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Abstract

Diffusion processes constitute a key mechanism for transport in biological cells.
Nutrition, organization, growth, and signal transductionin cells are largely determ-
ined by diffusion mechanisms. The complex three-dimensional shapes of intracel-
lular structures and the confinement of certain molecules tomembranes however
complicate the experimental analysis and computational simulation of diffusion
in live cells. This thesis is concerned with the developmentand implementation
of computational methods to analyze, model, and simulate diffusion processes in
realistic cell environments.

In cell biology, mobile particles such as molecules, ions, vesicles, or viruses
diffuse within the confines of the cell geometries. Two casesare considered: in-
dividually tracked particles, and their mean collective motion. The former case
entails single particle tracking methods to directly follow the motion of individual
particles. We present an accurate and computationally efficient image processing
algorithm to determine trajectories of moving particles from digital videos. These
trajectories are then analyzed with respect to their motionproperties. We extend
existing analysis methods to cases of anomalous diffusion and show that both the
speed and the confinement of the motion can be quantified independently.

Automated trajectory analysis enables high throughput rates, minimizes human
bias, and increases reproducibility. We therefore developand apply methods for
automatic trajectory classification, detection of motion patterns within trajector-
ies, and adaptive data encoding to maximize classification performance. The de-
veloped computational tools are used in two studies of virusmotion on the plasma
membrane of live cells.

Analysis and simulation of the collective motion of abundant particles is based
on continuum theory, which yields a model equation for the evolution of the res-
ulting concentration field. Solving this governing equation is challenging for real-
istically complex cell geometries. We present particle methods to handle these
complex geometries, and extend them to computations of diffusion on curved and
moving surfaces.

The capability of numerically simulating diffusion both inspaces and on sur-
faces of complex shape allows to investigate the accuracy offluorescence recovery
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experiments. We present for the first time the measurement ofmolecular diffu-
sion constants in the endoplasmic reticulum of live cells bytaking into account the
complex geometry of the organelle.

All methods are implemented on the basis of a newly developedsoftware library
for hybrid particle-mesh simulations on parallel computers. The library is presen-
ted in this thesis and its parallel efficiency and scalability are demonstrated on a
range of test cases.



Zusammenfassung

Diffusion ist einer der wichtigsten Transportmechanismenin biologischen Zel-
len. Ern̈ahrung, Organisation, Wachstum und Signalübermittlung in Zellen sind
weitgehend von Diffusionsprozessen bestimmt. Die komplizierte dreidimensiona-
le Form vieler innerzellul̈arer Strukturen, sowie die Bindung einzelner Moleküle
an Membranen, erschweren jedoch die experimentelle Analyse und numerische
Simulation von Diffusionsprozessen in lebenden Zellen. Die vorliegende Disser-
tation befasst sich mit der Entwicklung und dem Einsatz von rechnergestützten
Verfahren zur Analyse, Modellierung und Simulation von Diffusionsprozessen in
realen Zellen.

Diffusion in der Zellbiologie ist verbunden mit der Bewegung von Teilchen wie
z.B. Molek̈ulen, Ionen, Vesikeln oder Viren. Wir unterscheiden zwei Fälle: die in-
dividuelle Bewegung einzelner Teilchen, und die kollektive Bewegung einer gros-
sen Anzahl von Teilchen. Im ersteren Fall benutzen wir Verfahren, die es uns er-
lauben den Bahnkurven einzelner Teilchen zu folgen und diese zu analysieren.
Wir präsentieren ein effizientes und genaues Bildverarbeitungsverfahren, um die
Bahnkurven der Teilchen aus digitalen Videoaufzeichnungen zu extrahieren. Die-
se Bahnkurven werden dann bezüglich ihrer Bewegungseigenschaften untersucht.
Wir erweitern dabei existierende Analysemethoden auf Fälle anomaler Diffusion
und zeigen, dass hiermit sowohl die Schnelligkeit als auch die Freiheit der Bewe-
gung unabḧangig quantifiziert werden können.

Eine durchg̈angig automatisierte Analyse ermöglicht hohen Datendurchsatz, re-
duziert menschgemachte Verzerrungen in den Daten und erhöht die Wiederhol-
barkeit. Wir entwickeln daher Methoden zur automatischen Klassifizierung von
Bahnkurven, zur Identifikation von bestimmten Bewegungsmustern, sowie zur ad-
aptiven Darstellung der Daten für maximale Klassifikationsg̈ute. Die entwickelten
Verfahren werden in zwei Studien̈uber die Bewegungen von Viren auf der Zell-
membran verwendet.

Die Analyse und Simulation der kollektiven Bewegung einer grossen Anzahl
von Teilchen basiert auf der Kontinuumstheorie, welche eine Modellgleichung f̈ur
die Evolution des resultierenden Konzentrationsfeldes liefert. Das L̈osen dieser
Gleichung in realistisch komplexen Zellgeometrien ist numerisch herausfordernd.
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Wir präsentieren Partikelmethoden für Diffusionssimulationen in komplexen Geo-
metrien, und erweitern diese auf den Fall der Diffusion auf sich bewegenden ge-
krümmten Oberfl̈achen.

Die Fähigkeit zur numerischen Simulation von Diffusionsprozessen in R̈aumen
sowie auf Oberfl̈achen von komplexer Gestalt ermöglicht es uns, die Genauigkeit
von experimentellen Methoden der Fluoreszenzmikroskopiezu untersuchen. Wir
präsentieren die erste Messung einer molekularen Diffusionskonstanten im endo-
plasmatischen Retikulum lebender Zellen unter expliziterBerücksichtigung der
Geometrie der Organelle.

Sämtliche Simulationsprogramme wurden auf der Basis einer neu entwickel-
ten Softwarebibliothek f̈ur Partikel-Gitter-Simulationen auf Parallelrechnern im-
plementiert. Diese Bibliothek wird in der vorliegenden Dissertation beschrieben,
und ihre Effizienz und Skalierbarkeit werden anhand mehrerer Testf̈alle demon-
striert.
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R link range, true risk, interpolation kernel,
gas constant, lateral resolution

R set of real numbers
Re empirical risk
Re Reynolds number
S score, parallel speed-up
S2(r) sphere of radiusr
T final time, normalized temperature
T projection operator, tensor of inertia
T training set
T ordered time space
Tf sampling fraction
Ts score threshold
U wave front
U uniform probability distribution
V volume
V adaptation velocity
W interpolation kernel
W matrix of weights
X domain limit, number of molecules
X set of observations
Y spherical harmonic
Y set of class labels
Z neuron activity level

Greek Characters

α angle, model parameter, a coefficient
β moment scaling spectrum slope, a coefficient
γ moment scaling spectrum, a coefficient, specific heat ratio
Γ cluster, circulation
δ Dirac delta distribution, thickness, axial resolution
δij Kronecker delta symbol
δt time difference, simulation time step
δx bin size
∆ difference of information
∆n frame shift
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∆t sampling time, discretization time
∆x displacement per frame
ǫ kernel size
ε small deviation, smallness parameter
ζ mollifier function
η isotropic kernel function
Θ threshold, general kernel function
κ inner band radius
κ̂ curvature
λ Poisson parameter, number of offspring, wavelength
λr eigenvalue
Λ a hidden Markov model
Λ generalized diffusion tensor
µ moment of displacement, number of parents
µ vector of means
µ2 mean square displacement
ν, ν2 scalar diffusion constant, SVM parameterν
νr scaled eigenvector
ξ space stretching factor
ξ intrinsic coordinate on a manifold
π ratio between circumference and diameter of a circle
Π initial state probabilities, penalty, dimensionless number
ρ residual
σ kernel, standard deviation, step size
Σ covariance matrix
τ time constant, adaptation time step
τ stress tensor
φ elementary cost
ϕ, ϑ spherical angles
ϕ vector test function
Φ a functional
Φ mapping function
Φ Jacobian
χ indicator function
ψ level function, a scalar function
Ψ stream function, a vector function
ω particle strength, vorticity
Ω domain of solution
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Ω̂ reference space

Subscripts and Superscripts

0 initially, at point of reference
1, 2, 3 cartesian coordinate directions or components
app apparent
B relating to the bleached region of interest
eff effective
exp in the experiment
ǫ mollified to sizeǫ
f filtered
h discretized with resolutionh
i, j, k cartesian coordinate directions or components
ℓ on trajectoryℓ
M intrinsic to a manifold
max largest value of the variable
min smallest value of the variable
n at time stepn
p evaluated at particle locations, moment order
q entropy order
sim in the simulation
t at timet
w smoothed with resolutionw
x, y, z the component in the specified direction
∞ asymptotically
·̂ estimated, in reference space
·̃ reconstructed, estimated, fluctuations
· arithmetic mean

Special Symbols

1 the identity matrix
∀ for all
∇ the Nabla operator
∇2 the Laplace operator
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∂(·) partial derivative, boundary of a domain
∞ infinity
∼ has the physical units
ℜ real part of a complex number
#{·} number of elements in a set (count measure)
〈·〉 average
‖ · ‖2 L2 norm
‖ · ‖∞ L∞ norm
| · | absolute value,d-dimensional volume, determinant
[·] concentration of
{·} a set
[·, ·] closed interval
(·, ·) open interval
D/Dt Lagrangian derivative with respect to time
P [·] probability of an event
∧ logical and
∩ set intersection
∪ set union
⊂ sub-set
∈ set membership
∅ empty set



Introduction

With the availability of increasingly more quantitative experimental methods in
biology and the life sciences, both the complexity of the systems and the amount
of data produced are increasing. Over the past years the focus has shifted from
considering isolated subsystems or individual chemical reactions to investigating
the cell-wide interplay of processes and the internal organization of cells. Methods
such as fluorescence microscopy, confocal microscopy, or total internal reflection
microscopy are becoming standard tools to investigate intracellular transport phe-
nomena. The prevalent lack of predictive theories as well asthe vast amount of
data available from these apparatuses make data analysis and inference from data
one of the core challenges in the creation of knowledge.

A large number of cellular processes depend on the diffusionof macromolecules
and substances of small molecular weight, such as metabolites and ions. Mechan-
isms such as convective flow and active transport do play a role in, e.g., vesicular
transport or microtubule-dependent trafficking. Diffusion however constitutes the
dominant mechanism for transport in important cell functions such as nutrition, or-
ganization, and signal transduction. The presence of internal membranes usually
restricts diffusion to specific organelles or domains within the cell [8].

Computational tools are needed to analyze the data, extractpatterns and fea-
tures, or store and retrieve them. In diffusion analysis, two standard methods are
widely used: single particle tracking and fluorescence recovery after photobleach-
ing. Single particle tracking starts by recording videos ofthe motion of individual
labeled particles. This technique can be applied to sparse systems, where the in-
dividual particles can be distinguished, and is covered in Part I of this thesis. Part
II discusses the case where the collective motion of abundant particles is con-
sidered using continuum models. We focus on the case where the complex-shaped
internal structures of the cell complicate the analysis, and where the absence of
suitable models has long hampered fluorescence recovery methods. This thesis
reviews and extends computational methods to simulate continuum diffusion pro-
cesses both in complex-bounded domains and on complex curved surfaces.

The thesis is structured as follows:

XVIII CHAPTER 0. INTRODUCTION

Chapter 1. Automated Trajectory Acquisition by Video Analysis

We consider the problem of reconstructing the trajectoriesof moving particles
from a digital video recording of their motion. This so-called feature point track-
ing is a crucial step in diffusion analysis of sparse systemsas it determines the data
throughput as well as the accuracy and the statistical significance of the results.
Most of the existing feature point tracking algorithms makeuse of a-priori know-
ledge about the type of motion, such as, e.g., the trajectorysmoothness. Other
existing programs are computationally very expensive or need a lot of memory,
thus preventing the processing of large amounts of long videos. Many landmark
studies in biology have therefore used manual or semiautomatic tracking meth-
ods. Can we construct an automatic feature point tracking procedure that is at
the same time accurate and computationally efficient?After presenting the sug-
gested solution in Section 1.2, we test our claims of accuracy and efficiency in
various benchmark cases in Section 1.3. We find that the present algorithm is at
least as accurate and robust against image noise than the best previously available
solutions, while being significantly faster.

Chapter 2. Trajectory Analysis

In Chapter 2 we consider a number of data analysis methods fortrajectories. This
starts from global methods that perform certain averaging operations along the
whole trajectory. After reviewing the classical mean square displacement analysis
method, we illustrate its limitations in analyzing anomalous diffusion processes.
Is there a global statistical analysis method that can be used for all types of motion
and allows accurate classification?In Subsection 2.1.2 we propose the moment
scaling spectrum, originally introduced by Ferrariet al. [101], as a new, key meas-
ure for motion analysis.

Due to their averaging nature, global analysis methods are not suited to detect
changes in the motion pattern within a single trajectory. While a certain level
of time resolution can be achieved by applying the analysis in a moving window
frame (Section 2.2), such analyses suffer from an inherent trade-off between resol-
ution and accuracy as shorter and shorter trajectory piecesare analyzed at smaller
window widths.

As we might for example be interested in analyzing residencetimes of particles
that are temporarily stationary, trajectories are frequently decomposed into pre-
defined segments. Such trajectory decomposition or segmentation is usually done
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by hand, thus biasing the analysis result by the experimenter’s choices and de-
cisions. In analogy to the automated feature point trackingoffering many advant-
ages over manual tracking, we ask the question:Can this biasing limitation be
overcome by automatically decomposing the trajectory intopre-defined segments?
This would not only eliminate the bias, but also enable larger data sets and better
reproducibility of the results. In Section 2.3 we propose a method to automatically
detect and isolate certain patterns in trajectories. The presented trajectory seg-
mentation technique is based on a neural network that is trained on demonstration
samples before it is used on the actual data set.

Using the so-identified trajectory components enablesevent-based analysesas
described in Section 2.4. We present three different counting and normalization
strategies for intra-trajectory events, and explain them using two example events.

Chapter 3. Trajectory Classification

In Chapter 3, bias-free high-throughput analysis is extended to whole trajector-
ies. This is complicated by the fact that trajectories constitute dynamic data,
viz. ordered time series of position vectors. Data encodingis needed to exploit
the temporal information and to reduce the dimensionality of the data. Moreover,
trajectories exhibit multiple invariances with regard to translation, rotation, and
symmetry, as rigid-body rotations or translations of a trajectory leave the motion
patterns unchanged.

We fist introduce the problem of automatic classification of complete trajectories
and survey the most frequently used computational (machinelearning) techniques
for automatic classification. Using a non-trivial data set from biology, we ask:
Which of the methods are suited for trajectory classification and how does their
performance compare to human classification?As a basis for our comparisons we
introduce a measure to quantify the intrinsic separation capability of a classifier,
machine or human. Human classification is done both by domainexperts such as
the experimenters themselves, and laypersons.

We find that the classification success critically depends onhow the trajectories
are represented in the computer. Using all the points that constitute the trajectory
would lead to a very high-dimensional classification problem, requiring tremend-
ous amounts of training data in order to achieve acceptable performance. Data
compression and dimensionality reduction are thus mandatory concepts. Buthow
can we systematically find a good/optimal data representation in a given number
of dimensions?In Section 3.2 we present a framework consisting of an adjustable
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encoder and an optimizer forming a closed loop with the classifier. The optimizer
continuously adapts the encoder such as to maximize the classification perform-
ance. We test the influence of different classification performance measures and
optimizer parameters on the outcome. The proposed algorithm is benchmarked
on both synthetic and experimental trajectories, and the quality of the result is
compared to human-found data encodings.

Chapter 4. Applications and Results

In Chapter 4, the feature point tracking, trajectory analysis, and trajectory classi-
fication methods presented thus far are applied to various problems of biological
interest. While the case studies in Section 4.1 demonstratethe capabilities of the
tracking algorithm, Sections 4.2 and 4.3 relate to collaborative research projects
with two groups in biology. Both projects are concerned withthe analysis of the
motion of virus particles on the outside of the plasma membrane of live cells prior
to internalization. Understanding these first steps of viral infection yields import-
ant information about the uptake pathways that lead into the cell, about the in-
ternal organization of the plasma membrane, and about the cellular machinery
involved in virus uptake. The first project considers Polyomavirus and was carried
out in close collaboration with the group of Prof. Helenius.The second project
makes use of the automatic segmentation and classification techniques described
earlier to investigate the role of the secondary receptor inthe uptake pathway of
human Adenovirus. This project was done in close collaboration with Prof. Gre-
ber at the University of Z̈urich and it exemplifies the statistical potential of large
unbiased data sets.

Chapter 5. Particle Methods to Simulate Diffusion in Complex
Geometries and on Curved Surfaces

Computationally solving the diffusion equation in real cell geometries is com-
plicated by several factors. Resolving the complex geometries requires adaptive
schemes and, in parallel simulations, adaptive domain decompositions. The com-
putational efficiency of grid-based methods is drasticallyreduced when discret-
izing complex geometries, because the resulting linear algebraic systems fail to
have the favorable structure associated with simpler geometries, resulting in fuller
systems whose solution often scales with the square or even the cube of the num-
ber of computational elements. Moreover, the generation ofrobust computational
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meshes in complex geometries remains a non-trivial task, despite the availability
of several automatic procedures.

In this thesis we exploit the properties of mesh-free particle methods to simu-
late diffusion in complex cell geometries. A large number ofproblems in physics
and engineering is most naturally described by particles, e.g. atoms in molecular
dynamics simulations, charged particles in plasma physics, gravitational particles
in astrophysics, or fluid elements in smooth particle hydrodynamics and vortex
methods. Particle methods are not limited to their evident use in discrete systems,
but can also be employed to simulate continuum systems. Hereby, computational
particles are used to discretize the continuous functions by means of weights as-
signed to the particles. In continuum particle methods, theparticles remain intim-
ately linked to the physics they represent, as the governingequation is solved by
appropriately evolving the locations and properties of theparticles [160].

In Chapter 5 we summarize the fundamental concepts of continuum particle
methods and proceed by reviewing existing particle methodsfor the solution of the
diffusion equation in space. Motivated by the biological importance of membrane-
bound molecules we then ask:How can we construct a particle method to solve
the diffusion equation on complex curved surfaces?Intrinsic diffusion on mani-
folds has recently received considerable attention in computer graphics. In Sec-
tion 5.3 we adopt a technique developed for video inpainting, and formulate it in
the particle framework. Convergence and accuracy of the method are assessed
in test cases before it is extended to the solution of reaction-diffusion problems
on moving and deforming surfaces in Section 5.4. Representing complex-shaped
surfaces at fixed resolution requires a large number of particles, rendering the
method expensive. By means of the adaptive global mapping technique by Berg-
dorf et al. [27], we thus use multi-resolution particles, viz., particles whose size is
locally adapted to the geometry that is to be resolved (Section 5.4).

Chapter 6. Simulations of Diffusion in Organelles of Live Cells

The method of fluorescence recovery after photobleaching isfrequently used in
biological experiments to observe the diffusive transportof a molecule. In this
method, the molecule of interest is fluorescently tagged andexpressed in the cell.
Using intense laser light, a well-defined portion of the cellis bleached by irre-
versibly destroying the fluorophore. Influx of non-bleachedmolecules into the
bleached region is recorded in a digital video. From such videos one wishes to infer
the molecular diffusion constant of the molecule, as fasterdiffusion would lead to
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faster fluorescence recovery. This analysis is however complicated if the space in
which the fluorescent molecules are confined does not completely fill the bleached
volume, i.e. if the bleached region is larger than the geometric structures within the
cell, thus bleaching across domain boundaries. Moreover, the microscope video
only shows a two-dimensional slice or projection of the three-dimensional cellular
structures. Present methods to derive molecular diffusionconstants from fluor-
escence recovery videos neglect these geometrical effects. What are the errors
made by neglecting the spatial organization of the cell in fluorescence recovery
experiments?And can we correct for them?

In Chapter 6 we consider diffusive fluorescence recovery in the Endoplasmic
Reticulum (ER). The ER is a very complex-shaped organelle ofcells, generally de-
picted as a convoluted network of connected tubular and lamellar structures. These
structures are much smaller than the size of the bleached region and we expect that
the complexity of the boundary shape has an influence on the observed recovery
dynamics. To investigate these influences, we reconstruct the geometry of real ER
samples from microscope image data (Section 6.2). In Section 6.3 the complexity
of the shapes is quantified using the concept of fractal dimensions. This leads to
the conclusion that the observed diffusion behavior appears qualitatively altered.

In Section 6.4 we describe the standard experimental technique used in fluor-
escence recovery assays and review currently used analysismodels to determine
diffusion constants from such measurements. The fractal geometry analysis al-
lows us to derive a model that explains the data much better than previous ones.
Using the simulation techniques described in Chapter 5 we then quantify the
geometry-induced uncertainty in these classical analysismethods and propose a
novel, geometry-safe method in Section 6.5. The presented method enables us
to determine corrected molecular diffusion constants fromfluorescence recovery
data in complex geometries, and to assess existing analysistechniques.

Chapter 7. PPM – A Software Framework for Parallel Particle-
Mesh Simulations

Particle methods formally amount to anN -body problem with a computational
cost that potentially increases with the square of the number of particles. Although
several strategies exist to reduce the computational cost to scale linearly with the
number of particles, their wide-spread use is prohibited byseveral complications in
the parallel implementation of such methods. For grid-based methods a number of
flexible software libraries exists. These libraries provide a standard set of common
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functions and greatly simplify the development of parallelsimulation codes. To
our knowledge, no such library or framework existed for particle methods.

Why don’t we develop one?Particle methods also share a common set of op-
erations and data structures, and a large number of applications in many fields of
science and technology would benefit from an easy-to-use framework to develop
robust and efficient computer simulations using particle methods. In Chapter 7
we describe a novel parallel particle mesh library,PPM, that was developed in the
group of Prof. Koumoutsakos in order to enable flexible and rapid code develop-
ment for particle methods and hybrid particle-mesh methods. After presenting the
fundamental concepts and functions of the library, we demonstrate its parallel ef-
ficiency and computational performance on a number of test problems. This was
a collaborative effort of five members of our group and many simulation programs
using thePPM library have been written by other people.



Part I

Sparse Systems: Single
Particle Analysis



Overview

In this part of the thesis we consider motion analysis in sparse systems. Such
systems are characterized by the property that the motion ofeach particle can be
followed individually. An efficient and accurate computational method to track
particles in video recordings is described in Chapter 1, with details about the al-
gorithm as well as benchmark results presented in Sections 1.2 and 1.3, respect-
ively. Chapter 2 describes methods for analyzing the recorded trajectories. Start-
ing from global (whole-trajectory) analysis methods, the resolution is gradually
refined using moving window and segmentation techniques. Chapter 3 considers
the problem of automatic classification of trajectories using methods from machine
learning. In Section 3.1 the performance of different classification algorithms is
assessed on a biological data set, and compared to the performance of human clas-
sification. In order to apply machine learning techniques, the trajectory data need
to be encoded. To find good data representations for classification, we introduce a
self-optimizing encoding strategy in Section 3.2. In Chapter 4, all methods presen-
ted in this part are applied to problems of biological interest. The main application
considers the motion of virus particles on the plasma membrane of live cells prior
to internalization. The examples demonstrate how the use ofparticle tracking and
trajectory analysis can lead to biologically significant conclusions.

Single particle tracking in cell biology

Motion analysis on the single-particle scale starts from the trajectories of the mov-
ing objects. Atrajectory is hereby defined as the “trace of positions followed by
an object moving through space”1. Before such trajectories can be analyzed, they
often need to be reconstructed from video recordings of the real moving objects.
This (automated)feature point trackingstep crucially determines the accuracy and
the scope of the whole process. Feature point tracking consists of detecting the
images of the particles in the digital video sequence, and linking those detections
over time in order to follow the individual traces. The reconstructed trajectories

1source: www.wikipedia.org
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can then be used to extract information about the behavior ofthe particles, their
interactions, and their environment (cf. Chapters 2 and 3).

Besides biology, SPT has numerous applications in many fields of science and
technology such as fluid mechanics (e.g. particle imaging velocimetry and particle
tracking velocimetry [316]), computer vision (e.g. road following [196], human
limb tracking [165]), navigation (e.g. vehicle navigation[237]), and material sci-
ence (e.g. colloids [68]).

With increasing spatial and temporal resolution of the microscopy equipment,
and with the wide-spread availability of techniques such asmulticolor video mi-
croscopy andTotal Internal Reflection Fluorescence(TIRF, cf. Chapter 4) mi-
croscopy [287],Single Particle Tracking(SPT) is becoming indispensable in cell
biology. The quantitative analysis of the resulting trajectories provides important
information about working mechanisms and structures in living cells [76]. SPT
has been used first for descriptive studies of plasma membrane protein and lipid
diffusion [329, 12, 110, 136, 106], and subsequently to address more complex is-
sues of molecular transport [88, 235, 319, 100, 70]. Using SPT it has become
possible to analyze cell motility [267], determine diffusion coefficients of single
molecules [116], or measure the step displacements of molecular motors such as
kinesin [108]. Descriptions and overviews of the employed trajectory analysis
methods are available in the review by Saxton and Jacobson [242].

Video microscopy of fluorescently labeled virus particles moving on cell mem-
branes and into internal organelles led to the pioneering study of Pelkmans
et al. [212, 213]. Using frames from videos, they visualized and analyzed many
of the key steps in the early pathway of the caveolar entry ofSV40into live cells
[212]. This analysis was performed by tracking the individual particles by hand,
a procedure that becomes impossible when one needs to analyze the multitude of
trajectories available by today’s fast video techniques.



Chapter 1

Automated Trajectory Acquisition by Video Analysis

In biology, a number of specialized, often application-specific, algorithms and
computer programs for single particle tracking is available [55, 53, 298]. Most
of them make use of a-priori knowledge about the physics of the problem in order
to construct effective and robust feature point tracking procedures. Real applica-
tions however often involve the tracking of objects whose type of motion may not
be known explicitly in advance. In these cases the tracking task is hindered by the
absence of a suitable mathematical model, by the possible stochastic character of
the motion, or by trajectories containing several modes of motion (e.g. smooth and
non-smooth parts). While some of the existing feature pointtracking algorithms
are very accurate, they are also computationally intense, which prohibits tracking
of long video sequences as often encountered in biological applications.

After defining the terminology of SPT in Section 1.1, we present a feature point
tracking algorithm that was particularly developed for applications in cell biology
(Section 1.2). The presented algorithm is fast and efficient, while attaining ac-
curacy and precision that are comparable to far more computationally intensive
algorithms (cf. Section 1.3). It is robust against imaging noise and intermittent
detection of particles, making it suitable for tracking of long videos of mobile
objects such as viruses on the plasma membrane, fast directed motion such as traf-
ficking along microtubules, and particles with strong intensity fluctuations such as
quantum dots (cf. Section 4.1). The presented algorithm is capable of processing a
video of several thousand frames within a few seconds on a standard desktop com-
puter. The algorithm relies on a minimum set of assumptions and reduced prior
knowledge of the physical process, making it applicable to tracking problems with
no a-priori information about the type of motion. Finally, the algorithm uses only
few user-defined parameters, thus providing ease of use. These parameters are:
the particle radiusw, the intensity percentiler, the cutoff scoreTs for the non-
particle discrimination (see Subsection 1.2.1), the maximum link lengthL, and
the number of future framesR for the linker. All parameters have a direct phys-
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ical meaning and can easily be determined by inspection of a few frames of the
movie. Moreover, the graphical user interface described inAppendix A.3 provides
additional guidance and support for determining parametervalues.

1.1 Definitions and problem statement

Before describing the tracking algorithm and its application to biological video
sequences, we formally state the problem of feature point tracking and define the
terms that are used throughout this chapter.

Consider physicalparticles that are mobile in a two-dimensional plane. Their
motion isobservedusing imaging equipment and a digital (CCD) camera which
generates a sequence of digital images at discrete time points. We call this se-
quence amovieand an individual image from it aframe. In each frame the images
of the particles are visible asfeature points(or points). The goal is to approx-
imately reconstruct the motion of the observed particles. For a particlep, such a
reconstruction consists of an ordered series of point locations{xt

p = (xt
p, y

t
p)}Tt=1

over the recording time pointst = 1, . . . , T of the individual frames, and is called
a (discrete)trajectory. To generate the trajectories, thefeature point trackingal-
gorithm has to perform two distinct steps: first it has todetectthe feature points in
every frame and then it has tolink these point detections into trajectories. If a point
is detected where there is none, we call it afalse detection. The term“spurious
detection” on the other hand refers to a correctly detected point where there was
no particle of the desired kind in the real scene. Finally, linking two points that
are not images of the same physical particle is called afalse link. If a trajectory
does not extend throughout the whole movie it is called anincomplete trajectory.
The following sections describe and test an algorithm forfeature point tracking,
which is a sub-problem ofsingle particle trackingand does not include treatment
and analysis of the physical system under observation or theemployed imaging
equipment.

1.2 Feature point tracking algorithm

The automated reconstruction of trajectories from digitalvideos is developed un-
der the assumptions of small feature points (compared to thelength scale of back-
ground variations), limited speed, and short occlusions. The presented algorithm is
self-initializing and capable of handling occlusion, exit, and entry. It is in the same
functional class as theIPAN trackerintroduced by Chetverikov and Verestóy [55],
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except that the present work makes no assumptions about the smoothness of the
trajectories. We present the algorithm in its two-dimensional form. It however also
applies to tracking in three dimensions, provided three-dimensional video data are
available. The only adaptation that needs to be made is to useposition vectors with
three components instead of two.

1.2.1 Feature point detection

The algorithm is initialized by determining the global1 minimum Imin and max-
imumImax of all intensity values occurring in the movie. All pixel intensity values
I are then normalized as(I − Imin)/(Imax − Imin). The use of global extrema
preserves intensity variations across frames, serving as an important source of in-
formation in the linking step. The feature point detection consists of four steps:

1. Image restoration
2. Estimation of the point locations
3. Refinement of the point locations
4. Non-particle discrimination

The implemented algorithm has as a starting point the work byCrocker and Grier
[68] for the detection of colloidal spheres in micrographs.In the following, the
normalized frame image at observation timet is represented as a matrixAt(x, y)
of floating point intensity values between 0 and 1. The integer coordinatex =
1, . . . , Nx is the pixel row index andy = 1, . . . , Ny the pixel column index.

The image restoration step corrects for imperfections in the frame images.
There are two different effects accounted for: (1) long-wavelength modulations of
the background intensity due to non-uniform sensitivity among the camera pixels
or uneven illumination, and (2) discretization noise from the digital camera. The
former is straightforward to correct for since we assume thefeature points to be
small compared to background variations and thus well separated in spatial fre-
quency. The background is removed by aboxcar averageover a square region
with extent of2w + 1 pixel:

At
w(x, y) =

1

(2w + 1)
2

w∑

i=−w

w∑

j=−w

At(x+ i, y + j) , (1.1)

1i.e. across all the frames of the movie rather than within each frame individually
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where the user-defined parameterw is an integer larger than a single point’s appar-
ent radius but smaller than the smallest inter-point separation. The cameradiscret-
ization noise2 is modeled as homogeneously Gaussian with a correlation length of
λn = 1 pixel. Thede-noising filterthus consists of a convolution of the imageAt

with a Gaussian surface of revolution of half widthλn [68]:

At
λn

(x, y) =
1

B

w∑

i=−w

w∑

j=−w

At(x+ i, y + j) exp

(
− i

2 + j2

4λ2
n

)
, (1.2)

with normalization

B =

[
w∑

i=−w

exp
(
−
(
i2/(4λ2

n)
))
]2

. (1.3)

Both Eq. (1.1) and Eq. (1.2) amount to convolving the image with kernels of
support2w + 1. The steps are thus combined and the final image restoration
consists of a convolution of the original frame image with the kernel

K(i, j) =
1

K0

[
1

B
exp

(
− i

2 + j2

4λ2
n

)
− 1

(2w + 1)
2

]
. (1.4)

The normalization constant

K0 =
1

B

[
w∑

i=−w

exp

(
− i2

2λ2
n

)]2

− B

(2w + 1)
2 (1.5)

allows comparison among images filtered with different values ofw. The filtered
image after restoration is given by:

At
f (x, y) =

w∑

i=−w

w∑

j=−w

At(x− i, y − j)K(i, j). (1.6)

To perform above convolution, the image is temporarily padded to size(Nx +
2w) × (Ny + 2w) by repeating the first and last row and columnw-fold outward

2Digital (CCD) cameras generateshot pixel noiseduring the process of photoelectron counting.
Due to its discrete counting nature, this is a Poisson process [233]. The parameterλ in the Poisson
probability density function is equal to the expected number of detected photoelectronsN . ForN > 9
the Poisson distribution is well approximated by a Gaussiandistribution (with errors< 1%), and the
discrete photon counts can be interpreted as continuous intensities.
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each. Negative pixel values generated by the convolution are reset to 0. They are
an artifact of the approximation of the camera noise by a Gaussian distribution,
which breaks down at small intensity levels.

Estimating the feature point locationsis done by finding local intensity max-
ima in the filtered imageAt

f . A pixel is taken as the approximate location of a
point if no other pixel within a distance ofw is brighter, and if its intensity is in the
upperrth percentile of the frame’s intensity distribution. Theintensity percentiles
are determined on a per-frame basis in order to be robust against possible global
drift in image intensity over time, e.g. due to unspecific bleaching of the observed
particles. Thelocal maximum selectionis implemented as agrayscale dilation
[146] followed by the selection of all pixels that have the same value before and
after the dilation. If such a pixel is in the upperrth percentile of intensity values,
it is taken as the candidate location of a point. The percentile criterion is needed
to prevent the algorithm from selecting background pixels,that have low intensity
both before and after the dilation.

The local maximum selection of point centers suffers from two deficiencies: (1)
it is unable to reject noise, which leads to errors in the location estimate, and (2) it
may include spurious detections such as random bright points in the background
of the image or images of particle aggregates. This necessitates both a refinement
of the detected locations and a subsequent non-particle discrimination.

Refinement of the point locationsreduces the standard deviation of the position
measurement. Other information gathered in the process canfurthermore be re-
used later to reject spurious detections. We assume that thefound local maximum
of a pointp at (x̂p, ŷp) is near the true geometric center(xp, yp) of the particle.
An approximation of the offset is given by the distance to thebrightness-weighted
centroid in the filtered (to reduce noise-induced positioning errors) imageAt

f [68]:
[
εx(p)
εy(p)

]
=

1

m0(p)

∑

i2+j26w2

[
i
j

]
At

f (x̂p + i, ŷp + j) . (1.7)

The normalization factorm0(p) is the sum of all pixel values over the feature point
p, i.e. itsintensity moment of order 0:

m0(p) =
∑

i2+j26w2

At
f (x̂p + i, ŷp + j) . (1.8)

The location estimate is refined as:(x̃p, ỹp) = (x̂p + εx(p), ŷp + εy(p)). If
either|εx(p)| or |εy(p)| is larger than 0.5 pixel, the candidate location(x̂p, ŷp) is
accordingly moved by 1 pixel and the refinement re-calculated.
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Thenon-particle discrimination rejects spurious detections such as unspecific
signals, dust, or particle aggregates. The implemented classification algorithm
after Crocker and Grier [68] is based on the intensity moments of orders 0 and 2.
The0th order moment of each pointp has already been calculated in the previous
step. Thesecond order intensity momentis computed as:

m2(p) =
1

m0(p)

∑

i2+j26w2

(
i2 + j2

)
At

f (x̂p + i, ŷp + j) . (1.9)

The underlying assumption is that the majority of the detected observations cor-
responds to correct particles such that they form a dense cluster in the(m0,m2)-
plane. Larger and dimmer or brighter structures such as aggregates or accumula-
tions have different intensity moments and fall outside of the main cluster. Such
outliers are identified by having each pointp “carry” a 2D Gaussian

Pp(m0,m2) =
1

2πσ0σ2Nt
exp

(
− (m0 −m0(p))

2

2σ0
− (m2 −m2(p))

2

2σ2

)
(1.10)

with standard deviationsσ0 andσ2, andNt the total number of detected points.
The contributions of all other pointsq 6= p are summed for each pointp at its
location, giving ascore

Sp =
∑

q 6=p

Pq (m0(p),m2(p)) . (1.11)

Every point detection having a scoreSp above a certain user-provided threshold
Ts is considered an observation of a “true” particle, all others are discarded.

Notice that the standard deviationsσ0 and σ2 define the length scale of the
clustering and can be chosen such as to normalize the clusterwidths. LetImax

be the maximum intensity in the movie;Imax = 1 if the images are normal-
ized as described earlier. We then have the bounds0 ≤ m0 < Imaxπw

2 and
0 ≤ m2 < Imaxπw

4/2, which can be used to estimate values forσ0 andσ2. In
our experience, a value of about0.1Imaxπw

2 seems to be a fair choice. Fig. 1.1
illustrates the non-particle discrimination clustering applied to a confocal image
of fluorescently labeled Polyomavirus particles in aPTK2 cell(Helenius group).
The image shows a confocal slice through the cell and thus contains observations
of virus particles both on the plasma membrane and in the interior of the cell. The
clustering is used to discard virus particles packed together in endocytic organelles,
allowing analysis of individual free particles.
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Figure 1.1: Left panel: Example of the non-particle discrimination clustering in the
(m0,m2)-plane. Each symbol represents one detected feature point.The clustering with
σ0 = σ2 = 0.1, andTs = 2.0 (images normalized toImax = 1) classifies the points
marked by a plus symbol as “true” particles. Points outside the cluster are marked by
circles and are classified as spurious detections. Right panel: Confocal image of fluores-
cently labeled Polyomavirus particles in a PTK2 cell (Helenius group; image intensity is
inverted for printing purposes). The confocal slice contains both extracellular and intracel-
lular regions. Some internalized virus particles are packed together in endocytic organelles
that appear as larger fluorescent structures and are to be excluded from the trajectory link-
ing. The result of the clustering shown in the left panel is illustrated with plus symbols
marking “true” particles. Inset shows enlargement as indicated.
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1.2.2 Trajectory linking

The feature point detection algorithm is applied to each frame imageAt and yields
a set ofT (total number of frames in the movie) matricesCt ∈ R

Nt×2 with rows
[x̃p, ỹp]

Nt

p=1, whereNt is the total number of points detected in framet.
The linking algorithm identifies points corresponding to the same physical

particle in subsequent frames and links the positions{Ct}Tt=1 into trajectories.
This involves finding a set ofassociationsbetween thepoint location matrices
{Ct}Tt=1 such that a cost functional is minimized. The present implementation is
based on a particle matching algorithm [71, 72, 73] using a graph theory technique
[135] to determine optimal associations between two sets. This algorithm is exten-
ded so that each linking step may consider several frames to account for particle
occlusion.

LetP the set of pointspi, i = 1, . . . , Nt, in framet andR a user-defined integer
parameter specifying how many future frames are to be considered. For all sets
Qr, r = 1, . . . , R, of pointsqj , j = 1, . . . , Nt+r, in framet + r an association
matrixGt

r is defined:

Gt
r(i, j) = gij =





1 if pi in framet andqj in
framet+ r are produced by
the same physical particle,

0 otherwise.

(1.12)

We assume that there is always exactly one physical particleproducing a single
point detection. Note that this is a limiting assumption since particles could in
principle coalesce or come so close that they are indistinguishable by the used
imaging equipment, giving rise to one single point observation.

In order to allow the number of points to vary between frames,i.e.Nt 6= Nt+r,
every association matrix is augmented with both a rowg0j and a columngi0 for
dummy particlesat timest andt + r, respectively. Linking a point to the dummy
means that the corresponding particle disappeared from theobserved part of the
scene between framest andt + r, and linking the dummy to a point means that
the corresponding particle newly appeared. This leads to the following topology
constrainton the matricesGt

r:

Constraint 1 Every rowi > 0 ofGt
r and every columnj > 0 ofGt

r must contain
exactly one entry of value 1, all others are zero. Only row 0 and column 0 are
allowed to contain more than one entry of value 1.
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To find an optimal set of links{gij}, we need to define thecost functionalto
be minimized. In order to be able to use the efficient solutionalgorithm based
on the transportation problem [135, 72], this functional needs to be linear in the
association variablesgij and may thus be written as thelinear combination

Φ =

Nt∑

i=0

Nt+r∑

j=0

φijgij , (1.13)

whereφij represents theelementary costof associating pointpi in framet with
point qj in framet + r. The definition ofφ typically involves the point positions,
point characteristics, or, if available, temporal and spatial knowledge about the
physics of the process. For the above functional to be linear, φ itself must not
depend on the association variablesgij . In our case, we use the quadratic distance
betweenpi, i > 0, andqj , j > 0, as well as the quadratic differences in the
intensity moments of order 0 and 2, thus:

φij =
(
x̃pi
− x̃qj

)2
+
(
ỹpi
− ỹqj

)2
+(m0(pi)−m0(qj))

2
+(m2(pi)−m2(qj))

2

(1.14)

for i, j > 0. The cost of linking a point to one of the dummy particlesi =
0 or j = 0 is set equal to:φ0j = (rL)2, j > 0, andφi0 = (rL)2, i > 0.
This effectively places a limit to the allowed cost for pointassociations, since
no association of cost larger than(rL)2 can occur between regular points as the
dummy association would be more favorable. The special caseof linking a dummy
to a dummy, i.e.i = j = 0, is of no concern and is arbitrarily set toφ00 = 0. The
parameterL is specified by the user and represents the maximum distance apoint
is allowed to travel between two subsequent frames, given its intensity moments
remain constant. To accelerate the linking process, all costs {φij : φij > (rL)2}
are set to∞ and the correspondinggij is never considered in the following.

Initialization. The linking process starts by creating an arbitrary set of associ-
ations{gij} which satisfies the topology constraint. Any valid association matrix
Gt

r is acceptable since the linear nature ofΦ ensures that the minimum of the cost
function is unique [72]. Clever choice of the initial associations can however sig-
nificantly reduce the number of iterations needed in the subsequent optimization
process. The initial set of links is thus determined as follows: For each pair of
frames(t, r), r = 1, . . . , R, the association matrixGt

r is initialized by assigning
each point in framet its nearest neighbor, usingφ as the distance measure, in frame
t + r that is not already assigned to some other point. This means that for every
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given i = I, j = J is chosen such thatφIJ is the minimum of allφIj for which
no othergiJ is already set to one. ThisgIJ is then set to one. If no such minimum
is found, the point is linked to the dummy, i.e.gI0 is set to one. After having done
this for all the pointspi, everyJ for which allgiJ are 0 is determined and the cor-
respondingg0J are set to 1. This initialization generates a matrixGt

r that fulfills
the topology constraint. For low point densities this initial solution is already very
close to optimal since only few conflicts occur, viz. the association that would have
had the lowest elementary cost was already blocked by another one. To cope with
regions of high point density, the association matrix is iteratively optimized.

Optimization. For each iteration, we scan through allgij , including the dummy
particles, that are equal to zeroand have finite associated costφij . For these we
determine thereduced costof introducing that association into the matrix. The re-
duced cost of an associationgIJ = 0, I, J > 0, is calculated from the elementary
costsφ for i, j > 0 as follows: LetgIL = 1 andgKJ = 1, since every row and
column must contain a 1 according to the topology constraint. Now if gIJ was to
be set to one, thengIL andgKJ must turn zero, otherwise pointspI andqJ would
be in two places at once. Further, as point detectionsi = K andj = L must be
related to some physical particle, it is necessary to setgKL = 1. The reduced cost
of settinggIJ , I, J > 0, to 1 thus is:

zIJ = φIJ − φIL − φKJ + φKL I, J > 0 . (1.15)

If the reduced costzIJ is negative, introducing the associationgIJ into the solution
is favorable, as it decreases the value of the cost functional Φ. In the case of a
newly appearing particle, the association under consideration is atg0J for some
J > 0, and only the 1 in the same column atgKJ , K > 0, is turned into a 0 and
the dummy entrygK0 is set to 1. The reduced cost for an appearing particle thus
is:

z0J = φ0J − φKJ + φK0 J, K > 0, L = 0 . (1.16)

For a disappearing particle we similarly have:

zI0 = φI0 − φIL + φ0L I, L > 0, K = 0 , (1.17)

settinggI0, I > 0, to 1, turninggIL, L > 0, from 1 to 0, and setting the dummy
g0L to 1 as well. The special caseI = J = 0 is set toz00 = 0. After calculating
the reduced costs∀{(i, j) : gij = 0 ∧ φij < ∞}, thegIJ which corresponds to
the most negative reduced costzIJ = mini,j zij is set to 1, the correspondinggIL
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(if I 6= 0) andgKJ (if J 6= 0) to zero, andgKL to one. All the reduced costs are
then re-calculated and the iteration is repeated untilzij > 0, ∀ (i, j), which means
that theoptimal set of associations, with cutoffL, between framest andt+ r has
been found.

After doing so for allr = 1, . . . , R and a fixed specifict, all points inCt that
have been linked to the dummy particle inCt+1 are closer analyzed to re-connect
broken trajectories as caused e.g. by particle occlusion, asensitive non-particle dis-
crimination, or a particle being close to the intensity percentile threshold. For each
such pointpi in framet, all association matricesGt

r, r = 2, . . . , R are scanned for
valid associations to non-dummy points. If there are such associations, the one that
has the smallest reduced cost is accepted and the corresponding point detections
are linked.

Repeating the whole procedure for every framet leads to an optimal (in the
sense of the chosen cost functionalΦ) linking of the detected point locations into
trajectories over time. The computational cost of this linking algorithm formally
scales asO

(
R(N2 −N)

)
and the algorithm needsO

(
RN2

)
memory. Associ-

ations between well-separated particles are however initially marked by an infinite
cost and are never considered during optimization. This greatly improves the com-
putational efficiency. The number of possible associationswith finite cost values
φij is > max (Nt, Nt+r), but much less than(Nt + 1)(Nt+r + 1), depending
on the actual distribution of the particles. In practice, the computational time for
the present algorithm increases only slightly more rapidlythanO(RN) andR is
usually small (< 5). The trajectory linking hence takes less time than the feature
point detection in most practical applications. A typical optimization of the asso-
ciation matrixGt

r needs on the order of 10 iterations until the optimum set of links
is found.

1.2.3 Computer implementation

The described feature point tracking algorithm is implemented in ANSI C as
a multi-tier application using theclient-serverparadigm. The communication
between the server and the clients is controlled by a simple packet-based protocol
as specified in Appendix A.2.5. This makes it possible to reach the server from
any remote computer that provides access to the network.
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Server

Theserverapplication is completely written in standard ANSI C without compiler-
specific extensions. This ensures portability of the code asit compiles and runs on
every operating system that provides an ANSI C compiler.

The server consists of two parts: communication and point tracking. The point
tracking part provides anApplication Programming Interface(API) that is used
by the communication part. This API implements the algorithm described in this
section plus a set of functions for setting the tracking parameters, submitting a list
of images, and retrieving the results. The technical documentation of the API is
contained in Appendix A.2.3. The communication part connects the tracker API
with multiple, potentially concurrent, clients. This is realized bymulti-threading
under the Microsoft Windows operating system, andmulti-processingon all other
platforms. The server accepts new connections from clientsuntil a pre-defined
maximum is reached. Further connection requests are deniedby sending an ap-
propriate protocol message to the client.

After establishing a connection, the server is listening torequests from the client.
Initialization of the tracking procedure involves uploading all frame images of the
movie. To avoid memory limitations, the server stores the frames on its hard disk.
After at least two images of a valid file format are uploaded, the client can initiate
the tracking process. The server then detects all particlesin every frame and links
the positions over time as described above. The tracking canbe interrupted any
time by areset signal(cf. Appendix A.2.5).

The complete users manual of the server application is contained in Appendix
A.1.1.

Client

Both a graphical and atext-mode clientare provided. The latter is a lightweight
implementation for efficient batch use, the former provideseasy interactive use.
Both clients are portable to a number of operating systems with the text mode
client entirely written in ANSI C, and the graphical client in Java. Both clients
have been tested on MacOS X, Windows, and Linux operating systems.

The client application provides an implementation of the communication pro-
tocol and a user interface. It sets the user-defined parameters of the tracking server,
reads and submits an image sequence either as a series of TIFFimages or directly
from an MPEG-1 movie file, and receives the resulting trajectories from the server.

The text-mode client reads all information from input files and stores the results
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in output files. The users manual in Appendix A.1.2 specifies the file formats.
Thegraphical clientprovides interactive use and assisted parameter choices. A

preview functionality is available to easily test the effect of a parameter change.
The graphical client also allows to filter the trajectories and to directly analyze
their motion properties, diffusion constants [223], or moment scaling spectra [101]
(cf. also Section 2.1). Furthermore, the graphical client can import and export tra-
jectory data and parameter settings, and it also supports the printing and exporting
of analysis plots. The complete users manual of the graphical client is contained
in Appendix A.3.

Communication protocol

The packet-based communication protocol between the server and the clients is
based onTCP/IP and uses a fixed-length packet header followed by a body of
limited length (cf. Appendix A.2.5). The header specifies the message type and the
length of the packet body. Receipt of every package is acknowledged to prevent
loss of data. Since packet size is limited, it can be necessary to split an uploading
file across multiple packets. They can be sent in any order, even interlaced with
parameter packets. The server reconstructs the file after the last packet has been
received.

Supported file types

TIFF images and MPEG-1 movie streams are currently supported. The support
for TIFF images is provided by the open-source libtiff [286], MPEG-1 streams are
handled by the open-source mpeglib [283].

1.3 Benchmarks

1.3.1 Computational cost

This section presents benchmark results testing the computational performance
of the feature point tracking software. We also assess the memory usage of the
program and describe a heuristic that is used to find the fastest algorithm for com-
puting the convolution in the image restoration step of Subsection 1.2.1.
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Timing results

The timing benchmarks are performed using movies consisting of 40 frames of
size 512×512 pixel showing 24 particles moving along parallel straight lines. The
kernel radius is set tow = 6 pixel, the maximum displacement toL = 20 pixel,
and the threshold percentile tor = 0.1%. The complete tracking process takes 25
seconds and uses 8 MB of main memory on a 1.8 GHz AMD Athlon computer with
256 MB of memory, running Microsoft Windows 2000 Professional. The software
was compiled using Microsoft Visual Studio 6 with release compiler settings.

Usingw = 3, a sequence of 100 frames of size 118×118 pixel showing 10
horizontally moving particles is tracked in less than 1 second on a 3.06 GHz Intel
Pentium 4 computer running Linux. A movie of 3000 frames of size 214×214
pixel is processed in 14 seconds on the same machine.

A heuristic for time-optimal convolution

The convolution needed in the image restoration step can be computed either by
direct evaluation of the sum or usingFast Fourier Transforms(FFT). For small
kernel radii, the direct evaluation is faster, whereas the FFT method is preferable
for large kernels. In order for the program to choose the appropriate method, we
derive a simple heuristic from our timing results. Table 1.1shows the computa-
tional time in milliseconds required by either method for different kernel sizes. We
find the cross-over point at a kernel radius of 10 pixel.

The results for a constant kernel radius and varying image size are shown in
Table 1.2. The cross-over point forw = 12 is around an image edge length of
400 pixel. For larger kernel radii, the cross-over point shifts toward smaller image
sizes. Forw = 20 it is at 256×256. For kernel sizes< 10 the direct method is
always faster than the FFT (data not shown).

Using information about both the image size and the kernel radius, the time-
optimal method of convolution is chosen by the program according to the follow-
ing rules:

• Forw < 10, the direct sum is used for all image sizes.

• For10 6 w < 20, the choice depends on the size of the image. If the image
edge length is smaller than the mean of the two nearest powersof two, the
direct method is used, otherwise the FFT. The larger power oftwo is used
as the effective image size since the FFT needs to pad the image.

• For20 6 w, the FFT method is used for all image sizes.
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Radiusw [pixel] Direct sum [ms] FFT [ms]
1 4 15
2 4 16
3 5 16
4 8 17
5 11 20
6 17 24
7 21 26
8 25 29
9 30 31
10 35 35
11 40 38
12 47 42

Table 1.1: Computational time in milliseconds to calculatethe convolution. For a fixed
image of size 500×500 pixel, the kernel radiusw is gradually increased. All results are
averaged from 30 independent measurements.

Although these rules constitute a very simple model, they are effective enough to
provide the proper choice of convolution method.

1.3.2 Accuracy and precision

The quality of the feature point detection is evaluated using synthetic frame se-
quences of moving point blobs. This method of evaluation is preferred over the
common experimental practice of tracking a stationary/fixed particle and use the
variance of the detected point positions as a measure of tracking quality. The true
accuracy of the algorithm is given by its bias [53], which cannot be estimated
unless the precise and correct relative position of the particle with respect to the
elements of the imaging system is known. The only way to achieve such conditions
is the use of numerical simulations.

A good tracking algorithm has to meet two independent measures of quality: it
should minimizedeterminate errorsresulting from inaccuracies inherent to the al-
gorithm and it should also minimizeindeterminate errorsfrom measurement fluc-
tuations and imaging noise. While determinate errors systematically bias the po-
sition detections toward incorrect values, indeterminateerrors fluctuate randomly.
Following the terminology of Cheezumet al. [53], we refer to the measure of
determinate errors asaccuracyand the one of indeterminate errors asprecision.
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Image size [pixel] Direct sum [ms] FFT [ms]
256×256 13 20
300×300 17 23
350×350 23 27
400×400 30 31
450×450 38 36
500×500 47 42

Table 1.2: Computational time in milliseconds to calculatethe convolution. For a constant
kernel radius ofw = 12 pixel, the image size is gradually increased.

Both accuracy and precision are estimated for a moving pointsource at different
Signal-to-Noise Ratios(SNR) and pixel displacements per frame (∆x). Synthetic
frames are created, showing particles moving along straight horizontal lines with
a constant speed of∆x pixel/frame, cf. Fig. 1.3. Observation is simulated by
centering a 2DGaussian blob

I(x, y) = I0 · exp

(
− (x− xp)

2
+ (y − yp)

2

4σ2

)
(1.18)

of standard deviationσ = 1 pixel [284] at the current particle location(xp, yp)
and sampling its value at the centers of all pixelsx = 1/2, 3/2, 5/2, . . .; y =
1/2, 3/2, 5/2, . . .. Gaussian blobs are used as an approximation to (1) the sinus-
oidal intensity distribution of radially emitting spherical beads and (2) the square
Bessel point spread function of a sub-resolution particle imaged using a micro-
scope.

In order to model different SNR, a background (black) level of b = 10 is added to
all pixels and the peak intensityv of the blobs is varied by settingI0 = v−b before
adding the blobs to the images. For the noise model we assume that the images are
acquired using a digital CCD camera. Such cameras producePoisson-distributed
shot pixel noisedue to the discrete nature of photoelectron counting [233].Pixel
noise is thus simulated by replacing the intensity valueI of each pixel with a
random number from a Poisson distribution of expectation value λ = I. Fig. 1.2
illustrates the effect of such noise on a Gaussian blob. All random numbers are
generated independently for every trial and frame, and the resulting frame images
(cf. Fig. 1.3) are stored as unscaled 16-bit TIFF files.

The SNRis calculated as the difference in expected intensity levels between
the particle peaksv and the backgroundb, divided by the noise levelσn on the



1.3. BENCHMARKS 21

0
5

10
15

0

10

20
0

10

20

x   [pixel]y   [pixel]

In
te

ns
ity

   
[a

.u
.]

0
5

10
15

0

10

20
0

10

20

x   [pixel]y   [pixel]

In
te

ns
ity

   
[a

.u
.]

Figure 1.2: Example of a simulated particle observation before (left panel) and after (right
panel) addition of Poisson noise. Insets show the particle images whose pixel intensity
distributions are depicted in the surface plots below. The example shown uses a peak level
of v = 23.9 and a background level ofb = 10, resulting in a signal-to-noise ratio of2.846.

particles. For the employed Poisson noise this isσn =
√
v and thus:

SNR=
v − b√
v
. (1.19)

This is the most conservative definition of SNR possible as using the noise level
of the image background would lead to much larger values. These larger values
are however inappropriate [53] since the stronger noise on the bright blobs is what
affects the feature point detection and causes its inaccuracy. When measuring the
SNR of real images, the noise ought to be estimated from the bright points instead
of from the dark background. The peak pixel levels used in thepresent benchmark
cases are given in Table 1.3 along with the corresponding resulting SNR values
according to Eq. (1.19).

Accuracy and precision of the algorithm are quantified for different SNR and
∆x using respectively the trackbias

bias= 〈â− a〉 (1.20)

and itsstandard deviation

σ = 〈(â− 〈â〉)2〉1/2 . (1.21)

Hereby,〈·〉 denotes the ensemble average over independent trials,â are the recon-
structed particle displacements from the tracking algorithm, anda the actual exact
displacements.
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Figure 1.3: Example benchmark tracks. Each test case consists of an image sequence of
100 frames with 10 moving points, yielding 1000 independentdisplacement measurements
â with known exact valuesa = ∆x. The first (left panel) and last (right panel) frame of
an example with∆x = 0.27 pixel, peak levelv = 23.9, and background levelb = 10
(SNR= 2.846) are shown with lines depicting trajectories as reconstructed by the present
tracking algorithm. All 10 trajectories are of full length 100. Insets show enlargements as
indicated.

Fig. 1.3 shows both the first and the last frame at SNR= 2.85. The trajectories
as reconstructed by the tracking algorithm are shown as solid lines in the right
panel. The bold circles in Fig. 1.4 show the results for accuracy and precision
versus SNR for a fixed displacement of∆x = 0.27 pixel. Fig. 1.5 shows bias
and standard deviation versus the magnitude of the true particle displacement per
frame between 0 and 1 pixel in steps of1/11 pixel at a fixed SNR of 31.3.

Thecritical SNRfor the accuracy to become better than 0.1 pixel is around 4.2
for the present algorithm, indicating its good capability to handle noisy images.
The precisionσ is better than 1 pixel for all SNR larger than 1.3, cf. Table 1.4. For
all SNR above 7.5, both the standard deviation and the bias are below 0.1 pixel.
The present algorithm shows about the same accuracy as the more complex and
computationally intense Gaussian fit and cross-correlation methods, while hav-
ing better precision. The smooth and monotonic decay of bothbias and standard
deviation with increasing SNR are additional favorable properties of the present
method, and the bias is virtually constant (and low) for all step displacements
∆x > 0.1 pixel. The fact that the present algorithm avoids fitting a specific point
spread function shape to the blobs in the frame images not only results in faster
execution speed, but also renders it more general with respect to size and shape of
the tracked objects.

In a second test, the simulated points are moving along straight lines of random
angular orientation, thus exhibiting truly two-dimensional motion. Trajectories
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peak levelv SNR
15 1.291059
18.58 1.990510
23.9 2.846111
28.73 3.494379
38.1 4.556798
60.8 6.516668
97 8.832892
154.7 11.632132
246.6 15.067460
393.3 19.326731
627.1 24.642859
1000 31.306549

Table 1.3: Peak pixel levelsv and resulting SNR used for the test cases in Fig. 1.4. The
background level is fixed atb = 10.
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Figure 1.4: (a) Bias versus Signal-to-Noise Ratio (SNR) fora Gaussian blob moving at
0.27 pixel/frame. (b) Standard deviation versus SNR for thesame cases. Each point is
averaged from 1000 independent measurements. The present algorithm (bold circles) is
compared to four existing algorithms as benchmarked by Cheezum et al. [53]: Gaussian
fit (squares), Centroid (triangles), Sum of absolute differences (stars), Cross-correlation
(diamonds).

24
CHAPTER 1. AUTOMATED TRAJECTORY ACQUISITION BY VIDEO

ANALYSIS

0 0.2 0.4 0.6 0.8 1
−0.1

−0.05

0

0.05

0.1

∆x   [pixel/frame]

B
ia

s 
  [

pi
xe

l]

(a)

0 0.2 0.4 0.6 0.8 1
0.01

0.02

0.03

0.04

0.05

0.06

0.07

∆x   [pixel/frame]

σ 
  [

pi
xe

l]

(b)

Figure 1.5: (a) Bias versus actual distance moved per frame for a Gaussian blob at
SNR = 31.3. (b) Standard deviation versus actual distance moved per frame for the
same cases. Each point is averaged from 1000 independent measurements. The present
algorithm (bold circles) is compared to four existing algorithms as benchmarked by Chee-
zum et al. [53]: Gaussian fit (squares), Centroid (triangles), Sum of absolute differences
(stars), Cross-correlation (diamonds).

Algorithm SNR0.1bias SNR1.0σ

Present work 4.2 <1.3
Gaussian fit [53] 4.2 4.0
Centroid [53] 7.8 6.6
Sum of absolute differences [53] 6.9 8.1
Cross-correlation [53] 4.2 6.3

Table 1.4: Simulated SNR beyond which the bias remains below0.1 pixel andσ below 1
pixel. Comparison of the present algorithm with the ones tested by Cheezum et al. [53].
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Figure 1.6: (a) Bias versus Signal-to-Noise Ratio (SNR) for10 Gaussian blobs moving at
random angular orientations with 0.27 pixel/frame. (b) Standard deviation versus SNR for
the same cases. Each point is averaged from 3500 independentmeasurements. Circles
indicate thex component, squares they component of the respective measures.

can intersect and points can leave the image, in which case they reappear on the
opposite side (periodic boundary conditions), and a new trajectory starts. This test
mimics the situation offinite dilution. The same background and peak values are
used as for the previous test (cf. Table 1.3), but bias and standard deviation are
computed on the actual positions(x, y) – rather than the displacementsa – as:

biasx = 〈x̃− x〉 biasy = 〈ỹ − y〉 (1.22)

and

σx = 〈((x̃− x)− 〈(x̃− x)〉)2〉1/2 σy = 〈((ỹ − y)− 〈(ỹ − y)〉)2〉1/2 ,

(1.23)

where〈·〉 now denotes the ensemble average over all point detections in a movie.
The results are shown in Fig. 1.6. While the standard deviation is comparable to the
one in Fig. 1.4, the bias values are much lower than in the previous test. This is due
to the fact that bias and standard deviation are correlated in the one-dimensional
case, whereas they are independent here.

To test the trajectory linking in the case where two particles cross, we con-
sider test movies showing 10 horizontally moving points and10 vertically moving
points, such that each pair of points exactly coincides in a certain frame. The
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Figure 1.7: Sequence of two moving points with the upper one missing in two frames,
e.g. due to occlusion or tight thresholding. The link range isR = 3, thus taking 3 sub-
sequent frames into account for each linking step. The panelto the very right shows the
correct recovery of the broken trajectory. (Image intensities are inverted for printing pur-
poses.)

background intensity is again fixed at 10, and the peak intensity of the horizontally
moving points is fixed at 23, corresponding to an SNR of 2.71. The peak intens-
ity of the vertically moving points is gradually increased.Whenever two particles
coincide, only one point observation is detected. Since thelinking algorithm does
not allow a point to be part of multiple links in any frame, oneof the two traject-
ories must end. In the case where the two point sets are of equal brightness, the
choice is random. In 50% of the cases, the vertical trajectory is continuous and
the horizontal one pauses, and vice versa for the other 50%. If the point intens-
ities (i.e.m0) however differ, the trajectory of the brighter particle isconsistently
continued, whereas the dimmer one breaks. This is due to the particular choice of
linking cost function, Eq. (1.14), where differences inm0 are taken into account,
and the fact that the brighter particle “masks” the dimmer one in the local max-
imum selection. A difference in SNR of0.15 is sufficient for this to happen in
100% of the cases.

The case where a particle temporarily escapes detection is considered in Fig. 1.7.
Extending the link range toR > 1 future frames (cf. Section 1.2.2) successfully
prevents gaps in the resulting trajectories, as both pointsare available for linking.



Chapter 2

Trajectory Analysis

The automated reconstruction of trajectories from video sequences provides us
with a wealth of information that can be exploited to quantify the particles’ mo-
tions. Rather than a-priori distinguishing between “random” and “deterministic”
types of motion, we use a single method of analysis for all trajectories. This is
motivated by the fact that every motion can be viewed as a particular realization of
astochastic processof particle positionsx(t). The motion process is hereby com-
pletely characterized by the probability of a particle originally atx0 to be atx after
some timeδt. The resulting probability densityP (x|x0, δt) is called thetransition
densityof the process. For unrestricted isotropic diffusion ind-dimensional space,
the transition density is analytically known [48] to be the Gaussian

P (x|x0, δt) =
1

(4πνδt)d/2
exp

[
−‖x− x0‖22

4νδt

]
, (2.1)

with ν the diffusion constant of the process. This result is obtained from thecent-
ral limit theoremfor a large number of independently movingBrownian particles
[40, 92]. The same theory also applies to, e.g., an object moving deterministically
along a straight line with constant velocityv. Its transition density is given by the
Dirac distributionP (x|x0, δt) = δ(x−x0 − vδt). This type of formulation thus
allows us to use the same analysis methods for all types of motion and to con-
sider trajectories of particles that change their behaviorover time, a phenomenon
frequently observed in biological applications.

In this chapter we present a hierarchy of trajectory analysis methods. Starting
from global whole-trajectory methods, more locally resolved types of analyses
are constructed. The global analysis is based on operators that reduce complete
trajectories – or parts of a larger trajectory – to scalar numbers, employing certain
averaging techniques along the trajectories (Section 2.1). After briefly reviewing
the classical mean square displacement method [223, 242] inSubsection 2.1.1, we
extend the global analysis by an additional operator that isbased on the Moment
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Scaling Spectrum (MSS) [101] of the trajectory (Subsection2.1.2). We show in
Chapter 4 that the combination of these two parameters allows to quantify both
the “speed” and the “freedom” of the moving object independently. A simple
analysis of the angle changes between subsequent displacement steps can also
provide valuable information, as outlined in Subsection 2.1.3.

Temporal resolution can be achieved by considering an analysis window that
moves along the trajectory. Within the moving window, independent global ana-
lyses are performed, resulting in a (smoothed) time series of quantification para-
meters, which allows to study their evolution along the trajectory as outlined in
Section 2.2.

Moving window methods are limited by the inherent trade-offbetween temporal
resolution, given by the width of the window, and statistical uncertainly. This
can be overcome by decomposing the trajectory into pre-defined segments. Such
trajectory segmentationtechniques may be used to detect periods of immobility or
super-random motion within a trajectory. In Section 2.3 we present an automatic
trajectory segmentation procedure that is based on neural networks. The segments
identified by such an algorithm can then be quantified separately to measure, e.g.,
the distribution of residence times in arrest zones or the mean speed during periods
of directed transport.

Based on a segmentation of the trajectory, it becomes possible to defineevents
as particular sequences of segments (Section 2.4). Event counts however need to
be normalized by the expected number of events under purely random conditions.
We present a Monte Carlo simulation technique and an analogyto chemistry as
ways to provide such normalization.

2.1 Global trajectory analysis

The objective ofglobal trajectory analysisis to reduce a complete trajectory to one
or several scalarquantification parameters, describing certain characteristics of the
motion. These quantification parameters can be defined as averages of functions
of the trajectory data pointsx, thus

Φ(∆n) =
1

M −∆n

M−∆n−1∑

i=0

f(x(i),x(i+ ∆n)) , (2.2)

whereM is the total number of points in the trajectory and∆n = 1, . . . ,M/Tf

is the frame shift. Combining several such parameters allows to represent the tra-
jectory as a point inphase space. Since the number of parameters is usually much
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smaller than the number of points in the trajectory, thisdimensionality reduction
operation has to be designed to preserve the most important features of the motion.

After reviewing the classical mean square displacement method and its limita-
tions, we propose an extension that is based on the work by Ferrari et al. [101].
This extension allows to treat a wide range motion types using a single theory.

2.1.1 Mean square displacement and diffusion constant

The second moment of the individual step displacements of a discrete trajectory is
the most commonly used quantification parameter.

To define this parameter and its relation to the diffusion constant, letxℓ(n) ∈ R
d

the position vector on trajectoryℓ at timen∆t for n = 0, 1, 2, . . . ,Mℓ − 1, where
Mℓ is the total number of points in trajectoryℓ, i.e. its length. ∆t is the real-time
difference between two subsequent frames, viz. thesampling timeof the discrete
trajectory. TheMean Square Displacement(MSD) during a specific time interval
δt = ∆n∆t is defined as

µ2(δt) = 〈‖x(δt)− x(0)‖22〉 . (2.3)

The average〈·〉 is taken over an ensemble of independent trajectories of thesame
motion process and can only be analytically computed for those special cases
where the transition density is known. For isotropicBrownian motion, the trans-
ition density is given by Eq. (2.1) as long asδt ≪ L2/(2d/ν), whereL is the
diameter of the space available for diffusion. For this particular transition density,
the MSD can be analytically computed as [223]

µ2(δt) =

∫∫
P (x0)‖x− x0‖22P (x|x0, δt) dx dx0 = 2νdδt . (2.4)

Measuring the MSD of a trajectory of a diffusion process thusallows to determine
its diffusion constantν from the slope ofµ2 versusδt.

Diffusion with an overlaid deterministic drift of velocityv is treated similarly,
leading to the expressionµ2 = 2νdδt+ (‖v‖2δt)2 [48]. The drift speed‖v‖2 can
be determined from the curvature ofµ2 versusδt, or the slope in a logarithmic
plot.

For most practical applications, the transition densityP (x|x0, δt) is however
unknown. The ensemble average is thus replaced by a time average, assuming that
the process isstationaryandergodic[164]. This allows to compute the MSD for
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any given trajectory as

µ2(∆n) =
1

Mℓ −∆n

Mℓ−∆n−1∑

n=0

||xℓ (n+ ∆n)− xℓ (n)||22 . (2.5)

If the trajectory has a finite lengthM < ∞, the above average is interpreted as
the mean of a set of random variables. As such, it has astatistical uncertainty,
quantified by its variance [223]

var(µ2(∆n)) =
(2νd∆n∆t)

2

C
, (2.6)

where

C =
3∆n (M −∆n+ 1)

2∆n2 + 1
(2.7)

corrects for the fact that the samples in the time average Eq.(2.5) are correlated.
The resulting variance for the measured diffusion constantis [223]

var(ν) =
2∆n

3 (M −∆n)
. (2.8)

From Eq. (2.6) it is obvious that the error in the MSD increases as∆n approaches
M . We thus compute the MSD using Eq. (2.5) only for∆n = 1, . . . ,M/Tf with a
factorTf > 1. UsuallyTf = 5, which bounds the standard deviation of the MSD
at 40%.

2.1.2 Anomalous diffusion and moment scaling spectrum

The MSD as introduced in the previous section allows the determination of diffu-
sion constants and velocities for normal Brownian diffusion processes and diffu-
sion with superimposed uniform drift.Normal diffusionprocesses are character-
ized by an MSD that grows linearly with time shift, thusµ2 ∝ δt. If this is not the
case, the process is calledanomalous diffusion[240]. Anomalous diffusion can
for example originate from finite diffusion spaces, i.e. confinement, or long-tailed
transition densitiesP (x|x0). For the former case, it is clear that the MSD can not
continue to grow linearly as soon as the particles start to hit the boundary. Instead,
we have the finite limit [223]

lim
δt→∞

µ2(δt) = 2
(
〈‖x‖22〉 − 〈‖x‖2〉2

)
, (2.9)
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which is proportional to the size of the space accessible to diffusion. The case of
long-tailed distributionsP (x|x0) was first studied by Ĺevy [166]. It corresponds
to a motion process where the particles occasionally “breakout” and “fly” over a
long distance. TheseLévy flightsare, e.g., observed in turbulent fluid flows [311],
or in biological systems involving active transport by motor proteins. Mathematic-
ally, Lévy flights are characterized by a transition densityP (x|x0) with an infinite
second moment. In this case, the central limit theorem no longer applies and the
diffusion constant is not defined [311]. These cases are calledsuperdiffusionand
their MSD grows faster than linear with time:µ2 ∝ δtγ(2) with 1 < γ(2) < 2.
Cases with0 < γ(2) < 1 are termedsubdiffusionand can for example originate
from confinement of the particles. The special case ofNormal diffusionis included
with γ(2) = 1.

Ferrari et al. have shown that anomalous cases withγ(2) = 1 exist, so that
the inversion of above characterization of normal diffusion does not hold. They
considered a generalized version of thetelegraph model[197, 101], describing the
correlated random walks of an ensemble of particles that randomly switch between
moving with velocity+v, 0, or −v. The switching probabilities between these
three states depend on the elapsed time since the last switch. The particles thus
carry an “age”, making the process non-Markovian. We reproduce the results
of Ferrari et al. [101] by simulating the telegraph model in the computer. The
MSS as determined from these simulations is plotted in Fig. 2.1(a), and shows
that γ(2) = 1. Standard MSD analysis would thus classify this process as nor-
mal diffusion. The transition density shown in Fig. 2.1(b) however reveals the
non-Gaussian character of the process, certainly not corresponding to normal dif-
fusion. This finding means that the MSD is not a sufficient criterion to distinguish
Gaussian from non-Gaussian processes.

A sufficient criterion can be found by extending the trajectory analysis to the
whole spectrum ofdisplacement moments[101]:

µp(∆n) =
1

Mℓ −∆n

Mℓ−∆n−1∑

n=0

‖xℓ (n+ ∆n)− xℓ (n) ‖p2 . (2.10)

The MSD is included as the special case ofp = 2. Each moment obeys ascaling
power law[101]

µp ∝ δtγ(p) , (2.11)

for which thescaling coefficientγ(p) can be determined fromlog µp(δt) versus
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log δt using linear regression. The function

γ ∈ C1 : R+
0 7→ R

+
0 , p→ γ(p) (2.12)

is called theMoment Scaling Spectrum(MSS) of the trajectory. Sinceγ(0) ≡ 0,
the MSS always starts at the origin. Considering the complete spectrum of mo-
ments allows unambiguous classification of the process in Fig. 2.1 as anomalous
diffusion.

Ferrariet al. have introduced a classification of dispersion processes according
to their MSS. Processes with linear MSS are calledstrongly self-similar, those with
non-linear MSS are calledweakly self-similar. Mathematically, the distinction is
based on the observation that the transition densities asymptotically collapse to a
self-similar form

P (x|x0, δt) ∝ δt−βP
( x

δtβ

)
for δt→∞ . (2.13)

A process is strongly self-similar if and only ifβ = dγ(p)/dp = const∀p, mean-
ing that the MSS is linear with slopeβ. For normal diffusion we haveP a Gaus-
sian andβ = 1/2. For ballistic motion we haveβ = 1. Subdiffusive processes
are characterized by0 < β < 1/2, and superdiffusive processes by1/2 < β < 1.
Any process with non-constantβ(p) is weakly self-similar.

Despite the fact that the diffusion constant is mathematically not defined ifP is
a Lévy density, we artificially extend its definition by analogyto Eq. (2.4):

µp = pνpdδt
γ(p) . (2.14)

The diffusion constant of a discrete trajectory is thus obtained from they axis
intercepty0 of the linear regression oflog µp(δt) versuslog δt as

νp = (dp)−1 · exp(y0) . (2.15)

In the case of normal diffusion,ν2 corresponds to the regular diffusion constant
and we often omit the index2 and simply writeν.

Determiningβ for an experimentally recorded trajectory provides a systematic
characterization of particle motion, enabling more rigorous quantification and clas-
sification of biological dispersion processes [96]. To determine the slopeβ of a
measured MSS, a linear least-squares fit is used. We do not constrain the regres-
sion toγ(0) = 0, since this would increase the residual in all weakly self-similar
cases, while it is of no effect for strongly self-similar processes. This choice seems



2.1. GLOBAL TRAJECTORY ANALYSIS 33

-1

0

1

2

3

4

5

6

0 1 2 3 4 5 6

γ
[–

]

p [–]

(a)

1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

1e-0

-1500 -500 0 500 1500

x/δt1/3

δt
−

1
/
3
P
( x
/δ
t1

/
3
)

(b)

Figure 2.1: (a) Moment scaling spectrum determined from a Monte Carlo simulation of
the generalized telegraph model [101]. The MSS values from the simulation are shown as
crosses (+). The dotted lines mark the slopes 1/2 and 1, the dashed linesthe asymptotes.
The second order moment (MSD) is proportional to time, but the process is weakly self-
similar as indicated by the non-constant MSS slopedγ/dp. (b) The self-similar transition
density (p = 1) of the simulated process for largeδt. The similarity exponentβ = 1/3
corresponds to the slope of the lower asymptote in the MSS. Points marked by crosses (+)
are determined from the Monte Carlo simulation.
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appropriate as it avoids manifesting the non-universal prior of linearity. An MSS
analysis typically combinesβ andν2 in a two-dimensionalphase spaceto repres-
ent the motion. Whileν2 provides a measure of motion speed,β quantifies the
motion type. Representing a trajectory in the(ν2, β)-plane thus allows to observe
both quantities simultaneously, as illustrated in Fig. 2.2.

Besides reduced ambiguity in anomalous diffusion cases, the MSS analysis has
the additional advantage of better accuracy. Since higher-order moments are taken
into account, the MSS curve is less noisy than the corresponding MSD curve
(cf. Fig. 2.2). The linear regression typically used to determine the curve’s slope
is thus more robust. In addition, thestatistical truncation uncertaintyfrom finite
trajectory lengths is reduced compared to the MSD. Analogous to Eq. (2.6), the
variance of the moment of orderp is given by

var(µp(∆n)) =
(pνpd∆n∆t)

2

C
, (2.16)

with the normalization constantC defined in Eq. (2.7). For the generalized diffu-
sion constants we have

var(νp) =
p∆n

3 (M −∆n)
. (2.17)

Assuming thatνp andγp = γ(p) are uncorrelated, we find

var(log µp) = var(log νp) + log 2δt var(γp)

and thus

var(γp) = [var(log µp)− var(log νp)] log
−2(∆n∆t) . (2.18)

Since all terms in the above expression are non-negative, the variance ofγp is smal-
ler than the variance ofµp, makingβ the more accurate measure thanγ2 = γ(2).
For general motion processes with unknown transition density, it is impossible to
express var(log ·) in terms of the known var(·). Fig. 2.3 shows the experiment-
ally determinedγ2 andβ for trajectories of Polyomavirus particles on the plasma
membrane of live cells (cf. Chapter 4). The error bars indicate the standard de-
viation as determined numerically from the variance of the moments (Eq. (2.16)).
The error bars forν2 are within the theoretical worst case of 40% for the used
Tf = 5, as predicted by Eq. (2.8). These results illustrate that the MSS provides a
more robust and accurate indicator than the MSD. For the Polyomavirus trajector-
ies in Fig. 2.3, it would be impossible to distinguish a freely mobile virus particle
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Figure 2.2: Illustration of the moment scaling spectrum analysis. The panel in the upper-
left corner shows an experimentally recorded trajectory ofan Adenovirus-2 particle on the
plasma membrane of an M21 cell (Greber group, arrow head marks trajectory beginning).
The mean square displacement according to Eq. (2.5) is shownin the upper-right panel. The
moment scaling spectrum as defined in Eq. (2.12) is shown in the lower-left panel with the
dashed lines indicating the slopes1/2 and1. The resulting representation of the trajectory
in the(ν2, β) phase plane is shown in the lower-right panel.
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Figure 2.3: Comparison of the statistical uncertainties ofMSD analysis and MSS analysis.
(a) MSD analysis of Polyomavirus particle motion on the plasma membrane of live 3T6 cells
(Helenius group). Error bars indicate the standard deviation according to Eq. (2.16) and
numerical calculation of the downstream parameters. The large error bars of the MSD slope
make it impossible to accurately classify the motion types.(b) MSS analysis of the same data
set. The accuracy of the MSS slope is much better, enabling unambiguous classification.

from a completely stationary one using standard MSD analysis, since the standard
deviation bars of the two classes significantly overlap. TheMSS analysis, how-
ever, enables classification with a very high probability ofsuccess. Moreover,β is
determined from a linear plot whereasγ2 is the slope in a logarithmic plot. This
means that the MSS analysis linearly weights the different parts of a trajectory, en-
abling unambiguous classification also in otherwise indistinguishable cases such
as the ones depicted in Fig. 4.13.

In the present work we useβ to classify different modes of motion or to quantify
the “freedom” of a motion. If a particle is confined in a certain region, the pro-
cess appears subdiffusive, which is robustly detected inβ. Combiningβ andν2
provides a classification plane that allows to quantify boththe type and the speed
of the motion simultaneously. Classical MSD analysis wouldnot allow us to dis-
tinguish between a particle that is confined in a moving region and a stationary
particle [96]. As shown in Fig. 4.13, the MSS slope adds the crucial second di-
mension needed to discriminate these cases.
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Figure 2.4: Definition of the signed angleα between subsequent steps of a trajectory;α1 is
negative,α2 positive.

2.1.3 Direction angle histograms

An direct way of quantifying the degree of confinement of a trajectory is to con-
sider thedistribution of angular direction changesbetween subsequent displace-
ment steps. The angles are defined by the direction vectors oftwo adjacent steps
as illustrated in Fig. 2.4.

In a Brownian random walk [40], the direction of steps is uniformly distributed
as there is no influence of previous steps on the present one (Markov process). The
histogram of anglesα of a random walk thus shows a flat distribution. Confined
motion is characterized by a dip in the histogram center. Small angles – leading to
larger end-to-end displacements – are less frequent than large angles. This corres-
ponds to the tendency of the particle to “turn around” when ithits the boundary of
the region to which it is confined. Superdiffusive motion is associated with a center
peak in the angle distribution with forward steps being moreprobable than turns.
This is illustrated in Fig. 2.5 using directed segments and phases of immobility
of Adenovirus-2 trajectories (cf. Section 4.3). Since the histograms are built from
individual displacements, the number of samples is large, allowing better statistics.

2.2 Moving window analysis

A straightforward way of extending any global analysis method to allow for tem-
poral changes in the quantification parameters consists of applying it in amoving
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Figure 2.5: Distribution of angle changes for different types of motion. (a) shows the histo-
gram for segments of directed motion, (b) for phases of confinement.

window. Suppose the global analysis computes the functional

Φ(∆n) =
1

M −∆n

M−∆n−1∑

i=0

f(x(i),x(i+ ∆n)) . (2.19)

Applying it in amoving windowof lengthnw and starting at pointk then involves
the functional

Φk(∆n) =
1

nw −∆n

k+nw−∆n−1∑

i=k

f(x(i),x(i+∆n)) , k = 0, . . . ,M −nw .

(2.20)

Usingf = ‖x(i+∆n)−x(i)‖p2 generates the spectrum of displacement moments
µp(∆n) in the moving window frame.

The moving window analysis defines an averaging operator along the trajectory,
and only variations of length scalesO(nw) or larger can be resolved inΦk(∆n).
Increasing the time resolution comes at the expense of larger statistical uncertainly.
This is evident from the error estimates in Eqs. (2.6) and (2.16), since the number
of sampling points per window decreases with increasing temporal resolution.

Using the MSS analysis of Subsection 2.1.2 in a moving windowallows to detect
changes in the motion type within a trajectory. This is important when analyzing



2.3. TRAJECTORY SEGMENTATION 39

trajectories of unsteady processes as they often occur in biology. Fig. 2.6 shows an
example trajectory of an Adenovirus-2 particle on the plasma membrane of a live
M21 cell after binding to the receptor (Greber group, Section 4.3). The process is
clearly not stationary as the virus seems to pause several times. Thesetransient
confinement zonescan be seen as drops in the moving-window MSS (Fig. 2.6(c)).

2.3 Trajectory segmentation

In biological applications, a trajectory is often composedof a sequence of dif-
ferent types of motion. The examples in Fig. 2.7 illustrate this using trajectories
of Polyomavirus particles on the plasma membrane of 3T6 cells (Helenius group,
[96]). Many trajectories exhibit complex patterns of transient confinement zones,
random motions, and segments of directed transport.

While the moving window MSS analysis provides a means of detecting longer
periods of a certain type, it is not appropriate to detect short sequences. Detectable
sequences have to be at least of the size of the window as they would be lost in the
averaging otherwise. The statistical uncertainty (cf. Eq.(2.16)) however imposes
a lower limit to meaningful window sizes.

In trajectories of biological motion, short periods of entrapment or active trans-
port contain important information about the existence of certain molecular mech-
anisms. In addition, we are often interested in answering questions likewhat is
the mean residence time in entrapment?, what is the diffusion constant of the free
motion?, or what deterministic velocity is contained in the biased stretches?.

Both, detecting short sequences and addressing questions of the above type, re-
quires a pattern-based decomposition of the trajectory prior to analysis. Thisde-
composition, or segmentation, cuts the trajectory into pieces of pre-defined type.
The segments of the individual types can then be analyzed independently, without
the blurring effect of the moving window average.

Thedynamic classificationproblem defined by the above task can be approached
usinglearning algorithms[54]. In this section, we use anartificial neural network
as described in Subsection 2.3.1. This network is trained ontrajectories segmented
by hand, and is then used on other trajectories of unknown segmentation (Subsec-
tion 2.3.2). Particular attention is payed to thegeneralizabilityof the results from
the training data to the real data (Subsection 2.3.4), and the quality of classifica-
tion is assessed using cross-validation on a disjoint set oftest data(cf. Subsection
2.3.5).

40 CHAPTER 2. TRAJECTORY ANALYSIS

8.32 8.48 8.64 8.80 8.96

7.28

7.36

7.44

7.52

x [µm]

y
[µ

m
]

C1

C2

C3

C4

C5

(a)

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0 100 200 300 400 500 600 700 800 900

window start [frame]

ν 2
[µ

m
2
/s

]

C1 C2 C3 C4 C5

(b)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 100 200 300 400 500 600 700 800 900

window start [frame]

β
[–

]

C1 C2 C3 C4 C5

(c)

Figure 2.6: Moving window analysis of a trajectory of Adenovirus-2 on the plasma mem-
brane of a live M21 cell (experiments: Greber group). (a) Thetrajectory recorded at 20 Hz
time resolution. The start of the trajectory is indicated bythe arrowhead. (b) Diffusion con-
stant in a moving window of widthnw = 100 frames. (c) MSS slope in the same windows.
Five transient confinement zones –C1 toC5 – can be identified as highlighted in the plots.
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(a) (b)

Figure 2.7: Two example trajectories of Polyomavirus particles (Helenius group) on the
plasma membrane of live 3T6 mouse fibroblast cells. The viruses display complex motion
patterns with several transient confinement zones, directed segments, and random walks.
Arrow heads mark trajectory beginnings.

2.3.1 Neural networks for classification

In classification problems, artificial neural networks can be used to represent a
function that maps the data from a high-dimensionalinput spaceto a scalarclas-
sification value, indicating theclassthat the object belongs to [190, 42, 30].

The elements of an artificial neural network are modeled after the image of bio-
logical neurons. They mimic cells that communicate with their neighbors using
electric signals. Similar to biological neurons,artificial neuronshave a certain
level of activity, and defined connections with a set of other neurons. The sum of
all signals received over these connections determines thelevel of activity of the
neuron. Once this level exceeds a certainthreshold, the neuron sends an output
signal to all its connected neighbors. Depending on the connectivity structure, a
network of artificial neurons can represent certain families of classification func-
tions between the input (data) space and the classification value.The particular
function does need to be explicitly known. Rather, the network is trained to “learn”
it from a set oftraining datawith known classification.

The standard artificial neuron as depicted in Fig. 2.8 consists of atransfer func-
tion to which other neurons are connected. Theinput levelH of the neuron is
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Figure 2.8: Transfer function model for artificial neurons.

computed from the activitiesZi of its upstream neighbors by the weighted sum

H =
n∑

i=1

wiZi . (2.21)

The set ofweights{wi} determines the particular classification function that is
represented by the network. These weights are determined during the training
phase. The level of activityZ of each neuron is computed as a function of its input
levelH as

Z = f(H,Θ) . (2.22)

This involves a particularactivation functionf which determines the transfer char-
acteristic of the neuron. Typical choices of activation functions are thestep func-
tion 2H − 1 or anysigmoidsmoothly increasing from−1 to 1. If the value of
the activation function exceeds a fixed thresholdΘ, the neurons sends its level of
activityZ to all downstream neighbors.

A neural network can consist of any number of neurons with anyinterconnec-
tions. Typically, the neurons are organized inlayers. The simplest structure con-
sists of two layers: input neurons and output neurons. In layered networks, the
neurons are only connected to neighbors in other layers, butnot within a layer.

Special case: the multi-layer perceptron

Multi-Layer Perceptrons(MLP) are a special type of layered neural networks,
characterized by a one-way signal flow [30]. Information is only propagated in the
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Figure 2.9: Example structure of a multi-layer perceptron.Information is only transmitted
from left to right. The activities of the input neurons ”I” are defined by the input data,
whereas the activities of the neurons in the intermediate layers ”Z” and in the output
layer ”O” result from the activities of their respective upstream neighbors according to
Eqs. (2.21) and 2.22. Each connectioni is characterized by an independent weightwi.

forward direction, from the input layer to the output layer.Neither feed-back loops
nor connections within the same layer are present in the network (cf. Fig. 2.9).

2.3.2 Learning decision boundaries

Thedecision boundaryseparates data of one class from data of other classes. Geo-
metrically, the boundary is a manifold ofco-dimensionone in the input data space.
A good decision boundary separates data from different classes without errors.
The goal is to attain this property not only for the training data, but for all pos-
sible future data that are not known a-priori. This trade-off between generality and
training performance is discussed further in Subsection 2.3.4.

In a neural network classifier, the decision boundary is implicitly defined by
the connection weightswi as learned on the training data. For linear activation
functionsf , a two-layer network implements alinear classifierand is only able to
distinguish data from two classes if they are separable by a linear function, i.e. a
hyper-plane in the input space. More complex decision boundaries can be realized
using additional layers between the input and the output layers, or by non-linear
activation functionsf . One intermediate layer allows convex decision boundaries,
two layers are sufficient to represent arbitrary decision boundaries.

A common way tolearn the weights is to define aloss function, e.g. the sum
of incorrectly classified points, that is to be minimized over the training data set.
The weightswi are then found by a standardminimization algorithm. In the case
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of a linear classifier, there is a single unique minimum whichis easily found by
a gradient descent. In non-linear classifiers, several local minima may exist and a
global optimizer is needed.

In the case of MLPs, an efficient training algorithm exists for arbitrary network
structures. This so-calledbackpropagation algorithm[232] exploits the feed-
forward structure of the network to find the optimal weights by adjusting them
in the backward direction.

2.3.3 Selection of training data

The training set must be sufficiently diverse to contain all possible forms of motion
from a certain class. We thus use real trajectories from the specific application to
train the classifier, rather than using artificially generated samples. Samples of all
allowed lengths have to be present in the training data, and particular care is taken
that short segments can unambiguously be attributed to a class. This ensures that
the segmentation is not misled by statistical fluctuations in random walks.

A second requirement concerns the size of the training set. For each input neuron
> 10 samples are needed [30]. The effect of the size of the training set on the
learning success is illustrated in Fig. 2.14.

2.3.4 Model selection

The complexity of the decision boundary is limited by the number of layers and
the number of connections (weights). According toOccam’s razor, the decision
boundary should be as simple as possible to achieve good classification perform-
ance on data that are not contained in the training set. The lower bound for the
simplicity is given by the desired performance on the training data, i.e. the toler-
ance used in the minimization algorithm when learning the connection weights.
Completely adapting the decision boundary to the training data often leads to loss
of generalization. This phenomenon is calledoverfitting. Its opposite,underfit-
ting, refers to the situation where the decision boundary is too simple and both
training performance and generalization degrade. This trade-off is depicted in the
illustration in Fig. 2.10.

2.3.5 Cross-validation

A good method to avoid overfitting is to stop learning once thegeneralization cap-
ability of the classifier has reached a certain level. The generalization capability



2.3. TRAJECTORY SEGMENTATION 45

Figure 2.10: Planar distribution of sample data of two classes (crosses and circles). The
decision boundary given by the dotted line corresponds to the situation of overfitting, the
dashed line illustrates underfitting. A good decision boundary is depicted by the solid line.

can be estimated by disjointly dividing the data with known classification into a
training setand test set. The network is trained using the training set and then
evaluated on the test set. The mean classification error overk different partition-
ings of the data is used as an estimate for thegeneralization capability. Increasing
mean errors in thisk-fold cross-validationindicate overfitting.

2.3.6 Segmentation of directed motion

We wish to detect segments of fastdirected motionor “flights” (cf. Subsection
2.1.2) in a trajectory. Hereby, we are particularly interested in short segments
(shorter than10∆t) that are not detectable in a moving window MSS analysis.

Criteria

Since there is no a-priori definition of what “directed” means, we have to invoke an
operational definitionby means of a set of criteria derived from expert knowledge.
The goal is to reproducibly quantify the criteria used by a human domain expert
to segment a trajectory. To construct an effective classifier, the criteria have to be
independent of direction and scale and invariant with regard to rigid-body rotations
and translations.

The term “directed” implies that the segment is composed of steps that are
roughly headed in the same direction, Fig. 2.11(a). We thus choose the sum of
the angles between the individual steps as the first criterion. This criterion is not
sufficient as it would result in misclassification of the cases shown in Figs. 2.11(c)
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(a) (b) (c) (d)

Figure 2.11: Sample segments for classification criteria (see text). The dashed line indicates
the net path.

and (d). Additional criteria, relating the net displacement to the lengths of the
individual steps, are needed to capture them. For a trajectory segment consist-
ing of n points the following three criteria are found to yield good classification
performance for directed motion:

• linearity:

1

n− 2

n−2∑

i=1

cos(αi) , (2.23)

whereαi denotes the angle between stepi andi+ 1 as defined in Fig. 2.4.

• relative net displacement:

‖x(n)− x(1)‖2
〈‖x(i)− x(i− (n− 1))‖2〉i=1...n

, (2.24)

wherex(i) denotes theith position in the segment.

• efficiency:

‖x(n)− x(1)‖22
(n− 1)

∑n−1
i=1 ‖x(i+ 1)− x(i)‖22

. (2.25)

Using above criteria, then-dimensional trajectory data are mapped onto a three-
dimensional input data space for the classifier.
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Figure 2.12: Flow chart of the trajectory segmentation algorithm.

Algorithm

The MLP for the detection of directed motion has four input neurons, four neur-
ons in an intermediate layer, and one output neuron. All neurons use the same
activation function (cf. Subsection 2.3.1), namely the sigmoid

f(H) =
1

1 + exp(−H)
. (2.26)

The structure of the complete algorithm is shown in Fig. 2.12. The first step con-
sists of computing the criteria given by Eqs. (2.23)–(2.25). This is done for all
possible segments, yieldingM − (n− 1) sets of criteria.

The computed criteria constitute the first three input values of an MLP that is
trained to recognize the signature of directed motion. The fourth input is the length
n of the segment. The scalar output of the MLP represents the estimated probab-
ility that the segment shows directed motion. Outputs above0.9 are classified as
directed.

The whole procedure is repeated for different segment lengthsn = 5, . . . , 10 to
detect directed stretches of different durations.
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Figure 2.13: Example trajectories segmented by the presentalgorithm (data: Jo Helmuth).
Dashed lines correspond to identified directed segments, solid lines mark diffusive segments,
and thin lines with dots correspond to confinement zones.

Performance

Fig. 2.13 shows typical segmentation results using exampletrajectories of
Adenovirus-2 particles on the plasma membrane of live M21 cells (cf. Section
4.3). Visually, the classification is in good agreement withexpert knowledge in all
of the cases.

The convergence of the fraction of misclassification (risk) during typical learn-
ing phases is shown in Fig. 2.14 for different sizes of the training set. 23 samples
are not sufficient to learn the weights and the classifier suffers from overfitting as
described in Subsection 2.3.4. Increasing the training setto 37 samples allows
perfect classification of the training data. Further increases of the set size result
in faster convergence. For all following applications, we use a training set of 100
samples.

Convergence of the cross-validated classification error during a typical training
phase is shown in Fig. 2.15(a). While the training set is perfectly classified, the
error on the test set remains around 18%.
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Figure 2.14: Dependence of the learning process on the size of the training set for directed
motion (data: Jo Helmuth). While 23 samples are not sufficient (dotted curve), 37 samples
allow perfect classification (solid curve). Increasing thesize to 74 training samples results
in faster convergence (dashed curve).

2.3.7 Segmentation of arrest zones

Criteria

In arrest zones, the particle is tightly confined. Arrest zones are thus the opposite
of directed segments, such that the same three criteria as given by Eqs. (2.23)–
(2.25) are used.

Algorithm

The MLP for immobility detection has three input neurons, corresponding to the
three criteria. It has three neurons in the intermediate layer, and one output neuron.
The activation function for all neurons is given by Eq. (2.26). The structure of the
segmentation algorithm remains unchanged as shown in Fig. 2.12.

Random walks can only be discriminated from arrest zones if their diffusion con-
stant is large enough to cause particle motion larger than the tracking uncertainly.
Very slow random walks within the imaging noise are indistinguishable from ar-
rest zones. The segment lengths used in the algorithm are thus chosen much larger
than for the directed motion, i.e.n = 40, . . . , 100.
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Figure 2.15: Performance of the MLP for classification of directed motion (a) and phases
of immobility (b) (data: Jo Helmuth). The fraction of misclassification (risk) is shown for
both the training set (dashed) and the test set (solid) in a cross-validation.

Performance

A typical result of the segmentation is shown in Fig. 2.13. Convergence of the
cross-validated classification error during a typical training phase is shown in
Fig. 2.15(b). While the training set is perfectly classified, the error on the test
set remains around 2%.

2.4 Event-based trajectory analysis

Having a classification of trajectory segments as outlined in the previous section
enables searching the trajectory for specificevents, defined as particular sequences
of segments. While detection of such events is straightforward, the interpretation
of the resulting counts requires normalization with the expected number of events
under purely random conditions.

In this section we present three different ways of normalization: an analogy to
chemistry, a Monte Carlo simulation, and an analytic way. They are exemplified
using two different events: a “sit-down” event, consistingof a segment of directed
motion followed by an arrest zone, and a “pass-by” event of a directed segment of
one trajectory passing by an arrest zone of another one. The conceptual difference
is that the sit-down event is defined in a single trajectory whereas the pass-by event
involves a pair of trajectories.
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2.4.1 “Sit-down” event

The intra-trajectorysit-down eventis defined as a segment of directed motion that
is followed by a phase of immobility within the next five frames. The absolute
count of such events depends on the number of segments of either class, and does
therefore require normalization.

Analogy to chemistry

The situation is analogous to asecond order chemical reactionof two reactants.
By [d.m.] and[p.o.i] we denote the “concentrations” of segments of directed mo-
tion and phases of immobility, respectively. The “rate constant” r of successful
encounters in a single trajectory is proportional to the product of the concentra-
tions, viz.

r = k · [d.m.] · [p.o.i] . (2.27)

Theconcentrationsare naturally defined as the number of classified segments per
unit trajectory length, thus:

[d.m.] =
#{d.m.}

#{trajectories} · 〈Mℓ〉ℓ
(2.28)

[p.o.i.] =
#{p.o.i.}

#{trajectories} · 〈Mℓ〉ℓ
, (2.29)

where〈Mℓ〉ℓ is the mean trajectory length. The number of events is given by the
rater and the number of attempts as:

#events= r·〈Mℓ〉ℓ·#{trajectories} = k· #{d.m.} ·#{p.o.i.}
#{trajectories} · 〈Mℓ〉ℓ

= k·p. (2.30)

This allows to determinek from the observed number of events. The value ofk
is used as thenormalized event count.

Monte Carlo simulations

The number of expected events under random conditions can bedetermined by a
Monte Carlo simulation. Hereby, the segments of a trajectory are repeatedly ran-
domized and the average number of observed events in therandomized trajectories
is used to normalize the count in the original trajectory.
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Figure 2.16: Situation for the randomization algorithm. Three segments are placed, giving
rise to at most four random stretchess1 to s4.

The length of the randomized trajectories is fixed and equal to the length of the
original trajectory. The directed and immobile segments dogenerally not cover
the whole trajectory, as they may be separated by random phasessi as shown in
Fig. 2.16. In the Monte Carlo simulations, the separation phasessi are randomly
determined from uniformly distributed random numbersUi between 0 and 1 as

si =
Ui ·

∑
si∑Ui
. (2.31)

Mean and variance of the number of expected events are determined from many
realizations of randomized trajectories. The number of randomized trajectories
used to compute the mean is determined by a prescribed targetvariance. The
normalized countk is computed from the count in the original trajectory and the
mean event count from all randomized realizations as

k =
#{counted}

〈#{events in randomized}〉 . (2.32)

Compared to the chemical analogy, the Monte Carlo simulation has the advantage
of straightforward generalization to systems with larger numbers of “reactants”.

2.4.2 “Pass-by” event

The inter-trajectorypass-by eventis defined as a directed segment passing by an-
other particle that is immobile during the time of passage.Passageis defined by
the distance between the two particles being below a certaininteraction threshold.

The segments from the trajectories are arranged in a three-dimensional space,
where two dimensions correspond to physical space and the third one to time. A
pass-by event is characterized by the center of one object being within theinterac-
tion sphereof another object.
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Figure 2.17: A segment of directed motion with the interaction area defined by circles
around its nodes. Any phase of immobility within a circle corresponds to a pass-by event in
space if the two segments are from different trajectories.

The total number of counted pass-by events in a set of trajectories depends on
the number of segments and the lengths of the trajectories, and therefore needs to
be normalized.

Estimator for the number of expected events

The expected number of pass-by events under uniformly random conditions is
given by theexpectation value

E = #{d.m.} ·#{p.o.i.} · pclose. (2.33)

The numbers of directed segments and phases of immobility are counted over the
whole set of trajectories, andpclose is the probability of a directed segment being
close to an immobile phase in space and time.

Assuming statistical independence, the probabilitypclose is computed from the
probability of encounters in space (ps) and in time (pt) as pclose = pspt. The
value ofps can be estimated from the average length of directed segments and
the interaction radiusrm as illustrated in Fig. 2.17. The averageinteraction area
around directed segments is hereby approximated as

〈Am〉 = 〈Mdirected,ℓ〉ℓ · 2rm + πr2m , (2.34)

where the average is taken over all directed segments in the set of trajectories.
Assuming a uniform distribution of directed segments in space, the probability of
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an encounter in space hence becomes

ps =
〈Am〉

|field of view| =
〈Mdirected,ℓ〉ℓ · 2rm + πr2m

|field of view| . (2.35)

The temporal distribution of segments can not be assumed to be uniform over the
time of observation. Lettd andta be the starting times of a directed segment or an
arrest zone, respectively. The probabilitypt can be computed from the probability
distributionsP (td) andP (ta) by integration over the time intervalT of a spatial
encounter, thus

pt =

∫

T

∫

T

P (td)P (ta) dtd dta . (2.36)

The probability densitiesP (td) andP (ta) are estimated from the relative frequen-
cies in the data and represented as 4th order interpolation polynomials for integra-
tion.

The normalized count

k =
#{counted}

E
(2.37)

is computed from the actual count and the expected numberE of pass-by events in
uniformly random trajectories according to Eq. (2.33).



Chapter 3

Trajectory Classification

Automatic classification of trajectories is an important part of high-throughput and
bias-free motion analysis. The termbias-freerefers to the absence of selection of
“representative” trajectories by a human experimenter. The goal of bias-free data
analysis is to provide a reproducible algorithm and to achieve statistical signific-
ance by large sample sizes.

The classification of trajectories using machine learning techniques is complic-
ated by several factors: Trajectories constitute dynamic data, viz. ordered time
series of position vectors. Data encoding is needed to exploit the temporal inform-
ation and to reduce the dimensionality of the data. Moreover, trajectories exhibit
multiple invariances with regard to translation, rotation, and symmetry, as rigid-
body rotations or translations of a trajectory leave the motion patterns unchanged.
In order to effectively extract these patterns, encoding and classification methods
have to be robust against invariances.

The application of machine learning techniques for automatic classification of
trajectories mainly serves three scientific goals: First, one wishes to identify the
biological or physical processes underlying the observed phenomenon by relating
changes in the trajectory to perturbations in the experimental conditions (causality
detection). Second, the information contents of a given trajectory with respect to
a certain property of interest may be estimated (capacity estimation) and third,
automatic identification and classification of vast amountsof experimental data
can facilitate the process of interpretation (data mining).

Model-free classification of trajectories traditionally uses neural networks,
e.g. to find invariant patterns within trajectories [157], or to classify encoded tra-
jectories in feature space [204]. More recent approaches make increasing use of
self-organizing maps[158] for trajectory classification. Applications includethe
detection of suspicious activity in trajectories of pedestrians as recorded by sur-
veillance cameras [208] or the classification of user activity from the traces in a
virtual world [238]. Fuzzy logicand maximum likelihoodHidden Markov Mod-
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els (HMM) have also been successfully applied to the classification of pedestrian
trajectories [183]. Other applications include biologically inspired motion classi-
fication schemes using vector quantization [147], speech recognition using mixture
models of trajectories [114], and vehicle trajectory classification using HMM with
binned data encoding [104]. Automatic trajectory classification also has emerging
applications in credit card fraud detection [182], economics [143], and financial
markets [144, 257].

In this thesis, we consider applications of machine learning techniques to the
supervised classification of biological trajectories, in order to assess the suitability
of various methods for biological applications [247], and to provide an automatic
procedure for optimal data encoding. We first introduce the problem of trajectory
classification using the particular example of keratocyte cell motility. After form-
alizing the problem, we assess the performance of a number ofstandard classifica-
tion algorithms [54] on this application. The algorithms asdescribed in Appendix
B are compared among each other as well as to human classification using a separ-
ation measure from signal detection theory [120], that is introduced in Subsection
3.1.4.

The representation of the trajectories in data space plays acentral role in all
motion classification problems. Finding a set of highly discriminative character-
istics is not only required for efficient classification, butalso contains important
information about the physical process that created the trajectory. In Section 3.2,
we consider the problem of automatically finding an optimal set of characteristics
for any given classification problem. This is done by using a self-optimizing data
encoder which is adjusted to maximize the classification quality. The concept is
demonstrated using the keratocyte motion data and comparedto the handcrafted
encoding of Section 3.1.

3.1 Automatic classification of keratocyte trajectories

We employ various machine learning techniques to the task ofautomatically classi-
fying trajectories of movingkeratocytecells. The different algorithms as described
in Appendix B are compared among each other as well as to expert and non-expert
test persons using concepts fromsignal detection theory[120]. We find the al-
gorithms to perform well when compared to humans, suggesting a robust tool for
trajectory classification in biological applications.

We start by describing the sample data used in this section, and proceed to form-
ally stating the problem of classification. The different machine learning tech-
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niques are then assessed starting from clustering methods in thed-dimensional
real spaceRd, proceeding to risk-optimal separation inRd, and dynamic signal
source models inRd ×T, whereT denotes the discrete ordered time space.

3.1.1 Keratocyte trajectory data

Experimentally recorded trajectories of live cells movingon glass coverslips are
used to test and assess the different classification algorithms. The cells are epi-
dermal keratocytes(Theriot group, Stanford Medical School), taken from the
scales of the fishGillichthys mirabilis, commonly called “longjawed mudsucker”.
Isolated cells are cultured on glass coverslips and observed using an inverted
phase-contrast microscope connected to a video camera. Thetwo-dimensional
trajectories of the cells are extracted from the videos witha sampling time of
∆t =15 s. The observationsx are the position/time points along the trajectories.
The raw data space thus isX = R

2 ×T.
Two different experiments are performed: For thetemperature data set, fish are

acclimated at 16◦C, i.e. they are kept in water of this temperature for at least3
weeks1 prior to cell isolation. The movement of the isolated cells is then recorded
at 10◦C, 20◦C, and 30◦C using a temperature-controlled microscope stage.N =
138 trajectories (46 at each of the three observation temperatures) from 60 different
cells are collected (shown in Fig. 3.1).

For theacclimation data set, all cells are observed at 20◦C, but they are taken
from three different fish populations acclimated at 10◦C, 16◦C, and 25◦C, respect-
ively. From this acclimation data,N = 174 trajectories (58 for each acclimation
temperature) of 60 different cells are recorded (shown in Fig. 3.2). Both data sets
contain samples fromn = 3 classes.

Our hypothesis states that the reaction rates of the biochemical processes that
contribute to cell motility depend on temperature. Temperature is therefore sus-
pected to influence the motion. Using automatic classification, we want to address
the questions:

• Can the trajectories recorded at different temperatures bedistinguished?
(temperature data)

• Are there persistent adaptations to temperature that are “remembered” by
the cells? (acclimation data).

1After this time, the adaptive changes in liver lipid contentare complete.
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Figure 3.1: Temperature data set. 46 trajectories of movingkeratocytes are used per class.
The classes are defined by the three temperatures at which theobservations are taken. All
trajectories are shifted such that they start at the origin of the coordinate system.
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Figure 3.2: Acclimation data set. 58 trajectories of movingkeratocytes are used per class.
The classes are defined by the three temperatures at which thefish were acclimated for 3
weeks prior to the experiment. All trajectories are shiftedsuch that they start at the origin
of the coordinate system.
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3.1.2 The classification problem

Given some sample trajectories fromn classes, we wish to assign any new, pre-
viously unseen, trajectory to the proper class. The problemcan be formalized as
follows: We are givenm empirical data points

(x1, y1), . . . , (xm, ym) ∈ X × Y , (3.1)

that are independent and identically distributed (i.i.d.) realizations of an unknown
probability distributionP (x, y). X is the non-empty set from which theobserva-
tions (sometimes calledpatterns) are taken andY = {1, . . . , n}. Theyi ∈ Y are
called labelsand specify the class a particular pattern belongs to. Classification
aims atgeneralizationto unseen data pointsx with unknown labelsy. We want to
predict they ∈ Y, given some new observationx ∈ X . Formally, this amounts to
estimating a functionf : X 7→ Y ,x→ y = f(x), such thatf optimally classifies
unseen patternsx ∈ X . The criterion of optimality is to minimize theexpected
risk, which is the expectation value of the fraction of misclassified samples

R[f ] =

∫

X×Y
l (f(x), y) dP (x, y) , (3.2)

wherel denotes a suitably chosenloss function. A common choice is the0/1-
loss, for which l(f(x), y) is 0 if (x, y) is a correct classification and 1 otherwise.
The expected risk can not be minimized directly, since the underlying probability
distributionP (x, y) is unknown.Machine learningalgorithms thus approximate
R[f ] based on the available information from the input-outputtraining data of
Eq. (3.1). The most common approximation is theempirical risk

Re[f ] =
1

m

m∑

i=1

l (f(xi), yi) . (3.3)

Classification algorithms are distinguished by the different approximations to
Eq. (3.2) they use, and the different methods employed to minimize these approx-
imations.

3.1.3 Trajectory encoding

For most classification algorithms of Appendix B, the trajectoriesx ∈ R
2 × T

need to be transformed to vectors inRd. This encodingdetermines the data rep-
resentation seen by the classifier and is of great importanceto the classification
process.
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For Hidden Markov Models(HMM), we encode the trajectories by their mo-
mentary speed of motion, which is discretized into four equidistant bins for dis-
crete HMMs (dHMM). One HMM is trained for each of the 3 classes. After eval-
uating the probabilityP [x|Λi] of a new observationx against the modelsΛi for
all classesi = 1, 2, 3, x is assigned to the class that has the highest probability.

For all other algorithms, we find a good encoding by considering the following
catalog ofcharacteristics:

• average speed,
• standard deviation of speed,
• mean angle of direction change between 2 subsequent steps,
• standard deviation of those angles,
• net distance between first and last point of trajectory compared to the total

path length,
• decay of the autocorrelation functions of speed and direction angle change,

and
• minimum and maximum of speed and angle change.

Histograms of the distributions of these properties among the different classes
of trajectories give evidence about the discrimination capability of each character-
istic. For the present data, we find the mean and the minimum ofthe speed of a
trajectory as goodencoding features, allowing to represent the trajectories as vec-
tors inR2. Fig. 3.3 shows the encoded data sets for both the temperature and the
acclimation cases. It can be seen that the clusters mostly overlap, making the data
non-separablein this encoding space.

3.1.4 Assessment of classification performance

Let D = {(xj , yj), j = 1, . . . , N} be the complete data set of allN recorded
trajectoriesxj with corresponding class labelsyj , a randomT ⊂ D with #{T } =
m the training set, andE ⊂ D with #{E} = N −m andE ∩ T = ∅ the test set.
An algorithm, trained onT , classifies the trajectoriesxj ∈ E without knowing
the correctyj . The outcome of this classification is̃yj . The hit rate for classi
is defined ashi = #{xj ∈ E : ỹj = yj = i}/#{xj ∈ E : yj = i} ∈ [0, 1].
The false alarm rate(also called “false positives”) for classi is given byfi =
#{xj ∈ E : ỹj = i ∧ yj 6= i}/#{xj ∈ E : yj 6= i} ∈ [0, 1]. The complementary
quantitiesmi = 1− hi andri = 1− fi are termedmiss rateandcorrect rejection
rate, respectively. In each classification experiment, both thehit rate and the false
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Figure 3.3: Encoded data sets. Both the temperature data set(left) and the acclimation data
set (right) are encoded using the mean and the minimum of the speed along a trajectory.
Data points from the 10◦C temperature and 10◦C acclimation classes are denoted by circles
(◦), those from the 20◦C temperature and 16◦C acclimation classes by triangles (△), and
those from the 30◦C temperature and 25◦C acclimation classes by crosses (×).

alarm rate are recorded for each temperature class as they represent the minimal
sufficient set of quality measures.

The different classification algorithms of Appendix B are trained on a subsetT
of m = N/2 data points from each class and then tested on the remainder of the
data. For the KNN (Appendix B.1) we setk = 5, and for the SVM (Appendix
B.3) a Gaussian kernel with standard deviationσ = 0.05 is used. The procedure
is repeated 4 times for different partitionings of the data into training and test sets
(cross-validation, cf. Subsection 2.3.5).

Measuring the classification quality

To quantify thediscrimination capabilityof a classifier, we use thetheory of signal
detection[120], which was originally developed in psycho-physics and is widely
used in experimental psychology. In this theory, the occurrences of observations
that belong to classi and observations that do not belong to classi are assumed
to be governed by two different Gaussian probability distributions as illustrated in
Fig. 3.4. During training, the classifier learns a thresholdC above which it assigns
all observations to classi. If, after transformation to standard normal distributions,
C = 0, the classifier is said to beneutral, for C < 0 it is calledprogressive, and
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Figure 3.4: Schematic of the theory of signal detection. Observations that belong to a class
i occur with a certain probability density (solid); observations that do not belong to that
class occur with a different probability density (dashed).The classifier chooses a threshold
C and assigns all observations aboveC to classi. The discrimination capability of the
classifier is given by the normalized distance measured′ between the two density functions.

for C > 0 conservative.
Thediscrimination capabilityof the classifier is given by the separation distance

d′ between the two normalized (by their standard deviation) distributions. A value
of d′ = 0 corresponds to uniformly random guessing, where hits and false alarms
grow at equal rates, andd′ →∞ characterizes a perfect classifier.

In Fig. 3.4, the hit ratehi corresponds to the area under the solid curve aboveC,
and the false alarm ratefi is the area under the dashed curve aboveC. For each
classi, bothCi andd′i can thus be computed fromhi andfi as

d′i =
√

2
(
erf−1 (2hi − 1)− erf−1 (2fi − 1)

)
(3.4)

Ci = − 1√
2

(
erf−1 (2hi − 1) + erf−1 (2fi − 1)

)
. (3.5)

Classifiers are compared based ond′, since algorithms that are capable of better
separating the two probability distributions have a lower expected riskR.

Performance on the temperature data set

The temperature data set, introduced in Subsection 3.1.1, is classified using all
the algorithms outlined in Appendix B. The results are evaluated according to the
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class hi [%] fi [%] d′ C

10◦C 100.0 2.2 ∞ –
20◦C 54.4 24.5 0.8 0.29
30◦C 46.7 22.9 0.7 0.41

Table 3.1: KNN on temperature data

hi [%] fi [%] d′ C

100.0 2.2 ∞ –
54.3 15.7 1.1 0.46
68.5 20.7 1.3 0.15

Table 3.2: GMM on temperature data

class hi [%] fi [%] d′ C

10◦C 100.0 2.2 ∞ –
20◦C 51.1 27.2 0.6 0.29
30◦C 41.3 24.4 0.5 0.46

Table 3.3: SVM on temperature data

hi [%] fi [%] d′ C

100.0 3.3 ∞ –
77.2 28.3 1.3 -0.09
37.0 11.4 0.9 0.77

Table 3.4: dHMM on temperature data

class hi [%] fi [%] d′ C

10◦C 100.0 2.2 ∞ –
20◦C 76.1 30.5 1.2 -0.10
30◦C 34.8 11.9 0.8 0.79

Table 3.5: cHMM on temperature data

previous paragraph. Tables 3.1 to 3.5 state the average percentage of hits and false
alarms over all different partitioning of the data into training and test sets, as well
as the normalized discrimination capabilitiesd′ and thresholdsC of the classifiers
for each temperature class.

Fig. 3.5 displays the hit and false alarm rates of the classifiers for the three
temperature classes. The averages over all data partitionings are depicted by solid
bars, the error bars indicate the minima and maxima in the measurements. Thed′

values of the different classification methods are comparedin Fig. 3.6.

Performance on the acclimation data set

All classification experiments are repeated using the acclimation data set as intro-
duced in Subsection 3.1.1. The results are summarized in Tables 3.6 to 3.10.
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Figure 3.5: Hit rate and false alarm rate for all classifiers.The percentage of hits (left) and
false alarms (right) on the temperature data is shown for each classifier in each of the three
temperature classes: 10◦C (“c”), 20 ◦C (“n”), and 30◦C (“w”). The error bars range from
the smallest observed rate to the largest one (min–max bars).
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Figure 3.6: d′ values of all classifiers. The value of the discrimination capability d′ on
the temperature data is shown for each classifier in each of the three temperature classes:
10◦C (“c”), 20 ◦C (“n”), and 30◦C (“w”). The bars for “c” range to infinity, indicating
the (almost) perfect separability of the data in this class (cf. Fig. 3.3).
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class hi [%] fi [%] d′ C

10◦C 77.6 23.3 1.5 -0.02
16◦C 59.5 15.5 1.3 0.39
25◦C 41.4 22.0 0.6 0.50

Table 3.6: KNN on acclimation data

hi [%] fi [%] d′ C

88.0 21.1 2.0 -0.19
58.6 4.3 1.9 0.75
61.2 20.68 1.1 0.27

Table 3.7: GMM on acclimation data

class hi [%] fi [%] d′ C

10◦C 86.2 20.3 1.9 -0.13
16◦C 62.9 9.9 1.6 0.48
25◦C 54.3 18.1 1.0 0.40

Table 3.8: SVM on acclimation data

hi [%] fi [%] d′ C

84.5 20.3 1.8 -0.09
71.6 22.4 1.3 0.09
35.3 11.6 0.8 0.79

Table 3.9: dHMM on acclimation data

class hi [%] fi [%] d′ C

10◦C 75.0 19.4 1.5 0.09
16◦C 56.0 6.9 1.6 0.67
25◦C 61.9 27.2 0.9 0.15

Table 3.10: cHMM on acclimation data

hi [%] fi [%] d′ C

88.5 24.8 1.9 -0.26
47.3 16.5 0.9 0.52
33.8 23.8 0.3 0.57

Table 3.11: Humans on acclimation data

Fig. 3.7 shows the average hit and false alarm rates of the classifiers for the three
temperature classes, along with their min–max bars. Based on thed′ values, the
classifiers are compared among each other in Fig. 3.8.

In addition to machine learning algorithms, the acclimation data set is also clas-
sified by humans. After training on a set of 30 trajectories and their labels, the
test personsare presented one unknown trajectory at a time. Individual position
measurement points are symbolized by circles in order to provide speed informa-
tion. All trajectories are shifted to start at the origin of the coordinate system, and
they are rotated by a random angle prior to presentation. Each person classifies
174 trajectories appearing in random order. The average result over 5 test persons
is given in Table 3.11. The best-performing person who declared after the exper-
iment to have looked at speed information only reachesd′ = 2.0 for the 10◦C
class,d′ = 1.6 for the 16◦C class, andd′ = 0.7 for the 25◦C class. The globally
best person reachesd′ = 2.1, d′ = 1.9, andd′ = 1.0, respectively, by taking into
account both speed and shape (curvature) information. The lowest result of the test
group isd′ = 1.9, d′ = 0.1, d′ = −0.6.
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Figure 3.7: Hit rate and false alarm rate for all classifiers.The percentage of hits (left) and
false alarms (right) on the acclimation data set is shown foreach classifier in each of the
three temperature classes: 10◦C (“c”), 16 ◦C (“n”), and 25◦C (“w”). The error bars range
from the smallest observed rate to the largest one (min–max bars).
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Figure 3.8:d′ values of all classifiers. The value of the discrimination capability d′ on the
acclimation data set is shown for each classifier in each of the three temperature classes:
10◦C (“c”), 16 ◦C (“n”), and 25◦C (“w”).
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Conclusions

From the results of this section we see that on non-separableclusters, GMM (Ap-
pendix B.2) and SVM (Appendix B.3) perform best. This provides evidence that
the data are actually normally distributed. All classifiersare close to neutral with
low normalized threshold valuesC. Compared to human classification, we find
that the automatic classifiers are at least as good or better,while providing un-
biased analysis and fast processing of large data sets. Humans are biased by prior
expectations and suffer from fatigue and inaccuracy. The fact that the best human
classification is as good as the best automatic classification indicates that the data
encoding (Subsection 3.1.3) captures most of the relevant information.

3.2 Maximizing classification performance by encoding optim-
ization

Classification performance strongly depends on the data encoding. Manually en-
listing all interesting properties and finding a good encoding by exhaustive search
as done in Subsection 3.1.3 is not a practical strategy for high-dimensional encod-
ing spaces. Moreover, the manually found encoding may be sub-optimal or biased
by prior expectations.

In this section, we consider the problem of automatically finding an optimal
encoding. We present a solution that usesmeta-optimizationand demonstrate its
performance on synthetic data with known optimal encoding as well as on the
keratocyte data introduced in Subsection 3.1.1.

The method is based on defining a set ofsignalsthat are explicit functions of the
trajectory position sequence{xi}. Using a set ofoperatorsthat mapRM 7→ R,
these signals are reduced to scalarcharacteristics, such as the mean velocity, the
minimum step length, etc. Encoding is performed in ad-dimensionalencoding
space, where each Cartesian axis is defined by a linear combinationof character-
istics. These linear combinations are calledfeatures, and theencoderis completely
described by the set of weights used therein. Since usuallyd ≪ M , the encoder
performs adimensionality reductionthat is optimized with respect to the separab-
ility of the data in the encoding space.

The encoded trajectories are classified using a standard classifier, and the classi-
fication quality is measured. An optimizer adjusts the weights of the encoder such
as to maximize the classification quality. This procedure, as depicted in Fig. 3.9,
finds the set of most discriminating characteristics for anygiven classes of traject-
ories. Besides the actual classification, this set ofdiscriminating featuresis itself
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Figure 3.9: Outline of the principle: Dynamic data is encoded in order to use machine
learning techniques such as classification. To find a good encoding, an optimizer is added
to maximize the classification quality in an outer learning loop. The shaded blocks denote
software modules that are easily replaceable.

interesting. Knowing in what respect two classes of trajectories differ the most
possibly enables conclusions about the physical or biological process underlying
the motion.

Theself-optimizing encoderis implemented in a modular software framework,
where both the classifier and the optimizer are easily replaceable. The modules as
depicted in Fig. 3.9 perform the following tasks:

• Adjustable encoder: Compute the signals and characteristics of all traject-
ories and combine the characteristics to features using linear combinations
with certain weights.

• Classifier: Separate the data into classes.

• Evaluation of classification quality: Quantify the classification quality using
a set of test data and compute a measure of quality.

• Optimizer: Adjust the weights of the encoder to maximize thequality meas-
ure.

These modules are discussed in turn below.

3.2.1 A parametric encoder

Theencoderperforms the dimensionality reduction in a sequence of steps: starting
from a signal∈ R

M , it applies a set of operatorsRM 7→ R. Each signal-operator
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pair (i, j) defines acharacteristiccij . From the set of all possible characteristics,
d scalar featuresfi are computed as linear combinations. The weightswij of the
linear combinations form the set of parameters that describes the encoder.

Signals

Signalsare explicit functions of the trajectory point sequence{xi}. A signal is a
time series and usually of the same or similar length (dimension) as the trajectory
itself. Commonly used signals include:

1. the path{xi}Mi=1,

2. the speed along the trajectory∆t−1{‖xi+1 − xi‖2}M−1
i=1 ,

3. the acceleration∆t−1{‖xi+2 − 2xi+1 + xi‖2}M−2
i=1 , and

4. the path length per net displacement{∑i
j=1 ‖xj+1 − xj‖2/‖xi −

x1‖2}M−1
i=1 .

Operators

Operatorsare mapping functionsRM 7→ R that can be applied to signals{si}.
Commonly used reduction operations include:

a. the minimummini ‖si‖2,

b. the maximummaxi ‖si‖2,

c. the mean̄s = 1/M ·∑M
i=1 ‖si‖2,

d. the standard deviation1/(M − 1) ·∑M
i=1(‖si‖2 − s̄)2, and

e. the mediansI : #{‖si‖2 < sI} = #{‖si‖2 > sI}.

Characteristics

A characteristicis defined as the result of applying a particular operatori to a
particular signalj. All characteristics are normalized to the closed interval[0, 1]
and stored in a matrixC = cij , whose columns correspond to the signals and the
rows to the operators. If we have#op different operators and#sig signals, the
matrix of characteristics thus isC ∈ R

#op×#sig
[0,1] .

70 CHAPTER 3. TRAJECTORY CLASSIFICATION

Features

A feature is a scalar value computed as a linear combination of characteristics.
Each dimension of theencoding spaceis formed by one feature, such thatd lin-
early independent features are required to span ad-dimensional encoding space.
The features are computed by element-wise multiplication of the matrixC with a
weight matrixW = wij of the same size, thus:

fℓ(C) =

#op∑

i=1

#sig∑

j=1

wijcij ℓ = 1, . . . , d . (3.6)

Non-linear featureswith continuous derivatives are approximated by theirTaylor
seriesexpansion around0:

f(C) = f(0) + f ′(0)C +
1

2!
f ′′(0)C2 + . . .+

1

r!
f (r)(0)Cr + h.o.t., (3.7)

where all matrix operations are element-wise. The unknown derivatives are ab-
sorbed into the weights andf(0) ≡ 0. Taking terms up to orderr, the matrixC
is thus augmented with all powersk = 2, . . . , r of the characteristicscij , and the
weight matrix is enlarged accordingly:

fℓ(C) =
r∑

k=1

#op∑

i=1

#sig∑

j=1

wijkcijk ℓ = 1, . . . , d . (3.8)

3.2.2 Measuring the classification quality

To estimate the quality of classification, we usek-fold cross-validationas outlined
in Section 2.3.5. The following quantities are either knownfrom the data or from
the classifier output:

• class labels:yi ,

• predicted class labels:̃yi ,

• reliability for the class label prediction:qi ,

• probability for a trajectory to belong to classj: pj .

The following set offitness functionsis used to quantify the classification quality
that is to be maximized:
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1. Quadratic Distance: The quadratic Euclidean distance between the true
class labels and the predicted ones, thus:

−‖y − ỹ‖22 . (3.9)

2. Weighted Quadratic Distance: The quadratic distance weighted with the
reliability, i.e. the estimated probability that the classification is correct:

−
∑

i

(yi − ỹi)
2
qi . (3.10)

3. Penalty: A user-defined penaltyΠ is assigned to each miss and false alarm:

−
∑

class

Πclass
miss#{misses}+ Πclass

fa #{false alarms} . (3.11)

4. (Empirical) risk: The relative frequency of misclassification:

− 1

#{i}#{i : ỹi 6= yi} . (3.12)

5. Cross entropy: From the estimated probability vector that a sample belongs
to a class, and the true class membership indicatortj = δjy, we compute
thedifference of informationfor each samplen as:

∆n =
∑

i

[
ti,n log

ti,n
pi,n

+ (1− ti,n) log
1− ti,n
1− pi,n

]
. (3.13)

The fitness function is given by the negative cross entropy:

−
∑

n

∆n . (3.14)

6. Probability Distance: The quadratic Euclidean distance between the estim-
ated and the true vector of class membership probabilities,viz.

−‖t− p‖22 . (3.15)

7. d′
: The discrimination capability of the classifier as introduced in Subsec-

tion 3.1.4 is directly used as fitness function. To avoid numeric overflow, it
is saturated atd′max = 1000.
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3.2.3 The classifier

In the classifiermodule, we useSupport Vector Machines(SVM, cf. Appendix
B.3). A multi-class SVM is constructed as a tree of binary SVMs, and the class
probabilities are formed by summation of the node probabilities along the tree. In
our software implementation we make use of the freely available libSVM [49].

We use two different variants of the SVM classifier: C-SVM, and ν-SVM. The
parameters C andν control the “softness of the decision boundary”, i.e. the pen-
alty assigned to a false classification in the training set. The influence of these
parameters on the overall performance is tested in Subsection 3.2.5.

The ratio between the mean risk on the training sets and the mean risk on the test
sets in the cross-validation is used to control the model complexity and to perform
model selectionbased on the width of the SVM kernel function. For ratios> 3
the complexity is decreased, whereas it is increased for ratios< 1. This rule is
based on the fact that the ratio between the true risk and the empirical risk,R/Re,
is approximately equal to1 + 2c, wherec is thecompression ratio. This theorem
is known as theShibata criterion[260]. The compression ratio hereby quantifies
how much of the original data’s complexity is retained by themodel. In the case
of SVM, complexity is quantified by the Vapnik-Chervonenkisdimensiondv as
defined in Appendix B.3. A compression rate ofc = 1 means that no learning
occurs,c > 1 indicates overfitting (cf. Section 2.3.4).

3.2.4 The optimizer

Theoptimizationof the encoder weights is done using theCovariance Matrix Ad-
aptation(CMA) evolution strategy [125].

The CMA optimization algorithm has three parameters: the step sizeσ, the num-
ber of offspringλ per generation, and the number of parentsµ in the population.
The standard choice ofλ = 2µ is used in all cases. For smooth fitness functions,
we useµ = d, otherwiseµ = 1. The influence of these parameters is considered
in Subsection 3.2.5.

Since only the relative values of the encoder weights are important, they are
normalized to[−1, 1] to prevent the optimizer from drifting off. This normalization
involves dividing all weights by the value of the absolute largest one and running
the optimization process on the remainingN−1 independent variables.
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Fitness function Fitness Risk Iterations

Quadratic Distance 0.01356 0.0121212 2438
Weighted Quadratic Distance 0.01107 0.0121212 1058
Penalty,Π = 1 1.101e-4 0.0060606 5751
Risk 0.00606 0.0060606 2280
Cross entropy 45.5254 0.0121212 2014
Probability Distance 0.47998 0.0181818 258
d′ 0.33194 0.0060606 8146

Table 3.12: Comparison of the final risk for the different fitness functions.

3.2.5 Parameter studies

We compare the effects of different parameter choices usingartificially generated
trajectories of biased random walks. The data set consists of three classes with
step displacement lengths taken from the normal distributionN (E, s2). The three
classes are defined by different pairs(E, s) as:

• class 1:E = 20, s = 5

• class 2:E = 30, s = 6

• class 3:E = 20, s = 10.

The trajectories are encoded in two dimensions using the mean speed and the
standard deviation of the speed as characteristics in a linear encoder. The total
number of unknown weights thus is four. In order to gain a feeling for proper
parameter choices in practical applications, we consider different fitness functions,
different classifiers, and different parameter values for the CMA optimizer.

Comparison of different fitness functions

The feasibility of the different fitness functions introduced in Subsection 3.2.2 is
tested using the CMA optimizer withµ = 4, λ = 8, and a C-SVM with C=1000.
Table 3.12 summarizes the results.

The fitness functionsd′, penalty, and risk work best, with the risk function re-
quiring the minimum number of iterations for convergence.
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Parameters d′ Risk Iterations

C-SVM, C=100 0.33214 0.0121212 100
C-SVM, C=1000 0.33214 0.0121212 215
C-SVM, C=10000 0.33194 0.0060606 10790
ν-SVM, ν = 0.4 1000.00 0.0 17548
ν-SVM, ν = 0.6 0.33214 0.0121212 2496

Table 3.13: Performance comparison for different classifier parameter values.

Comparison of different classifier parameter values

Using the same three-class data set, we estimate the influence of the classifier
parameters on the overall performance. We test both the C-SVM and theν-SVM
for different values of C andν, using the fitness functiond′.

The parameter C of the C-SVM defines the penalty assigned to a misclassific-
ation in the training data. Its value ranges between 0 and∞. Theν-SVM takes
a different approach with the parameterν limiting the training error per support
vector.

Table 3.13 shows the different optima found. Theν-SVM with ν = 0.4 results
in data separability. The performance of the C-SVM improveswith increasing C,
at the expense of more iterations and increasing tendency ofoverfitting. At the
same risk level, the C-SVM needs less iterations than theν-SVM.

Comparison of different optimizer parameter values

Again using the same data set and aν-SVM with ν = 0.6, we assess the effects of
the optimizer parameters. The step sizeσ is internally adjusted by the CMA and
only its initial value needs to be specified.

We find the CMA withµ = 1 to converge much faster (852 iterations instead
of 2496) to the same fitness value (risk 0.0121212) than the CMA with µ = 2.
This indicates that the fitness function is mono-modal, suchthat the averaging
between the two parents does not add to the performance. For higher-dimensional
examples, larger values ofµ ≈ d are however expected to be beneficial. All
optimizers useλ = 2µ offspring.

Concerning the initial step size, we find thatσ = 0.01 performs slightly better
thanσ = 0.1. This however strongly depends on the particular problem, such that
no general recommendation can be deduced.
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Figure 3.10: Data encoded by the mean speed and the standard deviation of the speed. The
symbols from the different classes are not linearly separable under this a-priori encoding.

3.2.6 Benchmarks

Synthetic data

We first illustrate the functioning of the algorithm on synthetic test data. Artifi-
cial trajectories of biased random walks are generated. Theindividual step dis-
placements have uniformly random directions and their lengths are sampled from
the normal distributionN (E, s2). Four different(E, s)-pairs are used for the four
classes:

• class 1:E = 20, s = 5

• class 2:E = 20, s = 25

• class 3:E = 60, s = 5

• class 4:E = 60, s = 25.

This defines ana-priori encodingbased onE ands in a two-dimensional encod-
ing space. Fig. 3.10 shows the encoded data set using this prior knowledge. Notice
that the data are not linearly separable under this encoding.

The data are processed by the self-optimizing encoder described so far, using a
two-dimensional encoding space with linear features. We use the signal “speed”
and the operators “mean” and “standard deviation”, creating a2× 2 weight matrix
to be optimized. The initial encoding is defined by random guesses for the weights
and is shown in Fig. 3.11(a). We use a C-SVM with C=1000 and a CMA optimizer
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Figure 3.11: (a) Initial data encoding with random weights:f1 = 0.0267 ·mean(speed)−
0.0078 · stddev(speed) andf2 = −0.1276 · mean(speed) − 0.1167 · stddev(speed). (b)
Optimal data encoding found after 9 iterations of the CMA optimizer: f1 = −0.1358 ·
mean(speed) − 0.1096 · stddev(speed), and f2 = −0.1833 · mean(speed) − 0.0521 ·
stddev(speed). The classes become linearly separable.

with µ = 1, λ = 2, andσ = 0.1. After 9 iterations of the CMA, the data encoding
shown in Fig. 3.11(b) is found, where the two optimal features are:

f1 = −0.1358 ·mean(speed)− 0.1096 · stddev(speed) (3.16)

f2 = −0.1833 ·mean(speed)− 0.0521 · stddev(speed) . (3.17)

Under this encoding the data become linearly separable and perfect classification
is possible. Using the same number of encoding space dimensions, and the same
signal-operator space, the automatic encoder is thus able to perform much better
than the direct use of prior knowledge.

Keratocyte trajectory data

We compare the self-optimizing encoder to the manually found data encoding of
Subsection 3.1.3 for the acclimation data set (Subsection 3.1.1).

We use the signals “path”, “speed”, and “acceleration”, andthe operators “min”,
“max”, “mean”, and “standard deviation”. Furthermore, we use a 4th order non-
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d′ Risk Iterations

C-SVM, C=100 0.99898 0.306306 115521
ν-SVM, ν=0.4 0.99918 0.342342 79243

Table 3.14: Performance comparison on the keratocyte data set.

linear encoder, keeping terms up tor = 4 in Eq. (3.7), and an encoding space
of dimension four. The total number of weights thus is 192, leading to a high-
dimensional optimization problem. As fitness function we use the measured′, and
the optimizer parameters are set toσ = 0.1, µ = 1, andλ = 2.

Table 3.14 summarizes the results. After 115521 iterations, the C-SVM is able
to classify the data with a residual risk of about 31%. This compares well to the
minimal risk of 34% for the SVM with manual encoding (cf. Subsection 3.1.4).
The presented automatic encoding method thus seems feasible to find good rep-
resentations for biological trajectories, and it enables higher-dimensional encoding
spaces where manual search becomes prohibitively expensive.

Chapter 4

Applications and Results

This chapter presents applications and case studies of the single particle tracking
and trajectory analysis methods described so far. We start with three application
cases from cell biology, demonstrating the feasibility of the tracking algorithm
presented in Chapter 1 for purely random motion, fast directed motion, and the
tracking of objects with strong intensity fluctuations. Thethird is used to demon-
strate how the multi-frame linking algorithm (Subsection 1.2.2) recovers connec-
ted trajectories from intermittent point detections.

The complete spectrum of methods, from global analysis to segmentation to
event-based analysis, is then demonstrated on trajectories of virus particles on the
extracellular surface of the plasma membrane of live cells.Two different viruses –
Polyomavirus and Adenovirus-2 – are fluorescently labeled and added to live cells.
After binding to their respective receptors in the plasma membrane, the virus-
receptor complexes exhibit intricate motion dynamics before being internalized by
the cell.

ThePolyomavirusstudy presented in Section 4.2 was done in collaboration with
the group of Prof. A. Helenius and considers the motion of virus-receptor com-
plexes under different chemical treatments of the cells. Analyzing the motion
patterns under perturbations of the cytoskeleton or the lipid composition of the
plasma membrane provides important information about the molecular mechan-
isms of virus uptake and the organization of the plasma membrane.

The Adenovirus-2study of Section 4.3 is a collaboration with the group of
Prof. U. Greber, and it entails a particularly large data setwith several tens of
thousands of trajectories that were acquired, analyzed, and classified in a com-
pletely automatic way. This illustrates the suitability ofthe presented methods
for high-throughput studies and enables the detection of weak interactions by stat-
istical analysis. The large number of samples and the unbiased data processing
permit significant statistics even for cases that would not be detectable otherwise.
Adenovirus-2 relies on a duo of receptors to bind to the cell.It first associates with
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Figure 4.1: Total reflection at the glass-water interface and the evanescent field on the
water side form the principles of TIRF microscopy. The illumination depthδ is defined by
the1/e decay of the evanescent field intensity and is about half of the wavelengthλ of the
incident light.

a primary receptorand then transfers to asecondary receptorbefore internaliza-
tion. The present study compares the motion of viruses on wild type cells with the
motion on cells that lack the secondary receptor. This leadsto conclusions about
the interplay of the two receptors and the virus transfer between them.

The videos underlying all of the studies presented in this chapter were recorded
in the groups of Prof. Helenius and Prof. Greber usingTotal Internal Reflection
Fluorescence(TIRF) microscopy. This microscopy technique makes use of the
evanescent fieldin total beam reflection to achieve highdepth selectivity.

Total internal reflection occurs at interfaces from optically dense to optically
less dense media, if the incidence angle of the beam exceeds acritical threshold.
In the microscope, the quartz glass of the coverslip forms such an interface with
the water of the sample atop. For this quartz-water interface, the critical angle is
about 62◦. In TIRF microscopy as illustrated in Fig. 4.1, the angle between the
interface and the laser beam used to excite the fluorescent markers is larger than
this critical angle. On the low-density side of the interface, an evanescent field
with exponentially decaying intensity develops. The1/e depth of penetration(δ)
of this field is about half the wavelength of the incident light. Hence, only a few
hundred nanometers at the bottom of the sample are imaged in TIRF microscopy
[288, 287].

The use of TIRF microscopy in the present application ensures that only the
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virus particles within the evanescent field are imaged. These are the viruses on
the plasma membrane1. Free viruses in solution and internalized viruses inside
the cell are not illuminated, and are thus excluded from the observation. The depth
selectivity of TIRF microscopy is an enabling feature of thepresent studies of virus
motion on the plasma membrane of live cells.

4.1 Three case studies from cell biology

The feature point tracking algorithm described in Section 1.2 and the global MSS
analysis method (Subsection 2.1.2) are demonstrated usingthree different case
studies from cell biology. The three examples highlight different capabilities of
the data analysis procedure:

1. Tracking of freely diffusive motion:endosomes containing fluorescently
labeled Low-Density Lipoprotein (DiI-LDL) molecules,

2. tracking of fast directed motion:trafficking of internalized Adenovirus-2
(Ad-2) particles moving along microtubules, and

3. tracking of objects with strong intensity fluctuations:quantum dots (Qdot)
on the plasma membrane.

These case studies help verify the robustness and applicability of the algorithms
for a wide variety of problems in cell biology.

4.1.1 Moment scaling spectrum of endosome motion

In the first application,endosomesof 3T6 mouse fibroblastcells are imaged. LDL
is fluorescently labeled with DiI-red. Endosomes containing DiI-LDL are imaged
using TIRF microscopy at 20 Hz with 80 nm/pixel resolution (Helenius group),
and 2000 16-bit TIFF frames are recorded. Fig. 4.2 shows a fewsample frames.
The parameters used in tracking are listed in Table 4.1. The particle is successfully
traced over 1446 frames before it fades out. The extracted trajectory is shown in
Fig. 4.3(a).

The results of the MSS analysis (cf. Subsection 2.1.2) are shown in Fig. 4.3(b,c).
The MSS shows an almost perfectly straight line of slope1/2. The particle thus
undergoes free and normal diffusion. The diffusion constant is determined from
the second momentµ2 to beν2 = 1.8·10−3 µm2/s. Fig. 4.7(a) shows the intensity

1The diameter of the Polyomavirus particle is about 45 nm, theone of Adenovirus-2 is about 90 nm.
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0s 25s 50s 75s
DiI−LDL

Figure 4.2: Time-lapse frame image sequence of a DiI-LDL-containing endosome (arrow
head) in a 3T6 mouse fibroblast observed using TIRF microscopy at 20 frames/second. Each
image shows a 12µm× 12µm region on 150×150 pixels, corresponding to a resolution of
80 nm/pixel. The time difference in seconds to the first imageof the sequence is given in the
lower-right corner of each frame. UsingR = 1 the particle is tracked over 1446 frames
before fading out. (Image intensities are inverted for printing purposes.)

parameter DiI-LDL Ad-2 Noc Qdot
particle radiusw [pixel] 4.0 2.0 3.0 3.0
intensity percentiler [%] 0.1 2.0 1.0 0.05
cutoff scoreTs [-] 0.0 1.0 4.0 0.0
max step lengthL [pixel] 5.0 5.0 1.0 1.0
link rangeR [frames] 1 4 2 1 or 10

Table 4.1: Summary of the tracking algorithm parameter settings used in the examples of
this section.

of the endosome over time. The continuous fading could be dueto photobleaching
or the endosome moving into the cell and thus out of the evanescent field.

4.1.2 Tracking and analysis of Adenovirus-2 trafficking

The tracking of microtubule-dependent trafficking of intracellular Adenovirus-2
(Ad-2) serves as a test for the algorithm in cases of fast directed motion. We ana-
lyze the original 16-bit frame images of Suomalainenet al. [276] (courtesy of
Prof. U. Greber) that were tracked by hand for the original publication. Fluores-
cently labeled internalized Ad-2 particles in wild typeTC7 cellsare imaged using
a wide-field fluorescence microscope. 104 frames are recorded with a resolution
of 0.15µm/pixel, and a 1.3 seconds time interval between frames. Thecomplete
protocol is contained in Ref. [276]. Fig. 4.4 shows a time lapse sequence of some
frames with the unspecific photobleaching clearly visible.Tracking is done using
the parameter values given in Table 4.1, and yielded 73 tracks of lengths between
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Figure 4.3: Tracking of an endosome containing fluorescent DiI-LDL. (a) xy-path of the
particle as tracked from the video recording. (b) Mean square displacement of the track,
computed according to Eq. (2.5). The dashed line is the result of the linear least squares
fit used to determine the slope and the diffusion constant (values given in the figure). (c)
Moment scaling spectrum of the trajectory with dashed linesmarking slopes1/2 and1.

60 and 104 frames. Three example tracks are shown in Fig. 4.5(a), and the intens-
ity of virus particle (a) over all 104 frames is shown in Fig. 4.7(b).

The control experiment of Suomalainenet al. [276] considers Ad-2 inHeLa
cells that are treated withnocodazole, a microtubule depolymerizing drug. The
tracker parameters are given in column “Noc” of Table 4.1. The total length of the
control movie is 275 frames. 27 tracks of lengths between 80 and 252 frames are
extracted by the tracking algorithm, and MSS analysis as outlined in Subsection
2.1.2 is performed for all of them.

Fig. 4.5 shows a scatter plot of all diffusion constantsν2 and MSS slopesβ for
the two experiments. The existence of biased or directed motion in the wild type
experiment is evident from theβ values above 0.5. Still a significant fraction of
trajectories withβ around or below 0.5 exists, which means that those particles
are not always transported actively. As can be seen from Fig.4.5(a), intermediate
pauses or changes in direction occur, causing the globalβ to drop. The nocodazole
control never exhibits directed motion and particles are atmost freely diffusive,
which is evidence for the directed motion to depend on microtubules [276].

4.1.3 Tracking of Quantum Dots

We consider the tracking of quantum dots (Qdots) to demonstrate the function of
the multi-frame linking algorithm as described in Subsection 1.2.2 forR > 1.
Quantum dots(QuantumDot Corp., www.qdots.com) are extremely bright and
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Figure 4.4: Time-lapse frame image sequence of Ad-2 moving along microtubules in TC7
cells observed using wide-field fluorescence microscopy and1.3 seconds/frame. Each image
shows a 37.65µm×37.65µm region on 251×251 pixels, corresponding to a resolution of
0.15µm/pixel. The time difference in seconds to the first image of the sequence is given in
the lower-right corner of each frame. All indicated particles (arrow heads) are tracked over
the full 104 frames. (Image intensities are inverted for printing purposes.)
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Figure 4.5: Trafficking of Ad-2 particles along microtubules. (a)xy-paths of three sample
particles as tracked over all 104 frames of the movie. All trajectories are shifted to start at
point (0,0). Stretches of directed motion with intermediate random segments are visible. (b)
Scatter plot of the global diffusion constantsν2 and MSS slopesβ for all tracks of the wild
type experiment (circles:◦) and the nocodazole control (crosses:×).
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8.25s 9.00s 9.75s 10.5s

Qdot

Figure 4.6: Time-lapse frame image sequence of a quantum dot(arrow head) on the plasma
membrane of 3T6 mouse fibroblasts observed using TIRF microscopy at 20 frames/second.
Each image shows a 12µm×12µm region on 150×150 pixels, corresponding to a resolu-
tion of 80 nm/pixel. The time difference in seconds to the beginning of the sequence is given
in the lower-right corner of each frame. UsingR = 1 the particle can be tracked over
21 frames; withR = 10 the longest trajectory spans 1068 frames. (Image intensities are
inverted for printing purposes.)

photo-stable fluorescentnano-particles. They however exhibit strong fluctuations
in their emission intensity (blinking), which complicates the linking of point de-
tections into trajectories.

Biotinylized ConcanavalinA is bound to 3T6 cells for 30 seconds in PBS. Cells
are dipped in imaging medium. 0.2µM Streptavidin-coupled 25 nm Qdots are ad-
ded. Using TIRF microscopy at 37◦C (Helenius group), 2000 frames are recorded
at 20 Hz video rate with 80 nm/pixel resolution. The images are stored as uncom-
pressed 16-bit TIFF files.

Fig. 4.6 shows a few sample frames from the movie. The blinking is clearly vis-
ible as the Qdot has vanished in the second image. Good parameter settings for the
tracking algorithm are determined using the graphical userinterface documented
in Appendix A.3. Their values are given in Table 4.1. Using two subsequent
frames to perform trajectory linking (i.e.R = 1), the longest track that can be
extracted is 21 frames in length. SettingR = 10 increases the track length to 1068
frames. This is a clear advantage since tracks as short as those in theR = 1 case
would not allow to determine diffusion constants or other properties of the motion
with significant statistics (cf. Subsection 2.1.2).

Fig. 4.7(c) shows the time evolution of the fluorescence intensity of the sample
Qdot. The strong fluctuations (“blinking”) are clearly visible, as well as its photo-
stability and brightness. The Qdot in this example is almoststationary. The MSS
shows a straight line of slope 0.083 (figure not shown), and the diffusion constant
is below the detection limit.



4.1. THREE CASE STUDIES FROM CELL BIOLOGY 85

0 500 1000 1500
0

2

4

6

8

10

12

frame number

in
te

ns
ity

[a
.u

.]

(a) DiI-LDL

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

frame number

in
te

ns
ity

[a
.u

.]

(b) Ad-2 track (a)

0 500 1000 1500 2000
0

1

2

3

4

5

6

frame number

in
te

ns
ity

[a
.u

.]

(c) Qdot

Figure 4.7: Particle intensitiesm0 over time as returned by the tracking algorithm. The
time evolution of the intensity is shown for each of the threetest cases. The sum of all
pixel values within the particle radiusw is computed as intensity measurem0, cf. Eq. (1.8).
The strong intensity fluctuations (“blinking”) of the Qdot can clearly be seen in (c). The
continuous intensity decay of DiI-LDL and Ad-2 could be due to photobleaching or the
particle moving out of focus.

4.1.4 Experimental assessment of the tracking accuracy

In order to assess the tracking quality, the SNR of the imagesare estimated using
the noise in the bright image regions as outlined in Subsection 1.3.2. The program
used to estimate the SNR is tested on the synthetic images of known SNR from
Subsection 1.3.2. The SNR values of these test images are correctly measured to
within±7%. The mean measured SNR of both the DiI-LDL and the Qdot samples
is 3.1, averaged over all frames. The background intensity of the Qdot video is
more than 3 times larger than the one of the DiI-LDL case. Using the results from
Subsection 1.3.2, this SNR corresponds to both a tracking accuracy and precision
of about 0.2 pixel (16 nm). The experimentally measured track standard deviation
in the Qdot example is 0.4 pixel, which is consistent with thevery small value of
its MSS slope and illustrates the sensitivity of the latter measure.

Positioning errors result in observedapparent subdiffusion[187]. Using the
model of Martinet al. [187], the measured diffusion constant for the DiI-LDL-
containing endosome, and above estimate of the positioningerror, the apparent
slope in the double logarithmic MSD plot of DiI-LDL (Fig. 4.3(b)) is predicted to
be0.933 < γ2 < 1. This is in excellent agreement with our measuredγ2 of 0.973
and supports the conclusion that the motion of the endosome is normal diffusion,
as properly indicated by the MSS slope.
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4.2 Analysis of Polyomavirus motion on the plasma membrane

The present section reports the summarized results of applying the feature point
tracking and trajectory analysis methods outlined so far toanalyzing the motility of
murinePolyomavirus(Py) on the extracellular surface of the plasma membrane of
live cells [96]. Polyomavirus is a small (45 nm diameter), simple, non-enveloped
DNA tumor virus [272] that uses either one of thegangliosides GD1aor GT1b
as itsreceptor[291] and relies on clathrin-independent, cholesterol-dependent en-
docytosis to deliver its genome into the host cell for replication [112]. Instead
of the infectious virus, we usevirus-like particles(VLPs) that resemble the virus
structurally, but do not contain the DNA genome [115].

Fluorescently labeled VLPs are added to live3T6 Swiss albino mouse lung fibro-
blast cells. After binding to the receptor, the motion of the VLPs is automatically
tracked using the method described in Chapter 1. The goal is to use the labeled
VLPs as molecular probes to investigate the organization ofthe plasma membrane
and the interplay of integral membrane proteins (such as thevirus receptors) with
the cytoskeleton. The study makes use of different chemicalperturbations of the
cell:

• untreatedwild type(wt) cells,

• cells treated withlatrunculin A (LatA), an actin polymerization inhibitor,
and

• cells treated withmethyl-β-cyclodextrin(MCD), a cholesterol sequestration
agent that reduces cellular cholesterol to levels below 40%of normal [96].

Control experiments also consider treatments withjasplakinolide, a drug that
inhibits actin depolymerization and stabilizes actin filaments, andgenistein, a tyr-
osine kinase inhibitor that blocks virus uptake. Further controls involve caveolin-
deficient cells and quantum dots (cf. Subsection 4.1.3) coupled to cholera toxin
β, which binds to the same receptor as Py. Since TIRF microscopy records the
motion of particles on the bottom membrane of the cell, another set of control
experiments considers the top surface of the cell to make sure that the dynamics,
as quantified by the global MSS analysis, do not differ. Free unrestricted diffu-
sion of the virus-receptor complex is measured in artificialDPPE lipid bilayers.
All experimental work was done in the group of Prof. A. Helenius; protocols and
controls are contained in the original publication [96].
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Py VLP

0s 0.75s 1.50s 2.25s

Figure 4.8: Time-lapse frame image sequence of Py VLP movingon the plasma membrane
of a 3T6 cell, imaged using TIRF microscopy (Helenius group)at 20 frames/second. Three
Py VLP are exemplarily highlighted by arrowheads. Each image shows a 12µm×12µm
region on 150×150 pixels, corresponding to a resolution of 80 nm/pixel. The time difference
in seconds to the first image of the sequence is given in the lower-right corner of each frame.
The total movie extends over 2000 frames. (Image intensities are inverted for printing
purposes.)

4.2.1 Virus particle tracking

Fluorescently labeled Py VLPs are bound to the plasma membrane of live 3T6
cells and imaged using TIRF video microscopy with a resolution of 80 nm/pixel
and a frame rate of 20 Hz. All movies are 2000 frames long; a fewexample frames
are shown in Fig. 4.8 for illustration. Feature point tracking is done using the
algorithm described in Section 1.2 with parametersw = 3 pixel, R = 1 frame,
L = 10 pixel, Ts = 0, andr = 0.1%. Only trajectories longer than 100 frames
are retained. We record a total of 220 trajectories on wt cells, 74 with LatA treat-
ment, and 256 with added MCD. A few example trajectories of different motion
behaviors are shown in Fig. 4.9.

The feature point tracking quality is assessed using the benchmark results of
Subsection 1.3.2. The estimated mean SNR of the frame imagesis 1.35 ± 0.28,
corresponding to a tracking accuracy and precision of 0.5 and 0.4 pixel, respect-
ively. The SNR is properly estimated from the bright particle centers as outlined
in Subsection 1.3.2. The estimation procedure was previously tested on bench-
mark images of known SNR and found to measure the values with an accuracy
of ±7% (cf. Subsection 4.1.4). The smallest detectable diffusion constant is de-
termined from trajectories of five stationary particles that are directly attached to
the glass coverslip. The standard deviation of these tracksis 0.3 pixel, corres-
ponding to a lower limit ofν2,min = 1.9 · 10−7 µm2/s. The upper bound for the
diffusion constant is given by the control experiments in artificial membranes as
ν2,max = 3.2 · 10−2 ± 2.3 · 10−2 µm2/s (β = 0.42 ± 0.1, N = 39), so that the
dynamic range of the measurements spans about 5 orders of magnitude.
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Figure 4.9: Five sample trajectories of Py VLP motion on the plasma membrane of 3T6
cells after binding to the receptor. Different modes of motion are observed: (1) biased
motion, (2) mixtures of different segments, (3) confinementin a slowly moving area, (4) free
and normal diffusion (β = 0.49), and (5) arrest zones. The trajectories are represented to
scale, but arbitrarily shifted for presentation purposes.

4.2.2 Global analysis results

Examination of the recorded trajectories starts with a global MSS analysis (cf. Sub-
section 2.1.2) for all three drug treatments. Fig. 4.10 shows the(ν2, β) scatter plot
of all trajectories. Circles mark wt cases, diamonds correspond to MCD treatment,
and crosses to LatA treatment. It is evident from this scatter plot that LatA causes a
general increase in mobility and diffusion speed, whereas MCD completely elim-
inates freely diffusive motion.

This can be further quantified by the MSS slope (β) histograms as shown in
Fig. 4.11 for all three cases. Treatment with LatA causes a clear shift to larger
β, indicating a decrease in confinement. Treatment with MCD onthe other hand
causes almost all trajectories to be confined (smallβ) and completely eliminates
the occurrence of free diffusion (β = 1/2). The histogram of step angle changes
(Fig. 4.12, cf. Subsection 2.1.3) consistently confirms this observation.

The global MSS analysis in the(ν2, β) phase spacealso enables unambiguous
classification of the motion types of virus-receptor particles. In Fig. 4.13, the three
main classes of motion – free diffusion, stationary particles, and particles that are
confined in moving areas – are indicated by boxes. The labels of the classes cor-
respond to the numbers in Fig. 4.9, where representative examples from each class
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Figure 4.10: Scatter plot of global(ν2, β) for all drug cases: wt (circles,N = 220), LatA
(crosses,N = 74), MCD (diamonds,N = 256). Addition of MCD completely eliminates
free diffusion and shifts the population to smallerν2. LatA shows the opposite effect.
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Figure 4.11: Histograms of the global MSS slopeβ over all trajectories of the three drug
cases (see text for description). The total number of trajectories is: N = 220 for wt,
N = 74 for LatA, andN = 256 for MCD.
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Figure 4.12: Histograms of angle changes between two successive displacements. The
counts are taken over all displacements of all trajectoriesin each drug case (see text for
description). A more pronounced the center dip correspondsto more confined motion.
Brownian motion would generate a uniform distribution.

are shown. The error bars in Fig. 4.13 indicate the standard deviation according
to Eqs. (2.16) and (2.17). It can be seen that the present MSS analysis enables
the discrimination between stationary particles and particles that are confined in a
slowly moving area. Using only MSD analysis, these two classes would be indis-
tinguishable since they overlap in their diffusion constants [96].

VLPs that are confined to slowly moving zones, such as the one in Fig. 4.9(3),
are frequently observed in wt cells. To show that the slow motion macroscopically
corresponds to free diffusion, we analyze the corresponding trajectory segments
separately. After smoothing with a runningboxcar averagefilter of 10 frames
width in time, these segments exhibit a macroscopic MSS slope ofβ = 0.5± 0.1
and amacroscopic diffusion constantof ν2 = 0.5 . . . 1.5 · 10−4 µm2/s, indicating
free, but very slow, diffusion of the arrest zone itself.

4.2.3 Moving window analysis results

Virus binding and internalization is a dynamic process and the resulting trajectories
are not expected to be realizations of a stationary random process. They rather
change their mode of motion at least once during their duration. These changes
contain important correlations with biochemical processes, wherefore we wish to
gain an impression of the time evolution of the quantification parameters along the
trajectories. We apply a moving-window MSS analysis with a window width of
nw = 120 frames, as introduced in Section 2.2. This yields smoothed traces in
the (ν2, β) phase space, representing the change over time. In the case depicted
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Figure 4.13: Scatter plot of global(ν2, β) for Py trajectories on wt cells. The boxes indicate
regions that correspond to particular motion types (source[96]). Representative examples
for each type are shown by the corresponding numbers in Fig. 4.9. Error bars indicate the
standard deviation of the statistical uncertainty according to Eq. (2.16).

in Fig. 4.14, the VLP-receptor complex is initially more or less freely mobile.
The mobility then decreases as the particle becomes more confined. After a short
period of immobility, the complex is confined in an arrest zone that is itself mobile
(highlighted by the shaded ellipse in Fig. 4.14). This is theterminal arrest zone
for this example and the VLP disappears from the movie after afew seconds of
residence time.

4.2.4 Trajectory segmentation results

As suggested by the moving window analysis, the VLPs exhibita characteristic
motion pattern in which free mobility is followed by one or several (possibly mo-
bile) arrest zones before the particle disappears from the image. In combination
with the drug treatments of the cells, we use the trajectory segmentation technique
outlined in Section 2.3 to investigate the nature of this motion pattern and pos-
sible molecular mechanisms for it. The segmentation analysis involves detection
of short periods of directed motion as well asarrest zones.

To quantify the fraction of directed motion in function of the drug treatment, we
compare the cumulative length of all directed segments in a trajectory to the total
length of the trajectory. The resulting histograms, as shown in Fig. 4.15, clearly
show that MCD effectively prohibits directed motion, a finding that is consistent
with the MSS analysis in Fig. 4.11. Also consistently, LatA increases the directed
fraction to an average of about 1/5 of the total length of the trajectories.
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Figure 4.14: Moving window MSS analysis of an example Py trajectory on a wt cell. The
inset image shows the trajectory in thexy-plane. The trace of this trajectory in the(ν2, β)
phase space is shown in the main plot. The arrow head marks thestart of the trajectory and
the terminal confinement zone is highlighted by the shaded ellipse. After being trapped in
this mobile arrest zone for a while, the virus disappears from the movie.
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Figure 4.15: Histograms of the fraction of directed segments in each drug case (see text for
description).
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Figure 4.16: Histograms of speed in the directed segments ofall drug cases (see text for
description). The MCD case contained only 20 directed segments.
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Figure 4.17: Histograms of residence time in transient arrest zones for those particles that
leave the zone again.

Knowing the directed segments in each trajectory allows to determine the trans-
port speeds in all of them. The measured distribution of speeds is shown in
Fig. 4.16. Application of LatA shifts the distribution to faster speeds with a mean
around0.8µm/s. The MCD data set contains only 20 directed segments in total,
with all but four having a very low speed.

The segmentation algorithm is also used to identifytransient arrest zoneswhere
the VLP temporarily pauses (within the accuracy of the tracking algorithm) be-
fore moving on. Fig. 4.17 shows the distribution of residence times in such arrest
zones. Only the zones from which the particle leaves again are considered, as the
residence time for the others can not be quantified (the end ofthe movie is arbit-
rary). While LatA virtually eliminates residence times>15 seconds, MCD causes
a spread to longer times.

94 CHAPTER 4. APPLICATIONS AND RESULTS

0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.5 1 1.5 2 0.5 1 1.5 2 2.5

0.59

size [pixel]size [pixel]size [pixel]

re
la

tiv
e

fr
eq

ue
nc

y

wt LatA MCD

Figure 4.18: Histograms of the size of transient arrest zones for all drug cases.
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Figure 4.19: Histograms of the fraction of the total trajectory length spent in arrest zones
for all drug cases.

The distribution of the sizes of the arrest zones is shown in Fig. 4.18 for all three
classes. The size is measured as the standard deviation of the trajectory inside the
arrest zone and typically is around 1 pixel in wt cells. Addition of MCD does not
change this typical size, but increases its frequency. LatAeliminates most arrest
zones of finite size.

Fig. 4.19 shows the distribution of the fraction of the wholetrajectory length that
is spent in arrest zones. In wt cells, around 45% of all trajectories do not contain
arrest zones at all, while the fraction of those spending their whole life in arrest
zones is around 25%. The LatA treatment causes 55% of the VLPsto never pause
and the set of trajectories containing arrest zones only hasvanished. MCD has
the opposite effect with the fraction of permanently immobile particles rising to
almost 50%.

The statistics of arrest zone sizes and VLP residence times are summarized in
Table 4.2. Addition of LatA causes the zones to grow (looser confinement) and the
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Case zone size [nm] residence time [s]
wt 36.8916± 21.6861 17.391760± 16.322162
LatA 60.3758± 28.3590 4.716092± 3.452447
MCD 29.1014± 9.48400 26.806853± 21.170700

Table 4.2: Average± standard deviation of arrest zone sizes and residence timesfor all
cases.

residence time is drastically reduced. MCD tightens the confinement and signific-
antly increases the mean residence time.

4.2.5 Conclusions

Based on the presented global and local analyses, differentmodes of motion can
consistently be identified for the VLPs [96]. Immediately after binding, the VLPs
display 5 to 10 seconds of rapid, free diffusion at a rate comparable to the one
observed in artificial lipid bilayers. The period of free diffusion ends with an
abrupt decrease in mobility, and the particles become confined to areas with a
diameter of 30 to 60 nm. Occasionally, VLPs break loose and enter another phase
of free diffusion, before being trapped again in the same or adifferent arrest zone.

From the control experiments we see that the arrest zones do not overlap with
clathrin-coated pits or caveolae and that the process of confinement does not seem
to be directly linked to endocytosis [96]. Moreover, we find that inhibition of
actin polymerization by LatA prevents confinement. It seemstherefore likely that
the confinement of particles reflects a basic property of the plasma membrane,
and may be attributed to the general phenomenon ofcompartmentalizationof the
membrane by the cytoskeleton [258]. The “fence” or “corral”scenario involves
partitioning of the cytosolic surface of the plasma membrane by tightly apposed
dynamicactin filaments, forming a grid on the inside surface. The filaments pre-
vent free diffusion of proteins and complexes with bulky cytoplasmic protrusions.
While such proteins and complexes are free to diffuse withineach partition of the
grid, inter-compartment movement is restricted [235, 88, 258, 277].

In the case of VLPs, the receptors to which they bind are however constrained
to the outer bilayer leaflet. It is not obvious how the trans-membrane coupling
that leads to actin-mediated confinement occurs in this case. Various evidence
[96] points to the explanation that each VLP clusters several ganglioside recept-
ors and that these clusters induce the formation oflipid rafts [263] in the plasma
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membrane, such that lateral diffusion is subsequently restricted to those rafts.
We find that the initial phase of free diffusion is eliminatedby depletion of cel-

lular cholesterol by MCD. The fact that cholesterol depletion can lead to immob-
ilization of plasma membrane components is not unprecedented in the literature.
A reduction in lateral mobility of several GPI-anchored proteins, trans-membrane
proteins, and lipids has been reported [304, 155, 162, 126].One mechanism put
forward to explain the effect is actin-independent, reversible agglutination of lip-
ids into large, stable, ordered lipid domains [304, 155, 126]. On the other hand,
it has been proposed that cholesterol depletion causes a drop in thePI(4,5)P2-
level, which in turn affects the cortical actin cytoskeleton and thus lowers lateral
mobility of membrane components [162]. Since LatA did not reverse the effect
of cholesterol depletion, the lack of VLP mobility in cholesterol depleted cells is
most likely due to the formation of large immobile membrane patches containing
the receptors and the bound VLP. The latter explanation is less probable.

Taken together, our results lead to a model that begins with binding of the in-
coming VLP to the receptor. The lateral mobility of the complex formed is not
constrained until some form of trans-bilayer coupling occurs that imposes strict,
actin polymerization-dependent confinement of the VLP-receptor complex. The
change is most likely caused by the addition of further components to the com-
plex. These may form a direct bridge to the actin filaments, ora change in size or
structure of the complex alone may suffice for it to become constrained. Regard-
less of whether the complex is trapped by actin or not, kinases and other signaling
factors are recruited and proceed to turn on a cascade that eventually leads to the
endocytic internalization of the VLPs.

Following and analyzing the motion of VLPs allowed us to investigate plasma
membrane organization and the interplay between membrane proteins and the
cytoskeleton [96].

4.3 High-Throughput analysis of Adenovirus motion

We wish to use the presented computational tools to provide acompletely auto-
mated setup for data acquisition and analysis without any manual selection of
samples. The large number of unbiased data points then allows to achieve high
statistical significance even for small detectable changes.

This section considers humanAdenovirus-2(Ad-2), a non-enveloped icosahed-
ral DNA virus of about 90 nm diameter. Ad-2 infects epithelial cells of the respir-
atory and gastrointestinal tracts, using receptor-mediated clathrin-dependent en-



4.3. HIGH-THROUGHPUT ANALYSIS OF ADENOVIRUS MOTION 97

docytosis to enter the cells [141, 259]. Ad-2 relies on two different receptors: a
primary receptor[28] and asecondary receptorwhich is anintegrin). The virus
first binds to the primary receptor from where it later transfers to the secondary
receptor before internalization. The aim of the present study is to investigate the
role of the secondary receptor and its influence on virus behavior on the plasma
membrane. We therefore analyze the motion patterns of Ad-2 after binding to the
primary receptor on human melanomaM21 cellsunder three different conditions:
wild type (wt) M21 cells, genetically modified cells that lack the secondary re-
ceptor (M21L), and M21L cells with re-inserted secondary receptor (M21L4) as a
control. Furthermore, we consider the following drug treatments of the cells:

• nocodazole, a microtubule-depolymerizing drug,
• latrunculin A, an actin-fiber polymerization inhibitor,
• blebbistatin, a myosin II inhibitor,
• methyl-β-cyclodextrin, a cholesterol sequestration agent,
• jasplakinolide, a drug inhibiting actin fiber depolymerization,
• wiskostatin, a drug that reversibly and selectively blocks actin polymeriza-

tion, and
• cytochalasin D, a fungal toxin that disrupts actin filaments and inhibits actin

polymerization.

Additional perturbations consider temperature (room temperature versus 32◦C),
and mutations of the virus: Ad-2-RAE, lacking integrin binding sites, and Ad-
2-TS1, expressing a functionally defective protease. All experimental work was
done in the Group of Prof. U. Greber at the University of Zürich.

The different movies were recorded at various time points within one hour after
addition of the virus particles to the cells. To verify that there is no systematic bias
due to transient effects, all analyses presented in this section are repeated, grouping
the movies according to their time of recording. Doing this we find no correlation
between the time after virus addition and any of the analysisresults. This allows
us to consider the whole data set at once, regardless of the time of recording.

4.3.1 Virus particle tracking

Movie frames are recorded using TIRF microscopy at a resolution of 80 nm/pixel
and frame rates of either 20 Hz or 50 Hz (Greber group). A totalof 342 movies is
recorded at 20 Hz, and 3286 movies at 50 Hz. All movies are processed in a fully
automated way using the feature point tracking algorithm outlined in Section 1.2
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Figure 4.20: Sample trajectories of Ad-2 motion on the plasma membrane of M21 cells
after binding to the primary receptor, observed using 50 Hz TIRF microscopy. Different
modes of motion are observed: (1) free diffusion, (2) confinement in a slowly moving area,
(3) subdiffusion, (4) arrest zones, (5)/(6) intermittent confinement, and (7) biased motion.
The trajectories are represented to scale, but arbitrarilyshifted for presentation purposes.

with parametersw = 2 pixel, Ts = 0, r = 0.5 %,L = 5 pixel, andR = 1 frame.
Fig. 4.20 shows some examples of recorded trajectories on wtcells without drug
treatment. In total, we record 9035 trajectories at 20 Hz and46179 trajectories at
50 Hz. The 20 Hz movies consist of 1000 frames each, the 50 Hz movies contain
2535 frames each. The total number of frame images to processthus amounts to
8.7 million.

The smallest detectable diffusion constant, measured fromtrajectories of sta-
tionary particles on glass, isν2,min = 10−6 µm2/s. The tracking uncertainty is
estimated from the SNR and lies around 0.3 to 0.5 pixel in all cases.

4.3.2 Global analysis results

In the global MSS analysis according to Subsection 2.1.2, wecompute the diffu-
sion constantsν2 and the MSS slopesβ of all trajectories. Fig. 4.21 shows the
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Figure 4.21: Scatter plot of global(ν2, β) for the 20 Hz data.N = 9035 trajectories from
the classes M21 (light gray), M21L (dark gray), and M21L4 (light gray) are shown (see text
for details). The distributions of the three classes largely overlap.
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Figure 4.22: Histograms of the global MSS slopeβ of all 20 Hz trajectories from the three
cases (see text for description). The total number of trajectories is: N = 3313 for M21,
N = 3208 for M21L, andN = 2514 for M21L4.
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(ν2, β) scatter plot for the 20 Hz data set (N = 9035 trajectories). The distribu-
tions of the three classes mostly overlap, with wt M21 cells having a larger super-
diffusive sub-population. This is evident from the histograms of the MSS slopes
shown in Fig. 4.22, and indicates that the mobility of the virus-receptor complex
is reduced in M21L cells lacking the secondary receptor. After re-addition of the
secondary receptor, the wt distribution is recovered, which serves as a control for
undesired side effects in the creation of the M21L cells.

4.3.3 Statistical data analysis

To investigate if the differences suggested by the global MSS analysis arestatist-
ically significant, we usehypothesis testing[271]. The proper test method ortest
statisticis selected based on information about the distribution of the data and the
sample variances.

Data representation

The trajectories are encoded by their global diffusion constantν2 and MSS slope
β. Statistical analysis is performed in thisphase space, identified withR2. In stat-
istical terminology, the observations are thuspaired, of interval type, and sampled
from continuous random variables. Furthermore, they are randomly selected since
no human bias was introduced in tracking and analysis, and weassume the samples
to be independent. The latter is a reasonable assumption since the trajectories come
from different cells and were recorded on different days.

The standardbox plotfor the two variables is shown in Fig. 4.23. The diffusion
constantν2 is plotted logarithmically for better visibility. We observe that the
Chambers notchesfor the two classes do not overlap in any variable, providing
strong evidence that the two medians differ. This is much more pronounced for
β than it is forν2, indicating the betterdiscrimination capabilityof the former
measure.

Distribution of the data

Are the observations normally distributed? We perform aShapiro-Wilk testfor the
null hypothesis(H0) of a normal distribution. From the results as summarized in
Table 4.3 it is evident that the null hypothesis of normalitycan be rejected for all
variables with a confidence> 99%. This is confirmed by thequantile-quantile
plots for all variables and cases (figures not shown). Even with allstationary
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Figure 4.23: Standard box plot with Chambers notches for theMSS slopeβ (left) and the
base-10 logarithm of the diffusion constantν2 (right) of M21 and M21L cells.

particles (characterized byβ < 0.1) discarded, the data are far from a normal
distribution.

Sample variance

A standardFligner-Killeen testreveals that the variances of the two classes M21
and M21L are not the same, again with a confidence> 99%. Among all tests for
variance homogeneity, the Fligner-Killeen test is the one with the largest robust-
ness against departures from normality [61].

variable test statistic p-value
β M21 0.9289 2.2 · 10−16

β M21L 0.8062 2.2 · 10−16

ν2 M21 0.2082 2.2 · 10−16

ν2 M21L 0.1709 2.2 · 10−16

log ν2 M21 0.9884 9.8 · 10−15

log ν2 M21L 0.9583 2.2 · 10−16

Table 4.3: Results of the Shapiro-Wilk normality test. The null hypothesis of normal distri-
bution is rejected with a very high probability.
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Figure 4.24: Quantile-quantile plots for the MSS slopesβ (a) and the diffusion constants
log

10
ν2 (b) of M21 versus M21L cells.

Hypothesis testing

We test the null hypothesisH0 that both classes are realizations of the same distri-
bution against the two-sidedalternative hypothesisHA that they are sampled from
different distributions. Since the data are not normally distributed and have differ-
ent variances, standardt-tests and ANOVA tests must not be applied. Instead, we
use the more generalKolmogorov-Smirnov test. The only assumption in this test –
besides randomness and independence – is that the observations are sampled from
continuous distributions, which is obviously the case. Performing the test we find
that the p-values for all variables are below2.2 ·10−16, indicating thatH0 is highly
unlikely. In other words, the two classes come from different distributions with a
probability close to1. The MSS analysis values of motion on M21 cells are thus
significantly different from those of motion on M21L cells. Since the presence or
absence of the secondary receptor is the only difference between the two cases, we
can state that the receptor does significantly influence the virus trajectories.

A visual way of analyzing the differences in distribution between the two classes
is to plot thequantilesof M21 versus the quantiles of M21L, which is done in
Fig. 4.24. Due to the large number of samples, even slight departures from the
straight line are significant.
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Data correlations

We test whether significantcorrelationsbetween(ν2, β)-pairs exist in the two data
sets. UsingPearson’s product moment correlation(the “normal” r value), we
find that the two variables are correlated. The null hypothesis H0 that there is no
correlation betweenν2 andβ is rejected with a p-value of2.2 · 10−16. The 95%
confidence interval for the correlation coefficient is foundto be [0.34, 0.40] for
M21 and[0.33, 0.39] for M21L, explaining about 14% of the variance in the data
sets.

Pearson’s correlation is however only appropriate if the data come from a bivari-
ate normal distribution, which is not the case here (see above). We thus also com-
puteKendall’s rank correlation, confirming that the two variables are correlated
(p-value2.2 · 10−10 for uncorrelatedH0, rejected). The correlation coefficients
are 0.36 for M21 and 0.20 for M21L. The difference in the correlation coefficients
is significant. This result indicates that confined motion tends to be slower with a
weak correlation in M21L, and a moderate one in M21.

Results

The tests show that the two classes M21 and M21L differ significantly. This is sub-
stantiated by three independent pieces of evidence: the Chambers notches indicate
that the medians of the two classes are different, Fligner-Killeen tests indicate that
the variances are different, and the Kolmogorov-Smirnov tests finally indicate that
the functional shape of the two distributions differs, withnone of them being a nor-
mal distribution. All tests are highly significant with p-values well below10−6.
This striking clarity can be attributed to the large number of available data points.

Wild type M21 cells have a larger median2 than secondary-receptor-devoid cells.
This applies to both variablesν2 andβ, but is more pronounced for the latter.

We furthermore find thatν2 andβ are positively correlated, with a significantly
stronger correlation in M21 cells.

4.3.4 Trajectory segmentation results

As confirmed by the statistical analysis, the secondary receptor has an influence
on the virus motion. We use the trajectory segmentation technique presented in
Section 2.3 to quantify the corresponding changes in the trajectory patterns.

2The mean would be meaningless due to the long tails of the distributions

104 CHAPTER 4. APPLICATIONS AND RESULTS

arrest fraction arrest fraction arrest fraction

re
la

tiv
e

fr
eq

ue
nc

y

M21 M21L M21L4

Figure 4.25: Histograms of the fraction of the total trajectory length that is spent in arrest
zones for each drug case (see text for description).

In the 20 Hz data set, about 4000 arrest zones are identified onM21 cells, also
about 4000 on M21L cells, and about 3000 on M21L4 cells. In order for an ar-
rest zone to be distinguishable from a slow random walk, the latter must have an
absolute MSD> 0.1pixel2, corresponding to about64 nm2.

The histograms for the fraction of time spent inarrest zonesare shown in
Fig. 4.25. We find that trajectories on M21L cells are more often immobile than
trajectories on the other two cell types. The fraction of trajectories that are never
immobilized is about 10% in M21/M21L4 cells and drops to 2% for M21L cells.
Moreover, we see that the distributions for M21 and M21L4 arealmost identical,
confirming that the removal of the integrin receptor did not have significant irre-
versible effects.

The distribution of residence times intransient arrest zonesthat ended before
the end of the trajectory is shown in Fig. 4.26. The M21L4 control class is again
similar to the wt distribution. Removal of the secondary receptor seems to enhance
confinement with long residence times becoming more frequent. The size of the
arrest zones is around 0.3 pixel in all three cases. Since this equals the tracking
uncertainty due to imaging noise, the particles can be completely stationary during
arrest phases. The fraction of particles that escape an arrest zone drops from 57%
to 40% if the secondary receptor is absent.

The absence of the secondary receptor also influences the directed trajectory seg-
ments. The distribution of the lengths of directed segmentswithin the trajectories
of a class is shown in Fig. 4.27. While secondary-receptor-deficient cells exhibit
directed motion in only about 10% of the cases, the ratio increases to around 30%
for the other two cell types. The speed during directed segments is on average
2µm/s in all three cases.
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Figure 4.26: Histograms of the residence time in arrest zones for those particles that leave
the zone again.
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Figure 4.27: Histograms of directed segments of certain lengths. The cumulative length of
all segments from each bin is compared to the total trajectory length in each class. The
ratio is used as the bar height.
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cell type #events 〈Mℓ〉 #traj #d.m. #p.o.i. p k

M21 72 406 2923 4004 4237 14.3 5.03
M21L 17 536 3110 1234 4275 3.17 5.36
M21L4 43 459 2280 3257 3383 10.5 4.10

Table 4.4: Statistics of the sit-down event (see text) and the normalized countsk as com-
puted from the chemical analogy.

4.3.5 Event-based trajectory analysis

As outlined in Section 2.4, we can use the trajectory segmentation results to look
for certain events. Arrest zones might be related to clathrin coated pits, directed
segments to actin stress fibers. We are thus specifically looking for “sit-down”
events, i.e. viruses moving in a directed fashion that suddenly become immobil-
ized, and “pass-by” events, i.e. virus particles moving in adirected fashion toward
or away from another, immobile virus. The counted numbers ofoccurrence of
these events are normalized using the methods presented in Section 2.4.

Chemical analogy for the sit-down event

The absolute numbers of countedsit-down eventsin the 20 Hz data set are given in
column “#events” of Table 4.4 for all three cell types. Usingthe absolute number
of directed motion segments (#d.m.), the number of phases ofimmobility (#p.o.i.),
the number of trajectories in each class (#traj), and the mean trajectory length
〈Mℓ〉, we can compute the normalization constantsp and thenormalized countsk
according to Eq. (2.30).

Even though the absolute event counts significantly differ between the classes,
the normalized frequencies are about the same. The occurrence of the sit-down
event does therefore not seem to depend on the secondary receptor.

Monte Carlo simulation for sit-down event

Using a Monte Carlo simulation, the result of the chemical analogy is revisited.
The number of events in the randomized trajectories (#randomized) is used to
compute thenormalized countk as shown in Table 4.5. The Monte Carlo res-
ults predict a decrease in sit-down events when the secondary receptor is removed.
This contradiction to the chemical analogy indicates that directed segments and
arrest zones are not statistically independent in Ad-2 trajectories. The occurrence
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cell type #events #randomized k

M21 72 163.8±15.2 0.402 to 0.485
M21L 17 64.9±7.6 0.235 to 0.297
M21L4 43 113.8±7.8 0.354 to 0.406

Table 4.5: Monte Carlo simulation results for the number of sit-down events in randomized
trajectories (#randomized: mean± standard deviation) with normalized countsk.

cell type #events E k

M21 31 6.34 4.9
M21L 4 1.62 2.5
M21L4 21 4.6 4.6

Table 4.6: True and estimated (E) number of pass-by events in the three classes. The
estimate is done for uniform conditions and represents the expected number of events in a
random trajectory.

of arrest zones seems to be less likely after segments of directed motion than it
would be anywhere else in the trajectory.

Estimator for the pass-by events

We use the estimator from Subsection 2.4.2 with an interaction radius ofrm = 3
pixel, corresponding to the size of a particle in the frame images. The effectively
counted number ofpass-by events(#events) and the expected value under uniform
conditions (E) are given in Table 4.6. From this, the ratiok is computed as the
normalized count.

The effective number of events in all cases is significantly larger than the ex-
pected value for uniformly random trajectories. Furthermore, there seems to be a
difference between M21 and M21L cells. The control M21L4 is in good agree-
ment with the wt cells. These results suggest that the pass-by event might have an
underlying deterministic mechanism. The higher frequencyin wt cells is consist-
ent with the observation that the absence of the secondary receptor largely prevents
directed motion (cf. Subsection 4.3.4).
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4.3.6 Conclusions

We have demonstrated the feasibility ofunbiased automated high-throughput
particle tracking studies in cell biology. The large numberof observations leads to
statistically highly significant results for small deviations. For Ad-2 it can thus be
stated with a probability close to 1 that the secondary integrin receptor has a signi-
ficant influence on the motion of the virus bound to the primaryreceptor. In cells
lacking the secondary receptor, the mobility of the particles is reduced. This is
manifested by a drastic decrease in directed segments and prolonged residence in
arrest zones. Neither the size of the arrest zones nor the speed of the directed mo-
tion do however seem to change. These findings could indicatethat the presence of
the secondary receptor facilitates (or enables) directed motion, which is supported
by the observation that the upper quartile for M21 reaches aboveβ = 0.5, whereas
the one for M21L does not (Fig. 4.23). Furthermore, wt cells show a stronger cor-
relation between the speed of motion (measureν2) and its freedom (measureβ), as
determined by Kendall’s rank correlation for non-normallydistributed data. This
could signify that fast motion in wt cells is more likely to bedirected, whereas
receptor-devoid cells exhibit fast motion only by chance. The molecular nature of
these effects will have to be addressed in future studies.

While no clear conclusion about the sit-down events can be made, there seems to
be a deterministic tendency in the pass-by events. The normalized counts provide
evidence that the secondary receptor enhances these events, most likely by increas-
ing the probability of directed motion. This might suggest that bound viruses are
transported or biased toward clathrin-coated pits, and that this transport or bias is
mediated by integrins.



Part II

Dense Systems: Continuum
Models



Overview

In the second part of this thesis we consider the collective motion of abundant
diffusing particles for observation times that are much longer than the Brownian
step time. In these cases, the continuum description holds and we focus on numer-
ical methods for computationally solving the governing equation. We are using
particle methods[138] to simulate diffusion in complex-shaped spaces as well as
on curved surfaces. After presenting in Chapter 5 particle methods for diffusion
in space and on surfaces, we apply these techniques to simulations of diffusion
both in the lumen and in the membrane of the Endoplasmic Reticulum (ER). The
ER is a cell organelle of highly complex shape, generally depicted as a convo-
luted and interconnected meshwork of tubular and lamellar structures [280]. We
reconstruct realistic ER shapes from microscopy images (Section 6.2), quantify
their geometric complexity (Section 6.3), and present a novel, simulation-based
method to accurately determine molecular diffusion constants from Fluorescence
Recovery After Photobleaching (FRAP) experiments in live cells (Section 6.5)
[246, 245].

All computer programs used for the simulations in this part are based on a novel,
efficient parallel software framework for the portable implementation of particle
methods. This framework is presented and assessed in Chapter 7.

Governing equation of the continuum model

We consider a set ofN → ∞ particles undergoingBrownian motion[40, 92].
From continuum theory [202] we can define the particle volumedensity as the
mean number of particles per unit volume. This density is called concentration
and forms the keyfield quantityin diffusion problems.

The spatio-temporal evolution of the concentration fieldu(x, t) in a closed,
bounded subsetΩ of the d-dimensionalEuclidean spaceEd is modeled by the
Partial Differential Equation(PDE)

∂u

∂t
= ∇ · (D(x, t)∇u(x, t)) for x ∈ {Ω \ ∂Ω} , 0 < t 6 T ,
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whereD(x, t) denotes thediffusion tensorand∇ is theNabla operatorin Ed.
This equation is termed thediffusion equation, since it constitutes a second or-
der approximation to the mean field dynamics of a Brownian process [243]. Its
Green’s functionnaturally corresponds to thetransition densityof the underlying
Brownian process, thus connecting the single-particle interpretation to the con-
tinuum model.

Terminology classifies diffusion problems based on the structure of the diffusion
tensor:

• If D is proportional to the identity matrix,D = ν21, diffusion is callediso-
tropic, otherwiseanisotropic. Isotropic diffusion is characterized by a flux
whose magnitude does not depend on its direction, and it can be described
using a scalardiffusion constantν2. Microscopically, the diffusion constant
is defined from the mean step displacement lengtha and the mean timeτ
between steps of the underlying Brownian motion asν2 ∝ a2/(2τ). This
ratio remains finite in the limita→ 0, τ → 0.

• The case of a time-independentD is denoted asstationary diffusion, a time-
dependentD gives rise tounsteady diffusion.

• A D that does not depend on space defineshomogeneous diffusion. If D
varies in space, diffusion is calledinhomogeneous.

At t = 0 the concentration field is specified by aninitial condition

u(x, t = 0) = u0(x) x ∈ Ω, t = 0 .

The system is completed by problem-specific boundary conditions prescribing the
behavior ofu along∂Ω, the boundary ofΩ. The most frequently used boundary
conditions are theNeumannand Dirichlet conditions. The Neumann boundary
condition fixes the normal derivative at the boundary (n is the outer unit surface
normal on the boundary):

∂u

∂n
= ∇u(x, t) · n = fN (x, t) for x ∈ ∂Ω, 0 < t 6 T ,

whereas the Dirichlet condition prescribes the concentration value

u(x, t) = fD(x, t) for x ∈ ∂Ω, 0 < t 6 T .

If the boundary functionf is 0 everywhere on∂Ω, the boundary conditions are
calledhomogeneous.



Chapter 5

Particle Methods to Simulate Diffusion in Complex
Geometries and on Curved Surfaces

In this chapter we briefly review particle methods for the solution of the diffusion
equation in space, and extend them to simulations of diffusion on curved surfaces.
After outlining the fundamental concept of continuum particle methods in Section
5.1, we recall the stochastic method of random walk (Subsection 5.2.1) and the
deterministic method ofParticle Strength Exchange(PSE) (Subsection 5.2.2) for
simulating diffusion in space. Exploiting recent advancesin computer graphics,
we then introduce a method for simulating diffusion on curved surfaces (Section
5.3) and assess its accuracy and convergence. In Section 5.4, the new method is
extended to reaction-diffusion processes on moving and deforming surfaces, and
to employingmulti-resolutionconcepts as introduced by Bergdorfet al. [27].

5.1 Fundamentals of continuum particle methods

Continuum particle methodsare based on the approximation of smooth func-
tions by integrals that are being discretized onto computational elements called
particles. A particle p occupies a certain positionxp and carries an extensive
physical quantityωp, referred to as itsstrength. Theparticle attributes– strength
and location – evolve so as to satisfy the underlying governing equation in aLag-
rangian frameof reference [160]. The simulation of the physical system thus
amounts to tracking the dynamics of allN computational particles that carry the
physical properties of the system that is being simulated. The dynamics of the
particles are governed by sets ofOrdinary Differential Equations(ODE) that de-
termine the trajectories of the particlesp and the evolution of their propertiesω,
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Figure 5.1: Two particles of strengthsω1 andω2, carrying mollification kernelsζǫ.

thus:

dxp

dt
= v(xp, t) =

N∑

q=1

K(xp,xq;ωp,ωq), p = 1, . . . , N

dωp

dt
=

N∑

q=1

F (xp,xq;ωp,ωq) p = 1, . . . , N , (5.1)

wherevp is the velocity of particlep. The dynamics of the simulated system
are completely defined by the functionsK andF that represent the physics of the
problem. Inpure particle methods, K andF emerge from integral approximations
of differential operators; inhybrid particle-mesh methods, they entail solutions of
field equations that are discretized on a superimposed mesh.

If the functionsK andF are local, thealgorithmic complexityof the sums in
Eq. (5.1) isO(N). For long-range interactions, fast algorithms such as multipole
expansions [122] are available to reduce the complexity toO(N) also in these
cases. The issue of efficient parallel implementation of particle methods is ad-
dressed in Chapter 7.

5.1.1 Function approximation by particles

The approximation of a continuous functionu(x) : Rd 7→ R by particles can be
developed in three steps:
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• Step 1: Integral Representation.Using the Diracδ-function identity, the
functionu can be expressed in integral form as

u(x) =

∫
u(y) δ(y − x) dy for x, y ∈ Ω . (5.2)

In point particle methods, this integral is directly discretized on the set of
particles using a quadrature rule with the particle locations as quadrature
points. Such a discretization does however not enable the recovery of the
function values at locations other than those occupied by the particles.

• Step 2: Integral Mollification. Smooth particle methodscircumvent this
difficulty by regularizing theδ-function by amollification kernelζǫ =
ǫ−dζ(x/ǫ), with limǫ→0 ζǫ = δ, that conserves the firstr − 1 moments
of the δ-function identity (see Ref. [63] for details). The kernelζǫ can be
thought of as a cloud or blob of mass, centered at the particlelocation, as
illustrated in Fig. 5.1. Thecore sizeǫ defines the characteristic width of
the kernel and thus the spatial resolution of the method. Theregularized
function approximation is defined as

uǫ(x) =

∫
u(y)ζǫ(y − x) dy (5.3)

and can be used to recover the function values at arbitrary locationsx. The
approximation erroris of orderǫr, hence

uǫ(x) = u(x) +O(ǫr) , (5.4)

wherer depends on the vanishing moments of the mollification kernel[63,
160]. For positive symmetric kernels, such as a Gaussian,r = 2 [63].

• Step 3: Mollified Integral Discretization. The regularized integral is dis-
cretized overN particles using the quadrature rule

uh
ǫ (x) =

N∑

p=1

ωh
p ζǫ(x

h
p − x) , (5.5)

wherexh
p andωh

p are the numerical solutions of the particle positions and
strengths, determined by discretizing the ODEs in Eq. (5.1)in time. The
strengthωp of particlep is anextensive propertythat depends on the partic-
ular quadrature rule. In this thesis we use the rectangular rule, thus setting
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ωp = u(xp)Vp whereVp is the volume of particlep. Using this discretiza-
tion we obtain the function approximation

uh
ǫ (x) = uǫ(x) +O

(
h

ǫ

)s
= u(x) +O(ǫr) +O

(
h

ǫ

)s
, (5.6)

wheres depends on the number of continuous derivatives of the mollifica-
tion kernelζǫ [63, 160], andh is the inter-particle distance. For a Gaussian
s→∞.

From theapproximation errorin Eq. (5.6), we see that it is imperative that the
distanceh between any two particles be always less than their mollifiedsupportǫ,
thus maintaining

h

ǫ
< 1 (5.7)

at all times. If this “particle overlap” condition is violated, the approximation error
becomes arbitrarily large, and the method ceases to be well posed.

5.1.2 Operator approximation

To evaluate differential operators on particles, two strategies are distinguished:
pure particle methods and hybrid particle-mesh methods.

Pure particle methods

In pure particle methods, differential operators on functions that are represented
on particles are approximated byintegral operators. The functionsK andF in
Eq. (5.1) thus represent the discretized versions of these integral operators. For
diffusion, we are interested in the operators∇2 and∇ · (D∇). A conservative
approximation by integral operators that allow consistentevaluation on scattered
particle locations is reviewed in Section 5.2.2. Beyond diffusion, a general de-
terministic framework is available to approximate any differential operator by a
corresponding integral [93].

In this thesis we use pure particle methods to simulate diffusion in space, as
described in Section 5.2.
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Hybrid particle-mesh methods

In hybrid Particle-Mesh(PM) methods, as pioneered by Harlow [127], some
(but not all) of the differential operators are evaluated ona superimposed regu-
lar Cartesian mesh[138]. The functionsK andF in Eq. (5.1) may thus contain
contributions corresponding to the solutions offield equationson the mesh. Hybrid
methods require:

• theinterpolationof theωp carried by the particles from the irregular particle
locationsxp onto theM regular mesh points (ωm) by:

ωh
m =

N∑

p=1

Q(xm − xh
p)ωh

p m = 1, . . . ,M , (5.8)

• and theinterpolationof the field solutionF m (and similarlyKm if present)
from the mesh to the (not necessarily same) particle locations (F p):

F h
p =

M∑

m=1

R(xh
p − xm)F h

m p = 1, . . . , N . (5.9)

The accuracy of the method depends on the smoothness ofK andF , on thein-
terpolation functionsQ andR, and on the mesh-based discretization scheme em-
ployed for the solution of the field equations. To achieve high accuracy, the inter-
polation functionsQ andRmust be smooth to minimizelocal errors, and conserve
the moments of the interpolated quantity to minimizefar-field errors[160]. In ad-
dition, it is necessary thatQ is at least of the same order of accuracy asR, to avoid
spurious contributions toF h

p [138]. This can be easily achieved by selecting the
same type of interpolation,W , for both operations:Q = R = W . Accurate inter-
polation functions that conserve the moments of the interpolated quantity up to a
certain order can be constructed in a systematic way [194].

In this thesis we use hybrid particle-mesh methods to simulate diffusion on
curved and moving surfaces, as described in Section 5.3.

5.2 Particle Methods for diffusion in space

The simulation of spatial diffusion processes by particle methods can be formu-
lated in the above framework, where the particles carry massas their strengthω
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and collectively represent the concentration fieldu. In the following, we first re-
view the stochastic method of random walk and the deterministic Particle Strength
Exchange(PSE) method. Using a one-dimensional test problem we then compare
the accuracy and the convergence behavior of the two methods.

5.2.1 The method of Random Walk (RW)

The method ofRandom Walk(RW) [57] is based on the probabilistic interpretation
of the Green’s function solution of the diffusion equation:

u(x, t) =

∞∫

−∞

G(x,y, t)u0(y) dy . (5.10)

In the case ofd-dimensional isotropic free-space diffusion, i.e.D = ν21, Green’s
function is explicitly known to be:

G(x,y, t) =
1

(4πν2t)
d/2

exp

[
−‖x− y‖22

4ν2t

]
. (5.11)

Probabilistically,G corresponds to thetransition densityas given in Eq. (2.1).
This directly connects the continuum model to the single particle description of
diffusion processes as described in Chapter 2. The RW methodin d dimensions
thus starts by either uniformly or randomly placingN particlesp at initial locations
x0

p, p = 1, . . . , N . Each particle is assigned a strength ofωp = Vpu0(x
0
p), where

Vp is the particle’s volume. The particles then undergo a random walk by changing
their positions at each positive integer time stepn according to:

xn+1
p = xn

p + N n
p (0, 2ν2δt) , (5.12)

whereN n
p (0, 2ν2δt) is a vector ofi.i.d. Gaussian random numbers with each

component having mean zero and variance2ν2δt; ν2 is the molecular diffusion
constant andδt is the simulation time step. Homogeneous Neumann boundary
conditions can be satisfied by reflecting the particles at theboundary.

The method is consistent since the expected distribution ofparticle strength in
space converges to the integral solution in Eq. (5.10) as we letN → ∞. RW is a
stochastic method. This limits its convergence capabilities since the variance of the
mean ofN i.i.d. random variables is given by1/

√
N times the individual variance

of a single random variable. Moreover, the solution deteriorates with increasing
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diffusion constantν2, since the variance of the random variables becomes larger.
In the case of smallν2, the motion of the particles can be masked by the sampling
noise.

The RW method however readily extends to anisotropic diffusion processes and
diffusion on curved manifolds, where the individual step displacements are simply
projected onto the manifold [58].

5.2.2 The PSE method

The method ofParticle Strength Exchange(PSE) [79, 80] is adeterministic pure
particle methodto simulate diffusion in space. As we show in Subsection 5.2.3,
the PSE method is orders of magnitude more accurate than RW. PSE is based on
approximating the diffusion operator by an integral operator that allows consistent
evaluation on the particle locations. The PSE scheme has been devised by Degond
and Mas-Gallic for both isotropic [79] and anisotropic [80]diffusion.

Isotropic diffusion by PSE

The isotropic PSEmethod [79] obtains an integral approximation to theLaplace
operatorby considering the solution at a locationy and expanding it into aTaylor
seriesaroundx:

u(y) = u(x)+

r+1∑

i=1

[
1

i!

(
(y − x) · ∇x

′

)i

u(x′)

]

x
′=x

+O
(
‖y − x‖r+2

2 ‖u‖∞
)
.

(5.13)

Subtractingu(x) on both sides, multiplying the whole equation by aregularized
kernel functionηǫ(x) = ǫ−dη(x/ǫ) of sizeǫ > 0, and integrating overy yields:

∫

Rd

(u(y)− u(x)) ηǫ(y − x) dy =

r+1∑

i=1

1

i!

∫

Rd

[(
(y − x) · ∇x

′

)i

u(x′)

]

x
′=x

ηǫ(y − x) dy

+ ‖u‖∞O
(∫

Rd

‖y − x‖r+2
2 ηǫ(y − x) dy

)
. (5.14)
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For the approximation to be consistent, we have to ask the following requirement
for the kernel functionη [79]:

∫

Rd

d∏

i=1

xαi

i η(x) dx =





0, ∀α ∈ N
d, α 6= 2ei, 1 6

d∑
i=1

αi 6 r + 1

2, if α = 2ei, i ∈ {1, . . . , d} ,
(5.15)

whered is the dimension of the space,r is the order of the approximation, and
x = (x1, . . . , xd) ∈ R

d. α = (α1, . . . , αd) ∈ N
d is ad-dimensional index and

(e1, . . . ,ed) is thecanonical basisof Rd. In the three-dimensional case, above
requirement can be expressed as:

∫
xixjη(x) dx = 2δij for i, j = 1, 2, 3 (5.16)

∫
xi1

1 x
i2
2 x

i3
3 η(x) dx = 0 if i1 + i2 + i3 = 1 or 3 6 i1 + i2 + i3 6 r + 1

(5.17)
∫
‖x‖r+2

2 |η(x)| dx <∞ (5.18)

for i1, i2, i3 ∈ N
+
0 . The first condition is to normalize the kernel function. The

second one requires all moments up to orderr + 1 to vanish, and the third one is
required for a bounded truncation error. Using requirements (5.16) and (5.17), the
only remaining terms in Eq. (5.14) are

ǫ−2

∫

Rd

(u(y)− u(x)) ηǫ(y − x) dy = ∇2u(x) +O (ǫr) , (5.19)

and theintegral operatorthat approximates the Laplacian is found as

∇2
ǫu(x) = ǫ−2

∫

Rd

(u(y)− u(x)) ηǫ(y − x) dy . (5.20)

While this operator is not the only possibility of discretizing the Laplacian onto
particles, it has the big advantage of conserving mass exactly [63]. The approx-
imation error isO(ǫr) with r being the largest integer for which conditions (5.15)
are fulfilled (see Ref. [63] for a rigorous error treatment).Eq. (5.20) is discretized
using the particle locations as quadrature points, thus:

∇2
ǫ,hu

h(xh
p) = ǫ−2

N∑

q=1

(
Vqu

h
q − Vqu

h
p

)
ηǫ(x

h
q − xh

p) , (5.21)
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whereVp is the volume of particlep. The finalPSE scheme for isotropic diffusion
then reads

dωp

dt
= Vpν2ǫ

−2
N∑

q=1

(
Vqu

h
q − Vqu

h
p

)
ηǫ(x

h
q −xh

p) ∀ p = 1, . . . , N . (5.22)

Since thePSE kernelηǫ is local, only the neighbors within a certain cut-off
distancerc significantly contribute to the sum of each particle. This reduces the
algorithmic complexity toO(N) when neighbor lists such ascell lists(Subsection
7.2.4) orVerlet lists[301] are used. It can also be seen from Eq. (5.22) that in order
to simulate diffusion the strengths of all the particles change, i.e. they exchange
mass, while their locations remain the same, i.e. they do notmove. This is dual to
the method of RW and has the benefit that all the geometry and boundary condition
processing only needs to be done once when initializing the particles. Therefore,
we often simplify the notation by writingxp instead ofxh

p .

Anisotropic diffusion by PSE

In the case of a full diffusion tensorD(x, t), an analogous derivation can be
applied to find a deterministic particle representation of the diffusion operator
∇ · (D∇). Degond and Mas-Gallic [80] have shown that the following regular-
izedintegral operatorQǫ is a consistent approximation of the anisotropic diffusion
operator on a set of particles:

∇·(D∇u(x, t)) ≈ Qǫ(t) u(x, t) = ǫ−2

∫

Rd

[u(y)−u(x)]σǫ(x,y, t) dy . (5.23)

The regularized kernelσǫ = ǫ−dσ(x/ǫ) again satisfies certain moment conditions
[80]. The discretized particle approximationQh

ǫ is obtained by applying a quad-
rature rule to the integral operatorQǫ(t) using the particles as quadrature points:

Qh
ǫ (t) uh

p(t) = ǫ−2
N∑

q=1

[Vquq(t)− Vqup(t)]σǫ(xp(t),xq(t), t) . (5.24)

The regularized kernel is defined as:

σǫ(xp,xq, t) =

d∑

i,j=1

Mij(xp,xq, t)ψij(xq − xp) , (5.25)
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whereM = (Mij(x,y, t)) is a matrix function of the diffusion tensorD. For
spherically symmetric kernels, a matrix smoothing function with elements

ψij = ǫ−2ηǫ (xp − xq) · (x− y)i(x− y)j (5.26)

is used [80], where(x)i denotes theith component of a vectorx. This reduces the
system to a scalar kernel functionηǫ = ǫ−dη(x/ǫ). Substituting into Eq. (5.25)
yields the regularized anisotropic PSE kernel function

σǫ(xp,xq, t) = ǫ−2 ηǫ (xp − xq)

d∑

i,j=1

Mij(xp,xq, t)(xp−xq)i(xp−xq)j .

(5.27)

Degond and Mas-Gallic [80] suggestM to be of the form

M(xp,xq, t) =
1

2
(m(xp, t) + m(xq, t)) , (5.28)

where

m(x, t) = D(x, t)− 1

d+ 2
Tr (D(x, t)) · 1 . (5.29)

The finalanisotropic PSEscheme thus reads:

dωp

dt
= Vpǫ

−4
N∑

q=1

[(
Vqu

h
q − Vqu

h
p

)
ηǫ(x

h
p − xh

q )

·
d∑

i,j=1

Mij(x
h
p ,x

h
q , t)(x

h
p − xh

q )i(x
h
p − xh

q )j

]
. (5.30)

As in the isotropic case, the sum is only taken over the neighbors within a certain
distancerc, due to the local character of the interaction kernel. This is efficiently
done using acell-list (Subsection 7.2.4) or aVerlet list [301] algorithm. Since in a
pure diffusion problem the particles do not move, we often write xp instead ofxh

p .
Valid spherically symmetric kernel functionsη(r) for d = 3 can be found by

introducing the spherical normalization constraint [80]

4π

15

∫ ∞

0

r6 η(r) dr
!
= 1 . (5.31)
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This leads for example to the second-order accurate exponential kernel that is used
for the simulations in this thesis:

ηǫ (xp − xq) =
4

ǫ−dπ
√
π
e−

‖xp−xq‖2
2

ǫ2 . (5.32)

Boundary conditions

The PSE algorithm as described above only applies to infinitedomains. For dif-
fusion in constrained geometries, it needs to be modified to take into account the
prescribed boundary conditions. Forhomogeneous boundary conditionsin the
case of flat (compared to the core sizeǫ of the mollification kernel) boundaries, a
straightforward method consists of placingmirror particles in anrc-neighborhood
outside of the simulation domain. In the resultingmethod of images, the integral
operator becomes

ǫ−2

∫

Rd

(u(y)− u(x)) (Θǫ(y − x)±Θǫ(y + x)) dy +O(ǫr) , (5.33)

with Θǫ = ν2ηǫ for the isotropic case andΘǫ = σǫ for the anisotropic case. The
final scheme is thus represented as

dωp

dt
= Vpǫ

−2
N∑

q=1

(Vqu
h
q−Vqu

h
p)
(
Θǫ(x

h
q − xh

p)±Θǫ(x
h
q + xh

p)
)
∀ p . (5.34)

The positive sign between the two kernel functions applies for zero fluxNeumann
boundary conditions, whereas the negative sign is to be used in the case of zero
valueDirichlet boundary conditions. The method of images is restricted to the case
of homogeneous boundary conditions. Forinhomogeneous boundary conditions,
the particle strengths need to be adjusted in the vicinity ofthe boundary [161].

5.2.3 Comparison of PSE and RW

The convergence properties of the RW and PSE methods are illustrated on isotropic
homogeneous diffusion on the one-dimensional (i.e.d = 1) line Ω = [0,∞),
subject to the following initial and boundary conditions:

{
u(x, t = 0) = u0(x) = xe−x2

x ∈ [0,∞), t = 0
u(x = 0, t) = 0 x = 0, 0 < t 6 T .

(5.35)
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Using the method of images, the exact solution of this problem is

uex(x, t) =
x

(1 + 4ν2t)
3/2

e−x2/(1+4ν2t) . (5.36)

Both RW and PSE simulations of this test case are performed with a varying num-
ber of particles to study the spatial convergence behavior.In order to meet the
boundary condition atx = 0, the RW solution is calculated for2N particles ini-
tially uniformly placed on the line[−X,X], such thatN particles have locations
x0

p > 0. The domain boundaryX is chosen large enough such thatu(X, t) < ε
(with ε being themachine epsilonof the computer) for the whole duration of the
simulation. Each of the2N particles is assigned a strength ofωp = Xu0(|x0

p|)/N .
Then the particles undergo a one-dimensional random walk according to Subsec-
tion 5.2.1. To recover the solution at a later time stepn, the domain of solution
[0,X] is subdivided intoM disjoint intervals of sizeδx = X/M and the particles
are sampled in these intervals as follows: each intervalj = 1, . . . ,M is assigned
the sum of the strengths of all the particles having positions between(j − 3/2)δx
and(j − 1/2)δx, thus

uRW((j − 1)δx, nδt) =
1

δx

∑

p

{
ωp : (j − 1)δx < xn

p +
1

2
δx 6 jδx

}

for j = 1, . . . ,M .
For the PSE, the method as given by Eq. (5.22) is implemented.The bound-

ary condition is treated in the same way as for the RW, i.e. theinterval [−X,X]
is covered with2N uniformly spaced particles at locationsxp, p = 1, . . . , 2N .
This is themethod of imagessince it is equivalent to using mirror kernels as in
Eq. (5.34). The inter-particle spacing ish = X/(N − 1). Initially each particle
is assigned a strength ofωp = Xu0(|xp|)/N , as in the RW case. Eq. (5.22) is
discretized in time using the explicit Euler method. The strengths of the particles
are therefore updated at each time stepn = 0, 1, 2 . . . as follows:

ωn+1
p = ωn

p +
hν2δt

ǫ2

∑

q

(
ωn

q − ωn
p

)
ηǫ(xq − xp) ∀ p ∈ {1, . . . , 2N} .

Forηǫ we use the 2nd order accurate Gaussian kernel

ηǫ(x) =
1

2ǫ
√
π
e−x2/4ǫ2 , (5.37)

ivos
Note
Typo: Should be eps^d instead of exp^{-d}.
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Figure 5.2: Comparison of RW (a) and PSE (b) solutions of the benchmark case. The
solutions at timeT = 10 are shown (circles) along with the exact analytic solution (solid
line). For both methodsN = 50 particles, a time step ofδt = 0.1, ν2 = 10−4, andX = 4
are used. The RW solution is sampled inM = 20 intervals ofδx = 0.2. For the PSE a
core size ofǫ = h is used.

which fulfills the requirements in Eq. (5.15) in one dimension at orderr = 2. The
concentration values at particle locationsxp and simulation time pointstn = nδt
are recovered as

uPSE(xp, t
n) = ωn

p ·N/X .

Fig. 5.2 shows the RW and PSE solutions at a final time ofT = 10 for N = 50
particles and a diffusion constant ofν2 = 10−4. The accuracy of the simulations
for different numbers of particles is assessed by computingthe finalL2 error

L2 =

[
1

N

N∑

p=1

(uex(xp, T )− u(xp, T ))
2

]1/2

(5.38)

for eachN . The resulting convergence curves are shown in Fig. 5.3. Forthe RW
we observe the characteristic slow convergence ofO(1/

√
N) [191]. For the PSE,

a convergence ofO(1/N2) is observed, in agreement with the employed 2nd order
kernel function. Below an error of10−6 machine precision is reached. It can be
seen that the error of the PSE simulations is several orders of magnitude lower
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Figure 5.3: Convergence curves for RW and PSE. TheL2 error versus the number of
particles for the RW (triangles) and the PSE (circles) solutions of the benchmark case at
timeT = 10 are shown. For both methods a time step ofδt = 0.1, ν2 = 10−4, andX = 4
are used. The RW solution is sampled inM = 20 intervals ofδx = 0.2 and for the PSE a
core size ofǫ = h is used. The machine epsilon isO(10−6).

than the one of the RW simulations for the same number of particles. Using only
100 particles, the PSE is already close to machine precision. It is evident from
these results that large numbers of particles are necessaryto achieve reasonable
accuracy using RW in complex-shaped domains.

5.3 A level-set particle method for diffusion on curved surfaces

In computational science a number of techniques have been proposed to solve the
diffusion equation on curved surfaces, requiring rectangular grids [1], surface tri-
angulations [3], or using local representations and overset grid techniques [253].
These explicit techniques allow a piecewise linear representation of the surface and
encounter severe difficulties in tracking large surface deformations. Monte Carlo
techniques [58] for the simulation of diffusion processes suffer from slow conver-
gence rates and they are not competitive with their deterministic counterparts for
simulations in complex geometries [160, 246].

The simulation of diffusion on curved surfaces has also received considerable
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attention in the area of computer graphics. We exploit recent advances from image
and video inpainting [32] by representing surfaces implicitly using particlelevel
settechniques [137]. The key concept amounts to considering the surface as a level
set of a higher-dimensional scalar function. The resultinggoverning equations are
solved in a Cartesian coordinate system spanning a region consisting of all points
close to the surface. This technique has been recently employed for the simulation
of isotropic diffusion on the plasma membrane of hl-60 cells[253].

Mathematically, we consider the diffusion of a scalar quantity u on aRiemannian
manifoldM⊂ R

d as governed by

∂u(ξ, t)

∂t
= LDu(ξ, t) ξ ∈M , (5.39)

where theintrinsic diffusion operatoronM is defined as

LD = ∇M · (D(ξ, t)∇M(·)) . (5.40)

∇M is theintrinsic Nablaoperator on the surfaceM andD(ξ, t) is thediffusion
tensor. If the surface is closed and finite, no boundary conditions are required. We
wish to discretize Eq. (5.39) onto particles.

In this chapter, we occasionally use thesummation conventionto keep the nota-
tion compact. In this convention, matrices are representedby their elements with
the first index denoting the row and the second one the column,thus:

A = (aij) .

Moreover, all products are implicitly summed over all indices appearing more than
once.

aijbjk =
∑

j

(aijbjk)

thus is the summation notation for the matrix productAB.

5.3.1 Previous approaches

In order to discretize Eq. (5.39), i.e. to represent the differential operatorLD,
a parametrization of the manifoldM is needed. In the simplest case aglobal
parametrization

f : ξ = (ξi) ∈M 7→ f(ξ) ⊆ R
d (5.41)
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is available. This directly allows to compute theRiemann metric

gij =
∂fk

∂ξi

∂fk

∂ξj
(5.42)

and theintrinsic LaplacianonM, given by

∇2
M =

1√
|g|

∂

∂ξi

(√
|g|gij ∂

∂ξj

)
. (5.43)

Hereby,|g| denotes the determinant ofgij andgij = g−1
ij its inverse. For arbitrary

manifolds, global parametrizations however usually do notexist (e.g. for all objects
homeomorphic to a sphere), or can not be explicitly determined.

Local parametrizationssuch as normal coordinates, local quadratic approxima-
tions, or splines can generally be found. They do however suffer from a number
of shortcomings such as numerical instabilities in the caseof normal coordinates,
asymmetry in local quadratic approximations, or algorithmic complexity for the
connectivity information required by splines.

5.3.2 Surface representation

The different ways of representing the surfaceM in the computer can be classified
with respect to the connectivity information needed.Triangulated surfacesare an
example of connectivity-based representations. Since establishing the connectiv-
ity information is computationally expensive, these meshes are preferably used in
finite element methods for diffusion on surfaces [20]. Connectivity-less methods
include scattered point clouds [124] and implicit representations [256].

We make use of theimplicit surface representationtechnique, also calledlevel
setmethod. Hereby, the surface is given by the zero level of a smooth level function
ψ ∈ C1 : R

d 7→ R, thusM = {x : ψ(x) = 0}. For reasons of efficiency, we
usually chooseψ to be thesigned distance functionfor which

‖∇ψ‖2 = 1 . (5.44)

Sinceψ(x ∈ M) = 0, the function value of the signed distance function directly
reflects the orthogonal distance to the surface.

5.3.3 Embedding inRd

As shown by Bertalmioet al. [32], the diffusion Eq. (5.39) on the surfaceM can
be transformed into a PDE for generalized anisotropic diffusion in the surround-
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ing R
d. This is achieved byembeddingthe manifold in a small annular domain

called “band”, consisting of all points close to the original surface. The respective
differential operators inRd can then directly be discretized inside the band using
particle methods [137, 160]. The embedding transformationworks by constraining
the fluxes to the tangential direction using the projection map

T =

(
1− ∇ψ ⊗∇ψ‖∇ψ‖22

)
‖∇ψ‖2 . (5.45)

Here,∇ is the regular Nabla operator inRd. The initial conditionu(ξ, t = 0) is
only known onM. It is thus extended to the band aroundM by solving to steady
state the PDE

∂u

∂t
+ sign(ψ)(∇u · ∇ψ) = 0 in R

d . (5.46)

This enforces that the direction of thediffusive flux∇u is orthogonal to the normal
onM, ∇ψ, such that the extension is neutral with respect to the abovemapping
operatorT . The embedded governing equation for anisotropicdiffusion on the
surfaceM thus becomes

∂u

∂t
=

1

‖∇ψ‖2
∇ ·
(
TD̃∇u

)
in the band, (5.47)

where∇ is the regular Nabla operator inRd and the tensor̃D(x, t) is obtained
from the diffusion tensorD(ξ, t) on the surface by extending it with an arbitrary
radial component that is invariant under the projection map.

5.3.4 Level set reinitialization

The signed distance function to any surface can be constructed from an arbitrary
smooth level function usingreinitialization. This refers to the process of replacing
the oldψ by a newly constructed one. For the newψ to be the signed distance
function, it has to be the solution of theEikonal equation

‖∇ψ(x)‖22 = 1 in the band, (5.48)

or, equivalently, the steady-state solution of the PDE

∂ψ

∂t
+ sign(ψ)(∇ψ · ∇ψ − 1) = 0 . (5.49)
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Figure 5.4: Principle of the fast marching method. The levelfunctionψ is assumed to be
known in a band (shaded in gray) around the surfaceψ = 0. The algorithm successively
enlarges the region whereψ is known. A new point is computed by solving the quadratic
equation that emerges from the upwind discretization of‖∇ψ‖2

2 = 1. To preserve causality,
the points are updated in order of ascending distance to the surface.

Since the band is of finite width, this procedure requires an extrapolating method.
The prevalent extrapolating narrow band algorithm for signed distance functions
is theFast Marching Method(FMM), introduced by Sethian in 1996 [255].

The FMM is a grid-based level set algorithm. It starts from all grid points im-
mediately adjacent to the surfaceψ(x) = 0, where the level function is assumed
to be known. The FMM thus needs to be initialized by computingthe orthogonal
distance to the surface for all points immediately adjacentto the surface. We use
the second-order accurate surface locating algorithm by Chopp [56], employing
tri-cubic interpolation near the surface, to determine these initial distance values.
As a by-product, this algorithm also yields the location andthe distance of the
closest point on the implicit surface (closest point transform), which can be used
to reconstruct function values onM or to compute the quadrature of a function
alongM [289].

From the first layer of points, the FMM successively expands the band in which
the correctψ is known as outlined in Fig. 5.4. Theψ values of new points are
computed by solving the quadratic equation formed by the upwind finite-difference
discretization of Eq. (5.48). To satisfycausality, the FMM updates the points
in order of ascending distanceψ to the surface. This ensures that the upwind
differences are only using values that are not going to change any more in future
updates.

The original FMM uses first orderupwind differencesand requires the points
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to be sorted according to their distance to the surface. The latter property pro-
hibits a parallel implementation on distributed computer systems and renders the
method inherently sequential. Sorting is avoided by the marchingEikonal solverof
Kim [156], called theGroup Marching Method(GMM). It advances several points
per iteration and can therefore be implemented on parallel computers. Avoiding
the global sorting also reduces the algorithmic complexityof the method from
O(N logN) toO(N), whereN is the total number of points. To satisfy causality
without sorting the points, each point is computedr times withr being the order
of the upwind scheme. From all solutions, the one with the smallest absolute value
is used, since the orthogonal distance to the surface is the shortest distance. The
details of the algorithm are described in the original publication [156].

We note that upwindWENO[148] schemes are a viable alternative to the GMM.
WENO schemes of up to fifth order have successfully been used for level set ap-
plications [214]. Because they constitute an iterative method that operates in the
whole domain, rather than just in the narrow band around the surface, they are
however usually more expensive than the GMM.

5.3.5 Orthogonal extension of the solution

In order to construct the initial condition in the band around M according to
Eq. (5.46), we need to extrapolate the functionu enforcing∇u · ∇ψ = 0. This
extrapolation is referred to asorthogonal extensionof u overψ.

Extension corresponds to solving the Eikonal-like equation

∇u(x) · ∇ψ(x) = 0 (5.50)

for u(x). Orthogonal extension can thus be done with the same algorithms as
reinitialization. In the GMM and FMM, the quadratic equation emerging from the
upwind discretization of∇ψ · ∇ψ is replaced by the linear equation from discret-
izing∇u · ∇ψ, and the right-hand side is changed from1 to 0. Sinceψ is known,
upwind differences only need to be used in∇u, and∇ψ can be approximated
using higher-order centered differences.

5.3.6 Convergence of the level-set algorithms

Both, the high-order initialization procedure of Chopp [56] and the GMM [156],
modified to higher order, are implemented in the parallelPPM software library
(cf. Chapter 7) for both two and three dimensions. All methods are available
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for convergence orders 1, 2, and 3. Routines for orthogonal function extension,
level function reinitialization, and closest point transform have been added. The
accuracy of the present implementations is tested on the extension of the signed
distance function to the unit sphere inR3. The analytical signed-distance func-
tion is ψ̃ =

√
x2 + y2 + z2 − 1, whereas the algorithm reconstructsψ. Using the

point-wise errore = ψ− ψ̃ on the points in the narrow band, the followingrelative
error measures are computed from all points adjacent to the surface:

L2 =
1

maxi |ψ̃i|

[
1

N

N∑

i=1

e2i

]1/2

(5.51)

L∞ =
1

maxi |ψ̃i|
max

i
|ei| . (5.52)

To test the orthogonal extension, the spherical harmonicu = Y 0
1 as given in

Eq. (5.62) is extrapolated from the surface of the sphere into the band. The res-
ulting convergence curves are shown in Fig. 5.5 for both the 2nd order and the
3rd order orthogonal extension GMM. The straight lines indicate the theoretical
convergence slopes of order 2 and 3, respectively.

The convergence of the reinitialization algorithm is assessed and compared to
the values published by Chopp [56]. Fig. 5.6(a) shows the convergence of the
surface locating step to determine the initial values for the GMM using tri-cubic
interpolation [56], and Figs. 5.6(b)–5.7(b) show the convergence of the GMM rein-
itialization in comparison to Chopp’s higher order FMM [56].

5.3.7 Formulation of the numerical scheme

We formulate the numerical scheme for diffusion on surfaceswithin the frame-
work of hybrid particle-mesh methods [127, 138]. Convection as used in Subsec-
tions 5.4.3 and 5.4.4 is treated by particle motion, whereasall level set operations
and the diffusion operator are discretized on a Cartesian mesh with spacings(hi)
in all spatial directionsi. We choose to evaluate the diffusion operator on regular
locations because the convergence rate of the anisotropic PSE scheme deteriorates
if the band is narrower than about10ǫ (M. Bergdorf, personal communication,
2005). A band of minimal width is however a key property of thepresent method
as the computational cost grows proportionally to the band width, and the cap-
ability of resolving fine surface structures decreases withincreasing band width.
Moreover, the level set algorithms described above requirethe data to be available
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Figure 5.5: Convergence of the second order (a) and third order (b) orthogonal extension.
The spherical harmonicu = Y 0

1 (Eq. (5.62)) is initialized in a band of half-width3h
and orthogonally extended outwards to a9h band. This is done over the exact signed
distance functioneψ, initialized in a12h band. Second order centered differences are used
to approximate∇ψ in the extension. To compute the error,∇u is approximated using4th

order centered differences in the band3h < | eψ| < 6h, and∇ eψ is known analytically.

on regular locations.Interpolationas outlined in Subsection 5.1.2 is used to map
the property vectors(uh

p , ψ
h
p ) between the regularly spaced mesh nodes and the

irregular particle locationsxh
p .

The method adapts to the shape of the surface as particles areonly present in the
narrow band|ψ| < k. Inside this band,∇ψ is computed on the mesh using second-
order upwind differencesto avoid boundary errors, and the projected diffusion
tensorsΛ = TD̃ at all particle locations are determined. The right-hand side
of Eq. (5.47) is computed in aninner bandof half-widthκ < k. The region where
κ 6 |ψ| < k serves as aboundary layer. After each time step, the solutionu in
the boundary layer is reconstructed using the second-orderextension scheme as
described in Subsection 5.3.5.

Discretization of the embedded Eq. (5.47) on the mesh is donefor an arbitrary,
space-dependent tensorΛ by usingLagrange interpolationpolynomials for both
u andΛ (element-wise). In order to obtain a second-order accurateoperator dis-
cretization of minimal support, we choose a quadratic polynomial basis in each
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Figure 5.6: (a) Convergence of the surface locating algorithm [56], applied to the signed
distance function around the unit sphere. The present implementation (filled symbols) is
compared to the errors published by Chopp [56] (open symbols) and the2nd order scaling
(solid line). (b) Convergence of the first order GMM. A signeddistance function is extended
from a band of half-width3h to one of9h. All errors are computed within3h < | eψ| < 9h.
The present GMM (filled symbols) is compared to the errors published by Chopp [56] (open
symbols) for a standard FMM, and the1st order scaling (solid line).

spatial directioni, as shown in Fig. 5.8:

l−1(xi) =
1

2

xi (xi − hi)

h2
i

(5.53)

l0(xi) = − (xi + hi) (xi − hi)

h2
i

(5.54)

l1(xi) =
1

2

xi (xi + hi)

h2
i

, (5.55)

where the coordinatex is relative to each grid node (locally centered basis). The
unknown functionu and all elements of the matrixΛ are expressed as continuous
functions in the above basis. In three dimensions, letuh(i, j, k) andΛ

h(i, j, k) =
(λh

mn(i, j, k)) be the discrete representations evaluated at mesh node(i, j, k). The
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Figure 5.7: Convergence of the second order (a) and third order (b) GMM. A signed dis-
tance function is extended from a band of half-width3h to one of half-width9h. All errors
are computed in the band3h < | eψ| < 9h. The present GMM (filled symbols) is compared
to the numbers published by Chopp [56] (open symbols) for a higher order FMM, and the
theoretical scaling (solid line).
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Figure 5.8: The three quadratic polynomial basis functionsused in each spatial direction
xi. The polynomials are interpolating at the locations−hi, 0, andhi, with the coordinates
locally centered at each mesh node. Higher-dimensional bases are formed by Cartesian
products of the depicted polynomials.
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interpolated continuous functions then are:

ũ(x) =
1∑

k=−1

1∑

j=−1

1∑

i=−1

uh(i, j, k)li(x1)lj(x2)lk(x3) (5.56)

λ̃mn(x) =

1∑

k=−1

1∑

j=−1

1∑

i=−1

λh
mn(i, j, k)li(x1)lj(x2)lk(x3) . (5.57)

These functions are used to symbolically compute the right-hand side of Eq. (5.47).
Evaluating the resulting expression at the center nodex = 0 yields the final dis-
cretized form of the operator:

∇ · (Λ(x)∇u(x)) ≈
[
∇ ·
(
Λ̃(x)∇ũ(x)

)]

x=0

. (5.58)

By construction, this discretized operator has a compact support consisting of 27
particles in three dimensions, which corresponds to an interaction radius of only
1h. The resulting stencil weights can be pre-computed, but maydepend on space
asΛ can be a function ofx. ForΛ = 1 in three dimensions, the standard 7-point
stencil for the Laplacian is recovered.

Using more than three points in each direction, and thus a higher-order polyno-
mial basis, allows to systematically construct higher-order operator discretizations.

5.3.8 Convergence of the diffusion method

The order of accuracy of the method described in Subsection 5.3.7 is determined
on a test problem with known analytic solution. We consider isotropic diffusion
on the surface of the unit sphereS2 ⊂ R

3, governed by

∂u

∂t
= ν∇2

Mu on S2 . (5.59)

The analytic solution in spherical coordinates (defined according to Bronstein
et al. [38]) is obtained byexpansion to eigenfunctionsas

u(t, ϑ, ϕ) =
∞∑

ℓ=0

ℓ∑

m=−ℓ

cℓm(0)Y m
ℓ (ϑ, ϕ)e−νℓ(ℓ+1)t , (5.60)

with coefficients

cℓm(0) =

∫

S2

(−1)mY −m
ℓ (ϑ, ϕ)u(0, ϑ, ϕ) dS . (5.61)
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To study convergence without the effects of series truncation, we use the special
initial condition

u(0, ϑ, ϕ) = Y 0
1 (ϑ, ϕ) =

√
3

4π
cosϑ , (5.62)

for which the analytic solution simplifies to

u(t, ϑ, ϕ) = Y 0
1 (ϑ, ϕ)e−2νt , (5.63)

due to the orthogonality of the spherical harmonics.
The boundary layer{x : κ 6 |ψ(x)| < k} is reinitialized after each time step

using the second order orthogonal extension GMM, thus enforcing∇ψ · ∇u = 0
as described in Subsection 5.3.5.

The convergence of the operator discretization given in Eq.(5.58) is shown in
Fig. 5.9(a). The exact right-hand side is derived symbolically, using the known
exact solution of the test problem and the known form of the diffusion tensor.
Convergence for the complete diffusion solution after 10 time steps is shown in
Fig. 5.9(b). To reconstruct the solution on the surface of the sphere from the mesh
nodes in the band, we use linear interpolation along all gridlines that intersect the
surface. It can be seen that the method is second order accurate for all grid sizes
tested. The serial (1 processor) and the parallel (tested using 4 processors) versions
of the implementation yield exactly the same results.

The presented method can be used to simulate diffusion on arbitrary surfaces.
As an example, we consider theStanford bunny1. The initial condition consists
of a TIFF image, that is projected onto the bunny’s surface (skin?). The values
range between 0 and 1, with sharp transitions. Fig. 5.10 visualizes the solution at
different times. The concentration on the surface is recovered from adjacent nodes
using linear interpolation along grid lines that intersectthe surface. An application
to a problem of biological interest is given in Subsection 6.5.3.

5.3.9 Conservation of mass

While the PSE method in space is analytically conservative,the present surface
diffusion method does not conserve mass exactly. Numericalerrors in the ortho-
gonal extension of the solution, as well as the interpolation to recover the solution
on the surface, lead to mass drift. Using the globalre-scaling methodproposed
by Xu et al. [322], conservation of mass can however be enforced. The surface

1source: http://graphics.stanford.edu/software/scanview/models/bunny.html
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Figure 5.9: Convergence of the discretized differential operator of Eq. (5.58) in the narrow
band (a) and for diffusion on the unit sphere (b). The intrinsic diffusion constant isν = 1.
The diffusion operator is evaluated on a support of3× 3× 3 particles in a narrow band of
half-widthκ = 1h with an additional boundary layer of1h, thusk = 2h. Extension to the
boundary layer is done using the2nd order GMM extension method. Time integration uses
a 2nd order TVD Runge-Kutta scheme with a time step ofδt = 10−5 until final time10−4.
The solid lines indicate convergence of order 2.

(a) (b) (c)

Figure 5.10: Solution of the Stanford bunny test case at times t = 0 (a), t = 2 · 10−5 (b),
andt = 2 · 10−4 (c). The intrinsic diffusion constant isν = 0.1, and the diffusion operator
is supported on3× 3× 3 particles in a narrow band of half-widthκ = 3h and extended to
a larger band ofk = 4.5h every 10 time steps, using the2nd order GMM extension method.
An Euler scheme is used for 254 time steps of sizeδt = 10−6. The solution is discretized
using 2 million particles distributed in the band|ψ| < k.
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Figure 5.11: Evolution of the total mass on surface of the unit sphere with intrinsic diffusion
constantν = 1. The diffusion operator is evaluated on a support of3 × 3 × 3 particles
in a narrow-band of half-widthκ = 3h. For the cases marked by circles, the solution is
extended to a larger band ofk = 4.5h after each time step, using the2nd order GMM
extension method. No extension is applied to the squares case. An Euler scheme is used
with a time step ofδt = 10−4 until final time0.3. The open symbols mark the case of no
re-scaling, for the filled symbols the solution is re-scaled[322] at each time step.

integrals in this method are evaluated using linear interpolation along grid lines
and the rectangular quadrature rule. Fig. 5.11 shows the total mass over time for
the above sphere test case with initial condition

u(0, ϑ, ϕ) = 1 + Y 0
1 (ϑ, ϕ) . (5.64)

This initial condition is extended into the band using the second order GMM. If
no orthogonal extension to the boundary layer is applied between time steps, the
mass grows linearly. Even after the solution has reached itssteady state, and no
gradients are present any more, the mass continues to grow, which eventually leads
to instabilities. Using extension, but no re-scaling, the mass approaches an asymp-
totic level as the solution reaches its steady state. Using both extension and re-
scaling, the mass remains constant to machine precision forall times.

Since the mass drift depends on the local curvature of the surface, the global
re-scaling method [322] is only exact for surfaces of constant curvature, such as a
sphere. In other cases, conservation of mass is still enforced (by construction), but
the solution is altered.
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5.4 A multi-resolution particle method for reaction-diffu sion
on deforming surfaces

In the following we extend the numerical method described inthe previous section
to reaction-diffusionsystems onmoving surfaces. We consider reaction-diffusion
systems governed by equations of theFisher-KPP[102, 159] type:

∂ui

∂t
−∇M · (Di∇Mui) = fi(u) , (5.65)

whereM is allowed to change over time. The concentration vectoru contains one
entryui per chemical speciesi and the diffusion tensorsDi are allowed to vary
among species. All chemical reactions are described by the source termsfi ∈ C1.

After reviewing previous simulation methods and applications in biology, we
start by describing the extension of the present scheme to reaction-diffusion sys-
tems, followed by the extension to moving surfaces. Finally, we present a multi-
resolution implementation where the particle sizes are locally adapted to the sur-
face.

5.4.1 Previous approaches and applications in biology

Coupled reaction-diffusion systems exhibit interesting stability properties that can
give rise to the formation of stable concentration patternscalledTuring patterns
[293], or travelingwaves[230].

Twenty years after the seminal work of Turing [293], Gierer and Meinhardt used
reaction-diffusion systems to formulate their theory ofpattern formationin bio-
logy [111]. They introduced theGierer-Meinhardt model, which has become one
of the most widely used pattern formation models, with significant applications
also in computer graphics [294].

The first biological applications of reaction-diffusion models considered
morphogenesis[293], following the idea that coupling of reaction-diffusion pat-
terns to growth or motion could explain the geometries and shapes found in nature.
Computer simulations that link pattern formation to growthand morphogenesis
were studied by Marée [185]. After reviewing the morphogenesis modeling lit-
erature until 2000, Marée applied hybrid cellular automata-PDE simulations to
explain stalk formation and cell differentiation inslime mold.

Computer simulations of reaction-diffusion patterns onsurfacesfirst considered
the unit sphere [51]. The numerical method was based on expanding the func-
tions in terms ofspherical harmonics, thus limiting its applicability to spherical
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objects. The biological application that was considered inthe original publication
concerned growth of globular tumors [51].

Morphogenesis of more complex surfaces was simulated by Harrisonet al. us-
ing a finite element method to solve the reaction-diffusion equation on triangulated
surfaces [128]. The method allows to treat shapes as complexas branched uni-
cellular algae. Moving-grid finite element techniques werelater used to directly
couple the motion of the boundary to the reaction-diffusionpatterns on continu-
ously deforming two-dimensional domains [181]. A different approach uses the
solution of an interior Poisson problem to evolve the surface shape [180].

Besides morphogenesis, reaction-diffusion models also have important applica-
tions in cell motility [123] and cell modeling [221]. Miuraet al. combined the-
ory, experiments, and one-dimensional finite difference simulations to study pat-
tern formation in cell cultures using reaction-diffusion models [193]. Emerging
applications concern simulations ofcell signalingpathways [33]. Since the first
ODE model of thechemotaxispathway inEscherichia coliwas published by Bray
et al. in 1993 [36], computer simulations have become increasingly more soph-
isticated in resolving spatial phenomena. A recent model byLipkow et al. [172]
explicitly includes diffusion of the key signal transduction molecule in the cytoso-
lic space. The mobility of membrane-bound species was however not accounted
for. Other reaction-diffusion signaling models include thesporulationcontrol net-
work model of Marwan [188], and the plant shoot meristem simulations of J̈onsson
et al. [149].

5.4.2 Reaction-diffusion in the present numerical method

We extend the simulation scheme outlined in Section 5.3 to reaction-diffusion
problems on surfaces, as governed by Eq. (5.65). All components of the concen-
tration vectoru are hereby represented on the same set of computational particles,
supporting property vectors(uh

p , ψ
h
p ).

Evaluating thereaction termsfi amounts to a purely local exchange of strength
among species at the same location. Reactions are thus evaluated independently
for each particle within the narrow band. The rate of exchange between differentui

is directly given by thereaction kinetics, that are evaluated using either a determ-
inistic method based on kinetic ODEs or a stochastic method such as the Gillespie
SSA algorithm [113]. The latter is possible because individual particles consti-
tute homogeneous reaction spaces since no spatial gradients are present within a
particle. The deterministic solver makes use of the same time integrator as the dif-
fusion and is thus restricted by the time step stability limit. The stochastic solver
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directly operates on (fictitious) molecule numbers and is used outside of the time
integrator’s right-hand side.

An example with moving reaction fronts

As an illustrative example we consider the reactiona+ b→ 2a with rate constant
k. If we identify [a] = u and normalize the total concentration to 1 everywhere,
we havef(u) = ku(1 − u) ∈ C1. For the present reaction it is known that the
solution of Eq. (5.65) has a traveling frontu(x, t) = U(x · n − st) with speed
s along the local interface normaln [25, 26]. Such wave solutions exists for all
speedss ≥ s∗ = 2

√
f ′(0) > 0 [25, 26]. Fors < s∗, no fronts exist. Ifu is

non-negative and continuous, the front thus propagates with constant speed

s∗ = 2
√
k . (5.66)

For the stochastic simulations we letX be the total number of molecules con-
tained in a particle, and define an analog toAvogadro’s number, viz.M , the num-
ber of molecules per unit mass. The solutionu has the physical units of concen-
tration, thusu ∼ X/(VM). The functionf has units concentration/time, thus
k ∼ 1/(ut) ∼ (VM)/(Xt). Gillespie introduces the producthc as the expected
number of reactions per unit time, thushc ∼ 1/t. For the binary reaction above
it is h = XaXb and thusc ∼ 1/(Xt). For the relation betweenk andc we find
k = MV c. This corresponds to Eq. 7b in Ref. [113] under the normalization
M = 1. We interpret thepropensityc as the probability that two molecules of
speciesa andb react, provided they meet in space and time. This probability is
independent of the volume and does not need to be adjusted if particles change
size2.

The reaction-diffusion system is completely described by the following set of
dimensionless numbers:

Π1 =
V

ℓ3
, Π2 =

Mcℓ3

k
, Π3 =

ν2
ℓ2ku

, Π4 =
sℓ

ν2
, (5.67)

whereV is the volume of the particle,ℓ the characteristic length scale of the prob-
lem, ands the front propagation speed.Π1 is a dimensionless volume,Π2 the ratio
of stochastic and deterministic rate constants,Π3 the ratio between diffusive and
reactive mass exchange, andΠ4 the dimensionless front velocity.

2The probability of an encounter to occur however does dependon the volume. This is automatically
accounted for inh as the number of moleculesX per particle changes if the particle is dilated or
compressed.
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We use the method presented in this chapter to simulate the example system on
the surface of the unit sphere using the stochastic SSA algorithm [113] to evaluate
the reaction terms. The initial condition is such that one half of the sphere contains
only a, the other half onlyb. Reactions occur along the interface between the two
species. Due to diffusion, the interface thickens up and, due to the reactions, it
propagates into the region ofb. At the end of the simulation, the sphere contains
100%a as all ofb has been consumed by the reaction. For the case ofM = 10 mo-
lecules per unit mass, Fig. 5.12(a) shows the total mass, integrated over the surface
of the sphere, ofa andb as they evolve in time. The front position is also shown,
defined as the location where[a] = [b] = 0.5. As long as reactions occur,[a]
and[b] are changing and the front travels at a more or less constant speeds, given
by the slope of the dashed curve in Fig. 5.12(a). If the dimensionless front speed
is plotted against the dimensionless reaction propensity,the curves for different
diffusion constantsν2 collapse as shown in Fig. 5.12(b). We also observe that
the theoretical scaling predicted by Eq. (5.66) is well approximated, particularly if
the reaction is at least a factor of 100 faster than the diffusion, corresponding to a
reaction-dominated system.

5.4.3 Moving and deforming surfaces

The particle character of the present method allows straightforward extension to
moving anddeforming surfacesM(t). To account for surface motion, the particle
positions are changed according to thevelocity fieldv(x, t) of the deformation,
thus:

dxp

dt
= v(xp, t) . (5.68)

Since particles are only present in the narrow band of half widthk, surface deform-
ations can lead to compression or dilation of the band. The former would lead to
surfaces breaking open, whereas the latter would eventually cause the method to
become inconsistent as the overlap condition Eq. (5.7) ceases to be satisfied. The
level set is thus reinitialized according to Subsection 5.3.4 after each convection
step, and the particles are remeshed onto regular locations. All properties are in-
terpolated using moment-conserving kernels as described in Subsection 5.1.2.

We test the method on the unit sphere by diffusing the initialcondition

ℜ(Y 2
3 ) =

1

4

√
105

2π
sin2 ϑ cosϑ cos(2ϕ) . (5.69)
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Figure 5.12: (a) Evolution of the total mass ofa andb (solid lines) forM = 10 molecules
per unit concentration. See text for problem description. The location of the reaction front
is shown by the dashed curve. The reaction front moves into the region ofb until all of b
is consumed. (b) Dependence of the front speeds on the reaction propensityc. In dimen-
sionless numbers, the two curves forν2 = 0.1 (open circles) andν2 = 1.0 (filled triangles)
collapse into one. The slope of the theoretical scaling according to Eq. (5.66) is indicated
by the dashed line.
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(a) (b)

Figure 5.13: Solution of the sphere test case at timet = 0 (a), and the final steady state
at t = 0.03 (b). Diffusion on the surface withν = 0.2 is coupled to surface deformation
according to the velocity field in Eq. (5.70) withC = 0.25. The diffusion and convection
operators are evaluated in a narrow band ofκ = 2h and extended tok = 3h every time
step. A 9 stage STS Euler scheme is used for 301 time steps of sizeδt = 10−4. Lines on the
surface indicate the -0.25, 0.0, and 0.25 concentration iso-lines.

At the same time, the surface of the sphere deforms accordingto the velocity field

v(x, t) = Cu(x, t)n(x, t)h/δt , (5.70)

wheren is the instantaneous outer unit normal on the surface. As diffusion homo-
genizes the concentration field, the velocity approaches zero and there is a stable
steady-state shape. Fig. 5.13 shows an example simulation with ν = 0.2 and
C = 0.25. Starting from the same initial condition, but increasingC to 0.5 causes
the shape to be torn apart before it reaches the steady state (Fig. 5.14). This demon-
strates the ability of the employed particle level-set formulation to handletopology
changesin the surface. This becomes important in biological applications where
membrane fusion and fission are key processes.

5.4.4 Multi-resolution particles

The employed narrow-band level set method imposes aresolution constrainton
the surface geometry: The bands from two opposite parts of the surface must never
overlap, i.e. the smallest “feature” of the surface must be at least2k in diameter.
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(a) (b)

Figure 5.14: Solution of the same test case withC = 0.5 at timest = 0.02 (a) and
t = 0.03 (b). The larger velocity causes topology changes in the surface before it reaches
its steady-state shape. Lines on the surface indicate the -0.25, 0.0, and 0.25 concentration
iso-lines.

If a uniform resolution is used, it becomes prohibitively expensive to resolve large
complex-shaped geometries. Moreover, such high resolutions impose a stringent
time step limit in order to maintain stability of the method.

Adaptive global map

We use theAdaptive Global Map(AGM) method, introduced by Bergdorfet al. in
2005 [27], to locally adjust the particle sizes with small particles close to the sur-
face and larger ones in the outer part of the band. The AGM method is based on
postulating areference spacêΩ ⊆ R

d where the particles are uniformly distrib-
uted on a regular Cartesian grid of spacingĥ, and all have the same volumêV .
Thephysical spaceΩ ⊆ R

d supports the irregularly spaced particles with adapted
volumes. AGM entails a smoothmapping functionf ∈ C1 : Ω̂ 7→ Ω, which maps
the reference spacêΩ onto the physical spaceΩ. This mapping function defines
the physical locations of the reference space particles by

x = f(x̂) , x̂ = g(x) . (5.71)

TheJacobianof this map is

Φ : φij =
∂x̂i

∂xj
, J = |Φ| = det(Φ) , (5.72)
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and defines the physical volumes of the particles as

Vp =
1

J(xp)

d∏

i=1

ĥi . (5.73)

In AGM, the mapping functionf is represented on the same set of particles as the
solutionu, thus extending the property vector of the particles by one element to
(uh

p , ψ
h
p ,f

h
p). The functionf is determined by the AGM method as the steady-

state solution of the PDE

∂f

∂t
= ∇̂ ·

(
M(x̂, t)∇̂f⊤

)
, (5.74)

with the monitor functionM guiding the resolution. This equation is solved to
steady state using an implicit time integration scheme [27]. The monitor function
M has to be non-negative and smooth. We choose the recommendedform [27]

M(x) =
√

1 + αχ(x) , (5.75)

whereα is a parameter andχ is a smoothly truncatedindicator functionthat decays
from the value 1 in the inner band to 0 outside. We choose:

χ(x) =

{
exp

[
− (ψ(x)/κ)

4
]

, |ψ| < k

0 , otherwise.
(5.76)

The AGM determines the mapf such thatM becomes equi-distributed in refer-
ence space. The resolution in physical space is thus high (small particles) where
M attains large values, while small values ofM lead to coarse resolution with
large particles. Above choice of the monitor function causes the AGM to concen-
trate the particles within the narrow band, leading to more efficient memory use
and a relaxed narrow-band resolution constraint.

Diffusion operator

In the AGM method, all differential operators (diffusion, curvature, level set rein-
itialization, orthogonal extension, etc.) are evaluated in reference space. Particle-
to-mesh interpolation (remeshing) is also done in reference space, where the grid
is uniform. The level functionψ is a signed distance function in reference space,
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but not in physical space. In order to simulate diffusion on the surfaceψ(x) = 0,
we transform the governing Eq. (5.47) to reference space, where it becomes

∂u

∂t
=

J

‖∇ψ‖2
∇̂ ·
(
Λ∇̂u

)
in Ω̂ , (5.77)

and∇̂ is the regular Nabla operator in reference space. The transformed diffusion
tensor is given by

Λ = J−1
ΦTD̃Φ

⊤ (5.78)

and can directly be used to evaluate the discretized operator of Eq. (5.58) in refer-
ence space.

Proof 1 To simplify the notation, letB = TD̃. The right-hand side of Eq. (5.77)
then is:

J∇̂ ·
(
Λ∇̂u

)
=

J∇̂ ·
(
J−1

ΦBΦ
⊤∇̂u

)
=

J
∂

∂x̂i

(
J−1φijbjkφlk

∂u

∂x̂l

)
=

J
∂

∂x̂i

(
J−1φij

)
· ϕ + JJ−1φij

∂

∂x̂i

(
bjkφlk

∂u

∂x̂l

)
(5.79)

for a specific vector functionϕ. By virtue of

∂

∂x̂i

(
J−1φij

)
· ϕ = 0 (5.80)

for any vector functionϕ (Eq. (20) in Ref. [64]), the first summand vanishes to 0.
The remaining second summand is identical to

Φ
⊤∇̂ ·

(
BΦ

⊤∇̂u
)
, (5.81)

which is the correct diffusion operator, transformed to reference space. �
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Surface curvature

To compute the local curvaturêκ(x) of the surface, we note that

κ̂ = ∇ ·
( ∇ψ
‖∇ψ‖2

)
= Φ

⊤∇̂ ·
(

1

‖Φ⊤∇̂ψ‖2
Φ

⊤∇̂ψ
)
. (5.82)

The curvature can thus be determined using the same operatoras given in
Eq. (5.58) with thevirtual diffusion tensor

Λ = Λκ̂ =
1

J‖Φ⊤∇̂ψ‖2
ΦΦ

⊤ . (5.83)

This tensor is not symmetric. Symmetry is however not required for the numerical
scheme or the operator discretization of Eq. (5.58).

Convection operator

In order to move the particles in reference space, the physical velocityv needs to
be transformed. The adaptation of the map causes an apparentmotion, with the
adaptation velocityfor v = 0 given by:

V =
∂xh

p(t)

∂t
≈ xn

p − xn−1
p

δt
. (5.84)

The transformed velocity in reference space is then given by[27]:

v̂ = Φ (v −V) . (5.85)

Due to the adaptation velocity, the level function becomes distorted and has to be
reinitialized according to Subsection 5.3.4 after every adaptation step, even if the
physical velocityv is zero.

5.4.5 Algorithm

Using the methods and schemes outlined in this chapter, the complete algorithm for
multi-resolution simulations of reaction-diffusion on moving surfaces becomes:
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Algorithm 1 (Multi-resolution reaction-diffusion on movi ng surfaces)

Initialize fieldsx0
p, x̂0

p = iĥ, ψ0, andu0.
Loop n = 0, . . . , T with time step sizeδt:

Create particles from the fieldsψn and
un usingJn = |Φ(xn

p )| to scale values
to strengths. Particles have
locationsx̂n

p and carry strengths:
ωn

p = (un
p , ψ

n
p )/Jn.

Adapt the map using AGM:xn
p → xn+1

p .
Convert the physical velocityv to reference

space velocitŷv using the old Jacobian:
v̂ = Φ(xn

p )(v − V) with V = (xn+1
p − xn

p )/δt.
Move the particles using the reference space

velocityv̂: x̂n
p → x̂n+1

p .
Interpolate particles to regular mesh using

Jn+1 = |Φ(xn+1
p )| to scale strengths

to values. New fields→ x̂p, ψn+1, un.
Reinitializeψ in reference space, even if the physical

velocityv = 0.
Compute deterministic reaction and diffusion terms

and updateu: un → un+1.
Compute stochastic reaction terms.

End

All steps in the above algorithm are performed in reference space. The phys-
ical position of the particles is however always available from the AGM mapping
function, and the particle volumes can be computed from the Jacobian according
to Eq. (5.73). This allows to reconstruct the concentrationfieldu in physical space
at any time.

In order to initialize the physical locationsx0
p of the particles, the following

initial AGM adaptation is performed:

Algorithm 2 (Initial adaptation)

initialize xp = iĥ , i = 0, . . . , (N − 1).
initialize the adaptation time stepτ .
ρ = 2·TOL.
While ρ >TOL:

compute monitor function at particle locations:Mp.
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xn−1 ← xn.
xn ← AGM(xn−1,Mp, τ).
compute the motion residual

ρ = 1

Nĥ

∑N
p=1 ‖xn

p − xn−1
p ‖2.

End

After this initial adaptation, the initial conditions for the level functionψ and
all concentration strengths can be determined. Fig. 5.15 shows an example where
the resolution is adapted to a narrow band of physical half-width 2ĥ around the
unit sphere. Sinceψ is the signed distance function in reference space, the phys-
ical width of the narrow band that is needed to evaluate the differential operators
and level set algorithms is considerably smaller after AGM adaptation. The sim-
ulations for Fig. 5.13 and Fig. 5.14 were also done using the AGM scheme, with
adaptation time stepτ = 10.0 and tolerance TOL= 0.1ĥ.
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Figure 5.15: AGM resolution adaptation to a narrow band around the unit sphere. (a) An
initially uniform 32 × 32 × 32 lattice with ĥ = 0.125 is adapted with an adaptation time
step ofτ = 1.0 and a tolerance of TOL= 0.1ĥ. (b) The final distribution after 33 AGM
iterations. The physical positionsxp of the particles as determined by Algorithm 2 are
shown as mesh nodes. The physical width of the band needed to evaluate the differential
operators is considerably smaller, thus allowing to resolve finer surface structures. Shading
codes the contours of the monitor function, attaining largevalues close to the surface of the
sphere and small values outside of the band.

Chapter 6

Simulations of Diffusion in Organelles of Live Cells

In this chapter we consider the application of the simulation techniques presented
so far to diffusion processes in organelles of live cells.Organellesare the internal
functional structures of cells, analogous to organs in whole organisms. The struc-
tures and shapes of organelles are hardly simple combinations of straight lines,
spheres, and cubes and are thus not well described by the idealized constructs of
Euclidean geometry. In biology this is true for many objectson a wide range of
length scales. Known examples include the structures of taxonomic and phylo-
genetic trees [43], stability regions in population dynamic models [205], pneu-
monal and arterial trees [118], the shape of neurons [266], clusters of vesicles
[163], the cytoskeleton [14], protein chain conformations[168], protein structures
[167], nucleotide sequences [321], and electric currents through ion channels in
cell membranes [169].

In the present work we consider the Endoplasmic Reticulum (ER), described
in Section 6.1, as an example of biological interest. We reconstruct the shapes
of real ER samples in the computer as described in Section 6.2. These recon-
structed shapes are then used to quantify the complexity of the geometry using
fractal analysis and theory as outlined in Section 6.3. We show that the geometric
complexity of the organelle can lead to anomalous apparent diffusion on a larger,
averaged length scale. This finding is important when quantitatively evaluating
Fluorescence Recovery After Photobleaching (FRAP; Section 6.4) experiments.
Owing to its experimental simplicity and versatility, FRAPhas become one of the
most widely used methods in modern cell biology. Its averaging nature however
complicates the quantitative evaluation of FRAP data, as the involved influences
from the shape of the organelle start to become important.

Using the particle methods outlined in the previous chapter, we simulate diffu-
sion processes in the lumen (Subsection 6.5.2) and on the membrane (Subsection
6.5.3) of reconstructed ER shapes. Such simulations enablefor the first time the
measurement of geometry-corrected molecular diffusion constants from FRAP ex-
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Figure 6.1: Electron micrograph of a region in a liver cell (source [8]). The ER is visible as
cross-cut lamellar and tubular structures. The rough ER is covered with ribosomes, visible
as small black dots on the outside of its membrane. The largerround structures in the image
are mitochondria and peroxisomes.

periments in live cells. They also provide a means of validating the various existing
models for diffusion in the ER [99, 207, 262, 300], and to rigorously quantify the
geometric averaging artifacts in FRAP. Our simulations show that, unless properly
accounted for, the geometric shape of the ER leads to a 2- to 4-fold underestima-
tion of the molecular diffusion constants in FRAP analysis.

6.1 The Endoplasmic Reticulum (ER)

TheEndoplasmic Reticulum(ER) is an organelle in eukaryotic cells. It is involved
in protein synthesis, protein folding, and lipid synthesis. The electron micrograph
in Fig. 6.1 shows a region of a cell where the ER is visible as a folded stack of
membrane layers. The ER consists of a single contiguous membrane that is con-
tinuous with thenuclear envelopeas shown in Fig. 6.2. The connected space
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Figure 6.2: Schematic of the nuclear envelope and the contiguous ER membrane (source
[77]).

enclosed by the ER membrane is called thelumen. The ER is generally depic-
ted as a highly convoluted meshwork of tubular and lamellar structures in three
dimensions [280] (Fig. 6.3), with individual tubules about30 to 60 nm in diameter.

Morphologically, the ER can be partitioned intorough ERandsmooth ER. The
rough ER is mainly involved in protein synthesis, and the outside of its membrane
is covered with ribosomes. The smooth ER tends to be concentrated in theperi-
nuclear region, and it is mainly involved in lipid synthesis.

6.2 Computational reconstruction of real ER geometries

In order to be able to analyze the geometric properties of theER and to simulate
diffusion in its lumen and on the membrane, we reconstruct ERgeometries from
real live cells usingconfocal fluorescence microscopyand computational 3D re-
construction. ER geometries are recorded from live tissue culture cells expressing
a soluble, resident, recombinant protein (ssGFP–KDEL; [281]). Using this marker
and a stack of serialconfocal sections(called az-stack), we can experimentally
define and computationally reconstruct the 3D shape of the ER. Cell lines, trans-
fection, and confocal imaging were done in the group of Prof.A. Helenius.

In each cell, 50 0.1µm optical z-sections are collected with a lateral resolu-
tion of 0.18µm/pixel for the lumen, and 0.09µm/pixel for the membrane cases.
Imaging noise is removed using aGaussian filterof half-width 200 nm, and the
surface of the ER is reconstructed as a gray level iso-surface in 3D space using
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Figure 6.3: Schematic of the ER with distinction of rough ER (lamellar, with ribosomes)
and smooth ER (tubular, without ribosomes). source [132].

Imaris 4.1.1 (BitPlane, Inc., Z̈urich, Switzerland), employing the same number of
voxels as the section images have pixels. After removing detached parts of the sur-
face, the ER membrane is discretized in Imaris and stored as atriangulation using
planar triangles. The computer time for 3D reconstruction and triangulation of a
complete ER using about 1 million triangles is about 2 to 5 minutes on a 3 GHz
Intel Pentium 4 computer. Theintensity thresholdused for the iso-surface is set
as high as possible to still result in a connected domain. This threshold is optimal
according to the error analysis of the 3D reconstructions ofartificial ER-like geo-
metries presented in Subsection 6.2.1. After reconstruction, the surface is checked
for consistency. It is required to enclose a connected spaceand to not contain any
surface intersections or holes in the surface.

The triangulation of the surface is not an inherent feature of the present method
and it represents only the format available from the image reconstruction software.
Before being used in computer simulations, the surfaces areconverted to level sets
as described in Appendix C, and thus they do not remain piecewise linear.

For illustration purposes, one example of the numerous reconstructions is shown
in Figs. 6.4 and 6.5. Fig. 6.4 shows theconfocal sectionsof the fluorescently
stained – but not fixed – ER of a live VERO cell (Helenius group). The result of
the 3D reconstruction is shown in Fig. 6.5 for the complete ER, and an enlarged
portion of a second sample.
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Figure 6.4: Sample z-stack of confocal sections used for 3D reconstruction. The ER of
a VERO cell is fluorescently marked (Helenius group) and confocal images are taken at
vertical distances of∆z = 0.1µm. Progressing from left to right and top to bottom, the
focal plane moves from the bottom of the cell to its top.
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(a) (b)

Figure 6.5: (a) Shaded view of the reconstructed ER surface from Fig. 6.4 in three dimen-
sions. (b) Close-up of a reconstructed ER surface, illustrating the spatial resolution of the
present geometry acquisition method.

6.2.1 Error analysis and influence of the microscope’s optical an-
isotropy

In order to determine the optimalthreshold(intensity iso-value) for the 3D re-
construction, we consider synthetic geometries for which the correct outcome is
known. Artificial random networks of tubules are created in the computer on a
lattice ofM points. An example withM = 20 × 20 × 3 is shown in Fig. 6.6.
These geometries are thenconvolvedwith a model of the anisotropicpoint spread
functionof the confocal microscope. For this purpose, the lateral resolutionR of
the microscope is expressed as

R =
λ

2NA
, (6.1)

with λ the wavelength of the light emitted by the fluorophore (cf. Subsection 6.4.1)
andNA the numerical aperture of the objective lens. The axial resolution δ is
defined as the distance between the nearest and farthest planes simultaneously in
focus and, according to [269],

δ =
3nλ

2NA2
, (6.2)

wheren is the refractive index of the medium. The ratioδ/R is calledoptical
anisotropyof the microscope and it varies between about 1.6 and 5 for commer-
cial confocal microscopes. The point spread function is modeled in each spatial
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directionr = x, y, z as [327]

P (r) =

(
2
J1(Cx,y,zr)

r

)2

(6.3)

with

Cx,y =
2π ·NA
λ

(6.4)

andJ1 theBessel functionof the first kind. For the axial direction, the point spread
function is stretched according to the anisotropy as:Cz = Cx,yR/δ. The values
for the present work are:λ = 510 nm,NA = 1.4, andn = 1.

Successive convolution of the artificial geometry withP (r) in all three spa-
tial directions yields a simulated z-stack of section images as shown in Fig. 6.7.
To modelcamera noise, each pixel in these images is replaced by a Poisson-
distributed random number with the expectation value equalto the original pixel
value [53]. The section images are normalized such that all intensity values are
between 0 and 255.

The geometries are then reconstructed from the simulated confocal sections us-
ing Imaris (BitPlane, Inc.), and the resulting reconstructed volumesare compared
to the original ones. The deviation is quantified by the relative number of voxels
that are incorrectly reconstructed, i.e. voxels that are missing in the reconstructed
geometry, but are present in the original one, or vice versa.Fig. 6.8 shows the
resulting totalreconstruction errorsfor various thresholds and optical anisotropies
for a test geometry with an expected number of 3 tubes connecting per branching
point, 0.15µm tubule radius, and an average distance of1µm between tubules.
This corresponds to avolume-filling fractionof 0.3, which is close to the average
volume-filling fraction of1/3 determined for real ER geometries. Similar studies
are also done for larger tubules (radius0.25µm) and a lower connection density (2
tubes expected to connect per branching point). A total of 4 different geometries
is analyzed for 5 different anisotropy values (1, 2, 3, 4, 6, 8) and a wide range of
thresholds. The corresponding error plots are not shown here as they are analogous
to the one in Fig. 6.8 and lead to the same conclusions.

We also determine the largest threshold for which the reconstructed network
geometry remains connected. We find that theoptimal thresholdis close to or
larger than this limit for all anisotropies larger than 1 andall geometries studied.
For the experimental ER samples we thus always use the largest possible threshold
which yields a connected reconstruction, since the most important objective toward
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(a) Whole network (b) close-up

Figure 6.6: Example of an artificial tubular network geometry used to assess the quality
of the 3D reconstruction. The random network is generated ona 20 × 20 × 3 lattice with
an average of 3 tubules being connected in each grid point. The radius of the tubules is
0.15µm, the distance between two grid points is1µm. (a) The full network, imaged at a
simulated anisotropy of 3 and reconstructed with a threshold of 50. (b) A4 × 4 × 3 subset
imaged at anisotropy 1 and reconstructed with a threshold of110.

realistic computer simulations is to preserve the topologyof the organelle. The
anisotropy of the confocal microscope used in the present work is about 2.14. The
optimal threshold can thus be expected to be close to the largest feasible one.

Regarding the sensitivity of the reconstruction result with respect to the
threshold setting, we find that varying the threshold by±10% around the optimum
changes the reconstruction error by+4 . . . 8% for anisotropies of 2 and 3. Using
the above-mentioned rule of thumb, such large threshold deviations should how-
ever never occur.

The reconstruction errors cause the tubules to appear thicker or thinner than they
actually are. The error in the predicted diffusive flux is directly proportional to
this size error. For an anisotropy of 2, the total relative reconstruction error is 28%,
composed of 16% missing voxels and 12% excess voxels. A tubule thus appears on
average 4% thinner than it actually is. This translates to a 4% error in the diffusion
constant, which increases to 9% for an anisotropy of 3. Compared to the various
experimental uncertainties, these errors constitute no significant reservation.
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Figure 6.7: Artificial z-stack created from the sample geometry of Fig. 6.6(b). After con-
volving the geometry to model the effect of confocal imagingwith an anisotropy of 4, 15
serial section images at an axial distance of∆z = 0.2µm are taken. The same geometry
is also tested using up to 53 sections (images not shown). Progressing from left to right and
top to bottom, the simulated focal plane moves from the bottom of the object to its top.

6.3 Fractal complexity analysis of the ER geometry

We analyze the geometric shape of the reconstructed ER from VERO cells and
estimate some of its fractal properties. Thefractal dimension[184] of a shape
is often used to quantify the shape’scomplexity. In many situations, the fractal
dimension is found to be a useful measure. Its definition however always involves
some sort of limit to infinity and, since all physical and biological systems are
finite, fractal dimensions are in principle not defined for them. Still, we can use
the mathematical idealization as a model that is valid over acertain range of scales.
Therefore,fractal in the present context meanspre-fractal.

It is well known that the shape of a domain influences the processes taking place
inside it or on its boundary. While this is already true for Euclidean shapes [140],
it becomes evident for fractal geometries, where non-linear interactions in and
between spatial and temporal scales determine the dynamics. Recent literature
contains an increasing number of hints that confined diffusion in the ER appears
anomalous [241, 314]. This is also known for diffusion in thecytoplasm [313, 19],
where it can be attributed to the fractal nature ofmolecular crowding[14, 19].
Anomalous diffusioncan however also be a consequence of diffusion on domains
with non-integer fractal dimension, as shown in Appendix D.The present fractal
analysis confirms that this is indeed the case for the ER. The geometric shape of
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Figure 6.8: Relative reconstruction errors for the sample geometry of Fig. 6.6 and different
optical anisotropies and reconstruction thresholds. The abscissa shows the pixel intensity
iso-value value used for the 3D reconstruction. The intensity values in the images are nor-
malized to the interval[0, 255]. The ordinate shows the total relative reconstruction error,
given by the number of missing voxels plus the number of excess voxels in the reconstruc-
ted volume, divided by the total number of voxels in the original volume. Lines are shown
for various anisotropies. The squares mark the largest threshold for which a connected
reconstruction results. For the idealized case of anisotropy 1, the reconstruction remains
connected for all thresholds tested.
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the organelle can explain the apparent anomalous behavior,and it thus plays an
important role in diffusion analysis.

6.3.1 Renyi entropies and generalized dimensions

Among the numerous definitions of fractal dimensions (see e.g. Table 1 in
Ref. [69]), we use the generalizedRenyi dimensions[228]

dq = − lim
δ→∞

Iq
log δ

, q ∈ R , (6.5)

which are based on theRenyi entropiesIq, defined as follows: assume a dis-
joint partitioning of the embedding Euclidean spaceEd intoM(δ) cartesian cells{
Cδ

i

}M(δ)

i=1
, each of volumeδ. Let pi be the probability for the geometry under

consideration to fill cellCi. The Renyi entropies are then given by

Iq =





1
1−q log

M(δ)∑
i=1

pq
i , q 6= 1

−
M(δ)∑
i=1

pi log pi , q = 1 .

(6.6)

The Renyi dimensionsdq are strictly positive and their values decrease with in-
creasingq, converging to a limitd∞. For q = 0, the dimensiond0 is identical
to thecapacity(or box counting) dimension. We consider the Renyi dimensions
of ordersq = −1, 0, 1, 2 to verify the fractal scaling behavior, i.e. to check that
d−1 > d0 > d1 > d2 holds over a sufficiently large range of length scales.

To estimate the Renyi dimensions, the probabilitiespi need to be approximated.
This is done by uniformly scattering half a billion random points on the recon-
structed surface of the ER, and counting the number of such points falling into
every cartesian cellCi. Dividing this count by the total number of scattered points
approximatespi for the cells. The grid that defines the cellsCi is subsequently
coarsened by a factor of two in each direction, and the whole procedure is repeated
until the number of cells in any direction falls below two. Tominimize spurious ef-
fects from the random number generator and aliasing effectsdue to grid sampling,
the whole procedure is repeated with five different random seeds and six different,
slightly shifted, bounding boxes for the cell mesh. The measured entropies are
averaged from all 30 repetitions, and the Renyi dimensions are determined as least
squares regressions of the corresponding entropy versus the logarithm of the box
size at each reduction step.
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case d−1 d0 d1 d2

1 2.5300 2.3565 2.2968 2.2783
2 2.7636 2.4870 2.4160 2.3863
3 2.5337 2.4005 2.3455 2.3159
4 2.5450 2.3903 2.3292 2.2927
5 2.6049 2.3494 2.2864 2.2647
6 2.6127 2.4002 2.3215 2.2837
7 2.2984 2.1490 2.1045 2.0911
8 2.7264 2.4361 2.3392 2.2687
9 2.9203 2.5695 2.4473 2.3672
all 2.61±0.18 2.39±0.11 2.32±0.10 2.28±0.08

Table 6.1: Measured Renyi dimensions (see text) for nine different ER geometries. The
fractal scaling is confirmed over 1.7 orders of magnitude ranging from 0.01 cell diameters
to 0.5 cell diameters.

We test whether the ER membrane can be viewed as a continuousfractal surface
in space by applying above procedure to the reconstructed ERfrom nine different
cells. The results are summarized in Table 6.1. For the tested ER shapes, the
capacity dimensionis d0 = 2.4± 0.1 and the ordering of the Renyi dimensions is
satisfied in each individual sample. The fractal scaling persists over 1.7 orders of
magnitude in length scales, ranging from 0.01 cell diameters to 0.5 cell diameters.
At length scales relevant to whole organelle dynamics, the ER is thus expected to
exhibit fractal diffusioncharacteristics.

6.3.2 Apparent diffusion on fractal domains

The laws of lateral diffusion on the membrane as well as of diffusion in the luminal
space change when considering a fractal domain [22, 21, 97].In particular, the
expected MSD (cf. Subsection 2.1.1) of a normally diffusingparticle during the
time periodδt changes fromE

(
‖x(t+ δt)− x(t)‖22

)
∝ δt to [22]

E
(
‖x(t+ δt)− x(t)‖22

)
∝ δt2/dw , (6.7)

corresponding to apparentanomalous diffusion(cf. Subsection 2.1.2). The para-
meterdw is called thedimension of the walk. This dimension is related toHaus-
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dorff ’s dimensiondH and thespectral dimensionds as [22]:

dw =
2dH

ds
. (6.8)

The spectral dimensionds is connected to thedensity of states, i.e. the distribution
of the eigenvalues of the diffusion operator on the domain ofsolution, and can not
be measured for an arbitrary geometry such as the ER. According to Eq. (6.7), two
shapes can only exhibit the same macroscopic diffusion behavior if their dimen-
sions of the walk are identical [244]. This is a necessary condition.

Confined diffusion in the ER is expected to appear anomalous [241] at length
scales between the diameter of individual tubules and the whole organelle, even
if the underlying molecular diffusion is normal [207, 305, 313]. This is a direct
effect of thecomplexityof the ER geometry (cf. proof in Appendix D), which we
have shown to exhibit fractal scaling properties. The experimental results reported
by Weisset al. [314] confirm that the observed anomaly is purely caused by the
geometry of the organelle and is independent of molecular structure and events.
Any model geometryfor diffusion in the ER would need to have the samedw as the
real ER shape. This is however impossible to achieve since the spectral dimension
of any given ER sample can not be measured. Direct numerical simulations in the
reconstructed shapes are thus needed to quantitatively understand the geometric
influences.

6.4 Fluorescence Recovery After Photobleaching (FRAP)

The experimental technique ofFluorescence Recovery After Photobleaching
(FRAP) is widely used to determine how substances move within live cells or on
cellular membranes [317]. In FRAP, aRegion Of Interest(ROI) in the cell that con-
tains the fluorescently tagged molecules is bleached using strong laser light. The
influx of non-bleached molecules from adjacent areas into the ROI is recorded and
analyzed over time, as illustrated in Fig. 6.9. When appliedquantitatively, FRAP
allows to determine the molecular diffusion constants of fluorescent molecules,
including soluble and membrane-bound proteins [174].

FRAP has been used since the 1970s to investigate lateral mobility on the cell
surface [15]. Later it has been extended to the investigation of protein dynamics
within the cell [274] and was also used to follow events during cell division and
signaling, and to measure protein interactions and conformational changes [227].
The use of FRAP rapidly increased with the availability of methods to tag intra-
cellular proteins withGreen Fluorescent Protein(GFP) and its derivatives. This
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bleach,t = 0 t = 2 min.

Figure 6.9: Example of a FRAP micrograph sequence in a VERO cell (Helenius group).
The Region Of Interest (ROI) is highlighted by the gray box.

allows visualization of the proteins and enables measurements of their dynamics in
live cells. Diffusion constants of GFP and GFP-tagged proteins have been reported
for the cytoplasm [278], the nucleus [216], the ER [75, 203],mitochondria [210],
the Golgi complex [60, 254], and for different membranes in the cell [89, 90, 186].

6.4.1 Green fluorescent protein

Green Fluorescent Protein(GFP) is a spontaneously fluorescent protein isolated
from coelenterates, such as the fluorescent pacific jellyfishAequoria victoria. The
role of the active center of GFP is to transduce (by energy transfer) the blue chemi-
luminescence of another protein (aequorin) into green light. GFP is well suited for
photobleaching studies since it is a bright, stable, non-toxic fluorophore with low
bleaching under imaging conditions. When illuminated at high intensity, GFP
looses its fluorescence irreversibly, but without damagingintracellular structures
[317]. This process is referred to asbleaching. Various mutants of GFP with
stronger fluorescence and/or different absorbance and emission peaks are known
and used [324].

To track proteins other than GFP itself, they are covalentlymodified to include
a GFP domain. This is done by molecular cloning of GFP cDNA that is then ex-
pressed in cultured cell lines. GFP can function as a proteintag, as it is tolerated
for both N- and C-terminal fusion by a wide variety of proteins. Many of those
have been shown to retain their native function after addition of GFP. This enorm-
ous flexibility as anoninvasive markerin live cells enables numerous applications
of GFP, FRAP being one of them.
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6.4.2 Estimating the diffusion constant from FRAP data

In order to obtain molecular diffusion constants fromfluorescence recovery curves,
the dependence of the curve’s shape on the molecularν2 needs to be modeled.
Fitting such aFRAP modelto an experimentally determined recovery curve yields
the estimated diffusion constant.

We distinguish between themolecular diffusion constantand theapparent dif-
fusion constant. The former is directly measured by single-molecule techniques,
such as single molecule tracking [142, 175] (Chapter 1) or fluorescence correla-
tion spectroscopy [314], and is to be used in the diffusion equation to model the
process in the continuum. The latter is the constant determined bycoarse-grained
methods such as FRAP, averaging over a certainobservation volume. These appar-
ent values depend on the geometry of the observation volume (see Appendix D for
a mathematical derivation and rigorous definitions). Deriving molecular diffusion
constants from apparent ones is important when comparing experiments made in
different organelles or cells, as well as for mathematical modeling and computa-
tional simulations of the observed diffusion process.

Current techniques, as summarized below, do however not take into full account
that the organelles to which the fluorescent molecules are confined often have a
complex three-dimensional shape, and that they may only occupy a fraction of the
bleached and unbleached volumes. The importance of accounting for the specific
geometry of the organelle increases with increasingcomplexityof the organelle’s
shape and with decreasingvolume-filling fractionin the bleached and unbleached
regions. This issue has been frequently discussed in the literature [94, 75], but no
procedure exists to quantify the magnitude of the uncertainty introduced, let alone
to calculate more accurate molecular diffusion constants from FRAP curves.

Although theoretical descriptions of particle diffusion in two-dimensional mem-
branes have been derived for a variety of situations, including periodically non-
planar membranes [6], binding, particle crowding [249], and mobile as well as
immobile obstacles [239, 252], no such theory exists for thethree-dimensional
lumen of complex compartments such as the ER, or for their curved membranes.

FRAP models are based on postulating certain dynamics for the process and in
some cases also amodel geometryfor the organelle under consideration. In our
case, we assume the dynamics to be described by the diffusionequation. Two
classes of models can be distinguished:closed-form modelsandsimulation-based
models. The former are based on an analytic solution of the model problem. This
solution is then fitted to the experimentally determined FRAP curves to determ-
ine the diffusion constant. Such models lack the capabilityof accounting for the
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specific organelle shape and should be used with caution whencomparing diffu-
sion constants between different cells or compartments [227]. Simulation-based
models provide more flexibility by numerically solving the model problem.

6.4.3 Closed-form equation models

Closed-form modelsare based on the analytic solution of a model problem, where
the diffusion constant constitutes the model parameter that is to be determined
by data fitting. Due to the limitations of analytic solvability, diffusion is either
calculated in a flat plane rather than in three dimensions [75], or by using (semi-
)empirical correlations determined from calibration experiments [99]. The fol-
lowing overview summarizes the most frequently used closed-form models from
the literature. The list is however incomplete as several specialized models exist,
e.g. for strip bleaching [94].

Exponential recovery model

Solving the homogeneous, isotropic diffusion equation in two dimensions, and
assuming homogeneous flux into the ROI, the predicted fluorescence recovery is
given by theexponential recovery model

F (t) =

∫

ROI
u(x, t) dx = F0

(
1− e−αν2t

)
, (6.9)

whereF0 is thepre-bleach intensityandα is a constant that depends on the shape
of the ROI and that can be determined analytically. The valueof the parameterν2
is obtained from data fitting.

Empirical correlation model

The following empirical correlation modelis found by considering anomalous
diffusion in simple geometries and calibrating with experiments [75, 227]. The
predicted fluorescence content in the ROI is:

F (t) = Fa +
[Fa + fm(F0 − Fa)] (t/t1/2)

α

1 + (t/t1/2)α
, (6.10)

whereFa is the intensity just after bleaching,F0 is the intensity just before bleach-
ing, andα is the model parameter. Therecovery half-timet1/2 is estimated from
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Figure 6.10: Simplified geometrical situation around the bleached ROI.

the measured curve by nonlinear fitting. Themobile fractionfm is defined as [227]

fm =
F∞ − Fa

F0 − Fa
, (6.11)

whereF∞ is the asymptotic fluorescence intensity at large times. Themobile frac-
tion contains information about membrane barriers, binding reactions, and micro-
domains in the membrane, as these phenomena can prevent or temporarily restrict
the free diffusion of molecules.

A second order physical model

This semi-empirical model [244] is based on the situation inthe vicinity of the ROI
as depicted in Fig. 6.10. For simplicity, it considers the complementary problem
of diffusion of bleached protein out of the ROI.

Let a, b, andc be the lengths of the edges of the ROI in all three spatial dir-
ections. Without loss of generality, we assume that the initial concentration of
bleached protein inside the ROI is unity. The total mass of bleached protein in the
box is thus equal toabc. After some time, the concentration front has diffused a
mean distance ofx in both thex andy direction. The new volume in which the
bleached molecules are contained is thus given by(a + 2x)(b + 2x)c. Assum-
ing a homogeneous distribution as well as conservation of mass, the new mean
concentration in the ROI hence becomes

abc

(a+ 2x)(b+ 2x)c
. (6.12)
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If we assume that for each bleached molecule that leaves the ROI, a fluorescent
one enters in exchange, the fluorescence intensity in the ROIis given by the com-
plement of the above concentration. Re-scaling the model toan asymptotic level
of F∞ instead of 1 yields

F (x) = F∞

(
1− ab

(a+ 2x)(b+ 2x)

)
. (6.13)

To model the influence of the local ER geometry, we setx2 = α2t2β, using the
fractal diffusion concepts outlined in Section 6.3. Substituting into Eq. (6.13)
yields thesecond order physical model:

F (t) = F∞

(
1− ab

ab+ 2 (a+ b)αtβ + 4α2t2β

)
, (6.14)

with parametersα andβ. This model includes both information about the ER
geometry (in the sense of fractal dimensions) and the size ofthe ROI (ina and
b). It is based on first physical principles and can thus be expected to have some
extrapolation capabilities.

Since it is not possible to measure the spectral dimension ofa real ER shape
(cf. Section 6.3), the connection of the model parametersα andβ to the physical
diffusion constantν2 is however unknown. The model can thus only be used to
determine recovery half-times, but not diffusion constants.

Comparison of closed-form model fits

The fitting quality of the closed-form models presented so far is assessed on a
simulated FRAP curve (cf. Appendix F and Subsection 6.5.2 for the simulation
details). Fitting of the models to the simulated FRAP curvesis done using a
Nelder-Mead simplexalgorithm to minimize theL2 fitting error. The resulting
optimal model parameters, the fitting residualρmin, and the needed number of iter-
ationsNiter are given in Table 6.2, the corresponding curves are shown inFig. 6.11.
While the empirical model is already significantly better than the exponential re-
covery model, the second order physical model explains the data another one to
two orders of magnitude better.
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Figure 6.11: Best fits of the exponential model (a), the empirical model (b), and the second
order physical model (c) to a simulated FRAP curve (dashed) in a real ER geometry
(cf. Appendix F and Subsection 6.5.2). The dashed curve hasF0 = 1.0, Fa = 0.0, and
F∞ = 0.99 (cf. Appendix F.1). The residuals and the optimal parametervalues are given
in Table 6.2.

Model optimal parameters ρmin Niter

Exponential (αν2)opt = 0.04342 6.434 24
Empirical αopt = 0.66775, t1/2,opt = 16.290 1.368 991209
Physical αopt = 3.6143, βopt = 0.45771 0.01244 18318

Table 6.2: Optimal model parameters, residual fitting error, and number of iterations
needed to converge for the different closed-form FRAP models.
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6.4.4 Computational FRAP models

Since closed-form equation models do not account for the specific shape of the
organelle in individual cells, they have limited extrapolation capabilities. If the
FRAP curve depends on the particular shape of the organelle,these models predict
different diffusion constants, even if the actual molecular diffusion constants are
identical. This is due to the fact that closed-form models attribute any variation
in the FRAP curve to changes in the diffusion constant and cannot account for
geometry-induced variations.

Several approaches have been made to usesimulation-based FRAP models. In
such a model, simulated recovery curves with known diffusion constant in the
simulation are fitted to experimental data in order to deducemolecular diffu-
sion constants. Fitting is only done in time, while the FRAP values are left un-
changed [246]. Theeffective molecular diffusion constantνeff is then computed
from thecomputational diffusion constantνsim and the time-stretching factorts
from the fit as

νeff =
νsim

ξ2ts
, (6.15)

whereξ is the ratio of length units between simulation and experiment.
In the following, we review the most important advances in computational mod-

eling and introduce a novel simulation model that fully accounts for the three-
dimensional shape of the organelle.

Monte Carlo simulations in artificial model geometries

Using the classical method of random walk, as outlined in Subsection 5.2.1,
Ölveczky and Verkman [207] performed computer simulationsto calculate solute
diffusion in an orthogonal meshwork of interconnected cylinders. Random walk is
an intuitive method for simulating diffusion and is suitable for handling complex
geometries. Its slow convergence rate however hampers the accuracy of the res-
ults, as shown in Subsection 5.2.3.Ölveczky and Verkman found that the apparent
diffusive transport in the cylinder meshwork is about half as fast as in free space.
Moreover, they found the diffusion to effectively appear anomalous, even if the
molecular diffusion is normal. In Appendix D we give a mathematical explana-
tion for this phenomenon. This showed that geometry has a significant impact on
apparent diffusion, and that diffusion constants are underestimated by models that
neglect the confinement. The shapes of real ER may however notbe accurately
mimicked by random artificial cylinder meshes.
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Two-dimensional variable density simulations

Siggiaet al. [262] used finite differences [265] to computationally solve the diffu-
sion equation in the imaging plane of the observation microscope. The geometry
of the ER was treated by taking a smoothed post-bleach fluorescence intensity mi-
crograph as the initial condition. In the course of the simulation, the geometry was
however no longer explicitly taken into account, mainly dueto the numerical lim-
itations of the employed finite difference method1. Instead, theconnection density
of the ER was assumed to be represented by the local fluorescence intensity in
a pre-bleach image. Based on this assumption, a statistically averaged transport
model was introduced. Depending on the particular transport model, variations in
the apparent diffusion constant of up to a factor of three were observed [262]. As
already stated in the original publication [262], the validity of the model is ques-
tionable when 3D effects become important, when image regions of saturated pixel
intensities exist, or when concentration variations are present in the pre-bleach im-
age. The first situation for example occurs when two compartments that overlap in
the projection are in fact disconnected in 3D.

Three-dimensional free space simulations

A more recent approach by Bragaet al. [35] made use of finite difference simula-
tions to derive a FRAP model in the nucleoplasm. The model thoroughly treats the
initial condition of the recovery dynamics by explicitly considering the 3D intens-
ity distribution of the bleaching laser beam as well aspremature recoveryduring
bleaching. Bragaet al. report a molecular diffusion constant of 33.3±3.6µm2/s
for GFP in thenucleoplasmof HeLa cells. Their work did also neglect the geo-
metric shape of the compartment under consideration. The model as well as the
simulations were done in 3D free space. For short times this is certainly a valid

1Finite differences are based on numerical approximations of the derivatives of the governing equa-
tion on a computational mesh. These approximations result in re-formulating the governing PDE as sets
of linear systems of equations that can be solved computationally. For simple geometries, the resulting
algebraic systems can be structured (e.g. in tridiagonal matrices), so that efficient numerical solvers can
be applied, resulting in computations that scale linearly with the number of the discretization points.
The efficiency of grid based methods is however drastically reduced when discretizing complex geo-
metries. The resulting discretized equations fail to have the “nice” structure associated with simpler
geometries, resulting in fuller systems whose solution often scales with the square or even the cube
of the computational elements. Moreover, the generation ofthe grid in complex geometries remains a
challenging task, despite the availability of several methods to render such procedures automatic. In
addition, the order of accuracy of the numerical approximation of the governing equation is reduced
near complex boundaries.
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assumption in the nucleoplasm. Compartments of more complex shape, such as
the ER or mitochondria, can however not be expected to be treated accurately with
this scheme.

Three-dimensional simulations in realistic geometries

A more accurate three-dimensional analysis of diffusion incomplex-shaped or-
ganelles is needed in order to overcome the limitations of the above-mentioned
methods, and to provide much-needed validation of the various closed-form mod-
els that are currently in use. We propose a novel simulation strategy [246, 245]
that uses realistic ER geometries as reconstructed from micrographs (cf. Section
6.2). The reconstructed geometries are directly used ascomputational domains.
We solve the diffusion equation both in the lumen and on the surface of such re-
constructed ER shapes. The resulting simulated FRAP curvesare used to quantify
the geometry-induced uncertainty in closed-form FRAP models, and to directly
determine geometry-corrected diffusion constants by means of the fitting proced-
ure of Eq. (6.15). The outline of the method is shown in Fig. 6.12, its application to
real FRAP experiments in the ER of live cells is presented in the following Section
6.5.

6.5 Results of FRAP simulations in reconstructed ER geomet-
ries

Using reconstructed ER geometries according to Section 6.2, the numerical meth-
ods outlined in Chapter 5, and the scalable parallel software implementation
presented in Chapter 7, enables us to simulate FRAP experiments with a minimum
number of assumptions. Within the imaging accuracy of the confocal microscope
used for 3D reconstruction, the only assumption consists ofpostulating the gov-
erning equation, which is supposed to be the diffusion equation. Fully resolved
simulations eliminate the need for modeling either the geometry or the process
of confined diffusion, and effectively allow assessment andrefinement of existing
FRAP models.

In this section we present results concerning the geometriceffects and the
geometry-induced uncertainties in FRAP experiments both in the lumen and on
the membrane of the ER. As outlined in Subsection 6.4.4, these simulations can
also be used to determine geometry-corrected molecular diffusion constants of sol-
uble and membrane-bound molecules from FRAP data.
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Figure 6.12: Overview of the method proposed in this thesis to determine molecular diffu-
sion constants from FRAP data by means of spatially resolvedcomputer simulations. See
text and Eq. (6.15) for details.
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6.5.1 A proposed method for determining molecular diffusion con-
stants from FRAP data in complex-shaped organelles

Following the strategy outlined in Subsection 6.4.4, our simulations and experi-
ments lead to a novel method of determining molecular diffusion constants from
FRAP data. The procedure as summarized in Fig. 6.12 is as follows:

1. After transfection and incubation, the organelle of interest is imaged as a
z-stack of serial confocal sections. After this recording of the geometry,
the actual FRAP experiment is performed. It is important that the organelle
under consideration does not significantly move or deform during this step.

2. The z-stack of images is used to determine the reconstructed surface of the
organelle as an iso-surface of pixel intensity. Various commercial and free
software packages are available to do this. The iso-value ischosen such
that the topological features of the organelle are conserved. The ER should,
e.g., remain connected.

3. The reconstructed volume is used as the computational domain for computer
simulations of diffusion using scaled units of time and an arbitrary, scaled,
computational diffusion constant. The initial condition is given by the
FRAP setup.

4. The computed fluorescence recovery curve is fitted to the measured data
points using a linear least squares regression in time.

5. The molecular diffusion constant in the experiment is calculated from the
computational diffusion constant, the time scale factor (from the fit) and
the length scale factor (from microscope/camera resolution) according to
Eq. (6.15).

To make an example, assume that the simulation uses a computational νsim of
75 (in scaled simulation units). In order to convert from scaled simulation unitsto
physical units, the time and length scales need to be determined. The lengthscale
is known from the pixel resolution of the z-stack images and the voxel size used
in the 3D reconstruction. Say that the images are acquired with a lateral resolution
of 0.18µm/pixel, and that the 3D reconstruction uses the same numberof voxels
as the z-stack images have pixels. If the size of an individual voxel is set to 66
(arb. units), one simulation length unit corresponds to2.7 nm in physical units.
The time scale factor is determined by fitting the simulated recovery curve to the
experimental one in time. This provides all the informationneeded to compute the
physical molecular diffusion constant according to Eq. (6.15).
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6.5.2 Application to soluble proteins

We describe simulations using the method of PSE [79] (cf. Subsection 5.2.2) to es-
timate the influence of organelle shape on FRAP of a luminal solute, and to obtain
more accurate measurements of molecular diffusion constants in vivo. The PSE
method enables whole-organelle simulations, as its deterministic nature renders
it orders of magnitude more accurate than random walk for thesame number of
particles, allowing fully resolved 3D simulations in realistic organelle geomet-
ries using about106 particles. Resolving a full ER using random walk would
require some1010 particles (cf. Subsection 5.2.3), which is infeasible on present-
day workstation computers. Moreover, the grid-free character of PSE avoids the
geometric limitations of finite differences and the complications of robust grid gen-
eration. The details of the simulation procedure are described in Appendix F.1, the
experimental protocols are given in Appendix E.1

The influence of confinement in complex shapes

The bleached region in a standard FRAP experiment usually has a diameter or
edge length of around 0.1 cell diameters. This means that at length scales relevant
to FRAP, the ER surface is complex enough to exhibit fractal characteristics, and
the laws of apparent diffusion are expected to change as outlined in Section 6.3.

To study the effects of organelle geometry, we perform computer simulations
of the diffusive fluorescence recovery in various reconstructed ER geometries. A
well-characterized, fluorescent, recombinant protein (ssGFP–KDEL; [281]) is ex-
pressed in the ER ofVERO cells(Helenius group). The protein is synthesized
with a cleavable signal sequence sufficient for ER-luminal targeting. At the C-
terminus, it has aKDEL sequence that serves as an ER localization sequence and
prevents secretion [201]. Using fluorescence correlation spectroscopy [305], the
molecular diffusion of the closely relatedssYFP–KDELhas been shown to be
non-anomalous in the ER lumen of HeLa cells, i.e. the molecule does not exhibit
sub-diffusive properties on molecular length and time scales (M. Weiss, personal
communication, 2002). We thus solve the normal isotropic diffusion equation. Us-
ing confocal fluorescence microscopy and a set of serial sections (z-stacks), the 3D
shape of the ER filled with the fluorescent protein is defined in19 different cells
as described in Section 6.2. The ER reconstructions are usedas computational do-
mains for PSE simulations of diffusion of luminal solutes (cf. Appendix F.1). The
speed of diffusive recovery is influenced by the geometry of the organelle near the
bleached region. The specific shape of the organelle far fromthe ROI is insignific-
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ant. All simulations use an assumed homogeneous Neumann boundary condition,
implying that the protein cannot cross the membrane. The numericalL2 error is as
low as6 · 10−3 in all simulations. Only bleached regions in the cell periphery are
considered, since the geometry of the denseperinuclear ERis not well resolved
(cf. Fig. 6.5(a)).

Computer-generated images of ER samples at different stages of simulated re-
covery are shown in Fig. 6.13. The local concentration of unbleached solute is
shown as a density cloud inside the reconstructed ER structure. The bleached
volume is depicted by its outline. The solute can be seen to diffuse into the
bleached region from the edges, and the rate by which each element in the bleached
region recovers depends on the distance from the edge and on the local geometry.

To study the effects of confinement in the ER lumen, we comparethe PSE sim-
ulations of diffusion in the ER to simulations in a cubic 3D box. When the same
molecular diffusion constant is used in both simulations, much faster recovery is
observed in the box, as shown in Fig. 6.14. Depending on the actual ER geometry,
theapparent diffusion constantobserved in the ER is 1.8 to 4.2 times lower than
the one observed in the box. Ignoring the effect of 3D confinement in complex
geometries thus leads to significant underestimation of molecular diffusion con-
stants.

Comparison to experimental data

To compare the results obtained from the simulations with experimental data,
FRAP experiments according to Appendix E.1 are conducted inssGFP–KDEL
expressing cells, for which the ER shape is first establishedfrom a 3D confocal
reconstruction. Using the PSE method, simulated FRAP curves are computed in
the same geometries as those used in the actual experiments.This is done for 12
different FRAP experiments in 8 different cells. The simulated curves are then
fitted to the experimentally measured FRAP curves using timestretching as de-
scribed in Subsection 6.4.4. Stretching time by a factor ofts and at the same time
multiplying ν2 by 1/ts leaves the solution unchanged, as the diffusion constant
can be incorporated into the governing equation as a scalingin time.

As shown in Fig. 6.15(a) for two of the cases, the simulated and experimentally
determined FRAP curves are virtually indistinguishable after fitting. Similar over-
lap is observed in all instances. We conclude that the simulations are consistent,
and accurate enough to be used to predict the effects of organelle geometry on
FRAP as well as to derive geometry-corrected molecular diffusion constants from
FRAP data. Fig. 6.15(b) shows a similar comparison between simulated and ex-
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(a) t = 1 δt (b) t = 25 δt

(c) t = 150 δt (d) t = 300 δt

Figure 6.13: Snapshots of the concentration distribution from a sample PSE simulation in a
reconstructed ER geometry. The results at timest = 1 δt (a), t = 25 δt (b), t = 150 δt (c),
andt = 300 δt (d) are shown for a molecular diffusion constant ofν2 = 3 ·10−5 b2/δt. All
units are scaled with the simulation time stepδt = 0.01 and the lateral edge lengthb = 50
of the bleached region. The ER membrane is visualized as a transparent surface and the
concentration of green fluorescent protein as a volume density cloud inside it. The bleached
region is represented by its edges. Only the part of the ER around the bleached region is
shown.
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Figure 6.14: The influence of confinement: Diffusion in a cubeversus diffusion in an ER.
Both simulations are done using the same molecular diffusion constant. Depending on
which specific ER sample is used, the recovery half-time for the ER case (solid) is 1.8 to
4.2 times the one of the cube (dashed). Both curves are normalized by their respective
asymptotic level to allow geometric comparison.

perimentally measured FRAP curves for two different ROIs inthe same ER. The
two bleached regions are overlapping and the recovery curves are thus expected to
be similar.

Fig. 6.16 visually compares thefluorescence recovery dynamicsfrom an exper-
iment and the corresponding simulation. Note that the experimental images show
confocal sections, whereas the simulation visualization shows the top-view onto
the closed three-dimensional object. The recovery percentages of the simulation
and the experiment match within±1%.

The influence of the particular geometry

The observed variation in thefactor of underestimationis due to the different
shapes of the individual ER samples. This is illustrated in Fig. 6.17(a), where
simulated recovery curves for different ER geometries are compared. All simu-
lations are done using the same value for the molecular diffusion constant. Still,
the recovery curves and recovery half-times scatter over a wide range. Not sur-
prisingly, changes in the size or in the position of the ROI inthe same ER lead
to similar variations, as shown in Fig. 6.17(b). The specificlocal geometryof the
organelle around the ROI is thus responsible for variationsof about a factor of
2.5 in the observed apparent diffusion constant. Methods that deduce molecular
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Figure 6.15: (a) Simulated FRAP curves compared to experimental measurement data for
different ER. The computer simulations are done using to themethod of particle strength
exchange as outlined in Subsection 5.2.2. The experiment isa standard FRAP experiment
according to Appendix E.1, preceded by the recording of a stack of serial sections used to
reconstruct the geometry. The simulated FRAP curves (lines) are stretched in time to fit the
experimental data (symbols). As time and diffusion constant are inversely proportional, this
allows to estimate the molecular diffusion constant, whilefully taking the specific geometry
into account. For the two examples shown, the molecular diffusion constants are determined
to be 34.4µm2/s (faster curve,+), and 34.2µm2/s (slower curve,×), respectively. All
curves are normalized by their asymptotic value to allow comparison. (b) Simulated FRAP
curves compared to experimental measurement data for different locations of the bleached
region. Two FRAP experiments, followed by corresponding PSE simulations, are performed
for two different, but overlapping, bleached regions in thesame ER. The result after fitting
the simulation results (lines) to the measurements (symbols) is shown. The two bleached
regions are given in microscope coordinates as:× (191,190)-(229,228) and+ (218,196)-
(256,234), and the molecular diffusion constants for this alternate transfection case (see
text) are determined as 1.9µm2/s (×) and 2.0µm2/s (+), respectively. All curves are
normalized by their asymptotic value to allow comparison.
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Figure 6.16: Visual comparison between FRAP experiment andcomputer simulation. Mi-
crographs from a standard FRAP experiment (Appendix E.1) are compared to visualizations
from the corresponding computer simulation. The case corresponds to the slower curve in
Fig. 6.15(a). Experimental images were acquired every 100 ms with a spatial resolution
of 0.18µm/pixel. The simulation entailed 6.8 million particles andcomprised the whole
ER. The figure only depicts the portion of the ER in the vicinity of the region of interest.
The molecular diffusion coefficient is determined from the fit shown in Fig. 6.15(a) to be
34.2µm2/s. The bleached region is indicated by its outline. No experimental image was
acquired during bleaching. Note that the experimental images show a confocal section
through the middle of the cell, whereas the visualizations from the simulation show the
top-view onto the closed three-dimensional geometry. The recovery percentages of the sim-
ulation match those of the experiment to within±1 %.
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Figure 6.17: (a) Comparison of simulated FRAP curves for four different ER samples. All
simulations are done using the same computational diffusion constant and the same simu-
lation parameter settings (see Appendix F.1 for details). All curves are normalized by their
asymptotic value to allow comparison. The variations observed in the FRAP curves are
solely caused by the different geometries of the ER samples.The recovery half-times vary
within the interval[5.7 . . . 14.2] · 100δt. (b) Comparison of simulated FRAP curves for
different bleached areas in the same ER sample. The bleachedregions are given by the mi-
croscope coordinates of their lower-left and upper-right corners as follows:� (225,125)-
(300,200) /∗ (350,200)-(400,250) /+ (250,125)-(300,175) /× (80,300)-(130,350). The
simulation parameters and computationalν2 are kept constant and all curves are normal-
ized by their asymptotic value to allow comparison.
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ν2 values using a “representative” model geometry, or statistically averaged shape
models, are unable to account for this situation. Any closed-form model or aver-
aged geometry model [262] thus suffers from this uncertainly, which can only be
reduced below 250% by taking thespecific geometryof the individual organelle
into account.

Geometry-corrected diffusion constant of ssGFP–KDEL

The scaling of units as outlined in Subsection 6.5.1 allows to determinegeometry-
corrected molecular diffusion constants. With a length unit of2.7 nm andts =
1.6 · 10−5 s from curve fitting, we find the moleculardiffusion constant of ssGFP–
KDEL in the ER lumen of VERO cells to beνeff = 34 ± 0.95µm2/s, averaged
from 8 computer-evaluated FRAP experiments. Depending on the particular ER
geometry, the molecular diffusion constant obtained without correcting for the or-
ganelle shape is 1.8 to 4.2 times lower. Ignoring the effect of shape thus leads to
significant underestimation of molecular diffusion constants.

The reported diffusion constant of pure GFP in water at room temperature is
87µm2/s [75]. This indicates that the material filling the ER lumen is of more
than 2.5-fold higher viscosity than water.

Assessment of the method

The diffusion constant of GFP in the ER lumen is reported in the literature as
around 10µm2/s [75]. Our value being about 3.5 times larger is consistent with
the result that neglecting the geometry leads to underestimation of the molecular
diffusion constant by a factor of 1.8 to 4.2. This is further supported by the work
of M. Weisset al. who used fluorescence correlation spectroscopy – a particle-
level method that directly determines molecular diffusionconstants – to measure
the molecularν2 of the closely related ssYFP–KDEL in the ER lumen ofHeLa
cells. The value obtained by Weisset al. is 30µm2/s (M. Weiss, personal commu-
nication, 2002), which is in reasonable agreement with our results, given that two
different cell types are considered. Bragaet al. found a value of 33.3±3.6µm2/s
for GFP in the nucleoplasm of HeLa cells [35], where geometric complexity is of
little concern.

A thorough comparison of our approach to the method of Siggia[262] is con-
ducted on FRAP experiments of ssGFP-KDEL in the ER lumen of VERO cells.
Great care is taken to record non-saturated images and meet all requirements of
both methods.
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To ensure that we correctly use the computer program of Siggia et al. [262],
we test it on an artificially generated time lapse sequence ofimages showing ho-
mogeneous diffusive recovery of a rectangular bleached area in a flat 2D plane,
simulated using finite differences and zero flux boundary conditions. The compu-
tationalν2 is 25µm2/s, the pixel size is0.18µm, and Gaussian pixel noise with
a standard deviation of 10% of the peak intensity value is added. A sequence
of 200 512×512 pixel images with sampling time∆t = 0.05 s is simulated and
evaluated using Siggia’s program. The diffusion constant is correctly recovered as
25.08µm2/s.

Comparing two different bleached regions from one ER, we observe that the
molecular diffusion constants determined by the present method are much less
scattered than the ones obtained using Siggia’s program. Even though we have
no reason to expect the molecularν2 to be constant throughout the entire ER,
variations of a factor of three and absolute values ranging from 23 to 79µm2/s, as
predicted by Siggia’s method, seem unlikely.

The sensitivity of our method is assessed using an alternative transfection pro-
cedure (cf. Appendix E). Again, two different spots of the same ER are bleached
and analyzed. PSE evaluations of the corresponding FRAP experiments, shown
in Fig. 6.15(b), yield molecular diffusion constants of 2.04µm2/s and 1.86µm2/s
for the two areas.

6.5.3 Application to membrane-bound proteins

In the past, FRAP on biological surfaces has mostly used planar diffusion models.
For FRAP and the related continuous fluorescence microphotolysis, calculations
exist for planar membranes [215], for spherical membranes [41], and forsingly-
connectedperiodically curved membranes (cosine surfaces) [6]. Several real biolo-
gical membranes are however much more complex. They can contain tubular net-
works, holes, large curvature variations, and they are usually not singly-connected.
Moreover, diffusion in biological membranes can appear anisotropic even though
it is molecularly isotropic in all observed instances [145]. The apparent aniso-
tropy in membrane FRAP experiments is due to different membrane curvatures is
different spatial directions [7]. Taking the exact surfacegeometry into account is
thus mandatory for isotropic FRAP models. We present computer simulations of
diffusion, using the numerical method presented in Section5.3 on reconstructed
ER membrane surfaces. This allows to investigate the influences of geometry on
FRAP and to derive corrected molecular diffusion constantsfrom FRAP data in
the ER membrane.
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Fig. 6.18 shows the visualized concentration field from a sample simulation at
different times after bleaching.

Comparison to experimental data

The simulations are validated by comparing them to FRAP experiments in the
same ER shapes. Fig. 6.19(a) shows three fits of simulated FRAP curves to exper-
imental data. Clearly, simulation and experiment are in excellent agreement in all
but one of the cases. Closer inspection of the membrane geometry in the differing
case reveals the overhanging membrane section shown in Fig.6.20. At early times,
lateral recovery could thus be occluded in the experiment, whereas the simulation
always integrates the concentration over the whole membrane surface. In addition,
the biochemistry may be different in this more lamellar partof the ER membrane.

The influence of membrane geometry on FRAP experiments

To estimate the geometry-induced uncertainty in membrane FRAP experiments,
we perform simulations in the membranes of ER samples that are reconstructed
from different cells. The same computational diffusion constant is used in all in-
stances, and all simulation parameters are kept constant (cf. Appendix F.2). The
geometrical differences in the membranes are therefore theonly source of vari-
ation. As shown in Fig. 6.19(b), the recovery half-times vary by a factor of1.76,
which can be explained by membrane curvature effects [6]. The specific shape of
the membrane thus affects the recovery half-times to vary bya factor of about 2
for different ER samples.

Geometry-corrected diffusion constant of tsO45-VSV-G

Thegeometry-corrected molecular diffusion constantof GFP-labeledtsO45-VSV-
G [107] is determined inVERO cellsas outlined in Appendix E.2. From 4
samples we findνeff = 0.16 ± 0.07µm2/s at the non-permissive temperature
of 40◦C. This is a factor of 2.7 lower than the previously publishedvalue of
0.45 ± 0.03µm2/s [203], which was obtained inCOS-7 cellswithout shape cor-
rection.

Comparison of membrane and luminal FRAP

Fig. 6.21 shows the simulated FRAP curves in the lumen and on the membrane of
the same ER sample for the same computational diffusion constant. The recovery
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(a) t = 0 δt (b) t = 1440 δt

(c) t = 8640 δt (d) t = 17640 δt

Figure 6.18: Simulation of diffusion in the ER membrane. Theconcentration on the mem-
brane of a reconstructed ER geometry is shown at timest = 0 δt (a), t = 1440 δt
(b), t = 8640 δt (c), and t = 17640 δt (d). The computational diffusion constant is
νsim = 1 · 10−5 b2/δt, scaled with the simulation time stepδt = 0.025 and the edge
length of the bleached ROIb = 50. The diffusion operator is supported on3 × 3 × 3
particles in a narrow band of half-widthκ = 2h and extended to a larger band ofk = 3h
every time step using the2nd order GMM extension method. An Euler scheme with a time
step ofδt = 0.025 is used for the first 20 time steps, then a 9-step STS with a timestep of
0.45 is used until the final time24000 δt. The level function and the concentration field are
discretized using 1.7 million particles. The concentration on the surface is recovered from
the adjacent particles using linear interpolation along inter-particle lines, and visualized
as surface color density. The three black lines indicate the25%, 50%, and 75% recovery
iso-lines.
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Figure 6.19: (a) Comparison of simulations and experiments. The simulated FRAP curves
(lines with filled symbols) are stretched in time to fit the experimental data (correspond-
ing open symbols). As time and diffusion constant are inversely proportional, this allows
to estimate the molecular diffusion constant, while fully taking the specific geometry into
account. For the three examples shown, the molecular diffusion constants are determined
to be 0.13µm2/s (circles), 0.24µm2/s (triangles), and 0.12µm2/s (diamonds). All curves
are normalized by their asymptotic value to allow comparison. (b) The influence of the
ER membrane geometry. All simulations are done using the same computational diffusion
constant and the same simulation parameter settings (Appendix F.2). All curves are normal-
ized by their asymptotic value to allow comparison. The variation observed in the FRAP
curves is therefore only caused by the different geometriesof the ER samples. The recovery
half-times scatter in the interval[33 . . . 58] · 104δt.
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Figure 6.20: Visualization of a reconstructed ER membrane piece with overhanging re-
gions. A9 × 9µm neighborhood around the bleached ROI (bright spot) is shown. The
case corresponds to the diamond symbols in Fig. 6.19(a), where the discrepancy between
the simulation and the experiment could be caused by the depicted overhanging membrane
piece.

half-times are 111 for the luminal protein and 485 for the membrane-bound pro-
tein. This indicates that the diffusion behavior of molecules in the ER membrane
differs significantly from the volumetric diffusion of soluble molecules in the lu-
men of the same ER. The apparent speed of recovery differs by afactor of about
4, even if the molecular diffusion constants of the two species are identical.

6.5.4 Conclusions

The results of this section demonstrate that for complex-shaped organelles neither
the confinement caused by the 3D shape of the organelle, nor the specific geometry
of the sample can be neglected when experimental fluorescence recovery data are
used to derive molecular diffusion constants. Moreover, diffusion of membrane
molecules is significantly different from diffusion of soluble components in the
ER lumen. Models used to calculate diffusion in the ER or any other intracel-
lular organelle have to take these influences into account ifthey should be free
of systematic errors. In the case of the ER, the correction factors are in the 2 to
4-fold range. The actual magnitude depends on the complexity of the particular
3D shape as well as on the local density of small-scale structures. If one is in-
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Figure 6.21: Comparison of FRAP curves in the lumen (dashed)and on the membrane
(solid) of the same ER sample. Both curves correspond to the same computational diffusion
constant and are normalized by their asymptotic value. The recovery half-time (in simula-
tion time units) is 111 for the luminal protein and 485 for themembrane protein, indicating
that recovery in the lumen is significantly faster than recovery on the membrane.

terested in determiningmolecular weightsbased on measured molecular diffusion
constants, this uncertainty correspond to an 8 to 64-fold error in weight, since a
soluble molecule’s volume scales with the third power of itsmolecular diffusion
constant [174]. For membrane-bound proteins the situationis even worse as their
radius depends exponentially on the diffusion constant [234].

We demonstrated that FRAP models derived for planar membranes yield in-
correct molecular diffusion constants when applied to curved membranes. The
factor of about 2 can be explained by purely geometric effects. Moreover, dif-
fusion appears anisotropic if the membrane has different curvatures in different
directions [7]. Isotropic models are thus only valid when one accounts for the real
membrane geometry in the vicinity of the ROI. Membrane FRAP models should
not be applied to luminal proteins and vice versa, as the apparent diffusion con-
stants differ by a factor of about 4.

Our results indicate that it is possible to perform accurateand fully resolved
computer simulations in experimentally recorded organelle shapes from confocal
sections. This enables the estimation of the geometry-induced uncertainties in the
calculation of molecular diffusion constants from FRAP data. The employed nu-
merical particle methods are crucial in doing so, since theyavoid many of the
problems that grid-based methods have in complex geometries, and their conver-
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gence is fast enough to limit the number of particles to feasible ranges. The com-
putational cost of the algorithms is low enough for them to beused in quantitative
analyses of FRAP experiments. Moreover, all simulation programs are parallel-
ized using the techniques presented in Chapter 7. This allows to further reduce
the computational time by using a cluster of computers that are connected by a
network.



Chapter 7

PPM – A Software Framework for Parallel
Particle-Mesh Simulations

The dynamics of particle methods are governed by the interactions of theN com-
putational particles, resulting in anN -body problem with a computational cost
that nominally scales asO(N2) (cf. Section 5.1). For short-ranged particle inter-
actions, as in simulations of diffusion according to Chapter 5, the computational
cost scales linearly with the number of particles. In the case of long-range in-
teraction potentials such as the Coulomb potential in electrostatics, the gravita-
tional potential in astrophysics, or the Biot-Savart law inVortex Methods(VM),
Fast Multipole Methods(FMM) [122] reduce the computational cost toO(N).
Alternatively, long-range interactions can be described by equivalentfield equa-
tions, such as the Poisson equation, that are solved on meshes, resulting in hy-
brid Particle-Mesh(PM) algorithms as outlined in Subsection 5.1.2 [127, 138].
The computational cost of hybrid methods scales asO(M), whereM denotes the
number of mesh points used for resolving the field equations.The choice between
FMM and PM techniques is dictated by the boundary conditionsof the problem
with FMM techniques allowing more flexibility on their specification, while PM
schemes are well suited for periodic systems. An important factor, distinguishing
FMM and PM techniques, is the parallelization efficiency of these methods, as the
mesh regularity of the PM algorithm enables implementations that are typically
one or two orders of magnitude faster than corresponding FMM[65, 309] imple-
mentations. Moreover, FMM-based particle methods have limited scalability on
shared memory systems [66], while their implementation in distributed memory
environments is difficult due to the inherent global nature of the underlying tree
data structure. It is important to observe, however, that even when FMM are used
for the evaluation of the particle interactions, the need for hybrid PM algorithms is
imperative in adaptive particle methods – such as VM orSmooth Particle Hydro-
dynamics(SPH) – for the reinitialization of the distorted particle locations [160]
in order to maintain the overlap condition in Eq. (5.7).
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Despite their versatility and physical link, the parallel implementation of PM
techniques is complicated by several factors:

• exploiting the symmetry of the particle interactions requires the sending
back of ghost contributions to the proper real particle,

• the simultaneous presence of particles and meshes prohibits a single optimal
way of parallelization,

• complex-shaped computational domains and strong particleinhomogeneit-
ies require spatially adaptive domain decompositions,

• particle motion may invalidate the existing domain decomposition, causing
rising load imbalance and hindering the implementation of multi-stage
integration schemes,

• inter-particle relations constrain decompositions and data assignment.

Moreover, different physical problems parallelize differently: Molecular Dy-
namics(MD) simulations require elapsed times below one second pertime step
to allow the hundreds of thousands or millions of time steps typically required
in these simulations. This severely limits the available time for communication.
Computational fluid dynamics simulations require less timesteps with each time
step taking tens of seconds or minutes, thus leaving less stringent requirements on
the communication overhead. Gravitational systems often develop strong inhomo-
geneities (large particle density variations) and requireadaptive domain decom-
positions and load (re-)balancing.

Many of the available domain decomposition, load balancing, solver, interpola-
tion, and data communication methods are applicable to a wide range of particle
or hybrid PM algorithms, regardless of the specific physics simulated [46, 160].
Meta-languages such asLinda [47] inspire us to provide a general-purpose plat-
form for the parallel implementation of PM algorithms. The inherent loss of
computational efficiency and portability of meta-languages [295] is however to be
avoided. In this chapter we present the newly developedParallel Particle Mesh lib-
rary PPM [248]. It provides a generic, physics-independent infrastructure for sim-
ulating discrete and continuum particle, mesh, and hybrid particle-mesh systems,
and it bridges the gap between infrastructure libraries andapplication-specific sim-
ulation codes.

The core of thePPM library provides several adaptive domain decomposition
schemes, multiple processor assignment methods, load balance monitoring, dy-
namic load balancing, data mapping (sending and receiving), update of overlap
regions, parallel file I/O, optimized inter-processor communication using Vizing’s
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approximate solution of the minimal edge coloring problem [303], neighbor lists
(cell lists and Verlet lists [301]), routines for adaptive trees, as well as particle-to-
mesh and mesh-to-particle interpolation. This core infrastructure is supplemented
with commonly used numerical methods such as mesh-based solvers, evaluation of
differential operators on particles [93], FMM, parallel FFT, and multi-stage ODE
integrators. Moreover, thePPM library provides bindings for the external libraries
fftw, MathKeisan FFT (NEC, Inc.), andMETIS1 [152].

The design goals ofPPM include ease of use, flexibility, state-of-the-art parallel
scaling, good vectorization, and platform portability.

Ease of use is provided by limiting the number of user-callable functions and
using generic interfaces for overloading different variants of the same task. The
PPM library has demonstrated its ease of use in the process of developing several
client applications for PSE, SPH, VM, and Dissipative Particle Dynamics (DPD).
The library is portable through the use of standard languages (Fortran 90 and C)
and libraries (MPI) and it was successfully compiled and used on Intel/Linux,
Apple/MacOS X, IBM Power/AIX, NEC SX/SUPER-UX, and AMD/Linux sys-
tems on 1 to 242 processors. Computational efficiency is achieved by dynamic
load balancing, dynamic particle re-distribution, explicit message passing, and the
use of simple data structures.

After reviewing presently available parallel codes and libraries for scientific sim-
ulations in Section 7.1, we present the concepts and modulesof thePPM library in
Section 7.2. The parallel scaling and efficiency ofPPM are assessed in the bench-
mark cases presented in Section 7.3.

7.1 Review of software and libraries for parallel computer sim-
ulations

A number of parallel implementations and libraries have addressed the aforemen-
tioned parallelization issues in various fields of application. They globally fall into
two categories:infrastructure librariesthat do not implement particular numerical
methods and focus on data communication, and application-specific simulation
libraries.

Infrastructure libraries have been developed to alleviatethe large programming
overhead associated with the parallel implementation of simulation applications
for various physical problems. Most of these libraries are non-numerical. Ex-
amples include the parallel scalable I/O libraryPASSION[282], supporting par-

1A library for graph partitioning for load assignment.
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allel file I/O including data pre-fetching and data sieving.Run-time support for
Monte Carlo simulations is provided by thePARTI library [195]. Besides differ-
ent domain decomposition schemes, this library also implements theStop-At-Rise
(SAR) heuristic [195] for deciding when to dynamically re-decompose the prob-
lem to achieve a good trade-off between the cost of domain decomposition and
the arising load imbalance from particle motion. TheParallel Utilities Library
(PUL) [52] provides domain decomposition methods, data communication, and
parallel file I/O for mesh-based schemes that use either structured or unstructured
meshes. TheBisectpackage [328] provides recursive orthogonal bisection domain
decomposition, communication through overlap regions, and a parallel bin sorting
algorithm for load balancing. Purely numerical infrastructure is provided by lib-
raries such asPETSc[18], a parallel linear algebra and equation solving package.
PETSc integrates and interfaces BLAS, ScaLAPACK, and many other mathemat-
ical libraries.

Application-specific simulation libraries can be classified into purely mesh-
based implementations with no support for particles, purely particle-oriented im-
plementations, and hybridParticle-In-Cell(PIC) libraries. Purely mesh-based lib-
raries include Prometheus, Hypre, and various finite element libraries such as the
one in Ref. [74].Prometheusis a parallel multigrid library for finite element ap-
plications [4] that is based on PETSc andParMETIS[152, 153]. Hypre is a lib-
rary of efficient parallel pre-conditioners (mainly algebraic multigrid) and solvers
such as conjugate gradient and GMRES [98]. Mesh-based multilevel and multi-
resolution simulations are supported by libraries that implement theAdaptive Mesh
Refinement(AMR) framework [29] such as, e.g.,AMROC[17, 81].

In purely particle-based applications with long-range potentials, parallel FMM
[121, 236, 310] and parallel Barnes-Hut methods [117] have been used. Parallel
atomistic simulations [131, 226, 219, 130, 95] and MD codes [170, 231, 178, 275]
such asPARALLACS[200], GAUSSIAN[105], andCPMD [67, 189, 13] are well
established. The parallelization techniques range from event-driven MD [192],
over domain decomposition techniques [222], multiple levels of parallelism [292],
and multi-resolution techniques [151, 315], to MD using FMM[34]. These
techniques have enabled large simulations comprising several millions of atoms
[16, 44]. Parallelization for short-ranged many-body potentials [62] and specific
adaptive load balancing schemes for MD [83] are available aswell.

Hybrid PM methods include PIC andParticle-Particle Particle-Mesh(P3M),
capturing sub-grid scale phenomena by particles [138]. Parallel application codes
using P3M are found, e.g., in astronomy [37] and in large cosmological simula-
tions [179]. Hydra [211] is a parallel adaptive P3M code. Parallel PIC codes
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[78] are widely used in plasma physics, where the motion of charges is tracked
by particles while Maxwell’s equations are solved on the mesh. Probably the first
parallel PIC code, published in 1990 [171], was a two-dimensional plasma simula-
tion with random particle-to-processor assignment, running on a massively parallel
CONVEX computer. An object-oriented PIC implementation for accelerator dy-
namics [224], and an HPF/MPI code with limited scalability [176] have also been
published. More recent PIC codes includeVORPAL, a versatile plasma simula-
tion code [206], and a magneto-hydrodynamics code using particle decomposition
techniques instead of domain decomposition [84].PICARD is a parallel PIC lib-
rary, rather than a specialized application code [46]. It can be applied wherever the
PIC formulation is used.

State-of-the-art simulation codes show good parallel efficiencies up to large
numbers of processors. The electromagnetic PIC codeQUICKSILVER[220] for
example demonstrated a parallel efficiency of 60% solving a scaled-size irregu-
lar case on 1024 processors. 90% were achieved in the ideal uniform load case on
3200 processors [220]. Parallel molecular dynamics using CPMD [67] has reached
50% efficiency on 1280 processors of an IBM p690 at 15% of peak performance.
Astrophysical Barnes-Hut tree codes for gravitational systems have achieved 70%
to 90% efficiency on 128 [297] to 256 processors [86]. Using theGADGETcosmo-
logy code [270], a recent simulation at the Max Planck Institute for astrophysics
has used more than 10 billion particles (30823 mesh) in an SPH simulation on
512 IBM p690 processors. Lattice Boltzmann simulations of flow in porous me-
dia demonstrated linear scaling up to 128 processors [209].A finite element code
based on the multigrid library Prometheus was used for bone biomechanics simu-
lations on up to 4088 IBM Power3 processors at 7.5% of peak performance. The
computational mesh consisted of 125 million elements, corresponding to half a bil-
lion unknowns, and a parallel efficiency of 41% on 128 processors was achieved
[5]. Yokokawaet al. [326] presented a direct numerical simulation of incompress-
ible turbulence using40963 mesh points with a parallel efficiency of 48% on the
512 NEC SX-5 processors of the Earth Simulator. The ASCI Red project even
achieved 74% efficiency solving the Poisson equation on 9632processors using a
3628802 mesh.
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7.2 ThePPM library

7.2.1 Concepts and fundamental assumptions

The use of thePPM library requires that the simulated systems are formulated
in the framework of PM algorithms as outlined in Section 5.1.The field equa-
tions are solved using structured or uniform Cartesian meshes. As a result, the
physical and computational domains are rectangular or cuboidal in two or three
dimensions. Complex geometries are handled by immersed boundaries, through
the use of source terms in the corresponding field equations,or through bound-
ary element techniques. Adaptive multi-resolution capabilities are possible using
mapping concepts as adapted to particle methods [27] (cf. Subsection 5.4.4).

The simultaneous presence of particles and meshes requiresdifferent concurrent
domain decompositions. These decompositions divide the computational domain
into a minimum number of cuboidalsub-domainswith sufficient granularity to
provide adequate load balancing. The concurrent presence of different decompos-
itions allows to perform each step of the computational algorithm in its optimal
environment with respect to load balance and the computation-to-communication
ratio. For the actual computations, the individual sub-domains are treated as in-
dependent problems and extended withghost mesh layersandghost particlesto
allow for communication between them.Ghostsare copies of true mesh points
or particles that either reside on a neighboring processor or account for periodic
boundary conditions. Ghost particles and/or ghost mesh points are needed for all
local operations such as finite support particle-particle interactions, finite differ-
ence stencils, and PM interpolations.

The PPM library supportsconnectionsandrelationsbetween particles, such as
particle pairs, triplets, quadruplets, etc. These relations may describe a physical
interaction, such as chemical bonds in molecular systems, or a spatial coherence,
such as a triangulation of an immersed boundary or an unstructured mesh. Multiple
sets of connections may coexist as the list of connections isallocated and stored by
the client program. The entries of the connection lists point to the unique, global
particle index which must be stored separately for each particle in this case.

To achieve maximum efficiency, thePPM library splits all the major routines
into an initialization step, processing, and finalization.This ensures reusability
of potentially expensive initialization, and facilitatesmemory management. On
the whole-library level, the routinesppm init andppm finalize provide this
functionality. The routineppm init sets the problem dimensionality (two or
three), the floating point precision for the internal communication buffers (single
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precision or double precision), the numerical tolerance for floating point compar-
isons (differences smaller than this tolerance are considered zero), the level of
detail in output and log messages, and the output devices forerror and log mes-
sages. Callingppm finalize deallocates all internal buffers and closes all I/O
devices.

Memory for internal lists and communication buffers is allocated by thePPM

library. All other memory, such as simulation data (particles, fields) and index
lists (cell lists, Verlet lists, etc.), is held by the clientapplication. This ensures user-
control over the data and allows multiple different sets of particles, connections,
and fields to be used concurrently. The number of decompositions, sub-domains,
particle sets, fields, and meshes is only limited by the cumulative memory capacity
of all processors.

7.2.2 Topologies

A topology is defined by the decomposition of space into sub-domains with the
corresponding boundary conditions, and the assignment of these sub-domains onto
processors. Multiple topologies may coexist and library routines are provided to
mapparticle and field data between them as described in Subsection 7.2.3. Fields
are defined onmeshes, which in turn are associated with topologies. Every topo-
logy can hold several meshes. The only constraint is that sub-domain boundaries
must align with mesh lines/planes.

As the domain decomposition may take several seconds to complete, a given
topology is assumed to persist through longer periods of thesimulation. For prob-
lems with free-space boundary conditions the extent of the computational domain
is adjusted in order to enclose all particles at any time. An extra margin may be
added to the computational domain to avoid repeated update of the topology. For
problems in confined systems, subject to, e.g., periodic boundary conditions, the
extent of the computational domain is fixed and the decomposition is performed
filling the entire space, disallowing void space(s). This assures that particles can
not leave the computational domain, which would require an immediate, poten-
tially expensive, re-decomposition.

In order to achieve goodload balance, both theload distributionand the com-
putational cost of the topology creation are monitored throughout the simulation.
The SAR heuristic[195] is used in thePPM library to decide when problem re-
decomposition is advised, i.e. when the cost of topology re-definition is amortized
by the gain in load balance. Moreover, all topology definition routines can account
for the true computational cost of each particle, for example defined by the actual
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number of its interactions. A routine is provided to computethis number based on
the lengths of Verlet lists.

Domain decompositions

The PPM library provides a number of different adaptive domain decomposition
techniques for particles, meshes, and volumes, the latter defining geometric sub-
domains with neither meshes nor particles present. These decompositions cur-
rently include: recursive orthogonal bisection,x-, y-, and z-pencils,xy-, xz-,
andyz-slabs, cuboids, and a user-defined decomposition.Recursive Orthogonal
Bisection (ROB) is based on the adaptive binary tree described in Subsection
7.2.9, where subdivisions are allowed in all spatial directions. Pencil decompos-
itions prohibit subdivisions in one direction, resulting in an adaptive decomposi-
tion where each sub-domain extends over the whole computational domain in at
least one spatial dimension. Such decompositions are useful when performing fast
Fourier transforms. Inslabs, two directions are fixed.Cuboidsare created us-
ing adaptive quad- and oct-trees in two and three dimensions, respectively, and
theuser-defined decompositionallows the client program to explicitly specify the
sub-domains. After checking the validity of such a decomposition, thePPM library
directly proceeds with assignment of the sub-domains to theprocessors.

In addition, a specialnull decompositionis provided, that does not perform any
domain decomposition. It creates only one “sub-domain” which is the computa-
tional domain itself. This trivial “decomposition” is usedto evenly distribute the
particles among processors, irrespective of their spatiallocation. The resulting
special topology is called thering topology, where the sub-domain is assigned to
every processor. The ring topology supports fullO(N2) calculations, and also al-
lows to distribute data of initially unknown processor affiliation (cf. Subsections
7.2.3 and 7.2.4).

Assignment of sub-domains onto processors

Load balancing in thePPM library comprises two main components: domain de-
composition andassignmentof the sub-domains onto the processors. While the
former has to ensure sufficient granularity and partitioning of the computational
cost, the latter has to provide even distribution of the computational load among
processors, accounting for possible differences in processor speeds. The compu-
tational cost for each sub-domain – as determined by the number of particles, the
number of mesh points, or the true computational cost – is known from the domain
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decomposition. The individual processor speeds are measured internally byPPM,
solving a smallLennard-Jonessystem [10] with an increasing number of particles
until all processors report sufficient timing statistics.

Using this information,PPM provides several methods of assigning the sub-
domains onto the processors. ThePPM-internalmethod assigns contiguous blocks
of sub-domains to processors until the accumulated cost of aprocessor is greater
than or equal to the theoretical average cost under uniform load distribution. The
average is weighted with the relative processor speeds. In addition, four different
METIS-based[152] assignments and a user-defined assignment are available.

In conjunction with a user-defined domain decomposition, the user-defined as-
signmentscheme allows the client program to enforce a specific processor affil-
iation for each sub-domain. For aMETIS assignment, the sub-domain partition-
ing problem is first translated to the equivalentgraph partitioningproblem. Two
different conversions are supported byMETIS: in the primal scheme, each sub-
domain is represented by a node in the graph and the neighborhood relations by
the edges of the graph; thedual scheme represents sub-domains by graph edges.
Graph partitioning is then performed such as to minimize eitheredge cutor com-
munication volume[152, 153]. The relative processor speeds and the computa-
tional costs of the sub-domains are accounted for by means ofweights that are
assigned to the nodes and edges of the graph.

Boundary conditions

At the external boundaries of the computational domain, Neumann, Dirichlet, free
space, symmetric, and periodic boundary conditions are supported. These condi-
tions complement the particular mesh-based solver that is being employed. More
involved boundary conditions and complex boundary shapes are represented inside
the computational domain by defining connections among the particles, or using
immersed interfaces.

Benchmark tests

To assess the behavior of the different topology schemes, wecompare them on four
test cases using 16 processors. The quality of decomposition is quantified by the
standard deviation of the number of particles across processors, and by the average
number of ghost particles needed per processor. The domain is decomposed using
a non-adaptive binary tree, ROB, and an adaptive oct-tree. Assignment of the
sub-domains onto the processors is done using the external library METIS [152] to
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Particle distribution Non-adaptive tree ROB Adaptive oct-tree
Standard deviation of particles per processor
Uniform 422 268 265
Sphere 62501 1865 2626
Spiral 73350 2336 6011
Diagonal line 108255 148 161

Average number of ghost particles per processor
Uniform 33847 33832 33750
Sphere 35268 36526 28187
Spiral 10584 31102 22297
Diagonal line 20050 28940 46232

Table 7.1: Comparison of different domain decomposition schemes on four test problems,
each involving 1 million particles on 16 processors (see text). For all schemes, the equi-
distribution of particles and the total communication overhead, measured by the number of
ghost particles, are reported.

minimize the total length of the communication boundaries.One million particles
are distributed in the unit cube in four ways: uniformly, on the surface of a sphere
with radius 0.25, on a spiral, and on the diagonal line from the point(0, 0, 0) to the
point (1, 1, 1). The computational time needed to construct the topologieson 16
2.2 GHz AMD Opteron 248 processors is about 30 milliseconds per sub-domain
in all cases, and the results are summarized in Table 7.1.

7.2.3 Mapping

PPM topologies implicitly define a data-to-processor assignment. Mapping
routines provide the functionality of sending particles and field blocks to the proper
processor, i.e. to the one that “owns” the corresponding sub-domain(s) of the com-
putational space. Three different mapping types are provided for both particles
and field data:

1. aglobal mapping, involving an all-to-all communication,

2. alocal mappingfor neighborhood communication, and

3. ghost mappingsto update the ghost layers.
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In addition, a specialring shift mappingis provided for particle data on the
ring topology, and aconnection mappingfor taking into account links between
particles.

The global mapping is used to perform the initial data-to-processor assignment
or to switch from one topology to another, whereas the local mapping is mainly
used to account for particle motion during a simulation. Communication is sched-
uled by solving theminimum edge coloringproblem using the efficient approxim-
ation algorithm byVizing [303, 85, 87]. Ghost mappings are provided to receive
ghost particles or ghost mesh points, and to send ghost contributions back to the
corresponding real element, for example after a symmetric particle-particle inter-
action or a particle-to-mesh interpolation. The ring shiftmapping sends data-sets
around all processors, while each processor keeps a local copy of its original data.
Finally, connection mappings are provided to distribute connections among pro-
cessors according to an existing distribution of particles, and to update the connec-
tion lists when particles have moved across processor boundaries.

All mapping types are organized asstacks. A mapping operation consists of
four steps: (1) defining the mapping, (2) pushing data onto the send stack, (3)
performing the actual send and receive operations, and (4) popping the data from
thereceive stack. This architecture allows data stored in different arrays to be sent
together to minimize network latency, and mapping definitions to be re-used by
repeatedly calling the push/send/pop sequence for the same, persisting mapping
definition. The individual mapping types only differ in their definition step, while
push, send, and pop are identical.

All mapping subroutines ofPPM are available in separate optimized versions
for scalar and vector data. Supported data types for particles and fields are: single
and double precision floating point, single and double precision complex numbers,
integer numbers, and logical values. Different data types can be mixed within the
same stack, in which case they are converted to the stack datatype as defined by
theppm init routine (cf. Subsection 7.2.1).

Mappings of field data can be masked. In this case, an optionalbinary mask
selects which mesh points are to be mapped and which ones are not. The values of
non-mapped points remain unaffected by the mapping operation.

Global mapping

Theglobal mappingin the PPM library involves communication of all processors
with all others. Individual communication steps are synchronous, and scheduled
such that no conflicts occur. Thus, all processorsi, i = 1, . . . , Nproc, send toi+ r
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(modNproc) while they receive fromi − r (modNproc). This is repeated for all
shiftsr = 1, . . . , Nproc− 1.

The definition of a global mapping involves the creation of anindex list of
particles or mesh blocks that fall outside the local processor, and a list of their
new processor affiliation.

As an example, the global mapping ofNp particles with positionsxp(:,:)
(ndims × Np floating point array) and vector propertieswp(:,:) (nprop
× Np floating point array) consists of the following sequence of calls to the
ppm map part routine:

CALL ppm_map_part(xp,ndims,Np,Mp,tid,ppm_param_map_global,info)
CALL ppm_map_part(wp,nprop,Np,Mp,tid,ppm_param_map_push ,info)
CALL ppm_map_part(wp,nprop,Np,Mp,tid,ppm_param_map_send ,info)
CALL ppm_map_part(wp,nprop,Np,Mp,tid,ppm_param_map_pop ,info)
CALL ppm_map_part(xp,ndims,Np,Mp,tid,ppm_param_map_pop ,info).

Np is the number of non-ghost particles on the local processor before the map-
ping,Mp is the new number of particles after the mapping, andtid is the unique
identification number of the target topology for the mapping. This target topo-
logy needs to be defined beforehand, using thePPM topology creation routine
ppm mktopo. The error status of each step is returned ininfo. For the scalar
version of the mapping routines, the second argument is absent and the first one is
a rank 1 array. For reasons of efficiency, the first call toppm map part not only
defines the mapping by creating all the lists, but also directly pushes the particle
positions onto the send stack. The pop action thus needs to beissued once more
than the push action.

Mapping anndim-dimensional vector fieldfld, that is defined on the mesh
mid, requires the following sequence of calls toppm map field:

CALL ppm_map_field(fld,ndim,tid,mid,to_mid,gs,ppm_param_map_global,
info)

CALL ppm_map_field(fld,ndim,tid,mid,to_mid,gs,ppm_param_map_push ,
info)

CALL ppm_map_field(fld,ndim,tid,mid,to_mid,gs,ppm_param_map_send ,
info)

CALL ppm_map_field(fld,ndim,tid,mid,to_mid,gs,ppm_param_map_pop ,
info).

The identifierto mid specifies the target mesh, which needs to be defined on
the target topologytid. The width of the ghost layer in units of the mesh spacing
is given ings(:) for each spatial direction. The scalar version of the routine
lacks the second argument and the rank of the field arrayfld is reduced by one.
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Local mapping

During alocal mapping, each processor only communicates with those processors
that have sub-domains that are adjacent to any of its own sub-domains. The op-
timal communication sequence would satisfy that no conflicts occur, and that the
minimum number of communication steps is needed. The problem of finding this
sequence can be formulated in agraph representation, where each processor is a
node of the graph. An edge in the graph denotes a neighborhoodrelation, i.e. a
necessary communication. The goal is to find a coloring of theedges such that no
two edges of the same color meet in any node, and such that the minimum number
of different colors (corresponding to communication steps) is needed. Thismin-
imum edge coloringproblem isNP -complete [139]. An approximate solution can
however efficiently be found using the algorithm ofVizing [303]. This solution
guarantees that at most one color more is used than the minimum number [45].
PPM uses this algorithm to pre-compute and store thecommunication schedulefor
each defined topology [85, 87].

Periodic boundary conditions at the outer faces of the computational domain are
automatically accounted for. Executing a local mapping is analogous to executing
a global mapping, except that the parameterppm param map partial is used
in the first call to the corresponding mapping routine.

Receiving ghosts

The PPM library provides the mapping routinesppm map part ghost and
ppm map field ghost for handling ghost layers.Receiving ghostsand obtain-
ing the copied values is done using theppm param map ghost get parameter.
For particles, ghosts can have both a position and values. Notice that in the case
of stationary particles, the stack architecture ofPPM’s mappings allows to update
the ghost values without re-defining the lists or re-sendingthe ghost positions.

Sending ghost contributions back

When performing symmetric particle-particle interactions or when using particle-
to-mesh interpolation, the value at the location of a ghost may change.
This gives rise toghost contributionsto the corresponding real particle or
mesh point on the source processor. In order to add these contributions
back onto the proper real element,PPM provides aghost sendingmechanism
(ppm param map ghost put). The library automatically keeps track of which
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real element(s) correspond to a ghost particle or a ghost mesh point, and of possible
periodic images in the case of periodic boundary conditions.

Ring shift

When thePPM ring topology (cf. Subsection 7.2.2) is used to compute direct in-
teractions or to distribute data of not globally known processor affiliation, thering
shift mapping(ppm map part ring shift) is needed. In this mapping, each
processor keeps a local copy of its data while a second copy is“sent around the
ring”. This means that processori receives the data from processori − 1 (mod
Nproc) while sending its previous data toi+1 (modNproc). The ring shift mapping
performs one such step upon each call. It thus has to be executedNproc− 1 times
for the traveling set to visit all processors. After every ring shift, each processor
can perform local operations using its original local data as well as the current
traveling set. During a complete cycle, all possible pair combinations are thus
considered.

Mapping of particle connections

To allow disjoint initialization or input of particles and the correspondingcon-
nections, the latter are typically initialized or read separately and are not sorted
by processor. ThePPM connection mappingis provided to properly distribute the
connections among the processors. The ring topology is conveniently used for this
mapping, in which each processor picks those connections from the data being
transmitted on the ring that have entries that correspond toone of its particles.
After the connection mapping, every processor has those connections that are as-
sociated with any of its particles. This allows non-symmetric calculations of the
interactions. If symmetry is used, only one processor performs the calculation.
The mapping is thus followed by apruning of the connectionsto assure that only
the one processor that has all the member particles of a connection keeps it. This
is a sufficient condition since the ghost layers inPPM are non-overlapping, as il-
lustrated in Fig. 7.1.

As the particles move to other processors during the course of a simulation,
the connections are updated accordingly. In the case of symmetric interaction
evaluations, the mapping is again followed by the pruning step as described above,
in order to remove redundant connections.
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7.2.4 Particle-Particle interactions

The evaluation ofParticle-Particle (PP) interactions is a key component of PM
algorithms. Sub-grid scale phenomena can require local particle-based corrections
[306], differential operators can be evaluated on irregular locations [93], or the
main dynamics of the system may be governed by particle interactions.

ThePPM library implements PP computations using cell lists, Verlet lists [301],
and the fullO(N2) direct method. Bothsymmetricandnon-symmetricinterac-
tions are supported, the former to reduce the amount of duplicated work. In each
method, the interaction potential or kernel can be specifiedeither by a function
pointer to a user function, by passing a look-up table of kernel values, or by choos-
ing one of the predefinedPPM-internal kernels: first order derivatives in two and
three dimensions, Laplacian on particles in two and three dimensions, and quad-
ratic spline kernels for derivatives in SPH.

In addition to the routines performing the actual computations, thePPM library
also provides a routine to create look-up tables from eithera function pointer or an
internal kernel. Such tables can then be passed to any of the compute routines for
the evaluation.

Alternatively, the client program can implement its own interaction routines.
Template subroutines for the use of cell lists, Verlet lists, direct interactions, and
connection interactions are provided.

Direct interactions

Thedirect evaluationof the fullN -body problem makes use of thePPM ring topo-
logy, which is based on the null decomposition as introducedin Subsection 7.2.2.
Particles are evenly distributed among processors, irrespective of their location in
space. This results in optimal load balance [46], but high communication over-
head. Using the ring topology to perform direct interactions, each processor keeps
a copy of its assigned particles while a second copy is “sent around the ring” using
the ring shift mapping as described in Subsection 7.2.3. After each ring shift, all
processors compute the pair interactions between the localstationary set and the
current traveling set. For asymmetric interactions, contributions are only added
onto the local set, for symmetric interactions the traveling set is updated as well.
This is repeated until the sets of all processors have completed their trip around the
full, for asymmetric interactions, or half of the ring, for symmetric interactions. In
the case of symmetric interaction evaluations, the accumulated contributions on
the traveling set are finally sent back to their origin for summation.
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Cell list interactions

Cell lists are provided for local,short-rangeinteractions. Hereby, particles are
sorted into equi-sized cuboidal cells, whose size reflects the interaction cut-off.
A particle then only interacts with the other particles in the same cell and with
all particles in neighboring cells, accessible through index lists. InPPM, cell lists
are defined per sub-domain andghost cellsare used around each sub-domain as
illustrated in Fig. 7.1. If two sub-domains are on the same processor, no commu-
nication is needed to populate the ghost cells. The evaluation of PP interactions
based on cell list, as well as the set-up of the cell lists, isO(N). The lists need to
be updated when particles have moved.

PPM provides routines to create cell lists, to sort particles into cells, viz. cre-
ate the index lists, and to compute the actual PP interactions using cell lists. An
additional routine is provided for determining which cell-cell interactions have to
be considered. Using asymmetric PP interactions, each cellinteracts with all of
its neighbors as shown in Fig. 7.1(a). For symmetric interactions however, only
half of the neighbor cells, and half of the particles in the center cell, are to be con-
sidered. In order to limit the ghost layer to half of the boundaries of the sub-domain
and to achieve parallel scaling in memory, a novel interaction scheme involvingdi-
agonal interactionsis introduced as illustrated in Fig. 7.1(c). This scheme reduces
the amount of memory overhead and communication for symmetrically evaluated
PP interactions by 33% in two dimensions and 40% in three dimensions compared
to the classical approach depicted in Fig. 7.1(b), and it enables the symmetric eval-
uation of interactions between connected particles. Giventhe cells are numbered in
ascendingx, y, (z), starting from the center cell with number 0, the cell-cellinter-
actions inPPMare: 0–0, 0–1, 0–3, 0–4, and 1–3 in two dimensions (cf. Fig. 7.1(c)),
and 0–0, 0–1, 0–3, 0–4, 0–9, 0–10, 0–12, 0–13, 1–3, 1–9, 1–12,3–9, 3–10, and
4–9 in three dimensions.

The difference in computational time between symmetric andnon-symmetric
PP interactions is assessed using a PSE diffusion solver according to Subsection
5.2.2. The elapsed time per time step is found to decrease by afactor of 1.72 when
changing from asymmetric to symmetric interactions on two processors. Due to
the additional overhead caused by sending back the ghost contributions, this factor
is below 2.
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Figure 7.1: Cell-cell interactions and ghost-layer arrangement. (a) For non-symmetric
particle-particle interactions, the ghost layer (light gray) extends all around the sub-
domain. Interactions are one-sided. (b) In traditional symmetric cell list algorithms, ghost
layers are required on all but one boundary of the domain. (c)In PPM, diagonal interac-
tions are introduced (1–3). Ghost layers are now symmetric and do not overlap with any
other ghost layers of neighboring sub-domains. This results in less communication, better
scaling in memory, and simpler algorithms, e.g. when considering connected particles. The
two-dimensional case is depicted. See text for interactions in the three-dimensional case.

Verlet list interactions

For spherically symmetric interactions, cell lists contain up to 27/(4π/3) =
81/(4π) ≈ 6 times more particles than actually needed.Verlet lists [301] are
provided to reduce this overhead. For each particle they involve an explicit list
of all other particles it has to interact with. The radius of the Verlet sphere is
usually chosen to be the interaction cut-off plus a certain safety margin, called
skin. The lists need to be rebuilt as soon as any particle has movedfarther than
this safety margin. In three dimensions, interactions using Verlet lists are at most
81/

(
(4π) · (1 + skin)3

)
times faster than cell list interactions. InPPM, Verlet lists

are set up using intermediate cell lists to reduce the algorithmic complexity to
O(N). Routines are provided for generating Verlet lists as well as for computing
the interactions based on them. Memory requirements however usually limit the
application of Verlet lists to small or well-distributed problems.

Connection interactions

Besides free-space PP interactions,PPM also supports interactions based on inter-
particle connections. No neighbor lists are required in this case since a connection
consists of an explicit list of all its member particles. Since the connections are
mapped according to the particle distribution as describedin Subsection 7.2.3,
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theconnection interactionscan be evaluated without communication. The global
particle index specified by the connection is hereby translated to the local particle
index by a direct look-up in a global list.

7.2.5 Particle-Mesh and Mesh-Particle interpolations

All hybrid PM methods involve interpolation of irregularlydistributedparticle
quantitiesfrom particle locations onto a regular mesh, and interpolation of field
quantitiesfrom the grid points onto particle locations.

These interpolations are utilized for two purposes, namely:

• the communication of the particle solver with the field solver, and
• the reinitialization of distorted particle locations.

While the first issue is a well-established notion in PM techniques, thereinitial-
ization of particle locations and strengths when particle locations get distorted is
a critical, albeit often overlooked, aspect of particle methods for the simulation of
continuum systems [160]. Particle overlap is needed in order to ensure conver-
gence of the method (cf. Section 5.1.1), and it is achieved byperiodically inter-
polating the particles onto a regular mesh and replacing thecurrent set of particles
by new particles, created at the locations of the mesh points. This procedure is
referred to asremeshing.

The PPM library provides routines that perform these operations. The interpol-
ation weightsW (xm − xp) can be pre-computed and stored to facilitate adjust-
ments of the interpolation, or to interpolate several sets of quantities. Adjustments
are e.g. needed in the vicinity of solid boundaries or immersed interfaces. If the
weights are not pre-computed, they are determined during the actual interpolation.
The usedd-dimensional interpolants are tensor products of one-dimensional inter-
polation kernels, such as B-Splines and extrapolations of B-Splines [194] withm
points in their support. The amount of memory required per particle therefore is
O(dm) instead ofO(md) for the general case. Currently implemented interpolants
include first and second order B-Splines, and theM ′

4 function [194].
The interpolation of mesh values onto particles readily vectorizes: the interpol-

ation is performed by looping over the particles and receiving values from mesh
points that lie within the support of the interpolation kernel. Therefore, the values
of individual particles can be interpolated independently.

The interpolation of particle values onto the mesh, however, leads todata de-
pendenciesas the interpolation is still performed by looping over particles, but a
mesh point may receive values from more than one particle. Tocircumvent this
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Scheme CPU time vector operation ratio avg. vector length
colored 2.69 s 99% 230.6 words
classical 30.1s 0.36% 4.1 words

Table 7.2: Comparison of the vector performance of classical particle-to-mesh interpola-
tion and the present coloring scheme on a NEC SX-5 vector computer. 2 million particles
are interpolated onto128 × 128 × 128 regularly spaced mesh points.

problem, thePPM library implements the following technique [307]: when new
particles are created in the course of remeshing, we assign colors to the particles
such that no two particles within the support of the interpolation kernel have the
same color. Particle-to-mesh interpolation then visits the particles ordered by
color to achievedata independence. This coloring schemeenablesvectorization
of particle-to-mesh interpolations, as confirmed by a test on a NEC SX-5 vector
computer. The results are summarized in Table 7.2. Without the present coloring
scheme, interpolation in hybrid PM methods would be prohibitively expensive on
vector architectures.

7.2.6 Mesh-based solvers

In PPM, meshes can be used to solve the field equations associated with long-
range particle interactions[138], or to discretize the differential operators in the
governing equations of the simulated physical system. These operators are often
local and their computational cost scales linearly with thenumber of mesh points.

A large class of pair interaction potentials in particle methods can be described
by the Poisson equation as it appears in MD of charged particles via electrostat-
ics (Coulomb potential), fluid mechanics in stream-function/vorticity formulation
(Biot-Savart potential), and astrophysics (gravitational potential). ThePoisson
equationis expressed as:

∇2f(x) = g(x) . (7.1)

ThePPM library provides fastPoisson solversbased on FFTs and geometric Multi-
Grid (MG).
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Fast Fourier Transforms

PPM provides anFFT-based solverfor the Poisson Eq. (7.1) with periodic bound-
ary conditions. A multi-dimensional FFT is parallelized using a sequence of one-
or two-dimensional FFTs, that are performed on pencil and slab topologies as in-
troduced in Subsection 7.2.2. The data array to be transformed is optimally stored
if the transformation operates along the leading dimensionof the array, thus en-
suring unit memory stride. Therefore, the data are transposed if necessary before
performing the individual low-dimensional FFTs. A complete three-dimensional
FFT thus consists of mapping the data onto a temporaryxy-slab topology, per-
forming a two-dimensional FFT, mapping onto a temporaryz-pencil topology, and
performing a one-dimensional FFT. The run time of the mapping and the transpos-
ition steps strongly depends on the machine’s network speedas it involves global
communication of a large amount of data.

The actual serial low-dimensional FFTs are performed usingthe external librar-
ies fftw or MathKeisan (on NEC SX vector architectures).

Multigrid methods

The geometric MG method is implemented inPPM as a fast iterative solver for
the Poisson Eq. (7.1). The advantage of parallelMG solversconsists in restrict-
ing communication to the ghost layers, whereas the corresponding FFTs require
several global mappings. This advantage is particularly significant on distributed
memory machines, where the bandwidth of the network connection may become
the performance-limiting factor in FFT solvers.

ThePPM MG supports both the V and W cycle [290]. The Laplacian is discret-
ized using five and seven point stencils in two and three dimensions, respectively.
As residual smoother we employ the red-blacksuccessive over-relaxationscheme,
which includes theGauss-Seidelsmoother as a special case. The optimal value
for the over-relaxation parameter is approximately 1.15 [325]. Furthermore, the
full-weighting scheme [290] is used for therestriction of the residual, and bilin-
ear (in two dimensions) or tri-linear (in three dimensions)interpolation for the
prolongationof the function corrections [290].

The PPM MG solves the two and three dimensional Poisson equation forscalar
and vector fields. Boundary conditions can be periodic, Neumann, or Dirichlet.
In the vector case, each component may satisfy different boundary conditions.
The solver is structured into initialization, computation, and finalization to ensure
efficient memory-management.
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7.2.7 ODE Solvers

Simulations using particle methods entail the solution of systems of ODEs as out-
lined in Section 5.1. The characteristics of theInitial Value Problems(IVP) rep-
resented by these ODEs explicitly reflect the physics of the system that is being
simulated.

The PPM library provides a set of explicit integration schemes to solve these
IVPs. TheODE solverof PPM is designed as a “black-box” solver. The user
selects the method to be used and provides as a function pointer a routine that
computes the right-hand sides of the ODEs. Allocation of storage (for the stages
of multi-step schemes) and the actual computation of the stages is performed by
the library. Second order ODEs are solved by transforming them into a system of
first order problems, and parallelism is achieved by mappingthe integrator stages
along with the other particle quantities. At the last stage of the integrator, the
previous stages are available on the processor that currently hosts the particles,
and the final particle update is completed without further communication.Low-
storage schemeshave the additional advantage of requiring little communication.

The set of available integrators currently includes forward Euler with and
without super time stepping [9], 2-stage and 4-stage standard Runge-Kutta
schemes, Williamson’s low-storage third order Runge-Kutta scheme [318], and
2-stage and 3-stage TVD Runge-Kutta schemes [261].

7.2.8 Parallel I/O

File I/O in distributed parallel environments exist in two different modes:distrib-
utedandcentralized. By distributed we denote the situation where each processor
writes its part of the data to its local file system. Centralized I/O on the other hand
produces a single file on one of the nodes, where the data contributions from all
processors are consolidated. The latter is convenient for small or aggregated data,
and for writing files that are later read on a different numberof processors, e.g. to
continue an interrupted simulation.

ThePPM library provides a parallel I/O module which supports both binary and
ASCII read and write operations in both modes, distributed and centralized. The
I/O modeis transparent to the client application. Write operationsin the cent-
ralized mode can concatenate or reduce (sum, replace) the data from individual
processors; read operations can transparently split the data in equal chunks among
processors, or send an identical copy to each one. The basic assumption behind
thesplit modeis that no processor is able to hold all the data in memory.
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Read and write operations are performed by the same routine.The actual opera-
tion is determined by an input flag that can be set to eitherppm param io read
or ppm param io write. This interface facilitates writing and reading simula-
tion data files in consistent formats and order.

To improve performance of the centralized mode, network communication and
file I/O are overlapped in time usingnon-blocking message passing. All standard
data types are supported: real, double, single precision complex, double precision
complex, integer, logical, and character strings.

7.2.9 Adaptive trees

A generaltree constructionis provided for both internal and client use. It supports
non-adaptive and adaptivebinary trees, quad-trees, andoct-trees. At any stage of
the tree, the space is subdivided intoM boxes{Bk}. The indicesi andj are used
to denote coordinate directions. Adaptivity and subdivision behavior are guided by
two cost functionsφ1, φ2. Both cost functions are linear combinations of the three
cost contributions: particle costscp (user-specified or unity per particle), mesh
points (number of mesh points in the boxmB =

∏
mB,i), and geometry (volume

of the box|B| =∏ |B|i), with user-provided coefficientsα, β, γ:

φ{1,2}(Bk) = α{1,2}
∑

p∈Bk

cp + β{1,2}mBk
+ γ{1,2}|Bk|. (7.2)

The first cost functionφ1 guides theadaptivityof the tree since the next subdivi-
sion is applied to the boxBK of largestφ1. The second cost functionφ2 defines
the direction(s) of subdivision and the position(s) of the subdivision plane(s). Sup-
poseBK is to be subdivided next. In order to create the minimumφ2-cut when
subdividing the box, thetensor of inertiaT = (Tij) is computed from the particle
locationsxp = (xp,i) and costscp as:

Tii =
∑

p∈BK



∑

j 6=i

x2
p,j


 cp , Tij =

∑

p∈BK

xp,ixp,jcp . (7.3)

The eigenvectorsvr of T are scaled with the correspondingeigenvalueλr:
νr = λr(vr/‖vr‖2) and projected onto the unit coordinate vectorsei. The num-
ber of mesh points in this direction (mB,i) and the length of the box in this direc-
tion (|B|i) are normalized and added to form ascore valueS for each coordinate
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direction:

S(ei) = α2

∑

r

ei ·νr +β2



∑

j

mBK ,j



−1

mBK ,i +γ2



∑

j

|BK |j



−1

|BK |i .

(7.4)

The spatial subdivision directions are chosen in order of ascending score. The
client program can however specifically disallow subdivisions in certain coordinate
directions to enforce pencil-type or slab-type boxes. The actual position of a cut
perpendicular to directionI is determined as the corresponding component of the
center of massof φ2 within the boxBK :

φ2(BK)−1


α2

∑

p∈BK

xp,Icp + µI(BK) (β2mBK
+ γ2|BK |)


 , (7.5)

subject to the constraint that a client-specified minimum box size is not under-run.
In the above equation,µ(Bk) = (µi(Bk)) denotes the geometric center of boxBk.
To terminate the tree, multiple concurrent stopping criteria can be prescribed.

7.3 Parallel efficiency and benchmark results

The parallel efficiency of thePPM library is measured based on the following five
tests:

1. solving the Poisson equation using FFTs,

2. solving the same equation using geometric MG,

3. simulating diffusion using PSE in the endoplasmic reticulum of live cells,

4. simulating a perturbed double shear layer using remeshedSmooth Particle
Hydrodynamics (rSPH) for compressible flows, and

5. simulating the same problem using vortex methods for incompressible
flows.

Performance is tested for both afixed-sizeand ascaled-size problemfor all cases
except the diffusion simulation. In the fixed-size problems, the number of mesh
points and particles is kept constant, i.e. the work load perprocessor decreases
with increasing number of processors. In the scaled problems, mesh point and
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particle numbers grow proportionally to the number of processors, resulting in a
constant work load per processor.

Timings and parallel efficiency figures are collected on theIBM p690 com-
puter of the Swiss National Supercomputing Centre (CSCS). The machine
consists of 8 Regatta nodes with 32 1.3 GHz Power4 processorsper node.
Within each node, the machine at CSCS is configured in 4 groupswith 8 pro-
cessors sharing 12 GB of memory. Each processor has a peak performance
of 5.2 GFlop/s, and the nodes are connected by a 3-way Colony switch sys-
tem. Of the total of 256 processors, only up to 242 can be used for com-
putation since the remaining ones are dedicated to file I/O and login. All
software is compiled with version 10.1 of the IBM XL Fortran compiler for
AIX using the flags-O5 -qarch=pwr4 -qtune=pwr4 -qunroll=yes
-qcache=auto -qhot -qipa=inline -qstrict. In each test, we
measure the elapsed wall-clock timetij for each time stepj on each processor
i = 1, . . . , Nproc using the FortranSYSTEM CLOCK intrinsic. To account for syn-
chronous communication steps we report the maximum of thesetimes over all
processors. This maximum is averaged over 5 to 10 samples to compute thespee-
dupS and theefficiencye:

S(Nproc) =
t(1)

meanj maxi tij(Nproc)
· N (Nproc)

N (1)
, (7.6)

e(Nproc) =
S(Nproc)

Nproc
. (7.7)

Hereby,t(1) is the time on a single processor (linearly extrapolated if not meas-
ured), tij(Nproc) is the time onNproc processors,N(1) is the problem size on a
single processor, andN(Nproc) is the problem size onNproc processors. To ac-
count for theO(N logN) scaling of the FFTs, the second factor of the speedup is
accordingly adjusted in the benchmarks of the FFT-based Poisson solver.

Vectorizationand parallel efficiency on vector machines is tested using theNEC
SX-5computer at CSCS. This is a shared memory machine with 16 NEC SX-
5 vector processors. Each processor has a peak performance of 8 GFlop/s and
contains 64 vector registers of a length of 256 words (2048 bytes) each. The total
memory of the machine is 64 GB. Out of the 16 processors, up to 15 are used in the
present benchmarks, leaving one processor to the operatingsystem. The software
is compiled using the NEC SXF90 compiler, version 2.0, revision 305, with the
flags-R5 -C hopt -f4 -float0.
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Additional benchmarks are performed on a 16 processor distributed memory
cluster of 2.2 GHz AMD Opteron 248 nodes running under Linux.The nodes
are connected by a switched gigabit ethernet network. On this machine, the Intel
Fortran 90 compiler, version 8.1, is used with the flags-O3 -xW, and the free
MPI implementation mpich 1.2.6.

7.3.1 Parallel FFT-based Poisson solver

We test the performance of the FFT-based Poisson solver by solving the scalar
Poisson Eq. (7.1) with the right hand side

g(x, y, z) = sin(2πx) sin(2πy) sin(2πz), x, y, z ∈ [0, 1] , (7.8)

subject to periodic boundary conditions. All Fourier transforms are performed
using the parallel FFT routines of thePPM library as described in Section 7.2.6.

The parallel speedup and efficiency for the scaled problem asshown in Fig. 7.2
exhibit two characteristic regions. The first one ranges from 1 to 8 processors, the
second one from 8 and beyond. From 1 to 8 processors the efficiency drops signi-
ficantly, due to conflicts and congestion in theshared memoryarchitecture within
each compute node. As the size of the problem and the number ofprocessors
exceed the shared memory, the loss of efficiency is markedly reduced. This is
verified in a separate benchmark (Fig. 7.2:×), in which only one processor per
node is used. In this case, the congestion is removed and the efficiency signific-
antly improves to 68% on 16 processors. Solving the Poisson equation to machine
precision on a128 × 128 × 128 mesh takes 0.6 seconds on a single processor.
The corresponding scaled system on 64 processors (512× 512× 512) requires 2.4
seconds.

Speedup and efficiency for the fixed-size problem are shown inFig. 7.3. The
FFT Poisson solver shows an efficiency above 30% (average 50%) on 128 pro-
cessors using a512 × 512 × 512 mesh. Again, the scaling improves beyond 8
processors, similar to the scaled case. The solution time for a 512 × 512 × 512
mesh is 2.4 seconds on 64 processors, and 1.6 seconds on 128 processors.

7.3.2 Parallel multigrid Poisson solver

We test the parallel performance of thePPM MG Poisson solver and compare it to
the FFT-based solver using the same scalar Poisson Eq. (7.1)with the same right
hand side Eq. (7.8), subject to periodic boundary conditions. The initial value of
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Figure 7.2: Parallel speedup and efficiency of the FFT-basedPoisson solver for the scaled-
size problem starting with128× 128× 128 mesh points on one processor (+). Using only
one processor per node, the bottleneck of the shared memory is removed (×). Each point is
averaged from 5 samples, error bars indicate the min-max span. All timings are performed
on the IBM p690.
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Figure 7.3: Parallel speedup and efficiency of the FFT-basedPoisson solver for the fixed-
size problem with512 × 512 × 512 mesh points on 4 to 128 processors. Each point is
averaged from 5 samples, error bars indicate the min-max span. All timings are performed
on the IBM p690.
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f is zero everywhere and we use the V(2,1) cycle with one smoothing step at the
finest level.

We conduct three tests. The first one involves the fixed case with256×256×256
mesh points, while the two others are scaled cases, one starting from a 128 ×
128 × 128 mesh, the other one starting from256 × 256 × 256. Efficiency and
speedup for the scaled cases are shown in Fig. 7.4 and for the fixed case in Fig. 7.5.
Again we observe a strong decrease in the parallel efficiencyup to 8 processors
due to the congestion of the shared memory. This is removed when using only
one processor per node in a puredistributed memorysetup, cf. Figs. 7.4 and 7.5,
and the efficiency improves to 90% on 16 processors for the scaled case. The
effective efficiency based on the timing obtained on 8 processors is 92% for the
large scaled case on 64 processors, and the efficiency for a1024 × 1024 × 1024
system is 66% for the large scaled case on 64 processors. For the latter system, the
elapsed wall-clock time is 10.5 seconds per V-cycle, and thus 42 seconds for the
four V-cycles needed to reduce theL2 error to10−4. A system with half a billion
unknowns is solved in the small scaled case on 242 processorsat 48% efficiency
in 1.7 seconds per V-cycle. This compares well to the 41% efficiency achieved by
the Prometheus multigrid library [5] on 128 IBM Power3 processors for the same
problem size. Moreover, the present solver sustains 15% of the machine’s peak
performance, whereas Prometheus sustained 7.5% [5].

The vectorization of thePPM MG solver is tested on the NEC SX-5 using up to
8 processors. ThePPM MG sustains a performance of 2.4 GFlop/s per processor
(30% of peak performance) with a vector operation ratio of 95% and a parallel
efficiency of 96%. On this machine, a single V cycle on a512× 512× 512 system
takes 1.21 seconds on 8 processors.

7.3.3 Particle strength exchange in complex geometries

We use a client application for the simulation of three-dimensional diffusion using
the PSE method as outlined in Subsection 5.2.2. This test demonstrates the cap-
ability of the library in handling complex-shaped domains,and it helps to assess
load balance and inter-processor communication for an irregular domain decom-
position. Since the particles in this simulation are stationary, only ghost values
need to be communicated and the Verlet lists are only createdonce.

We simulate isotropic homogeneous diffusion in the lumen ofthe ER of a live
cell using the methods introduced in Chapter 6. All ODEs are integrated in time
using the explicit Euler scheme, and we use the second-orderaccurate isotropic
PSE kernel given in Eq. (F.4).
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Figure 7.4: Parallel speedup and efficiency of the MG Poissonsolver for the scaled-size
problems. The initial mesh resolutions on one processor are256 × 256 × 256 (+) and
128 × 128 × 128 (×), respectively. Using only one processor per node in the large case,
the bottleneck of the shared memory is removed (∗). Each point is averaged from 5 samples,
error bars indicate the min-max span. All timings are performed on the IBM p690.
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Figure 7.5: Parallel speedup and efficiency of the MG Poissonsolver for the fixed-size
problem with256 × 256 × 256 mesh points on 2 to 128 processors (+). Using only one
processor per node, the bottleneck of the shared memory is removed (×). Each point is
averaged from 5 samples, error bars indicate the min-max span. All timings are performed
on the IBM p690.
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Parallel speedup, timing, and efficiency

The problem size is fixed at 3.4 million particles, uniformlydistributed inside the
ER geometry. The simulation uses double-precision floatingpoint arithmetics and
Verlet lists with a cut-off of2ǫ. Each particle thus interacts with 32 neighbors.
Domain decomposition is done using adaptive ROB (cf. Subsection 7.2.2) with the
z direction fixed as the organelle is very thin in thez direction. Fig. 7.6 shows the
resulting decomposition into 9311 sub-domains. Since the particles do not move
in a PSE simulation, empty sub-domains are discarded. The elongated domains at
the periphery are a consequence of the ROB domain decomposition.

The parallel performance is tested on 4 to 242 processors. Fig. 7.7 summarizes
the results. The simulation sustains 20% of the peak performance on the IBM
p690, thus reaching a total of 250 GFlop/s on 242 processors at 84% efficiency.
The observed decrease in parallel efficiency to 84% on 242 processors can be
explained by arising load imbalance when distributing a constant number of sub-
domains onto an increasing number of processors. Theload balanceis quantified
by

meanj mini tij (Nproc)

meanj maxi tij (Nproc)
. (7.9)

If we use the actual number of interactions of each particle as that particle’s com-
putational cost for the topology creation, we observe values in the range of 90%
to 95%. Using an assumed unit cost per particle, the load balance is on the order
of 10% to 60%, depending on the actual number of processors used. Using cell
lists, one time step on 4 processors takes 67 seconds insteadof the 13.5 seconds
for the simulation using Verlet lists. This difference is expected since each particle
interacts with 216 neighbors in the cell list case.

On the NEC SX-5 vector computer, more than 99% of the loops in non-
initialization routines vectorize and the average vector length is> 254 words.
The parallel efficiency is 88% on 8 processors and 86% on 15 processors. One
time step in the latter case takes 1.15 seconds. 2.64 GFlop/sare sustained on each
of the 15 processors thus reaching 33% of the machine’s peak vector performance.
Again using the actual number of interactions, given by the length of the Verlet
list, as the computational cost for each particle, the load balance exceeds 80% on
up to 15 processors.

The largest simulation performed using thisPPM client uses 1 billion particles.
The computation is based on cell lists and a cut-off of1ǫ, i.e. each particle interacts
with 26 neighbors. The simulation is performed on 64 processors of the IBM
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(a) (b)

Figure 7.6: (a) Top view of the computational domain used forthe present PSE test case. (b)
The resultingPPM domain decomposition on 242 processors using recursive orthogonal bi-
section in thex andy directions (z direction fixed). Rectangles show the 9311 sub-domains,
shading codes processor affiliation. The elongated peripheral domains are a consequence
of the recursive orthogonal bisection decomposition.
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Figure 7.7: Parallel speedup and efficiency of thePPM PSE client for the fixed-size problem
with 3.4 million particles on 4 to 242 processors. Each pointis averaged from 10 samples,
error bars indicate the min-max span. All timings are performed on the IBM p690.
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p690, uses 1.4 GB of memory per processor, takes 54 seconds per time step, and
sustains 20% of the peak performance. Extrapolating from the previous runs, 50
to 60 seconds per time step are expected for this large a simulation. The measured
54 seconds fall within this range, confirming linear scalingto large numbers of
particles.

7.3.4 Three-dimensional remeshed smooth particle hydrodynamics

We test aPPMclient application that implements a novel, computationally efficient
formulation of theremeshed SPH[50, 248]. This rSPH client was implemented
by Simone Hieber, and in the present benchmark it is applied to the simulation
of a three-dimensional compressible double shear layer [109]. In order to meas-
ure the parallel performance, we consider a computational domain fully populated
with particles, so that the reported performance measures are independent of the
particular flow problem.

The rSPH client solves the three-dimensionalNavier-Stokes equationsfor vis-
cous compressible isothermal flow in non-dimensional Lagrangian form, ex-
pressed as:

Du

Dt
= −u∇ · v , (7.10)

and

u
Dv

Dt
= − 1

Ma2γ
∇p+

1

Re
∇ · τ , (7.11)

where the pressurep is given by

p = Tu , (7.12)

and the components of the stress tensorτ are:

τij =
∂vi

∂xj
+
∂vj

∂xi
− 2

3
δij

∂vk

∂xk
. (7.13)

Hereby,δij is theKronecker deltasymbol, Re is theReynolds number, andT the
temperature, normalized by the characteristic temperatureT0 of the flow. It is set
to T = 1 for all simulations (iso-thermal fluid). TheMach numberis defined as
Ma = v0√

γRT0
, wherev0 denotes the magnitude of the characteristic velocity,γ the
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Figure 7.8: Parallel speedup and efficiency of thePPM rSPH client for the scaled-size
problem starting with 2 million particles on one processor.Each point is averaged from
5 samples, error bars indicate the min-max span. All timingsare performed on the IBM
p690.

ratio of specific heats, andR the gas constant. The densityu is normalized by the
mean densityu.

The governing Eqs. (7.10) and (7.11) are discretized using the rSPH approach
[50] with the particles being remeshed using theM ′

4 kernel function [194] after
each time step. Time integration is done with a second-orderRunge-Kutta scheme.

Parallel speedup, timing, and efficiency

The speedup and parallel efficiency of the rSPH client are shown in Figs. 7.8 and
7.9 for the scaled and fixed-size problem, respectively. Thelargest simulation
considered in this test case comprises 268 million particles and achieves a parallel
efficiency of 91% on 128 processors. The efficiency on 32 processors using 67
million particles is also 91%, which compares well to the 85%efficiency of the
GADGETSPH code by Springelet al. [270] on 32 processors of the same com-
puter model (IBM p690). The efficiency in the fixed-size problem ranges between
100% and 84%. One time step of the simulation using 16.8 million particles takes
196.9 seconds on 4 processors and 7.3 seconds on 128 processors.

The communication overhead, assessed using a fixed-size problem with 16 mil-
lion particles, is shown in Table 7.3. The fraction of time spent in communication
is less than 13% of the total computational time in all cases.Using 4 processors,
only 5% of the total time are spent in communication. The communication effort
increases by a factor of 2.5 when using 64 times more processors. This demon-
strates the high efficiency of the communication routines inthePPM library.
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Figure 7.9: Parallel speedup and efficiency of thePPMrSPH client for the fixed-size problem
with 16.8 million particles on 4 to 128 processors. Each point is averaged from 5 samples,
error bars indicate the min-max span. All timings are performed on the IBM p690.

Nproc total time [s] communication [s] ratio
4 195 10 5%
16 50 4 8%
64 14 1.2 11%
128 7 0.8 12%

Table 7.3: Communication-to-computation ratio of thePPM rSPH client solving a fixed-size
problem with 16 million particles on the IBM p690.

7.3.5 Three-dimensional vortex methods

The final test involves simulations using a three-dimensional particle vortex
method[63]. The client application was implemented by Michael Bergdorf and
it demonstrates a large number of thePPM library modules, involving particle con-
vection and diffusion, particle-to-mesh and mesh-to-particle interpolation, particle
reinitialization, and the solution of Poisson equations onthe mesh.

Hybrid VM [59, 307, 65] solve the incompressibleNavier-Stokes equationsin
the Lagrangian vorticity-velocity formulation:

Dω

Dt
= (ω · ∇)v + ν∇2ω, (7.14)

and

∇2
Ψ = −ω, (7.15)
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wherev = ∇×Ψ is the velocity andν is the viscosity of the fluid. Thevorticity
fieldω(x) is discretized using particles that carrycirculation Γp = ω(xp)Vp, and
that are convected by the local flow velocity fieldv(x) [63]. The vorticity of the
particles is interpolated onto a mesh where it is used as the right-hand side of the
vector Poisson Eq. (7.15), which is solved for thestream functionΨ using thePPM

MG Poisson solver presented in Subsection 7.2.6. Velocities are computed from
the stream function using second order finite differences, and the vorticity diffusion
and stretching are evaluated at mesh point locations also employing second order
finite differences. The time step is completed by interpolating the grid functions
Dω

Dt andv back onto particle locations. Distortion of the particle locations leads
to spurious vorticity structures and the flow ceases to be well represented by the
particles. Therefore, particles are remeshed onto regularpositions after each time
step using theremeshingroutines of thePPM library. TheM ′

4 function [194] is
used for all interpolation steps.

To study the parallel performance of the vortex client, we consider the same
double shear layer [109] as used for the rSPH tests in Subsection 7.3.4. We use the
whole computational domain as vorticity support, so that the number of particles
is equal to the number of grid points. All simulations include the solution of a
convection-diffusion equation for a passive scalar, and they start from the initial
condition proposed by Ghoniem and Knio [109] with Re= 990. TheReynolds
numberis computed as

Re=
‖v‖∞ δ

ν
, (7.16)

whereδ denotes the thickness of the shear layer. All ODEs are integrated using
thePPM ODE solver with a second order midpoint Runge-Kutta method.

Parallel speedup, timing, and efficiency

The results for the scaled-size and fixed-size cases are depicted in Figs. 7.10 and
7.11, respectively. The largest system comprises 268 million particles distributed
onto 128 processors. For this system, one iteration takes 85seconds on average
with a parallel efficiency of 63%. Vectorization of the code is tested on the NEC
SX-5 computer using 8 processors. All major loops vectorize, including 99% of
the particle-to-mesh and mesh-to-particle interpolations with an average vector
length of 231 words, demonstrating the effectiveness of thecolored interpolation
scheme described in Subsection 7.2.5.
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Figure 7.10: Parallel speedup and efficiency of thePPM VM client (+) and of the particle-
mesh interpolation alone (×) for the scaled-size problem. The initial mesh resolution on
one processor is128 × 128 × 128. Each point is averaged from 5 samples, error bars
indicate the min-max span. All timings are performed on the IBM p690.
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Figure 7.11: Parallel speedup and efficiency of thePPMVM client for the fixed-size problem
with 256 × 256 × 256 mesh points on 8 to 128 processors. Each point is averaged from 5
samples, error bars indicate the min-max span. All timings are performed on the IBM p690.

Interpolating 2 million particles onto a128× 128× 128 mesh takes 3.4 seconds
on a single processor of the IBM p690. Interpolating the fieldback onto the
particles takes 1.1 second. Timings for the NEC SX-5 are given in Table 7.2.
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Part III

Conclusions and Outlook



Chapter 8

Conclusions

This thesis has addressed a number of issues pertaining to the analysis, modeling,
and simulation of diffusion processes in live cells. In particular, we have improved
existing single particle tracking techniques to make them suitable for large data
sets and fully automated high-throughput assays. Trajectory analysis was presen-
ted using novel global and segmentation-based methods, andthe fully automatic
classification of trajectories using methods from machine learning was investig-
ated. We then considered continuum diffusion processes of abundant particles,
where we introduced a novel particle method to simulate reaction-diffusion pro-
cesses on moving surfaces. Applying geometry-resolving simulations of diffusion
in the ER enabled us to determine for the first time molecular diffusion constants
from FRAP experiments in complex-shaped organelles, leading to a novel method
of FRAP data analysis. The main contributions and conclusions of this thesis are
summarized in the following.

8.1 Feature point tracking

In Chapter 1 we have described a computationally efficient and robust method
for feature point tracking in quantitative time-resolved studies of particle motion
as they appear in several applications in cell biology. The presented method was
demonstrated to be of high accuracy and precision even at moderate signal-to-
noise ratios, and to provide sub-pixel accuracy in all practical situations. The
absence of any intrinsic models regarding the motion of the tracked particles, in
combination with its robustness and efficiency, makes the method particularly well
suited for biological applications relying on trajectories developed by fluorescence
microscopy.

The presented method emphasizes computational efficiency and ease of use.
The former goal is motivated by our observation that many available feature point
tracking algorithms suffer from poor computational performance or large memory
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requirements if long sequences of large images are to be processed [298]. The
present implementation is capable of tracking a sequence of3000 214×214 pixel
TIFF images in less than 15 seconds on a 3.06 GHz Intel Pentium4 desktop com-
puter. The goal of ease of use was approached by minimizing the number of user-
set parameters of the algorithm and by providing a user-friendly graphical interface
as described in Appendix A.3.

Smoothness assumptions frequently made [55] could be relaxed by reducing the
point detection linker to a generic version. In order to recover the robustness of
more complicated designs, it was considered an optimization problem to iteratively
find the best set of links betweenR frames such as to minimize a certain cost func-
tional. If available, prior knowledge about the underlyingphysical processes can
be incorporated by suitably choosing this linking cost functional. Extending the
linking over several frames allowed to account for temporary occlusion of particles
and strong intensity fluctuations, as demonstrated in the quantum dot example in
Subsection 4.1.3.

The present tracking algorithm is not intrinsically limited to two dimensions.
Its application to three-dimensional data is straightforward, provided such data
are available. The following limitations are however present: In the feature point
detection, the algorithm is limited to small (compared to background variations)
spherical particles or point spread blobs, and the trajectory linking is limited by
the specific cost functional one defines. For the cost functional used in this thesis,
cf. Eq. (1.14), the limitation is obviously given by the criterion that two equally
bright and equally large particles must always be separatedby more than the dis-
tance they move per frame. Using different cost functionals, this could be relaxed
at the expense of other limitations such as a loss of universality due to prior in-
formation about the type of motion. Furthermore, we assumedthat every detected
point corresponds to exactly one particle. The algorithm isthus unable to resolve
particle coalescenceor division, and to yield two continuous trajectories if two
particles exactly cross in space and time. The non-particlediscrimination step is,
if used, limited by the assumption that the majority of the detected points corres-
ponds to particles of the desired kind.

The algorithm is presently implemented as a multi-user multi-tier client-server
application. In our experience, this implementation is fast and stable even under
high load with several concurrent users. The graphical userinterface is implemen-
ted in Java and runs on various computer platforms.
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8.2 Trajectory analysis and classification

In Subsection 2.1.2 we have introduced the MSS analysis as anextension of MSD
analysis for biological trajectories. The MSS analysis is valid for more types of
motion and provides a second parameter in addition to the diffusion constant. We
have shown that the combination of the two parameters enables unambiguous clas-
sification of otherwise indistinguishable motion cases [96]. In addition, MSS ana-
lysis is more accurate than MSD analysis as was shown by statistical error es-
timation. This is an important advantage, given the limitedlengths of trajectories
from biological experiments. Using the pair(ν2, β) has enabled for the first time
systematic studies of the mobility of virus particles priorto internalization.

To increase time resolution in an accuracy-neutral way, trajectories are fre-
quently decomposed into segments of defined patterns. This trajectory segment-
ation is mostly done by hand, thus introducing human bias andlimiting the data
throughput. In Section 2.3 we have proposed a method for automatic trajectory
segmentation using neural networks. The presented method can be used to render
the complete data acquisition and analysis process fully automatic, enabling un-
biased high-throughput screens. The segmentation algorithm was for instance used
to automatically process the tens of thousands of trajectories from the Adenovirus
study presented in Section 4.3. In addition, it enables event-based analyses as
described in Section 2.4.

In Section 3.1 we have surveyed different automatic classification algorithms for
trajectory data. Using a discrimination capability measure from psycho-physics,
we compared their performances among each other as well as tohuman classific-
ation. We found that all methods perform equally well in the case of separable
clusters. On non-separable classes of the used data set, GMMperformed best,
closely followed by SVM. Due to their dynamic character, HMMare the least
robust method with the performance of cHMM and dHMM being comparable.
Surprisingly, the algorithms on average performed better than human classifiers.
This could be due to human bias from prior expectations, fatigue effects, or in-
accuracy. The best test person performed about equally wellas the best machine
learning algorithm, indicating that the latter was able to extract and use most of
the relevant information from the data.

The tests have also shown that the representation of the trajectories in data space
critically determines the classification performance. Finding a good data repres-
entation serves a double purpose: first, it enables accurateclassification of the data
and, second, it provides important information about the physical properties that
distinguish the classes the most. The latter is particularly interesting in biological
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applications as it contributes to our understanding of the process that created the
trajectory. In Section 3.2 we have thus introduced a closed-loop optimizer to ad-
aptively adjust the data encoder such as to maximize classification performance.
We have studied the influence of various parameter settings and have tested the
algorithm on both synthetic and real biological trajectories. The classification per-
formance that was achieved compares favorably to experience-based manual data
encodings.

In summary, Chapters 2 and 3 have demonstrated that automatic, bias free ana-
lysis and classification of biological trajectories is possible with near-maximum
accuracy, and that machine learning techniques provide a useful tool for estimat-
ing the information content and the relevant parameters in atrajectory data set.

8.3 Application to virus motion analysis

The case studies and applications presented in Chapter 4 have demonstrated the
utility of the various data analysis and modeling techniques on questions of bio-
logical interest. In Section 4.1 we have demonstrated the capability of the feature
point tracking program to handle motion of various types – purely random, sta-
tionary, fast directed transport – and to reconstruct connected trajectories from in-
termittent detections of blinking particles. Sub-pixel accuracy was achieved in all
cases and the analysis results were in good agreement with published benchmarks
and theory.

In Section 4.2 we have reported the main results of a single-particle study on
Polyomavirus, done in collaboration with the group of Prof.Helenius [96]. The
methods developed in this thesis have hereby enabled the first quantitative study of
the earliest steps of virus infection. Using feature point tracking and MSS analysis,
four different modes of motion could be identified and unambiguously classified.
Perturbation studies and control experiments finally led tothe identification of
non-trivial trans-membrane interactions, causing actin-mediated confinement of
the virus-receptor complex. Moreover, we found that cholesterol depletion leads
to decreased mobility of the virus-receptor particles, most likely caused by the
formation of stable ordered lipid domains [96].

A second study, done in collaboration with the group of Prof.Greber, con-
sidered the motion patterns of human Adenovirus-2 on the plasma membrane of
live cells. The automatic data processing techniques and software implementa-
tions developed in this thesis have enabled a bias-free high-volume study involving
several tens of thousands of experimentally recorded trajectories of virus motion.
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As shown in Section 4.3, this enabled highly significant statistical analysis, lead-
ing to the conclusion that the secondary integrin receptor influences the mobility
of the primary receptor-virus complex. In cells lacking thesecondary receptors,
mobility was significantly reduced and the residence times in arrest zones were
increased. Using event-based analysis, we also found that pass-by events occur
super-randomly in wild type cells. This could mean that viruses are transported
or biased toward clathrin-coated pits, and that this transport or bias is mediated by
integrins.

8.4 Particle method to simulate reaction-diffusion processes on
curved moving surfaces

In Section 5.3 we have presented a deterministic adaptive particle method to sim-
ulate anisotropic, inhomogeneous diffusion on complex surfaces. The method was
demonstrated to be second-order accurate, and it was efficiently parallelized with
linear computational cost.

The implicit formulation of the surface as a level set, and its discretization using
particles [137], has many advantages over traditional grid-based methods. It is
inherently adaptive and can handle moving and deforming surfaces. Furthermore,
it allows to use the embedding approach by Bertalmioet al. [32] with the usual
space discretization schemes, as the metric of the surface is incorporated into the
projected diffusion operator.

In Section 5.4 the method was successfully extended to simulating reaction-
diffusion processes on moving and deforming surfaces, where the chemical re-
actions can be treated either deterministically or stochastically. By means of the
multi-resolution AGM method by Bergdorfet al. [27], particles with locally adap-
ted sizes were used.

8.5 Simulations of diffusion in the ER and FRAP data analysis

In Chapter 6 we have applied the simulation techniques and software implement-
ations to the diffusion of molecules in the lumen and on the membrane of the ER,
an organelle of highly convoluted and complex three-dimensional shape. Present
methods to derive molecular diffusion constants from FRAP data do however not
account for this shape.

Using section images from confocal microscopy we reconstructed the shapes
of various ER samples in three dimensions. These reconstructed geometries en-
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abled us to estimate the fractal dimensions of the ER in Section 6.3, allowing to
predict the influence of the geometry on the apparent fluorescence recovery. We
have shown that the ER is a fractal shape at length scales relevant to FRAP, and
that diffusion is thus expected to appear anomalous at theselength scales, even
if the underlying molecular diffusion is normal. This is in agreement with the
simulations described bÿOlveczky and Verkman [207] and the experimental res-
ults reported by Weisset al. [314, 313]. The observed anomaly is a direct effect
of the complexity of the ER geometry and needs not be connected to any mo-
lecular events. For membrane-bound molecules, diffusion appears anisotropic if
the membrane has different curvatures in different directions [7]. Again, this is a
purely geometric effect.

From the point of view of geometry, previous methods of determining diffusion
constants from FRAP are only valid when applied to relatively flat surfaces (com-
pared to the size of the bleached region) or compartments that completely fill the
bleached volume. If these conditions are not met, uncorrected diffusion constants
must be interpreted with caution. The method presented in this thesis allowed
for the first time to assess and validate current methods of FRAP analysis, and
to directly obtain corrected molecular diffusion constants in the specific organelle
geometry at hand.

Using simulations of diffusion in the lumen of reconstructed ER shapes and on
their membranes allowed us to quantify the geometry-induced variations in FRAP
experiments. We found that FRAP models that do not account for the specific geo-
metry of the individual ER suffer from an uncertainty of at least 250%. Altogether
neglecting the fact that the ER does not completely fill the bleached volume res-
ults in errors around 400%. Considering that the mass of a particle scales with the
third power of the diffusion constant [174], these errors are quite significant. For
membrane-bound molecules the situation is even worse as their radius depends ex-
ponentially on the diffusion constant [234]. When monitoring diffusion in cellular
organelles with boundaries of complex shape, FRAP analysisthus requires proper
geometry correction. This correction has to involve information about the shape
of the organelle in the vicinity of the bleached region of interest.

Using the present simulation algorithms together with the reconstructed 3D geo-
metries of the ER led to a novel method of FRAP analysis that fully takes the
geometry into account. This enables us to determine the corrected value of the
molecular diffusion constant from FRAP experiments, both for soluble luminal
molecules and for membrane-bound molecules. Since the computational cost and
the applicability of the simulation algorithms do not depend on the complexity of
the shape, they are also well suited for treating organellesor intracellular structures
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other than the ER.
The main advantage of our approach is that it does not need a model geometry

or a statistical transport model. This minimizes the numberof assumptions and
enables uncertainties below 250%. By construction, our method is not hampered
by 3D effects, and no assumptions about the connection density of the ER need to
be made.

Our approach is however limited by the resolution of light microscopy and,
for membrane simulations, by the computational resolutionlimit imposed by
the narrow-band level set formulation. The latter limitation is addressed by us-
ing multi-resolution particle methods developed for convection-diffusion equa-
tions [27]. The microscopy resolution limit implies that sufficiently detailed ER
geometries can only be obtained in peripheral regions of thecell, where the ER
is relatively sparse. The bleached ROI of any FRAP experiment to be evaluated
must be located in such well-resolved areas of the organelle. The specific shape of
the organelle far away from the ROI is of no importance. A further limitation of
the present method is that it can not be applied to organellesthat move or deform
inside the ROI during the time of the FRAP experiment, or between recording the
z-stack and performing the FRAP experiment. This is mainly an experimental lim-
itation as the computational method could readily handle moving surfaces, as was
shown in Subsection 5.4.3.

8.6 PPM – an efficient universal software framework for hybrid
particle-mesh simulations on parallel computers

The lack of efficiently parallelized and easy to use softwarelibraries has so far
hindered the wide-spread use of particle methods. We have thus initiated the de-
velopment of a generic software framework for hybrid particle-mesh simulations.
The PPM library described in Chapter 7 provides a complete infrastructure for
parallel particle simulations, including adaptive domaindecompositions, load bal-
ancing, optimized communication scheduling, parallel fileI/O, interpolation, data
communication, and a set of commonly used numerical solvers. The main features
include stacked mappings, completely symmetric evaluations of particle-particle
interactions, particle connections, and the concurrent existence of multiple data
topologies.

We have demonstrated the library’s parallel efficiency and versatility on a num-
ber of different physical problems, on various computer architectures, and on up to
242 processors. All applications showed parallel efficiencies reaching or exceed-
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ing the present state of the art, and favorable run-times on large systems. By virtue
of a coloring scheme for data interpolation, thePPM library also showed excellent
vectorization as tested on the NEC SX-5 vector computer.

Based on thePPM library, we have presented a PSE simulation using 1 billion
particles on 64 processors, a VM simulation using 268 million particles – to our
knowledge the largest VM done so far –, an SPH simulation exceeding the parallel
efficiency of the currently fastest domain-specific code, simulations sustaining up
to 33% of the machine’s peak performance, and a multigrid Poisson routine solving
for half a billion unknowns in less than 7 seconds on 64 processors.



Chapter 9

Outlook and Future Work

This chapter outlines possible extensions of the present work as well as potential
applications in future research.

9.1 Automated feature point tracking

Most biological applications only require two-dimensional tracking since the mo-
tion either is two-dimensional (e.g. on the plasma membrane) or is observed using
“two-dimensional” microscopy techniques such as TIRF or confocal microscopy.
The observation method could however be extended to three dimensions in two
different ways: first, the particles can be imaged out of focus and the diameter of
the diffraction ring pattern can be used as a measure of depth[268] or, second, dif-
ferent observations can be combined and the depth information computationally
extracted, e.g. by combining epifluorescence and TIRF microscopy [273], or by
using confocal stacks [229].

Although the algorithm is not limited to two-dimensional tracking, the soft-
ware implementation currently is. With the imminent availability of time-resolved
three-dimensional microscopy data, the extension of the software to 3D tracking
will be considered.

The algorithm itself could possibly be extended to trackingthe shape outlines
of larger and deforming objects. This could for example be done by combining
the level set techniques of Section 5.3 with the present tracking algorithm. Several
open issues pertaining to the fusion and fission of objects, the robustness against
noise, and the computational efficiency of such a procedure however need to be
addressed.
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9.2 Trajectory analysis and classification

Anomalous diffusion is of central importance in biologicalsystems. This is related
to the prevalence of fractal structures in nature [184] and is not restricted to intra-
cellular diffusion processes. It is for example known that motor-mediated transport
processes on cytoskeletal networks, as well as cell migration, can be modeled by
anomalous diffusion [285]. The MSS analysis presented in this thesis is not limited
to a particular physical process or system that generated the trajectories.

The trajectory segmentation, encoding optimization, and automatic classifica-
tion procedures are also applicable to any type of trajectories. Possible future ap-
plications range from the analysis of molecular dynamics simulation trajectories,
over the classification of credit card usage trajectories for fraud detection [182], to
the analysis and segmentation of trajectories in social andpolitical systems [143].

Possible extensions of the algorithms include the use of different classifiers and
optimizers in the self-optimizing encoder of Section 3.2. On the theoretical side,
several open questions relating to convergence and stability of such closed-loop
systems can be tackled. For the trajectory segmentation method of Section 2.3, the
use of more elaborate network structures, higher-dimensional input spaces, and
different pattern recognition schemes are worthwhile considering.

9.3 Diffusion on surfaces

The computational method presented in Section 5.3 to simulate diffusion on curved
surfaces has many applications beyond biology. Surface processes and surfactant
evolution are, e.g., important in image processing [323, 32, 31, 250, 91, 296] or in
combustion engineering [133, 134, 217].

The present method can be improved by faster and more robust level set al-
gorithms, higher-order operator discretizations, and multi-level adaptive schemes
with better parallel efficiency.

9.4 Direct numerical simulations in real cell geometries

As the resolution of live-cell microscopy, the flexibility of software, and the speed
of computers increase, the direct numerical simulation methods presented in this
thesis will form an ideal tool for the reverse-engineering and understanding of
cellular systems and mechanisms. Computer simulations areexpected to become
in integral part of the scientific inference loop, hence complementing laboratory
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bench experiments. Simulations that include all relevant physics, and the real geo-
metry, allow to test hypothetical mechanisms by comparisonto experiments. Com-
puter simulations make accessible length and time scales that are difficult to reach
experimentally, and they provide complete control over thesystem structure and
its parameters. The resulting method of identifying essential system components
that can be tested for experimentally is a powerful tool thathas already proven its
utility in a conceptual application [177].

Potential applications of computer simulations of reaction-diffusion processes
range from the investigation of molecular sorting and endocytic dynamics, over
testing whetherTuring patterns[293] could explain ER exit site localization, to
simulations of Golgi transport dynamics. Further possibleapplications include the
investigation ofmorphogenesis[128], as well as simulations ofcell motility [123]
andcell signaling[172]. When experimental techniques for time-resolved three-
dimensional tracking of organelle shapes become available, the present method
can also be used for simulations that involve moving and deforming organelles.

Regarding the specific application of FRAP experiments in the ER, open ques-
tions about the homogeneity of the ER lumen can be addressed.More realistic
initial conditions for FRAP [35, 312] will enable more accurate analysis and allow
quantification of the influence of the initial condition on the result. This will be of
increasing importance as better microscopy techniques become available, or when
light interference microscopy is used.

9.5 ThePPM library

The PPM library and the numerical methods implemented therein willhelp ad-
dressing the current computational challenges in whole-cell computer simulations
[279].

Present work in thePPM library is concerned with providing C++ bindings for all
user-callable functions, and with adding interfaces to additional external libraries
such as Hypre (parallel pre-conditioners), Fishpack (fastHelmholtz solver), and
HDF5 (platform-independent binary I/O). Future developments will include the
implementation of higher-order methods, P3M and SPME algorithms [138, 306],
immersed interface methods [308], parallel FMM [122] for far-field boundary con-
ditions in the mesh-based solvers, and a parallel boundary element solver. The
development of the FFT part will enable free-space boundaryconditions using
FFTs, differentiation in Fourier space, and general frequency domain operators
with user-defined Green’s function.
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The next major version of thePPM library will also include support for multi-
level structures with selectively allocated memory patches that can be arbitrarily
placed in the computational domain. This will enable the implementation of multi-
domain and multi-level particle schemes [27] in the spirit of mesh-based AMR
libraries such asCHOMBO[11] andSAMRAI[320]. Solvers based on AMR [29]
and heterogeneous multiscale methods [2, 3] can then also beadded to the library
architecture. Open issues pertaining to the validation, maintainability, flexibility,
and performance of such codes however need to be addressed byusing modern
software engineeringprinciples.
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Appendix A

Feature Point Tracking Software Resources

A.1 Server and text-mode client users manual

This section describes installation and use of the SPT software described in Sub-
section 1.2.3, implementing the algorithm presented in Section 1.2. Only the text
mode (console) software is described in this section. Usageof the graphical front-
end is explained in Appendix A.3. The text-mode software hasbeen successfully
tested on the following platforms:

• Microsoft Windows 2000 Professional

• Microsoft Windows XP

• Linux Debian/GNU

• Linux RedHat

• Linux Mandrake

• FreeBSD 4.1

• MacOS X 10.3 and 10.4.

A.1.1 Server

Installation

The particle tracking server is distributed in source code,written in standard ANSI
C. After unpacking the distribution, there are theServer andClient subdirect-
ories that contain the source code for the respective parts of the software. Before
compilation, three parameters have to be defined inconfig.h in theServer
subdirectory. Defining eitherDOUBLE PRECISION or SINGLE PRECISION
declares the floating point precision used by the program. Furthermore, the default
TCP communication port and the maximum number of allowed concurrent clients
can be set. The comments in the file describe the details.
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Windows:
In order to compile the server application under Windows, Microsoft Visual Studio
6 or later is required and your system has to support the Winsock2 API. In Visual
Studio, open the fileserver.dsw in theServer directory. Be sure to change
the compiler settings fromDebug toRelease using the menu entryBuild→ Set
Active Configuration.... To compile the software, select the menu itemBuild→
Build server.exe, or pressF7. The final executable is calledserver.exe and
is located inServer/bin. Copy the executable to wherever you want to install
it on your system. Make sure the program has read and write permissions for the
directory in which it is installed.

Linux/UNIX/MacOS X:
In a terminal/console window, change to the directoryServer and typemake.
The software will be compiled and the executable placed intoServer/bin.
Copy the executable to wherever you want to install it on yoursystem. Make
sure the program has read and write permissions for the directory in which it is
installed.

Usage

To start the server application, change to the directory where it has been copied to
and start the program from a terminal/console (Windows: DOScommand window)
by typingserver. It is important that the program is started from a console and
not by clicking it. While starting, to program prints something like

Starting server ...
Using defaults*:

Listening on port 1138
Max. number of connections: 128

* To specify your own values for the port and the maximum number
of connections please start the server as follows:

server [port max_connections]

Server is running on laptop:1138 (192.168.1.33:1138)

The values for the port and the maximum number of allowed concurrent client
connections may vary depending on the settings inconfig.h (see above under
“Installation”). These default values can be overridden using command line argu-
ments. Starting the program withserver 1234 42, e.g., causes the server to
listen to TCP port 1234 and allow 42 connections at most.

Starting the server fails if the program does not have write permissions for the
directory in which it is installed. An error message indicates this condition.
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The server is stopped (terminated) by hittingCTRL+c in the console window
where it is running. Under Linux/UNIX/MacOS X, thekill command can be
used alternatively. Make sure to kill the parent process.

A.1.2 Text-mode client

Installation

The text-mode client is also distributed as ANSI C source code, located in the
Client directory after unpacking the software. No pre-compilation parameters
need to be set. Building the executable is done in a similar way to the server
application:

Windows:
In order to compile the client application under Windows, Microsoft Visual Studio
6 or later is required and your system has to support the Winsock2 API. In Visual
Studio, open the fileclient.dsw in theClient directory. Be sure to change
the compiler settings fromDebug to Release using the menu entryBuild →
Set Active Configuration.... To compile the software, select the menu itemBuild
→ Build client.exe, or pressF7. The final executable is calledclient.exe and
is located inClient/bin. Copy the executable to wherever you want to install
it on your system. Make sure the program has read and write permissions for the
directory in which it is installed.

Linux/UNIX/MacOS X:
In a terminal/console window, change to the directoryClient and typemake.
The software will be compiled and the executable placed intoClient/bin.
Copy the executable to wherever you want to install it on yoursystem. Make
sure the program has read and write permissions for the directory in which it is
installed.

Usage

To start the client, change to the directory where it is installed and typeclient
myfile.in, wheremyfile.in is the name of the input file that specifies the
tracking job to be executed (see below). The client then connects to the server
(specified in the input file), uploads the image data, and receives and stores the
results.
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Input file syntax

This section explains the syntax and contents of the input file that defines the
tracker parameters and the tracking job. An example of an input file can be found
in theClient directory of the software. The same input files can also be impor-
ted by the GUI client (see Appendix A.3) as parameter files. Each parameter is set
on one line of the input file by a key word followed by an equality sign and the
parameter value, e.g.host = localhost. The key words are case-insensitive.
Only one command per line is allowed and no line must be longerthan 1024 char-
acters. Lines beginning with a hash character (#) are treated as comment lines and
are ignored by the program. The tracker operates as a state machine and processes
the input file top-down. This means that parameter settings are valid until they are
overwritten by a subsequent line containing the same key word. The following key
words exist:

Key word Description Default
host Either the name or the IP address of the

host computer where the server applic-
ation is running.

localhost

port TCP port the server is listening to. 1138
radius Particle radius in pixels (w in Sub-

section 1.2.1). This value should
be slightly larger than the apparent
particle radius in the images, but smal-
ler than the smallest inter-particle spa-
cing.

3

cutoff Cutoff threshold for non-particle dis-
crimination (Ts in Subsection 1.2.1).

3.0

percentile Points have to be in this upper percent-
ile of the image intensity distribution in
order to be accepted as particles (seer
in Subsection 1.2.1). Unit is percent.

0.1

displacement Maximum allowed displacement (in
pixel) of any particle between two sub-
sequent frames (L in Subsection 1.2.2).

10.0

linkrange Number of frames to use for determin-
ing the optimal trajectory linking (R in
Subsection 1.2.2).

1
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results The path and name of the file where the
resulting trajectories are stored.

results.txt

color For each image, the color channel used
for tracking can be specified. The set-
ting is valid for all following images
until a different channel is specified.
Valid values are:r (red), g (green),
b (blue), andi (intensity). For gray-
scale images, this parameter has no ef-
fect. Invalid channel specifications are
ignored.

i

file Specifies the files containing the movie
or images to be processed (see below
for further explanation).

–

type Defines the data type for the following
files. The specification is valid until it
is overwritten. The following values
are accepted:TIFF for TIFF images
andMPEG for MPEG-1 movie streams.

TIFF

list A for-loop like construct specifying the
numbering sequence of the image files
(see below for details).

–

verbose Determines whether the output file con-
tains additional information and inter-
mediate results. Possible values are:0
for no additional output, or1 for verb-
ose mode.

0

The commandsfile andlist are used to specify the image data to be pro-
cessed. Suppose we want to track particles in a sequence of 20TIFF frames. The
input file would then contain the lines:

file = frame1.tif
file = frame2.tif
file = frame3.tif
...
file = frame20.tif

While this allows very flexible file naming conventions, and parameter re-
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definitions within the file sequence, it becomes cumbersome for large numbers
of files. Thelist command is provided to loop through systematically named
files. The above example thus equivalently becomes:

list = 1, 20, 1
file = frame%d.tif

The value oflist contains[start], [stop], [stepsize] for the loop.
The place-holder%d in the file name is replaced by the appropriate frame number.
If the file name itself contains a percent sign, use%%. All C format definitions are
allowed as listed in the documentation of theprintf function in any C reference
book. Only the onefile command that immediately follows thelist line is
considered a part of the loop construct. Therefore,list andfile commands
can be freely intermixed:

file = frame1.tif
list = 2, 9, 1

file = frame%d.tif
file = frame10.tif
file = frame11.tif
list = 12, 20, 1

file = frame%d.tif

Between individualfile commands, parameters can be re-defined to, e.g., select
a different color channel for the subsequent images or to change the file type.

Result file syntax

After successfully completing a tracking job, the result file contains the recon-
structed trajectory data as ASCII text in six columns. The first column indicates
the frame number. The second and third columns contain thex- andy-coordinates
of the particle, respectively. Thex-axis points top-down and they-axis is oriented
left-right in the image plane. The 4th and 5th columns contain the intensity mo-
ments of order 0 and 2, respectively (cf.m0, m2 in Subsection 1.2.1), and the 6th

column contains the non-particle discrimination score (Sp in Subsection 1.2.1).
Individual trajectories are separated by blank lines, and atrajectory is always at
least two frames in length. The file header contains general information about the
tracking job such as the used parameter settings and the total processing time.



A.2. PROGRAMMING AND API REFERENCE 249

A.2 Programming and API reference

This section documents the particle tracking API and the client-server commu-
nication protocol, complementing the comments that are contained in each source
code file to describe the purpose of all functions and subroutines. The source code
of the particle tracking server application consists of thefollowing files:

config.h Configuration file for compile-time parameters.
convolve.c Optimized convolution routines for different kernel radii(see

Subsection 1.3.1).
dilate.c Optimized gray-scale dilation routines for different kernel

radii.
filelist.c File list handling API.
import.c Routines for reading image and movie files.
messages.c The messages of the communication protocol.
server.c The main server program.
sing.c Subroutines for computing FFTs.
tracker.c The particle tracker API.
mpeg/ This directory contains the files ofmpeglib.
tiff/ This directory contains the files oflibtiff .

The source code of the client application consists of only one file,client.c,
which can be found in theClient directory.

A.2.1 Naming conventions

All constants and function names are marked by one of the following prefixes:

SERVER for the server part,
FL for the file list API,
PT for the particle tracker API,
IMPORT for image and movie import,
SM for server messages,
CLIENT for the client part.
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A.2.2 External libraries

The software includes the external librarieslibtiff andmpeglibfor reading TIFF
images and MPEG-1 movie streams. These libraries are open-source, and included
in the distribution since specific proprietary changes to them were necessary as
detailed below.

libtiff

Importing TIFF images is done using the libtiff v3.5.7 [286]. All common
TIFF file formats and compressions are supported. The only proprietary adapt-
ation consisted in setting the two global variablesTIFFerrorHandler and
TIFFwarningHandler of libtiff to NULL, in order to avoid unwanted file out-

put.

mpeglib

Importing MPEG-1 video streams is done by the mpeglib v1.3.1[283]. Only
MPEG-1 video streams without audio are supported. Since thempeglib uses global
variables, only one process can use it at a time. Access to mpeglib is thus con-
trolled by asemaphorein the tracker server. In addition, the mpeglib was modified
to not include anyexit() calls any more, as these would cause the whole server
application to terminate.

FFT

FFTs are computed using the split radix algorithm [264]. An existing code was
ported from Fortran to C. Since it makes use of global variables, access is again
controlled by asemaphoreand only one process at a time is allowed to use the
FFT routine.

A.2.3 Particle tracking API documentation
The particle tracking algorithm itself is implemented as anAPI, allowing it to be
used by other programs in the future. The main data structureof the API is the
PTSequence, defined as follows:

typedef struct PTSequence
{

int radius; /* Kernel radius */
real cutoff; /* Cutoff radius */
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real percentile; /* Percentile */
real displacement; /* Maximum displacement */
int verbose; /* verbose mode */
real lambda; /* Filter correlation lenght */

/* Image sequence parameter */
int width, height;
real min, max;
int number_of_frames;
real *frame;
PTFrame *framelist; /* List of all frames */

int linkrange;
ParticleList *particlelist; /* List of all particles */

/* Function pointer to the appropriate routine */
real *(*Convolve)(struct PTSequence *pts, real *filtered, \\

real *input);
real *(*Dilate)(struct PTSequence *pts, real *dilated, \\

real *input);

real *kernel; /* Holds the kernel */
int kernel_width;

int *mask; /* Holds the dilation mask */

real *filtered; /* Holds the filtered image */
real *dilated; /* Holds the dilated image */

/* Structure for the FFT calculation */
FFT fft;

/* Result handling */
int result;
char result_file[256];
FILE *result_fp;

/* Error handling */
int error;
char error_msg[128];

} PTSequence;

The data typereal is defined to be eitherfloat or double, depending on
the compile-time settings inconfig.h. The definitions of the typesPTFrame,
ParticleList, andFFT can be found intracker.h.

The following functions are implemented by theparticle tracking API:
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• PTSequence *PT CreateSequence(void)
Creates aPTSequence structure, allocates memory for it, and provides all
variables within the structure with default values. Returns a pointer to the
created structure. This function should be called before any other, in order
to initialize the API.

• int PT SetParameter(PTSequence *pts, const char

*params)
Is used to set the user-defined parameter in aPTSequence. The variable
*params contains a string consisting of a code defining the parameter
type, and the value for the parameter. If*params e.g. contains"1 4",
the kernel radius is set to4. The codes are:

#define PT_PARAM_KERNELRADIUS 1
#define PT_PARAM_CUTOFF 2
#define PT_PARAM_PERCENTILE 3
#define PT_PARAM_DISPLACEMENT 4
#define PT_PARAM_LINKRANGE 5
#define PT_PARAM_VERBOSE 6

The function returns either1 for success or0 on failure (the error variable is
set to the appropriate error message).

• int PT InitSequence(PTSequence *pts, FileList

*filelist)
Takes a pointer to aPTSequence structure and a pointer to aFileList
structure. TheFileList structure contains the list of images or movies
that are to be processed. All images in the file list are checked for validity
before they are imported. While reading the images (for MPEGstreams
every frame is extracted as an image), the user-defined colorchannel
is stored in a temporary file. These temporary files are used tosave
main memory. Upon return of this function, the image parameter of the
PTSequence is defined and all memory needed for the actual tracking
is allocated. The function pointers to the proper convolution and dilation
functions are set according to the kernel radius and the image size as
outlined in Subsection 1.3.1. The dilation mask and the Fourier transform
of the kernel are also computed and stored.

The function returns either1 for success or0 on failure (the error vari-
able is set to the appropriate error message). If an error occurs, the
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PTSequence is reset to its empty state, as it would be after calling
PT CreateSequence().

• int PT FindTrajectories(PTSequence *pts)
This function takes a pointer to an initializedPTSequence (created by
PT InitSequence) and executes the actual particle tracking algorithm.
The results of the tracking procedure are written to a temporary file (see
PT GetResults below).

The function returns either1 for success or0 on failure (the error vari-
able contains the appropriate error message). If an error occurs, the
PTSequence is reset to its empty state, as it would be after calling
PT CreateSequence().

• void PT DestroySequence(PTSequence *pts)
Frees all memory used by thePTSequence *pts and deletes all tempor-
ary files that were created by it.

• void PT ResetSequence(PTSequence *pts)
Resets thePTSequence *pts to the empty state, as if it were newly
created byPT CreateSequence.

• char *PT GetResults(PTSequence *pts)
Returns a string containing the name of the temporary resultfile that was
created by a successful run ofPT FindTrajectories(). If no file ex-
ists, or the run was not successful, aNULL pointer is returned.

• char *PT GetError(PTSequence *pts)
Returns a string containing the current error message. If noerror occurred,
aNULL pointer is returned.

Some of the above functions use otherPT andIMPORT functions that are not
intended for direct use. A typical sequence of API function calls is:

PT_CreateSequence
PT_SetParameter
PT_InitSequence
PT_FindTrajectories
PT_GetResults
PT_DestroySequence
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Once aPTSequence has been created, it can be used more than once. This
makes it possible to use loops like:

PT_CreateSequence
do while(...) {

PT_SetParameter
PT_InitSequence
PT_FindTrajectories
PT_GetResults
PT_ResetSequence

}
PT_DestroySequence

The tracker server application uses such loops to minimize the overhead of
memory allocation and deallocation.

A.2.4 Server software structure
The particle tracking server is built around the following data structure, from which
a separate instance is created for each active client connection:

typedef struct Client
{

unsigned int clientsocket;

FILE *fp;
FileList *filelist;
FileListEntry *current_file;

int fileupload_ack;
Packet *in, *out;

PTSequence *pts;
} Client;

The server is a user of the particle tracking API described above. The main
components of theClient structure are theclientsocket, used for TCP
communication with the client, thePTSequence to communicate to the tracking
API, and twoPackets for incoming and outgoing communication messages (see
below).

TheFileList for the image files is defined by the structures:

typedef struct FileListEntry
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{
char path[256];
int type;
int special;
struct FileListEntry *prev, *next;

} FileListEntry;

typedef struct FileList
{

int number_of_files;
FileListEntry *root;

} FileList;

It has the form of adoubly linked listwith pointers to both the previous and the
next file entry. Access to the file list is implemented by the following functions:

FileList *FL_CreateFileList(void);
void FL_DestroyFileList(FileList *filelist);
FileListEntry *FL_AddFile(FileList *filelist, int type, \\

int special);
void FL_RemoveFile(FileList *filelist, FileListEntry *entry);
void FL_RemoveAllFiles(FileList *filelist);
int FL_FileExists(const char *filename);

*FL AddFile(FileList *filelist, int type, int special)
adds a file to the list. The first parameter is the file list to which to add the entry,
the second is the file type (PT FILE TIFF or PT FILE MPEG), and the third
argument selects the color channel for this file (0: intensity, 1: red, 2: green, 3:
blue). The function returns a pointer to the newly createdFileListEntry. If
an error occurs, aNULL pointer is returned.

The server allows multiple concurrent clients. This is doneusing multi-threading
(on Windows) or multi-processing (on Linux/UNIX/MacOS X) to take advantage
of CPU scheduling and multi-processor machines. Multi-processing should be
preferred for its higher stability, memory protection (cf.global variables and sem-
aphores above), and parallelizability.

A.2.5 Communication protocol documentation
The communication between the client and the server is basedon apacket protocol
that uses TCP/IP for packet transport. Communication packets are defined by the
structure

typedef struct Packet
{
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int type;
int len;
int curlen;
int buflen;
unsigned char *body;
unsigned char *buffer;

} Packet;

Each packet consists of a header and a body. A packet has a maximum length of
4096 bytes, 7 of which are reserved for the packet header. Theremaining 4089
bytes can be used for the message body. The minimum packet length is 7 bytes,
thus a header only. The header is split into 3 + 4 bytes, where the first 3 bytes define
the type of the packet and the following 4 bytes declare the length of the body. The
packet typeis a number between100 and999 as enlisted below. The body may
contain arbitrary data. The protocol uses human-readable ASCII encoding, so a
sample packet of type200, length2, and bodyOK would read"2000002OK".

All packet types and names are defined inserver.h and carry the prefix
SERVER CODE . The server knows 9 different packet types that can be received
from clients. These types are calledrequest types. In reply, the server can send one
of 26 possibleresponse typepackets. 7 of them areacknowledgment types, 3 are
special types, and 16 areerror types. Error packets contain the error description
string in their body. The serverresponse typesare:

Type Name Description
acknowledgment types
200 OK Okay
201 PARAMSET Parameter was successfully set
202 UPLOADINITACK File upload acknowledged
203 UPLOADOK File upload completed successfully
204 ABORTEDUPLOAD File upload aborted
205 FILESDELETED Files successfully deleted
206 CALCDONE Tracking procedure done
special types
300 RESULT Result of the tracking run
301 RESULTFINISH All results have been sent
302 STATUS Current server status
error types
400 ERROR General error
401 NOOPENFILE Temporary file can not be opened
402 CALCFAILED Tracking procedure failed
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403 UPINPROGRESS File upload in progress
404 NOUPINPROGRESS No file upload in progress
405 UPTYPENOTSUP Upload type is not supported
406 EXTNOTSUP File type is not supported
407 FILELISTERROR Failed to createFileList entry
408 FILEOPENFAILED Failed to open file
500 UNKNOWNERROR Unknown error
501 UNKNOWNCODE Unknown packet type received
502 OUTOFMEMORY Server is out of memory
503 THREADERROR Failed to create a new thread
504 TOOMANYCLIENTS Maximum number of clients exceeded
505 FORKERROR Failed to fork a new process
506 INVALIDLENGTH Invalid packet body length

In all packets exceptRESULT, the body is optional.RESULT packets always
have to include a body with the tracking results. For the error packets, the body
contains the error description string, if such a description is available.

The clientrequest packet typesare:

• 100 SETPARAM Sets the value of a parameter. Both the parameter type
and the new value are given in the packet body. The packet is processed
by PT SetParameter as described above. In response, the server sends
eitherPARAMSET, if the parameter has been successfully set, orERROR
(error message from the tracking API is contained in the packet body).

• 101 UPLOADINIT uploadtype filetype color Requests a file
upload transaction from the server. The three parameters inthe body are
mandatory and separated by white-spaces:uploadtype is always1,
filetype is either1 for a TIFF file or2 for an MPEG stream, andcolor
is 0 for intensity,1 for red,2 for green, or3 for blue.

The response from the server isUPLOADINITACK if the client may be-
gin to upload the data, or one of the following if an error occurred:
FILEOPENFAILED if the server could not create the temporary file,
FILELISTERROR if the entry could not be added to theFileList,
EXTNOTSUP if the file type is unknown,UPTYPENOTSUP if the upload
type is not supported, orUPINPROGRESS if another upload from the same
client is still in progress.
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• 102 UPLOADDATA Contains the data to be uploaded in the packet body.
The upload is binary and no escape sequences are needed. A filecan be
split among several packets of this type that can be sent in arbitrary or-
der. The response from the server isOK if the data were successfully re-
ceived and written to the temporary file. The following errors are also pos-
sible: NOOPENFILE if no temporary file is open to write the data to, or
NOUPINPROGRESS if the upload has not been properly initialized using
UPLOADINIT (see above).

• 103 UPLOADFINISH Tells the server that the current upload is finished.
No moreUPLOADDATA can be sent after this request. This packet has no
body. The server repliesUPLOADOK if all files were successfully received
and stored, orNOUPINPROGRESS if no upload was initialized.

• 104 UPLOADABORT Aborts the current upload process and causes the
server to delete all files received so far. The response of theserver is
ABORTEDUPLOAD if the abort was successful, orNOUPINPROGRESS if
no upload has been initialized.

• 105 DELETEFILES Causes the server to delete all temporary files up-
loaded by this client so far. This can only be done after all uploads are
finished or aborted. The response isFILESDELETED if all files have been
successfully deleted, orUPINPROGRESS if an upload is still in progress.

• 106 EXECCALC Causes the server to initialize the particle tracking
API (see Appendix A.2.3) and to execute the actual tracking process
(PT FindTrajectories). The response isCALCDONE if the particle
tracker has successfully finished the calculation. The bodyof this re-
sponse packet contains the consumed computational time in seconds.
UPINPROGRESS is returned if an upload is still in progress, and
CALCFAILED indicates that the execution failed, in which case the error
message from the API is returned in the packet body.

• 107 SENDRESULTS After successfully executing a tracking procedure,
this request asks the server to send the resulting trajectory data. The data
can be split among several packets of typeRESULT. The end of the result
transfer is marked by aRESULTFINISH response packet. This last packet
contains no data body. If the function call toPT GetResults() fails, the
server respondsERROR; if the result file written by the API can not be read
by the server, the response isFILEOPENFAILED.
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• 108 DISCONNECT Closes the connection to the server and causes the
server to free all memory and delete all files used by the terminated cli-
ent connection. The corresponding thread or process is terminated and the
server repliesOK.

A.3 GUI client users manual

This section describes the use of the graphical (GUI) point tracking client. The
GUI client requires the Java 2 virtual machine (Standard Edition J2SE, version 1.4
or higher) to be installed. The currently installed versioncan be checked by typing
java -version in the console/command window of your computer. If J2SE
is not installed, it can be downloaded from http://java.sun.com/j2se/. If you plan
to run your own tracking server, you also need to install the server application as
described in Appendix A.1.1. Otherwise, you need network access to a machine
where the server application is running.

The GUI client software has successfully been tested in the following platforms:

• Microsoft Windows 2000 Professional with Java 2 SDK 1.4.1, 1.4.2, and
1.5 beta

• Microsoft Windows XP with Java 2 SDK 1.4.1
• UNIX / Solaris with J2SE 1.4.1
• Linux with J2SE 1.4.0 and 1.4.1
• MacOS X with Java 2 SDK 1.4.2.

A.3.1 Installation and start

To install the program, copy thejar file to the location of your choice. Make sure
the program has read and write permissions for the target directory.

Windows:
Thejar file is an executable and can be started by double-clicking onto it. An
alternative possibility is to start the application from the command window. This
is done by changing into the directory where thejar file has been installed and
typing

java -cp GUI-Client.jar client.Client

Linux/UNIX:
The application is started from a console/terminal window by typing
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Figure A.1: GUI-Client after start-up.

java -jar GUI-Client.jar

MacOS X:
The program can be directly started by double-clicking thejar file. Alternatively,
the program can be run from within a terminal window by typing

java -jar GUI-Client.jar

After starting the program, a screen like the one shown in Fig. A.1 is presen-
ted. The two tabs “Parameter Settings and Upload” and “Filter and Analysis” are
described below.

A.3.2 The Parameter Settings and Upload tab

General settings

The menu entryOptions→ General Settings(see Fig. A.2) allows to adjust the
location of the directories where temporary files and tracker result files are stored.
By default, the temporary directory is created where the executable resides. The
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Figure A.2: General settings panel.

Figure A.3: Panel to set the connection parameters.

file to store the raw tracker results as received from the tracking server is usually
chosen to be in the temporary directory.

Under the menu itemOptions→ Connection Settings, the details of the server
connection can be set (Fig. A.3). The fieldHost name/IPshould contain the name
or the IP address of the computer where the server is running.The TCP port for
the connection is set in the fieldPort. If the tracker server can not be contacted,
check that the machine address and port entries are correct,and that the tracker
server application is running on the target machine. If bothare the case, check that
the firewalls of the client and server machines do not block access to the selected
port.

Setting tracker parameters

Before a tracking job can be started, the algorithm parameters need to be set. This
starts by choosing the file type of the image data in theParameter Settings and
Upload tab as shown in Fig. A.1:
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• TIFF: A sequence consecutively numbered TIFF image files can be loaded
either using the menuFile → Load Image Sequence, or the buttonLoad
TIFFs to the left of the image list. This causes the selected imagesto be
copied into the temporary directory to protect your original data from un-
wanted changes. If necessary, the images can be normalized by pushing
the Normalizebutton. This changes the pixel values in all images of the
sequence according to:

Inew =
I − Imin

Imax− Imin
· 255 , (A.1)

whereImin andImax are the global (over all images of the sequence) min-
imum and maximum pixel values.

• MPEG-1: An MPEG-1 movie file can be imported directly using the menu
item File → Load MPEG, or the buttonLoad MPEGto the left of the im-
age list (only visible when the file type radio button is set toMPEG-1). All
frames contained in the MPEG movie are extracted and stored in the tem-
porary directory. Normalizing the frames of an MPEG movie (see above)
only affects the preview. The actual tracking is still done on the original
MPEG movie file.

The other parameters in this tab are:

• Color channel: Selects the color channel that is to be used for tracking.
The intensity channel is computed as the mean of the three color channels.
For grayscale images, this parameter has no effect.

• Radius: Approximate radius of the particles in the images in units ofpixels
(w in Subsection 1.2.1). The value should be slightly larger than the visible
particle radius, but smaller than the smallest inter-particle separation. The
GUI program offers assistance in choosing a good value for this parameter
(see next paragraph).

• Cutoff: The score cut-off for the non-particle discrimination filter (Ts in
Subsection 1.2.1).

• Percentile: The percentiler (cf. Subsection 1.2.1) that determines which
bright pixels are accepted as points. All local maxima in theupperrth per-
centile of the image intensity distribution are consideredcandidate points.
Percentileis given in units of percent (0% to 100%).
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Figure A.4: Assisted settings and preview.

• Displacement: The maximum number of pixels a particle is allowed to
move between two subsequent frames (L in Subsection 1.2.2).

• Linkrange: The number of subsequent frames that are taken into account
to determine the optimal trajectory linking (R in Subsection 1.2.2).

• Verbose: If checked, this causes the server to send additional information
and intermediate results. They can be inspected in the raw tracker result file
(cf. “General settings” above).

Assisted settings and preview

The Assisted settings and previewbutton opens a preview window as shown in
Fig. A.4. This can be used to find good tracker parameter settings or to test the
effect of a parameter change on the tracking outcome.

The preview window on the right-hand side shows the frames ofthe movie or
the image sequence that has been imported. The slider below it allows to navigate
through the frames, click-and-drag within the image zooms the view. TheReset
button restores the original view.

The red circle shows the currently chosenRadiusvalue. Its center can be set
by CTRL+click in the preview image. Placing it directly over a particle allows
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Figure A.5: Recognized particles in a server-based preview.

to easily find the proper setting for the parameterRadiususing the slider on the
left-hand side of the window.

The settings of theCutoff andPercentileparameters can be evaluated in a tracker
test-run by clicking the buttonStart server-based preview. Particles that are recog-
nized using the current parameter settings are marked by an orange circle in the
preview window as shown in Fig. A.5. The parameter values canbe adjusted iter-
atively until the outcome matches your expectations. Doingso for different frames
throughout the movie sequence ensures constant tracking quality along the movie.

Clicking OK copies the chosen parameter values into the main window,Cancel
discards the changes.

Saving and reading parameter settings

Once a good set of parameters is found for a particular type ofdata, they can be
stored in a parameter file for later re-use. This is done usingthe menu itemFile→
Export Settingsand choosing the location for the exported file.

Exported parameter settings can later be read again using the menu itemFile→
Import Settings. The format of the parameter files is compatible with the text-mode
client and is described in Appendix A.1.2 under “Input file syntax”.
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Figure A.6: Image upload to the tracking server.

Starting a tracking job

After setting all parameters, tracking can be started by clicking the buttonStart
trackingin the main window. The client now establishes a connection to the server.
An error message appears if the connection can not be opened.In this case, check
the server settings and the server machine as described above under “General set-
tings”. Once a connection has been established, the image data are uploaded to the
server. Depending on the data volume and the speed of the network connection,
this may take several minutes (Fig. A.6). The upload processcan be interrupted
any time by pushing theAbortbutton. The transfer is aborted as soon as the current
file has finished transmitting.

After completing the particle tracking, the server sends the raw result file back
to the GUI client. The location of storage of this raw result file can be set under
Options→ General Settings→ Results from server. The format of the result
file is described in Appendix A.1.2 under “Result file syntax”. After successfully
downloading the results, the connection to the server is closed and the results can
be inspected as described in the following section.
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Figure A.7: The Filter and Analysis tab.

A.3.3 The Filter and Analysis tab

Switching to theFilter and Analysistab as shown in Fig. A.7 allows to inspect
the tracking results and to perform basic global trajectoryanalyses as described in
Section 2.1.

The Filter options/Unit settingssection allows to filter the results and to con-
vert from pixels and frames to nanometers and seconds. Afterchanging the filter
options or the physical units, theStart analysisbutton has to be pushed for the
changes to take effect.

Filter Options

Clicking the Filter options button opens a window with four different filters to
reduce the number of trajectories (Fig. A.8).

The first filter causes trajectories below a certain length tobe excluded from
analysis. The second filter also operates on the trajectory length by selecting only
them longest for analysis. The third filter discards all trajectories with a diffusion
constant below a certain limit. This is useful to exclude stationary particles from
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Figure A.8: Filters to reduce the number of trajectories.

subsequent analysis. The fourth filter finally can be used to discard trajectories that
contain leaps, probably corresponding to tracking errors.With this filter, all tracks
where the longest step displacement is more thana-times larger than the stand-
ard deviation of all step displacements are excluded from the analysis. Selecting
multiple filters causes them to be applied sequentially in the order in which they
appear in the window (cf. Fig. A.8).

Overlay window

The Overlay windowis similar to the preview window described above. It visu-
alizes the trajectories and the original movie frames in an overlay, for the user to
check the correctness of the results. The slider below the image can be used to
scroll through the frames, click-and-drag zooms in to a specific region. TheReset
button restores the original view.

With the buttonSelect trajectories to plot, individual trajectories can be manu-
ally chosen for analysis. The selected trajectories are highlighted in red in the
Overlay window. Ellipses mark confinement zones in the selected tracks (seebe-
low).
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Global analysis plots

The selected and/or filtered trajectories can be analyzed ina number of diagrams.
All graphics are created using ptplot 5.31. Portions of a plot can be enlarged by
drawing a rectangle into the plot, starting from the upper-left corner and ending at
the lower-right corner. Drawing the rectangle the oppositeway (i.e. lower-right to
upper-left) zooms out. All plots can be exported as EPS graphics files by typing
CTRL+s within an active plot window. This is a proprietary functionthat is not
present in the original ptplot package. Replacing the ptplot part of the GUI client
with a standard version thus removes this functionality. The plot data can also be
exported into text files by choosing the menu itemFile→ Export Plot Data. This
allows to archive the analysis results and to re-create the plots in any application
of your choice.

The following trajectory analysis plots are available in the GUI client:

• xy-plot: This is the direct visualization of the data received from the
particle tracker. The path traces of the trajectories are shown in thexy-
plane. Notice that they are mirrored with respect to theOverlay window,
due to different matrix indexing conventions.

• xt/yt-plot: These plots separately show the trajectory’sx andy com-
ponents versus time. A common use of such plots is to detect phases of
immobility. If the moving-window standard deviation (cf. Section 2.2) of
both thex and they position simultaneously fall below a thresholdσ for
a time duration of more thanτ , the particle is considered immobile during
that time. The parametersσ andτ can be entered by the user in the plot win-
dow. All detected confinement areas are highlighted in thext/yt-plot and
also in theOverlay window. This is done by ellipses where the two half-
axes are given by the position standard deviations in thex andy direction,
respectively, stretched by a factor of 5 for better visibility.

• MSD plot: The global MSD analysis of the trajectories as described in
Subsection 2.1.1 is shown in this plot. The plot can be displayed using
either linear of logarithmic axes. The program automatically performs a
linear least squares regression through the data in the plotand displays the
diffusion constant and the MSD slope determined from this fitin the plotting
window.

1Ptolemy project II: http://ptolemy.eecs.berkeley.edu/java/ptplot5.3/ptolemy/plot/doc/main.htm
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• Moment scaling spectrum: The global MSS analysis as introduced in
Subsection 2.1.2 is shown in this plot. The linear regression line to determ-
ine the MSS slopeβ is automatically determined and displayed.

Importing data for analysis

The described trajectory analysis functionality of the GUIcan also be used on
imported trajectory data that was generated earlier or using a different tracking
program. Using the menu itemFile→ Import Tracks For Analysisallows to select
one or several trajectory files (text files int–x–y column format with individual
trajectories separated by a blank line). The data from thesefiles are imported
as if they were generated by the current run, except that theOverlay windowis
unavailable, since the original frame images are not present. The imported data
are overwritten as soon as a new tracking job is started.

Export functionality

The GUI client can export the generated data in multiple waysto enable further
processing and analysis in other applications. All export functions are located in
theFile menu:

• Export unfiltered tracks.Exports an exact copy of the raw result data as
received from the tracking server.

• Export filtered tracks.All trajectories that have not been excluded from the
analysis by theFilter optionsare exported to a file.

• Export selected tracks.Only the trajectories that were specifically selected
using theSelect trajectories to plotbutton are written to the file. They are
marked red in theOverlay window.

• Export analysis results.Data from the global MSD and MSS analyses
are exported. The first column is the trajectory number, second and third
columns contain the MSD slope (from the log plot) and the diffusion con-
stant, respectively. The fourth column contains the globalMSS slopeβ of
the trajectory (cf. Subsection 2.1.2).

• Export plot data. Exports all data from all plots to a file. This allows to
archive the plots or to re-create them using other programs such as Matlab,
gnuplot, or Excel.

Appendix B

Summary of Classification Methods

This appendix summarizes the classification methods that are used in this thesis.
Brief mathematical and algorithmic descriptions are given. For more detailed de-
scriptions of the methods, the reader is referred to the cited literature or the book
by Cherkassky and Mulier [54].

B.1 k–nearest neighbors (KNN)

If the data come from a setX ⊆ R
d, classification can be done using thek–

nearest neighbor(KNN) clustering algorithm. A previously unseen patternx ∈ X
is hereby assigned to the same classy ∈ Y to which the majority of itsk (to be
chosen) nearest neighbors belongs. The algorithm constitutes the simplest form of
aself-organizing map[158] with fixed connections.

B.2 Gaussian mixtures with expectation maximization (GMM)

Gaussian mixture models(GMM) are clustering algorithms inX ⊆ R
d. They

assume Gaussian probability distributions onR
d and try to approximate the un-

known distributionP (x, y) onX×Y by a mixture ofnGaussiansNi(x, y,µi,Σi)
with meansµi ∈ R

d, i = 1, . . . , n, and covariance matricesΣi ∈ R
d×d,

i = 1, . . . , n. The parametersµi andΣi are chosen so as to maximize thelog-
likelihood that the given training sample has actually been drawni.i.d. from the
probability distributionP (x, y) =

∑n
i=1Ni(x, y,µi,Σi). The algorithm pro-

ceeds as follows:

Algorithm 3 (Expectation maximization on a mixture of Gaussians)

Step 1: Choose a set of initial meansµ1, . . . ,µn using thek–meansclustering
algorithm [129]. All covariances are initialized to identity: Σi = 1d.
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Step 2: Assign them training samples to then clusters Γi using the
minimum Mahalanobis distance rule: Sample x belongs to clusterΓi

if the corresponding log-likelihood measure becomes minimum, i.e. i =

arg mini

[
log (det (Σi)) + (x− µi)

⊤
(Σi)

−1
(x− µi)

]
.

Step 3: Compute new meansµi ←
∑

x∈Γi
x/|Γi| and new covariance estimates

Σi ←
∑

x∈Γi
(x− µi) (x− µi)

⊤
/|Γi| where|Γi| denotes the number of vectors

x assigned to clusterΓi.

Step 4: If the changes in the means and covariances are smaller than a certain
tolerance, stop, otherwise go to Step 2.

B.3 Support Vector Machines (SVM)

Support Vector Machines(SVM) are kernel-based classifiers [199, 251] for binary
classification inX ⊆ R

d. They are successfully used in time series prediction
[198], gene expression analysis [39], and DNA or protein analysis [330]. SVM
make use of a fundamental theorem fromstatistical learning theorythat gives an
upper bound for the expected risk [299]:

Theorem 1 Let dv denote theVapnik-Chervonenkis dimension(VC) of the func-
tion classF and letRe[f ] be the empirical risk for the 0/1-loss of a given classifier
functionf ∈ F , evaluated onm test samples. It holds with probability of at least
1− ε, that

R[f ] ≤ Re[f ] +

√√√√dv

(
log 2m

dv
+ 1
)
− log

(
ε
4

)

m
(B.1)

for all ε > 0, for f ∈ F , andm > dv.

The VC dimensiondv of a function classF measures how many pointsx ∈ X
can be separated in all possible ways using only functions ofthe classF . Kernel
methods use a mappingΦ(x) of the training datax onto a higher-dimensional
feature spaceK where the data can be separated by a hyper-planef(x) =
(w ·Φ(x)) + b. In K, the optimal separating hyper-plane is determined such that
the pointsΦ(x) closest to it (called thesupport vectors) have maximum distance
from it, i.e. such that the “safety margin” is maximized. This is done by solving
the quadratic programming problem(w, b) = arg minw,b

1
2‖w‖22 subject to the
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condition thatw ·Φ(x) + b is a separating hyper-plane. Solving the dual optimiz-
ation problem, the Lagrange multipliersαi, i = 1, . . . , s, are obtained, wheres is
the number of support vectors. Theclassification functionf in K is then given by

f(x) =
3

2
+

1

2
· sign

(
s∑

i=1

yiαi (Φ(x) ·Φ(xi)) + b

)
. (B.2)

Sincef only depends on the scalar product of the data in feature space, the map-
ping Φ does not need to be explicitly known. Instead, akernel functionη(x,xi)
is introduced such thatη(x,xi) = Φ(x) · Φ(xi). The support vector classifier
f : X 7→ {1, 2} to be evaluated for any new observation thus is

f(x) =
3

2
+

1

2
· sign

(
s∑

i=1

yiαiη(x,xi) + b

)
. (B.3)

Notice that the sum only runs over all support vectors. Sincegenerallys ≪ m,
this allows efficient classification of a new observation by comparing it to a small
relevant subset of the training data. The assumed functional form of the kernelη
determines the function space of the mapΦ and thereby the performance of the
particular classifier.

B.4 Hidden Markov Models (HMM)

Hidden Markov Models(HMM) are stochastic signal source models, i.e. they
do not require observationsx ∈ R

d, but can treat discrete dynamic time series
x = {O1, . . . , OT } ∈ X , Oi ∈ R. In the past, their most successful applic-
ation was in speech recognition [225]. An HMM attempts to model the source
producing the signalx as a dynamic system that can be described at any time
t as being in one ofr distinct discrete states,Q1, . . . , Qr. The states are hid-
den in the sense that they can not be observed. At regularly spaced discrete time
points ti = i∆t, i = 1, . . . , T , the system changes its internal state, possibly
back to the same state. The process is assumed to beMarkovian, i.e. its probab-
ilistic description is completely determined by the present and the previous state.
Let qi denote the state of the system at timeti. The Markov property then states
thatP [qi = Qj |qi−1 = Qk, qi−2 = Ql, . . .] = P [qi = Qj |qi−1 = Qk]. Thestate
transitionsare described by probabilitiesajk = P [qi = Qk|qi−1 = Qj ] form-
ing the elements of the statetransition matrixA under the constraintsajk ≥ 0
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∀ j, k and
∑r

k=1 ajk = 1. At each time pointti the system produces an ob-
servable outputOi, drawn from an output probability distributionbQi

(O) associ-
ated with stateQi; B = {bQj

}rj=1. The model is completed with the initial state
probabilitiesΠ = {πj = P [q1 = Qj ]}rj=1 and the complete HMM is denoted by
Λ = (A,B,Π).

Given the form of HMM described above, there are three problems of interest to
be solved [225]:

(1) Given an observationx = {O1, . . . , OT } and a modelΛ = (A,B,Π),
compute the probabilityP [x|Λ] that the observationx has been produced
by a signal source described byΛ.

(2) Given an output sequencex = {O1, . . . , OT } and a modelΛ = (A,B,Π),
determine the most probable internal state sequence{q1, . . . , qT } of the
modelΛ that producedx.

(3) Determine the model parametersΛ = (A,B,Π) to maximizeP [x|Λ] for a
given observationx.

B.4.1 Discrete hidden Markov models (dHMM)

If the set of possible distinct values{vk} of any outputOi is finite, we call the
HMM discrete(dHMM). The output probability distribution of any stateQj is
thus discrete:bQj

=
{
bQj

(k) = P [Oi = vk|qi = Qj ]
}

for k = 1, . . . ,M . Dir-
ect solution of problem (1) would involve a sum over all possible state sequences:
P [x|Λ] =

∑
∀{q1,...,qT } P [x| {q1, . . . , qT } ,Λ]P [{q1, . . . , qT } |Λ]. The compu-

tational cost of this evaluation isO(2TrT ), which is about1050 for an average
dHMM and thus clearly unfeasible. Theforward backward algorithm[23, 24]
solves this problem efficiently inO(r2T ). The solution of problem (2) is given by
theViterbi algorithm[302, 103], and the “training problem” (3) is solved using the
iterativeBaum-Welch expectation maximization method[82].

B.4.2 Continuous hidden Markov models (cHMM)

If the observationsOi are drawn from a continuum,bQi
is a continuous probability

density function and the HMM is calledcontinuous(cHMM). The most general
case for which the above three problems have been solved is a finite mixture ofn
GaussiansNi, thusbQj

(O) =
∑n

i=1 cjkNk(O,µjk,Σjk) [173, 150].

Appendix C

Converting a Triangulated Surface to a Level Set

Any triangulated surface that is, e.g., read from a geometrydescription file can
robustly be converted to a smooth, regular level set using the following procedure.
The level function is only stored within the narrow band, andthe function value in-
dicates the distance to the surface (signed distance function, cf. Subsection 5.3.2).
Smoothness and regularity of the level function are important properties for the
stability of the diffusion algorithms described in Sections 5.3 and 5.4.

Algorithm 4 (Triangulation to level set conversion)

Step 1: Determine for each grid point if it is inside or outside of the closed surface
described by the triangulation. This can be done using the point-in-domain
algorithm [244] as, e.g., implemented in theGNU Triangulated Surface Lib-
rary (GTS, http://gts.sourceforge.net).

Step 2: Each point outside of the surface is assigned the level function valueψ = 1,
points inside are set toψ = −1.

Step 3: Several sweeps (about 5) of a3× 3× 3 boxcar average low-pass filter with
uniform weights are applied to the fieldψ to regularize the level function
and enable gradient computations.

Step 4: Reinitialize the level function (cf. Subsection 5.3.4) to produce a signed dis-
tance function with‖∇ψ‖2 = 1.



Appendix D

Diffusion on Domains with Complex Boundaries may
Appear Anomalous

We consider a diffusion process that is confined to a complex-shaped domain.
The process is observed at a larger length scale, not fully resolving the shape of
the domain. Using volume averaging theory, we show in the following that the
geometric complexity of the boundary shape has both qualitative and quantitative
effects on the apparent observed diffusion. The isotropic,linear, strongly self-
similar [101] diffusion process on the small scale is governed by the equation

(
∂

∂t
−∇2

)
u(x, t) = 0 ,x ∈ Ω (D.1)

with a functionu : Ω × R
+
0 7→ R, u ∈ Cℓ(Ω × R

+
0 ), ℓ > 2. This process takes

place inside a closed and connected domainΩ ⊂ R
d with boundary∂Ω. Thed−1

dimensional manifold∂Ω may have a complex shape with geometric features on a
small length scalee. The whole process is observed by an imaginary observer with
a resolution limitE ≫ e such that the ratioε = e/E ≪ 1 is negligible. We denote
the order of magnitude of the values ofu(x, t) by k. The limited resolution of the
observer makes it impossible to fully resolve the shape ofΩ on the observation
length scale. All that the observer can see is avolume averageof the fieldu(x, t),
thus

〈u(x, t)〉 =
1

|V (x)|

∫

VΩ(x)

u(y, t) ddy . (D.2)

The average at each pointx is taken over anobservation volumeV (x), centered
atx, with |V (x)| = O(Ed). VΩ(x) = V ∩ Ω is the part of the averaging volume
that is inside the domain (we did not requireu(x, t) to be defined outside ofΩ).
| · | is thevolume measurewhich can for example be thed-dimensionalLebesgue
measure. To simplify the notation, we writeV instead ofV (x) in the following.
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The volume average in Eq. (D.2) amounts to convolvingu(x, t) with the indicator
functionχ(VΩ). Since convolution and differentiation are commutative (M. Ber-
gdorf, personal communication, 2005), the resulting averaged function is again
∈ Cℓ and all differential operators can be applied to it.

The volume averaging theorem[218] for the gradient of a scalar quantityψ ∈
Cℓ, ℓ > 1, onΩ is:

〈∇ψ〉 = ∇〈ψ〉+ 1

|V |

∫

M
ψn dA . (D.3)

M is the surface of the domain inside the averaging volume,M = ∂(V ∩ Ω), n
is the outward (i.e. out ofΩ) unit normal onM, anddA is the surface element on
M. Again the averaging volumeV is not restricted toΩ.

For the divergence of a vector fieldΨ, the corresponding theorem reads:

〈∇ ·Ψ〉 = ∇ · 〈Ψ〉+ 1

|V |

∫

M
n ·Ψ dA . (D.4)

The volume average of the time derivative of a scalar quantity is

〈∂ψ
∂t
〉 = ∂〈ψ〉

∂t
− 1

|V |

∫

M
ψv · n dA , (D.5)

wherev is the velocity of the surfaceM. This expression remains formally un-
changed for vector quantities. Elegant proofs of these averaging theorems can be
found in the 1977 paper by Gray [119].

Using the theorems in Eqs. (D.4) and (D.5), and assuming the boundary to be at
rest, the volume average of equation Eq. (D.1) becomes

∂〈u(x, t)〉
∂t

= ∇ · 〈∇u(x, t)〉+ 1

|V |

∫

M
∇u(x, t) · n dA . (D.6)

Using Eq. (D.3) to expand the average of the gradient, this becomes

∂〈u(x, t)〉
∂t

= ∇2〈u(x, t)〉+ 1

|V |∇ ·
∫

M
u(x, t)n dA

+
1

|V |

∫

M
∇u(x, t) · n dA . (D.7)

The fully resolved solutionu(x, t) can always be written as the sum of the aver-
aged solution plussmall-scale fluctuations, thus

u(x, t) = 〈u(x, t)〉+ ũ(x, t) . (D.8)
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All terms in this equation areO(k) in their value. The length scales of variation in
u andũ areO(e), the ones of〈u〉 areO(E). The governing equation for̃u(x, t) is
obtained by substituting Eq. (D.8) into Eq. (D.7), and subtracting it from the full
Eq. (D.1):

∂ũ(x, t)

∂t
= ∇2ũ(x, t)− 1

|V |∇ ·
∫

M
u(x, t)n dA−

1

|V |

∫

M
∇u(x, t) · n dA . (D.9)

Expanding the integral terms using Eq. (D.8) we find

∂ũ(x, t)

∂t
= ∇2ũ(x, t)− 1

|V |∇ ·
∫

M
〈u(x, t)〉n dA−

1

|V |∇ ·
∫

M
ũ(x, t)n dA− 1

|V |

∫

M
∇〈u(x, t)〉 · n dA−

1

|V |

∫

M
∇ũ(x, t) · n dA . (D.10)

Consider the first integral term on the right-hand side. The function〈u(x, t)〉 is –
by construction – approximately constant overM and is pulled out of the integral.
The remaining integral is the surface area ofM and constant as well. The first
term thus vanishes (divergence of a constant). The third term can be neglected,
since the gradient of〈u(x, t)〉 is approximately zero. These qualitative statements
can be made more formal by order analysis. The second and fourth integral terms
areO(k/(eE))1, the first and third ones areO(k/E2). The ratio of these orders is
ε, which means that we can neglect the first and third integral.The final equation
for the small-scale fluctuation hence becomes

∂ũ(x, t)

∂t
= ∇2ũ(x, t)− 1

|V |∇ ·
∫

M
ũ(x, t)n dA−

1

|V |

∫

M
∇ũ(x, t) · n dA . (D.11)

In order to obtain an equation for the averaged field, we proceed in a similar way

1Integration over the surfaceM followed by division by the volume introduces a scale factorof
O(1/E) in value.
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by substituting Eq. (D.8) into Eq. (D.7):

∂〈u(x, t)〉
∂t

= ∇2〈u(x, t)〉+ 1

|V |∇ ·
∫

M
〈u(x, t)〉n dA+

1

|V |∇ ·
∫

M
ũ(x, t)n dA+

1

|V |

∫

M
∇〈u(x, t)〉 · n dA+

1

|V |

∫

M
∇ũ(x, t) · n dA . (D.12)

By the same reasoning as before, we neglect the first and thirdintegral terms on
the right-hand side. For̃u(x, t), we make the ansatz

ũ(x, t) = b(x, t) · ∇〈u(x, t)〉 . (D.13)

The value ofũ is O(k) and the one of∇〈u〉 is O(k/E) (gradient on the large
scale). The value ofb thus isO(E), with the length scales of variation being
O(e). Substituting this ansatz yields

∂〈u(x, t)〉
∂t

= ∇2〈u(x, t)〉+
1

|V |∇ ·
∫

M
(b(x, t) · ∇〈u(x, t)〉) n dA+

1

|V |

∫

M
∇ (b(x, t) · ∇〈u(x, t)〉) · n dA . (D.14)

The first and second integral terms are bothO(k/(eE)) 2. Using the linearity of
the divergence operator and the fact that∇2 = ∇ · ∇, above equation can thus be
approximated by

∂〈u(x, t)〉
∂t

=

∇ ·
([

1 +
1

|V |

∫

M
b(x, t)⊗ n dA

]
∇〈u(x, t)〉

)
+

1

|V |

∫

M
∇ (b(x, t) · ∇〈u(x, t)〉) · n dA , (D.15)

2The integrand isO(k), the integration introduces a factor ofO(Ed−1), the divergence is of
O(1/e) (small length scales inb cause large derivatives), and the division by the averagingvolume is
O(E−d).
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where we have again used that〈u(x, t)〉 is almost constant overM. Both integrals
are stillO(k/(eE)).

This can not be simplified any further without assuming specific boundary con-
ditions for the small-scale process. Let Eq. (D.1) have homogeneous Neumann
boundary conditions on∂Ω, thusn ·∇u(x, t) = 0, x ∈ ∂Ω. Using Eq. (D.8), this
translates into the following condition for the fluctuations:

n · ∇ũ(x, t) = −n · ∇〈u(x, t)〉 , x ∈ ∂Ω . (D.16)

Using this together with Eq. (D.13), the last integral term in Eq. (D.15) can be
written as

1

|V |

∫

M
∇ (b(x, t) · ∇〈u(x, t)〉) · n dA =

− 1

|V |

∫

M
∇〈u(x, t)〉n dA . (D.17)

The term on the right-hand side is ofO(k/E2). The second integral in Eq. (D.15)
is thusε times smaller than the first one and can be neglected. The finalgov-
erning equation for the averaged process, observed on the length scaleE, under
homogeneous Neumann boundary conditions thus becomes

∂〈u(x, t)〉
∂t

= ∇ ·
([

1 +
1

|V |

∫

M
b(x, t)⊗ n dA

]
∇〈u(x, t)〉

)
. (D.18)

Both terms inside the parentheses areO(1), the divergence introduces a scale
factor ofO(1/e) (small scales inb), and the gradient of the averaged field is
O(k/E). The whole equation thus is ofO(k) in value. This equation describes
a diffusion process on the observation length scaleE. The effectively observed
apparent diffusion tensoron this scale isO(1) in value and given by

Dapp =

[
1 +

1

|V |

∫

M
b(x, t)⊗ n dA

]
. (D.19)

The process thus appearsanisotropicif the tensorDapp is not proportional to1.
It furthermore appearsanomalousif Dapp is a function of the time scale3. From
Eq. (D.19) we see that diffusion can macroscopically appearanisotropic or an-
omalous (ifb depends on time), even if the microscopic process is normal and
isotropic.

3In this case, the mean square displacement no longer scales linearly with time, cf. Subsection 2.1.2.

Appendix E

Experimental Protocols

All experimental work used in Chapter 6 was carried out by members of the group
of Prof. Ari Helenius at the Institute of Biochemistry at ETHZürich. The original
protocols are reproduced here for reference.

E.1 FRAP experiments in the ER lumen

E.1.1 Cells and DNA construct

VERO cells were grown on coverslips at 37◦C in Dulbecco’s Minimal Essential
Medium supplemented with 10% fetal calf serum, 2 mM glutamine, 100 g/ml peni-
cillin, 100 U/ml streptomycin (GibcoBRL; Life Technologies, Eggstein, Germany)
at 37◦C in a 5% CO2 incubator and were used in all experiments. Cells were
transiently transfected with a reporter gene containing the ER targeting signal se-
quence fused to GFP and the ER retention sequence (ssGFP–KDEL; derived from
pCMV/myc/ER/GFP, Invitrogen) using Superfect (Sigma). Alternatively, cells
were transfected using Nucleofactor by amaxa (Köln, Germany) according to the
protocol for COS-7 cells (Kit V, program A24). Briefly, 1×106 VERO cells were
pelleted, resuspended in 100µl of solution V, and electroporated with 1 – 2.5µg
of DNA. The electroporated cells were resuspended in 350µl MEM. Of this solu-
tion, 100µl were seeded on one 18 mm coverslip and incubated over night (15 h)
at 37◦C and 5% CO2. 12–16 hours post transfection cells were imaged live on a
temperature-controlled stage at 37◦C.

E.1.2 Photobleach Experiments

FRAP experiments were performed on an inverted Zeiss LSM510confocal mi-
croscope, using the 488-nm line of a 30 mW Argon/2 laser with a100×, 1.4 NA
objective. A defined region of interest (ROI; 4µm×4µm) was photobleached at
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full laser power (100% power, 100% transmission, 20 iterations); recovery of fluor-
escence was monitored by scanning the ROI at low laser power (50% power, 3%
transmission). The scanning laser intensity did not significantly photobleach the
specimen over the time course of the experiment. Images wereacquired as 8-bit
TIFF files (512×512 pixel frame;0.18µm/pixel) and processed using NHI Image
1.62. Image series with little or no apparent motion of ER structures within the
ROI were selected. The average fluorescence in the ROI and theaverage back-
ground were determined from the images. After subtracting the background, the
fluorescence values were normalized according to Phair and Misteli [216] to cor-
rect for the loss in fluorescence caused by imaging. To be ableto compare FRAP
curves from different cells, these valuesF (t) were further normalized by their re-
spective asymptotic valueF∞ = F (t→∞), determined as outlined in Appendix
F.1. FRAP(t) = F (t)/F∞ is shown in all the figures.

E.2 FRAP experiments on the ER membrane

E.2.1 Cell line, DNA construct and expression of VSVG-GFP

VERO cells were maintained in MEM (plus Earle’s plus GlutaMAXTM I) supple-
mented with 10% fetal calf serum and non essential amino acids (Gibco BRL, San
Diego, CA, USA) at 37◦C/5% CO2. The cDNA plasmid VSVG3-SP-GFP [154]
encoding GFP-tagged temperature sensitive vesicular stomatitis virus glycopro-
tein (tsO45-VSV-G) was kindly provided by Dr. Kai Simons. Cells on 18 mm
glass coverslips at 80–90% confluence were transfected with0.5µg plasmid DNA
per coverslip using FuGENE 6 Transfection Reagent (Roche Diagnostics, Indi-
anapolis, IN, USA) and incubated for 12–14h at the non-permissive temperature
(40◦C), at which VSVG-GFP is incompletely folded and retained inthe ER [107].

E.2.2 Live cell microscopy and FRAP analyses

For live cell microscopy, transfected cells on 18 mm glass coverslips were trans-
ferred to a custom-built metal microscope coverslip chamber in CO2-independent
medium supplemented with 10% FCS (Gibco BRL, SanDiego, CA, USA). FRAP
analyses were performed at 40◦C on an inverted Zeiss LSM510 confocal micro-
scope (Oberkochen, Germany) equipped with a temperature-controlled stage and
a 100x 1.4 NA objective. A defined region of interest (ROI; 4µm×4µm) was
bleached using the 488 nm line of a 30 mW Argon laser at high laser intensity
(100% power, 100% transmission) and fluorescence recovery was recorded by
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scanning at low laser intensity (100% power, 10% transmission). Images were ac-
quired as 12 bit LSM files at 512×512 pixels/frame and 0.09µm/pixel lateral res-
olution. Image series with little or no apparent motion of ERstructures within the
ROI were selected and imported into ImageJ 1.34 (http://rsb.info.nih.gov/ij/) for
processing. The average fluorescence intensity of the ROI was determined after
background subtraction and normalization according to Phair and Misteli [216].
All FRAP curves were normalized by their asymptotic value asoutlined in Ap-
pendix F.1.



Appendix F

Simulations of Diffusion in the Endoplasmic
Reticulum

This appendix describes the details of the diffusion simulations of fluorescence
recovery in the ER for both the lumen and the membrane as used for the results in
Sections 6.5. All computer simulations are performed usingthe numerical methods
described in Chapter 5, implemented in Fortran 90 and parallelized using thePPM

library presented in Chapter 7 [248].

F.1 Simulations in the ER lumen

The diffusive motion of a fluorescently labeled soluble protein in the ER lumen is
simulated and the total fluorescence intensity inside the originally bleached ROIB
is monitored over time. We assume the molecules of interest to diffuse normally
(i.e. no anomalous diffusion) and freely within the confinesof the ER lumenΩ. In
the following, theFRAP valueat timetn = nδt is defined as

F (tn) =
1

NB

∑

p∈B

ωh
p (tn) , (F.1)

whereNB is the total number of particles inside the ROIB andωh
p (tn) is the PSE

particle strength. In order to focus on the influence of organelle geometry, we use
the idealizedinitial condition

u0(x) =

{
0 if x ∈ {Ω ∩B}
C if x ∈ {Ω \B} . (F.2)

More realistic initial conditions [35, 312] can readily be accommodated by setting
the initial strengths of the particles accordingly. They would however leave our
conclusions unchanged as their effects would equally applyto all simulations. The
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ROIB is taken to be the square cylinder defined by:

B = [p, q]× [r, s]× [0, Lz]

{
0 6 p < q 6 Lx

0 6 r < s 6 Ly ,
(F.3)

with (Lx, Ly, Lz) the extent of the bounding box of the ER in all spatial directions.
Without loss of generality, the constant initial concentration outside the bleached
area is chosen to beC = 1 as this simply corresponds to normalizing the FRAP
curves with respect to their pre-bleach value. The assumption of a homogeneous
initial concentration distribution outside the bleached area seems feasible due to
the following facts:

1. After transfection, the cells are incubated for at least 12 hours. During this
time, they express the green fluorescent protein which is assumed to freely
diffuse within the ER lumen and to completely fill it. Experiments show
that a protein can easily move across the whole ER in about 30 seconds.
Therefore, a homogeneous distribution inside the ER is assumed after 12
hours.

2. The experimenter chooses “healthy” cells, i.e. cells that exhibit a more or
less homogeneous fluorescence inside the ER.

The geometric domainΩ for the simulations is a reconstructed representation
of a real ER. The reconstruction technique is described in Section 6.2. The PSE
simulations solve the isotropic, homogeneous diffusion equation in the lumen of
the reconstructed ER shapes, using the second-order accurate isotropic PSE kernel
proposed by Cottet (G.-H. Cottet, personal communication,1999):

η(x) =
15

π2

1

|x|10 + 1
. (F.4)

All simulations are run for the same value of the computational diffusion constant
νsim = 3 · 10−5 b2/δt (scaled with the lateral edge lengthb = 50 of the ROI and
the simulation time stepδt = 0.01) in order to be able to study the influences of
geometry. Time integration is done using the explicit Eulerscheme with a time
step ofδt = 0.01 until a final time ofT = 2000 δt.

Since the bleached volumes of the different ER samples contain different num-
bers of particles, and since the total number of particles also varies among samples,
the different FRAP curves have different asymptotic levelsfor t→∞. Moreover,
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the FRAP curves do normally not recover to1.0, even if the protein is fully mo-
bile. This is due to the homogeneous Neumann boundary condition and the fact
that the total mass in the domain is conserved. In order to be able to compare
the FRAP curves of the simulation runs among each other, theyare normalized
by their respective steady-state valueF∞. They thus all asymptotically recover to
1.0, leaving the different geometries as the only source of variation. Initially, the
total mass in the system is given by

mt =

N∑

p=1

Vpu
h
p = Vp(N −NB) . (F.5)

The latter equality makes use of the initial condition as given in Eq. (F.2) and
the choiceC = 1. The asymptotic value of the fluorescence in the ROI is given
by homogeneously distributing this mass among all particles. For particles with
constant volumeVp we thus have

F∞ =
mt

NVp
=
N −NB

N
, (F.6)

and we normalize the FRAP curves asF (t)/F∞.

F.2 Simulations on the ER membrane

The triangulated surfaces from the 3D reconstruction are first converted to level
sets as described in Appendix C. This is not an intrinsic necessity of the method,
but is required by the specific data output format available from the 3D reconstruc-
tion software (cf. Section 6.2).

The simulations solve the intrinsic diffusion equation on the membrane of the
reconstructed ER shapes using the method presented in Section 5.3 and the op-
erator discretization of Eq. (5.58). All simulations use a computational diffusion
constant ofνsim = 10−4 µm2/s, a band half-width ofk = 3h (h between 0.042µm
and 0.047µm), and employ between 800’000 and 2 million particles concentrated
in a 14µm×14µm neighborhood around the ROI of4µm×4µm. Since only the
geometry in the vicinity of the ROI influences the fluorescence recovery, an ER
cut-out around the bleached region is considered in the simulations. The finite
reservoir of the rest of the ER can be modeled using Dirichletboundary conditions
of valueF∞ as given by Eq. (F.6). This is important for larger times and to recover
the correct asymptotic level.
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Time integration is done using a 9-step STS scheme [9] with anelementary Euler
step size ofδt = 10−4 s. The concentration is initially set to 1 everywhere outside
the bleached ROI, where it is set to zero (Eq. (F.2)). More accurate initial condi-
tions [35, 312] can easily be used if they are experimentallyavailable. The ROI is
again given by Eq. (F.3). The total mass of fluorescent molecules in the ROI is de-
termined from all particles adjacent to the membrane by linearly interpolating their
strengths along inter-particle lines that cross the membrane. Prior to analysis, all
FRAP curves are normalized by their steady-state value to make them comparable
(cf. Appendix F.1).

The narrow-band level set method imposes a scale constrainton the geometry
that can be resolved: the bands from two opposite surfaces must never overlap, i.e.,
the smallest “feature” of the surface must be at least2k in diameter. In the present
simulations, this amounts to2k = 6h ≈ 300 nm, which is more than 10 times
larger than the curvature radius limit for biological membranes. In order to avoid
under-resolved regions, the level functionψ is thus low-pass filtered prior to the
simulations. This can be done without loss of information since the wavelength of
the light used to record the geometry is larger (488 nm, cf. Appendix E).
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intensity moment

second order, 10
zeroth order, 9

intensity percentile, 9
interaction

connection, 207
diagonal,205
long-range, 208
non-symmetric, 204
particle-particle, 204
short-range, 205
symmetric, 204

interaction area, 53
interaction sphere, 52
internal assignment, 198
interpolation, 133

Lagrange, 133
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mesh-to-particle, 117
particle-to-mesh, 117

interpolation function, 117
interpolation weight, 207
interval type, 100
intrinsic diffusion operator, 127
intrinsic Laplace,128
intrinsic Nabla, 127
IPAN tracker, 6
isotropic diffusion, 112
isotropic PSE, 119,121
IVP, 210

Jacobian, 146
jasplakinolide, 86, 97

k–nearest neighbor,268
KDEL sequence, 176
keratocyte, 56,57
kernel, 115, 119, 270

mollification, 115
PSE, 121
regularized, 119
SVM, 270

KNN, 268
Kolmogorov-Smirnov test, 102
Kronecker delta, 220

L2 error,125
label, 59
Lagrange interpolation, 133
Lagrangian frame, 113
Laplace operator, 119

intrinsic,128
LatA, 86
latrunculin A, 86, 97
layer, 42
learning, 44

algorithm, 39
theory, 269

Lebesgue measure, 273
Lennard-Jones, 198
level function, 128
level of activity, 41
level set, 127, 128
Lévy flight, 31
library

GNU triangulated surface, 272
infrastructure, 192
parallel particle mesh, 191
simulation, 192

libSVM, 72
libtiff, 248
likelihood, 268
Linda, 191
linear combination, 13
link

false, 6
linked list, 253
linking

algorithm, 12
initialization, 13
optimization, 14

lipid raft, 95
load

balance, 196,218
distribution, 196

local
error, 117
geometry, 179
mapping, 199,202
maximum selection, 9
parametrization, 128

log-likelihood, 268
loss function, 44
low-storage scheme, 210
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lumen, 153

M21 cell, 97
Mach number, 220
machine epsilon, 124
machine learning, 59
Mahalanobis distance, 269
map, 196

self-organizing, 55, 268
mapping

connection, 200,203
ghost, 199
global, 199,200
local, 199,202
ring shift, 200,203

mapping function, 146
Markov process, 37, 270
mask

binary, 200
MCD, 86
MD, 191
mean square displacement, 29
measure

Lebesgue, 273
volume, 273

mesh, 196
Cartesian, 117

message passing, 192
non-blocking, 211

meta-optimization, 67
method of images, 123, 124
methyl-β-cyclodextrin, 86, 97
metis

dual, 198
primal, 198

metis-based assignment, 198
MG solver, 209
minimization algorithm, 44

minimum edge coloring, 200,202
mirror particle, 123
miss rate, 61
MLP, 43
mobile fraction,168
model

FRAP, 166
geometry, 164, 166
selection, 72

molecular
crowding, 160
dynamics, 191
weight, 189

mollification kernel, 115
moment

of displacement,31
moment scaling spectrum,32
monitor function, 147
morphogenesis, 140, 237
movie, 6
moving

surface, 140,143
window, 38

mpeglib,248
MSD, 29
MSS,32
multi-layer perceptron, 43
multi-processing, 16
multi-resolution, 113
multi-threading, 16
multigrid, 209

Nabla operator, 112
intrinsic, 127

nano-particle, 84
Navier-Stokes equation, 220, 222
NEC SX-5, 213
Nelder-Mead simplex, 169
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Neumann condition, 112
neural network, 39
neutral classifier, 62
nocodazole, 82, 97
noise

discretization, 8
shot pixel, 8, 20

non-blocking communication, 211
non-linear feature, 70
non-particle discrimination,10
non-separable, 60
noninvasive marker, 165
normal diffusion, 30,31
normalized count, 51, 52, 106, 107
nuclear envelope, 153
nucleoplasm, 172
null

decomposition, 197
hypothesis, 100

observation, 6, 59
paired, 100

observation volume, 166, 273
Occam’s razor, 44
ODE, 113
ODE solver, 210
operational definition, 45
operator,69
optical anisotropy,157
optimal set of associations, 15
optimal threshold, 158
optimizer, 72
ordinary differential equation, 113
organelle, 152
orthogonal extension, 131
overfitting, 44

P3M, 193

packet protocol, 253
packet type, 254

acknowledgment, 254
error, 254
request, 254,255
response, 254,254
special, 254

paired observation, 100
PARALLACS, 193
parallel particle mesh library, 191
parallel utilities library, 193
parametrization

global, 127
local, 128

ParMETIS, 193
PARTI, 193
partial differential equation, 111
particle

Brownian, 27
computational, 113
connection, 195
dummy,12
ghost, 195
mirror, 123
physical, 6
virus-like, 86

particle attributes, 113
particle coalescence, 228
particle division, 228
particle method, 111

continuum, 113
deterministic, 119
hybrid, 114,117
point, 115
pure, 114,116, 119
smooth, 115

particle overlap, 116
particle quantity, 207

328 INDEX

particle strength exchange, 113, 118,
119

anisotropic,122
isotropic, 119,121

particle tracking API,249
particle-in-cell, 193
particle-mesh,117, 190
particle-particle interaction, 204
particle-particle particle-mesh, 193
pass-by event,52, 107
Passage, 52
PASSION, 192
pattern, 59

formation, 140
PDE, 111
penalty, 71
pencil decomposition, 197
penetration depth, 79
percentile, 9
perinuclear

ER, 177
region, 154

periodic boundary condition, 25
PETSc, 193
phase space, 28, 34, 88, 90, 100
physical

space, 146
units, 175

PIC, 193
PICARD, 194
pixel noise, 8, 20
PM, 117, 190
point, 6

location estimate, 9
location matrix, 12
particle method, 115
spread function, 157

Poisson, 20

equation,208
solver, 208

FFT-based, 209
MG, 209

Polyomavirus, 78,86
power law, 31
PPM, 191
pre-bleach intensity, 167
pre-fractal, 160
precision,19
premature recovery, 172
primary receptor, 97
probability distance, 71
problem

fixed-size, 212
scaled-size, 212

progressive classifier, 62
prolongation, 209
Prometheus, 193
propensity, 142
property vector, 133
PSE, 113, 118,119
PSE kernel, 121
PTK2 cell, 10
PUL, 193
pure particle method,116
Py, 86

quadratic distance, 71
weighted, 71

quadratic programming, 269
quantification parameter, 28
quantile, 102
quantile-quantile plot, 100
quantum dot,82
QUICKSILVER, 194

raft, 95
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random variable
continuous, 100

random walk,118
randomized trajectories, 51
re-scaling method, 137
reaction

kinetics, 141
term,141

reaction-diffusion, 140
reaction-dominated, 143
receive stack, 200
receptor, 86

primary, 79, 97
secondary, 79, 97

reconstruction error, 158
recovery half-time, 168
reduced cost,14
reference space, 146
region of interest, 164
regularized kernel, 119
reinitialization, 129, 207
relative error, 132
remeshed SPH, 220
remeshing,207, 223
Renyi

dimension,162
entropy,162

reset signal, 16
resolution constraint, 145
restriction, 209
Reynolds number, 220,223
Riemann

manifold, 127
metric,128

ring shift mapping, 200,203
ring topology,197
risk, 48, 71

empirical,59, 71

expected, 59
true, 59

ROB, 197
ROI, 164
rough ER, 154
RW, 118

sampling time, 29
SAMRAI, 238
SAR heuristic, 193, 196
scaled-size problem, 212
scaling coefficient, 31
scaling law, 31
score, 10, 211
second order reaction, 51
secondary receptor, 97
section

confocal, 154, 155
self-optimizing encoder, 68
self-organizing map, 55, 268
self-similar

strongly, 32
weakly, 32

self-similar form, 32
semaphore, 248
send stack, 200
server,16
Shapiro-Wilk test, 100
shared memory, 214
Shibata criterion, 72
shot pixel noise, 20
sigmoid, 42
signal,69
signal detection theory, 56, 61
signal-to-noise ratio, 20,20

critical, 22
signed distance function,128
simulation
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library, 192
untits, 175

simulation-based model,171
single particle tracking, 4, 6
singly connected, 184
sit-down event,50, 106
skin, 206
slab decomposition, 197
slime mold, 140
small-scale fluctuation, 274
smooth ER, 154
smooth particle hydrodynamics, 190

remeshed, 220
smooth particle method, 115
SNR, 20,20

critical, 22
software engineering, 238
space

encoding, 67,70
Euclidean, 111
feature, 269
input, 41
phase, 28, 34, 88, 90, 100
physical, 146
reference, 146

specific geometry, 183
spectral dimension, 164
speedup,213
SPH, 190
spherical harmonic, 141
split mode, 210
sporulation, 141
SPT, 4
spurious detection, 6
ssGFP–KDEL, 176
ssYFP–KDEL, 176
stack, 200

receive, 200

send, 200
z, 154

standard deviation,21
Stanford bunny, 137
state transitions, 270
stationary, 29
stationary diffusion, 112
statistical uncertainty, 30, 34
step function, 42
stochastic process, 27
stop-at-rise, 193, 196
stream function,223
strength, 113,115
sub-domain, 195

assignment, 197
subdiffusion, 31

apparent, 85
successive over-relaxation, 209
summation convention, 127
superdiffusion, 31
support vector,269
support vector machine, 72,269
surface

deforming, 143
triangulated, 128

surface representation
implicit, 128

SV40, 4
SVM, 72, 269

Taylor series, 70, 119
TC7 cell, 81
TCP/IP, 17
telegraph model, 31
temperature, 220
temperature data, 57
tensor of inertia,211
test
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data, 41
Fligner-Killeen, 101
Kolmogorov-Smirnov, 102
person, 65
set, 45,60
Shapiro-Wilk, 100
statistic, 100

threshold, 41, 157
intensity, 155
optimal, 158
reconstruction, 155

TIRF, 4, 79
topology,196

change, 145
constraint,12

total internal reflection, 4, 79
tracking

feature point, 6
single particle, 6
standard deviation,21

training
data, 42, 59
phase, 42
set, 45,60

trajectory,3
decomposition, 39
discrete, 6
incomplete, 6
randomized, 51
segmentation, 39

trajectory analysis
event-based, 50
global,28
moving window, 38

traking
bias,21

transfer function, 42
transition

density,27, 112, 118
matrix, 270

tree
binary, 211
construction, 211
oct, 211
quad, 211

triangulated surface, 128
triangulated surface library, 272
true risk, 59
tsO45-VSV-G, 187
Turing pattern, 140, 237

unbiased, 108
uncertainty

statistical, 30, 34
underfitting, 44
units

physical, 175
simulation, 175

unsteady diffusion, 112
upwind difference, 130, 133
user-defined

assignment, 198
decomposition, 197

Vapnik-Chervonenkis,269
VC, 269
vectorization, 208, 213
velocity field, 143
Verlet list, 121, 122,206
VERO cell, 176, 187
virus-like particle, 86
Viterbi algorithm, 271
Vizing, 200, 202
VLP, 86
VM, 190
volume
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average, 273
averaging theorem,274
measure, 273

volume-filling fraction, 158, 166
VORPAL, 194
vortex method, 190,222
vorticity, 223

wave, 140
weight, 42
WENO, 131
wild type, 86
window

moving, 38
wiskostatin, 97
wt, 86

z-stack, 154
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