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Chapter 14

Spatiotemporal Modeling
and Simulation in Biology

Ivo F. Sbalzarini

1. Introduction

Describing the dynamics of processes in both space and time simultane-
ously is referred to as spatiotemporal modeling. This is in contrast to
describing the dynamics of a system in time only as is, for example, usu-
ally done in chemical kinetics or pathway models. Solving spatiotempo-
ral models in a computer requires spatiotemporal computer simulations.
While computational data analysis allows unbiased and reproducible pro-
cessing of large amounts of data from, e.g. high-throughput assays,
computer simulations enable virtual experiments #z silico that would not
be possible in reality. This greatly expands the range of possible pertur-
bations and observations. Computational experiments allow studying
systems whose complexity prohibits manual analysis, and they make
accessible time and length scales that cannot be reached by lab experi-
ments. Examples of the latter include molecular dynamics (MD) studies
in structural biology and studies in ecology or evolutionary biology.
In virtual experiments, all variables are controllable and observable.
We can thus measure everything and precisely control all influences and cross-
couplings. This allows disentangling coupled effects that could not be
separated in real experiments, greatly reduces or eliminates the need for
indirect control experiments, and facilitates interpretation of the results.
Finally, computational models do not involve living beings, thus enabling
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experiments that would not be possible in reality due to ethical reasons.
Although we focus on applications of spatiotemporal computer simula-
tions in biology, the employed concepts and methods are more gener-
ally valid.

Resolving a dynamic process in space greatly increases the number of
degrees of freedom (variables) that need to be tracked. Consider, for
example, a biochemical heterodimerization reaction. This reaction can be
modeled by its chemical kinetics using three variables: the concentrations
of the two monomers and the concentration of dimers. Assume now that
monomers are produced at certain locations in space and freely diffuse
from there. Their concentration thus varies in space in such a way that it
is higher close to the source and lower farther away, which greatly
increases the number of variables we have to track in the simulation.
If we are, say, interested in the local concentrations at 1000 positions, we
already have to keep track of 3000 variables. Moreover, the reactions tak-
ing place at different points in space are not independent. Each local
reaction can influence the others through diffusive transport of
monomers and dimers. The complexity of spatiotemporal models thus
rapidly increases. In fact, there is no theoretical limit to the number of
points in space that we may use to resolve the spatial patterns in the con-
centration fields. Using infinitely many points corresponds to modeling
the system as a continuum.

A number of powerful mathematical tools are available to efficiently
deal with spatiotemporal models and to simulate them. While it is not
possible within the scope of this chapter to describe each of them in
detail, we will give an overview with references to specialized literature.
We then review in detail one particular method that is well suited for
applications in biology. But before we start, we revisit some of the moti-
vations and particularities of spatiotemporal modeling in the life sciences.

In spatiotemporal modeling, nature is mostly described in four
dimensions: time plus three spatial dimensions. While time and the pres-
ence of reservoirs (integrators) are essential for the existence of dynam-
ics, three-dimensional (3D) spatial aspects also play important roles in
many biological processes. Think, for example, of predators hunting their
prey in a forest, of blood flowing through our arteries, of the electro-
magnetic fields in the brain, or of such an unpleasant phenomenon as the
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epidemic spread of a disease. In all of these examples, and many others,
the spatial distributions of some quantities play an essential role. Models
and simulations of such systems should thus account for and resolve these
distributions. When determining the location of an epileptic site in the
brain, it is, for instance, of little value to know the total electric current
density in the whole brain — we need to know precisely where the source
is. These examples extend across all scales of biological systems, from the
above-mentioned predator—prey interactions in ecosystems over mor-
phogenesis'® and intracellular processes to single molecules. Think,
for example, of conformational changes in proteins. Examples at

8-10
t’

the intracellular level include virus entry®” and transpor intracellular

signaling,'"-'?
13-15

the diffusion of proteins in the various cellular compart-
ments, or the fact that such compartments exist in the first place.
Spatial organization is important, as the same protein can have dif-
ferent effects depending on the intracellular compartment in which it is
located. The most prominent example is probably cytochrome C, which
is an essential part of the cell respiration chain in the mitochondria, but
triggers programmed cell death (apoptosis) when released into the cyto-
plasm.!® Another example is found in the role of transmembrane signal-
ing during morphogenesis. Differences in protein diffusion constants are
not large enough to produce Turing patterns,’ and the slow transport
across intercompartment membranes is essential.’” Examples of spatiotem-

h'8-2% and

poral processes at the multi-cellular level include tumor growt
cell-cell signaling,*! including phenomena such as bacterial quorum sens-
ing, the microscopic mechanism underlying the macroscopic phenome-
non of bioluminescence in certain squid.*

Given the widespread importance of spatiotemporal processes, it is
not surprising that a number of large software projects for spatiotempo-
ral simulations in biology have been initiated. Examples in computational

cell biology**** include E-Cell, MCell, and the Virtual Cell.

2. Properties of Biological Systems

Simulating spatially resolved processes in biological systems, such as
geographically structured populations, multicellular organs, or cell
organelles, provides a unique set of challenges to any mathematical
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method. One often hears that this is because biological systems are
“complex”.

Biochemical networks, ecosystems, biological waves, heart cell syn-
chronization, and life in general are located in the high-dimensional,
nonlinear regime of the map of dynamical systems,? together with quan-
tum field theory, nonlinear optics, and turbulent flows. None of these
topics are completely explored. They are at the limit of our current
understanding and will remain challenging for many years to come. Why
is this so, and what do we mean by “complex™?

Biological systems exhibit a number of characteristics that render them
difficult. These properties frequently include one or several of the following:

e high-dimensional (or infinite-dimensional in the continuum limit);
e regulated;

e delineated by complex shapes;

e nonlinear;

e coupled across scales and subsystems;

e plastic over time (time-varying dynamics); and /or

e nonequilibrium.

Due to these properties, biological systems challenge existing meth-
ods in modeling and simulation. They are thus particularly well suited to
drive the development of new methods and theories. The challenges pre-
sented by spatiotemporal biological systems have to be addressed on sev-
eral fronts simultaneously: numerical simulation methods, computational
algorithms, and software engineering.?* Numerical methods are needed

that can deal with multi-scale systems® !

and topological changes in
complex geometries. Computer algorithms have to be efficient enough
to deal with the vast number of degrees of freedom, and software plat-
forms must be available to effectively and robustly implement these

algorithms on multiprocessor computers.*?
2.1. Dimensionality and Degrees of Freedom

The large number of dimensions (degrees of freedom) is due to the fact that
biological systems typically contain more compartments, components, and
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interaction modes than traditional engineering applications such as elec-
tronic circuits or fluid mechanics.?® In a direct numerical simulation, all
degrees of freedom need to be explicitly tracked. In continuous systems,
each point in space adds additional degrees of freedom, leading to an infi-
nite number of dimensions. Such systems have to be discretized, i.e. the
number of degrees of freedom needs to be reduced to a computationally
feasible amount, which is done by selecting certain representative dimen-
sions. Only these are then tracked in the simulation, approximating the
behavior of the full, infinite-dimensional system. Discretizations must be
consistent, i.e. the discretized system has to converge to the full system
if the number of explicitly tracked degrees of freedom goes to infinity.
Discrete biological systems already have a finite number of degrees of
freedom and can sometimes be simulated directly. If the number of degrees
of freedom is too large, as is e.g. the case when tracking the motion of all
atoms in a protein, we do, however, again have to reduce them in order
for simulations to be feasible. This can be done by collecting several
degrees of freedom into one and only tracking their collective behavior.
These so-called “coarse graining” methods greatly reduce the computa-
tional cost and allow simulations of very large, high-dimensional systems

33,34

such as patches of lipid bilayers with embedded proteins,*** or actin fil-

35

aments.” Coarse graining thus allows extending the capabilities of

molecular simulations to time and length scales of biological interest.

2.2. Regulation

In biological systems, little is left to chance, which might seem surprising
given the inherently stochastic nature of molecular processes, environ-
mental influences, and phenotypic variability. These underlying fluctua-
tions are, however, in many cases a prerequisite for adaptive deterministic
behavior, as has been shown, for example, in gene regulation networks.*®
In addition to such indirect regulation mediated by bistability and sto-
chastic fluctuations, feedback and feed-forward loops are ubiquitous in
biological systems. From signal transduction pathways in single cells to
Darwinian evolution, regulatory mechanisms play important roles.
Results from control theory tell us that such loops can alter the dynamic
behavior of a system, change its stability or robustness, or give rise to
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multi-stable behavior that enables adaptation to external changes and
disturbances.*® Taking all of these effects into account presents a grand
challenge to simulation models not only because many of the hypotheti-
cal regulatory mechanisms are still unknown or poorly characterized.

2.3. Geometric Complexity

Biological systems are mostly characterized by irregular and often mov-
ing or deforming geometries. Processes on curved surfaces may be cou-
pled to processes in enclosed spaces; and surfaces frequently change their
topology, such as in fusion or fission of intracellular compartments.
Examples of such complex geometries are found on all length scales and
include the prefractal structures of taxonomic and phylogenetic trees,*”
regions of stable population growth in ecosystems,*® pneumonal and
arterial trees,” the shapes of neurons,* the cytoplasmic space,*! clusters

2

of intracellular vesicles,*? electric currents through ion channels in cell

* and protein structures.*®

membranes,* protein chain conformations,*
Complex geometries are not only difficult to resolve and represent in the
computer, but the boundary conditions imposed by them on dynamic
spatiotemporal processes may also qualitatively alter the macroscopically
observed dynamics. Diffusion in complex-shaped compartments such as
the endoplasmic reticulum (ER; Fig. 1) may appear anomalous, even if

the underlying molecular diffusion is normal.***

2.4. Nonlinearity

Common biological phenomena such as interference, cooperation, and
competition lead to nonlinear dynamic behavior. Many processes, from
repressor interactions in gene networks over predator—prey interactions
in ecosystems to calcium waves in cells, are not appropriately described
by linear systems theory as predominantly used and taught in physics and
engineering. Depending on the number of degrees of freedom, nonlin-
ear systems exhibit phenomena not observed in linear systems. These
phenomena include bifurcations, nonlinear oscillations, and chaos and
fractals. Nonlinear models are intrinsically hard to solve. Most of them are
impossible to solve analytically; and computer simulations are hampered
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Fig. 1. (a) Shaded view of a 3D computer reconstruction of the geometry of an
endoplasmic reticulum (ER) of a live cell.*” (b) Close-up of a reconstructed ER, illus-
trating the geometric complexity of this intracellular structure.

by the fact that common computational methods, such as normal mode
analysis, Fourier transforms, or the superposition principle, break down
in nonlinear systems because a nonlinear system is not equal to the sum
of its parts.?®

2.5. Coupling Across Scales

Coupling across scales means that events on the microscopic scale such
as changes in molecular conformation can have significant effects on the
global, macroscopic behavior of the system. This is certainly the case for
many biological systems — bioluminescence due to bacterial quorum
sensing?” for example, or the effect on the behavior of a whole organism
when hormones bind to their receptors. Such multi-scale systems share
the property that the individual scales cannot be separated and treated
independently. There is a continuous spectrum of scales with coupled
interactions that impose stringent limits on the use of computer simu-
lations. Direct numerical simulation of the complete system would
require resolving it in all detail everywhere. Applied to the simulation of
a living cell, this would mean resolving the dynamics of all atoms in the
cell. A cell consists of about 10 atoms, and biologically relevant
processes such as protein folding and enzymatic reactions occur on
the time scale of milliseconds. The largest molecular dynamics (MD)*
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simulations currently done consider about 10" atoms over one nanosecond.
In order to model a complete cell, we would need a simulation about
100 000 times larger, running over a millionfold longer time interval.
This would result in a simulation at least 10" times bigger than what can
currently be done. This is certainly not feasible and will remain so for
many years to come. Even if one could simulate the whole system at full
resolution, the results would be of questionable value. The amount of
data generated by such a simulation would be vast, and the interesting
macroscopic phenomena that we are looking for would mostly be masked
by noise from the small scales. In order to treat coupled systems, we thus
have to use multi-scale models?®™!
level of detail.

and formulations at the appropriate

2.6. Temporal Plasticity

While the analysis of high-dimensional, nonlinear systems is already compli-
cated as such, the systems themselves also frequently change over time in
biological applications. In a mathematical model, this is reflected by jumps
in the dynamic equations or by coefficients and functions that change over
time. During its dynamics, the system can change its behavior or switch to
a different mode. For example, the dynamics of many processes in cells
depend on the cell cycle, physiological processes in organisms alter their
dynamics depending on age or disease, and environmental changes affect
the dynamic behavior of ecosystems. Such systems are called “plastic” or
“time-varying”. Dealing with time-varying systems, or equations that
change their structure over time, is an open issue in numerical simulations.
Consistency of the solution at the switching points must be ensured in order
to prevent the simulation method from becoming unstable.

2.7. Nonequilibrium

According to the second law of thermodynamics, entropy can only
increase. Life evades this decay by feeding on negative entropy.”! The dis-
crepancy between life and the fundamental laws of thermodynamics has
puzzled scientists for a long time. It can only be explained by assuming
that living systems are not in equilibrium. Most of statistical physics and
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thermodynamics has been developed for equilibrium situations and,
hence, does not readily apply to living systems. Phenomena such as the
establishment of cell polarity or the organization of the cell membrane
can only be explained when accounting for nonequilibrium processes
such as vesicular recycling.’> Due to our incomplete knowledge of the
theoretical foundations of nonequilibrium processes, they are much
harder to understand. Transient computer simulations are often the sole
method available for their study.

3. Spatiotemporal Modeling Techniques

Dynamic spatiotemporal systems can be described in various ways,
depending on the required level of detail and fidelity. We distinguish
three dimensions of description: phenomenological vs. physical, discrete
vs. continuous, and deterministic vs. stochastic. The three axes are inde-
pendent and all combinations are possible. Depending on the chosen sys-
tem description, different modeling techniques are available. Figure 2
gives an overview of the most frequently used ones as well as examples of
dynamic systems that could be described with them.

3.1. Phenomenological vs. Physical Models

Phenomenological models reproduce or approximate the overall behav-
ior of a system without resolving the underlying mechanisms. Such mod-
els are useful if one is interested in analyzing the reaction of the system
to a known perturbation, without requiring information about how this
reaction is brought about. This is in contrast to physical models, which
faithfully reproduce the mechanistic functioning of the system. Physical
models thus allow predicting the system behavior in new, unseen situa-
tions, and they give information about how things work. Physical mod-
els are based on first principles or laws from physics.

3.2. Discrete vs. Continuous Models

The discrete vs. continuous duality relates to the spatial resolution of the
model. In a discrete model, each constituent of the system is explicitly
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Fig. 2. Most common modeling techniques for all combinations of continuous/
discrete and deterministic/stochastic models. The techniques for physical and phe-
nomenological models are identical, but in the former case the models are based on
physical principles. Common examples of application of each technique are given in
the shaded areas.

accounted for as an individual entity. Examples include MD simula-
tions,” where the position and velocity of each atom are explicitly
tracked and atoms are treated as individual, discrete entities. In a contin-
uous model, a mean field average is followed in space and time. Examples
of such field quantities are concentration, temperature, and charge
density.

In continuous models, we distinguish two types of quantities. On the
one hand, quantities whose value in a homogeneous system does not
depend on the averaging volume are called “intensive”. Examples include
concentration or temperature. If 1 L of water at 20°C is divided into two
half-liter glasses, the water in each of the two glasses will still have a tem-
perature of 20°C, even though the volume is halved. The temperature of
the water is independent of the volume of water, hence making temper-
ature an intensive property. On the other hand, quantities whose value in
a homogeneous system depends on the volume are called “extensive”.
These are quantities such as mass, heat, or charge. Neither of the two
half-liters of water has the same mass as the original liter. Intensive and
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extensive quantities come in pairs: concentration—mass, temperature—
heat, charge density—charge, etc. Field quantities as considered in con-
tinuous models are always intensive, and quantities in discrete models are
usually extensive. Corresponding extensive and intensive quantities are
interrelated through an averaging operation. The concentration of mol-
ecules can e.g. be determined by measuring the total mass of all mole-
cules within a given volume and dividing this mass by the volume. We
imagine such an averaging volume around each point in space in order to
recover a spatially resolved concentration field. If the averaging volume
chosen is too small, entry and exit of individual molecules will lead to sig-
nificant jumps in the average. With a growing averaging volume, the con-
centration may converge to a stable value. If the volume is further
enlarged, the concentration may again start to vary due to macroscopic
spatial gradients. This behavior is illustrated in Fig. 3. Above the contin-
uum limit A, the average is converged and microscopic single-particle
effects are no longer significant. The value of the continuum limit is gov-
erned by the abundance of particles compared to the size of the averag-
ing volume. If the microscopic particles are molecules such as proteins, A
is related to their mean free path. On length scales larger than the scale
of field variations L, macroscopic gradients of the averaged field become
apparent if the field is not homogeneous, i.e. if its value varies in space.
The dimensionless ratio Kn = A/L is called the Knudsen number.

Vv

I I
A I
Fig. 3. The value # of a volume-averaged intensive field quantity depends on the
size of the averaging volume V. For volumes smaller than the continuum limit A,
individual particles cause the average to fluctuate. In the continuum region above A,

the volume average can be stationary or vary smoothly due to macroscopic field
gradients above the length scale of field variations L.
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Continuous models are valid only if the microscopic and macroscopic
scales are well separated, i.e. if Kn << 1; for any spatial distribution with
Kn >> 1, discrete models are the only choice since each particle is impor-
tant and no continuum region exists. Between these two cases lies the
realm of mesoscopic models.??

Continuous deterministic models are characterized by smoothly
varying (on length scales >L) field quantities whose temporal and spatial
evolution depends on some derivatives of the same or other field quanti-
ties. The fields can, for example, model concentrations, temperatures, or
velocities. Such models are naturally formulated as unsteady partial dif-

5655 since derivatives relate to the existence of

ferential equations (PDEs),
integrators, and hence reservoirs, in the system. The most prominent
examples of continuous deterministic models in biological systems
include diffusion models, advection, flow, and waves. Discrete determin-
istic models are characterized by discrete entities interacting over space
and time according to deterministic rules. The interacting entities can,
e.g. model cells in a tissue,® individuals in an ecosystem, or atoms in a
molecule.* Such models can mostly be interpreted as interacting particle
systems or automata. In biology, discrete deterministic models can be

found in ecology or in structural biology.

3.3. Stochastic vs. Deterministic Models

Biological systems frequently include a certain level of randomness, as is
the case for unpredictable environmental influences, fluctuations in mol-
ecule numbers upon cell division, and noise in gene expression levels.
Such phenomena can be accounted for in stochastic models. In such
models, the model output is not entirely predetermined by the present
state of the model and its inputs, but it also depends on random fluctu-
ations. These fluctuations are usually modeled as random numbers of
a given statistical distribution. Continuous stochastic models are charac-
terized by smoothly varying fields whose evolution in space and time
depends on probability densities that are functions of some derivatives of
the fields. In the simplest case, this amounts to a single noise term mod-
eling, e.g. Gaussian or uniform fluctuations in the dynamics. Models of this
kind are mostly formalized as stochastic differential equations (SDEs).>
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These are PDEs with stochastic terms that can be used to model proba-
bilistic processes such as the spread of epidemics, neuronal signal trans-

duction,®”®

or evolution theory. In discrete stochastic models, probabilistic
effects mostly pertain to discrete random events. These events are
characterized by their probability density functions. Examples include
population dynamics (individuals have certain probabilities to be born,
die, eat, or be eaten), random walks of diffusing molecules, or stochasti-
cally occurring chemical reactions. Several methods are also available for
combining stochastic and deterministic models into hybrid stochastic-

deterministic models.>?¢?

4. Spatiotemporal Simulation Methods

Depending on the modeling technique chosen for a given system (Fig. 2),
different numerical methods exist for simulating the resulting model in a
computer. While it is impossible to give an exhaustive list of all available
methods, we will highlight the most important ones for each category of
models. The same numerical methods can be used for both physical and
phenomenological models.

4.1. Methods for Discrete Stochastic Models

Discrete stochastic models as formulated by events occurring according
to certain probability distributions can be simulated using stochastic

6L62 or the

simulation algorithms (SSAs) such as Gillespie’s algorithm
Gibson-Bruck algorithm.®* While most of these algorithms were origi-
nally developed for temporal dynamics only, they have since been gen-
eralized to spatiotemporal models such as reaction-diffusion
models.*** Monte Carlo methods®®®” provide the basis for most of
these algorithms. Simulating probabilistic trajectories of the model thus
amounts to sampling from the model probability distributions. In
order to estimate the average trajectory or the standard deviation,
ensemble averages over many simulations must be computed. This fun-
damentally limits the convergence properties of these methods to
o/ VN ), where N is the number of simulations performed.®® Agent-

based methods with probabilistic agents are also frequently used to
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simulate discrete stochastic models. A prominent example is Brownian
agents.®”

4.2. Methods for Discrete Deterministic Models

Simulations of discrete deterministic models are frequently implemented
using methods from the class of finite automata. The most prominent

7072 and agent-based simulations.”® In

examples are cellular® automata
finite automata, spatially distributed computational cells (or agents) with
certain attributed properties interact according to sets of deterministic
rules. These interaction rules map the state (the values of the attributed
properties) of the interacting cells to certain actions, which in turn
change the states of the cells. Finite automata are powerful and fascinat-
ing tools, as already small sets of simple rules can give rise to very com-
plex nonlinear model behavior. They can be used for diverse purposes
such as studying behavioral aspects of interacting individuals in ecosys-
tems, studying artificial life, simulating interacting neurons,” simulating
social interactions,”* or simulating pattern-forming mechanisms in mor-
phogenesis.> Another important class of discrete deterministic simula-
tions is found in MD.?® Here, the atomistic behavior of molecules is
simulated by explicitly tracking the dynamics and positions of all atoms.
Atoms in classical MD are modeled as discrete particles that interact
according to deterministic mechanisms such as interatomic bonds, van
der Waals forces, or electrostatics.

4.3. Methods for Continuous Stochastic Models

Continuous stochastic models formulated as SDEs can be numerically

75,76 most

simulated using a variety of stochastic integration methods,
notably Euler—-Maruyama or Milstein’s higher-order method.”® It is,
however, important to keep in mind that each simulation represents just
one possible realization of the stochastic process. In order to estimate

means and variances, many independent simulations need to be performed

* The word “cellular” refers to computational cells in the algorithm and does not
imply any connection with biological cells.
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and an ensemble average computed.”® While the topic of SDEs may seem
exotic to many computational biologists, it is more widespread than one
would think. Simulating, for example, a reaction-diffusion model with
stochastic reactions amounts to numerically solving an SDE.%*°

4.4. Methods for Continuous Deterministic Models

Continuous deterministic models as represented by PDEs can be solved
using any of the discretization schemes from numerical analysis.”””® The
most common ones include finite difference (FD) methods,” finite
clement (FE) methods,’**! and finite volume (FV) methods for conser-
vation laws.®>* FD methods are based on Taylor series expansions®* of
the spatial field functions and approximation of the differential operators
by difference operators such that the first few terms in the Taylor expan-
sion are preserved. FE methods express the unknown field function in a
given function space. The basis functions of this space are supported on
polygonal elements that tile the computational domain. Determining
the unknown field function then amounts to solving a linear system of
equations for the weights of the basis functions on all elements. FV
methods make use of physical conservation laws such as conservation of
mass or momentum. The computational domain is subdivided into dis-
joint volumes, for each of which the balance equations are formulated
(change of volume content equals inflow minus outflow) and numeri-
cally solved.

All of these methods have the common property that they require a
computational mesh — regular or irregular — that discretizes the com-
putational domain into simple geometric structures such as lines (FD),
areas (FE), or volumes (FV) with the appropriate connectivity. For
complex-shaped domains as they frequently occur in biological systems
(cf. Fig. 1), it can be a daunting task to find a good connected mesh that
respects the boundary conditions and has sufficient regularity to preserve
the accuracy and efficiency of the numerical method. Mesh-free particle

methods®™%”

relax this constraint by basing the discretization on point
objects that do not require any connectivity information. While particle
formulations are the natural choice for discrete models, their advantages

can be transferred to the continuous domain using continuum particle
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methods as described in Sec. 5; they are based on approximating the
smooth field functions of a continuous model by integrals that are being
discretized onto computational elements called particles. While the par-
ticles in discrete simulations represent real-world objects such as mole-
cules, atoms, animals, or cells, particles in continuous methods are
computational elements that collectively approximate a field quantity as
outlined in Sec. 5.1.

4.5. Representing Complex Geometries
in the Computer

Complex geometries and surfaces can be represented in the computer

8 which can be classified according to the

using a variety of methods,
connectivity information they require. Triangulated surfaces® are an
example of connectivity-based representations, as they require each tri-
angle to know which other triangles it is connected to. Establishing this
connectivity information on complex-shaped surfaces is computationally
expensive, so these representations are preferably used in conjunction
with numerical methods that operate on the same connectivity. This is
the case when using FE methods with triangular elements in simulations

39 or FD methods in conjunction with

involving triangulated surfaces,
pixelated surface representations.”’ An example of a complex triangulated
surface is shown in Fig. 1(a).

Connectivity-less surface representations include scattered point
clouds® and implicit surface representations such as level sets.”® In level
set methods, the geometry is implicitly represented as an isosurface of a
higher-dimensional level function. Level sets are well suited to be used in
combination with particle methods because the level function can
directly be represented on the same set of computational particles.”*¢
This allows treating arbitrarily complex geometries at constant computa-
tional cost, and simulating moving and deforming geometries with no
linear stability limit. The ER shown in Fig. 1(b) was, e.g. represented in
the computer as a level set in order to simulate diffusion processes on its

surface using particle methods.”
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5. Introduction to Continuum Particle Methods

Particle methods are point-based spatiotemporal simulation methods
that exhibit a number of favorable properties, which help address the
complications of spatiotemporal biological systems (cf. Sec. 2):

e They are the most universal simulation method. Particle methods
can be used for all types of models in Fig. 2, whereas most other
numerical methods are limited to one or two types of models.

e They are intimately linked to the physical or biological process they
represent, since particles correspond to real-world entities (in dis-
crete models) or approximate field quantities (in continuous models).
The interactions between the particles can mostly be intuitively
understood as forces or exchange of mass. This prevents spurious,
unphysical modes from showing up in the simulation results, a capa-
bility that has recently also been developed for FE methods.””

e They are well suited for simulations in complex geometries, such as
the ER shown in Fig. 1,* and for simulations on complex curved
surfaces such as intracellular membranes.”® No computational
mesh needs to be generated and no connectivity constraints satis-
fied. This effectively avoids the increased algorithmic complexity
of mesh-based methods in complex geometries due to loss of the
“nice” structure of the matrix.

e Due to their inherent regularity (particles have a finite size that
defines the resolution of the method; cf. Sec. 5.1), particle meth-
ods can easily handle topological changes such as fusion and fission
in the simulated geometry. Mesh-based methods need special reg-
ularization so as not to become unstable when two fusing or sep-
arating objects touch in exactly one point.

e They are inherently adaptive, as particles are only required where
the represented quantity is present, and the motion of the particles
automatically tracks these regions. This constitutes an important
computational advantage compared to mesh-based methods,
where a mesh is required throughout the computational domain.
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e Particle methods are not subject to any linear convective stability
condition (CFL condition?®??).?1% When simulating flows or
waves with mesh-based methods, the CFL condition imposes a
time step limit such that the flow or wave can never travel more
than a certain number of mesh cells per time step. In particle
methods, convection simply amounts to moving the particles with
the local velocity field, and no limit on how far they can move is
imposed as long as their trajectories do not intersect.

e Thanks to advancements in fast algorithms for N-body interactions
(cf. Sec. 6), particle methods are as computationally efficient as
mesh-based methods. In addition, the data structures and opera-
tors in particle simulations can be distributed across many proces-
sors, enabling highly efficient parallel simulations.*?

Since continuum applications of particle methods are far less known
than discrete ones, we focus on deterministic continuous models. For
reasons of simplicity, however, we will not cover the most recent exten-
27-31

sions of particle methods to multi-resolution and multi-scale prob-

lems using concepts from adaptive mesh refinement,'® adaptive global
mappings’lol 100

In continuum particle methods, a particle p occupies a certain posi-
tion x, and carries a physical quantity  , referred to as its strength. These

particle attributes — strength and location — evolve so as to satisfy the
7

or wavelets.

underlying governing equations in a Lagrangian frame of reference.’
Simulating a model thus amounts to tracking the dynamics of all N com-
putational particles carrying the physical properties of the system being
simulated. The dynamics of the N particles are governed by sets of ordi-
nary differential equations (ODEs) that determine the trajectories of the
particles p and the evolution of their properties @ over time. Thus,

dx, N
e = vz,(t) = ziK(xp,xq;wp,wq) p=L2,...,N
q:

dew N
d_tpz ZF(xp,xq;wp,wq) p=L2,..,N,
=1

—b—
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where »,(7) is the velocity of particle p at time z The dynamics of
the particles are completely defined by the functions K and F,
which represent the model being simulated. In pure particle methods,
K and F emerge from integral approximations of differential opera-
tors (cf. Sec. 5.2.1); in hybrid particle-mesh (PM) methods, they
entail solutions of field equations that are discretized on a superim-
posed mesh (cf. Sec. 5.2.2). The sums on the right-hand side of
Eq. (1) correspond to quadrature®* (numerical integration) of some
functions.

In order to situate continuum particle methods on the map of
numerical analysis, we consider the different strategies to numerically
solve a differential equation as outlined in Fig. 4 for the example of a sim-
ple PDE, the Poisson equation, which we wish to solve for the intensive
field quantity #. One way consists of discretizing the equation onto a
computational mesh with resolution # using FD, FE, or FV, and then
numerically solving the resulting system A# = f of linear algebraic equa-
tions. The discretization needs to be done consistently in order to ensure
that the discretized equations model the same system as the original
PDE, and the numerical solution of the resulting linear system is subject
to stability criteria. An alternative route is to solve the PDE analytically

differential equation exact analytic solution

V2u(z) = f(x) u(x) = [ G(z,y)f(y) dy

discretization error | consistency accuracy | quadrature error

Ui—1,5 + Wit1,5 + Uij—1
+’Uq‘,j+1 — 4um- = h2fi,j accuracy
— Au = f stability
discretized equation

u(wp) = Zq qu(w;h yq)
u=A"'f
discrete solution

Fig. 4. Strategies to numerically solve a differential equation, illustrated on the
example of the two-dimensional (2D) Poisson equation: (1) discretization of the
PDE on a mesh with resolution 4, followed by numerical solution of the discretized
equations for the intensive property #; or (2) integral solution for the extensive prop-
erty that is numerically approximated by quadrature.

—b—
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using Green’s function®® G(x, y).° The resulting integral defines an exten-
sive quantity that is then discretized and computed by a quadrature®*
with some weights w. The values of the weights depend on the particu-
lar quadrature rule used. For midpoint quadrature!'®* and the example of
Fig. 4, they would be w, = f(y,)dy. This defines the right-hand side of
Eq. (1) for this example. The advantages of the latter procedure are that
the integral solution is always consistent (even analytically exact), and
that numerical quadrature is always stable. The only property that
remains to be concerned about is the solution’s accuracy. The first way
of solution is sometimes referred to as the “intensive method”, and the
second as the “extensive method”.

5.1. Function Approximation by Particles

The approximation of a continuous field function #(x) by particles in
d-dimensional space can be developed in three steps:

o Step 1: integral representation. Using the Dirac é-function identity,
the function # can be expressed in integral form as

u(x) = [u(y) 8(x - y)dy. (2)

In point particle methods such as random walk (cf. Sec. 7.1), this
integral is directly discretized on the set of particles using a
quadrature rule with the particle locations as quadrature points.
Such a discretization, however, does not allow recovering the
function values at locations other than those occupied by the
particles.

o Step 2: integral mollification. Smooth particle methods relax this
limitation by regularizing the d-function by a mollification kernel
§ = e98(x/€), with lim_,, {, = &, that conserves the first 7 — 1
moments of the §-function identity.* The kernel £, can be thought
of as a cloud or blob of strength, centered at the particle location,

® Note that Green’s function always exists, even though it may not be known in
closed form in most cases.
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Fig. 5. Two particles of strengths ®, and ®,, carrying mollification kernels .

as illustrated in Fig. 5. The core size € defines the characteristic
width of the kernel and thus the spatial resolution of the method.
The regularized function approximation is defined as

u (%)= [u(y). (x— y)dy (3)

and can be used to recover the function values at arbitrary loca-
tions x. The approximation error is of order €, hence

1 (%)= u(x)+O("). (4)

As introduced above, 7 is the first nonvanishing moment of the
mollification kernel.?”*® For positive symmetric kernels, such as a
Gaussian, 7= 2.

o Step 3: mollified integral discretization. The regularized integral in
Eq. (3) is discretized over N particles using the quadrature rule

N
ul (%)= ¢ (v-xb), (5)
p=1

where x, and a)g are the numerical solutions of the particle positions
and strengths, determined by discretizing the ODEs in Eq. (1) in
time. The quadrature weights o, are the particle strengths and
depend on the particular quadrature rule used. The most frequent

o S 102 . _
choice is to use midpoint quadrature,’™ thus setting », = u(x,)V,,

—b—
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where V, is the volume of particle p. Using this discretization, we
obtain the function approximation

W () = () + 0(5)5 = u(x) + O() + O(QJX, (6)

€ €

where s depends on the number of continuous derivatives of the mol-
lification kernel ., and 4 is the interparticle distance. For a
Gaussian, s — oo,

From the approximation error in Eq. (6), we see that it is imper-
ative that the distance » between any two particles is always less than
the kernel core size €, thus maintaining

é<l (7)
€

at all times. If this “particle overlap” condition is violated, the approx-
imation error becomes arbitrarily large, and the method ceases to be
well posed.

5.2. Operator Approximation

Two strategies are distinguished to evaluate ditferential operators on
particles: pure particle methods and hybrid PM methods.

5.2.1. Pure particle methods

In pure particle methods, differential operators on functions that are rep-
resented on particles are approximated by integral operators. The sums
on the right-hand side of Eq. (1) thus represent the discretized versions
of these integral operators. If we are interested in diffusion processes, for
example, the relevant differential operators are V> and V- (DV) (cf. Sec. 7).
Both of them can be approximated by integral operators that allow con-
sistent evaluation on scattered particle locations and conserve mass
exactly'®1% (cf. Sec. 7.2). The concept of this approximation method
has been extended to a general, systematic framework for approximating

—b—
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any differential operator by a corresponding integral.'® Following this
framework, a differential operator I? of order 8 applied to a continuous
function #(x) is equivalent to the integral operator

() = 5 [ u(9) £ ) nf = )y (8)

with a suitable scaled kernel n8(x) = en’(x/¢€) of core size . This inte-
gral operator is then discretized over the particles using, e.g., midpoint
quadrature'® of resolution 4, yielding

ng(xp):ﬁZVq(u(xq)iu(xp))nf(xp - %,). (9)
7

Pure particle methods thus amount to evaluating direct particle—
particle (PP) interactions, which means that for each particle
p=1,2,...,Nwe have to compute a sum over all particles g=1, 2,....N
[cf. Eq. (1)]. The computational complexity of this N-body problem
thus nominally scales as O( N?). Efficient algorithms do, however, exist to
reduce it to O(N) in all practical cases. These algorithms will be outlined
in Sec. 6. Alternatively, hybrid PM methods, as described next, can be used.

5.2.2. Hybrid particle-mesh (PM) methods

In hybrid PM methods, as pioneered by Harlow,'* some (but not all)
of the differential operators are evaluated on a superimposed regular
Cartesian mesh.'”” This amounts to splitting the operators into sepa-
rate short-range and long-range contributions. The short-range inter-
actions are directly evaluated on the particles, whereas the long-range
contributions are evaluated on the mesh. Using direct PP interactions
for the short-range part allows better resolving local phenomena and
retaining the favorable stability properties of particle methods in the
case of convection (moving the particles is a local operation).
Prominent examples of hybrid PM methods can be found in fluid
dynamics and electrostatics. Both applications involve long-range
interactions in order to compute the velocities (fluid dynamics) or

—b—
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forces (electrostatics). In a hybrid PM approach, such long-range
interactions are modeled by a corresponding field equation that is
then solved on the mesh. In many applications, the fields to be dis-
cretized are gradient fields, such that the corresponding long-range
operator is the Laplace operator and the field equation hence is the
Poisson equation (cf. Fig. 4). This equation can efficiently be solved
using, ¢.g. FD”? implemented in a multigrid algorithm,'*® or Poisson
solvers based on fast Fourier transforms. In hybrid PM methods, the
functions K and F in Eq. (1) may thus contain contributions corre-
sponding to the solution of the field equation on the mesh.
Therefore, hybrid methods require

e interpolation of the w, carried by the particles from the irregular
particle locations %, onto the M regular mesh points (@,,):

N

h /AP

wm:ZQ(xm—xp)wl, m=12,..., M, (10)
p=1

e and interpolation of the field solution F, (and, similarly, K
it present) from the mesh to the (not necessarily same) particle
locations (F,):

F) =Y R(x)-x,)E, p=12,.N. (11)

The accuracy of the method depends on the smoothness of K and F,
on the interpolation functions Q and R, and on the mesh-based discretiza-
tion scheme employed for the solution of the field equations. In order to
achieve high accuracy, the interpolation functions Q and R must be
smooth to minimize local errors, and conserve the moments of the inter-
polated quantity to minimize far-field errors.”’” In addition, it is necessary
that Q is at least of the same order of accuracy as R in order to avoid spu-
rious contributions to F).'"” This can easily be achieved by selecting the
same interpolation function, W, for both operations: Q= R = W. Accurate
interpolation functions that conserve the moments of the interpolated

—b—
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quantity up to a certain order can be constructed systematically.'”
Conservation of moments is an important property in the simulation of
biological systems, where the laws of physics require quantities such as
mass (zero-order moment), impulse (first-order moment), and angular
impulse (second-order moment) to be conserved. Building this conser-
vation right into the method constitutes an obvious advantage. One of
the most commonly used moment-conserving interpolation kernels (but
not the only one) is the M, function,'® given by

1—%(5s2 +35%) if0<s<1

Mg(s)=<%(2_s>2(1—s) if1<s<2 (12)
0 ifs>2,

where s= |x|/h = |x,— x,|/h. Hereby, b denotes the mesh spacing and
x is the distance from the particle to the respective mesh node, as illus-
trated in Fig. 6. The M kernel is third-order accurate, exactly con-
serving moments up to and including the second moment. For each
particle-node pair, we compute one weight 0 < W, <1 and the por-

tion w,, = W _w, of the strength of particle p is attributed to mesh node

Wiz Wi(xs)
W (2 1) h
.TQ:I ol g
T4 : T3

Fig. 6. Darticle-to-mesh interpolation in one dimension. The interpolation weight
is computed from the mesh spacing # and the distance x between the particle and
the mesh node. For each particle-node pair, a different weight is computed. The
particle strength is then multiplied by these weights and assigned to the mesh nodes.
Mesh-to-particle interpolation works analogously and uses the same interpolation
kernels.
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m (Fig. 6). This is done independently for each particle and can efficiently
be parallelized on vector and multi-processor computers.’ In higher
dimensions, the kernels are tensorial products of the one-dimensional
(1D) kernels. Their values can thus be computed independently in
each spatial direction and then multiplied to form the final interpola-
tion weight for a given particle and mesh node: W(«,y,z) =
W, () W, () W(2).

Meshes are used not only to accelerate the computation of long-
range interactions in hybrid PM schemes, but also to periodically reini-
tialize the particle locations to regular positions in order to maintain the
overlap condition of Eq. (7). Reinitialization using a mesh is needed if
particles tend to accumulate in certain areas of the computational domain
and to disperse in others. In such cases, the function approximation
would cease to be well posed as soon as the condition in Eq. (7) is vio-
lated. This can be prevented by periodically resetting the particle posi-
tions to regular locations by interpolating the particle properties to the
nodes of a regular Cartesian mesh as outlined above, discarding the pres-
ent set of particles, and generating new particles at the locations of the
mesh nodes. This procedure is called remeshing.®®

6. Efficient Algorithms for Particle Methods

The evaluation of PP interactions is a key component of particle meth-
ods and PM algorithms. Equation (1), however, defines an N-body prob-
lem, which is of potentially O(N?) complexity to solve. It is this high
computational cost that has long prevented the use of particle methods
in computational science. Fortunately, this can be circumvented and the
complexity can be reduced to O(N) in all practical cases. Together with

32 this makes particle

efficient implementations on parallel computers,
methods a competitive alternative to mesh-based methods.

If the functions K and F in Eq. (1) are local (but not necessarily com-
pact), the algorithmic complexity of the sums in Eq. (1) naturally reduces
to O(N) by considering only interactions within a certain cut-oft radius
7. around each particle. This corresponds to short-range interactions
where only nearby neighbors of a given particle significantly contribute.

The specific value of 7, depends on the interaction law, i.e. the kernel

—b—
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functions K and F in Eq. (1), and has to be chosen to meet the desired
simulation accuracy. The most conservative choice of 7, is given by the
radius where the interaction contributions fall below the machine epsilon
of the computer®* and hence become insignificant.

For long-range interactions whose value decays as O(1/7?) or slower
with increasing interparticle distance 7, cut-offs are not appropriate and
we have to consider the full N-body problem of Eq. (1). Examples of
such interactions include Coulomb forces, gravitation, or the Biot—Savart
law in electromagnetism and fluid dynamics. Fast algorithms such as mul-

10 (¢f. Sec. 6.2) are, however, available to reduce the

tipole expansions
complexity of the corresponding pure particle method to O(N) also in
these cases, albeit with a large prefactor. This large prefactor typically
causes pure particle implementations of long-range interactions to be
several orders of magnitude slower than the corresponding hybrid PM
algorithm. Nevertheless, fast N-body methods are appealing from a

conceptual point of view.

6.1. Fast Algorithms for Short-Range Interactions

Considering only the interactions within an 7 -neighborhood naturally
reduces the algorithmic complexity of the PP evaluation from O(N?) to
O(N) with a prefactor that depends on the value of 7, and the local par-
ticle density. This requires, however, that the set of neighbors to interact
with is known or can be determined with at most O(N) cost. Since par-
ticle methods do not use any connectivity information (cf. Sec. 4.4),
neighborhood information is not explicitly available and it changes over
time if particles move. Finding the neighbors of each particle by search-
ing over all other particles would again render the complexity of the algo-
rithm O(N?), annihilating all benefits of a finite cut-off radius 7. Two
standard methods are available to find the interaction partners in O(N)
time: cell lists and Verlet lists.

In cell lists, particles are sorted into equisized cubic cells whose size
corresponds to the interaction cut-off 7. Each cell contains a (linked) list
of the particles residing in it. Interactions are then computed by sweep-
ing through these lists. If particle p is to interact with all of its neighbors
closer than 7, this involves considering all other particles in the same cell

—b—
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-

domain domain

(@) (b) (©)

Fig. 7. Cell-cell interactions in cell list algorithms. (a) For asymmetric PP interac-
tions, all adjacent cells have to be considered and the interactions are one-sided.
(b) In traditional symmetric cell list algorithms, interactions are required on all but
one boundary. (¢) Introducing diagonal interactions (1-3), the cell layers for the
boundary conditions (light blue; cf. Sec. 7.2.2) also become symmetric. This reduces
the memory overhead and improves the efficiency of parallel implementations by
reducing the communication volume. The 2D case is depicted. See text for interac-
tions in the 3D case.

as particle p (center cell) as well as all particles in all immediately adjacent
cells [Fig. 7(a)]. The shaded areas around the computational domain in
Fig. 7 are needed to satisfy the boundary conditions using the method of
images as outlined in Sec. 7.2.2.

For spherically symmetric interactions in 3D, cell lists contain up to
27/(4n/3) = 6 times more particles than actually needed. Verlet lists'!!
are available to reduce this overhead. For each particle p, they consist of
an explicit list of all other particles with which it has to interact. This list
contains the indices of all particles within a sphere around ,. The radius
of this Verlet sphere has to be at least 7, but is usually enlarged by a cer-
tain margin (skin) in order for the Verlet lists to be valid over several sim-
ulation time steps. The Verlet lists need to be rebuilt as soon as any
particle has moved farther than the skin margin. Choosing the skin size
is a trade-off between minimizing the lengths of the lists (and hence the
number of interactions to be computed) and maximizing the time
between list updates.!*? In the 3D case, Verlet list algorithms are at most
81/(4m(1 + skin)?) times faster than cell list algorithms. In order to ensure
overall O(N) scaling, Verlet lists are constructed using intermediate
cell lists.
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Another point of possible optimization concerns the symmetry of PP
interactions. By construction of the kernel-based interactions, the effect
of a particle p on another particle g4 is the same (with a possible sign
change) as the effect of particle 4 on p. Looping over all particles and
computing the interactions with all neighbors within the cut-off radius
thus considers every interaction twice. The computational cost can be
reduced by a factor of (at most) two if interactions are evaluated sym-
metrically. We then only loop over half of the neighbors and attribute the
interaction contributions to both participating particles at once. How,
then, is it possible to make sure that all interactions are considered exactly
once? In cell lists, it is sufficient to loop over only those particles g in the
center cell for which 4> p, as well as over all particles in half of the neigh-
boring cells [Fig. 7(b)]. In Fig. 7(c), diagonal interactions are introduced
in order to further reduce the memory overhead for the boundary layers
by 33% in the 2D case and 40% in the 3D case.?* In parallel implementa-
tions, the diagonal interaction scheme moreover has the advantage of
lower communication overhead. If the cells are numbered in ascending
x,%,(2), starting from the center cell with number 0, the symmetric cell-
cell interactions are®? 0-0, 0-1, 0-3, 0—4, and 1-3 in the 2D case; and
0-0, 0-1, 0-3, 04, 0-9, 0-10, 0-12, 0-13, 1-3, 1-9, 1-12, 3-9, 3-10,
and 4-9 in the 3D case. Verlet list algorithms remain unchanged in
the symmetric case, as the Verlet lists are constructed using interme-
diate symmetric cell lists and hence only contain unique interactions in
the first place.

6.2. Fast Algorithms for Long-Range Interactions

In 1986, Joshua Barnes and Piet Hut!''® introduced a fast hierarchical
O(Nlog N) algorithm for N-body problems. The Barnes—Hut algorithm
divides the domain into a tree of regular cuboidal cells. Each cell in the
tree has half the edge length of its parent cell, and stores information
about the center of mass and the total strength of all particles inside. The
tree is then traversed for each particle p for which the interactions are to be
evaluated. Direct PP interactions are only computed for nearby interaction
partners 4. If the partners are sufficiently far away, they are collectively
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approximated by the center of mass and the total strength of the largest
possible cell that satisfies the closeness criterion

a

A< (13)
where 4 is the diagonal of the cell currently being considered, A is the
distance of particle p from the center of mass of that cell, and 6 is a fixed
accuracy parameter ~1. This amounts to coarse-graining clusters of
remote particles to single particles.

Based on the Barnes-Hut algorithm, Leslie Greengard and
Vladimir Rokhlin presented the fast multipole method (FMM),!10:114115
Their formulation uses a finite series expansion of the interaction
kernel and direct cell-cell interactions in the tree. Compared to the
Barnes—Hut algorithm, this further reduces the algorithmic complexity

to O(N).

7. Particle Methods for the Simulation
of Diffusion Processes

We consider the simulation of continuous spatial diffusion processes as
a simple example of biological relevance.''® Physically, the macroscopic
phenomenon of diffusion is created by the collective behavior of a
large (in theory, infinite) number of microscopic particles, such as
molecules, undergoing Brownian motion.''** From continuum

9 e can define a concentration field as the mean mass of par-

theory,
ticles per unit volume at every point in space (cf. Sec. 3.2). For abundant
diffusing particles, this allows formulating a continuous deterministic
model for the spatiotemporal evolution of the concentration field
uw(x, t) in a closed, bounded domain Q. This model is formulated as

the PDE

ou(x,t)

o =V (D(x,t)Vu(x,t)) forxe{Q/dQ}, 0<t<T. (14)

In this diffusion equation, D(«,#) denotes the diffusion tensor, V the
Nabla operator, and dQ the boundary of the domain Q.

—b—
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Terminology classifies diffusion processes based on the structure of
the diffusion tensor:

e If Dis constant everywhere in Q, diffusion is called “homogeneous”.
A D that varies in space defines “inhomogeneous diffusion”.

e If Dis proportional to the identity matrix, D = D1, diffusion is
called “isotropic”; otherwise, “anisotropic”. Isotropic diffusion is
characterized by a flux whose magnitude does not depend on its
direction, and it can be described using a scalar diffusion constant D.
For isotropic, homogeneous diffusion, the diffusion equation
simplifies to

ou(x,t)

” = DV2u(x,r) for x€{Q/oQ), 0<t<T, (15)

where V2 is the Laplace operator.
At =0, the concentration field is specified by an initial condition

w(x,t =0)=uy(x) xe

The model is completed by problem-specific boundary conditions pre-
scribing the behavior of # along JQ. The most frequently used types of
boundary conditions are Neumann and Dirichlet conditions. A Neumann
boundary condition fixes the diffusive flux through the boundary to a pre-
scribed value £}, (7 is the outer unit normal on the boundary):

on

a——Vu(x,t)-nsz(x,t) forxedQ, 0<t<T;
n

whereas a Dirichlet condition prescribes the concentration f;, at the
boundary:

w(x,t)= fp(x,t) forxedQ, 0<r<T.

If the boundary function fis 0 everywhere on JQ, the boundary
condition is called “homogeneous”.

—b—
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In the framework of pure particle methods, continuous diffusion
models can be simulated using particles carrying mass as their extensive
strength w and collectively representing the intensive concentration field #.
In the following, we review the stochastic method of random walk (RW)
and the deterministic particle strength exchange (PSE) method. Using a
1D test problem, we then compare the accuracy and the convergence
behavior of the two methods.

7.1. The Method of Random Walk (RW)

The Random Walk (RW)!129 method is based on the stochastic inter-
pretation of Green’s function solution® (cf. Fig. 4) of the diffusion
equation:

(1) = [ Glw, 5, ) (3)dy. (16)

In the case of d-dimensional isotropic homogeneous free-space diffu-
sion, i.e. D= D1 and Q = IR Green’s function is explicitly known
to be'?!

1 |- 515
G(%J’J)—mexp ~aDr | (17)

The RW method interprets this function as the transition density of a sto-
chastic process.'?? In 4 dimensions, the method starts by either uniformly
or randomly placing N particles p at initial locations x, p = 1, 2,...,N.
Each particle is assigned a strength of o, = Vpuo(xz?), where V, is the par-
ticle volume. This defines a point particle function approximation (cf.
Sec. 5.1) to the initial concentration field #,(x). The particles then
undergo a random walk by changing their positions at each positive-
integer time step # according to the transition density in Eq. (17):

xZ” =), + N7(0,2Dét), (18)

—b—
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where NZ (0, 2Dé6¢) is a vector of i.i.d. Gaussian random numbers
with each component having a mean of zero and a variance of 2 Dot
ot is the simulation time step size. Moving the particles according
to Eq. (18) creates a concentration field that, for N — oo, converges
to the exact solution of the diffusion equation as given in Eq. (16).
Homogeneous Neumann boundary conditions can be satisfied
by reflecting the particles at the boundary. Drawing the step
displacements in Eq. (18) from a multivariate Gaussian distribu-
tion readily extends the RW method to anisotropic diffusion
processes.

RW is a stochastic simulation method. This Monte Carlo®®” char-
acter limits its convergence capabilities (cf. Sec. 4.1), since the variance
of the mean of N i.i.d. random variables is given by 1/VN times the
individual variance of a single random variable® (cf. Sec. 7.3).
Moreover, the solution deteriorates with increasing diffusion constant D
as the variance of the random variables becomes larger. In the case of
small D (<<6t), the motion of the particles can be masked by the sam-
pling noise. RW thus works best for an intermediate range of diffusion
constants.

7.2. Particle Strength Exchange (PSE)

The Particle Strength Exchange (PSE)!°*!%* method is a determinis-
tic pure particle method to simulate continuous diffusion processes
in space. It is based on approximating the diffusion operator by
a mass-conserving integral operator that can be consistently evaluated
on the particle locations (cf. Sec. 5.2.1). The PSE scheme has
been devised by Degond and Mas-Gallic for both isotropic'®?

104

and anisotropic'®* diffusion. We illustrate the concept in the

isotropic case. Anisotropic PSE is analogous and follows a similar
derivation.'**

7.2.1. PSE for isotropic diffusion

In free space, i.e. Q = IR”, the isotropic PSE method!'® obtains an integral
approximation to the Laplace operator in Eq. (15) by considering the
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concentration at a location y and expanding it into a Taylor series®

around x:
r+1 .
x>+2[ (r-x)-v,) u<x'>]
+O(y -l ). (19)

Subtracting #(x) on both sides, multiplying the whole equation by a
scaled kernel function 1,(x) = €“1(x/€) of core size € > 0, and integrat-
ing over y yields

[l () = )1 (20 = y)dly =

7f+1
2 LRd (-2 Vo) ux)] ,_ nx—y)dy
+||u||wo(f Ny =l n.(x - y)dy). (20)

For the approximation to be consistent, we have to ask the following

requirement for the kernel function n'%:

d
a 0, VaeN o=2e,,
Jiwe T e = te 2

2, it o= 2e;, ze{12 4.

7 is the order of the approximation and x = (%, x,,..., x,) € R’ @ =
(0, Oy,...,00)) € INY is a d-dimensional index and (e, e,,...,e,) is the
canonical basis of IR”. In the 3D case, the above requirement can be
expressed as

J]R? ;0 1)(2)dx = 25,3‘ for 72,7=1,2,3 (22)
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J.]Rgx?xgzx? Nx)dx=0 if 5 +4 +i3=1 or 3<s +i, +i3<7r+1

(23)
[is el ()] e < o0 (24)

for i,, 4, 1; € INy, and §;= 1 if 7= jand 0 otherwise. The first condition
normalizes the kernel function. The second one requires all moments up
to order 7+ 1 to vanish, and the third one is required in order to bound
the truncation error. Using the requirement in Eq. (21), the only
remaining terms in Eq. (20) are

[ ly) =, (2= )y = V(@) +O(), (o5

and the integral operator that approximates the Laplacian is found as

Viu(e) =2 [ ) = ulx)m. (x = y)dy. 26)

While this operator is not the only possibility of discretizing the
Laplacian onto particles, it has the big advantage of conserving
mass exactly.’® The approximation error is O(¢”), with 7 being the
largest integer for which the condition in Eq. (21) is fulfilled.®
Equation (26) is discretized using the particle locations as quadrature
points. Thus,

N
V2 (xy) = e‘zzlafquj — V(%) - x7), (27)
q:

where V is the volume of particle 4. Inserting this discretized operator
into Eq. (15), the final PSE scheme for isotropic diffusion reads
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=V,De 22 V) =V, (5 — )

p:l,z,...,N.

The PSE kernel n_is local and the fast algorithms described in Sec. 6.1 can
be used to reduce the computational complexity to O(N). In order to
simulate diffusion using PSE, the strengths of all the particles change
(i.e. they exchange mass) while their locations remain constant (i.e. they
do not move). This is dual to the method of RW, where the
particles conserve their mass but move in space. In PSE, all geometry and
boundary condition processing thus only needs to be done once when
initializing the particles. Combined convection-diffusion problems can
be simulated by moving the particles with the convective velocity field
instead of keeping them fixed.

Besides the obvious choice of using a Gaussian [cf. Eq. (17)] as the
PSE kernel n, various algebraic kernels have also been derived. Algebraic
kernels are computationally more efficient, since evaluating the expo-
nential function on the floating-point unit of a computer processor takes
several tens of clock cycles. In the 3D case, the following second-order
accurate kernel as proposed by G.-H. Cottet (private communication,
1999) can, for example, be used:

15 1

nx)=— 2 |x|10—+1 (29)

7.2.2. Boundary conditions in PSE

The PSE algorithm as described so far only applies to infinite domains or
to particles farther away from the boundary than 7. For particles within
an 7-neighborhood from the boundary, we need to modify the PSE
scheme in order to account for the prescribed boundary conditions.
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For homogeneous boundary conditions in the case of flat (compared to
the core size € of the mollification kernel) boundaries, a straightforward
method consists of placing mirror particles in an 7-neighborhood out-
side of the simulation domain (Fig. 7). In the resulting method of
images, the integral operator becomes

-2

€7 g () —u(x))(N(x = y) £ (2 +y))dy + O(€").  (30)

The final scheme is thus represented as

dwh - N
d_tpzva6 zz{a/q”{; _Vq”z)(ne(xg —xg)ine(xf, +x{;)). (31)
o

The positive sign between the two kernel functions applies for homoge-
neous Neumann boundary conditions, whereas the negative sign is to
be used in the case of homogeneous Dirichlet boundary conditions. The
method of images is restricted to the case of homogeneous boundary
conditions. For inhomogeneous boundary conditions, the particle
strengths need to be adjusted in the vicinity of the boundary.'??

7.3. Comparison of PSE and RW

The accuracy of the RW and PSE methods is illustrated by using a bench-
mark case of isotropic homogeneous diffusion on the 1D (4 = 1) ray
Q = [0, =), subject to the following initial and boundary conditions:

{u(x,t =0)=uy(x)= xe® xe [0,00), £=0

32
w(x=0,£)=0 x=0, 0<z<T. (32)
The exact analytic solution of this problem is
o (%,7) La— 0N (33)

T (1+4Dr)?
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Both RW and PSE simulations of this benchmark case are performed
with varying numbers of particles in order to study spatial convergence.*
The boundary condition at x = 0 is satisfied using the method of images
as introduced in Sec. 7.2.2.

Figure 8 shows the RW and PSE solutions in comparison to the exact
solution at a final time of 7'= 10 for N = 50 particles and a diffusion con-
stant of D = 107*. The accuracy of the simulations for different numbers
of particles is assessed by computing the final L, error

N 12
L =| =3 (e, T) — (e, T)) (34)
N &

for each N. The resulting convergence curves are shown in Fig. 9. For
RW, we observe the characteristic slow convergence of O(1,/YN ).®® For
PSE, a convergence of O(1/N?) is observed, in agreement with the
employed second-order kernel function. Below an error of 107, machine
precision is reached. It can be seen that the error of a PSE simulation

05 , , , 05
o
04r ° 0.4
o
o
03 03
5 5
~— S~—
So2 . So02
0.1 o 0.1
% 1 2 3 4 % 1 2 3 4
x T
() RW (b) PSE

Fig. 8. Comparison of (a) RW and (b) PSE solutions of the benchmark case. The
solutions at time 7 = 10 are shown (circles) along with the exact analytic solution
[solid line; Eq. (33)]. For both methods, N = 50 particles, a time step of 6t = 0.1,
and D =107 are used. The RW solution is sampled in 20 intervals of width éx=0.2.
For the PSE, a core size of ¢ = 4 is used.
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Fig. 9. Convergence curves for RW and PSE. The L, error versus the number of
particles for the RW (triangles) and the PSE (circles) solutions of the benchmark case
at time 7= 10 are shown. For both methods, a time step of 7= 0.1 and D= 10"
are used. The RW solution is sampled in 20 intervals of width dx = 0.2; and for the
PSE, a core size of € = /b is used. The machine epsilon of the computer is 107°.

is several orders of magnitude lower than the one of the corresponding
RW simulation with the same number of particles. Using only 100 par-
ticles, PSE is already close to machine precision. It is evident from these
results that large numbers of particles are necessary to achieve reasonable
accuracy using RW in complex-shaped domains.

8. Reaction-Diffusion Processes

The reviewed particle methods for the simulation of diffusion processes
can be extended to account for spatially resolved (bio)chemical reactions
using either deterministic reaction kinetics or stochastic models. In the
following, we consider reaction-diffusion systems governed by equations
of the Fisher—KPP'?*!?* type:

a%i
ot

~V-(D;Vu;)= fi(n). (35)

The concentration vector # contains one entry #, per chemical species
¢, and the diffusion tensors D, are allowed to vary among species and
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in space. All chemical reactions are described by the source
terms f,.

8.1. Previous Approaches and Applications in Biology

Coupled reaction-diffusion systems exhibit nontrivial stability properties
that can give rise to the formation of stable concentration patterns called
Turing patterns,' or traveling waves called Fisher waves.'?

Twenty years after the seminal work of Turing,! Gierer and
Meinhardt used reaction-diffusion systems to formulate their theory of
pattern formation in biology.'*” They introduced the Gierer—-Meinhardt
model, which has become one of the most widely used pattern formation
models in biology, with later applications also in computer graphics.!*

The first biological applications of reaction-diffusion models con-
sidered morphogenesis,' following the idea that reaction-diffusion pat-
terns of growth factors could explain the geometries and shapes found
in nature. Computer simulations linking pattern formation to growth
and morphogenesis were done using, e.g. hybrid cellular automata—
PDE simulations to explain stalk formation and cell differentiation in
slime mold.?

Simulations of reaction-diffusion patterns on surfaces first considered
spherical objects such as globular tumors.'® Morphogenesis of more complex
surfaces was simulated using an FE method to solve the reaction-
diffusion equation on triangulated surfaces.® This method allowed treat-
ing shapes as complex as branched unicellular algac. Moving-mesh FE
techniques were later used to directly couple the motion of the boundary
to reaction-diffusion patterns on continuously deforming 2D domains.'*
A different approach uses the solution of an interior Poisson problem to
evolve the surface shape.?

Besides morphogenesis, reaction-diffusion models also have impor-

tant applications in cell motility,'*° 131

cell modeling,'?! and cell culture pat-
tern formation.'** Emerging applications also include spatiotemporal
simulations of cell signaling pathways.'** Since the first ODE model of
the chemotaxis pathway in Escherichia coli was published by Bray et al. in
1993,'** computer simulations have become increasingly more sophisti-

cated in resolving spatial phenomena. A recent model explicitly includes
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diffusion of the key signal transduction molecule in the cytoplasmic
space.’” Other examples of reaction-diffusion signaling models
include a sporulation control network model'! and plant shoot meris-

tem simulations.!®®

8.2. Reaction-Diffusion in Particle Methods

Extending the simulation scheme outlined in Sec. 7 to reaction-diffusion
problems as governed by Eq. (35), all components of the concentration
vector # are represented on the same set of computational particles, sup-
porting property vectors @, .

Evaluating the reaction terms f; amounts to a purely local exchange
of strength among species in the same particle. Reactions are thus evalu-
ated independently for each particle. The rate of exchange between dif-
terent #, is directly given by the reaction kinetics that are evaluated using
either a deterministic method based on kinetic ODEs or a stochastic
method such as Gillespie’s SSA algorithm.®"** The latter is possible
because individual particles constitute homogeneous reaction spaces with
no spatial gradients present inside a single particle. The deterministic
solver uses the same time integrator as the diffusion part, and is thus
restricted by the time step stability limit; while the stochastic solver
directly operates on (scaled) molecule numbers, and is used outside of
the time integrator’s right-hand side.

8.2.1. An example with moving reaction fronts

As an illustrative example, we consider the reaction 2 + & — 24 with rate
constant k. Both species # and & diffuse with the same isotropic diffusion
constant D. We use a combination of PSE'® and SSA®"“? to simulate the
example system on the surface of a sphere with diameter Z The initial
condition is such that one half of the sphere contains only 2, and the
other half only 4. Since 2 and & are initially unmixed, diffusion is required
in order to bring them together and allow the reaction to start. As & is
“eaten up” by 4, the reaction front separating the two species moves into
the region where & initially was and thus forms a traveling Fisher wave,
which propagates in the direction orthogonal to the reaction front.

—b—



b711_Chapter-14.gxd 2/27/2009 4:04 PM Pa 422
3rd Reading %

422 I. F. Sbalzarini

The wave stops as soon as the sphere contains only # and all of & has been
consumed. If we identify the concentration of # with [#] = # and nor-
malize the total concentration to 1 everywhere, mass action kinetics gives
the reaction term f(#) = ku(1 — »). Inserting this into Eq. (35) yields a
nonlinear PDE. Such systems can exhibit bifurcations (cf. Sec. 2), which
is the case in the present example as Fisher waves only exist for speeds
s> 5 = 2VF7(0) = 2Vk 13137 For s < 5*, no moving front exists.

For the stochastic simulations, we denote by X, the total number
of molecules contained in particle p, and define an analog to
Avogadro’s number, viz. M, the number of molecules per unit mass.
Gillespie introduced the product hec as the expected number of reac-
tions per unit time. For the binary reaction here, it is § = X7 X f;. The
rate constant % and the reaction parameter ¢ are related as k= MV
We interpret ¢ as the probability that two molecules of species 2 and &
react, provided they meet in space and time. This probability is inde-
pendent of the particle volume.*

Figure 10(a) shows the total mass, integrated over the surface of the
sphere, of # and & as they evolve in time. The front position is also shown,
defined as the location where [2] = [4] = 0.5. As long as reactions occur,
[#] and [ 4] change and the wave travels at a more or less constant speed
s, given by the slope of the dashed curve in Fig. 10(a). If the dimension-
less front speed is plotted against the dimensionless reaction parameter,
the curves for difterent diffusion constants D collapse as shown in Fig. 10(b).
We also observe that the theoretical scaling'*®'*” is well approximated,
particularly it the reaction is significantly faster than the diffusion.

9. Conclusions

Spatiotemporal models and numerical computer simulations are of rap-
idly growing importance in almost all areas of biology. Besides computa-
tional data analysis, including image processing, gene and protein sequence
analysis, clustering, and machine learning, modeling and simulation are

¢ The probability of an encounter to occur, on the other hand, does depend on the
particle volume. This is, however, already accounted for in #, as the number of mol-
ecules X, per particle is an extensive property.
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Fig. 10. (a) Evolution of the total mass of 2 and & (solid lines) for M = 10 mole-
cules per unit mass. See text for problem description. The location of the wave front
is shown by the dashed curve. The reaction front moves into the region of & until all
of b is consumed. (b) Dependence of the front speed s on the reaction parameter c.
In dimensionless representation, the two curves for D = 0.1 (open circles) and
D =1.0 (filled triangles) collapse to one. The theoretical scaling!**'%” is indicated by
the dashed line.

important tools in modern biology. “Virtual experiments” iz silico enable
control over all variables and influence factors, allowing us to dissect bio-
logical systems, formulate physical models for their constituents, and dis-
entangle coupled processes that are not separable in classical experiments.
Moreover, spatiotemporal modeling makes accessible time and length
scales unreachable by experiments. This allows studying systems as small
as the atoms in an individual protein or as large as complete ecosystems.

The characteristic properties of biological systems frequently compli-
cate the formulation and simulation of spatiotemporal models.
Regulation mechanisms, geometric shape complexity, nonlinearity, and
couplings across scales increase model complexity, and require powerful
and flexible numerical methods as well as efficient high-performance
software implementations on supercomputers.*-*?

We have surveyed some of the most common modeling techniques
and categorized them along the dimensions of phenomenological vs.
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physical, discrete vs. continuous, and deterministic vs. stochastic. We
summarized for each of these model classes some of the available numer-
ical simulation methods with pointers to specialized literature. We then
motivated the use of point-based particle methods that do not require
any connectivity-based discretization and allow simulating both discrete
and continuous systems. While their application to discrete systems is
standard, the use of continuum particle methods is less widespread. We
have reviewed continuum particle methods in more detail and demon-
strated their application to diffusion and reaction-diffusion problems.
This was intended as an easy-to-follow introduction. Applications to
other phenomena such as flows and waves are well documented in the
literature.

Notwithstanding the inherent complexity of biological systems, a
wealth of methods and tools are available that enable highly accurate and
predictive spatiotemporal simulations. At the same time, biology can
serve as an important technology driver to stimulate the development of
new methods and further advances in numerical analysis, computational
science, and high-performance computing. Numerical methods that effi-

ciently handle multi-scale systems?”-*!

and topological changes in com-
plex geometries are at the forefront of research in computational science.
In parallel, computer algorithms have to be efficient enough to deal with
the vast number of degrees of freedom, and software platforms must be
available to effectively and robustly implement these algorithms on
multi-processor supercomputers.®* Just as fluid dynamics — in particular,
the nonlinear, multi-scale problem of turbulence — has driven the devel-
opment of numerical methods in the past, the major scientific goal of

1138

modeling an entire cell'*® might continue to do so in the future.
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