting into Eq. (5.25)
yields the regularized anisotropic PSE kernel function

d
oe(®p, g, 1) = €2 T (), — ) Z Mij(p, g, 1) (@ — xq)i(Tp —2q); -

i,j=1
(5.27)
Degond and Mas-Gallic [80] sugge® to be of the form
My, 24,1) = 5 (mly, 1) + m(z, 1)) (5.28)
where
m(x,t) = D(x,t) — LTr(D(a;t)) 1. (5.29)

d+2

The finalanisotropic PSEscheme thus reads:

N

dwp _ —42{ ) 6(332 _ SCZ)

ZM”w w ) (x —wg’)i(wg—mg)j . (5.30)

1,j=1

As in the isotropic case, the sum is only taken over the neightvithin a certain
distancer., due to the local character of the interaction kernel. Thisfiiciently
done using &ell-list (Subsection 7.2.4) orgerlet list[301] algorithm. Since in a
pure diffusion problem the particles do not move, we ofteitens,, instead ofrg.

Valid spherically symmetric kernel functiongr) for d = 3 can be found by
introducing the spherical normalization constraint [80]

% ro 7(r)dr 1. (5.31)
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This leads for example to the second-order accurate exgiahkernel that is used
for the simulations in this thesis:

4 _llmp—=ql3

P —m) = & i (5.32)

e (®p — @) = — =
=

Boundary conditions

The PSE algorithm as described above only applies to infiliteains. For dif-
fusion in constrained geometries, it needs to be modifiedke into account the
prescribed boundary conditions. Foomogeneous boundary conditioimsthe
case of flat (compared to the core sizef the mollification kernel) boundaries, a
straightforward method consists of placimgrror particlesin anr.-neighborhood
outside of the simulation domain. In the resultimgthod of imageghe integral
operator becomes

/ (u(y) — u(@)) (O.(y —z) £ Oy + @) dy + O),  (5.39)
Rd

with ©, = v,7, for the isotropic case an@. = o, for the anisotropic case. The
final scheme is thus represented as

N

dw _
—L = Vo 2 D (Vgug —Viuy) (O — ) + Oc(ay + ) Vp. (5.34)
qg=1

The positive sign between the two kernel functions appliezéro fluxNeumann
boundary conditionswhereas the negative sign is to be used in the case of zero
valueDirichlet boundary conditionsThe method of images is restricted to the case
of homogeneous boundary conditions. dromogeneous boundary conditipns
the particle strengths need to be adjusted in the vicinithefboundary [161].

5.2.3 Comparison of PSE and RW

The convergence properties of the RW and PSE methods asealied on isotropic
homogeneous diffusion on the one-dimensional @d.e= 1) line @ = [0, c0),
subject to the following initial and boundary conditions:

w(z,t =0) = up(z) = ze™® z €10,00), t =
{ ulx =0,t) =0 = (5-35)
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Using the method of images, the exact solution of this prokke

ex _ T —a2/(1+4vat)
u(x,t) = 7(1 n 41/215)3/2 e . (5.36)

Both RW and PSE simulations of this test case are performgdamiarying num-
ber of particles to study the spatial convergence behavioorder to meet the
boundary condition at = 0, the RW solution is calculated f@&N particles ini-
tially uniformly placed on the liné— X, X], such thatV particles have locations
) > 0. The domain boundarX is chosen large enough such thdfX,¢) < e
(with € being themachine epsilof the computer) for the whole duration of the
simulation. Each of the N particles is assigned a strengthugf = Xuo(|29])/N.
Then the particles undergo a one-dimensional random walrding to Subsec-
tion 5.2.1. To recover the solution at a later time stephe domain of solution
[0, X] is subdivided intal/ disjoint intervals of sizéx = X/M and the particles
are sampled in these intervals as follows: each inteivall, ..., M is assigned
the sum of the strengths of all the particles having positioetweer(j — 3/2)dx
and(j — 1/2)dx, thus

RW(( : 1 (s no 1 :
u ((]—1)6@71(51&):5; wp.(]—1)5x<xp+§5a:<j6x

forj=1,..., M.

For the PSE, the method as given by Eq. (5.22) is implementée. bound-
ary condition is treated in the same way as for the RW, i.eirttezval [— X, X]
is covered with2V uniformly spaced particles at locations, p = 1,...,2N.
This is themethod of imagesince it is equivalent to using mirror kernels as in
Eq. (5.34). The inter-particle spacing/is= X/(N — 1). Initially each particle
is assigned a strength af, = Xuo(|z,|)/N, as in the RW case. Eq. (5.22) is
discretized in time using the explicit Euler method. Themsgths of the particles
are therefore updated at each time step 0,1,2. .. as follows:

n n hl/g(st n n
wpth =wp + €2 Z(Wq —wp)me(zg —xp)  Vpe{l,....2N}.

q

Forn. we use the ? order accurate Gaussian kernel

1 2 /4.2
— —z” [4e 5.37


ivos
Note
Typo: Should be eps^d instead of exp^{-d}.
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Figure 5.2: Comparison of RW (a) and PSE (b) solutions of taechmark case. The
solutions at timel’ = 10 are shown (circles) along with the exact analytic solutisalid
line). For both method#&V = 50 particles, a time step oft = 0.1, v2 = 107* andX =4
are used. The RW solution is samplediih = 20 intervals oféxz = 0.2. For the PSE a
core size ot = his used.

which fulfills the requirements in Eq. (5.15) in one dimems#t order- = 2. The
concentration values at particle locatiorjsand simulation time points, = ndt
are recovered as

uPSH(z,, 1) = wy - N/X.

Fig. 5.2 shows the RW and PSE solutions at a final tim& ef 10 for N = 50
particles and a diffusion constantef = 10~%. The accuracy of the simulations
for different numbers of particles is assessed by computiedinal L error

N 1/2
Ly = |5 3 (. T) — ula, T))? (5.38)
p=1

for eachN. The resulting convergence curves are shown in Fig. 5.3tHeoRW
we observe the characteristic slow convergena®(@f/+/N) [191]. For the PSE,
a convergence aP(1/N?) is observed, in agreement with the employ&8dtder
kernel function. Below an error afd—¢ machine precision is reached. It can be
seen that the error of the PSE simulations is several ordersagnitude lower
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Figure 5.3: Convergence curves for RW and PSE. Theerror versus the number of
particles for the RW (triangles) and the PSE (circles) sohs of the benchmark case at
timeT = 10 are shown. For both methods a time stepof= 0.1, v, = 1074, and X =4
are used. The RW solution is samplediih= 20 intervals ofdz = 0.2 and for the PSE a
core size of = h is used. The machine epsilon@x107°).

than the one of the RW simulations for the same number ofgbasti Using only
100 particles, the PSE is already close to machine precidiois evident from
these results that large numbers of particles are necessaighieve reasonable
accuracy using RW in complex-shaped domains.

5.3 Alevel-set particle method for diffusion on curved suréces

In computational science a number of techniques have begoged to solve the
diffusion equation on curved surfageequiring rectangular grids [1], surface tri-
angulations [3], or using local representations and oveyse techniques [253].
These explicit techniques allow a piecewise linear repragi®on of the surface and
encounter severe difficulties in tracking large surfacedehtions. Monte Carlo
techniques [58] for the simulation of diffusion processeffes from slow conver-
gence rates and they are not competitive with their detestigrcounterparts for
simulations in complex geometries [160, 246].

The simulation of diffusion on curved surfaces has alsoivedeconsiderable
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attention in the area of computer graphics. We exploit readmances from image
and video inpainting [32] by representing surfaces imfiiaising particlelevel
settechniques [137]. The key concept amounts to considerimguiface as a level
set of a higher-dimensional scalar function. The resulgjogerning equations are
solved in a Cartesian coordinate system spanning a regiwistimg of all points
close to the surface. This technique has been recently gegbfor the simulation
of isotropic diffusion on the plasma membrane of hl-60 c&3].

Mathematically, we consider the diffusion of a scalar gitpnton aRiemannian
manifold M c R? as governed by

auf(ai’ 9 Lpu(§,t)  EeM, (5.39)
where thantrinsic diffusion operatoon M is defined as
Lp =V (D& 1)Vm()) - (5.40)

V. is theintrinsic Nablaoperator on the surfac®t and D (&, t) is thediffusion
tensor If the surface is closed and finite, no boundary conditiors@quired. We
wish to discretize Eq. (5.39) onto particles.

In this chapter, we occasionally use guwemmation conventiaie keep the nota-
tion compact. In this convention, matrices are represeyettieir elements with
the first index denoting the row and the second one the colthus;

A = (aij).

Moreover, all products are implicitly summed over all ireappearing more than
once.

aibii = Y (aijbjr)
J

thus is the summation notation for the matrix proddds.

5.3.1 Previous approaches

In order to discretize Eq. (5.39), i.e. to represent theediffitial operator’ p,
a parametrization of the manifold1 is needed. In the simplest caseylabal
parametrization

f:é€=(&) eM— f(&)CR? (5.41)
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is available. This directly allows to compute tReemann metric

_ Ofk Ofk
9ij = 851 6§]

and theintrinsic Laplacianon M, given by

1 9 0
Vi =——— (v . 5.43

Hereby,|g| denotes the determinant gf; andg’ = g, its inverse. For arbitrary
manifolds, global parametrizations however usually doewatt (e.g. for all objects
homeomorphic to a sphere), or can not be explicitly detegdhin

Local parametrizationsuch as normal coordinates, local quadratic approxima-
tions, or splines can generally be found. They do howevdestrom a number
of shortcomings such as numerical instabilities in the cdseormal coordinates,
asymmetry in local quadratic approximations, or algorithcomplexity for the
connectivity information required by splines.

(5.42)

5.3.2 Surface representation

The different ways of representing the surfaegin the computer can be classified
with respect to the connectivity information need@&dangulated surfaceare an
example of connectivity-based representations. Sin@bkshing the connectiv-
ity information is computationally expensive, these mastre preferably used in
finite element methods for diffusion on surfaces [20]. Catinéty-less methods
include scattered point clouds [124] and implicit repréatons [256].

We make use of thamplicit surface representatiotechnique, also callelvel
setmethod. Hereby, the surface is given by the zero level of aosimlevel function
€ Ct i R — R, thusM = {x : ¢(x) = 0}. For reasons of efficiency, we
usually choose) to be thesigned distance functidior which

[Vll2 =1. (5.44)

Sincey(x € M) = 0, the function value of the signed distance function digectl
reflects the orthogonal distance to the surface.

5.3.3 Embedding ifR¢

As shown by Bertalmi@t al. [32], the diffusion Eq. (5.39) on the surfage can
be transformed into a PDE for generalized anisotropic siiffa in the surround-
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ing R<. This is achieved bgmbeddinghe manifold in a small annular domain
called ‘band’, consisting of all points close to the original surface eTrespective
differential operators ilR? can then directly be discretized inside the band using
particle methods [137, 160]. The embedding transformatiorks by constraining
the fluxes to the tangential direction using the projecti@pm

Vi @ Vi)
T=(1--—"— =

( V|3
Here,V is the regular Nabla operator R?. The initial conditionu(¢,t = 0) is

only known onM. ltis thus extended to the band aroufd by solving to steady
state the PDE

) 194 (5.45)

du

ot

This enforces that the direction of thédfusive fluxVu is orthogonal to the normal
on M, V1, such that the extension is neutral with respect to the abmgping

operatorT’. The embedded governing equation for anisotrapftusion on the
surface M thus becomes

+sign(¥)(Vu - V) =0  in RE. (5.46)

ou 1

~— = _V.(TDVu in the band, 5.47
5 = Toal:” " (TDVY) (547
whereV is the regular Nabla operator R¢ and the tensoD(x, t) is obtained
from the diffusion tensoD (&, t) on the surface by extending it with an arbitrary
radial component that is invariant under the projection map

5.3.4 Level set reinitialization

The signed distance function to any surface can be consttdmtm an arbitrary
smooth level function usingginitialization. This refers to the process of replacing
the old« by a newly constructed one. For the newto be the signed distance
function, it has to be the solution of tiigkonal equation

|V (z)||3=1  inthe band, (5.48)

or, equivalently, the steady-state solution of the PDE

%—f + sign(¥) (Ve - Vip — 1) = 0., (5.49)
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Figure 5.4: Principle of the fast marching method. The Iduveiction) is assumed to be
known in a band (shaded in gray) around the surfgce= 0. The algorithm successively
enlarges the region wherg is known. A new point is computed by solving the quadratic
equation that emerges from the upwind discretizatiof\af |3 = 1. To preserve causality,
the points are updated in order of ascending distance to tinkase.

Since the band is of finite width, this procedure requiresxrapolating method.
The prevalent extrapolating narrow band algorithm for sdydistance functions
is theFast Marching MethodFMM), introduced by Sethian in 1996 [255].

The FMM is a grid-based level set algorithm. It starts frotngaid points im-
mediately adjacent to the surfagéx) = 0, where the level function is assumed
to be known. The FMM thus needs to be initialized by computheorthogonal
distance to the surface for all points immediately adjatenhe surface. We use
the second-order accurate surface locating algorithm yp@H56], employing
tri-cubic interpolation near the surface, to determines¢hiitial distance values.
As a by-product, this algorithm also yields the location &nel distance of the
closest point on the implicit surfacel@sest point transforijn which can be used
to reconstruct function values o or to compute the quadrature of a function
alongM [289].

From the first layer of points, the FMM successively expahéshiand in which
the correcty is known as outlined in Fig. 5.4. The values of new points are
computed by solving the quadratic equation formed by theing¥inite-difference
discretization of Eq. (5.48). To satisfyausality the FMM updates the points
in order of ascending distaneg to the surface. This ensures that the upwind
differences are only using values that are not going to chamy more in future
updates.

The original FMM uses first ordanpwind differencesnd requires the points
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to be sorted according to their distance to the surface. atterlproperty pro-
hibits a parallel implementation on distributed compufgtems and renders the
method inherently sequential. Sorting is avoided by thechiagEikonal solveiof
Kim [156], called theGroup Marching MethodGMM). It advances several points
per iteration and can therefore be implemented on paradielptiters. Avoiding
the global sorting also reduces the algorithmic complegitthe method from
O(Nlog N) to O(N), whereN is the total number of points. To satisfy causality
without sorting the points, each point is computetimes withr being the order
of the upwind scheme. From all solutions, the one with thellestaabsolute value
is used, since the orthogonal distance to the surface ishitréest distance. The
details of the algorithm are described in the original peddion [156].

We note that upwin®lVENQ[148] schemes are a viable alternative to the GMM.

WENO schemes of up to fifth order have successfully been umddvel set ap-

plications [214]. Because they constitute an iterativehoetthat operates in the
whole domain, rather than just in the narrow band around tinlace, they are

however usually more expensive than the GMM.

5.3.5 Orthogonal extension of the solution

In order to construct the initial condition in the band ardut according to
Eq. (5.46), we need to extrapolate the functioenforcingVu - Vi) = 0. This
extrapolation is referred to asthogonal extensionf u over.

Extension corresponds to solving the Eikonal-like equmtio

Vu(x) - Vip(x) =0 (5.50)

for u(x). Orthogonal extension can thus be done with the same digmsitis
reinitialization. In the GMM and FMM, the quadratic equatiemerging from the
upwind discretization oV - V) is replaced by the linear equation from discret-
izing Vu - V4, and the right-hand side is changed frarto 0. Sincey is known,
upwind differences only need to be usedViu, and Vi can be approximated
using higher-order centered differences.

5.3.6 Convergence of the level-set algorithms

Both, the high-order initialization procedure of Chopp][aéd the GMM [156],
modified to higher order, are implemented in the paratiein software library
(cf. Chapter 7) for both two and three dimensions. All methade available
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for convergence orders 1, 2, and 3. Routines for orthogamadtfon extension,
level function reinitialization, and closest point tramsh have been added. The
accuracy of the present implementations is tested on tlensixin of the signed
distance function to the unit spherelR¥. The analytical signed-distance func-
tionisvy = /22 + y2 + 22 — 1, whereas the algorithm reconstrugtsUsing the
point-wise erroe = v —{/;on the points in the narrow band, the followiredative
error measures are computed from all points adjacent to the surfac

1 1 N 1/2
Lo= —"— | — e? 551
2 maXi|’L/)i| [N; z] ( )
1
Lo = ———— max]e;]. (5.52)
max; |’LZJ1| g

To test the orthogonal extension, the spherical harmanie Y;? as given in
Eqg. (5.62) is extrapolated from the surface of the spheretimt band. The res-
ulting convergence curves are shown in Fig. 5.5 for both tHeofder and the
39 order orthogonal extension GMM. The straight lines indictite theoretical
convergence slopes of order 2 and 3, respectively.

The convergence of the reinitialization algorithm is asedsand compared to
the values published by Chopp [56]. Fig. 5.6(a) shows theexgence of the
surface locating step to determine the initial values fer MM using tri-cubic
interpolation [56], and Figs. 5.6(b)-5.7(b) show the cageece of the GMM rein-
itialization in comparison to Chopp’s higher order FMM [56]

5.3.7 Formulation of the numerical scheme

We formulate the numerical scheme for diffusion on surfagékin the frame-
work of hybrid particle-mesh methods [127, 138]. Convetts used in Subsec-
tions 5.4.3 and 5.4.4 is treated by particle motion, wheadldsvel set operations
and the diffusion operator are discretized on a Cartesisshméh spacingsh;)

in all spatial directiong. We choose to evaluate the diffusion operator on regular
locations because the convergence rate of the anisotr@ticsBheme deteriorates
if the band is narrower than aboube (M. Bergdorf, personal communication,
2005). A band of minimal width is however a key property of gresent method
as the computational cost grows proportionally to the baidthy and the cap-
ability of resolving fine surface structures decreases imitheasing band width.
Moreover, the level set algorithms described above redn@elata to be available
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Figure 5.5: Convergence of the second order (a) and thirceo(th) orthogonal extension.
The spherical harmonia. = Y?? (Eq. (5.62)) is initialized in a band of half-widthh

and orthogonally extended outwards to9a band. This is done over the exact signed
distance function), initialized in a12h band. Second order centered differences are used
to approximateVy in the extension. To compute the er®iy is approximated using™"
order centered differences in the baBl < || < 6k, and Vv is known analytically.

on regular locationsInterpolationas outlined in Subsection 5.1.2 is used to map
the property vectordu’;, 1/};;) between the regularly spaced mesh nodes and the

irregular particle Iocations:,’;.

The method adapts to the shape of the surface as particlealgngresent in the
narrow bandy| < k. Inside this bandy is computed on the mesh using second-
orderupwind differences¢o avoid boundary errors, and the projected diffusion
tensorsA = T'D at all particle locations are determined. The right-hart si
of Eq. (5.47) is computed in @nner bandof half-width x < k. The region where
k < |¢| < k serves as &oundary layer After each time step, the solutianin
the boundary layer is reconstructed using the second-@xtension scheme as
described in Subsection 5.3.5.

Discretization of the embedded Eq. (5.47) on the mesh is fwmen arbitrary,
space-dependent tens&rby usingLagrange interpolatiorpolynomials for both
u and A (element-wise). In order to obtain a second-order accuna¢eator dis-
cretization of minimal support, we choose a quadratic paigial basis in each
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Figure 5.6: (a) Convergence of the surface locating aldgorit[56], applied to the signed
distance function around the unit sphere. The present imgieation (filled symbols) is
compared to the errors published by Chopp [56] (open symlaois the2™ order scaling
(solid line). (b) Convergence of the first order GMM. A sigdéstance function is extended
from a band of half-widt{3h to one of9h. All errors are computed withifh < || < 9h.
The present GMM (filled symbols) is compared to the errordighuied by Chopp [56] (open
symbols) for a standard FMM, and thé& order scaling (solid line).

spatial direction, as shown in Fig. 5.8:

ETARLAG L (5.53)
Io(ar) = — &t hﬁf —h) (5.54)
e = 5 o) (5.55)

where the coordinate is relative to each grid node (locally centered basis). The
unknown function: and all elements of the matrix are expressed as continuous
functions in the above basis. In three dimensionsyt¢t, j, k) and A" (i, j, k) =
(Ml (i, 7, k)) be the discrete representations evaluated at mesh(ngié). The
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Figure 5.7: Convergence of the second order (a) and thirceoid) GMM. A signed dis-
tance function is extended from a band of half-wiglthto one of half-widti9h. All errors
are computed in the barth < |¢| < 9h. The present GMM (filled symbols) is compared
to the numbers published by Chopp [56] (open symbols) foghéti order FMM, and the
theoretical scaling (solid line).

Figure 5.8: The three quadratic polynomial basis functiaised in each spatial direction
x;. The polynomials are interpolating at the location&;, 0, andh;, with the coordinates
locally centered at each mesh node. Higher-dimensionaébase formed by Cartesian
products of the depicted polynomials.
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interpolated continuous functions then are:

) = 3 i

k=—1 J——l 1=—1

MH

(4,5, k)i (z1)lj (22) i (23) (5.56)

= Z (i, 5, k)i (1)1 (22) 1 (23) - (5.57)

k=—1j=—1i=—1

These functions are used to symbolically compute the itigimd side of Eq. (5.47).
Evaluating the resulting expression at the center node 0 yields the final dis-
cretized form of the operator:

V- (Alz)Vu(z)) ~ [v. (K(x)va(x))]mzo . (5.58)

By construction, this discretized operator has a compagmp@t consisting of 27
particles in three dimensions, which corresponds to amadot®n radius of only
1h. The resulting stencil weights can be pre-computed, but deggnd on space
asA can be a function of. For A = 1 in three dimensions, the standard 7-point
stencil for the Laplacian is recovered.

Using more than three points in each direction, and thuslaeigrder polyno-
mial basis, allows to systematically construct highereomperator discretizations.

5.3.8 Convergence of the diffusion method

The order of accuracy of the method described in Subsectiii & determined
on a test problem with known analytic solution. We consigetriopic diffusion
on the surface of the unit sphe$@ c R?, governed by

ou

5 = vWiu  on S%. (5.59)

The analytic solution in spherical coordinates (definedoetiog to Bronstein
et al. [38]) is obtained byexpansion to eigenfunctiors

u(t,d,0) = Z Com (0)Y" (8, p)e AU+ 1! (5.60)

£=0 m=—/¢

with coefficients

) = [ (7Y (00 l0.0.0) S (5.60)
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To study convergence without the effects of series truanative use the special
initial condition

u(0,0,0) = Y20, 0) = 1 = cosi, (5.62)
/i
for which the analytic solution simplifies to
u(t,9,¢) = Y (0, 0)e” 2", (5.63)

due to the orthogonality of the spherical harmonics.

The boundary layefx : « < |¢(x)| < k} is reinitialized after each time step
using the second order orthogonal extension GMM, thus emgiV vy - Vu = 0
as described in Subsection 5.3.5.

The convergence of the operator discretization given in(&&8) is shown in
Fig. 5.9(a). The exact right-hand side is derived symbiyjicasing the known
exact solution of the test problem and the known form of tHéusion tensor.
Convergence for the complete diffusion solution after h@etisteps is shown in
Fig. 5.9(b). To reconstruct the solution on the surface efgphere from the mesh
nodes in the band, we use linear interpolation along alllgméb that intersect the
surface. It can be seen that the method is second order éedarall grid sizes
tested. The serial (1 processor) and the parallel (tested dgrocessors) versions
of the implementation yield exactly the same results.

The presented method can be used to simulate diffusion dmeaybsurfaces.
As an example, we consider ti&tanford bunny. The initial condition consists
of a TIFF image, that is projected onto the bunny’s surfa&an®. The values
range between 0 and 1, with sharp transitions. Fig. 5.1Glims the solution at
different times. The concentration on the surface is rewm/&om adjacent nodes
using linear interpolation along grid lines that interdbet surface. An application
to a problem of biological interest is given in Subsectidn 8.

5.3.9 Conservation of mass

While the PSE method in space is analytically conservathve,present surface
diffusion method does not conserve mass exactly. Numegitats in the ortho-
gonal extension of the solution, as well as the interpafetiiorecover the solution
on the surface, lead to mass drift. Using the glaleascaling methogbroposed
by Xu et al. [322], conservation of mass can however be enforced. THacsur

Isource: http://graphics.stanford.edu/software/seavviodels/bunny.html
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Figure 5.9: Convergence of the discretized differentiamgpor of Eq. (5.58) in the narrow
band (a) and for diffusion on the unit sphere (b). The intidrdiffusion constant i = 1.
The diffusion operator is evaluated on a suppor8of 3 x 3 particles in a narrow band of
half-widthx = 1A with an additional boundary layer dfh, thusk = 2h. Extension to the
boundary layer is done using t/28¢ order GMM extension method. Time integration uses
a 2" order TVD Runge-Kutta scheme with a time steptot 10~° until final time10~%.
The solid lines indicate convergence of order 2.

(@) (b) (€

Figure 5.10: Solution of the Stanford bunny test case atdime 0 (a),t = 2 - 107° (b),
andt = 2-10~* (c). The intrinsic diffusion constantis= 0.1, and the diffusion operator
is supported or3 x 3 x 3 particles in a harrow band of half-width = 3k and extended to
alarger band of = 4.5h every 10 time steps, using th¥ order GMM extension method.
An Euler scheme is used for 254 time steps of &ze 10~°. The solution is discretized
using 2 million particles distributed in the bang| < k.
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Figure 5.11: Evolution of the total mass on surface of the spihere with intrinsic diffusion
constantv = 1. The diffusion operator is evaluated on a supporBof 3 x 3 particles

in a narrow-band of half-widthc = 3h. For the cases marked by circles, the solution is
extended to a larger band &f = 4.5k after each time step, using t1289 order GMM
extension method. No extension is applied to the squares @as Euler scheme is used
with a time step oft = 10~* until final time0.3. The open symbols mark the case of no
re-scaling, for the filled symbols the solution is re-scd&2R] at each time step.

integrals in this method are evaluated using linear inetpm along grid lines
and the rectangular quadrature rule. Fig. 5.11 shows thénwss over time for
the above sphere test case with initial condition

u(0,9,0) =14+ Y29, ). (5.64)

This initial condition is extended into the band using theosel order GMM. If
no orthogonal extension to the boundary layer is applied/&et time steps, the
mass grows linearly. Even after the solution has reachestatedy state, and no
gradients are present any more, the mass continues to ghieh eventually leads
to instabilities. Using extension, but no re-scaling, tresmapproaches an asymp-
totic level as the solution reaches its steady state. Usirly éxtension and re-
scaling, the mass remains constant to machine precisiail fiimes.

Since the mass drift depends on the local curvature of tHacirthe global
re-scaling method [322] is only exact for surfaces of camstarvature, such as a
sphere. In other cases, conservation of mass is still eedditty construction), but
the solution is altered.
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5.4 A multi-resolution particle method for reaction-diffu sion
on deforming surfaces

In the following we extend the numerical method describettiénprevious section
to reaction-diffusionsystems omoving surfacesWe consider reaction-diffusion
systems governed by equations of figher-KPP[102, 159] type:

a’LLZ'
ot

whereM is allowed to change over time. The concentration veatoontains one
entry u; per chemical speciesand the diffusion tensor®; are allowed to vary
among species. All chemical reactions are described bydihes termsf; € C.

After reviewing previous simulation methods and applmasi in biology, we
start by describing the extension of the present schemeattioa-diffusion sys-
tems, followed by the extension to moving surfaces. Finally present a multi-
resolution implementation where the particle sizes arallp@dapted to the sur-
face.

5.4.1 Previous approaches and applications in biology

Coupled reaction-diffusion systems exhibit interestitadpgity properties that can
give rise to the formation of stable concentration pattealted Turing patterns
[293], or travelingwaveq230].

Twenty years after the seminal work of Turing [293], Giened Meinhardt used
reaction-diffusion systems to formulate their theorypattern formationin bio-
logy [111]. They introduced th&ierer-Meinhardt modelwhich has become one
of the most widely used pattern formation models, with digant applications
also in computer graphics [294].

The first biological applications of reaction-diffusion deds considered
morphogenesif293], following the idea that coupling of reaction-diffos pat-
terns to growth or motion could explain the geometries amgbek found in nature.
Computer simulations that link pattern formation to growtid morphogenesis
were studied by Mdae [185]. After reviewing the morphogenesis modeling lit-
erature until 2000, Md&e applied hybrid cellular automata-PDE simulations to
explain stalk formation and cell differentiation stime mold

Computer simulations of reaction-diffusion patternssarfacedirst considered
the unit sphere [51]. The numerical method was based on dikmathe func-
tions in terms ofspherical harmonicsthus limiting its applicability to spherical
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objects. The biological application that was consideretthéoriginal publication
concerned growth of globular tumors [51].

Morphogenesis of more complex surfaces was simulated byidgaret al. us-
ing a finite element method to solve the reaction-diffusignation on triangulated
surfaces [128]. The method allows to treat shapes as conagldxanched uni-
cellular algae. Moving-grid finite element techniques water used to directly
couple the motion of the boundary to the reaction-diffugi@atterns on continu-
ously deforming two-dimensional domains [181]. A diffet@pproach uses the
solution of an interior Poisson problem to evolve the swefsitape [180].

Besides morphogenesis, reaction-diffusion models alge imaportant applica-
tions in cell motility [123] and cell modeling [221]. Miurat al. combined the-
ory, experiments, and one-dimensional finite differenoeutations to study pat-
tern formation in cell cultures using reaction-diffusiorodels [193]. Emerging
applications concern simulations céll signalingpathways [33]. Since the first
ODE model of theehemotaxigpathway inEscherichia coliwas published by Bray
et al.in 1993 [36], computer simulations have become increagingire soph-
isticated in resolving spatial phenomena. A recent moddlipkow et al.[172]
explicitly includes diffusion of the key signal transdugtimolecule in the cytoso-
lic space. The mobility of membrane-bound species was hemmset accounted
for. Other reaction-diffusion signaling models include #iporulationcontrol net-
work model of Marwan [188], and the plant shoot meristem $ations of dnsson
et al.[149].

5.4.2 Reaction-diffusion in the present numerical method

We extend the simulation scheme outlined in Section 5.3 &otien-diffusion
problems on surfaces, as governed by Eq. (5.65). All compsraf the concen-
tration vectoru are hereby represented on the same set of computationialgmrt
supporting property vectoi@:”:, ).

Evaluating thaeaction termsf; amounts to a purely local exchange of strength
among species at the same location. Reactions are thusamdilindependently
for each particle within the narrow band. The rate of excledretween different;
is directly given by theeaction kineticsthat are evaluated using either a determ-
inistic method based on kinetic ODEs or a stochastic methol as the Gillespie
SSA algorithm [113]. The latter is possible because indigldparticles consti-
tute homogeneous reaction spaces since no spatial gmdienpresent within a
particle. The deterministic solver makes use of the same itimegrator as the dif-
fusion and is thus restricted by the time step stability firiiihe stochastic solver
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directly operates on (fictitious) molecule numbers and edusutside of the time
integrator’s right-hand side.

An example with moving reaction fronts

As an illustrative example we consider the reaction b — 2a with rate constant

k. If we identify [a] = u and normalize the total concentration to 1 everywhere,
we havef(u) = ku(l —u) € C*'. For the present reaction it is known that the
solution of Eq. (5.65) has a traveling froatx,t) = U(x - n — st) with speed

s along the local interface normal [25, 26]. Such wave solutions exists for all
speedss > s* = 2,/f/(0) > 0 [25, 26]. Fors < s*, no fronts exist. Ifu is
non-negative and continuous, the front thus propagatédsasitstant speed

s =2Vk. (5.66)

For the stochastic simulations we |&t be the total number of molecules con-
tained in a particle, and define an analog\tmgadro’s numberviz. M, the num-
ber of molecules per unit mass. The solutiohas the physical units of concen-
tration, thusu ~ X/(VM). The functionf has units concentration/time, thus
k ~1/(ut) ~ (VM)/(Xt). Gillespie introduces the produgt as the expected
number of reactions per unit time, thbg ~ 1/¢t. For the binary reaction above
itish = X,X, and thuse ~ 1/(Xt). For the relation betweeh andc we find
k = MVec. This corresponds to Eq. 7b in Ref. [113] under the normtadina
M = 1. We interpret thepropensityc as the probability that two molecules of
speciess andb react, provided they meet in space and time. This problidlit
independent of the volume and does not need to be adjustedti€lps change
siz€.

The reaction-diffusion system is completely describedhsy following set of
dimensionless numbers:
:%7 H2:]V[c€3 I Vo s_€

L ) 3= 2ku’ 4 = Vs ;
whereV is the volume of the particle,the characteristic length scale of the prob-
lem, ands the front propagation speel; is a dimensionless volum#&, the ratio

of stochastic and deterministic rate constahls the ratio between diffusive and
reactive mass exchange, ard the dimensionless front velocity.

I

(5.67)

2The probability of an encounter to occur however does departide volume. This is automatically
accounted for inh as the number of moleculeX per particle changes if the particle is dilated or
compressed.
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We use the method presented in this chapter to simulate trapg system on
the surface of the unit sphere using the stochastic SSAidigof113] to evaluate
the reaction terms. The initial condition is such that onédfahe sphere contains
only a, the other half only. Reactions occur along the interface between the two
species. Due to diffusion, the interface thickens up ane, tduthe reactions, it
propagates into the region of At the end of the simulation, the sphere contains
100%oa as all ofb has been consumed by the reaction. For the cadé ef 10 mo-
lecules per unit mass, Fig. 5.12(a) shows the total masgrated over the surface
of the sphere, of, andb as they evolve in time. The front position is also shown,
defined as the location whefe] = [b] = 0.5. As long as reactions occujy]
and[b] are changing and the front travels at a more or less congiartls, given
by the slope of the dashed curve in Fig. 5.12(a). If the dinoereass front speed
is plotted against the dimensionless reaction propertsigycurves for different
diffusion constantss, collapse as shown in Fig. 5.12(b). We also observe that

the theoretical scaling predicted by Eq. (5.66) is well agpnated, particularly if

the reaction is at least a factor of 100 faster than the diffysorresponding to a
reaction-dominated system

5.4.3 Moving and deforming surfaces

The particle character of the present method allows stifaigtard extension to
moving anddeforming surfaced(t). To account for surface motion, the particle

positions are changed according to treocity fieldv(x,t) of the deformation,
thus:

dz,

pra v(xp,t).

(5.68)
Since particles are only present in the narrow band of halfiwi, surface deform-
ations can lead to compression or dilation of the band. Thadowould lead to
surfaces breaking open, whereas the latter would eventcallse the method to
become inconsistent as the overlap condition Eq. (5.7)eset@sbe satisfied. The
level set is thus reinitialized according to Subsectionbdter each convection
step, and the particles are remeshed onto regular locatidhproperties are in-
terpolated using moment-conserving kernels as descnb8dhsection 5.1.2.
We test the method on the unit sphere by diffusing the initisidition

R(YE) = i\ / 12E sin? 9 cos ¥ cos(2¢) . (5.69)
7r
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Figure 5.12: (a) Evolution of the total mass @fndb (solid lines) forM = 10 molecules
per unit concentration. See text for problem descriptiolne Tocation of the reaction front
is shown by the dashed curve. The reaction front moves ietoetfion ofb until all of b
is consumed. (b) Dependence of the front speed the reaction propensity. In dimen-
sionless numbers, the two curvesfgr= 0.1 (open circles) and- = 1.0 (filled triangles)

collapse into one. The slope of the theoretical scaling atiog to Eq. (5.66) is indicated
by the dashed line.
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Figure 5.13: Solution of the sphere test case at time 0 (a), and the final steady state
att = 0.03 (b). Diffusion on the surface with = 0.2 is coupled to surface deformation
according to the velocity field in Eq. (5.70) with = 0.25. The diffusion and convection
operators are evaluated in a narrow bandf= 2h and extended t& = 3h every time
step. A 9 stage STS Euler scheme is used for 301 time stepsdfsi 10~%. Lines on the
surface indicate the -0.25, 0.0, and 0.25 concentratioHiises.

At the same time, the surface of the sphere deforms accotdlitig velocity field
v(x,t) = Cu(x,t)n(x, t)h/ot, (5.70)

wheren is the instantaneous outer unit normal on the surface. Agsitih homo-
genizes the concentration field, the velocity approaches aed there is a stable
steady-state shape. Fig. 5.13 shows an example simulaitbruw= 0.2 and
C = 0.25. Starting from the same initial condition, but increasigo 0.5 causes
the shape to be torn apart before it reaches the steadyigt&.(L4). This demon-
strates the ability of the employed particle level-set folation to handl¢opology
changesdn the surface. This becomes important in biological agpions where
membrane fusion and fission are key processes.

5.4.4 Multi-resolution particles

The employed narrow-band level set method imposessalution constrainbn
the surface geometry: The bands from two opposite parteafiiface must never
overlap, i.e. the smallest “feature” of the surface musttdeast2k in diameter.
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Figure 5.14: Solution of the same test case with= 0.5 at timest = 0.02 (a) and

t = 0.03 (b). The larger velocity causes topology changes in theasarbefore it reaches
its steady-state shape. Lines on the surface indicate t26-0.0, and 0.25 concentration
iso-lines.

If a uniform resolution is used, it becomes prohibitivelypersive to resolve large
complex-shaped geometries. Moreover, such high resolififopose a stringent
time step limit in order to maintain stability of the method.

Adaptive global map

We use theddaptive Global MagAGM) method, introduced by Bergdoet al.in
2005 [27], to locally adjust the particle sizes with smalitizdes close to the sur-
face and larger ones in the outer part of the band. The AGM odeithbased on
postulating aeference spac€ C R where the particles are uniformly distrib-
uted on a regular Cartesian grid of spac?ngand all have the same voluné
Thephysical spacé) C R? supports the irregularly spaced particles with adapted
volumes. AGM entails a smoothapping functionf € C* : 2 — Q, which maps
the reference spade onto the physical spac@. This mapping function defines
the physical locations of the reference space particles by

r=f#), &=g). (5.71)
The Jacobianof this map is
By = 20 J = |®| = det(®), (5.72)

)
8$j
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and defines the physical volumes of the particles as

d

1 ~
V, = ) 1;[1h (5.73)

In AGM, the mapping functiory is represented on the same set of patrticles as the
solutionw, thus extending the property vector of the particles by dament to
(uh, ol f;’). The functionf is determined by the AGM method as the steady-
state solution of the PDE

O _ o (vianesm

==V (M(m)w ) : (5.74)
with the monitor functionM guiding the resolution. This equation is solved to
steady state using an implicit time integration scheme.[Z#E monitor function
M has to be non-negative and smooth. We choose the recommtamdef7]

M(z) = /14 ax(z), (5.75)

whereq is a parameter angdis a smoothly truncateiddicator functiornthat decays
from the value 1 in the inner band to 0 outside. We choose:

X(m) — { exp {_ (¢($)/H)4] ) |’(/)| <k (576)

0 , otherwise

The AGM determines the map such thath/ becomes equi-distributed in refer-
ence space. The resolution in physical space is thus higall(particles) where
M attains large values, while small values /af lead to coarse resolution with
large particles. Above choice of the monitor function cause AGM to concen-
trate the particles within the narrow band, leading to mdfieient memory use
and a relaxed narrow-band resolution constraint.

Diffusion operator

In the AGM method, all differential operators (diffusiornyrgature, level set rein-
itialization, orthogonal extension, etc.) are evaluateceference space. Particle-
to-mesh interpolation (remeshing) is also done in refezespace, where the grid
is uniform. The level function) is a signed distance function in reference space,
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but not in physical space. In order to simulate diffusion toa surface)(x) = 0,
we transform the governing Eq. (5.47) to reference spacereMbhbecomes

ou J = N A
e V. (AV inQ, 5.77
5 = oY (AVY) ®.77)

andV is the regular Nabla operator in reference space. The transfl diffusion
tensor is given by

A=J'®TD®" (5.78)

and can directly be used to evaluate the discretized opeyhEy. (5.58) in refer-
ence space.

Proof 1 To simplify the notation, leB = TD. The right-hand side of Eq. (5.77)
then is:

A (A@u) =
JV - <
Ja?si <J_1¢ijbjk¢lkg—;l) =

0
0%;

J*@B@TW) -

_ _ 0 ou
(T ) -+ JJ 1¢ij8_j3i <bj’“¢”“a_£l> (5.79)

J

for a specific vector functiop. By virtue of

0
0z;

(J 7 ¢ij) - =0 (5.80)

for any vector functiorp (Eg. (20) in Ref. [64]), the first summand vanishes to 0.
The remaining second summand is identical to

3TV (B@Tw) : (5.81)

which is the correct diffusion operator, transformed tcerehce space. |
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Surface curvature

To compute the local curvaturgx) of the surface, we note that

. vy ) Te 1 gre
=V- =o' V. [——a"Vy)|. 5.82
" (Ilwz (@TV1/J||2 w) (582

The curvature can thus be determined using the same opeasatgiven in
Eq. (5.58) with therirtual diffusion tensor

1
J|® Vil

This tensor is not symmetric. Symmetry is however not rexjufor the numerical
scheme or the operator discretization of Eq. (5.58).

Convection operator

In order to move the particles in reference space, the palygatocity v needs to
be transformed. The adaptation of the map causes an appaotion, with the
adaptation velocitfor v = 0 given by:

oxh(t x? — g1
V= 5; ) T (5.84)

The transformed velocity in reference space is then givel2 by

b=®(w-V). (5.85)

Due to the adaptation velocity, the level function beconmistoded and has to be
reinitialized according to Subsection 5.3.4 after evergpdtion step, even if the
physical velocityv is zero.

5.4.5 Algorithm

Using the methods and schemes outlined in this chapterpthplete algorithm for
multi-resolution simulations of reaction-diffusion on wieg surfaces becomes:
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Algorithm 1 (Multi-resolution reaction-diffusion on movi ng surfaces)

Initialize fieldsz9, &) = ih, ¥, andug.
Loop n =0,...,T with time step sizét:
Create particles from the fields,, and
u, usingJ, = |®(x;)| to scale values
to strengths. Particles have

locations;, and carry strengths:

wy = (uy,¥y)/Jn-
Adapt the map using AGMe! — x+.
Convert the physical velocity to reference
space velocity using the old Jacobian:
0= ®(x))(v—V)withY = (zpt! — ) /ot.
Move the particles using the reference space
velocityd: &) — &, "'
Interpolate particles to regular mesh using
Jni1 = |®(xpt)| to scale strengths
to values. New fieldss &, Y41, Un.
Reinitializey in reference space, even if the physical
velocityv = 0.
Compute deterministic reaction and diffusion terms
and updates: u, — uni1.
Compute stochastic reaction terms.
End

All steps in the above algorithm are performed in referemuacs. The phys-
ical position of the particles is however always availabtenf the AGM mapping
function, and the particle volumes can be computed from dleeklian according
to Eq. (5.73). This allows to reconstruct the concentrafiield . in physical space
at any time.

In order to initialize the physical Iocationsg of the particles, the following
initial AGM adaptation is performed:

Algorithm 2 (Initial adaptation)

initialize a, = ih ,i = 0,...,(N —1).
initialize the adaptation time step
p=2TOL.
Wi | e p >TOL:
compute monitor function at particle locations?,,.
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Lyp_1 < Ty,
Tn — AGM(z),—1, M, 7).
compute the motion residual
N _
P = w7 Sp 2 — @) 2
End

After this initial adaptation, the initial conditions fohé level functiory) and
all concentration strengths can be determined. Fig. 5.@&stan example where
the resolution is adapted to a narrow band of physical halfw2h, around the
unit sphere. Since@ is the signed distance function in reference space, the-phys
ical width of the narrow band that is needed to evaluate tfierdntial operators
and level set algorithms is considerably smaller after AGMmation. The sim-
ulations for Fig. 5.13 and Fig. 5.14 were also done using tB&&scheme, with
adaptation time step = 10.0 and tolerance TOE 0.1h.
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Figure 5.15: AGM resolution adaptation to a narrow band amaiuthe unit sphere. (a) An
initially uniform 32 x 32 x 32 lattice withh = 0.125 is adapted with an adaptation time
step ofr = 1.0 and a tolerance of TOt 0.1h. (b) The final distribution after 33 AGM
iterations. The physical positions, of the particles as determined by Algorithm 2 are
shown as mesh nodes. The physical width of the band neededltmi the differential
operators is considerably smaller, thus allowing to resdimer surface structures. Shading
codes the contours of the monitor function, attaining largkies close to the surface of the
sphere and small values outside of the band.

Chapter 6

Simulations of Diffusion in Organelles of Live Cells

In this chapter we consider the application of the simulatechniques presented
so far to diffusion processes in organelles of live callsganellesare the internal
functional structures of cells, analogous to organs in wlwganisms. The struc-
tures and shapes of organelles are hardly simple combnsatib straight lines,
spheres, and cubes and are thus not well described by tHeé&tkeonstructs of
Euclidean geometry. In biology this is true for many objemtsa wide range of
length scales. Known examples include the structures afi@xic and phylo-
genetic trees [43], stability regions in population dynamrodels [205], pneu-
monal and arterial trees [118], the shape of neurons [266tars of vesicles
[163], the cytoskeleton [14], protein chain conformati¢h®8], protein structures
[167], nucleotide sequences [321], and electric currdmzugh ion channels in
cell membranes [169].

In the present work we consider the Endoplasmic ReticuluR)(Eescribed
in Section 6.1, as an example of biological interest. We mstact the shapes
of real ER samples in the computer as described in Sectian Bi2se recon-
structed shapes are then used to quantify the complexitiheofeometry using
fractal analysis and theory as outlined in Section 6.3. Vidsvsthat the geometric
complexity of the organelle can lead to anomalous appaiiéosin on a larger,
averaged length scale. This finding is important when qtativiely evaluating
Fluorescence Recovery After Photobleaching (FRAP; Sedid) experiments.
Owing to its experimental simplicity and versatility, FRARSs become one of the
most widely used methods in modern cell biology. Its averggiature however
complicates the quantitative evaluation of FRAP data, adrtolved influences
from the shape of the organelle start to become important.

Using the particle methods outlined in the previous chaptersimulate diffu-
sion processes in the lumen (Subsection 6.5.2) and on théoraem(Subsection
6.5.3) of reconstructed ER shapes. Such simulations efabiee first time the
measurement of geometry-corrected molecular diffusiorstants from FRAP ex-
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ribosomes

Figure 6.1: Electron micrograph of a region in a liver cellgrce [8]). The ER is visible as
cross-cut lamellar and tubular structures. The rough ERagared with ribosomes, visible
as small black dots on the outside of its membrane. The laogerd structures in the image
are mitochondria and peroxisomes.

periments in live cells. They also provide a means of vallidgthe various existing
models for diffusion in the ER [99, 207, 262, 300], and to r@gsly quantify the
geometric averaging artifacts in FRAP. Our simulationsastiat, unless properly
accounted for, the geometric shape of the ER leads to a 2fdtw4inderestima-
tion of the molecular diffusion constants in FRAP analysis.

6.1 The Endoplasmic Reticulum (ER)

TheEndoplasmic ReticulufER) is an organelle in eukaryotic cells. It is involved
in protein synthesis, protein folding, and lipid synthedike electron micrograph
in Fig. 6.1 shows a region of a cell where the ER is visible asldefl stack of
membrane layers. The ER consists of a single contiguous magmlhat is con-
tinuous with thenuclear envelopas shown in Fig. 6.2. The connected space
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Nuclear Envelope

Endoplasmic
Reticulum

Figure 6.2: Schematic of the nuclear envelope and the coatig ER membrane (source
[777).

enclosed by the ER membrane is called linmen The ER is generally depic-
ted as a highly convoluted meshwork of tubular and lameliarctures in three
dimensions [280] (Fig. 6.3), with individual tubules ab806tto 60 nm in diameter.

Morphologically, the ER can be partitioned intmugh ERandsmooth ERThe
rough ER is mainly involved in protein synthesis, and thesiolgt of its membrane
is covered with ribosomes. The smooth ER tends to be coratedtin theperi-
nuclear regionand it is mainly involved in lipid synthesis.

6.2 Computational reconstruction of real ER geometries

In order to be able to analyze the geometric properties oERend to simulate
diffusion in its lumen and on the membrane, we reconstrucge&netries from
real live cells usingconfocal fluorescence microscoppid computational 3D re-
construction. ER geometries are recorded from live tissliaie cells expressing
a soluble, resident, recombinant protein (ssGFP—KDEL1]R&Jsing this marker
and a stack of seriatonfocal sectiongcalled az-stacl, we can experimentally
define and computationally reconstruct the 3D shape of theTeR lines, trans-
fection, and confocal imaging were done in the group of PkoHelenius.

In each cell, 50 0.Lm optical z-sections are collected with a lateral resolu-
tion of 0.18 um/pixel for the lumen, and 0.g2m/pixel for the membrane cases.
Imaging noise is removed using@aussian filterof half-width 200 nm, and the
surface of the ER is reconstructed as a gray level iso-suifa@D space using
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rough ER smoath ER

Figure 6.3: Schematic of the ER with distinction of rough Eangllar, with ribosomes)
and smooth ER (tubular, without ribosomes). source [132].

Imaris 4.1.1 (BitPlane, Inc., drich, Switzerland), employing the same number of
voxels as the section images have pixels. After removingathetd parts of the sur-
face, the ER membrane is discretized in Imaris and storedréangulation using
planar triangles. The computer time for 3D reconstructiod &iangulation of a
complete ER using about 1 million triangles is about 2 to 5utés on a 3 GHz
Intel Pentium 4 computer. Thiatensity thresholdised for the iso-surface is set
as high as possible to still result in a connected domains Firieshold is optimal
according to the error analysis of the 3D reconstructiorartificial ER-like geo-
metries presented in Subsection 6.2.1. After reconstmucthe surface is checked
for consistency. It is required to enclose a connected spadéo not contain any
surface intersections or holes in the surface.

The triangulation of the surface is not an inherent featfitbepresent method
and it represents only the format available from the imagenstruction software.
Before being used in computer simulations, the surfacesaneerted to level sets
as described in Appendix C, and thus they do not remain pisedimear.

For illustration purposes, one example of the numerous&oactions is shown
in Figs. 6.4 and 6.5. Fig. 6.4 shows thenfocal section®f the fluorescently
stained — but not fixed — ER of a live VERO cell (Helenius grouphe result of
the 3D reconstruction is shown in Fig. 6.5 for the complete &Rl an enlarged
portion of a second sample.
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e

Figure 6.4: Sample z-stack of confocal sections used for &®nstruction. The ER of
a VERO cell is fluorescently marked (Helenius group) and azaifimages are taken at
vertical distances ofAz = 0.1 um. Progressing from left to right and top to bottom, the
focal plane moves from the bottom of the cell to its top.
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(@) (b)

Figure 6.5: (a) Shaded view of the reconstructed ER surfama Fig. 6.4 in three dimen-
sions. (b) Close-up of a reconstructed ER surface, illustgathe spatial resolution of the
present geometry acquisition method.

6.2.1 Error analysis and influence of the microscope’s apto-
isotropy

In order to determine the optiméhreshold(intensity iso-value) for the 3D re-
construction, we consider synthetic geometries for whighdorrect outcome is
known. Atrtificial random networks of tubules are createdhia tomputer on a
lattice of M points. An example withi/ = 20 x 20 x 3 is shown in Fig. 6.6.
These geometries are theonvolvedwith a model of the anisotropigoint spread
functionof the confocal microscope. For this purpose, the latesalgtion R of
the microscope is expressed as
A

R= g (6.1)
with X\ the wavelength of the light emitted by the fluorophore (ch&action 6.4.1)
and NA the numerical aperture of the objective lens. The axialluti®m § is
defined as the distance between the nearest and farthess @anultaneously in
focus and, according to [269],

- 3nA
~ 2NA2Y

wheren is the refractive index of the medium. The ratidR is calledoptical
anisotropyof the microscope and it varies between about 1.6 and 5 formeem
cial confocal microscopes. The point spread function is etedlin each spatial

5 (6.2)
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directionr = x, y, z as [327]

P(r) = (2M>2 (6.3)

r

with

Coy = (6.4)

and.J; theBessel functioof the first kind. For the axial direction, the point spread
function is stretched according to the anisotropy @s:= C, ,R/6. The values
for the present work arex = 510nm, NA = 1.4, andn = 1.

Successive convolution of the artificial geometry witir) in all three spa-
tial directions yields a simulated z-stack of section insgage shown in Fig. 6.7.
To modelcamera noisgeach pixel in these images is replaced by a Poisson-
distributed random number with the expectation value etpu#te original pixel
value [53]. The section images are normalized such thahtghsity values are
between 0 and 255.

The geometries are then reconstructed from the simulatefdcal sections us-
ing Imaris (BitPlane, Inc.), and the resulting reconstructed voluarescompared
to the original ones. The deviation is quantified by the iedahumber of voxels
that are incorrectly reconstructed, i.e. voxels that argsing in the reconstructed
geometry, but are present in the original one, or vice vefsg. 6.8 shows the
resulting totakeconstruction errorgor various thresholds and optical anisotropies
for a test geometry with an expected number of 3 tubes coimgegér branching
point, 0.15 um tubule radius, and an average distancé pi between tubules.
This corresponds towlume-filling fractionof 0.3, which is close to the average
volume-filling fraction of1/3 determined for real ER geometries. Similar studies
are also done for larger tubules (radiug5 xm) and a lower connection density (2
tubes expected to connect per branching point). A total dfférdnt geometries
is analyzed for 5 different anisotropy values (1, 2, 3, 4,)618 a wide range of
thresholds. The corresponding error plots are not showsdeethey are analogous
to the one in Fig. 6.8 and lead to the same conclusions.

We also determine the largest threshold for which the rdoected network
geometry remains connected. We find that tiptimal thresholdis close to or
larger than this limit for all anisotropies larger than 1 atidgeometries studied.
For the experimental ER samples we thus always use the tgngesible threshold
which yields a connected reconstruction, since the mosbitapt objective toward
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(a) Whole network (b) close-up

Figure 6.6: Example of an artificial tubular network geometrsed to assess the quality
of the 3D reconstruction. The random network is generated 2 x 20 x 3 lattice with
an average of 3 tubules being connected in each grid poine raddius of the tubules is
0.15 um, the distance between two grid pointsigm. (a) The full network, imaged at a
simulated anisotropy of 3 and reconstructed with a thregtodl50. (b) A4 x 4 x 3 subset
imaged at anisotropy 1 and reconstructed with a thresholtil@r.

realistic computer simulations is to preserve the topolofjthe organelle. The
anisotropy of the confocal microscope used in the preserk is@about 2.14. The
optimal threshold can thus be expected to be close to thedafgasible one.

Regarding the sensitivity of the reconstruction resulthwiespect to the
threshold setting, we find that varying the thresholdtidy% around the optimum
changes the reconstruction error . . . 8% for anisotropies of 2 and 3. Using
the above-mentioned rule of thumb, such large thresholdtiens should how-
ever never occur.

The reconstruction errors cause the tubules to appeakethickhinner than they
actually are. The error in the predicted diffusive flux isedity proportional to
this size error. For an anisotropy of 2, the total relativeorestruction error is 28%,
composed of 16% missing voxels and 12% excess voxels. Adtbus appears on
average 4% thinner than it actually is. This translates tga#or in the diffusion
constant, which increases to 9% for an anisotropy of 3. Coetpto the various
experimental uncertainties, these errors constitutegrafsiant reservation.
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Figure 6.7: Artificial z-stack created from the sample getsgnef Fig. 6.6(b). After con-
volving the geometry to model the effect of confocal imagiitg an anisotropy of 4, 15
serial section images at an axial distance®f = 0.2 um are taken. The same geometry
is also tested using up to 53 sections (images not shownyré&ssing from left to right and
top to bottom, the simulated focal plane moves from the bottbthe object to its top.

6.3 Fractal complexity analysis of the ER geometry

We analyze the geometric shape of the reconstructed ER freRO/cells and
estimate some of its fractal properties. Tinactal dimension184] of a shape
is often used to quantify the shap&emplexity In many situations, the fractal
dimension is found to be a useful measure. Its definition kewalways involves
some sort of limit to infinity and, since all physical and loigical systems are
finite, fractal dimensions are in principle not defined foerth Still, we can use
the mathematical idealization as a model that is valid owertin range of scales.
Thereforefractal in the present context meapee-fractal

It is well known that the shape of a domain influences the meeetaking place
inside it or on its boundary. While this is already true forckalean shapes [140],
it becomes evident for fractal geometries, where non-finetractions in and
between spatial and temporal scales determine the dynarRiesent literature
contains an increasing number of hints that confined diffusn the ER appears
anomalous [241, 314]. This is also known for diffusion in gyoplasm [313, 19],
where it can be attributed to the fractal naturenwdlecular crowding[14, 19].

Anomalous diffusioican however also be a consequence of diffusion on domains

with non-integer fractal dimension, as shown in AppendixXTDe present fractal
analysis confirms that this is indeed the case for the ER. Eoengtric shape of
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Figure 6.8: Relative reconstruction errors for the sampé®metry of Fig. 6.6 and different
optical anisotropies and reconstruction thresholds. Thedssa shows the pixel intensity
iso-value value used for the 3D reconstruction. The intgnailues in the images are nor-
malized to the interval0, 255]. The ordinate shows the total relative reconstruction grro
given by the number of missing voxels plus the number of €xcaels in the reconstruc-
ted volume, divided by the total number of voxels in the pabvolume. Lines are shown
for various anisotropies. The squares mark the largeststhodd for which a connected
reconstruction results. For the idealized case of anigmgrd, the reconstruction remains
connected for all thresholds tested.

CHAPTER 6. SIMULATIONS OF DIFFUSION IN ORGANELLES OF
162 LIVE CELLS

the organelle can explain the apparent anomalous behavidrijt thus plays an
important role in diffusion analysis.

6.3.1 Renyi entropies and generalized dimensions

Among the numerous definitions of fractal dimensions (seg €able 1 in
Ref. [69]), we use the generaliz&&nyi dimensiong228]

I
=— 1 d .
B s 1T ©9

which are based on thRenyi entropied,, defined as follows: assume a dis-
joint partitioning of the embedding Euclidean spdééinto M (§) cartesian cells

{Cf}M(é) each of volume). Let p; be the probability for the geometry under

=1

consideration to fill celC;. The Renyi entropies are then given by

M(5)
= log > pf Lq#1
B i=1
Iy = M(8) (6.6)
— > pilogp; ,q=1.
=1

The Renyi dimensiond,, are strictly positive and their values decrease with in-
creasingg, converging to a limitd... Forq¢ = 0, the dimensiond, is identical

to the capacity(or box counting dimension We consider the Renyi dimensions

of ordersq = —1,0, 1,2 to verify the fractal scaling behavior, i.e. to check that
d_, > dy > dy > do holds over a sufficiently large range of length scales.

To estimate the Renyi dimensions, the probabilitieseed to be approximated.
This is done by uniformly scattering half a billion randomirgs on the recon-
structed surface of the ER, and counting the number of suaitgpfalling into
every cartesian cell’;. Dividing this count by the total number of scattered points
approximateg; for the cells. The grid that defines the cells is subsequently
coarsened by a factor of two in each direction, and the whalequlure is repeated
until the number of cells in any direction falls below two. ffinimize spurious ef-
fects from the random number generator and aliasing eftergo grid sampling,
the whole procedure is repeated with five different randoedsend six different,
slightly shifted, bounding boxes for the cell mesh. The mead entropies are
averaged from all 30 repetitions, and the Renyi dimensioasiatermined as least
squares regressions of the corresponding entropy versueghrithm of the box
size at each reduction step.
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| case | d_1 do dq do |
1 2.5300 2.3565 2.2968 2.2783
2 2.7636 2.4870 2.4160 2.3863
3 2.5337 2.4005 2.3455 2.3159
4 2.5450 2.3903 2.3292 2.2927
5 2.6049 2.3494 2.2864 2.2647
6 2.6127 2.4002 2.3215 2.2837
7 2.2984 2.1490 2.1045 2.0911
8 2.7264 2.4361 2.3392 2.2687
9 2.9203 2.5695 2.4473 2.3672
all 2.614+0.18 2.3%+0.11 2.320.10 2.280.08

Table 6.1: Measured Renyi dimensions (see text) for nirferéift ER geometries. The
fractal scaling is confirmed over 1.7 orders of magnitudegiag from 0.01 cell diameters
to 0.5 cell diameters.

We test whether the ER membrane can be viewed as a contifractad surface
in space by applying above procedure to the reconstructefiidaRnine different
cells. The results are summarized in Table 6.1. For thedeSE shapes, the
capacity dimensiors dy = 2.4 £ 0.1 and the ordering of the Renyi dimensions is
satisfied in each individual sample. The fractal scalingigsés over 1.7 orders of
magnitude in length scales, ranging from 0.01 cell diansatef.5 cell diameters.
At length scales relevant to whole organelle dynamics, fResEhus expected to
exhibitfractal diffusioncharacteristics.

6.3.2 Apparent diffusion on fractal domains

The laws of lateral diffusion on the membrane as well as dfisiion in the luminal
space change when considering a fractal domain [22, 21, IB7particular, the
expected MSD (cf. Subsection 2.1.1) of a normally diffuspagticle during the
time perioddt changes fronk (||x(t + 0t) — @(¢)||3) o dt to [22]

E (||t + 5t) — z(t)]|3) o 52/, (6.7)

corresponding to appareahomalous diffusioricf. Subsection 2.1.2). The para-
meterd,, is called thedimension of the walkThis dimension is related tdaus-
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dorff’s dimensioni g and thespectral dimensiod, as [22]:

2dg
dy = . (6.8)
The spectral dimensiaf, is connected to thdensity of states.e. the distribution
of the eigenvalues of the diffusion operator on the domamoaition, and can not
be measured for an arbitrary geometry such as the ER. AceptdiEq. (6.7), two
shapes can only exhibit the same macroscopic diffusionviehi their dimen-
sions of the walk are identical [244]. This is a necessangditmm.

Confined diffusion in the ER is expected to appear anomaladi$][at length
scales between the diameter of individual tubules and thdembrganelle, even
if the underlying molecular diffusion is normal [207, 308,33. This is a direct
effect of thecomplexityof the ER geometry (cf. proof in Appendix D), which we
have shown to exhibit fractal scaling properties. The expental results reported
by Weisset al.[314] confirm that the observed anomaly is purely caused by th
geometry of the organelle and is independent of molecutacttre and events.
Any model geometrfor diffusion in the ER would need to have the saieas the
real ER shape. This is however impossible to achieve siresghctral dimension
of any given ER sample can not be measured. Direct numeralations in the
reconstructed shapes are thus needed to quantitativebratadd the geometric
influences.

6.4 Fluorescence Recovery After Photobleaching (FRAP)

The experimental technique dfluorescence Recovery After Photobleaching
(FRAP) is widely used to determine how substances move miive cells or on
cellular membranes [317]. In FRAPRegion Of InterefROI) in the cell that con-
tains the fluorescently tagged molecules is bleached usioggslaser light. The
influx of non-bleached molecules from adjacent areas irgd0I is recorded and
analyzed over time, as illustrated in Fig. 6.9. When apptjedntitatively, FRAP
allows to determine the molecular diffusion constants abrfiscent molecules,
including soluble and membrane-bound proteins [174].

FRAP has been used since the 1970s to investigate lateralitmob the cell
surface [15]. Later it has been extended to the investigaifgrotein dynamics
within the cell [274] and was also used to follow events dyriell division and
signaling, and to measure protein interactions and cordtiomal changes [227].
The use of FRAP rapidly increased with the availability ofthwels to tag intra-
cellular proteins withGreen Fluorescent Protei(fFP) and its derivatives. This
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10 pm

pre-bleach bleacht =0 t = 2min.

Figure 6.9: Example of a FRAP micrograph sequence in a VER(ldelenius group).
The Region Of Interest (ROI) is highlighted by the gray box.

allows visualization of the proteins and enables measumnesiaé their dynamics in
live cells. Diffusion constants of GFP and GFP-tagged jinsthave been reported
for the cytoplasm [278], the nucleus [216], the ER [75, 203}ochondria [210],
the Golgi complex [60, 254], and for different membranesimdell [89, 90, 186].

6.4.1 Green fluorescent protein

Green Fluorescent Protei(GFP) is a spontaneously fluorescent protein isolated
from coelenterates, such as the fluorescent pacific jellyegfuoria victoria The
role of the active center of GFP is to transduce (by energysfea) the blue chemi-
luminescence of another protein (aequorin) into green.liGlirP is well suited for
photobleaching studies since it is a bright, stable, netctftuorophore with low
bleaching under imaging conditions. When illuminated athhintensity, GFP
looses its fluorescence irreversibly, but without damagmigacellular structures
[317]. This process is referred to ateaching Various mutants of GFP with
stronger fluorescence and/or different absorbance andiemipeaks are known
and used [324].

To track proteins other than GFP itself, they are covalemtibdified to include
a GFP domain. This is done by molecular cloning of GFP cDNA ithéhen ex-
pressed in cultured cell lines. GFP can function as a praéginas it is tolerated
for both N- and C-terminal fusion by a wide variety of protirMany of those
have been shown to retain their native function after aoiditif GFP. This enorm-
ous flexibility as anoninvasive marken live cells enables numerous applications
of GFP, FRAP being one of them.
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6.4.2 Estimating the diffusion constant from FRAP data

In order to obtain molecular diffusion constants friioorescence recovery curves
the dependence of the curve’s shape on the moleecylareeds to be modeled.
Fitting such &RAP modeto an experimentally determined recovery curve yields
the estimated diffusion constant.

We distinguish between thmolecular diffusion constargnd theapparent dif-
fusion constant The former is directly measured by single-molecule teghes,
such as single molecule tracking [142, 175] (Chapter 1) arélscence correla-
tion spectroscopy [314], and is to be used in the diffusiomagiqn to model the
process in the continuum. The latter is the constant detenbycoarse-grained
methods such as FRAP, averaging over a cedhservation volumeThese appar-
ent values depend on the geometry of the observation volseaAppendix D for
a mathematical derivation and rigorous definitions). Oagwnolecular diffusion
constants from apparent ones is important when comparipgrements made in
different organelles or cells, as well as for mathematicatleling and computa-
tional simulations of the observed diffusion process.

Current techniques, as summarized below, do however neingd full account
that the organelles to which the fluorescent molecules améram often have a
complex three-dimensional shape, and that they may onlypmyca fraction of the
bleached and unbleached volumes. The importance of adnguot the specific
geometry of the organelle increases with increasioigplexityof the organelle’s
shape and with decreasinglume-filling fractionin the bleached and unbleached
regions. This issue has been frequently discussed in #ratlitre [94, 75], but no
procedure exists to quantify the magnitude of the uncestamroduced, let alone
to calculate more accurate molecular diffusion constaois FRAP curves.

Although theoretical descriptions of particle diffusiantivo-dimensional mem-
branes have been derived for a variety of situations, inetugeriodically non-
planar membranes [6], binding, particle crowding [249]d anobile as well as
immobile obstacles [239, 252], no such theory exists forttiree-dimensional
lumen of complex compartments such as the ER, or for theirecbmembranes.

FRAP models are based on postulating certain dynamics éopribcess and in
some cases alsoraodel geometryor the organelle under consideration. In our
case, we assume the dynamics to be described by the diffesjoation. Two
classes of models can be distinguisheldsed-form modelandsimulation-based
models The former are based on an analytic solution of the moddilpno. This
solution is then fitted to the experimentally determined FPRAIrves to determ-
ine the diffusion constant. Such models lack the capalilitgccounting for the
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specific organelle shape and should be used with caution wbmparing diffu-
sion constants between different cells or compartmentg][28imulation-based
models provide more flexibility by numerically solving theodel problem.

6.4.3 Closed-form equation models

Closed-form modelare based on the analytic solution of a model problem, where
the diffusion constant constitutes the model parametdrishtd be determined

by data fitting. Due to the limitations of analytic solvatyidiffusion is either
calculated in a flat plane rather than in three dimensionk pfSoy using (semi-
)empirical correlations determined from calibration expents [99]. The fol-
lowing overview summarizes the most frequently used cldsen models from

the literature. The list is however incomplete as severatisgized models exist,
e.g. for strip bleaching [94].

Exponential recovery model

Solving the homogeneous, isotropic diffusion equationwo timensions, and
assuming homogeneous flux into the ROI, the predicted floere® recovery is
given by theexponential recovery model

F(t) = /ROIu(w,t) de =Fy (1—e "), (6.9)

whereFj is thepre-bleach intensitandc« is a constant that depends on the shape
of the ROI and that can be determined analytically. The vafitbe parameter,
is obtained from data fitting.

Empirical correlation model

The following empirical correlation models found by considering anomalous
diffusion in simple geometries and calibrating with expents [75, 227]. The
predicted fluorescence content in the ROl is:

[Fo + fn(Fo — Fo)] (t/t1/2)"

Flt)=Fa+ T (1)

, (6.10)

whereF, is the intensity just after bleachingy is the intensity just before bleach-
ing, anda is the model parameter. Thecovery half-time, /, is estimated from
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Figure 6.10: Simplified geometrical situation around thedsthed ROI.

the measured curve by nonlinear fitting. Thebile fractionf,, is defined as [227]

Fo — F,

== 6.11
In=F—pt (6.11)
wherefF, is the asymptotic fluorescence intensity at large times.ribleile frac-
tion contains information about membrane barriers, bipdéactions, and micro-
domains in the membrane, as these phenomena can prevemtpartgily restrict

the free diffusion of molecules.

A second order physical model

This semi-empirical model [244] is based on the situaticth@vicinity of the ROI
as depicted in Fig. 6.10. For simplicity, it considers thenptementary problem
of diffusion of bleached protein out of the ROI.

Let a, b, andc be the lengths of the edges of the ROI in all three spatial dir-
ections. Without loss of generality, we assume that théainitoncentration of
bleached protein inside the ROI is unity. The total mass @athed protein in the
box is thus equal tabc. After some time, the concentration front has diffused a
mean distance af in both thex andy direction. The new volume in which the
bleached molecules are contained is thus giveridoy 27)(b + 2T)c. Assum-
ing a homogeneous distribution as well as conservation aflsméie new mean
concentration in the ROl hence becomes

abc
(a+27)(b+2T)c’

(6.12)
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If we assume that for each bleached molecule that leaves@ieaRfluorescent
one enters in exchange, the fluorescence intensity in thasRfdlen by the com-
plement of the above concentration. Re-scaling the modahtasymptotic level
of F, instead of 1 yields

_ ab
F(z) = Fx (1 - m) . (6.13)

To model the influence of the local ER geometry, weBet= o?t>?, using the
fractal diffusion concepts outlined in Section 6.3. Suhstig into Eq. (6.13)
yields thesecond order physical model

ab

Ft)=Fy|1- |
" = ( ab+2(a+b)atb + 4a2t25) ) (6.14)

with parametersy and 5. This model includes both information about the ER
geometry (in the sense of fractal dimensions) and the sizbeoROI (ina and

b). It is based on first physical principles and can thus be @rpleto have some
extrapolation capabilities.

Since it is not possible to measure the spectral dimensianrefl ER shape
(cf. Section 6.3), the connection of the model parameteasd 3 to the physical
diffusion constant,, is however unknown. The model can thus only be used to
determine recovery half-times, but not diffusion constant

Comparison of closed-form model fits

The fitting quality of the closed-form models presented soidaassessed on a
simulated FRAP curve (cf. Appendix F and Subsection 6.5t2He simulation
details). Fitting of the models to the simulated FRAP curigeslone using a
Nelder-Mead simplemlgorithm to minimize thel, fitting error. The resulting
optimal model parameters, the fitting residpah, and the needed number of iter-
ationsNj,r are given in Table 6.2, the corresponding curves are shoWwigir.11.
While the empirical model is already significantly bettearitthe exponential re-
covery model, the second order physical model explains #ta a@nother one to
two orders of magnitude better.
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Figure 6.11: Best fits of the exponential model (a), the eirgdimodel (b), and the second
order physical model (c) to a simulated FRAP curve (dashaeda ireal ER geometry
(cf. Appendix F and Subsection 6.5.2). The dashed curvéhas 1.0, F, = 0.0, and
Foo = 0.99 (cf. Appendix F.1). The residuals and the optimal paramegdues are given
in Table 6.2.

| Model \ optimal parameters | pmin | Nier |
Exponential (av2)opt = 0.04342 6.434 24
Empirical aopt = 0.66775, 11 /2 opt = 16.290 1.368 | 991209
Physical Oopt = 3.6143, Bopt = 0.45771 0.01244| 18318

Table 6.2: Optimal model parameters, residual fitting errand number of iterations
needed to converge for the different closed-form FRAP rsodel
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6.4.4 Computational FRAP models

Since closed-form equation models do not account for theifspshape of the
organelle in individual cells, they have limited extragaa capabilities. If the
FRAP curve depends on the particular shape of the orgattediee models predict
different diffusion constants, even if the actual molecul#fusion constants are
identical. This is due to the fact that closed-form modelstatte any variation
in the FRAP curve to changes in the diffusion constant andncaraccount for
geometry-induced variations.

Several approaches have been made tcsimalation-based FRAP modelmn
such a model, simulated recovery curves with known diffastonstant in the
simulation are fitted to experimental data in order to deduodecular diffu-
sion constants. Fitting is only done in time, while the FRAdues are left un-
changed [246]. Theffective molecular diffusion constami; is then computed
from the computational diffusion constamtj,, and the time-stretching factaeg
from the fit as

Vsim
Veff = e, (6.15)
where¢ is the ratio of length units between simulation and expenime
In the following, we review the most important advances impatational mod-
eling and introduce a novel simulation model that fully aguis for the three-
dimensional shape of the organelle.

Monte Carlo simulations in artificial model geometries

Using the classical method of random walk, as outlined ins8ation 5.2.1,
Olveczky and Verkman [207] performed computer simulatimnsalculate solute
diffusion in an orthogonal meshwork of interconnectedradirs. Random walk is
an intuitive method for simulating diffusion and is suitalibr handling complex
geometries. Its slow convergence rate however hampersctheay of the res-

ults, as shown in Subsection 5.2@lveczky and Verkman found that the apparent

diffusive transport in the cylinder meshwork is about halffast as in free space.
Moreover, they found the diffusion to effectively appeaommalous, even if the
molecular diffusion is normal. In Appendix D we give a mattadival explana-
tion for this phenomenon. This showed that geometry hasrdfisignt impact on
apparent diffusion, and that diffusion constants are wstanated by models that
neglect the confinement. The shapes of real ER may howevdyenatcurately
mimicked by random artificial cylinder meshes.
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Two-dimensional variable density simulations

Siggiaet al.[262] used finite differences [265] to computationally sottae diffu-
sion equation in the imaging plane of the observation mape. The geometry
of the ER was treated by taking a smoothed post-bleach floenes intensity mi-
crograph as the initial condition. In the course of the satiah, the geometry was
however no longer explicitly taken into account, mainly doi¢he numerical lim-
itations of the employed finite difference methothstead, theonnection density
of the ER was assumed to be represented by the local fluosoiensity in
a pre-bleach image. Based on this assumption, a statigtaadraged transport
model was introduced. Depending on the particular trarispodel, variations in
the apparent diffusion constant of up to a factor of threeevedaserved [262]. As
already stated in the original publication [262], the vjicbf the model is ques-
tionable when 3D effects become important, when image nsgibsaturated pixel
intensities exist, or when concentration variations aes@nt in the pre-bleach im-
age. The first situation for example occurs when two compamteithat overlap in
the projection are in fact disconnected in 3D.

Three-dimensional free space simulations

A more recent approach by Bragaal.[35] made use of finite difference simula-
tions to derive a FRAP model in the nucleoplasm. The modebtighly treats the
initial condition of the recovery dynamics by explicitlymsidering the 3D intens-
ity distribution of the bleaching laser beam as wellbasmature recoverguring
bleaching. Bragat al. report a molecular diffusion constant of 33.3.6.m?/s
for GFP in thenucleoplasnof HeLa cells Their work did also neglect the geo-
metric shape of the compartment under consideration. Tteehas well as the
simulations were done in 3D free space. For short times shigitainly a valid

LFinite differences are based on numerical approximatiftisecderivatives of the governing equa-
tion on a computational mesh. These approximations restétformulating the governing PDE as sets
of linear systems of equations that can be solved computdtjo For simple geometries, the resulting
algebraic systems can be structured (e.g. in tridiagonaieea), so that efficient numerical solvers can
be applied, resulting in computations that scale lineaiith whe number of the discretization points.
The efficiency of grid based methods is however drasticatiuced when discretizing complex geo-
metries. The resulting discretized equations fail to héaee“hice” structure associated with simpler
geometries, resulting in fuller systems whose solutioeroficales with the square or even the cube
of the computational elements. Moreover, the generatichefrid in complex geometries remains a
challenging task, despite the availability of several rodthto render such procedures automatic. In
addition, the order of accuracy of the numerical approxiomaof the governing equation is reduced
near complex boundaries.
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assumption in the nucleoplasm. Compartments of more congblape, such as
the ER or mitochondria, can however not be expected to beett@acurately with
this scheme.

Three-dimensional simulations in realistic geometries

A more accurate three-dimensional analysis of diffusiomomplex-shaped or-
ganelles is needed in order to overcome the limitations efaibove-mentioned
methods, and to provide much-needed validation of the varatosed-form mod-
els that are currently in use. We propose a novel simulati@ieg)y [246, 245]
that uses realistic ER geometries as reconstructed fromographs (cf. Section
6.2). The reconstructed geometries are directly usetbagutational domains
We solve the diffusion equation both in the lumen and on thé&asa of such re-
constructed ER shapes. The resulting simulated FRAP careassed to quantify
the geometry-induced uncertainty in closed-form FRAP ngdend to directly
determine geometry-corrected diffusion constants by meéihe fitting proced-
ure of EqQ. (6.15). The outline of the method is shown in Fi§i26its application to
real FRAP experiments in the ER of live cells is presentetiéfollowing Section
6.5.

6.5 Results of FRAP simulations in reconstructed ER geomet-
ries

Using reconstructed ER geometries according to Sectigrtf&etumerical meth-
ods outlined in Chapter 5, and the scalable parallel so&warplementation
presented in Chapter 7, enables us to simulate FRAP expasmiéth a minimum

number of assumptions. Within the imaging accuracy of thidaal microscope
used for 3D reconstruction, the only assumption consisfgosfulating the gov-
erning equation, which is supposed to be the diffusion eguatully resolved

simulations eliminate the need for modeling either the getoynor the process
of confined diffusion, and effectively allow assessment igfithement of existing
FRAP models.

In this section we present results concerning the geomeffacts and the
geometry-induced uncertainties in FRAP experiments botthé lumen and on
the membrane of the ER. As outlined in Subsection 6.4.4gtk@sulations can
also be used to determine geometry-corrected molecufasiih constants of sol-
uble and membrane-bound molecules from FRAP data.
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Figure 6.12: Overview of the method proposed in this thesidetermine molecular diffu-
sion constants from FRAP data by means of spatially resadeadgputer simulations. See
text and Eq. (6.15) for details.
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6.5.1 A proposed method for determining molecular diffagion-
stants from FRAP data in complex-shaped organelles

Following the strategy outlined in Subsection 6.4.4, oamgations and experi-
ments lead to a novel method of determining molecular ddfugonstants from
FRAP data. The procedure as summarized in Fig. 6.12 is asvil

1. After transfection and incubation, the organelle of iest is imaged as a
z-stack of serial confocal sections. After this recordiigh® geometry,
the actual FRAP experiment is performed. It is important tha organelle
under consideration does not significantly move or defornmdtthis step.

2. The z-stack of images is used to determine the reconsttiscirface of the
organelle as an iso-surface of pixel intensity. Various emrcial and free
software packages are available to do this. The iso-valwhdsen such
that the topological features of the organelle are consefVee ER should,
e.g., remain connected.

3. Thereconstructed volume is used as the computationaiaidior computer
simulations of diffusion using scaled units of time and aiteary, scaled,
computational diffusion constant. The initial conditios given by the
FRAP setup.

4. The computed fluorescence recovery curve is fitted to thesored data
points using a linear least squares regression in time.

5. The molecular diffusion constant in the experiment ic@ated from the
computational diffusion constant, the time scale factoor(f the fit) and
the length scale factor (from microscope/camera resaluti@cording to
Eq. (6.15).

To make an example, assume that the simulation uses a cdiopatav, of
75 (in scaled simulation units). In order to convert from sdadgnulation unitgo
physical unitsthe time and length scales need to be determined. The lsngth
is known from the pixel resolution of the z-stack images drme\oxel size used
in the 3D reconstruction. Say that the images are acquirtdanateral resolution
of 0.18 um/pixel, and that the 3D reconstruction uses the same nuafhexels
as the z-stack images have pixels. If the size of an indiVidagel is set to 66
(arb. units), one simulation length unit correspond.tonm in physical units.
The time scale factor is determined by fitting the simulatszbvery curve to the
experimental one in time. This provides all the informati@@ded to compute the
physical molecular diffusion constant according to EqL%5.
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6.5.2 Application to soluble proteins

We describe simulations using the method of PSE [79] (cfs8ation 5.2.2) to es-
timate the influence of organelle shape on FRAP of a lumirlatspand to obtain
more accurate measurements of molecular diffusion cotssitawivo. The PSE
method enables whole-organelle simulations, as its détestic nature renders
it orders of magnitude more accurate than random walk fosttree humber of
particles, allowing fully resolved 3D simulations in resic organelle geomet-
ries using about 0 particles. Resolving a full ER using random walk would
require some 0'° particles (cf. Subsection 5.2.3), which is infeasible oespnt-
day workstation computers. Moreover, the grid-free charaaf PSE avoids the
geometric limitations of finite differences and the comations of robust grid gen-
eration. The details of the simulation procedure are desdrin Appendix F.1, the
experimental protocols are given in Appendix E.1

The influence of confinement in complex shapes

The bleached region in a standard FRAP experiment usuaflyahdiameter or
edge length of around 0.1 cell diameters. This means thahgth scales relevant
to FRAP, the ER surface is complex enough to exhibit fradtaracteristics, and
the laws of apparent diffusion are expected to change aisiedtin Section 6.3.
To study the effects of organelle geometry, we perform cdempsimulations
of the diffusive fluorescence recovery in various recomséd ER geometries. A
well-characterized, fluorescent, recombinant protesdGFP—KDEL [281]) is ex-
pressed in the ER ofERO cells(Helenius group). The protein is synthesized
with a cleavable signal sequence sufficient for ER-luminaeting. At the C-
terminus, it has &DEL sequence that serves as an ER localization sequence an
prevents secretion [201]. Using fluorescence correlatmmtisoscopy [305], the
molecular diffusion of the closely relateskYFP—KDELhas been shown to be
non-anomalous in the ER lumen of HeLa cells, i.e. the mokdokes not exhibit
sub-diffusive properties on molecular length and timeeséM. Weiss, personal
communication, 2002). We thus solve the normal isotrogdfasion equation. Us-
ing confocal fluorescence microscopy and a set of seriabseofz-stacks), the 3D
shape of the ER filled with the fluorescent protein is defineti9rdifferent cells
as described in Section 6.2. The ER reconstructions areassesimputational do-
mains for PSE simulations of diffusion of luminal solutet feppendix F.1). The
speed of diffusive recovery is influenced by the geometrphefdrganelle near the
bleached region. The specific shape of the organelle far fn@ROl is insignific-
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ant. All simulations use an assumed homogeneous Neumamal&gucondition,
implying that the protein cannot cross the membrane. Theenigal L, error is as
low as6 - 10~2 in all simulations. Only bleached regions in the cell pegighare
considered, since the geometry of the depegnuclear ERis not well resolved
(cf. Fig. 6.5(a)).

Computer-generated images of ER samples at differentstafgamulated re-
covery are shown in Fig. 6.13. The local concentration ofleethed solute is
shown as a density cloud inside the reconstructed ER steictlihe bleached
volume is depicted by its outline. The solute can be seen ffasdi into the
bleached region from the edges, and the rate by which eacteatén the bleached
region recovers depends on the distance from the edge ame ¢ocal geometry.

To study the effects of confinement in the ER lumen, we comirer®SE sim-
ulations of diffusion in the ER to simulations in a cubic 3Dxb&Vhen the same
molecular diffusion constant is used in both simulationscimfaster recovery is
observed in the box, as shown in Fig. 6.14. Depending on thieHER geometry,

the apparent diffusion constambserved in the ER is 1.8 to 4.2 times lower than

the one observed in the box. Ignoring the effect of 3D confim@nin complex
geometries thus leads to significant underestimation obowér diffusion con-
stants.

Comparison to experimental data

To compare the results obtained from the simulations withedrmental data,
FRAP experiments according to Appendix E.1 are conductess@FP—-KDEL
expressing cells, for which the ER shape is first establisted a 3D confocal
reconstruction. Using the PSE method, simulated FRAP suave computed in
the same geometries as those used in the actual experinidngsis done for 12
different FRAP experiments in 8 different cells. The sintetacurves are then
fitted to the experimentally measured FRAP curves using stretching as de-
scribed in Subsection 6.4.4. Stretching time by a factdr, @ind at the same time

multiplying v» by 1/t leaves the solution unchanged, as the diffusion constant

can be incorporated into the governing equation as a sclitigpe.

As shown in Fig. 6.15(a) for two of the cases, the simulatetiexperimentally
determined FRAP curves are virtually indistinguishabterditting. Similar over-
lap is observed in all instances. We conclude that the simunkare consistent,
and accurate enough to be used to predict the effects of @ligageometry on
FRAP as well as to derive geometry-corrected moleculausiifin constants from
FRAP data. Fig. 6.15(b) shows a similar comparison betweenlated and ex-
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Figure 6.13: Snapshots of the concentration distributiomfa sample PSE simulation in a
reconstructed ER geometry. The results at times1 ¢ (a), ¢ = 25 dt (b), ¢ = 150§t (c),
andt = 300 6t (d) are shown for a molecular diffusion constantef= 3-107° % /6t. All
units are scaled with the simulation time s#&p= 0.01 and the lateral edge length= 50

of the bleached region. The ER membrane is visualized asnapeaent surface and the
concentration of green fluorescent protein as a volume teakiud inside it. The bleached
region is represented by its edges. Only the part of the ERratdhe bleached region is
shown.
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Figure 6.14: The influence of confinement: Diffusion in a cubesus diffusion in an ER.
Both simulations are done using the same molecular diffusianstant. Depending on
which specific ER sample is used, the recovery half-timeh®mER case (solid) is 1.8 to
4.2 times the one of the cube (dashed). Both curves are nizedaby their respective
asymptotic level to allow geometric comparison.

perimentally measured FRAP curves for two different ROIthimsame ER. The
two bleached regions are overlapping and the recovery samesthus expected to
be similar.

Fig. 6.16 visually compares tHiorescence recovery dynamiftem an exper-
iment and the corresponding simulation. Note that the éx@artal images show
confocal sections, whereas the simulation visualizatliows the top-view onto
the closed three-dimensional object. The recovery peagestof the simulation
and the experiment match withial %.

The influence of the particular geometry

The observed variation in thiactor of underestimatioris due to the different
shapes of the individual ER samples. This is illustrated it B.17(a), where
simulated recovery curves for different ER geometries arapared. All simu-
lations are done using the same value for the molecularsiliifuconstant. Still,
the recovery curves and recovery half-times scatter oveida vange. Not sur-
prisingly, changes in the size or in the position of the ROthia same ER lead
to similar variations, as shown in Fig. 6.17(b). The spetiftal geometryof the

organelle around the ROI is thus responsible for variatiohabout a factor of
2.5 in the observed apparent diffusion constant. Methoasdbduce molecular
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Figure 6.15: (a) Simulated FRAP curves compared to experiaieneasurement data for
different ER. The computer simulations are done using taritathod of particle strength
exchange as outlined in Subsection 5.2.2. The experimardtandard FRAP experiment
according to Appendix E.1, preceded by the recording of ekstd serial sections used to
reconstruct the geometry. The simulated FRAP curves Jlaresstretched in time to fit the
experimental data (symbols). As time and diffusion consteninversely proportional, this
allows to estimate the molecular diffusion constant, whilly taking the specific geometry
into account. For the two examples shown, the moleculargidh constants are determined
to be 34.4um? /s (faster curve), and 34.2um? /s (slower curvex), respectively. All
curves are normalized by their asymptotic value to allow parison. (b) Simulated FRAP
curves compared to experimental measurement data forefifféocations of the bleached
region. Two FRAP experiments, followed by correspondirg si@ulations, are performed
for two different, but overlapping, bleached regions in aene ER. The result after fitting
the simulation results (lines) to the measurements (syshlimkshown. The two bleached
regions are given in microscope coordinates as(191,190)-(229,228) and (218,196)-
(256,234), and the molecular diffusion constants for thisraate transfection case (see
text) are determined as 18m°/s (x) and 2.0um?/s (+), respectively. All curves are
normalized by their asymptotic value to allow comparison.
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Figure 6.16: Visual comparison between FRAP experimentcmdputer simulation. Mi-
crographs from a standard FRAP experiment (Appendix E d fampared to visualizations
from the corresponding computer simulation. The case epwads to the slower curve in
Fig. 6.15(a). Experimental images were acquired every 18Quith a spatial resolution
of 0.18um/pixel. The simulation entailed 6.8 million particles acmimprised the whole
ER. The figure only depicts the portion of the ER in the vigioitthe region of interest.
The molecular diffusion coefficient is determined from theHown in Fig. 6.15(a) to be
34.2um?/s. The bleached region is indicated by its outline. No expenital image was
acquired during bleaching. Note that the experimental issaghow a confocal section
through the middle of the cell, whereas the visualizatioomfthe simulation show the
top-view onto the closed three-dimensional geometry. @bevery percentages of the sim-
ulation match those of the experiment to withit %.
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Figure 6.17: (a) Comparison of simulated FRAP curves for fifferent ER samples. All
simulations are done using the same computational diffusamstant and the same simu-
lation parameter settings (see Appendix F.1 for detail#)cérves are normalized by their
asymptotic value to allow comparison. The variations obedrin the FRAP curves are
solely caused by the different geometries of the ER samplesrecovery half-times vary
within the interval[5.7...14.2] - 1004¢t. (b) Comparison of simulated FRAP curves for
different bleached areas in the same ER sample. The bleaebiehs are given by the mi-
croscope coordinates of their lower-left and upper-rigbtreers as follows1 (225,125)-
(300,200) /« (350,200)-(400,250) # (250,125)-(300,175) & (80,300)-(130,350). The
simulation parameters and computational are kept constant and all curves are normal-
ized by their asymptotic value to allow comparison.
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v, values using a “representative” model geometry, or stediby averaged shape
models, are unable to account for this situation. Any clefeech model or aver-

aged geometry model [262] thus suffers from this unceraimhich can only be

reduced below 250% by taking tlepecific geometrgf the individual organelle

into account.

Geometry-corrected diffusion constant of ssGFP—KDEL

The scaling of units as outlined in Subsection 6.5.1 allandeterminegeometry-
corrected molecular diffusion constantgvith a length unit of2.7nm andt, =
1.6 -10~° s from curve fitting, we find the moleculdiffusion constant of sSSGFP—
KDEL in the ER lumen of VERO cells to bess = 34 + 0.951:m?/s, averaged
from 8 computer-evaluated FRAP experiments. Dependindherparticular ER
geometry, the molecular diffusion constant obtained witlarrecting for the or-
ganelle shape is 1.8 to 4.2 times lower. Ignoring the efféshape thus leads to
significant underestimation of molecular diffusion congsa

The reported diffusion constant of pure GFP in water at roemperature is
87um?/s [75]. This indicates that the material filling the ER lumerof more
than 2.5-fold higher viscosity than water.

Assessment of the method

The diffusion constant of GFP in the ER lumen is reported i ltterature as
around 1Qum? /s [75]. Our value being about 3.5 times larger is consistetit w
the result that neglecting the geometry leads to underastimof the molecular
diffusion constant by a factor of 1.8 to 4.2. This is furthepgorted by the work

of M. Weisset al. who used fluorescence correlation spectroscopy — a particle

level method that directly determines molecular diffusgamstants — to measure
the moleculan, of the closely related ssYFP—KDEL in the ER lumenHsLa
cells The value obtained by Weiss al.is 30um? /s (M. Weiss, personal commu-
nication, 2002), which is in reasonable agreement with esults, given that two
different cell types are considered. Braggaal. found a value of 33:33.6um?/s
for GFP in the nucleoplasm of HeLa cells [35], where geornetoimplexity is of
little concern.

A thorough comparison of our approach to the method of Sifgfid] is con-
ducted on FRAP experiments of ssGFP-KDEL in the ER lumen oR@Eells.
Great care is taken to record non-saturated images and theeq@Erements of
both methods.
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To ensure that we correctly use the computer program of &igigal. [262],
we test it on an artificially generated time lapse sequenémages showing ho-
mogeneous diffusive recovery of a rectangular bleached iara flat 2D plane,
simulated using finite differences and zero flux boundandiams. The compu-
tational v, is 25 um? /s, the pixel size i$.18 um, and Gaussian pixel noise with
a standard deviation of 10% of the peak intensity value issdddA sequence
of 200 512512 pixel images with sampling timA¢ = 0.05 s is simulated and
evaluated using Siggia’s program. The diffusion constaobirectly recovered as
25.08 pm?/s.

Comparing two different bleached regions from one ER, weeplesthat the
molecular diffusion constants determined by the preserthogeare much less
scattered than the ones obtained using Siggia’s prograren Ehough we have
no reason to expect the moleculay to be constant throughout the entire ER,
variations of a factor of three and absolute values rangiog 23 to 79.m?/s, as
predicted by Siggia’s method, seem unlikely.

The sensitivity of our method is assessed using an altgenitinsfection pro-
cedure (cf. Appendix E). Again, two different spots of thengsER are bleached
and analyzed. PSE evaluations of the corresponding FRAEriexpnts, shown
in Fig. 6.15(b), yield molecular diffusion constants of2,6n*/s and 1.86:m? /s
for the two areas.

6.5.3 Application to membrane-bound proteins

In the past, FRAP on biological surfaces has mostly usedpldiffusion models.
For FRAP and the related continuous fluorescence microptsigp calculations
exist for planar membranes [215], for spherical membraag} gnd forsingly-
connectegberiodically curved membranes (cosine surfaces) [6]. Béveal biolo-
gical membranes are however much more complex. They caaindnbular net-
works, holes, large curvature variations, and they arellysuat singly-connected.
Moreover, diffusion in biological membranes can appeas@nbpic even though
it is molecularly isotropic in all observed instances [149]he apparent aniso-
tropy in membrane FRAP experiments is due to different memdcurvatures is
different spatial directions [7]. Taking the exact surfge®mmetry into account is
thus mandatory for isotropic FRAP models. We present coermimulations of
diffusion, using the numerical method presented in Sedi@non reconstructed
ER membrane surfaces. This allows to investigate the infleiof geometry on
FRAP and to derive corrected molecular diffusion consténaisi FRAP data in
the ER membrane.
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Fig. 6.18 shows the visualized concentration field from agamsimulation at
different times after bleaching.

Comparison to experimental data

The simulations are validated by comparing them to FRAP mixmats in the
same ER shapes. Fig. 6.19(a) shows three fits of simulatedPFRAves to exper-
imental data. Clearly, simulation and experiment are ire&nt agreement in all
but one of the cases. Closer inspection of the membrane dggoiméhe differing
case reveals the overhanging membrane section shown i6.E@y.At early times,
lateral recovery could thus be occluded in the experimeh&reas the simulation
always integrates the concentration over the whole menrelsarface. In addition,
the biochemistry may be different in this more lamellar mdthe ER membrane.

The influence of membrane geometry on FRAP experiments

To estimate the geometry-induced uncertainty in membrdawH-experiments,
we perform simulations in the membranes of ER samples tkatemmonstructed
from different cells. The same computational diffusion tamt is used in all in-
stances, and all simulation parameters are kept constamgpendix F.2). The
geometrical differences in the membranes are therefor@nhesource of vari-
ation. As shown in Fig. 6.19(b), the recovery half-timesyay a factor of1.76,
which can be explained by membrane curvature effects [6¢ Specific shape of
the membrane thus affects the recovery half-times to varg factor of about 2
for different ER samples.

Geometry-corrected diffusion constant of tsO45-VSV-G

Thegeometry-corrected molecular diffusion constahGFP-labeledsO45-VSV-
G [107] is determined inVERO cellsas outlined in Appendix E.2. From 4
samples we findey = 0.16 + 0.07 um? /s at the non-permissive temperature
of 40°C. This is a factor of 2.7 lower than the previously publishedue of
0.45 + 0.03 um? /s [203], which was obtained i€0S-7 cellsvithout shape cor-
rection.

Comparison of membrane and luminal FRAP

Fig. 6.21 shows the simulated FRAP curves in the lumen and@®membrane of
the same ER sample for the same computational diffusiontaonsThe recovery
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(C) t = 8640 6t (d) t = 17640 5t

Figure 6.18: Simulation of diffusion in the ER membrane. Gtecentration on the mem-
brane of a reconstructed ER geometry is shown at times 04t (a), t = 14406t
(b), t = 86404t (c), andt = 176404t (d). The computational diffusion constant is
vsm = 1-107°b?/6t, scaled with the simulation time stépp = 0.025 and the edge
length of the bleached R®I = 50. The diffusion operator is supported énx 3 x 3
particles in a narrow band of half-widtk = 2h and extended to a larger band bf= 3h
every time step using th#9 order GMM extension method. An Euler scheme with a time
step ofét = 0.025 is used for the first 20 time steps, then a 9-step STS with astiepeof
0.45 is used until the final tim@4000 6t. The level function and the concentration field are
discretized using 1.7 million particles. The concentmattm the surface is recovered from
the adjacent particles using linear interpolation alongenparticle lines, and visualized
as surface color density. The three black lines indicate2bf#%, 50%, and 75% recovery
iso-lines.
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Figure 6.19: (a) Comparison of simulations and experimeffitee simulated FRAP curves
(lines with filled symbols) are stretched in time to fit theeskpental data (correspond-
ing open symbols). As time and diffusion constant are imhgnsroportional, this allows
to estimate the molecular diffusion constant, while fudliging the specific geometry into
account. For the three examples shown, the molecular éffusonstants are determined
to be 0.13um? /s (circles), 0.24.m? /s (triangles), and 0.12m? /s (diamonds). All curves
are normalized by their asymptotic value to allow comparisgb) The influence of the
ER membrane geometry. All simulations are done using the samputational diffusion
constant and the same simulation parameter settings (App&tR). All curves are normal-
ized by their asymptotic value to allow comparison. Theatén observed in the FRAP
curves is therefore only caused by the different geometdfittee ER samples. The recovery
half-times scatter in the interva3 . . . 58] - 10%6t.
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Figure 6.20: Visualization of a reconstructed ER membraieee with overhanging re-
gions. A9 x 9 um neighborhood around the bleached ROI (bright spot) is shoWhe
case corresponds to the diamond symbols in Fig. 6.19(a)renthe discrepancy between
the simulation and the experiment could be caused by theepdverhanging membrane
piece.

half-times are 111 for the luminal protein and 485 for the rheme-bound pro-
tein. This indicates that the diffusion behavior of molesuin the ER membrane
differs significantly from the volumetric diffusion of sdile molecules in the lu-
men of the same ER. The apparent speed of recovery differddmtar of about

4, even if the molecular diffusion constants of the two spgeire identical.

6.5.4 Conclusions

The results of this section demonstrate that for compleypst organelles neither
the confinement caused by the 3D shape of the organelle, mep#tific geometry
of the sample can be neglected when experimental fluoresecenovery data are
used to derive molecular diffusion constants. Moreovdfusibn of membrane
molecules is significantly different from diffusion of sble components in the
ER lumen. Models used to calculate diffusion in the ER or athewintracel-

lular organelle have to take these influences into accouthielf should be free
of systematic errors. In the case of the ER, the correctiotofa are in the 2 to
4-fold range. The actual magnitude depends on the complekithe particular

3D shape as well as on the local density of small-scale strest If one is in-
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Figure 6.21: Comparison of FRAP curves in the lumen (daslzed) on the membrane

(solid) of the same ER sample. Both curves correspond tathe somputational diffusion

constant and are normalized by their asymptotic value. Boevery half-time (in simula-

tion time units) is 111 for the luminal protein and 485 for thembrane protein, indicating

that recovery in the lumen is significantly faster than rexgnon the membrane.

terested in determiningnolecular weight®ased on measured molecular diffusion
constants, this uncertainty correspond to an 8 to 64-faldrén weight, since a
soluble molecule’s volume scales with the third power ohitslecular diffusion
constant [174]. For membrane-bound proteins the situdgiewen worse as their
radius depends exponentially on the diffusion constart]23

We demonstrated that FRAP models derived for planar merabrgield in-
correct molecular diffusion constants when applied to edrmembranes. The
factor of about 2 can be explained by purely geometric effedfloreover, dif-
fusion appears anisotropic if the membrane has differentatures in different
directions [7]. Isotropic models are thus only valid wher @tcounts for the real
membrane geometry in the vicinity of the ROI. Membrane FRA®Ials should
not be applied to luminal proteins and vice versa, as therappdiffusion con-
stants differ by a factor of about 4.

Our results indicate that it is possible to perform accueatd fully resolved
computer simulations in experimentally recorded organsifiapes from confocal
sections. This enables the estimation of the geometryemgiuncertainties in the
calculation of molecular diffusion constants from FRAPadathe employed nu-
merical particle methods are crucial in doing so, since thayid many of the
problems that grid-based methods have in complex georsgtiel their conver-
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gence is fast enough to limit the number of particles to fdasianges. The com-
putational cost of the algorithms is low enough for them taubed in quantitative
analyses of FRAP experiments. Moreover, all simulatiorgpams are parallel-
ized using the techniques presented in Chapter 7. This sitoviurther reduce
the computational time by using a cluster of computers thatcannected by a
network.



Chapter 7

PPM— A Software Framework for Parallel
Particle-Mesh Simulations

The dynamics of particle methods are governed by the inferecof theN com-
putational particles, resulting in alN-body problem with a computational cost
that nominally scales a8(NN?) (cf. Section 5.1). For short-ranged particle inter-
actions, as in simulations of diffusion according to Chaptethe computational
cost scales linearly with the number of particles. In theecaslong-range in-
teraction potentials such as the Coulomb potential in estdtics, the gravita-
tional potential in astrophysics, or the Biot-Savart lawrtex MethodgVM),
Fast Multipole Method§FMM) [122] reduce the computational cost ¢ N).
Alternatively, long-range interactions can be describgaguivalentfield equa-
tions such as the Poisson equation, that are solved on meshekinges hy-

brid Particle-Mesh(PM) algorithms as outlined in Subsection 5.1.2 [127, 138].

The computational cost of hybrid methods scale®@a/), whereM denotes the
number of mesh points used for resolving the field equati®he.choice between
FMM and PM techniques is dictated by the boundary conditafithe problem
with FMM techniques allowing more flexibility on their spécation, while PM
schemes are well suited for periodic systems. An importacetof, distinguishing
FMM and PM techniques, is the parallelization efficiencytefde methods, as the
mesh regularity of the PM algorithm enables implementatitivat are typically
one or two orders of magnitude faster than corresponding H&BV309] imple-
mentations. Moreover, FMM-based particle methods havédarscalability on
shared memory systems [66], while their implementationigtridbuted memory
environments is difficult due to the inherent global natuir¢he underlying tree
data structure. It is important to observe, however, thahavhen FMM are used
for the evaluation of the particle interactions, the needfdrid PM algorithms is
imperative in adaptive particle methods — such as VMborooth Particle Hydro-
dynamics(SPH) — for the reinitialization of the distorted partictections [160]
in order to maintain the overlap condition in Eq. (5.7).
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Despite their versatility and physical link, the paralleiglementation of PM
techniques is complicated by several factors:

e exploiting the symmetry of the particle interactions regsithe sending
back of ghost contributions to the proper real particle,

¢ the simultaneous presence of particles and meshes psoaisilhgle optimal
way of parallelization,

e complex-shaped computational domains and strong paiticlamogeneit-
ies require spatially adaptive domain decompositions,

e particle motion may invalidate the existing domain decosifan, causing
rising load imbalance and hindering the implementation aefitinstage
integration schemes,

e inter-particle relations constrain decompositions artd dasignment.

Moreover, different physical problems parallelize diffietly: Molecular Dy-
namics(MD) simulations require elapsed times below one secondiper step
to allow the hundreds of thousands or millions of time stemécally required
in these simulations. This severely limits the availabheetifor communication.
Computational fluid dynamics simulations require less tgteps with each time
step taking tens of seconds or minutes, thus leaving ldsgsiit requirements on
the communication overhead. Gravitational systems oféseldp strong inhomo-
geneities (large particle density variations) and reqagteptive domain decom-
positions and load (re-)balancing.

Many of the available domain decomposition, load balancsadyer, interpola-
tion, and data communication methods are applicable to a véidge of particle
or hybrid PM algorithms, regardless of the specific physinsutated [46, 160].
Meta-languages such &#nda [47] inspire us to provide a general-purpose plat-
form for the parallel implementation of PM algorithms. Th#hérent loss of
computational efficiency and portability of meta-languafft95] is however to be
avoided. In this chapter we present the newly develdtadllel Particle Mesh lib-
rary PPM[248]. It provides a generic, physics-independent infrattire for sim-
ulating discrete and continuum particle, mesh, and hyhaidigle-mesh systems,
and it bridges the gap between infrastructure librariessgopdication-specific sim-
ulation codes.

The core of therpM library provides several adaptive domain decomposition
schemes, multiple processor assignment methods, loaddeataonitoring, dy-
namic load balancing, data mapping (sending and receivimgate of overlap
regions, parallel file 1/0, optimized inter-processor conmication using Vizing's
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approximate solution of the minimal edge coloring probl&@3], neighbor lists
(cell lists and Verlet lists [301]), routines for adaptiveds, as well as particle-to-
mesh and mesh-to-particle interpolation. This core itfuasure is supplemented
with commonly used numerical methods such as mesh-basextsavaluation of
differential operators on particles [93], FMM, parallel Ffand multi-stage ODE
integrators. Moreover, thepwm library provides bindings for the external libraries
fftw, MathKeisan FFT (NEC, Inc.), andleTis! [152].

The design goals agfpminclude ease of use, flexibility, state-of-the-art patalle
scaling, good vectorization, and platform portability.

Ease of use is provided by limiting the number of user-cédldbnctions and
using generic interfaces for overloading different vatsaof the same task. The
PPM library has demonstrated its ease of use in the process efapéng several
client applications for PSE, SPH, VM, and Dissipative RigtDynamics (DPD).
The library is portable through the use of standard langsiggertran 90 and C)
and libraries (MPI) and it was successfully compiled andduse Intel/Linux,
Apple/MacOS X, IBM Power/AlIX, NEC SX/SUPER-UX, and AMD/Lix sys-
tems on 1 to 242 processors. Computational efficiency iseaeti by dynamic
load balancing, dynamic particle re-distribution, explinessage passingnd the
use of simple data structures.

After reviewing presently available parallel codes andHites for scientific sim-
ulations in Section 7.1, we present the concepts and modtites PPmlibrary in
Section 7.2. The parallel scaling and efficiencyreiv are assessed in the bench-
mark cases presented in Section 7.3.

7.1 Review of software and libraries for parallel computer $m-
ulations

A number of parallel implementations and libraries haverassed the aforemen-
tioned parallelization issues in various fields of applaat They globally fall into
two categoriesinfrastructure librariesthat do not implement particular numerical
methods and focus on data communication, and applicaieniic simulation
libraries.

Infrastructure libraries have been developed to alleviz@darge programming
overhead associated with the parallel implementation rfiEtion applications
for various physical problems. Most of these libraries asa-numerical. Ex-
amples include the parallel scalable I/O libr&)SSION282], supporting par-

LA library for graph partitioning for load assignment.
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allel file I/O including data pre-fetching and data sievirigun-time support for
Monte Carlo simulations is provided by tiRARTIlibrary [195]. Besides differ-
ent domain decomposition schemes, this library also implegmtheStop-At-Rise
(SAR) heuristic [195] for deciding when to dynamically ree®mpose the prob-
lem to achieve a good trade-off between the cost of domaiordposition and
the arising load imbalance from particle motion. TiRarallel Utilities Library
(PUL) [52] provides domain decomposition methods, dataroomication, and
parallel file /O for mesh-based schemes that use eithectated or unstructured
meshes. ThBisectpackage [328] provides recursive orthogonal bisectionalom
decomposition, communication through overlap regiond,aparallel bin sorting
algorithm for load balancing. Purely numerical infrastwue is provided by lib-
raries such aPETSd18], a parallel linear algebra and equation solving paekag
PETSc integrates and interfaces BLAS, ScaLAPACK, and mémgronathemat-
ical libraries.

Application-specific simulation libraries can be classifiato purely mesh-
based implementations with no support for particles, gupelkticle-oriented im-
plementations, and hybrigarticle-In-Cell (PIC) libraries. Purely mesh-based lib-
raries include Prometheus, Hypre, and various finite elétitmaries such as the
one in Ref. [74].Prometheuss a parallel multigrid library for finite element ap-
plications [4] that is based on PETSc ararMETIS[152, 153]. Hypreis a lib-
rary of efficient parallel pre-conditioners (mainly algaiormultigrid) and solvers
such as conjugate gradient and GMRES [98]. Mesh-basedleveltiand multi-
resolution simulations are supported by libraries thatémgnt theAdaptive Mesh
RefinemenfAMR) framework [29] such as, e.gAMROC[17, 81].

In purely particle-based applications with long-rangeeptials, parallel FMM
[121, 236, 310] and parallel Barnes-Hut methods [117] haenlused. Parallel
atomistic simulations [131, 226, 219, 130, 95] and MD cod&9[ 231, 178, 275]
such asPARALLACS200], GAUSSIAN105], andCPMD [67, 189, 13] are well
established. The parallelization techniques range froemtedriven MD [192],
over domain decomposition techniques [222], multiple leweé parallelism [292],
and multi-resolution techniques [151, 315], to MD using FMB#]. These
techniques have enabled large simulations comprisingalenellions of atoms
[16, 44]. Parallelization for short-ranged many-body ptitds [62] and specific
adaptive load balancing schemes for MD [83] are availableels

Hybrid PM methods include PIC an@article-Particle Particle-Mesh(P*M),
capturing sub-grid scale phenomena by particles [138hllehapplication codes
using PM are found, e.g., in astronomy [37] and in large cosmoldgsiaula-
tions [179]. Hydra [211] is a parallel adaptive® code. Parallel PIC codes
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[78] are widely used in plasma physics, where the motion affgbs is tracked
by particles while Maxwell's equations are solved on the i mé&obably the first
parallel PIC code, published in 1990 [171], was a two-dinmra plasma simula-
tion with random particle-to-processor assignment, nagoin a massively parallel
CONVEX computer. An object-oriented PIC implementation &celerator dy-
namics [224], and an HPF/MPI code with limited scalability §] have also been
published. More recent PIC codes inclUd®RPAL, a versatile plasma simula-
tion code [206], and a magneto-hydrodynamics code usirticfgatdecomposition
techniques instead of domain decomposition [FHCARDis a parallel PIC lib-
rary, rather than a specialized application code [46]. ritlwaapplied wherever the
PIC formulation is used.

State-of-the-art simulation codes show good parallel iefiiies up to large
numbers of processors. The electromagnetic PIC €dECKSILVER[220] for
example demonstrated a parallel efficiency of 60% solvingadesl-size irregu-
lar case on 1024 processors. 90% were achieved in the idéatrarioad case on
3200 processors [220]. Parallel molecular dynamics usPiIB [67] has reached
50% efficiency on 1280 processors of an IBM p690 at 15% of pesfopmance.
Astrophysical Barnes-Hut tree codes for gravitationatesys have achieved 70%
to 90% efficiency on 128 [297] to 256 processors [86]. Usird3ADGETcosmo-
logy code [270], a recent simulation at the Max Planck Ingtifor astrophysics
has used more than 10 billion particle¥§2® mesh) in an SPH simulation on
512 IBM p690 processors. Lattice Boltzmann simulations @#/fin porous me-
dia demonstrated linear scaling up to 128 processors [Z08hite element code
based on the multigrid library Prometheus was used for b@madchanics simu-
lations on up to 4088 IBM Power3 processors at 7.5% of pedlopeance. The
computational mesh consisted of 125 million elements esponding to half a bil-
lion unknowns, and a parallel efficiency of 41% on 128 prooess/as achieved
[5]. Yokokawaet al.[326] presented a direct numerical simulation of incomgres
ible turbulence using096® mesh points with a parallel efficiency of 48% on the
512 NEC SX-5 processors of the Earth Simulator. The ASCI Regegt even
achieved 74% efficiency solving the Poisson equation on §88Cessors using a
3628802 mesh.
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7.2 TheprpMlibrary

7.2.1 Concepts and fundamental assumptions

The use of therPM library requires that the simulated systems are formulated
in the framework of PM algorithms as outlined in Section 5The field equa-
tions are solved using structured or uniform Cartesian e®siAs a result, the
physical and computational domains are rectangular oridabi two or three
dimensions. Complex geometries are handled by immerseddaoies, through
the use of source terms in the corresponding field equatmmirough bound-
ary element techniques. Adaptive multi-resolution caltéds are possible using
mapping concepts as adapted to particle methods [27] (bbe&dtion 5.4.4).

The simultaneous presence of particles and meshes rediffezent concurrent
domain decompositions. These decompositions divide thgpatational domain
into a minimum number of cuboidaub-domainswith sufficient granularity to
provide adequate load balancing. The concurrent presdmtifavent decompos-
itions allows to perform each step of the computational i@dlgm in its optimal
environment with respect to load balance and the computaticcommunication
ratio. For the actual computations, the individual sub-din® are treated as in-
dependent problems and extended vgttost mesh layerandghost particleso
allow for communication between thenGGhostsare copies of true mesh points
or particles that either reside on a neighboring processaccount for periodic
boundary conditions. Ghost particles and/or ghost mesftpaie needed for all
local operations such as finite support particle-partinteractions, finite differ-
ence stencils, and PM interpolations.

The ppmM library supportsconnectionsandrelations between particles, such as
particle pairs, triplets, quadruplets, etc. These retatimay describe a physical
interaction, such as chemical bonds in molecular systenme spatial coherence,
such as a triangulation of an immersed boundary or an uistaeccmesh. Multiple
sets of connections may coexist as the list of connectioaifosated and stored by
the client program. The entries of the connection lists prrthe unique, global
particle index which must be stored separately for eachigbaih this case.

To achieve maximum efficiency, tiePm library splits all the major routines
into an initialization step, processing, and finalizatiofhis ensures reusability
of potentially expensive initialization, and facilitatesemory management. On
the whole-library level, the routinggopmi ni t andppmf i nal i ze provide this
functionality. The routingopmi ni t sets the problem dimensionality (two or
three), the floating point precision for the internal comication buffers (single
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precision or double precision), the numerical tolerancdléating point compar-
isons (differences smaller than this tolerance are coreideero), the level of
detail in output and log messages, and the output devicesrfor and log mes-
sages. Callinggpmf i nal i ze deallocates all internal buffers and closes all I/O
devices.

Memory for internal lists and communication buffers is efited by theePm
library. All other memory, such as simulation data (paet;lfields) and index
lists (cell lists, Verlet lists, etc.), is held by the clieagplication. This ensures user-
control over the data and allows multiple different sets aftiples, connections,
and fields to be used concurrently. The number of decompasitisub-domains,
particle sets, fields, and meshes is only limited by the cativel memory capacity
of all processors.

7.2.2 Topologies

A topologyis defined by the decomposition of space into sub-domainis thi
corresponding boundary conditions, and the assignmehesétsub-domains onto
processors. Multiple topologies may coexist and libramytirees are provided to
mapparticle and field data between them as described in Subret.3. Fields
are defined omesheswhich in turn are associated with topologies. Every topo-
logy can hold several meshes. The only constraint is thatlsatain boundaries
must align with mesh lines/planes.

As the domain decomposition may take several seconds toleten@a given
topology is assumed to persist through longer periods ofithelation. For prob-
lems with free-space boundary conditions the extent of tmeputational domain
is adjusted in order to enclose all particles at any time. Xreemargin may be
added to the computational domain to avoid repeated updale tcopology. For
problems in confined systems, subject to, e.g., periodiathary conditions, the
extent of the computational domain is fixed and the decortipasis performed
filling the entire space, disallowing void space(s). Thisuass that particles can
not leave the computational domain, which would requireramédiate, poten-
tially expensive, re-decomposition.

In order to achieve goolbad balance both theload distributionand the com-
putational cost of the topology creation are monitoredugtmut the simulation.
The SAR heuristid195] is used in theepm library to decide when problem re-
decomposition is advised, i.e. when the cost of topologgefnition is amortized
by the gain in load balance. Moreover, all topology defimtioutines can account
for the true computational cost of each particle, for exangafined by the actual
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number of its interactions. A routine is provided to compthie number based on
the lengths of Verlet lists.

Domain decompositions

The ppM library provides a number of different adaptive domain cheposition
techniques for particles, meshes, and volumes, the lagfaridg geometric sub-
domains with neither meshes nor particles present. Thesargmsitions cur-
rently include: recursive orthogonal bisection, y-, and z-pencils, xy-, xz-,
andyz-slabs, cuboids, and a user-defined decompositRecursive Orthogonal
Bisection(ROB) is based on the adaptive binary tree described in Stibee
7.2.9, where subdivisions are allowed in all spatial diced. Pencil decompos-
itions prohibit subdivisions in one direction, resulting in an piil&e decomposi-
tion where each sub-domain extends over the whole compo&tdomain in at
least one spatial dimension. Such decompositions arelwgleéin performing fast
Fourier transforms. Islabs two directions are fixed Cuboidsare created us-
ing adaptive quad- and oct-trees in two and three dimensi@spectively, and
theuser-defined decompositi@atiows the client program to explicitly specify the
sub-domains. After checking the validity of such a decornitjors theppmlibrary
directly proceeds with assignment of the sub-domains tptbeessors.

In addition, a speciatull decompositiors provided, that does not perform any
domain decomposition. It creates only one “sub-domain”clvhs the computa-
tional domain itself. This trivial “decomposition” is usead evenly distribute the
particles among processors, irrespective of their sphtédtion. The resulting
special topology is called théng topology where the sub-domain is assigned to
every processor. The ring topology supports @{IN?) calculations, and also al-
lows to distribute data of initially unknown processor adfilon (cf. Subsections
7.2.3and 7.2.4).

Assignment of sub-domains onto processors

Load balancing in thepM library comprises two main components: domain de-
composition andassignmenbf the sub-domains onto the processors. While the
former has to ensure sufficient granularity and partitignifi the computational
cost, the latter has to provide even distribution of the cotafional load among
processors, accounting for possible differences in pemespeeds. The compu-
tational cost for each sub-domain — as determined by the auoftparticles, the
number of mesh points, or the true computational cost — isvkrfoom the domain
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decomposition. The individual processor speeds are megsuternally byPpm,
solving a smallLennard-Jonesystem [10] with an increasing number of particles
until all processors report sufficient timing statistics.

Using this information,pPm provides several methods of assigning the sub-
domains onto the processors. T#mwinternal method assigns contiguous blocks
of sub-domains to processors until the accumulated cospod@essor is greater
than or equal to the theoretical average cost under unifoaa tistribution. The
average is weighted with the relative processor speedsdditien, four different
METIS-based152] assignments and a user-defined assignment are dgailab

In conjunction with a user-defined domain decompositioa,uter-defined as-
signmentscheme allows the client program to enforce a specific psocesffil-
iation for each sub-domain. FornETIS assignment, the sub-domain partition-
ing problem is first translated to the equivalgnaph partitioningproblem. Two
different conversions are supported k¥ TIS: in the primal scheme, each sub-
domain is represented by a node in the graph and the neighdmbrielations by
the edges of the graph; tleial scheme represents sub-domains by graph edges.
Graph partitioning is then performed such as to minimizeeziédge cuor com-
munication volumg152, 153]. The relative processor speeds and the computa-
tional costs of the sub-domains are accounted for by meamgeights that are
assigned to the nodes and edges of the graph.

Boundary conditions

At the external boundaries of the computational domain,rhemn, Dirichlet, free

space, symmetric, and periodic boundary conditions arpatgd. These condi-
tions complement the particular mesh-based solver thairglemployed. More

involved boundary conditions and complex boundary shapesearesented inside
the computational domain by defining connections among &ntictes, or using

immersed interfaces

Benchmark tests

To assess the behavior of the different topology schemespmeare them on four
test cases using 16 processors. The quality of decomposstiguantified by the
standard deviation of the number of particles across psoecssand by the average
number of ghost particles needed per processor. The domdatomposed using
a non-adaptive binary tree, ROB, and an adaptive oct-tregsigAment of the
sub-domains onto the processors is done using the extéraliMETIS [152] to
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Particle distribution Non-adaptive tree ROB  Adaptive tree
Standard deviation of particles per processor

Uniform 422 268 265
Sphere 62501 1865 2626
Spiral 73350 2336 6011
Diagonal line 108255 148 161
Average number of ghost particles per processor

Uniform 33847 33832 33750
Sphere 35268 36526 28187
Spiral 10584 31102 22297
Diagonal line 20050 28940 46232

Table 7.1: Comparison of different domain decompositidrestes on four test problems,
each involving 1 million particles on 16 processors (se&)tekor all schemes, the equi-
distribution of particles and the total communication dvead, measured by the number of
ghost particles, are reported.

minimize the total length of the communication boundar@se million particles
are distributed in the unit cube in four ways: uniformly, twe surface of a sphere
with radius 0.25, on a spiral, and on the diagonal line froenghint(0, 0, 0) to the
point (1,1,1). The computational time needed to construct the topologie$6
2.2 GHz AMD Opteron 248 processors is about 30 millisecoratsspb-domain
in all cases, and the results are summarized in Table 7.1.

7.2.3 Mapping

PPM topologies implicitly define a data-to-processor assigmme Mapping
routines provide the functionality of sending particled &ield blocks to the proper
processor, i.e. to the one that “owns” the correspondingdsuhain(s) of the com-
putational space. Three different mapping types are peavidr both particles
and field data:

1. aglobal mappinginvolving an all-to-all communication,
2. alocal mappingfor neighborhood communication, and
3. ghost mappingto update the ghost layers.
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In addition, a speciating shift mappingis provided for particle data on the
ring topology, and aonnection mappindor taking into account links between
particles.

The global mapping is used to perform the initial data-toggssor assignment
or to switch from one topology to another, whereas the locappng is mainly
used to account for particle motion during a simulation. Gamication is sched-
uled by solving theninimum edge coloringroblem using the efficient approxim-
ation algorithm byizing[303, 85, 87]. Ghost mappings are provided to receive
ghost particles or ghost mesh points, and to send ghostilmatitns back to the
corresponding real element, for example after a symmetuitigbe-particle inter-
action or a particle-to-mesh interpolation. The ring shifipping sends data-sets
around all processors, while each processor keeps a lgggplofdts original data.
Finally, connection mappings are provided to distributar@ctions among pro-
cessors according to an existing distribution of partichesl to update the connec-
tion lists when particles have moved across processor lzoigsd

All mapping types are organized atacks A mapping operation consists of
four steps: (1) defining the mapping, (2) pushing data onéosdnd stack(3)
performing the actual send and receive operations, ando@)ipg the data from
thereceive stackThis architecture allows data stored in different arrayise sent
together to minimize network latency, and mapping defingito be re-used by
repeatedly calling the push/send/pop sequence for the, gaer&sting mapping
definition. The individual mapping types only differ in théliefinition step, while
push, send, and pop are identical.

All mapping subroutines oPPM are available in separate optimized versions
for scalar and vector data. Supported data types for pestanhd fields are: single
and double precision floating point, single and double gienicomplex numbers,
integer numbers, and logical values. Different data tyeshe mixed within the
same stack, in which case they are converted to the stackygegas defined by
theppmi ni t routine (cf. Subsection 7.2.1).

Mappings of field data can be masked. In this case, an optlmnaly mask
selects which mesh points are to be mapped and which onestarEhe values of
non-mapped points remain unaffected by the mapping operati

Global mapping

Theglobal mappingn the ppM library involves communication of all processors
with all others. Individual communication steps are syondous, and scheduled
such that no conflicts occur. Thus, all processois= 1, ..., Npoc, send toi + r
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(mod Nproe) While they receive fromi — r (mod Nproo). This is repeated for all
shiftsr =1,..., Npoc— 1.

The definition of a global mapping involves the creation ofiadex list of
particles or mesh blocks that fall outside the local prooesand a list of their
new processor affiliation.

As an example, the global mapping Mp particles with positionxp(: , :)
(ndi n8 x Np floating point array) and vector propertiep(:,:) (nprop
x Np floating point array) consists of the following sequence afiscto the
ppmmap_part routine:

CALL ppm nmap_part (xp, ndi ns, Np, Mp, ti d, ppm par am map_gl obal , i nf 0)
CALL ppm_map_part (wp, nprop, Np, Mp, ti d, ppm param nap_push ,info)
CALL ppm map_part (wp, nprop, Np, Mp, tid, ppm param map_send ,info)
CALL ppm_map_part (wp, nprop, Np, Mp, ti d, ppm _par am nmap_pop ,info)
CALL ppm_map_part (xp, ndi ns, Np, Mp, ti d, ppm _par am nap_pop ,info).

Np is the number of non-ghost particles on the local processfaré the map-
ping, Mo is the new number of particles after the mapping, tind is the unique
identification number of the target topology for the mappifhis target topo-
logy needs to be defined beforehand, using rRh& topology creation routine
ppmnkt opo. The error status of each step is returned i 0. For the scalar
version of the mapping routines, the second argument imabse the first one is
arank 1 array. For reasons of efficiency, the first capponmap_part not only
defines the mapping by creating all the lists, but also diygmishes the particle
positions onto the send stack. The pop action thus needsissied once more
than the push action.

Mapping anndi mdimensional vector field | d, that is defined on the mesh
m d, requires the following sequence of callsgpmmap fi el d:

CALL ppm_rrap_fi eld(fld,ndimtid, nmd,to_md,gs, ppmparam nap_gl obal,

CALL fpgtniﬁmp_fi eld(fld,ndimtid, md,to_md,gs, ppm param map_push

CALL ;ogrniamp_fi eld(fld,ndimtid, md,to_md,gs, ppmparam map_send

CALL ;:)gEniETap_fi eld(fld,ndimtid, md,to_nmd,gs, ppm param map_pop
info).

The identifiert o_nmi d specifies the target mesh, which needs to be defined on
the target topology i d. The width of the ghost layer in units of the mesh spacing
is given ings(:) for each spatial direction. The scalar version of the rautin
lacks the second argument and the rank of the field drralyis reduced by one.
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Local mapping

During alocal mapping each processor only communicates with those processors

that have sub-domains that are adjacent to any of its owrdsuimins. The op-
timal communication sequence would satisfy that no cosflictcur, and that the
minimum number of communication steps is needed. The pmobkfinding this
sequence can be formulated ig@ph representationwhere each processor is a
node of the graph. An edge in the graph denotes a neighbontedatibn, i.e. a
necessary communication. The goal is to find a coloring otthges such that no
two edges of the same color meet in any node, and such thatitiraum number
of different colors (corresponding to communication syapsieeded. Thisnin-
imum edge coloringroblem isNP-complete [139]. An approximate solution can
however efficiently be found using the algorithm\dking [303]. This solution
guarantees that at most one color more is used than the miminumber [45].
PPM uses this algorithm to pre-compute and storedb®munication schedufer
each defined topology [85, 87].

Periodic boundary conditions at the outer faces of the ceatipmal domain are
automatically accounted for. Executing a local mappinga@gous to executing
a global mapping, except that the parametempar ammap_parti al is used
in the first call to the corresponding mapping routine.

Receiving ghosts

The ppPm library provides the mapping routinggpmnap_part ghost and
ppmmap_fi el d_.ghost for handling ghost layerdfkeceiving ghostand obtain-
ing the copied values is done using fhgmpar ammap_ghost _get parameter.
For particles, ghosts can have both a position and valueicéNihat in the case
of stationary patrticles, the stack architectureeef's mappings allows to update
the ghost values without re-defining the lists or re-senthiegghost positions.

Sending ghost contributions back

When performing symmetric particle-particle interaciar when using particle-
to-mesh interpolation, the value at the location of a ghosty nthange.
This gives rise toghost contributionsto the corresponding real particle or
mesh point on the source processor. In order to add theseiludituns
back onto the proper real elemempm provides aghost sendingnechanism
(ppmpar ammap_ghost _put ). The library automatically keeps track of which
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real element(s) correspond to a ghost particle or a ghost past, and of possible
periodic images in the case of periodic boundary conditions

Ring shift

When thepPMring topology (cf. Subsection 7.2.2) is used to computectliire-
teractions or to distribute data of not globally known pissm affiliation, theing
shift mappingppmmap_part ri ng_shi ft)is needed. In this mapping, each
processor keeps a local copy of its data while a second cofserg around the
ring”. This means that processoreceives the data from processor 1 (mod
Npro) While sending its previous datate- 1 (mod Nyoe). The ring shift mapping
performs one such step upon each call. It thus has to be eyl — 1 times
for the traveling set to visit all processors. After evenygrishift, each processor
can perform local operations using its original local dadanell as the current
traveling set. During a complete cycle, all possible paimbmations are thus
considered.

Mapping of particle connections

To allow disjoint initialization or input of particles anth¢ correspondingon-
nections the latter are typically initialized or read separatelyl @ame not sorted
by processor. ThepM connection mapping provided to properly distribute the
connections among the processors. The ring topology isstoertly used for this
mapping, in which each processor picks those connectiams the data being
transmitted on the ring that have entries that correspormh&of its particles.
After the connection mapping, every processor has thoseemtions that are as-
sociated with any of its particles. This allows non-symigetalculations of the
interactions. If symmetry is used, only one processor per$othe calculation.
The mapping is thus followed byruning of the connection® assure that only
the one processor that has all the member particles of a chondeeps it. This
is a sufficient condition since the ghost layersriim are non-overlapping, as il-
lustrated in Fig. 7.1.

As the particles move to other processors during the coursesimulation,
the connections are updated accordingly. In the case of grimninteraction
evaluations, the mapping is again followed by the prunieg sts described above,
in order to remove redundant connections.
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7.2.4 Particle-Particle interactions

The evaluation oParticle-Particle (PP) interactions is a key component of PM
algorithms. Sub-grid scale phenomena can require loctitjgabased corrections
[306], differential operators can be evaluated on irregidaations [93], or the
main dynamics of the system may be governed by particleaotiens.

The ppMlibrary implements PP computations using cell lists, \idits [301],
and the fullO(N?) direct method. Bottsymmetricand non-symmetridnterac-
tions are supported, the former to reduce the amount of catpli work. In each
method, the interaction potential or kernel can be spec#idter by a function
pointer to a user function, by passing a look-up table of &evalues, or by choos-
ing one of the predefinedPminternal kernels: first order derivatives in two and
three dimensions, Laplacian on particles in two and threeedsions, and quad-
ratic spline kernels for derivatives in SPH.

In addition to the routines performing the actual compotagj therpm library
also provides a routine to create look-up tables from edHenction pointer or an
internal kernel. Such tables can then be passed to any obthpute routines for
the evaluation.

Alternatively, the client program can implement its owneiiction routines.
Template subroutines for the use of cell lists, Verlet Jiglisect interactions, and
connection interactions are provided.

Direct interactions

Thedirect evaluatiorof the full N-body problem makes use of themring topo-
logy, which is based on the null decomposition as introdunesubsection 7.2.2.
Particles are evenly distributed among processors, e of their location in
space. This results in optimal load balance [46], but higmmaonication over-
head. Using the ring topology to perform direct interacsicgach processor keeps
a copy of its assigned particles while a second copy is “seniral the ring” using
the ring shift mapping as described in Subsection 7.2.3erAfach ring shift, all
processors compute the pair interactions between the $tatibnary set and the
current traveling set. For asymmetric interactions, ¢buations are only added
onto the local set, for symmetric interactions the traygbet is updated as well.
This is repeated until the sets of all processors have cdatptieir trip around the
full, for asymmetric interactions, or half of the ring, famametric interactions. In
the case of symmetric interaction evaluations, the accat@dlcontributions on
the traveling set are finally sent back to their origin for soation.
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Cell list interactions

Cell lists are provided for localshort-rangeinteractions. Hereby, particles are
sorted into equi-sized cuboidal cells, whose size refldwsiriteraction cut-off.

A particle then only interacts with the other particles ie tame cell and with
all particles in neighboring cells, accessible througteintists. Inppwm, cell lists
are defined per sub-domain agtost cellsare used around each sub-domain as
illustrated in Fig. 7.1. If two sub-domains are on the sante@ssor, no commu-
nication is needed to populate the ghost cells. The evaluali PP interactions
based on cell list, as well as the set-up of the cell list§ (7). The lists need to
be updated when particles have moved.

PPM provides routines to create cell lists, to sort particlgs icells, viz. cre-
ate the index lists, and to compute the actual PP interactising cell lists. An
additional routine is provided for determining which cedll interactions have to
be considered. Using asymmetric PP interactions, eachintetacts with all of
its neighbors as shown in Fig. 7.1(a). For symmetric intémas however, only
half of the neighbor cells, and half of the particles in thateecell, are to be con-
sidered. In order to limit the ghost layer to half of the boanes of the sub-domain
and to achieve parallel scaling in memory, a novel inteoacsicheme involvingli-
agonal interactionss introduced as illustrated in Fig. 7.1(c). This schemeiced
the amount of memory overhead and communication for synicadlir evaluated
PP interactions by 33% in two dimensions and 40% in three miéoas compared
to the classical approach depicted in Fig. 7.1(b), and iblersethe symmetric eval-
uation of interactions between connected particles. Giverells are numbered in
ascending, y, (2), starting from the center cell with number 0, the cell-gatér-
actions inrpPmare: 0-0, 0-1, 0-3, 0—4, and 1-3 in two dimensions (cf. Figc}),
and 0-0, 0-1, 0-3, 04, 0-9, 0-10, 0-12, 0-13, 1-3, 1-9, B-®,3-10, and
4-9 in three dimensions.

The difference in computational time between symmetric mond-symmetric
PP interactions is assessed using a PSE diffusion solverding to Subsection
5.2.2. The elapsed time per time step is found to decreasdauyax of 1.72 when
changing from asymmetric to symmetric interactions on twacpssors. Due to
the additional overhead caused by sending back the ghosilzdions, this factor
is below 2.
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sub—domain (a)

sub-domain (b) sub-domain (©

Figure 7.1: Cell-cell interactions and ghost-layer arragmgent. (a) For non-symmetric
particle-particle interactions, the ghost layer (lightay) extends all around the sub-
domain. Interactions are one-sided. (b) In traditional syetric cell list algorithms, ghost
layers are required on all but one boundary of the domain.licpPm, diagonal interac-
tions are introduced (1-3). Ghost layers are now symmeinid do not overlap with any
other ghost layers of neighboring sub-domains. This regnltess communication, better
scaling in memory, and simpler algorithms, e.g. when cagid connected particles. The
two-dimensional case is depicted. See text for interastiothe three-dimensional case.

Verlet list interactions

For spherically symmetric interactions, cell lists contaip to 27/(47/3) =
81/(4w) =~ 6 times more particles than actually needederlet lists[301] are
provided to reduce this overhead. For each particle theyhivan explicit list
of all other particles it has to interact with. The radius lo¢ tVerlet sphere is
usually chosen to be the interaction cut-off plus a certaiety margin, called
skin The lists need to be rebuilt as soon as any particle has nfavéer than
this safety margin. In three dimensions, interactionsgisferlet lists are at most
81/ ((4m) - (1 + skin)®) times faster than cell list interactions. #rwm, Verlet lists
are set up using intermediate cell lists to reduce the dlgoic complexity to
O(N). Routines are provided for generating Verlet lists as welioa computing
the interactions based on them. Memory requirements howeseelly limit the
application of Verlet lists to small or well-distributedgimems.

Connection interactions

Besides free-space PP interactiopsM also supports interactions based on inter-
particle connections. No neighbor lists are required ia tiaise since a connection
consists of an explicit list of all its member particles. &rthe connections are
mapped according to the particle distribution as descrine8ubsection 7.2.3,
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the connection interactionsan be evaluated without communication. The global
particle index specified by the connection is hereby traedlto the local particle
index by a direct look-up in a global list.

7.2.5 Particle-Mesh and Mesh-Patrticle interpolations

All hybrid PM methods involve interpolation of irregularlgistributedparticle
guantitiesfrom particle locations onto a regular mesh, and interpmtadf field
quantitiesfrom the grid points onto particle locations.

These interpolations are utilized for two purposes, namely

e the communication of the particle solver with the field sghead
¢ the reinitialization of distorted particle locations.

While the first issue is a well-established notion in PM teghas, thaeinitial-
ization of particle locations and strengths when particle locatigat distorted is
a critical, albeit often overlooked, aspect of particle noels for the simulation of
continuum systems [160]. Particle overlap is needed inroi@&nsure conver-
gence of the method (cf. Section 5.1.1), and it is achievegdsiodically inter-
polating the particles onto a regular mesh and replacinguhent set of particles
by new particles, created at the locations of the mesh poiRitss procedure is
referred to asemeshing

The ppM library provides routines that perform these operatiortse ifiterpol-
ation weightsiW (z,,, — x,) can be pre-computed and stored to facilitate adjust-
ments of the interpolation, or to interpolate several setpiantities. Adjustments
are e.g. needed in the vicinity of solid boundaries or imearsterfaces. If the
weights are not pre-computed, they are determined durmgdtual interpolation.
The used/-dimensional interpolants are tensor products of one-dgioaal inter-
polation kernels, such as B-Splines and extrapolations-8plnes [194] withm
points in their support. The amount of memory required petigda therefore is
O(dm) instead of0(m?) for the general case. Currently implemented interpolants
include first and second order B-Splines, andAtigfunction [194].

The interpolation of mesh values onto particles readiljtmezes: the interpol-
ation is performed by looping over the particles and reogiwialues from mesh
points that lie within the support of the interpolation kelrnTherefore, the values
of individual particles can be interpolated independently

The interpolation of particle values onto the mesh, howeeads todata de-
pendenciess the interpolation is still performed by looping over e, but a
mesh point may receive values from more than one particlecirftamvent this
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Scheme | CPUtime vector operation ratio avg. vector length
colored 2.69s 99% 230.6 words
classical 30.1s 0.36% 4.1 words

Table 7.2: Comparison of the vector performance of claggezticle-to-mesh interpola-
tion and the present coloring scheme on a NEC SX-5 vector gm@® million particles
are interpolated ontd 28 x 128 x 128 regularly spaced mesh points.

problem, therppm library implements the following technique [307]: when new
particles are created in the course of remeshing, we aselgrsdo the particles
such that no two particles within the support of the intesioh kernel have the
same color. Particle-to-mesh interpolation then visies plarticles ordered by
color to achievedata independenceThis coloring schemenablesvectorization

of particle-to-mesh interpolations, as confirmed by a tesadNEC SX-5 vector
computer. The results are summarized in Table 7.2. Withaiptesent coloring
scheme, interpolation in hybrid PM methods would be prdiviblly expensive on
vector architectures.

7.2.6 Mesh-based solvers

In PPM, meshes can be used to solve the field equations associatetbng-
range particle interaction$138], or to discretize the differential operators in the
governing equations of the simulated physical system. dlopgrators are often
local and their computational cost scales linearly withrtbenber of mesh points.

A large class of pair interaction potentials in particle hoets can be described
by the Poisson equation as it appears in MD of charged pestidh electrostat-
ics (Coulomb potential), fluid mechanics in stream-funehiorticity formulation
(Biot-Savart potential), and astrophysics (gravitatiopatential). ThePoisson
equationis expressed as:

Vif(x) = g(). (7.1)

Theppmlibrary provides fasPoisson solverbased on FFTs and geometric Multi-
Grid (MG).
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Fast Fourier Transforms

pPPM provides arFFT-based solvefor the Poisson Eq. (7.1) with periodic bound-
ary conditions. A multi-dimensional FFT is parallelizedngsa sequence of one-
or two-dimensional FFTs, that are performed on pencil aald 8dpologies as in-
troduced in Subsection 7.2.2. The data array to be transfbimoptimally stored
if the transformation operates along the leading dimensfaihe array, thus en-
suring unit memory stride. Therefore, the data are trarepdsnecessary before
performing the individual low-dimensional FFTs. A compgléhree-dimensional
FFT thus consists of mapping the data onto a tempargrglab topology, per-
forming a two-dimensional FFT, mapping onto a tempoeapencil topology, and
performing a one-dimensional FFT. The run time of the magpind the transpos-
ition steps strongly depends on the machine’s network speétinvolves global
communication of a large amount of data.

The actual serial low-dimensional FFTs are performed ugiagxternal librar-
ies fftw or MathKeisan (on NEC SX vector architectures).

Multigrid methods

The geometric MG method is implementedrrM as a fast iterative solver for
the Poisson Eg. (7.1). The advantage of pardfl@ solversconsists in restrict-
ing communication to the ghost layers, whereas the correpg FFTs require
several global mappings. This advantage is particulaggiBtant on distributed
memory machines, where the bandwidth of the network coioreatay become
the performance-limiting factor in FFT solvers.

The PPM MG supports both the V and W cycle [290]. The Laplacian is misc
ized using five and seven point stencils in two and three dawes, respectively.
As residual smoother we employ the red-blacdkcessive over-relaxati@theme,
which includes theGauss-Seidesmoother as a special case. The optimal value
for the over-relaxation parameter is approximately 1.125][3 Furthermore, the
full-weighting scheme [290] is used for thestriction of the residual, and bilin-
ear (in two dimensions) or tri-linear (in three dimensioimggrpolation for the
prolongationof the function corrections [290].

The PPM MG solves the two and three dimensional Poisson equatiosciar
and vector fields. Boundary conditions can be periodic, Nssum or Dirichlet.
In the vector case, each component may satisfy differenhdbeny conditions.
The solver is structured into initialization, computati@md finalization to ensure
efficient memory-management.
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7.2.7 ODE Solvers

Simulations using particle methods entail the solutionystams of ODEs as out-
lined in Section 5.1. The characteristics of théial Value ProblemdqIVP) rep-
resented by these ODEs explicitly reflect the physics of yfstesn that is being
simulated.

The ppM library provides a set of explicit integration schemes tltvesdhese
IVPs. TheODE solverof PPM is designed as a “black-box” solver. The user
selects the method to be used and provides as a functionep@inutine that
computes the right-hand sides of the ODEs. Allocation ofegfe (for the stages
of multi-step schemes) and the actual computation of thgestés performed by
the library. Second order ODEs are solved by transformiegitinto a system of
first order problems, and parallelism is achieved by maptiiegntegrator stages
along with the other particle quantities. At the last staf¢he integrator, the
previous stages are available on the processor that cyrieogts the particles,
and the final particle update is completed without furthengwnication. Low-
storage schemdsave the additional advantage of requiring little commatian.

The set of available integrators currently includes foov&uler with and
without super time stepping [9], 2-stage and 4-stage stdnéRnge-Kutta
schemes, Williamson’s low-storage third order Runge-&sitheme [318], and
2-stage and 3-stage TVD Runge-Kutta schemes [261].

7.2.8 Parallel I/O

File 1/O in distributed parallel environments exist in twifferent modesdistrib-

utedandcentralized By distributed we denote the situation where each processo

writes its part of the data to its local file system. Centeadiz/O on the other hand
produces a single file on one of the nodes, where the datailmaidns from all
processors are consolidated. The latter is convenientiall ®r aggregated data,
and for writing files that are later read on a different numifgsrocessors, e.g. to
continue an interrupted simulation.

TheprpwMlibrary provides a parallel /O module which supports boitiely and
ASCII read and write operations in both modes, distributed @entralized. The
I/0 modeis transparent to the client application. Write operationshe cent-
ralized mode can concatenate or reduce (sum, replace) tadrden individual
processors; read operations can transparently split tadmaqual chunks among
processors, or send an identical copy to each one. The kegimation behind
thesplit modeis that no processor is able to hold all the data in memory.
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Read and write operations are performed by the same rodtiveactual opera-
tion is determined by an input flag that can be set to ejipenpar ami o_r ead
orppmpar ami o_wr i t e. This interface facilitates writing and reading simula-
tion data files in consistent formats and order.

To improve performance of the centralized mode, networkroamication and
file I/0 are overlapped in time usingon-blocking message passingll standard
data types are supported: real, double, single precisioplax, double precision
complex, integer, logical, and character strings.

7.2.9 Adaptive trees

A generaltree constructiorns provided for both internal and client use. It supports
non-adaptive and adaptil@nary trees quad-treesandoct-trees At any stage of
the tree, the space is subdivided idtbboxes{ B, }. The indices and; are used

to denote coordinate directions. Adaptivity and subdandbehavior are guided by
two cost functionssy, ¢o. Both cost functions are linear combinations of the three
cost contributions: particle costs (user-specified or unity per particle), mesh
points (number of mesh points in the boxz = [[ mp;), and geometry (volume
of the box|B| = [ | Bl:), with user-provided coefficients, 3, ~v:

b{1,2y(Br) = aqi,2y Z cp + Bri2yms, + vi1,2y | Bl (7.2)
pEBy

The first cost functiorny; guides theadaptivityof the tree since the next subdivi-
sion is applied to the bo®Bx of largesty,. The second cost functiopy, defines
the direction(s) of subdivision and the position(s) of thbdivision plane(s). Sup-
poseBj is to be subdivided next. In order to create the minimggrcut when
subdividing the box, théensor of inertial” = (T;;) is computed from the particle
locationsz,, = (x, ;) and costs;, as:

Tii = Z Z:I:Z%,j Cp, 117;]‘ = Z Tp,iLp,jCp - (73)

pEBK \ j#i pEBK

The eigenvectorsv, of T' are scaled with the correspondirgenvalue),:
v, = \.(v./||v.||2) and projected onto the unit coordinate vecteysThe num-
ber of mesh points in this directiom( ;) and the length of the box in this direc-
tion (| B|;) are normalized and added to fornseore valueS for each coordinate
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direction:
—1 -1

Slei) =02 ei-ve+fBo [ > mpe; | mpeitye | DBkl | [Bxli
r J J
(7.4)

The spatial subdivision directions are chosen in order oéding score. The
client program can however specifically disallow subdesisi in certain coordinate
directions to enforce pencil-type or slab-type boxes. Tdtaa position of a cut

perpendicular to directiofi is determined as the corresponding component of the

center of massf ¢, within the boxB:

$2(Bi) ™" |aa Y wp ey + pi(Bi) (Bempy +72/Bx|)| (7.5)
PEBK

subject to the constraint that a client-specified minimum $ine is not under-run.
In the above equation(By) = (u;(By)) denotes the geometric center of bBx.
To terminate the tree, multiple concurrent stopping datean be prescribed.

7.3 Parallel efficiency and benchmark results

The parallel efficiency of thepmlibrary is measured based on the following five
tests:

1. solving the Poisson equation using FFTSs,

2. solving the same equation using geometric MG,

3. simulating diffusion using PSE in the endoplasmic rétiouof live cells,

4. simulating a perturbed double shear layer using remeShsabth Particle
Hydrodynamics (rSPH) for compressible flows, and

5. simulating the same problem using vortex methods for mmmessible
flows.

Performance is tested for botlired-sizeand ascaled-size probletior all cases
except the diffusion simulation. In the fixed-size problethe number of mesh
points and particles is kept constant, i.e. the work loadpgrecessor decreases
with increasing number of processors. In the scaled prohlenesh point and
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particle numbers grow proportionally to the number of pesces, resulting in a
constant work load per processor.

Timings and parallel efficiency figures are collected on &M p690 com-
puter of the Swiss National Supercomputing Centre (CSC®g Machine
consists of 8 Regatta nodes with 32 1.3GHz Power4 procegsersnode.
Within each node, the machine at CSCS is configured in 4 graugs8 pro-
cessors sharing 12GB of memory. Each processor has a pefknpence
of 5.2 GFlop/s, and the nodes are connected by a 3-way Coloitghssys-
tem. Of the total of 256 processors, only up to 242 can be useddm-
putation since the remaining ones are dedicated to file I/® lagin. All
software is compiled with version 10.1 of the IBM XL Fortraongpiler for
AIX using the flags- 06 - garch=pwr4 -qtune=pwr4 -qunroll=yes
-qcache=auto -ghot -gqgipa=inline -gstrict. In each test, we
measure the elapsed wall-clock timig for each time steg on each processor
i =1,..., Nproc using the FortralsYSTEM.CL OCK intrinsic. To account for syn-
chronous communication steps we report the maximum of thigses over all
processors. This maximum is averaged over 5 to 10 samplesripute thespee-
dup .S and theefficiencye:

_ t(1) N (Nproc)
5 (Noroc) = mean max; t;;(Npoc) N (1) (7.6)
S N roc,
e(Nproc) = gvpr:oc ) (7.7)

Hereby,t(1) is the time on a single processor (linearly extrapolatedtfmeas-
ured), t;; (Nproc) is the time onNproc processors)N (1) is the problem size on a
single processor, anty (Nproc) is the problem size oiVpoc processors. To ac-
count for the® (N log N) scaling of the FFTs, the second factor of the speedup is
accordingly adjusted in the benchmarks of the FFT-basessBnisolver.

Vectorizationand parallel efficiency on vector machines is tested usia§&C
SX-5computer at CSCS. This is a shared memory machine with 16 N&C S
5 vector processors. Each processor has a peak performa8c€lelop/s and
contains 64 vector registers of a length of 256 words (2048g)yeach. The total
memory of the machine is 64 GB. Out of the 16 processors, up tvd used in the
present benchmarks, leaving one processor to the opesatitgm. The software
is compiled using the NEC SXF90 compiler, version 2.0, lienis305, with the
flags-R5 -C hopt -f4 -floatO.
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Additional benchmarks are performed on a 16 processorildisdd memory
cluster of 2.2 GHz AMD Opteron 248 nodes running under Lindbhe nodes
are connected by a switched gigabit ethernet network. QGmntisichine, the Intel
Fortran 90 compiler, version 8.1, is used with the flag8 - xW and the free
MPI implementation mpich 1.2.6.

7.3.1 Parallel FFT-based Poisson solver

We test the performance of the FFT-based Poisson solver lsingahe scalar
Poisson Eg. (7.1) with the right hand side

g(z,y, z) = sin(2nz) sin(27ry) sin(27z), z,y,z € [0,1], (7.8)
subject to periodic boundary conditions. All Fourier trfamms are performed
using the parallel FFT routines of tire@mlibrary as described in Section 7.2.6.
The parallel speedup and efficiency for the scaled probleshasn in Fig. 7.2
exhibit two characteristic regions. The first one rangemffioto 8 processors, the
second one from 8 and beyond. From 1 to 8 processors the effjctrops signi-
ficantly, due to conflicts and congestion in $teared memorgrchitecture within
each compute node. As the size of the problem and the humhaiooéssors
exceed the shared memory, the loss of efficiency is markestlyaed. This is
verified in a separate benchmark (Fig. 7>2), in which only one processor per
node is used. In this case, the congestion is removed andfitiereey signific-

antly improves to 68% on 16 processors. Solving the Poisgoat®sn to machine

precision on al28 x 128 x 128 mesh takes 0.6 seconds on a single processor.

The corresponding scaled system on 64 proces5o2sq{ 512 x 512) requires 2.4
seconds.

Speedup and efficiency for the fixed-size problem are showkign7.3. The
FFT Poisson solver shows an efficiency above 30% (averagg 60%28 pro-
cessors using a12 x 512 x 512 mesh. Again, the scaling improves beyond 8
processors, similar to the scaled case. The solution tima $a2 x 512 x 512
mesh is 2.4 seconds on 64 processors, and 1.6 seconds orot28sars.

7.3.2 Parallel multigrid Poisson solver

We test the parallel performance of them MG Poisson solver and compare it to
the FFT-based solver using the same scalar Poisson Eqw(ithlthe same right
hand side Eqg. (7.8), subject to periodic boundary conditioFhe initial value of
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Figure 7.2: Parallel speedup and efficiency of the FFT-baReidson solver for the scaled-
size problem starting with28 x 128 x 128 mesh points on one processer)( Using only
one processor per node, the bottleneck of the shared mesm@gnoved ). Each point is
averaged from 5 samples, error bars indicate the min-max spd timings are performed

on the IBM p690.
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Figure 7.3: Parallel speedup and efficiency of the FFT-baBeidson solver for the fixed-
size problem witt512 x 512 x 512 mesh points on 4 to 128 processors. Each point is
averaged from 5 samples, error bars indicate the min-max spd timings are performed

on the IBM p690.
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f is zero everywhere and we use the V(2,1) cycle with one snapstep at the
finest level.

We conduct three tests. The first one involves the fixed catbe2d6 x 256 x 256
mesh points, while the two others are scaled cases, onengténdm a 128 x
128 x 128 mesh, the other one starting fro2h6 x 256 x 256. Efficiency and
speedup for the scaled cases are shown in Fig. 7.4 and for#uecfise in Fig. 7.5.
Again we observe a strong decrease in the parallel efficiepcip 8 processors
due to the congestion of the shared memory. This is removeshwking only
one processor per node in a pahistributed memorgetup, cf. Figs. 7.4 and 7.5,
and the efficiency improves to 90% on 16 processors for thiedamse. The
effective efficiency based on the timing obtained on 8 pregesis 92% for the
large scaled case on 64 processors, and the efficiencylfe®4ax 1024 x 1024
system is 66% for the large scaled case on 64 processordidHattier system, the
elapsed wall-clock time is 10.5 seconds per V-cycle, and #fiseconds for the
four V-cycles needed to reduce thg error to10~%. A system with half a billion
unknowns is solved in the small scaled case on 242 proceasdB9 efficiency
in 1.7 seconds per V-cycle. This compares well to the 41%ieffay achieved by
the Prometheus multigrid library [5] on 128 IBM Power3 presers for the same
problem size. Moreover, the present solver sustains 15%eofrtachine’s peak
performance, whereas Prometheus sustained 7.5% [5].

The vectorization of thePm MG solver is tested on the NEC SX-5 using up to

8 processors. TheprM MG sustains a performance of 2.4 GFlop/s per processor

(30% of peak performance) with a vector operation ratio ¢¥%%nd a parallel
efficiency of 96%. On this machine, a single V cycle ofla x 512 x 512 system
takes 1.21 seconds on 8 processors.

7.3.3 Patrticle strength exchange in complex geometries

We use a client application for the simulation of three-disienal diffusion using

the PSE method as outlined in Subsection 5.2.2. This tesbasmates the cap-
ability of the library in handling complex-shaped domaiasd it helps to assess
load balance and inter-processor communication for agufee domain decom-
position. Since the particles in this simulation are staiy, only ghost values
need to be communicated and the Verlet lists are only createel.

We simulate isotropic homogeneous diffusion in the lumethefER of a live
cell using the methods introduced in Chapter 6. All ODEs ategrated in time
using the explicit Euler scheme, and we use the second-aberrate isotropic
PSE kernel given in Eq. (F.4).
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Parallel speedup, timing, and efficiency

The problem size is fixed at 3.4 million particles, uniforndigtributed inside the
ER geometry. The simulation uses double-precision flogtoigt arithmetics and

Verlet lists with a cut-off of2e. Each particle thus interacts with 32 neighbors.

Domain decomposition is done using adaptive ROB (cf. Sulmec.2.2) with the
z direction fixed as the organelle is very thin in thdirection. Fig. 7.6 shows the
resulting decomposition into 9311 sub-domains. Since #réqgbes do not move
in a PSE simulation, empty sub-domains are discarded. Timgated domains at
the periphery are a consequence of the ROB domain decorigposit

The parallel performance is tested on 4 to 242 processogs.7H summarizes
the results. The simulation sustains 20% of the peak peence on the IBM
p690, thus reaching a total of 250 GFlop/s on 242 process@4% efficiency.
The observed decrease in parallel efficiency to 84% on 242egemrs can be
explained by arising load imbalance when distributing astamt number of sub-
domains onto an increasing number of processors.|d@debalances quantified

by

. 7.
mearn max; t;; (Nproc) o)

If we use the actual number of interactions of each partislthat particle’s com-
putational cost for the topology creation, we observe \&laehe range of 90%
to 95%. Using an assumed unit cost per particle, the loadbals on the order
of 10% to 60%, depending on the actual number of processext udsing cell
lists, one time step on 4 processors takes 67 seconds insté¢lael 13.5 seconds
for the simulation using Verlet lists. This difference igpexted since each particle
interacts with 216 neighbors in the cell list case.

On the NEC SX-5 vector computer, more than 99% of the loopsadn-n
initialization routines vectorize and the average vecémgth is> 254 words.
The parallel efficiency is 88% on 8 processors and 86% on 1&egsors. One
time step in the latter case takes 1.15 seconds. 2.64 GRElop&istained on each
of the 15 processors thus reaching 33% of the machine’s peiknperformance.
Again using the actual number of interactions, given by tregth of the Verlet
list, as the computational cost for each particle, the lcadrire exceeds 80% on
up to 15 processors.

The largest simulation performed using thism client uses 1 billion particles.
The computation is based on cell lists and a cut-offepf.e. each particle interacts
with 26 neighbors. The simulation is performed on 64 promessf the IBM
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(b)

Figure 7.6: (a) Top view of the computational domain usedterpresent PSE test case. (b)
The resultingePM domain decomposition on 242 processors using recursiveganal bi-
section in ther andy directions ¢ direction fixed). Rectangles show the 9311 sub-domains,
shading codes processor affiliation. The elongated pergdldomains are a consequence
of the recursive orthogonal bisection decomposition.
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Figure 7.7: Parallel speedup and efficiency of tirev PSE client for the fixed-size problem
with 3.4 million particles on 4 to 242 processors. Each péraveraged from 10 samples,
error bars indicate the min-max span. All timings are penfied on the IBM p690.
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p690, uses 1.4 GB of memory per processor, takes 54 secontimpestep, and
sustains 20% of the peak performance. Extrapolating frarptievious runs, 50
to 60 seconds per time step are expected for this large aationl The measured
54 seconds fall within this range, confirming linear scalindarge numbers of
particles.

7.3.4 Three-dimensional remeshed smooth particle hydraaijycs

We test apMclient application that implements a novel, computatiynefficient
formulation of theremeshed SPHE0, 248]. This rSPH client was implemented
by Simone Hieber, and in the present benchmark it is appbethie simulation
of a three-dimensional compressible double shear lay&][1& order to meas-
ure the parallel performance, we consider a computaticorakdh fully populated
with particles, so that the reported performance measusemdependent of the
particular flow problem.

The rSPH client solves the three-dimensioNalier-Stokes equatiorfer vis-
cous compressible isothermal flow in non-dimensional Lagjen form, ex-
pressed as:

Du

b v 7.1
D uV - v, (7.10)
and
Dv 1 1
up = ——MaerVp + 5V T (7.11)

where the pressuneis given by
p="Tu, (7.12)
and the components of the stress tensare:

_ Ovy | Ov, _g %
- Ox;  Oxp 3 Y0z

Hereby,d;; is theKronecker deltssymbol, Re is thé&keynolds numbeandT the
temperaturenormalized by the characteristic temperatiigeof the flow. It is set
toT" = 1 for all simulations (iso-thermal fluid). Thiglach numbeiis defined as

Ma = \/W”}%_TO, wherev, denotes the magnitude of the characteristic velogithe
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Figure 7.8: Parallel speedup and efficiency of them rSPH client for the scaled-size
problem starting with 2 million particles on one process&ach point is averaged from
5 samples, error bars indicate the min-max span. All timiags performed on the IBM
p690.

ratio of specific heats, anfl the gas constant. The densitys normalized by the
mean densityi.

The governing Egs. (7.10) and (7.11) are discretized usieg$PH approach
[50] with the particles being remeshed using thé kernel function [194] after
each time step. Time integration is done with a second-ddege-Kutta scheme.

Parallel speedup, timing, and efficiency

The speedup and parallel efficiency of the rSPH client arevshp Figs. 7.8 and
7.9 for the scaled and fixed-size problem, respectively. [@hgest simulation
considered in this test case comprises 268 million pagtiated achieves a parallel
efficiency of 91% on 128 processors. The efficiency on 32 memes using 67
million particles is also 91%, which compares well to the 8&fficiency of the
GADGETSPH code by Springedt al. [270] on 32 processors of the same com-
puter model (IBM p690). The efficiency in the fixed-size peyhlranges between
100% and 84%. One time step of the simulation using 16.8aniltiarticles takes
196.9 seconds on 4 processors and 7.3 seconds on 128 prscesso

The communication overhead, assessed using a fixed-siakepreovith 16 mil-
lion particles, is shown in Table 7.3. The fraction of tim@spin communication
is less than 13% of the total computational time in all casésing 4 processors,
only 5% of the total time are spent in communication. The cemication effort
increases by a factor of 2.5 when using 64 times more proces3tis demon-
strates the high efficiency of the communication routineth@ppP M library.
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Figure 7.9: Parallel speedup and efficiency of ttrMrSPH client for the fixed-size problem
with 16.8 million particles on 4 to 128 processors. Each p@raveraged from 5 samples,
error bars indicate the min-max span. All timings are penfied on the IBM p690.

Nproc | total time [s] communication [s] ratio
4 195 10 5%
16 50 4 8%
64 14 1.2 11%
128 7 0.8 12%

Table 7.3: Communication-to-computation ratio of #remrSPH client solving a fixed-size
problem with 16 million particles on the IBM p690.

7.3.5 Three-dimensional vortex methods

The final test involves simulations using a three-dimeraiguarticle vortex
method[63]. The client application was implemented by Michael gtorf and
it demonstrates a large number of them library modules, involving particle con-
vection and diffusion, particle-to-mesh and mesh-toiplartnterpolation, particle
reinitialization, and the solution of Poisson equationgtemesh.

Hybrid VM [59, 307, 65] solve the incompressibdiavier-Stokes equatioris
the Lagrangian vorticity-velocity formulation:

Dw

D = (w-V)v + V3w, (7.14)

and

V2 = —w, (7.15)
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wherev = V x W is the velocity and- is the viscosity of the fluid. Theorticity
fieldw(x) is discretized using particles that camiyculationT', = w(x,)V,, and
that are convected by the local flow velocity fial¢r) [63]. The vorticity of the
particles is interpolated onto a mesh where it is used asghemand side of the
vector Poisson Eq. (7.15), which is solved for #tieeam function? using therPm
MG Poisson solver presented in Subsection 7.2.6. Velscitie computed from
the stream function using second order finite differenaastlae vorticity diffusion
and stretching are evaluated at mesh point locations alptoging second order
finite differences. The time step is completed by interpotpthe grid functions
% andwv back onto particle locations. Distortion of the particledtions leads
to spurious vorticity structures and the flow ceases to bé mptesented by the
particles. Therefore, particles are remeshed onto regoisitions after each time
step using theemeshingoutines of theppM library. The M function [194] is
used for all interpolation steps.

To study the parallel performance of the vortex client, wasider the same
double shear layer [109] as used for the rSPH tests in Subsé&cB8.4. We use the
whole computational domain as vorticity support, so thatriobmber of particles
is equal to the number of grid points. All simulations inatuthe solution of a
convection-diffusion equation for a passive scalar, amy start from the initial
condition proposed by Ghoniem and Knio [109] with Re990. The Reynolds
numberis computed as

Re— IVld (7.16)

v

whered denotes the thickness of the shear layer. All ODEs are iatedrusing
thePPM ODE solver with a second order midpoint Runge-Kutta method.

Parallel speedup, timing, and efficiency

The results for the scaled-size and fixed-size cases aretdépn Figs. 7.10 and
7.11, respectively. The largest system comprises 268amipiarticles distributed
onto 128 processors. For this system, one iteration takee8&3nds on average
with a parallel efficiency of 63%. Vectorization of the codeaésted on the NEC
SX-5 computer using 8 processors. All major loops vectoiizeuding 99% of
the particle-to-mesh and mesh-to-particle interpolatianth an average vector
length of 231 words, demonstrating the effectiveness otttered interpolation
scheme described in Subsection 7.2.5.
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Figure 7.10: Parallel speedup and efficiency of tev VM client (+) and of the particle-
mesh interpolation alonex) for the scaled-size problem. The initial mesh resolution o
one processor i428 x 128 x 128. Each point is averaged from 5 samples, error bars
indicate the min-max span. All timings are performed on B p690.
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Figure 7.11: Parallel speedup and efficiency of #rv VM client for the fixed-size problem
with 256 x 256 x 256 mesh points on 8 to 128 processors. Each point is averaget3ro
samples, error bars indicate the min-max span. All timingsperformed on the IBM p690.

Interpolating 2 million particles onto 28 x 128 x 128 mesh takes 3.4 seconds
on a single processor of the IBM p690. Interpolating the figéatk onto the
particles takes 1.1 second. Timings for the NEC SX-5 arergindable 7.2.
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Chapter 8

Conclusions

This thesis has addressed a number of issues pertaining &m#lysis, modeling,
and simulation of diffusion processes in live cells. In martr, we have improved
existing single particle tracking techniques to make thertable for large data
sets and fully automated high-throughput assays. Trajeetoalysis was presen-
ted using novel global and segmentation-based methodgharfdlly automatic
classification of trajectories using methods from machesring was investig-
ated. We then considered continuum diffusion processebwfdant particles,
where we introduced a novel particle method to simulateti@adiffusion pro-
cesses on moving surfaces. Applying geometry-resolvimgiigitions of diffusion
in the ER enabled us to determine for the first time molecufugion constants
from FRAP experiments in complex-shaped organelles, tegii a novel method
of FRAP data analysis. The main contributions and conchssaf this thesis are
summarized in the following.

8.1 Feature point tracking

In Chapter 1 we have described a computationally efficiedt ratbust method
for feature point tracking in quantitative time-resolveddies of particle motion
as they appear in several applications in cell biology. Titesented method was
demonstrated to be of high accuracy and precision even aermatdsignal-to-
noise ratios, and to provide sub-pixel accuracy in all pecattsituations. The
absence of any intrinsic models regarding the motion of theked particles, in
combination with its robustness and efficiency, makes thiaaakparticularly well
suited for biological applications relying on trajectar@geveloped by fluorescence
microscopy.

The presented method emphasizes computational efficiemtyease of use.
The former goal is motivated by our observation that manylavie feature point
tracking algorithms suffer from poor computational penfiance or large memory
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requirements if long sequences of large images are to beegsed [298]. The
present implementation is capable of tracking a sequende@d 214<214 pixel
TIFF images in less than 15 seconds on a 3.06 GHz Intel Pertidesktop com-
puter. The goal of ease of use was approached by minimizengumber of user-
set parameters of the algorithm and by providing a usendfiegraphical interface
as described in Appendix A.3.

Smoothness assumptions frequently made [55] could beaglax reducing the
point detection linker to a generic version. In order to k&ahe robustness of
more complicated designs, it was considered an optimizatioblem to iteratively
find the best set of links betwedtframes such as to minimize a certain cost func-
tional. If available, prior knowledge about the underlypigysical processes can
be incorporated by suitably choosing this linking cost tiomal. Extending the
linking over several frames allowed to account for temppoaclusion of particles
and strong intensity fluctuations, as demonstrated in tlaatgun dot example in
Subsection 4.1.3.

The present tracking algorithm is not intrinsically lindtéo two dimensions.
Its application to three-dimensional data is straightfmdy provided such data
are available. The following limitations are however preasén the feature point
detection, the algorithm is limited to small (compared tekgaound variations)
spherical particles or point spread blobs, and the trajgdioking is limited by
the specific cost functional one defines. For the cost funatiased in this thesis,
cf. Eqg. (1.14), the limitation is obviously given by the eribn that two equally
bright and equally large particles must always be sepatatedore than the dis-
tance they move per frame. Using different cost functigrthis could be relaxed
at the expense of other limitations such as a loss of uniligrsaue to prior in-
formation about the type of motion. Furthermore, we assutinatevery detected
point corresponds to exactly one particle. The algoriththis unable to resolve
particle coalescencer division and to yield two continuous trajectories if two
particles exactly cross in space and time. The non-padisierimination step is,
if used, limited by the assumption that the majority of théed&ed points corres-
ponds to particles of the desired kind.

The algorithm is presently implemented as a multi-user intielt client-server
application. In our experience, this implementation i ga®d stable even under
high load with several concurrent users. The graphicalinsenface is implemen-
ted in Java and runs on various computer platforms.



8.2. TRAJECTORY ANALYSIS AND CLASSIFICATION 231

8.2 Trajectory analysis and classification

In Subsection 2.1.2 we have introduced the MSS analysis astansion of MSD
analysis for biological trajectories. The MSS analysisaid/for more types of
motion and provides a second parameter in addition to tifiesiiiih constant. We
have shown that the combination of the two parameters emahmbiguous clas-
sification of otherwise indistinguishable motion cased.[@baddition, MSS ana-
lysis is more accurate than MSD analysis as was shown bystitati error es-
timation. This is an important advantage, given the limitathths of trajectories
from biological experiments. Using the pdir., 3) has enabled for the first time
systematic studies of the mobility of virus particles ptiminternalization.

To increase time resolution in an accuracy-neutral wayedtaries are fre-
quently decomposed into segments of defined patterns. fEjctory segment-
ation is mostly done by hand, thus introducing human biaslianiting the data
throughput. In Section 2.3 we have proposed a method fomaaito trajectory
segmentation using neural networks. The presented metmotecused to render
the complete data acquisition and analysis process fulignaatic, enabling un-
biased high-throughput screens. The segmentation digoviias for instance used
to automatically process the tens of thousands of trajestérom the Adenovirus
study presented in Section 4.3. In addition, it enables tedvased analyses as
described in Section 2.4.

In Section 3.1 we have surveyed different automatic classifin algorithms for
trajectory data. Using a discrimination capability measitom psycho-physics,
we compared their performances among each other as wellhasrtan classific-
ation. We found that all methods perform equally well in tlzse of separable
clusters. On non-separable classes of the used data set, @fbkmed best,
closely followed by SVM. Due to their dynamic character, HMive the least
robust method with the performance of cHMM and dHMM being panable.
Surprisingly, the algorithms on average performed betten thuman classifiers.
This could be due to human bias from prior expectationsgdatieffects, or in-
accuracy. The best test person performed about equallyasele best machine
learning algorithm, indicating that the latter was able xtract and use most of
the relevant information from the data.

The tests have also shown that the representation of tleetwaies in data space
critically determines the classification performance. difig a good data repres-
entation serves a double purpose: first, it enables acatleeggification of the data
and, second, it provides important information about thgspal properties that
distinguish the classes the most. The latter is partiguiateresting in biological
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applications as it contributes to our understanding of ttoegss that created the
trajectory. In Section 3.2 we have thus introduced a cldsed-optimizer to ad-
aptively adjust the data encoder such as to maximize cleatsifn performance.
We have studied the influence of various parameter settingshave tested the
algorithm on both synthetic and real biological trajeaeriThe classification per-
formance that was achieved compares favorably to experibased manual data
encodings.

In summary, Chapters 2 and 3 have demonstrated that autoiiais free ana-
lysis and classification of biological trajectories is pbkswith near-maximum
accuracy, and that machine learning techniques providefalusol for estimat-
ing the information content and the relevant parametergriajectory data set.

8.3 Application to virus motion analysis

The case studies and applications presented in Chaptereddesmonstrated the
utility of the various data analysis and modeling techngjoe questions of bio-
logical interest. In Section 4.1 we have demonstrated tpalubty of the feature

point tracking program to handle motion of various types fepurandom, sta-

tionary, fast directed transport — and to reconstruct coteuketrajectories from in-
termittent detections of blinking particles. Sub-pixetacy was achieved in all
cases and the analysis results were in good agreement viilishped benchmarks
and theory.

In Section 4.2 we have reported the main results of a singtéete study on
Polyomavirus, done in collaboration with the group of Pidélenius [96]. The
methods developed in this thesis have hereby enabled thgUastitative study of
the earliest steps of virus infection. Using feature poiatking and MSS analysis,
four different modes of motion could be identified and unagabusly classified.
Perturbation studies and control experiments finally ledh® identification of
non-trivial trans-membrane interactions, causing aetédiated confinement of
the virus-receptor complex. Moreover, we found that cheled depletion leads
to decreased mobility of the virus-receptor particles, inikely caused by the
formation of stable ordered lipid domains [96].

A second study, done in collaboration with the group of Pf&feber, con-
sidered the motion patterns of human Adenovirus-2 on thenpdamembrane of
live cells. The automatic data processing techniques aftd/a® implementa-
tions developed in this thesis have enabled a bias-freevadfghme study involving
several tens of thousands of experimentally recordedctajes of virus motion.
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As shown in Section 4.3, this enabled highly significantistiaal analysis, lead-
ing to the conclusion that the secondary integrin receptituénces the mobility
of the primary receptor-virus complex. In cells lacking secondary receptors,
mobility was significantly reduced and the residence tinmearrest zones were
increased. Using event-based analysis, we also found #satlpy events occur
super-randomly in wild type cells. This could mean that s&@sl are transported
or biased toward clathrin-coated pits, and that this trartqr bias is mediated by
integrins.

8.4 Particle method to simulate reaction-diffusion proceses on
curved moving surfaces

In Section 5.3 we have presented a deterministic adaptrteleamethod to sim-
ulate anisotropic, inhomogeneous diffusion on complefases. The method was
demonstrated to be second-order accurate, and it was efficfiarallelized with
linear computational cost.

The implicit formulation of the surface as a level set, asdliscretization using
particles [137], has many advantages over traditional-gaised methods. It is
inherently adaptive and can handle moving and deforminiases. Furthermore,
it allows to use the embedding approach by Bertalgtial. [32] with the usual
space discretization schemes, as the metric of the sudanearporated into the
projected diffusion operator.

In Section 5.4 the method was successfully extended to atingl reaction-
diffusion processes on moving and deforming surfaces, evtie chemical re-
actions can be treated either deterministically or staatelly. By means of the
multi-resolution AGM method by Bergdoet al.[27], particles with locally adap-
ted sizes were used.

8.5 Simulations of diffusion in the ER and FRAP data analysis

In Chapter 6 we have applied the simulation techniques aftéa®@ implement-
ations to the diffusion of molecules in the lumen and on thenlmane of the ER,
an organelle of highly convoluted and complex three-direred shape. Present
methods to derive molecular diffusion constants from FRARao however not
account for this shape.

Using section images from confocal microscopy we reconstdithe shapes
of various ER samples in three dimensions. These recomstigeometries en-
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abled us to estimate the fractal dimensions of the ER in &2&i3, allowing to
predict the influence of the geometry on the apparent fluerescrecovery. We
have shown that the ER is a fractal shape at length scaleantl® FRAP, and
that diffusion is thus expected to appear anomalous at fleesgh scales, even
if the underlying molecular diffusion is normal. This is igraement with the
simulations described b@lveczky and Verkman [207] and the experimental res-
ults reported by Weisst al. [314, 313]. The observed anomaly is a direct effect
of the complexity of the ER geometry and needs not be conddot@ny mo-
lecular events. For membrane-bound molecules, diffusppears anisotropic if
the membrane has different curvatures in different dioesti{7]. Again, this is a
purely geometric effect.

From the point of view of geometry, previous methods of dateing diffusion
constants from FRAP are only valid when applied to relayiflt surfaces (com-
pared to the size of the bleached region) or compartmentsdmapletely fill the
bleached volume. If these conditions are not met, uncadediffusion constants
must be interpreted with caution. The method presentediithiesis allowed
for the first time to assess and validate current methods @&H-Bnalysis, and
to directly obtain corrected molecular diffusion conssaintthe specific organelle
geometry at hand.

Using simulations of diffusion in the lumen of reconstrettER shapes and on
their membranes allowed us to quantify the geometry-indwegiations in FRAP
experiments. We found that FRAP models that do not accouthéospecific geo-
metry of the individual ER suffer from an uncertainty of aad€250%. Altogether
neglecting the fact that the ER does not completely fill theabhed volume res-
ults in errors around 400%. Considering that the mass ofticfgascales with the
third power of the diffusion constant [174], these erros @uite significant. For
membrane-bound molecules the situation is even worse asddais depends ex-
ponentially on the diffusion constant [234]. When monitgrdiffusion in cellular
organelles with boundaries of complex shape, FRAP anatlyssrequires proper
geometry correction. This correction has to involve infatibn about the shape
of the organelle in the vicinity of the bleached region otnetst.

Using the present simulation algorithms together with genstructed 3D geo-
metries of the ER led to a novel method of FRAP analysis thiy fakes the
geometry into account. This enables us to determine thecea value of the
molecular diffusion constant from FRAP experiments, bathdoluble luminal
molecules and for membrane-bound molecules. Since the watignal cost and
the applicability of the simulation algorithms do not degem the complexity of
the shape, they are also well suited for treating organetlegracellular structures
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other than the ER.

The main advantage of our approach is that it does not needdalmgeometry
or a statistical transport model. This minimizes the nundfeaissumptions and
enables uncertainties below 250%. By construction, ouhatkts not hampered
by 3D effects, and no assumptions about the connectiontgierfghe ER need to
be made.

Our approach is however limited by the resolution of lighttrascopy and,
for membrane simulations, by the computational resolutiont imposed by
the narrow-band level set formulation. The latter limiatis addressed by us-
ing multi-resolution particle methods developed for cartian-diffusion equa-
tions [27]. The microscopy resolution limit implies thafffsziently detailed ER
geometries can only be obtained in peripheral regions otéfle where the ER
is relatively sparse. The bleached ROI of any FRAP experirteebe evaluated
must be located in such well-resolved areas of the organétie specific shape of
the organelle far away from the ROI is of no importance. AHartlimitation of
the present method is that it can not be applied to organlésnove or deform
inside the ROI during the time of the FRAP experiment, or leetwrecording the
z-stack and performing the FRAP experiment. This is mainlgxperimental lim-
itation as the computational method could readily handlgingpsurfaces, as was
shown in Subsection 5.4.3.

8.6 PPM-— an efficient universal software framework for hybrid
particle-mesh simulations on parallel computers

The lack of efficiently parallelized and easy to use softwdmeries has so far
hindered the wide-spread use of particle methods. We haseitfitiated the de-
velopment of a generic software framework for hybrid pdetimesh simulations.
The ppPM library described in Chapter 7 provides a complete inftestre for
parallel particle simulations, including adaptive doméétompositions, load bal-
ancing, optimized communication scheduling, parallellfiz interpolation, data
communication, and a set of commonly used numerical sol\idrs main features
include stacked mappings, completely symmetric evaloatif particle-particle
interactions, particle connections, and the concurreigtemxce of multiple data
topologies.

We have demonstrated the library’s parallel efficiency aerdatility on a num-
ber of different physical problems, on various computeh#ectures, and on up to
242 processors. All applications showed parallel effiaenceaching or exceed-
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ing the present state of the art, and favorable run-timeameIsystems. By virtue
of a coloring scheme for data interpolation, tem library also showed excellent
vectorization as tested on the NEC SX-5 vector computer.

Based on thepPwm library, we have presented a PSE simulation using 1 billion
particles on 64 processors, a VM simulation using 268 nmilj@rticles — to our
knowledge the largest VM done so far —, an SPH simulationexkiog the parallel
efficiency of the currently fastest domain-specific codeydations sustaining up
to 33% of the machine’s peak performance, and a multigrid$wi routine solving
for half a billion unknowns in less than 7 seconds on 64 premes
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Outlook and Future Work

This chapter outlines possible extensions of the preserk a®well as potential
applications in future research.

9.1 Automated feature point tracking

Most biological applications only require two-dimensibtvacking since the mo-
tion either is two-dimensional (e.g. on the plasma memBranis observed using
“two-dimensional” microscopy techniques such as TIRF arfaoal microscopy.

The observation method could however be extended to thraerdiions in two

different ways: first, the particles can be imaged out of foand the diameter of
the diffraction ring pattern can be used as a measure of {2@&h or, second, dif-

ferent observations can be combined and the depth infasmatmputationally

extracted, e.g. by combining epifluorescence and TIRF retmpy [273], or by

using confocal stacks [229].

Although the algorithm is not limited to two-dimensionahd¢king, the soft-
ware implementation currently is. With the imminent availity of time-resolved
three-dimensional microscopy data, the extension of tfigvace to 3D tracking
will be considered.

The algorithm itself could possibly be extended to trackimg shape outlines
of larger and deforming objects. This could for example beedby combining
the level set techniques of Section 5.3 with the presenkitmgalgorithm. Several
open issues pertaining to the fusion and fission of objeleésrdbustness against
noise, and the computational efficiency of such a procedavester need to be
addressed.
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9.2 Trajectory analysis and classification

Anomalous diffusion is of central importance in biologisgbtems. This is related
to the prevalence of fractal structures in nature [184] ambt restricted to intra-
cellular diffusion processes. Itis for example known thaton-mediated transport
processes on cytoskeletal networks, as well as cell migratian be modeled by
anomalous diffusion [285]. The MSS analysis presentedtiiesis is not limited

to a particular physical process or system that generatettdfectories.

The trajectory segmentation, encoding optimization, ammbraatic classifica-
tion procedures are also applicable to any type of trajegoiPossible future ap-
plications range from the analysis of molecular dynamiosusation trajectories,
over the classification of credit card usage trajectoriesrémud detection [182], to
the analysis and segmentation of trajectories in sociapafitical systems [143].

Possible extensions of the algorithms include the use fdréifit classifiers and
optimizers in the self-optimizing encoder of Section 3.2 tBe theoretical side,
several open guestions relating to convergence and $yabilsuch closed-loop
systems can be tackled. For the trajectory segmentatiomozef Section 2.3, the
use of more elaborate network structures, higher-dimeasimput spaces, and
different pattern recognition schemes are worthwhile wargg.

9.3 Diffusion on surfaces

The computational method presented in Section 5.3 to stedifiusion on curved
surfaces has many applications beyond biology. Surfaceepses and surfactant
evolution are, e.g., important in image processing [323:332250, 91, 296] or in
combustion engineering [133, 134, 217].

The present method can be improved by faster and more robuedt det al-
gorithms, higher-order operator discretizations, andtirierel adaptive schemes
with better parallel efficiency.

9.4 Direct numerical simulations in real cell geometries

As the resolution of live-cell microscopy, the flexibility software, and the speed
of computers increase, the direct numerical simulatiorhods presented in this
thesis will form an ideal tool for the reverse-engineeringl ainderstanding of
cellular systems and mechanisms. Computer simulationsxgrected to become
in integral part of the scientific inference loop, hence ctam@nting laboratory
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bench experiments. Simulations that include all relevagsjts, and the real geo-
metry, allow to test hypothetical mechanisms by comparie@xperiments. Com-
puter simulations make accessible length and time sca¢sita difficult to reach

experimentally, and they provide complete control overdystem structure and
its parameters. The resulting method of identifying esakaystem components
that can be tested for experimentally is a powerful tool tizet already proven its
utility in a conceptual application [177].

Potential applications of computer simulations of reaetiiffusion processes
range from the investigation of molecular sorting and egtioaynamics, over
testing whetheifuring patterns[293] could explain ER exit site localization, to
simulations of Golgi transport dynamics. Further possétgplications include the
investigation ofmorphogenesifl28], as well as simulations @kll motility [123]
andcell signaling[172]. When experimental techniques for time-resolveeghr
dimensional tracking of organelle shapes become avajldiepresent method
can also be used for simulations that involve moving andrdeify organelles.

Regarding the specific application of FRAP experiments @mER, open ques-
tions about the homogeneity of the ER lumen can be addreddede realistic
initial conditions for FRAP [35, 312] will enable more acate analysis and allow
guantification of the influence of the initial condition oretresult. This will be of
increasing importance as better microscopy techniqguesnbeavailable, or when
light interference microscopy is used.

9.5 TheprpMlibrary

The pPM library and the numerical methods implemented therein kélp ad-
dressing the current computational challenges in whalezomputer simulations
[279].

Present work in thepmlibrary is concerned with providing C++ bindings for all
user-callable functions, and with adding interfaces tataathl external libraries
such as Hypre (parallel pre-conditioners), Fishpack (fiedtmholtz solver), and
HDF5 (platform-independent binary 1/0O). Future developisewill include the
implementation of higher-order method$MPand SPME algorithms [138, 306],
immersed interface methods [308], parallel FMM [122] farfi@ld boundary con-
ditions in the mesh-based solvers, and a parallel boundamngest solver. The
development of the FFT part will enable free-space boundanditions using
FFTs, differentiation in Fourier space, and general freguedomain operators
with user-defined Green'’s function.
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The next major version of thepm library will also include support for multi-
level structures with selectively allocated memory pasctiet can be arbitrarily
placed in the computational domain. This will enable thelenpgentation of multi-
domain and multi-level particle schemes [27] in the spifiheesh-based AMR
libraries such a€HOMBO[11] andSAMRAI[320]. Solvers based on AMR [29]
and heterogeneous multiscale methods [2, 3] can then aladdsal to the library
architecture. Open issues pertaining to the validatioriptaimability, flexibility,
and performance of such codes however need to be addressesinigymodern
software engineeringrinciples.
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Appendix A

Feature Point Tracking Software Resources

A.1 Server and text-mode client users manual

This section describes installation and use of the SPT soff\described in Sub-
section 1.2.3, implementing the algorithm presented irti@ed.2. Only the text

mode (console) software is described in this section. Uséties graphical front-

end is explained in Appendix A.3. The text-mode softwareieen successfully
tested on the following platforms:

e Microsoft Windows 2000 Professional
e Microsoft Windows XP

e Linux Debian/GNU

e Linux RedHat

e Linux Mandrake

e FreeBSD 4.1

e MacOS X 10.3 and 10.4.

A.1.1 Server
Installation

The particle tracking server is distributed in source cedéten in standard ANSI
C. After unpacking the distribution, there are ey ver andC i ent subdirect-
ories that contain the source code for the respective pattesoftware. Before
compilation, three parameters have to be defineclanf i g. h in the Ser ver
subdirectory. Defining eitheDOUBLE_PRECI SI ON or SI NGLE_PRECI SI ON
declares the floating point precision used by the programthEumore, the default
TCP communication port and the maximum number of alloweatoment clients
can be set. The comments in the file describe the details.
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Windows:

In order to compile the server application under Windows;rgoft Visual Studio

6 or later is required and your system has to support the Wk&sAPI. In Visual
Studio, open the filser ver . dswin the Ser ver directory. Be sure to change
the compiler settings froebug to Rel ease using the menu entBuild — Set
Active Configuration... To compile the software, select the menu itBoild —
Build server.exgor pressF7. The final executable is calleser ver . exe and

is located inSer ver / bi n. Copy the executable to wherever you want to install
it on your system. Make sure the program has read and writaiggions for the
directory in which it is installed.

Linux/UNIX/MacOS X:

In a terminal/console window, change to the directS8gr ver and typemake.

The software will be compiled and the executable placed $gover/ bi n.

Copy the executable to wherever you want to install it on ysystem. Make
sure the program has read and write permissions for thetdiyein which it is

installed.

Usage

To start the server application, change to the directoryrevfidnas been copied to
and start the program from a terminal/console (Windows: R@8mand window)
by tﬁpingser ver . Itis important that the program is started from a consot an
not by clicking it. While starting, to program prints somiet like

Starting server ...
Usi ng defaul ts*:
Li stening on port 1138
Max. nunber of connections: 128

* To specify your own values for the port and the maxi mum nunber
of connections please start the server as follows:
server [port max_connecti ons]

Server is running on |aptop: 1138 (192.168. 1. 33:1138)

The values for the port and the maximum number of allowed worat client
connections may vary depending on the settingsdnf i g. h (see above under
“Installation”). These default values can be overriddeimgisommand line argu-
ments. Starting the program witter ver 1234 42, e.g., causes the server to
listen to TCP port 1234 and allow 42 connections at most.

Starting the server fails if the program does not have wrerissions for the
directory in which it is installed. An error message indésathis condition.
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The server is stopped (terminated) by hitti@§RL+c in the console window
where it is running. Under Linux/UNIX/MacOS X, thei | | command can be
used alternatively. Make sure to kill the parent process.

A.1.2 Text-mode client
Installation

The text-mode client is also distributed as ANSI C sourceecdocated in the
C i ent directory after unpacking the software. No pre-compilajarameters
need to be set. Building the executable is done in a similgr toathe server
application:

Windows:

In order to compile the client application under Windows¢chdsoft Visual Studio

6 or later is required and your system has to support the \WWk#sAPI. In Visual
Studio, open the filel i ent . dswin thed i ent directory. Be sure to change
the compiler settings frorbebug to Rel ease using the menu entruild —
Set Active Configuration... To compile the software, select the menu itBuild

— Build client.exeor pres€=7. The final executable is called i ent . exe and

is located inCl i ent / bi n. Copy the executable to wherever you want to install
it on your system. Make sure the program has read and writaiggions for the
directory in which it is installed.

Linux/UNIX/MacOS X:

In a terminal/console window, change to the directGhi ent and typermake.

The software will be compiled and the executable placed @itbent / bi n.

Copy the executable to wherever you want to install it on ysystem. Make
sure the program has read and write permissions for thetdigem which it is

installed.

Usage

To start the client, change to the directory where it is iifesticand typecl i ent
nyfile.in, wherenyfile.inisthe name of the input file that specifies the
tracking job to be executed (see below). The client then ectsnto the server
(specified in the input file), uploads the image data, andiveseand stores the
results.
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Input file syntax

This section explains the syntax and contents of the inpattfiat defines the
tracker parameters and the tracking job. An example of antifile can be found
inthed i ent directory of the software. The same input files can also beimp
ted by the GUI client (see Appendix A.3) as parameter fileghEmrameter is set
on one line of the input file by a key word followed by an eqya$iign and the
parameter value, e.post = | ocal host . The key words are case-insensitive.
Only one command per line is allowed and no line must be lotiger 1024 char-
acters. Lines beginning with a hash charactrafe treated as comment lines and
are ignored by the program. The tracker operates as a statémaand processes
the input file top-down. This means that parameter settingsalid until they are
overwritten by a subsequent line containing the same ke vifdne following key
words exist:

Key word Description Default
host Either the name or the IP address of theocal host
host computer where the server appljc-
ation is running.
port TCP port the server is listening to. 1138
radi us Particle radius in pixels«{ in Sub-| 3
section 1.2.1). This value should
be slightly larger than the apparent
particle radius in the images, but smal-
ler than the smallest inter-particle spa-
cing.

cut of f Cutoff threshold for non-particle dis
crimination (7s in Subsection 1.2.1).
percentile Points have to be in this upper percento. 1
ile of the image intensity distribution in
order to be accepted as particles (see
in Subsection 1.2.1). Unit is percent.
di spl acenent | Maximum allowed displacement (in10. 0
pixel) of any particle between two sub
sequent framed(in Subsection 1.2.2)
I i nkrange Number of frames to use for determin
ing the optimal trajectory linkingR in
Subsection 1.2.2).

3.0

1
=
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results

col or

file

type

list

ver bose

The path and name of the file where the esul t s. t xt
resulting trajectories are stored.
For each image, the color channel used
for tracking can be specified. The set-
ting is valid for all following images|
until a different channel is specified.
Valid values are:r (red), g (green),
b (blue), andi (intensity). For gray-
scale images, this parameter has no|ef-
fect. Invalid channel specifications afre
ignored.
Specifies the files containing the movie-
or images to be processed (see below
for further explanation).
Defines the data type for the following TI FF
files. The specification is valid until i
is overwritten. The following value
are acceptedTl FF for TIFF images
andMPEGfor MPEG-1 movie streams.
A for-looplike construct specifying th
numbering sequence of the image files
(see below for details).
Determines whether the output file cop-0
tains additional information and inter-
mediate results. Possible values &e
for no additional output, ot for verb-
ose mode.

The commands$i | e andl i st are used to specify the image data to be pro-
cessed. Suppose we want to track particles in a sequenceTdoFEGFrames. The

input file would then contain the lines:

file = franel. tif
file = franme2.tif
file = frane3.tif
file = frane20.tif

While this allows very flexible file naming conventions, andrgmeter re-
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definitions within the file sequence, it becomes cumbersamndafge numbers
of files. Thel i st command is provided to loop through systematically named
files. The above example thus equivalently becomes:

list =1, 20, 1
file = frame%d. tif

The value of i st containg start], [stop], [stepsize] fortheloop.
The place-holde¥d in the file name is replaced by the appropriate frame number.
If the file name itself contains a percent sign, &8e All C format definitions are
allowed as listed in the documentation of firel nt f function in any C reference
book. Only the ond i | e command that immediately follows thé st line is
considered a part of the loop construct. Therefbiest andfi | e commands
can be freely intermixed:

file = franel. tif
list =2, 9, 1
i

e = franme%. tif
file framelO.tif
file = framell. tif
list =12, 20, 1

i

ile = frame%l. tif

Between individuaf i | e commands, parameters can be re-defined to, e.g., selec
a different color channel for the subsequent images or togdathe file type.

Result file syntax

After successfully completing a tracking job, the resuk filontains the recon-
structed trajectory data as ASCII text in six columns. Thet fiolumn indicates

the frame number. The second and third columns contain-thedy-coordinates

of the particle, respectively. Theaxis points top-down and theaxis is oriented

left-right in the image plane. Thé™Mand 3" columns contain the intensity mo-
ments of order 0 and 2, respectively (efy, m- in Subsection 1.2.1), and th&'6

column contains the non-particle discrimination scafg i Subsection 1.2.1).

Individual trajectories are separated by blank lines, at@jactory is always at

least two frames in length. The file header contains genei@mation about the

tracking job such as the used parameter settings and thetotassing time.



A.2. PROGRAMMING AND APl REFERENCE 249

A.2 Programming and API reference

This section documents the particle tracking API and thentiserver commu-
nication protocol, complementing the comments that aréadoad in each source
code file to describe the purpose of all functions and subresit The source code
of the particle tracking server application consists offtilewing files:

config.h
convol ve. c

dilate.c

filelist.c
i mport.c
nessages. Cc
server.c
sing.c
tracker.c
npeg/
tiff/

Configuration file for compile-time parameters.
Optimized convolution routines for different kernel raiee
Subsection 1.3.1).

Optimized gray-scale dilation routines for different kelrn
radii.

File list handling API.

Routines for reading image and movie files.

The messages of the communication protocol.

The main server program.

Subroutines for computing FFTs.

The particle tracker API.

This directory contains the files afpeglib

This directory contains the files bbtiff.

The source code of the client application consists of onlyfile,cl i ent . c,
which can be found in th€l i ent directory.

A.2.1 Naming conventions

All constants and function names are marked by one of theviirlig prefixes:

SERVER for the server part,

FL for the file list API,

PT for the particle tracker API,

| MPORT for image and movie import,
SM for server messages,

CLI ENT for the client part.
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A.2.2 External libraries

The software includes the external libraridsiff and mpeglibfor reading TIFF
images and MPEG-1 movie streams. These libraries are apenes and included
in the distribution since specific proprietary changes enthwvere necessary as
detailed below.

libtiff

Importing TIFF images is done using the libtiff v3.5.7 [286]All common
TIFF file formats and compressions are supported. The omgratary adapt-
ation consisted in setting the two global variablé$ FFer r or Handl er and

_TI FFwar ni ngHandl er of libtiff to NULL, in order to avoid unwanted file out-
put.

mpeglib

Importing MPEG-1 video streams is done by the mpeglib v1[283]. Only
MPEG-1 video streams without audio are supported. Sincegeglib uses global
variables, only one process can use it at a time. Access tglibps thus con-
trolled by asemaphorén the tracker server. In addition, the mpeglib was modified
to not include angexi t () calls any more, as these would cause the whole server
application to terminate.

FFT

FFTs are computed using the split radix algorithm [264]. Aisting code was
ported from Fortran to C. Since it makes use of global vagispbhccess is again
controlled by asemaphoreand only one process at a time is allowed to use the
FFT routine.

A.2.3 Particle tracking APl documentation

The particle tracking algorithm itself is implemented asAdH, allowing it to be
used by other programs in the future. The main data structutiee API is the
PTSequence, defined as follows:

typedef struct PTSequence

{
int radius; /* Kernel radius */
real cutoff; /+ Cutoff radius =/
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real percentile; /+ Percentile */

real displacenent; /* Maxi mum di spl acenent =/
int verbose; /* verbose node */

real lanmbda; /* Filter correlation | enght */

/* 1 mage sequence paraneter */

int width, height;

real mn, nmax;

i nt nunber_of _franes;

real =frane;

PTFrame *franmelist; /+ List of all franes =/

int linkrange;
ParticlelList *particlelist; /+ List of all particles */

/* Function pointer to the appropriate routine x/

real =*(*Convol ve)(struct PTSequence *pts, real =*filtered, \\
real =input);

real *=(*Dilate)(struct PTSequence *pts, real =dilated, \\
real =input);

real *kernel; /+ Holds the kernel =*/
int kernel _width;

int *rmask; /* Holds the dilation mask =/

real *filtered; /* Holds the filtered i mage */
real =dilated; /*» Holds the dilated inage */

/* Structure for the FFT cal culation */
FFT fft;

/+* Result handling */
int result;

char result_file[256];
FILE *result_fp;

[+ Error handling */

int error;

char error_nsg[128];
} PTSequence;

The data type eal is defined to be eithefr|l oat or doubl e, depending on

the compile-time settings ioonf i g. h. The definitions of the typeBTFr ane,
Parti cl eLi st, andFFT can be found it r acker . h.

The following functions are implemented by tparticle tracking AP1
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e PTSequence *PT_Creat eSequence(voi d)

Creates #TSequence structure, allocates memory for it, and provides all
variables within the structure with default values. Resuanpointer to the
created structure. This function should be called befoyecdiner, in order
to initialize the API.

i nt PT_Set Par anet er (PTSequence *pts, const char

*par amns)

Is used to set the user-defined parameter fT&equence. The variable
*par ans contains a string consisting of a code defining the parameter
type, and the value for the parameter.» far ans e.g. contains' 1 4",

the kernel radius is set tb The codes are:

#defi ne PT_PARAM KERNELRADI US
#def i ne PT_PARAM CUTOFF
#def i ne PT_PARAM PERCENTI LE
#def i ne PT_PARAM DI SPLACEMVENT
#defi ne PT_PARAM LI NKRANGE
#def i ne PT_PARAM VERBOSE

U WN P

The function returns eithdrfor success ob on failure (the error variable is
set to the appropriate error message).

i nt PT. nitSequence(PTSequence *pts, FileList
*filelist)

Takes a pointer to RTSequence structure and a pointer toFd | eLi st
structure. Thei | eLi st structure contains the list of images or movies
that are to be processed. All images in the file list are clheédevalidity
before they are imported. While reading the images (for MPE@ams
every frame is extracted as an image), the user-defined cblannel

is stored in a temporary file. These temporary files are usesgate
main memory. Upon return of this function, the image paramef the
PTSequence is defined and all memory needed for the actual tracking
is allocated. The function pointers to the proper convolutand dilation
functions are set according to the kernel radius and the enwze as
outlined in Subsection 1.3.1. The dilation mask and the iEotiransform

of the kernel are also computed and stored.

The function returns eithet for success of) on failure (the error vari-
able is set to the appropriate error message). If an errourscdhe
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PTSequence is reset to its empty state, as it would be after calling
PT_Cr eat eSequence() .

e int PT_FindTrajectories(PTSequence *pts)
This function takes a pointer to an initializd®l Sequence (created by

PT_I ni t Sequence) and executes the actual particle tracking algorithm.

The results of the tracking procedure are written to a temngofile (see
PT_Get Resul t s below).

The function returns eithet for success of on failure (the error vari-
able contains the appropriate error message). If an erroursgc the
PTSequence is reset to its empty state, as it would be after calling
PT_Cr eat eSequence().

e voi d PT_DestroySequence( PTSequence *pts)
Frees all memory used by tiRF Sequence = pt s and deletes all tempor-
ary files that were created by it.

e voi d PT_Reset Sequence( PTSequence *pts)
Resets thdPTSequence =*pts to the empty state, as if it were newly
created byPT_Cr eat eSequence.

e char *PT_Get Resul t s(PTSequence =*pts)
Returns a string containing the name of the temporary réisalthat was
created by a successful runf_Fi ndTr aj ect ori es() . If no file ex-
ists, or the run was not successfuNeLL pointer is returned.

e char *PT_Get Error (PTSequence =*pts)
Returns a string containing the current error message. #rrar occurred,
aNULL pointer is returned.

Some of the above functions use ott8r. andl MPORT _ functions that are not
intended for direct use. A typical sequence of API functialscis:

PT_Cr eat eSequence
PT_Set Par anet er

PT_I ni t Sequence
PT_Fi ndTraj ectories
PT _CGetResults
PT_Dest roySequence
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Once aPTSequence has been created, it can be used more than once. This
makes it possible to use loops like:

PT_Cr eat eSequence

do while(...) {
PT_Set Par anet er
PT I ni t Sequence
PT_FindTrajectories
PT GetResults
PT_Reset Sequence

}
PT_Dest r oySequence

The tracker server application uses such loops to mininfiee dverhead of
memory allocation and deallocation.

A.2.4 Server software structure

The particle tracking server is built around the followirggastructure, from which
a separate instance is created for each active client cbhonec

typedef struct dient
{

unsi gned int clientsocket;

FI LE *fp;
FileList *filelist;
FileListEntry xcurrent_file;

int fileupload_ack;
Packet =*in, =*out;

PTSequence =*pts;
} dient;

The server is a user of the particle tracking API describeav@b The main
components of th&l i ent structure are thel i ent socket, used for TCP
communication with the client, tHéTSequence to communicate to the tracking
API, and twoPacket s for incoming and outgoing communication messages (see

below).
TheFi | eLi st for the image files is defined by the structures:

typedef struct FileListEntry
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char path[256];

int type;

int special;

struct FileListEntry *prev, *next;
} FileListEntry;

typedef struct FileList
{

int nunber_of files;
Fil eListEntry xroot;
} Filelist;

It has the form of adoubly linked listwith pointers to both the previous and the
next file entry. Access to the file list is implemented by thiéofeing functions:

Fil eList *FL_CreateFil eList(void);

void FL_DestroyFilelList(FileList xfilelist);

FileListEntry *FL_AddFile(FileList *filelist, int type, \\
int special);

voi d FL_RenoveFile(FileList *filelist, FileListEntry *entry);

void FL_RenoveAll Files(FileList *=filelist);

int FL_FileExists(const char *filenane);

*FL_AddFi | e(Fil eList =filelist, int type, int special)
adds a file to the list. The first parameter is the file list tockhio add the entry,
the second is the file typd”T_FI LE_TI FF or PT_FI LE.MPEG), and the third
argument selects the color channel for this file (O: intgndit red, 2: green, 3:
blue). The function returns a pointer to the newly credtetleLi st Entry. If
an error occurs, AULL pointer is returned.

The server allows multiple concurrent clients. This is dosieg multi-threading
(on Windows) or multi-processing (on Linux/UNIX/MacOS X) take advantage
of CPU scheduling and multi-processor machines. Multepesing should be
preferred for its higher stability, memory protection (@fobal variables and sem-
aphores above), and parallelizability.

A.2.5 Communication protocol documentation

The communication between the client and the server is lsagacket protocol
that uses TCP/IP for packet transport. Communication pgacke defined by the
structure

typedef struct Packet
{

APPENDIX A. FEATURE POINT TRACKING SOFTWARE
256 RESOURCES

int type;

int len;

int curlen;

int buflen;

unsi gned char *body;

unsi gned char =*buffer;
} Packet;

Each packet consists of a header and a body. A packet has enaraxength of
4096 bytes, 7 of which are reserved for the packet header.réihaining 4089
bytes can be used for the message body. The minimum packgh len7 bytes,
thus a header only. The header is split into 3 + 4 bytes, wherfirst 3 bytes define
the type of the packet and the following 4 bytes declare thgtteof the body. The
packet typds a number betweeh00 and999 as enlisted below. The body may
contain arbitrary data. The protocol uses human-readaBIglAencoding, so a
sample packet of typ200, length2, and bodyOK would read' 2000002CK" .

All packet types and names are definedsiar ver . h and carry the prefix
SERVER CODE_. The server knows 9 different packet types that can be redeiv
from clients. These types are calledjuest typesin reply, the server can send one
of 26 possibleresponse typpackets. 7 of them ar@acknowledgment type8 are
special typesand 16 areerror types Error packets contain the error description
string in their body. The serveesponse typesre:

Type | Name [ Description
acknowledgment types
200 | OK Okay

201 | PARAMSET Parameter was successfully set
202 | UPLOADINITACK File upload acknowledged

203 | UPLOADOK File upload completed successfully
204 | ABORTEDUPLOAD | File upload aborted

205 | FILESDELETED Files successfully deleted

206 | CALCDONE Tracking procedure done

special types

300 | RESULT Result of the tracking run
301 | RESULTFINISH All results have been sent
302 | STATUS Current server status
error types

400 | ERROR General error

401 | NOOPENFILE Temporary file can not be opened

402 | CALCFAILED Tracking procedure failed
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403
404
405
406
407
408
500
501
502
503
504
505
506

UPINPROGRESS File upload in progress
NOUPINPROGRESS | No file upload in progress
UPTYPENOTSUP Upload type is not supported
EXTNOTSUP File type is not supported
FILELISTERROR Failed to creat&i | eLi st entry
FILEOPENFAILED Failed to open file

UNKNOWNERROR | Unknown error

UNKNOWNCODE Unknown packet type received
OUTOFMEMORY Server is out of memory
THREADERROR Failed to create a new thread
TOOMANYCLIENTS | Maximum number of clients exceeded
FORKERROR Failed to fork a new process

INVALIDLENGTH

Invalid packet body length

In all packets excepRESULT, the body is optional RESULT packets always
have to include a body with the tracking results. For therguaxkets, the body
contains the error description string, if such a descriptioavailable.

The clientrequest packet typese:

100 SETPARAMSets the value of a parameter. Both the parameter type
and the new value are given in the packet body. The packebiepsed

by PT_Set Par anet er as described above. In response, the server sends
either PARANVSBET, if the parameter has been successfully setf-RROR
(error message from the tracking API is contained in the pilo&dy).

101 UPLQADI NI T upl oadtype fil etype col or Requests a file
upload transaction from the server. The three parameteitseitody are
mandatory and separated by white-spacagl oadt ype is always1,
fil etype is eitherl for a TIFF file or2 for an MPEG stream, ancbl or
is 0 for intensity, 1 for red,2 for green, o3 for blue.

The response from the serverWPLOADI NI TACK if the client may be-
gin to upload the data, or one of the following if an error ated:

FI LEOPENFAI LED if the server could not create the temporary file,
FI LELI STERROR if the entry could not be added to th& | eLi st
EXTNOTSUP if the file type is unknownUPTYPENOTSUP if the upload
type is not supported, @PI NPROGRESS if another upload from the same
client is still in progress.
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102 UPLQADDATA Contains the data to be uploaded in the packet body.
The upload is binary and no escape sequences are needed. cArfilee
split among several packets of this type that can be senthittray or-
der. The response from the serverCK if the data were successfully re-
ceived and written to the temporary file. The following esrare also pos-
sible: NOOPENFI LE if no temporary file is open to write the data to, or
NOUPI NPROGRESS if the upload has not been properly initialized using
UPLQADI NI T (see above).

103 UPLQADFI NI SH Tells the server that the current upload is finished.
No moreUPLOADDATA can be sent after this request. This packet has no
body. The server repliddPLOADK if all files were successfully received
and stored, oNOUPI NPROGRESS if no upload was initialized.

104 UPLQADABORT Aborts the current upload process and causes the
server to delete all files received so far. The response ofséneer is
ABORTEDUPLQAD if the abort was successful, BIOUPI NPROGRESS if

no upload has been initialized.

105 DELETEFI LES Causes the server to delete all temporary files up-
loaded by this client so far. This can only be done after albags are
finished or aborted. The responsd-IsSLESDELETED if all files have been
successfully deleted, &Pl NPROGRESS if an upload is still in progress.

106 EXECCALC Causes the server to initialize the particle tracking
API (see Appendix A.2.3) and to execute the actual trackinocess
(PT_Fi ndTr aj ect ori es). The response i€ALCDONE if the particle
tracker has successfully finished the calculation. The baidyhis re-
sponse packet contains the consumed computational timesdonds.
UPI NPROGRESS is returned if an upload is still in progress, and
CALCFAI LED indicates that the execution failed, in which case the error
message from the API is returned in the packet body.

107 SENDRESULTS After successfully executing a tracking procedure,
this request asks the server to send the resulting trajedtta. The data
can be split among several packets of tff€SULT. The end of the result
transfer is marked by BESULTFI NI SHresponse packet. This last packet
contains no data body. If the function callRd _Get Resul t s() fails, the
server respondBRROR; if the result file written by the API can not be read
by the server, the responseHsLEOPENFAI LED.
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e 108 DI SCONNECT Closes the connection to the server and causes the

server to free all memory and delete all files used by the teatad cli-
ent connection. The corresponding thread or process isrtated and the
server replieK.

A.3 GUI client users manual

This section describes the use of the graphical (GUI) poauking client. The
GUI client requires the Java 2 virtual machine (Standardi&@dd2SE, version 1.4
or higher) to be installed. The currently installed versian be checked by typing

java -versi on in the console/command window of your computer. If J2SE

is not installed, it can be downloaded from http://java.sam/j2se/. If you plan
to run your own tracking server, you also need to install #m@ex application as
described in Appendix A.1.1. Otherwise, you need netwodess to a machine
where the server application is running.

The GUI client software has successfully been tested ina@iing platforms:

e Microsoft Windows 2000 Professional with Java 2 SDK 1.4.4.2, and
1.5 beta

Microsoft Windows XP with Java 2 SDK 1.4.1
UNIX / Solaris with J2SE 1.4.1

Linux with J2SE 1.4.0and 1.4.1

MacOS X with Java 2 SDK 1.4.2.

A.3.1 Installation and start

To install the program, copy thjear file to the location of your choice. Make sure
the program has read and write permissions for the targettdiry.

Windows:
Thej ar file is an executable and can be started by double-clickirtg ibn An

alternative possibility is to start the application frone ttommand window. This
is done by changing into the directory where jrer file has been installed and

typing

java -cp QU -dient.jar client.Cient

Linux/UNIX:
The application is started from a console/terminal windgviyping
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- Remote Particle Tracking - Client
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Figure A.1: GUI-Client after start-up.

java -jar GU-Client.jar

MacOS X:
The program can be directly started by double-clickingjtae file. Alternatively,
the program can be run from within a terminal window by typing

java -jar GU -Client.jar

After starting the program, a screen like the one shown in Kifj is presen-
ted. The two tabsParameter Settings and Uploadnd “Filter and Analysi8 are
described below.

A.3.2 The Parameter Settings and Upload tab
General settings

The menu entryOptions— General Settinggsee Fig. A.2) allows to adjust the
location of the directories where temporary files and tracksult files are stored.
By default, the temporary directory is created where thewtable resides. The
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General Settings EI
Temp directory: C.\Dokumente und Einstellungeniserttemp
Restits from server | € Dokumente und EinstellungeriJsertempiresults 14

Figure A.2: General settings panel.

Server Connection

Host name f IP: natt tracker .com
Part: 1138
oK Abbrechen

Figure A.3: Panel to set the connection parameters.

file to store the raw tracker results as received from thekingcserver is usually
chosen to be in the temporary directory.

Under the menu iter®ptions— Connection Settingghe details of the server
connection can be set (Fig. A.3). The fiégldst name/IFshould contain the name
or the IP address of the computer where the server is runiiihg. TCP port for
the connection is set in the fielbrt. If the tracker server can not be contacted,
check that the machine address and port entries are coargtthat the tracker
server application is running on the target machine. If laoththe case, check that
the firewalls of the client and server machines do not blodesg to the selected
port.

Setting tracker parameters

Before a tracking job can be started, the algorithm parameed to be set. This
starts by choosing the file type of the image data inRaeameter Settings and
Uploadtab as shown in Fig. A.1:
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e TIFF: A sequence consecutively numbered TIFF image files can bledba

either using the mené&ile — Load Image Sequencer the buttonLoad
TIFFs to the left of the image list. This causes the selected imtgyée
copied into the temporary directory to protect your origidata from un-
wanted changes. If necessary, the images can be normaljzpdshing
the Normalizebutton. This changes the pixel values in all images of the
sequence according to:
I- Imin
Thew= —— - 255 A.l

new Imax IR Imin ) ( )
where Inin and Ina are the global (over all images of the sequence) min-
imum and maximum pixel values.

MPEG-1: An MPEG-1 movie file can be imported directly using the menu
item File — Load MPEG or the button_Load MPEGto the left of the im-
age list (only visible when the file type radio button is seMBEG-1). All
frames contained in the MPEG movie are extracted and storéukitem-
porary directory. Normalizing the frames of an MPEG moviee(sibove)
only affects the preview. The actual tracking is still dorretbe original
MPEG movie file.

The other parameters in this tab are:

e Color channel: Selects the color channel that is to be used for tracking.

The intensity channel is computed as the mean of the three cbannels.
For grayscale images, this parameter has no effect.

Radius: Approximate radius of the particles in the images in unitginéls
(w in Subsection 1.2.1). The value should be slightly largantthe visible
particle radius, but smaller than the smallest inter-plrtseparation. The
GUI program offers assistance in choosing a good value fermtarameter
(see next paragraph).

Cutoff: The score cut-off for the non-particle discrimination fil{g in
Subsection 1.2.1).

Percentile: The percentile- (cf. Subsection 1.2.1) that determines which
bright pixels are accepted as points. All local maxima inupperr" per-
centile of the image intensity distribution are considecaddidate points.
Percentileis given in units of percent (0% to 100%).
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Assisted Settings / Preview X

~Assisted setting ~Preview vind

Radius:

[ Start server-hased preview

Figure A.4: Assisted settings and preview.

e Displacement: The maximum number of pixels a particle is allowed to
move between two subsequent framesr( Subsection 1.2.2).

e Linkrange: The number of subsequent frames that are taken into account
to determine the optimal trajectory linking(n Subsection 1.2.2).

e Verbose: If checked, this causes the server to send additional irdtom
and intermediate results. They can be inspected in the eaker result file
(cf. “General settings” above).

Assisted settings and preview

The Assisted settings and previdwtton opens a preview window as shown in
Fig. A.4. This can be used to find good tracker parametemgatior to test the
effect of a parameter change on the tracking outcome.

The preview window on the right-hand side shows the framak@imovie or
the image sequence that has been imported. The slider beddlaws to navigate
through the frames, click-and-drag within the image zoonesview. TheReset
button restores the original view.

The red circle shows the currently chosdeadiusvalue. Its center can be set
by CTRL+click in the preview image. Placing it directly over a particleoals
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- Assisted setting ~Preview wind

Radius:

p

[ Start server-hased preview | U | esd

Figure A.5: Recognized particles in a server-based preview

to easily find the proper setting for the parameéRadiususing the slider on the
left-hand side of the window.

The settings of th€utoff andPercentileparameters can be evaluated in a tracker
test-run by clicking the buttoStart server-based previewarticles that are recog-
nized using the current parameter settings are marked byasge circle in the
preview window as shown in Fig. A.5. The parameter valuesheaadjusted iter-
atively until the outcome matches your expectations. Demfpr different frames
throughout the movie sequence ensures constant trackaliycgiong the movie.

Clicking OK copies the chosen parameter values into the main winGawcel
discards the changes.

Saving and reading parameter settings

Once a good set of parameters is found for a particular tymkata, they can be
stored in a parameter file for later re-use. This is done usiegnenu itentile —
Export Settingsind choosing the location for the exported file.

Exported parameter settings can later be read again usngehu itent-ile —
Import SettingsThe format of the parameter files is compatible with the-terte
client and is described in Appendix A.1.2 under “Input file&x”.
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Figure A.6: Image upload to the tracking server.

Starting a tracking job

After setting all parameters, tracking can be started lgkiclg the buttonStart
trackingin the main window. The client now establishes a connectidhe server.
An error message appears if the connection can not be opkmtitis case, check
the server settings and the server machine as described ahder “General set-
tings”. Once a connection has been established, the imagedauploaded to the
server. Depending on the data volume and the speed of th@mretennection,
this may take several minutes (Fig. A.6). The upload procassbe interrupted

any time by pushing thabortbutton. The transfer is aborted as soon as the current

file has finished transmitting.

After completing the particle tracking, the server sendsrdw result file back
to the GUI client. The location of storage of this raw resu# fian be set under
Options — General Settings— Results from server The format of the result
file is described in Appendix A.1.2 under “Result file syntaRfter successfully
downloading the results, the connection to the server secd@nd the results can
be inspected as described in the following section.
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Figure A.7: The Filter and Analysis tab.

A.3.3 The Filter and Analysis tab

Switching to theFilter and Analysistab as shown in Fig. A.7 allows to inspect
the tracking results and to perform basic global trajectmglyses as described in
Section 2.1.

The Filter options/Unit settingsection allows to filter the results and to con-
vert from pixels and frames to nanometers and seconds. étfanging the filter
options or the physical units, tHétart analysisbutton has to be pushed for the
changes to take effect.

Filter Options

Clicking the Filter options button opens a window with four different filters to
reduce the number of trajectories (Fig. A.8).

The first filter causes trajectories below a certain lengtbeceexcluded from
analysis. The second filter also operates on the trajectmigth by selecting only
them longest for analysis. The third filter discards all trajeigts with a diffusion
constant below a certain limit. This is useful to excluddisteary particles from
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Filter Options E

Fitter Cptions

Only keep trajectories longer than 20 frames

D Only keep the longest trajectories

D Qnly keep trajectories with D 2

D Cnly keep trajectories with:

max{displacement) £ a « sigmaldisplacement)

where a=

Figure A.8: Filters to reduce the number of trajectories.

subsequent analysis. The fourth filter finally can be usedstmadd trajectories that
contain leaps, probably corresponding to tracking ertdfish this filter, all tracks
where the longest step displacement is more thxdimes larger than the stand-
ard deviation of all step displacements are excluded fraratralysis. Selecting
multiple filters causes them to be applied sequentially édfder in which they
appear in the window (cf. Fig. A.8).

Overlay window

The Overlay windowis similar to the preview window described above. It visu-
alizes the trajectories and the original movie frames inarlay, for the user to
check the correctness of the results. The slider below tlagéntan be used to
scroll through the frames, click-and-drag zooms in to a igaegion. TheReset
button restores the original view.

With the buttonSelect trajectories to ploindividual trajectories can be manu-
ally chosen for analysis. The selected trajectories arblibgigted in red in the
Overlay window Ellipses mark confinement zones in the selected trackshsee
low).

APPENDIX A. FEATURE POINT TRACKING SOFTWARE
268 RESOURCES

Global analysis plots

The selected and/or filtered trajectories can be analyzachimber of diagrams.
All graphics are created using ptplot 5.3Portions of a plot can be enlarged by
drawing a rectangle into the plot, starting from the upgétrdorner and ending at
the lower-right corner. Drawing the rectangle the opposig (i.e. lower-right to
upper-left) zooms out. All plots can be exported as EPS gecadhes by typing
CTRL+s within an active plot window. This is a proprietary functitimat is not
present in the original ptplot package. Replacing the pipdot of the GUI client
with a standard version thus removes this functionalitye plot data can also be
exported into text files by choosing the menu itEite — Export Plot Data This
allows to archive the analysis results and to re-create ltite im any application
of your choice.

The following trajectory analysis plots are available ia BUI client:

e xy-plot: This is the direct visualization of the data received frora th
particle tracker. The path traces of the trajectories amvehin the zy-
plane. Notice that they are mirrored with respect to @esrlay window
due to different matrix indexing conventions.

e xt/yt-plot: These plots separately show the trajectory’and y com-
ponents versus time. A common use of such plots is to detexggshof
immobility. If the moving-window standard deviation (cfe&ion 2.2) of
both thex and they position simultaneously fall below a threshatdfor
a time duration of more than, the particle is considered immobile during
that time. The parametessandr can be entered by the user in the plot win-
dow. All detected confinement areas are highlighted inuttygt-plot and
also in theOverlay window This is done by ellipses where the two half-
axes are given by the position standard deviations inctaady direction,
respectively, stretched by a factor of 5 for better visipili

e MSD plot: The global MSD analysis of the trajectories as described in
Subsection 2.1.1 is shown in this plot. The plot can be dygmlausing
either linear of logarithmic axes. The program automaticperforms a
linear least squares regression through the data in theptbtlisplays the
diffusion constant and the MSD slope determined from thiga tite plotting
window.

1Ptolemy project II: hitp://ptolemy.eecs.berkeley.eavdjptplots.3/ptolemy/plot/doc/main.htm
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e Moment scaling spectrum: The global MSS analysis as introduced in
Subsection 2.1.2 is shown in this plot. The linear regreskiee to determ-
ine the MSS slop@ is automatically determined and displayed.

Importing data for analysis

The described trajectory analysis functionality of the Gldh also be used on
imported trajectory data that was generated earlier orguaidifferent tracking
program. Using the menu iteRile — Import Tracks For Analysiallows to select
one or several trajectory files (text files trr—y column format with individual
trajectories separated by a blank line). The data from tlfitlee are imported
as if they were generated by the current run, except thaOthexlay windowis
unavailable, since the original frame images are not ptesime imported data
are overwritten as soon as a new tracking job is started.

Export functionality

The GUI client can export the generated data in multiple waysnable further
processing and analysis in other applications. All expantcfions are located in
theFile menu:

e Export unfiltered tracks.Exports an exact copy of the raw result data as
received from the tracking server.

e Export filtered tracksAll trajectories that have not been excluded from the
analysis by théilter optionsare exported to a file.

e Export selected track€Only the trajectories that were specifically selected
using theSelect trajectories to pldbutton are written to the file. They are
marked red in th®verlay window

e Export analysis results.Data from the global MSD and MSS analyses
are exported. The first column is the trajectory number, meé@nd third
columns contain the MSD slope (from the log plot) and theudifin con-
stant, respectively. The fourth column contains the gldBh&5 slopes of
the trajectory (cf. Subsection 2.1.2).

e Export plot data. Exports all data from all plots to a file. This allows to
archive the plots or to re-create them using other prograrcs as Matlab,
gnuplot, or Excel.

Appendix B

Summary of Classification Methods

This appendix summarizes the classification methods tleatised in this thesis.
Brief mathematical and algorithmic descriptions are givieor more detailed de-
scriptions of the methods, the reader is referred to thel ditierature or the book
by Cherkassky and Mulier [54].

B.1 k—nearest neighbors (KNN)

If the data come from a set¥ C R?, classification can be done using tke
nearest neighbofkKNN) clustering algorithm. A previously unseen pattare X
is hereby assigned to the same class ) to which the majority of itsk (to be
chosen) nearest neighbors belongs. The algorithm cotestithe simplest form of
aself-organizing majp158] with fixed connections.

B.2 Gaussian mixtures with expectation maximization (GMM)

Gaussian mixture model&MM) are clustering algorithms it € R?. They
assume Gaussian probability distributionsIdf and try to approximate the un-
known distributionP(x, y) on X’ x ) by a mixture ofn Gaussiand/; (z, v, u;, ;)
with meansu;, € R4, i = 1,...,n, and covariance matrices; € R4*¢,

i =1,...,n. The parameters; andX, are chosen so as to maximize tlog-
likelihood that the given training sample has actually been drad. from the
probability distributionP(x,y) = >, Ni(x,y, u;, 2;). The algorithm pro-
ceeds as follows:

Algorithm 3 (Expectation maximization on a mixture of Gaussans)

Step 1: Choose a set of initial meaps, ..., u,, using thek—meansclustering
algorithm [129]. All covariances are initialized to idebfi 3; = 14.
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Step 2: Assign them training samples to then clusters I'; using the
minimum Mahalanobis distance rule Sample  belongs to clusterT’;
if the corresponding log-likelihood measure becomes minimi.e. i =

arg min; [log (det () + (& — ;)" () (w — uz)}

Step 3: Compute new meaps — > . x/|T’;| and new covariance estimates

2 Y per, ( — ;) (— ui)T /|T;| where|T';| denotes the number of vectors
x assigned to clustelr;.

Step 4: If the changes in the means and covariances are sntiadle a certain
tolerance, stop, otherwise go to Step 2.

B.3 Support Vector Machines (SVM)

Support Vector Maching$SVM) are kernel-based classifiers [199, 251] for binary
classification in¥ C R¢Y. They are successfully used in time series prediction
[198], gene expression analysis [39], and DNA or proteinyais [330]. SVM
make use of a fundamental theorem fretatistical learning theoryhat gives an
upper bound for the expected risk [299]:

Theorem 1 Letd, denote the/apnik-Chervonenkis dimensigiC) of the func-
tion classF and letR.[f] be the empirical risk for the 0/1-loss of a given classifier
function f € F, evaluated onn test samples. It holds with probability of at least
1 — ¢, that

dy (log 2 4+ 1) —log (5)
R[f]SRe[fHJ (s 1) - (B.1)

m

forall e > 0, for f € F,andm > d,.

The VC dimensioni, of a function classF measures how many poinise X
can be separated in all possible ways using only functioribetlassF. Kernel
methods use a mapping(x) of the training datar onto a higher-dimensional
feature space/C where the data can be separated by a hyper-pjgag =
(w- ®(x)) + b. In K, the optimal separating hyper-plane is determined such tha
the points®(x) closest to it (called theupport vectorshave maximum distance
from it, i.e. such that the “safety margin” is maximized. g done by solving
the quadratic programming problerfw, b) = argmin,,; 1 |w|3 subject to the
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condition thatw - ®(x) + b is a separating hyper-plane. Solving the dual optimiz-
ation problem, the Lagrange multipliefs, ¢ = 1, ..., s, are obtained, whergis
the number of support vectors. Thiassification functiory in C is then given by

flx) = g + % - sign (Z yi (®(x) - P(x;)) + b) ) (B.2)

Since f only depends on the scalar product of the data in featureesjtae map-
ping @ does not need to be explicitly known. Insteakeanel functiony(x, x;)

is introduced such thaj(z, z;) = ®(x) - ®(x;). The support vector classifier
f: X — {1,2} to be evaluated for any new observation thus is

flx) = g + % -sign (Z yioun(x, @;) + b) : (B.3)

i=1

Notice that the sum only runs over all support vectors. Sgemerallys < m,
this allows efficient classification of a new observation bynparing it to a small
relevant subset of the training data. The assumed fundtiorra of the kernelp
determines the function space of the mbgand thereby the performance of the
particular classifier.

B.4 Hidden Markov Models (HMM)

Hidden Markov Model{HMM) are stochastic signal source models, i.e. they
do not require observations € R¢, but can treat discrete dynamic time series
x = {01,...,0r} € X, O; € R. In the past, their most successful applic-
ation was in speech recognition [225]. An HMM attempts to eldtie source
producing the signak as a dynamic system that can be described at any time
t as being in one of distinct discrete state€),...,Q,. The states are hid-
den in the sense that they can not be observed. At regulaalyesipdiscrete time
pointst; = iAt, i = 1,...,T, the system changes its internal state, possibly
back to the same state. The process is assumed Mabvian i.e. its probab-
ilistic description is completely determined by the presamd the previous state.
Let g; denote the state of the system at timeThe Markov property then states
that P [¢; = Qj|qi—1 = Qk, Gi—2 = Q1,...] = Plgi = Qj|qi—1 = Q4]. Thestate
transitionsare described by probabilities;, = P [¢; = Qk|¢i—1 = Q;] form-

ing the elements of the statensition matrix A under the constraints;;, > 0



B.4. HIDDEN MARKOV MODELS (HMM) 273

V j,kand) ,_,a;x = 1. At each time point; the system produces an ob-
servable outpu®;, drawn from an output probability distributidn,, (O) associ-
ated with state);; B = {bqg, }_,. The model is completed with the initial state
probabilitiesIl = {r; = P[q; = Qj}};zl and the complete HMM is denoted by
A= (A,B,1).

Given the form of HMM described above, there are three problef interest to
be solved [225]:

(1) Given an observatiom = {O;,...,0r} and a modelA = (A, B,1I),
compute the probability? [z|A] that the observatiom has been produced
by a signal source described Ry

(2) Given an output sequenae= {O,...,Or} and a model\ = (A, B,1I),
determine the most probable internal state sequdnce .., qr} of the
modelA that produceck.

(3) Determine the model parametets= (A, 53, II) to maximizeP [x|A] for a
given observation.

B.4.1 Discrete hidden Markov models (dHMM)

If the set of possible distinct valuds, } of any outputO; is finite, we call the
HMM discrete(dHMM). The output probability distribution of any stat; is
thus discretebg, = {bg, (k) = P[0; = vi|q; = Q,]} for k = 1,..., M. Dir-
ect solution of problem (1) would involve a sum over all pbisistate sequences:
PlelA] = Supgary Pl {ar.....ar} AP [{a1.....qr} |A]. The compu-
tational cost of this evaluation i9(27rT), which is aboutl0°° for an average
dHMM and thus clearly unfeasible. THerward backward algorithn{23, 24]
solves this problem efficiently i@ (r>7"). The solution of problem (2) is given by
the Viterbi algorithm[302, 103], and the “training problem” (3) is solved using th
iterativeBaum-Welch expectation maximization metf&$#j.

B.4.2 Continuous hidden Markov models (cHMM)

If the observationg); are drawn from a continuumy, is a continuous probability
density function and the HMM is callecbntinuous(cHMM). The most general
case for which the above three problems have been solvednigearfiixture ofn
GaussiansV;, thusbg, (0) = 321, ¢jxNw(O, ., i) [173, 150].

Appendix C

Converting a Triangulated Surface to a Level Set

Any triangulated surface that is, e.g., read from a geomadscription file can
robustly be converted to a smooth, regular level set usiaddiowing procedure.
The level function is only stored within the narrow band, &melfunction value in-
dicates the distance to the surface (signed distance imat. Subsection 5.3.2).
Smoothness and regularity of the level function are imparpoperties for the
stability of the diffusion algorithms described in Secsdn3 and 5.4.

Algorithm 4 (Triangulation to level set conversion)

Step 1: Determine for each grid point if it is inside or outsiof the closed surface
described by the triangulation. This can be done using thetpo-domain
algorithm [244] as, e.g., implemented in t&NU Triangulated Surface Lib-
rary (GTS, http://gts.sourceforge.net).

Step 2: Each point outside of the surface is assigned théflavetion valuey = 1,
points inside are sett¢p = —1.

Step 3: Several sweeps (about 5) & a 3 x 3 boxcar average low-pass filter with
uniform weights are applied to the field to regularize the level function
and enable gradient computations.

Step 4: Reinitialize the level function (cf. Subsectiond).® produce a signed dis-
tance function with| V|2 = 1.



Appendix D

Diffusion on Domains with Complex Boundaries may
Appear Anomalous

We consider a diffusion process that is confined to a comgi@ped domain.
The process is observed at a larger length scale, not fuslylvimg the shape of
the domain. Using volume averaging theory, we show in thievishg that the
geometric complexity of the boundary shape has both gtigétand quantitative
effects on the apparent observed diffusion. The isotrdpiear, strongly self-
similar [101] diffusion process on the small scale is goeerby the equation

(2 — V2> u(x,t) =0 ,x € (D.1)
ot

with a functionu : Q x R — R, u € C*(Q x RY), £ > 2. This process takes
place inside a closed and connected dorfiain R¢ with boundarydQ2. Thed — 1
dimensional manifold2 may have a complex shape with geometric features on a
small length scale. The whole process is observed by an imaginary observer with
aresolution limitE > e such that the ratie = ¢/ F' < 1 is negligible. We denote
the order of magnitude of the valueswgfz, t) by k. The limited resolution of the
observer makes it impossible to fully resolve the shap@ ain the observation
length scale. All that the observer can seewwlme averagef the fieldu(x, t),

thus

u\xr :# u d
(w0 = gy . wlw 'y, 02)

The average at each poistis taken over ambservation volumé& (x), centered
atzx, with |V (z)| = O(EY). Vo(x) = V N Qs the part of the averaging volume
that is inside the domain (we did not requiréx, t) to be defined outside &b).

| - | is thevolume measurehich can for example be thédimensionalebesgue
measure To simplify the notation, we writd” instead ofV () in the following.
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The volume average in Eq. (D.2) amounts to convoluifg, ¢) with the indicator
function x (V). Since convolution and differentiation are commutative Bér-
gdorf, personal communication, 2005), the resulting ayedafunction is again
€ C* and all differential operators can be applied to it.

The volume averaging theoref218] for the gradient of a scalar quantity €
Ct 0 >1,0nQis:

1
(V9) = V) + 17 /M YndA. 0.3)

M is the surface of the domain inside the averaging volute= o(V N ), n
is the outward (i.e. out dR?) unit normal onM, anddA is the surface element on
M. Again the averaging volumg is not restricted t@2.

For the divergence of a vector fiel, the corresponding theorem reads:

<v.xp>=v-<x1:>+i/ nWdA, (D.4)
V1 Jm
The volume average of the time derivative of a scalar quaistit

ov, o) 1

. - -ndA D.

wherew is the velocity of the surfacé1. This expression remains formally un-
changed for vector quantities. Elegant proofs of theseagiag theorems can be
found in the 1977 paper by Gray [119].

Using the theorems in Egs. (D.4) and (D.5), and assumingdhadary to be at
rest, the volume average of equation Eq. (D.1) becomes

O(u(z, t))

1
5 =V (Vu(z,t)) + VT /o Vu(x,t) -ndA. (D.6)
Using Eq. (D.3) to expand the average of the gradient, ttisines
Ou(,t)) _ o RS
5t = V=¥ {u(x,t)) + V] \% /M u(zx, t)ndA

+ ﬁ /M Vu(x,t) -ndA. (D.7)

The fully resolved solution(x, t) can always be written as the sum of the aver-
aged solution plusmall-scale fluctuationghus

u(x,t) = (u(z, 1)) + u(x, ). (D.8)
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All terms in this equation aré@(k) in their value. The length scales of variation in
u andu areO(e), the ones ofu) areO(E). The governing equation far(z, t) is
obtained by substituting Eq. (D.8) into Eq. (D.7), and satting it from the full
Eq. (D.1):

(. t)
ot

= VZu(x,t) — |V|V / u(z, tyndA—
m/ Vu(x,t) - ndA. (D.9)
M

Expanding the integral terms using Eq. (D.8) we find

du(z, 1)
ot

1 ~
mv . /M u(x, t)yndA — v /M Viu(z,t)) - ndA—

1 ~
] /M Viu(z,t) - ndA. (D.10)

= V2u(x,t) — |V|V / u(x,t))ndA—

Consider the first integral term on the right-hand side. Tmefion (u(x,t)) is —

by construction — approximately constant oyrand is pulled out of the integral.
The remaining integral is the surface areaMdf and constant as well. The first
term thus vanishes (divergence of a constant). The third tan be neglected,

since the gradient dfu(x, t)) is approximately zero. These qualitative statements

can be made more formal by order analysis. The second anith fiotegral terms
areO(k/(eE))?!, the first and third ones a@(k/E?). The ratio of these orders is
¢, which means that we can neglect the first and third intedra¢ final equation
for the small-scale fluctuation hence becomes

dui(z, 1)

1
_ 2~ _ . ~ _
T Vau(x, t) v |V /Mu(w,t)ndA

1 ~
] /M Viu(z,t) - ndA. (D.11)

In order to obtain an equation for the averaged field, we mode a similar way

Lintegration over the surfac#/ followed by division by the volume introduces a scale faaibr
O(1/E) in value.
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by substituting Eq. (D.8) into Eq. (D.7):

o(u (:c t)> V2< ( )>+ﬁv/ <u(az,t)>ndz4+

ua:tndA+—/ Viu(zx,t)) - ndA+

|V| / V|
—/ Viu(z,t) -ndA. (D.12)
VI Jm

By the same reasoning as before, we neglect the first andititégral terms on
the right-hand side. Fak(x, t), we make the ansatz

u(x,t) = b(x,t) - V{u(z,t)). (D.13)
The value ofu is O(k) and the one oV (u) is O(k/E) (gradient on the large
scale). The value ob thus isO(F), with the length scales of variation being
O(e). Substituting this ansatz yields

8< (SC t)> v2< ( )>+
V / b(x,t) - Vi{u(z,t))) ndA+

W/MV(b(w,t) -V{u(z,t))) -ndA. (D.14)

The first and second integral terms are b6tk /(eE)) 2. Using the linearity of
the divergence operator and the fact tRidt= V - V, above equation can thus be
approximated by

V. ([]1 T |1W /M b(z,t) ® ndA} V(“(%t») +
o /M V (bw.t) - V{u(z, 1)) - ndA, (D.15)

2The integrand isO(k), the integration introduces a factor 6f(E¢~1), the divergence is of
O(1/e) (small length scales ih cause large derivatives), and the division by the averagihgme is
O(E~9).
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where we have again used th{atx, ¢)) is almost constant ove¥1. Both integrals
are stillO(k/(eE)).

This can not be simplified any further without assuming dpebbundary con-
ditions for the small-scale process. Let Eqg. (D.1) have hggneous Neumann
boundary conditions 062, thusn - Vu(x, t) = 0, x € 9. Using Eq. (D.8), this
translates into the following condition for the fluctuation

n-Vu(z,t) = —n - Viu(z,t)) , x €00. (D.16)

Using this together with Eq. (D.13), the last integral temmEq. (D.15) can be
written as

ﬁ /M V (b(x,t) - V{u(z,t))) - ndA =
— ﬁ/M V{u(z,t))ndA. (D.17)

The term on the right-hand side is ©fk/E?). The second integral in Eq. (D.15)
is thuse times smaller than the first one and can be neglected. Thedmal
erning equation for the averaged process, observed onrgéhlscaleF, under
homogeneous Neumann boundary conditions thus becomes

ulz,t) =V- <[]1 + 1 b(x,t) ®ndA} V(u(az,t)>> . (D.18)
ot V1 Jm

Both terms inside the parentheses &rél), the divergence introduces a scale

factor of O(1/¢e) (small scales irb), and the gradient of the averaged field is

O(k/E). The whole equation thus is @?(k) in value. This equation describes

a diffusion process on the observation length sdaleThe effectively observed

apparent diffusion tensarn this scale i€)(1) in value and given by

Dgpp= {]1 + 1 b(x,t) ®ndA} ) (D.19)
V1 Jm

The process thus appeasisotropicif the tensorDgp, is not proportional tal.

It furthermore appearanomalousf Dqgpis a function of the time scale From

Eqg. (D.19) we see that diffusion can macroscopically appedsotropic or an-

omalous (ifb depends on time), even if the microscopic process is normal a

isotropic.

3In this case, the mean square displacement no longer sicalady with time, cf. Subsection 2.1.2.

Appendix E

Experimental Protocols

All experimental work used in Chapter 6 was carried out by toers of the group
of Prof. Ari Helenius at the Institute of Biochemistry at EWtrich. The original
protocols are reproduced here for reference.

E.1 FRAP experiments in the ER lumen

E.1.1 Cells and DNA construct

VERO cells were grown on coverslips at°®7in Dulbecco’s Minimal Essential
Medium supplemented with 10% fetal calf serum, 2 mM glutani00 g/ml peni-
cillin, 100 U/ml streptomycin (GibcoBRL; Life TechnologieEggstein, Germany)

at 37C in a 5% CQ incubator and were used in all experiments. Cells were
transiently transfected with a reporter gene containieggR targeting signal se-
guence fused to GFP and the ER retention sequence (ssGFR--iBiived from
pCMV/myc/ER/GFP, Invitrogen) using Superfect (Sigma). tethatively, cells
were transfected using Nucleofactor by amaxal(iK Germany) according to the
protocol for COS-7 cells (Kit V, program A24). Brieflyx1106 VERO cells were
pelleted, resuspended in 10Dof solution V, and electroporated with 1 — 2.8

of DNA. The electroporated cells were resuspended ini3B0EM. Of this solu-
tion, 100ul were seeded on one 18 mm coverslip and incubated over rii§tt)(

at 37C and 5% CQ. 12-16 hours post transfection cells were imaged live on a
temperature-controlled stage at87

E.1.2 Photobleach Experiments

FRAP experiments were performed on an inverted Zeiss LSM®tlocal mi-
croscope, using the 488-nm line of a 30 mW Argon/2 laser wit®@x, 1.4 NA
objective. A defined region of interest (ROlu#nx4 m) was photobleached at
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full laser power (100% power, 100% transmission, 20 itera); recovery of fluor-
escence was monitored by scanning the ROI at low laser pd@ét power, 3%
transmission). The scanning laser intensity did not sigaifily photobleach the
specimen over the time course of the experiment. Images aegpaired as 8-bit
TIFF files (512512 pixel frame.18 um/pixel) and processed using NHI Image
1.62. Image series with little or no apparent motion of ERtires within the
ROI were selected. The average fluorescence in the ROI anavdtage back-
ground were determined from the images. After subtractiregbiackground, the
fluorescence values were normalized according to Phair dstklM216] to cor-
rect for the loss in fluorescence caused by imaging. To betaldempare FRAP
curves from different cells, these valuE$t) were further normalized by their re-
spective asymptotic valug,, = F(t — o), determined as outlined in Appendix
F.1. FRARt) = F(t)/F is shown in all the figures.

E.2 FRAP experiments on the ER membrane

E.2.1 Caellline, DNA construct and expression of VSVG-GFP

VERO cells were maintained in MEM (plus Earle’s plus GlutaXi®'l) supple-
mented with 10% fetal calf serum and non essential aminsd@ibco BRL, San
Diego, CA, USA) at 37C/5% CG;,. The cDNA plasmid VSVG3-SP-GFP [154]
encoding GFP-tagged temperature sensitive vesicularasiiisnvirus glycopro-
tein (tsO45-VSV-G) was kindly provided by Dr. Kai Simons. [IBeon 18 mm
glass coverslips at 80—90% confluence were transfectedfig plasmid DNA
per coverslip using FUGENE 6 Transfection Reagent (Roclagaistics, Indi-
anapolis, IN, USA) and incubated for 12—14h at the non-pssiveé temperature
(40°C), at which VSVG-GFP is incompletely folded and retainethie ER [107].

E.2.2 Live cell microscopy and FRAP analyses

For live cell microscopy, transfected cells on 18 mm glasserslips were trans-
ferred to a custom-built metal microscope coverslip chanmb€0,-independent
medium supplemented with 10% FCS (Gibco BRL, SanDiego, C3AL FRAP
analyses were performed at°4Don an inverted Zeiss LSM510 confocal micro-
scope (Oberkochen, Germany) equipped with a temperaturegetied stage and
a 100x 1.4 NA objective. A defined region of interest (ROpMx4 m) was
bleached using the 488 nm line of a 30 mW Argon laser at higér lagensity
(100% power, 100% transmission) and fluorescence recovasyrecorded by
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scanning at low laser intensity (100% power, 10% transmigsimages were ac-
quired as 12 bit LSM files at 522512 pixels/frame and 0.Qém/pixel lateral res-
olution. Image series with little or no apparent motion of &Rictures within the
ROI were selected and imported into ImageJ 1.34 (http:ivfsbnih.gov/ij/) for
processing. The average fluorescence intensity of the RGldetermined after
background subtraction and normalization according tarRirad Misteli [216].
All FRAP curves were normalized by their asymptotic valueoatlined in Ap-
pendix F.1.



Appendix F

Simulations of Diffusion in the Endoplasmic
Reticulum

This appendix describes the details of the diffusion sinuts of fluorescence
recovery in the ER for both the lumen and the membrane as osdiof results in
Sections 6.5. All computer simulations are performed usiegaumerical methods
described in Chapter 5, implemented in Fortran 90 and @éirat using thepm
library presented in Chapter 7 [248].

F.1 Simulations in the ER lumen

The diffusive motion of a fluorescently labeled soluble piotin the ER lumen is
simulated and the total fluorescence intensity inside tiggnally bleached ROB
is monitored over time. We assume the molecules of intecediffuse normally
(i.e. no anomalous diffusion) and freely within the confinéthe ER lumern2. In
the following, theFRAP valueat timet,, = ndt is defined as

1 h
= — W (tn),
NB peB

F(ty) (F.1)

whereNp is the total number of particles inside the RBhndwg(tn) is the PSE
particle strength. In order to focus on the influence of oejjargeometry, we use
the idealizednitial condition

/0 if x € {QN B}
uo(x) —{ C  ifze{Q\B}. (F2)
More realistic initial conditions [35, 312] can readily becammodated by setting
the initial strengths of the particles accordingly. Theywdbhowever leave our
conclusions unchanged as their effects would equally ap@jl simulations. The
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ROI B is taken to be the square cylinder defined by:

B = [p,q] x[r,s] x [0, L] 0<r<s< Ly,

{0<p<q<Lm (F3)
with (L, Ly, L) the extent of the bounding box of the ER in all spatial direusi
Without loss of generality, the constant initial concetitna outside the bleached
area is chosen to b@ = 1 as this simply corresponds to normalizing the FRAP
curves with respect to their pre-bleach value. The assomti a homogeneous
initial concentration distribution outside the bleachedaaseems feasible due to
the following facts:

1. After transfection, the cells are incubated for at le@shdurs. During this
time, they express the green fluorescent protein which isnaesd to freely
diffuse within the ER lumen and to completely fill it. Expeemts show
that a protein can easily move across the whole ER in aboue80nsls.
Therefore, a homogeneous distribution inside the ER israsduafter 12
hours.

2. The experimenter chooses “healthy” cells, i.e. cell$ éxhibit a more or
less homogeneous fluorescence inside the ER.

The geometric domaif for the simulations is a reconstructed representation
of a real ER. The reconstruction technique is described ati@e6.2. The PSE
simulations solve the isotropic, homogeneous diffusiomagign in the lumen of
the reconstructed ER shapes, using the second-order sec@otopic PSE kernel
proposed by Cottet (G.-H. Cottet, personal communicati®f9):

15 1
n(x) = oy (F.4)
All simulations are run for the same value of the computatialiffusion constant
vsim = 3 - 107 b2/t (scaled with the lateral edge lengdth= 50 of the ROI and
the simulation time stept = 0.01) in order to be able to study the influences of
geometry. Time integration is done using the explicit Ewlelneme with a time
step ofét = 0.01 until a final time ofT" = 2000 dt¢.

Since the bleached volumes of the different ER samples itodifferent num-
bers of particles, and since the total number of partickes @ries among samples,
the different FRAP curves have different asymptotic le¥els — oo. Moreover,
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the FRAP curves do normally not recoverlt®, even if the protein is fully mo-
bile. This is due to the homogeneous Neumann boundary ¢ondind the fact
that the total mass in the domain is conserved. In order tobleta compare
the FRAP curves of the simulation runs among each other, dneynormalized
by their respective steady-state vallig. They thus all asymptotically recover to
1.0, leaving the different geometries as the only source oftian. Initially, the
total mass in the system is given by

my =Y Vpup =V,(N = Np). (F.5)

The latter equality makes use of the initial condition asegiin Eq. (F.2) and
the choiceC' = 1. The asymptotic value of the fluorescence in the ROI is given
by homogeneously distributing this mass among all pagiclor particles with
constant volumé/, we thus have

my _N—NB

Foo= 1= —2,
NV, N

(F.6)

and we normalize the FRAP curvesB§)/F .

F.2 Simulations on the ER membrane

The triangulated surfaces from the 3D reconstruction asg¢ donverted to level
sets as described in Appendix C. This is not an intrinsic ssteof the method,
but is required by the specific data output format availatdefthe 3D reconstruc-
tion software (cf. Section 6.2).

The simulations solve the intrinsic diffusion equation be tnembrane of the
reconstructed ER shapes using the method presented iri$écs and the op-
erator discretization of Eq. (5.58). All simulations usecanputational diffusion
constant obsi, = 10~ um? /s, a band half-width of = 3h (h between 0.042m
and 0.047um), and employ between 800’000 and 2 million particles cotreged
in a14 pmx14 um neighborhood around the ROI ¢fumx4 ym. Since only the
geometry in the vicinity of the ROI influences the fluores@necovery, an ER
cut-out around the bleached region is considered in thelationos. The finite
reservoir of the rest of the ER can be modeled using Dirididetndary conditions
of valueF, as given by Eq. (F.6). This is important for larger times antketover
the correct asymptotic level.
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Time integration is done using a 9-step STS scheme [9] witl@mentary Euler
step size ofit = 10~*s. The concentration is initially set to 1 everywhere owsid
the bleached ROI, where it is set to zero (Eq. (F.2)). Moraugate initial condi-
tions [35, 312] can easily be used if they are experimentalgilable. The ROl is
again given by Eq. (F.3). The total mass of fluorescent médsdn the ROl is de-
termined from all particles adjacent to the membrane byalilyenterpolating their
strengths along inter-particle lines that cross the mengr&rior to analysis, all
FRAP curves are normalized by their steady-state value terteem comparable
(cf. Appendix F.1).

The narrow-band level set method imposes a scale constmaitite geometry
that can be resolved: the bands from two opposite surfacesmeuer overlap, i.e.,
the smallest “feature” of the surface must be at I8@&sh diameter. In the present
simulations, this amounts % = 6h ~ 300 nm, which is more than 10 times
larger than the curvature radius limit for biological meuntes. In order to avoid
under-resolved regions, the level functigns thus low-pass filtered prior to the
simulations. This can be done without loss of informatiarceithe wavelength of
the light used to record the geometry is larger (488 nm, chekpulix E).
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