
Abstractions and Middleware for Petascale
Computing and Beyond	

Ivo F. Sbalzarini*

Institute of Theoretical Computer Science and Swiss Institute of Bioinformatics,
ETH Zurich, CH-8092 Zurich, Switzerland

	
	
	
ABSTRACT
As high-performance computing moves to the petascale and beyond, a number of algorithmic
and software challenges need to be addressed. We review the main performance-limiting factors
in today’s high-performance computing software and outline a possible new programming
paradigm to address them. The proposed paradigm is based on abstract parallel data structures
and operations that encapsulate much of the complexity of an application, but still make
communication overhead explicit. We argue that all numerical simulations can be formulated in
terms of the presented abstractions, which thus define an abstract semantic specification
language for parallel numerical simulations. Simulations defined in this language can
automatically be translated to source code containing the appropriate calls to a middleware that
implements the underlying abstractions. We outline the structure and functionality of such a
middleware and demonstrate its feasibility on the example of the parallel particle-mesh library
(PPM).

Keywords: Parallel Processing Systems, Middleware, Scientific Computing, High-Performance
Computing, Parallel Programming, Abstractions.

INTRODUCTION
Numerical simulations are well established as the third pillar of science, alongside theory and
experiments. As numerical methods become more powerful, and more data and knowledge
become available about complex real-world systems, the simulations become increasingly
elaborate. The availability of parallel high-performance computing (HPC) systems has enabled
simulations with unprecedented numbers of degrees of freedom. The corresponding simulation
codes are mostly tightly coupled, which means that the different processors of the HPC machine
need to exchange data (communicate) several times while solving a problem, and not only at the
beginning and the end of the simulation. Minimizing the communication overhead is thus key to
parallel efficiency. In this article we propose a novel abstraction layer that provides the proper
level of granularity to address some of the software challenges the field is facing as we move
beyond petascale systems. We focus on tightly coupled simulations as they occur in classical
HPC applications in, e.g., material science, fluid dynamics, astrophysics, or computational
chemistry, and in emerging user fields such as biology, finance, or social science.

Despite the proliferation of HPC applications to new areas of science, programming and using
HPC machines is becoming increasingly difficult. As the performance of single processors has
stopped increasing, speedup can only be achieved through parallelism. There is no more “free

speedup” for legacy codes. In addition, memory capacity is growing faster than memory
bandwidth (aggravated by the fact that several processor cores are sharing a memory bus), such
that accessing memory becomes increasingly expensive compared to compute operations.
Presently, it takes about one to two orders of magnitude longer to access the main memory than
to perform a floating-point multiplication1. In GPUs and other emerging heterogeneous cores this
ratio is even higher. Efficient codes should thus minimize memory access counts rather than
operation counts. This presents challenges to both the traditional HPC user fields as well as the
emerging fields. In traditional fields, well-tested and efficient codes have existed for several
decades. These codes are usually large and of limited parallel scalability. They have to be ported
to heterogeneous multi-core HPC systems or re-written altogether. For emerging users in biology
or social science, there is a high entry hurdle into HPC since parallel programming is notoriously
difficult, requires experience, and takes a long time. The predominantly used message-passing
paradigm resembles “communication assembly language” with every single point-to-point
communication explicitly coded by the programmer. Together, these developments cause several
growing gaps in parallel HPC:

1. the performance gap: the actual sustained performance of scientific simulation codes is a

decreasing fraction of the theoretical peak-performance of the hardware,
2. the knowledge gap: efficient use of HPC resources requires more and more specialized

knowledge and is restricted to a smaller and smaller community,
3. the reliability gap: as machines contain more and more processor cores, the mean-time

between failure drops below the typical runtime of a simulation, and
4. the data gap: storing, accessing, and analyzing the peta-bytes of data generated by large

simulations or experiments (such as those in astronomy or particle physics) becomes
increasingly difficult.

Since the advent of multi-core CPUs, some of these gaps even exist on the single-processor

level. Portable, generic scientific software libraries such as GSL or “numerical recipes” are about
one order of magnitude slower than vendor-provided, machine-specific libraries such as Intel’s
IPP/MKL. This is mainly due to the fact that the latter are explicitly optimized and often contain
hand-tuned assembly language code for the performance-critical sections, which, however, limits
their portability. Moreover, as memory is becoming more expensive than processor cores, the
available memory per core decreases, causing bottlenecks due to memory contention when
independent heavy-weight processes (such as MPI processes) are running on the different cores
(Sbalzarini, Walther, Bergdorf, et al., 2006). Simulations are increasingly memory limited and
often use only as many cores per processor as are needed to saturate the memory bandwidth,
disabling the rest of the cores or reducing their clock frequency (Gruber & Keller, 2009). In
order to maximize the number of usable cores, multi-core parallelism thus has to account for
coordinated memory access and be able to profit from shared caches.

In high-end HPC systems, the situation is proportionally worse. Current petascale systems
contain around 130 000 processor cores of potentially different architectures, such as the mixture
of Opteron and Cell processors used in the Roadrunner system at Los Alamos. These cores are
connected by a hierarchy of communication layers of different speeds and operate on data that
are stored in memory systems with at least 4 levels of hierarchy (registers, L1 cache, L2 cache,
main memory). The different cores on the same processor (chip) have a very fast interconnect

and additionally benefit from shared L2 cache and shared main memory. The different chips in
the same compute node are connected on the next level of the hierarchy and may still share the
main memory, but no cache. The various compute nodes of the machine are finally connected by
a network of a certain, again potentially hierarchical, topology. This hardware complexity is
expected to increase even more as we move toward exaflop systems. Exaflop systems are
expected around 2020 (J. Dongarra, ISC, Dresden, 2008) and could well have tens of millions of
heterogeneous cores.

Addressing the above-mentioned gaps in these HPC systems requires novel programming
paradigms and novel algorithms (Asanovic et al., 2006), the availability of which will be the
decisive factor determining the utility of future supercomputers. These programming paradigms
should emphasize the hierarchical organization and access cost of the memory and the
interconnect, but should be independent of the number of processing elements. In addition, they
should be application-independent, portable, and easy to learn and use. One strategy is to
introduce an additional layer of abstraction between the computer system and the programmer.
This layer should provide a transparent view of the machine, independent of the number and
architecture of the processors, such that it will not be necessary for the user to write
“communication assembly language”. One could then implement scalable, memory-aware
algorithms on top of this abstraction layer. While this idea has already proven useful in areas
such as numerical linear algebra (ScaLAPACK, PETSc, ...), it remains unextended to other
simulation paradigms, including agent-based models, particle methods, tree codes, etc.

In this paper, we propose a layer of abstract parallel data types and operations. Their
intermediate granularity makes the parallel semantics of the program explicit while still hiding
the individual communication operations. Each abstraction defines an encapsulated functionality
that can be efficiently implemented as a module of a middleware or a run-time system, thus
effectively hiding the hardware complexity from the scientific programmer and reducing the
knowledge gap. As a result, the parallel efficiency of scientific simulations based on middleware
often surpasses that of hand-parallelized codes (Sbalzarini, Walther, Bergdorf, et al., 2006;
Voronenko, 2008). In addition, the abstractions presented here naturally define a language in
which the semantics of a parallel simulation program can be expressed. This enables automatic
generation of fine-tuned code and ensures portability across machine architectures. Ultimately,
we envision a paradigm where the simulation program is specified in an abstract language, which
is then automatically translated to source code containing the appropriate calls to the run-time
system that implements the abstractions. These implementations can then afford to be platform-
specific and auto-tuned. We believe that such a programming paradigm would increase the
performance, efficiency, portability, and reliability of large-scale parallel simulations, reduce
code development time, and enable a larger community of scientists to benefit from the power of
supercomputing.

ABSTRACTIONS AND THEIR IMPLEMENTATION
Data and operation abstractions are a powerful concept to encapsulate complexity at various
levels and to address the challenges outlined. Their purpose is to introduce transparent layers
between the application programmer and the hardware of the machine in order to achieve code
portability and ease of use. The price one pays for this is a loss of flexibility and generality.
Using an abstraction, such as the message passing interface (MPI), necessarily restricts the types

of operations one is able to perform to those defined in the abstraction layer. This loss of
flexibility is controlled by the granularity (level of detail) of the abstraction layer. The more
coarse-grained an abstraction, the less flexible it is, but the easier to use. For scientific
computing, it is critically important to develop abstractions at the right granularity. We argue that
they do not necessarily diminish the performance of application codes. In practice, simulations
that are implemented on top of abstractions are often even more efficient than hand-written,
machine-specific codes (Sbalzarini, Walther, Bergdorf, et al., 2006; Voronenko, 2008). This can
be explained by the abstraction layer reducing the knowledge gap. By depriving the user of some
of the flexibility and complexity of the underlying system, it becomes much harder for the
average programmer to write inefficient code.

We propose an abstraction layer that is based on simple parallel data structures and operations

that encapsulate computation and communication separately and allow semantic specification of
large-scale distributed HPC applications.

Abstractions
Scientific simulations involve discretizing space and time. We posit that most discretizations on
parallel computers can be described in terms of topologies, particles, meshes, connections,
interactions, and mappings. We define a topology as a (not necessarily disjoint) decomposition
of the computational domain into sub-domains and the assignment of these sub-domains onto
processors. Particles are computational elements that are characterized by their position in the
computational domain and an arbitrary number of associated properties or methods. Meshes are
structured (Cartesian) computational grids, and connections are linker objects between particles
that allow grouping them. Interactions are multi-threaded compute operations that can be
executed on a set of particles, mesh nodes, and/or connections. Lastly, mappings are
communication operations that move particle data, mesh data, or connection data between
processors. We define a processor as the collection of all cores that operate on the same memory
address space. Processors support multi-threading and can possibly be distributed across several
chips.

The abstractions defined here provide an intermediate level of granularity. They are coarse-
grained enough to be easy to use and to hide individual point-to-point communications, and they
are fine-grained enough such that all of Colella’s original 7 dwarfs (Colella, 2004) can be
composed from them. These dwarfs are self-contained numerical kernels that constitute the
building blocks of today’s numerical simulations. The original 7 dwarfs are: dense linear algebra
(e.g. BLAS), sparse linear algebra (e.g. OSKI), spectral methods (e.g. FFT), N-body methods
(e.g. particle methods or fast multipoles), structured grid methods (e.g. finite differences or
lattice Boltzmann), unstructured grid methods (e.g. finite elements or finite volumes), and
MapReduce (e.g. Monte Carlo). Six additional dwarfs have been added to also cover application
areas such as databases, machine learning, computer graphics, or embedded computing. We now
discuss the proposed abstractions in more detail.

Topologies are created by applying a domain decomposition algorithm and a load balancing
(processor assignment) algorithm to the computational domain and, possibly, the initial
distribution of particles, connections, and/or meshes. They establish a correspondence between
the computational elements (particles, mesh nodes, connections) and individual processors of the

machine. Topologies are dynamically created and destroyed at run-time and several topologies
can exist concurrently in order to, e.g., allow for optimal load balance when particles and mesh
nodes are unequally distributed. Each topology comprises a set of cuboidal sub-domains that
have halo layers on exactly half of their surfaces (Sbalzarini, Walther, Bergdorf, et al., 2006) in
order to allow for symmetric communication with neighboring sub-domains and local evaluation
of finite-cutoff interactions (see below). Symmetric communication significantly reduces the
memory and communication overhead. Typically, the number of sub-domains is much larger
than the number of available processors in order to achieve sufficient granularity for load
balancing and re-balancing (see Fig. 1). Assigning more than one sub-domain per processor
comes at no additional cost, as outlined below. Since several topologies may be defined, this
allows for implementation of parallel tree codes or Barnes-Hut algorithms using a hierarchy of
topologies that correspond to the different levels of the tree (Sbalzarini, Walther, Polasek, et al.,
2006).

Figure 1. Example of a topology. The computational domain (bounding rectangle) is subdivided
into 9311 cuboidal sub-domains (small rectangles) that are distributed onto 64 processors
(patches of different gray level). Each processor is assigned a connected set of multiple sub-
domains in order to provide sufficient granularity for load-balancing and shared-memory
parallelism within each processor. The inter-processor boundaries are optimized to minimize the
overall communication volume.

Mappings encapsulate the communication between processors. There are four basic mapping
types that the user can invoke: global, local, ghost-get, and ghost-put. A global mapping involves
a potentially all-to-all communication between the processors and can be used to distribute data

according to a certain topology or switch from one topology to another. In a local mapping,
processors only communicate with their neighbors, defined as those other processors that are
assigned sub-domains adjacent to any of the sub-domains of the current processor. Local
mappings can be used when particles have moved across processor boundaries or to adjust load
balance. Two ghost mappings are provided to operate on the halo layers. The ghost-get mapping
populates the halo layers of all sub-domains with copies (“ghosts”) of the computational
elements from the neighboring processors so they are available for the local evaluation of
interactions. At intra-processor sub-domain boundaries, no additional memory or communication
is required since the ghost elements are, in this case, identical to the corresponding real elements,
and they are in the same memory address space. The ghost-put mapping is available to send back
ghost contributions from the halo layer of the current processor to the corresponding real
elements on neighboring processors. This allows computing symmetric interactions that involve
ghosts and performing particle–to–mesh and mesh–to–particle interpolations locally per sub-
domain. The mapping abstractions internally keep track of the correspondence between ghost
elements and real elements such that no bookkeeping is required from the user program.
Mappings also internally determine a communication schedule such that a near-minimal number
of communication operations are required and no conflicts occur. For global mappings this can
be done using rings or trees. For local mappings, graph-based methods can be used, such as
minimum edge coloring (or rather: an approximate solution to it). Besides their correctness, we
can also require mappings to be tolerant to single-processor hardware failures. With appropriate
support from the run-time system (see below), this can be implemented entirely inside the
mapping routines since they encapsulate all communication.

Meshes are defined by their resolution. Each topology can have several meshes associated
with it. This allows for implementation of multi-grid algorithms or adaptive mesh refinement
methods.

Particles are connectivity-free computational elements that are defined by their position in the
computational space and an arbitrary number of additional properties. These properties can be
methods, scalar data, or higher-dimensional data of any type.

Connections can be used to link particles in order to define, e.g., molecular bonds,
unstructured grids, triangulations, or graphs. They constrain the topology such that connected
particles are preferably assigned to the same processor.

Interactions encapsulate local compute operations on a set of particles, mesh nodes, and/or
connections within a sub-domain. Interactions therefore do not involve any communication, but
can still be distributed over multiple cores of the same processor by multi-threading. In most
applications, interactions amount to evaluating pair-wise kernels between elements within a
certain cutoff radius. Computing particle–particle interactions allows implementing particle-
based simulations or agent-based models. Mesh–mesh interactions account for purely mesh-
based operations such as finite differences or FFTs. Finally, particle–mesh interactions are
available to implement interpolation schemes, remeshing, or particle-in-cell methods by
specifying pair-wise interaction kernels between mesh nodes and particles. Since all interactions
are local to a sub-domain, they might constrain the types of topologies that can be used. FFTs,
for example, require topologies with pencil domain decomposition, where all mesh nodes along

at least one spatial direction are in the same memory space. Such constraints are, however, easily
accounted for since several topologies can exist concurrently. When computing interactions
between particles without connectivity information, the interaction routine can transparently
build and use internal cell lists (Hockney & Eastwood, 1988) or Verlet lists (Verlet, 1967) for
fast neighbor search within the given cutoff radius.

In summary, we define the following data abstractions:
• topology(sub-domains, processor assignments)
• particle(position, properties)
• mesh(resolution)
• connection(particle1, particle2)

Any simulation is then expressed in terms of sets of these abstractions. It thus comprises a set

(denoted by curly braces “{}”) of topologies {topology}, a set of particles {particle}, a set of
meshes {mesh}, and a set of connections {connection}. Several, but not all, of these sets may be
empty if the corresponding data types are not used. An empty set of topologies, for example,
provides for sequential single-processor simulations. On these abstract parallel data types, the
following operations are defined:

• mapping(type, {particle} or mesh or {connection}, topology)
• interaction({particle} or {connection} or {mesh} or {particle, mesh}, cutoff)
• create topology(computational domain, {particle, mesh, connection}, domain

decomposition algorithm, processor assignment algorithm)

By choosing different domain decomposition and processor assignment algorithms, one can
include problem-specific prior knowledge.

When using these abstractions, models from all four realms can be simulated: continuous-
deterministic, continuous-stochastic, discrete-deterministic, and discrete-stochastic. The classical
numerical simulation methods for these four model types include mesh-based and mesh-free
discretization schemes for PDEs, sampling-based schemes such as Monte Carlo, interacting
particle systems, agent-based simulations, molecular dynamics, discrete element methods, and
discrete-event simulations. All of these methods can be phrased in terms of particles, meshes,
connections, interactions, mappings, and topologies.

Mappings are pure communication operations and interactions are pure compute operations.
This makes it possible to assess the communication overhead of a simulation already in its
abstract specification since computation and communication are not interleaved. The abstractions
naturally define a language in which parallel simulations can be specified. As an example, a
simple parallel molecular dynamics simulation could be specified as follows:

read or create {particle} (atoms), {connection} (bonds)
t1 = create topology(computational domain, {particle, connection}, ROB, minEdgeCut)
mapping(global, {particle}, t1)
mapping(global, {connection}, t1)
for time-step = 1,..., T do

 mapping(ghost-get, {particle}, t1)
 mapping(ghost-get, {connection}, t1)
 interaction({particle}, cutoff) # non-bonded interactions
 interaction({connection}, cutoff) # bond interactions
 update the positions and properties in {particle}
 mapping(partial, {particle})
 mapping(partial, {connection})
end

In this example, the topology t1 is created based on the possibly inhomogeneous distribution
of atoms and bonds using a recursive orthogonal bisection (ROB) domain decomposition and a
processor assignment that minimizes the edge cut in the communication graph. If the molecular
dynamics simulation also includes long-range interactions such as electrostatics, the cutoff
becomes too large for direct particle–particle interactions. In this case, the simulation is more
efficient when solving the corresponding Poisson equation on a mesh using FFTs or multi-grid
methods. In order to use FFTs in three dimensions, we define a mesh of resolution h and three
additional topologies before the time loop:

m1 = mesh(h)
t2 = create topology(computational domain, {m1}, x-pencil, minEdgeCut)
t3 = create topology(computational domain, {m1}, y-pencil, minEdgeCut)
t4 = create topology(computational domain, {m1}, z-pencil, minEdgeCut)

Each of these topologies uses a load-balanced pencil decomposition of the mesh m1 where the
sub-domains extend throughout the entire computational domain in one direction. Inside the time
loop (before updating the particle positions and properties), an FFT can then be computed in
parallel by:

 mapping(global, m1, t2)
 interaction({m1}, Lx) # compute the FFT in x direction
 mapping(global, m1, t3)
 interaction({m1}, Ly) # compute the FFT in y direction
 mapping(global, m1, t4)
 interaction({m1}, Lz) # compute the FFT in z direction
 mapping(global, m1, t1)

Using three additional interactions to interpolate {particle} to m1, solve the Poisson equation
in frequency space (cutoff = 0), and interpolate the result back onto the particles completes the
solver. The global mappings required by the FFT can be avoided by solving the Poisson equation
using a multi-grid method. Then, only the topology t1 is needed with several meshes of different
resolution defined on it: m1 = mesh(h), m2 = mesh(h/2), ...

Implementation
The abstractions defined above can directly be implemented in a run-time system or middleware
as platform-specifically tuned software modules. Depending on the granularity of the underlying
abstractions, different levels of encapsulation can be realized. On the lowest level, libraries that

implement the MPI standard (Message Passing Interface Forum, 2008) provide abstractions for
point-to-point and collective communication operations by encapsulating the communication
stacks of the operating system. Adaptive MPI (AMPI) supports dynamic load balancing and
multi-threading at this level of the run-time system (Huang, Lawlor, & Kale, 2004). On an
intermediate level, more coarse-grained abstractions can be implemented. Examples include the
ASTRID programming environment that transparently parallelizes structured-grid finite-element
and finite-volume simulations (Bonomi et al., 1989), or the parallel scalable I/O libraries
PASSION (Thakur, Bordawekar, Choudhary, Ponnusamy, & Singh, 1994) and ROMIO (Thakur,
Gropp, & Lusk, 1999) (now part of the MPI 2.1 standard). On the highest level of abstraction,
entire numerical methods can be encapsulated using the abstraction of dwarfs. This includes
libraries such as FFTW, ScaLAPACK, PETSc, or the PARTI run-time library for Monte Carlo
simulations (Moon & Saltz, 1994).

The abstractions outlined in this paper are implemented on the intermediate level. Support for
topology creation entails dynamic partitioning of the data and operations onto the available
processors, and support for mappings can include communication scheduling and mechanisms of
fault-tolerance. This is inspired by libraries such as the parallel utilities library PUL (Chapple &
Clarke, 1994), which provides domain decomposition methods, data communication, and parallel
file I/O for purely mesh-based simulations.

These implementations can afford to be machine-specific since portability is ensured on the
level of the abstract specification language. Optimized implementations of the abstractions can
thus fully benefit from language and compiler support, as well as from auto-tuning code
generators.

Language support includes programming languages that are aware of (and provide some
control over) the hardware memory hierarchy, and that can make data dependencies explicit in
order to allow streaming or SIMD vectorization by the compiler. An example of the former is the
Sequoia language (Fatahalian et al., 2006), which exposes the memory hierarchy and allows
controlled memory-aware programming. Examples for the latter include array programming
languages such as APL, HPF, and Co-Array Fortran (included in Fortran 2008). An interesting
early example is the Vectoral programming language that was developed by Alan Wray in 1978
to provide language-level SIMD parallelism on the Illiac IV computer (Wray, 1988). In addition,
some languages have a notion of MIMD/SPMD parallelism. Meta-languages such as Linda
(Carriero & Gelernter, 1989), however, suffer from a loss of computational efficiency and
portability (Turkiyyah, Reed, & Yang, 1996). This is avoided in compiled parallel languages
such as Unified Parallel C (UPC Consortium, 2005) or the object-oriented parallel language
Charm++ (Kale, Bohm, Mendes, Wilmarth, & Zheng, 2007).

Compiler support exploits the data distribution and dependencies made explicit by the
programming language. Currently, however, it is almost impossible for compilers to
automatically extract the parallel semantics of a program and use them for high-level
optimizations. A promising approach for message-passing codes, where every communication
operation is explicitly specified, is the generalization of data-flow graphs to parallel data-flow
graphs (Bronevetsky, 2009).

Automatic code generators such as SPIRAL (Püschel et al., 2005; Voronenko, 2008) can be
used to tune the middleware implementations of the abstractions to specific hardware platforms.
Such auto-tuned code often outperforms hand-written code (Voronenko, 2008). This is mainly
because elegant, human-readable code is not always the fastest code possible. Code generators
that can handle vectorization (SIMD) or shared-memory parallelism (MIMD) could be used to
implement the individual abstractions on multi-core processors. This, however, relies on the
availability of accurate performance prediction tools or models that allow the code generator to
evaluate different options and choose the one that is best suited for a specific machine
architecture. Accurate parameterization of the effective hardware performance and of the
resource needs of the various code optimization options can help choose the right one,
abstracting from the very details of the hardware (Gruber & Keller, 2009). Given the time and
space complexity of an algorithm and several measured run-time parameters, such models
predict the expected execution time of the algorithm on a given machine. One example of a
performance prediction model is the extended Γ–κ model. In this model, the parameter Γ
quantifies how communication-limited the distributed-memory part of an applications is and κ
distinguishes memory-limited multi-threaded application parts from CPU-time-limited ones
(Gruber & Keller, 2009). This allows accurate prediction of the parallel scalability of an
application, and an informed choice of the algorithms and hardware resources to be used.
Application of such models is, however, currently hindered by unpredictable run-time influences
from the hardware: caches, look-ahead logics, network routing, and dynamic over-clocking (e.g.
in Intel’s Nehalem architecture).

Once the implementations are available in a middleware or run-time system, it is conceivable
that the semantic description of a parallel numerical simulation, formulated in terms of
abstractions, is directly translated by a “simulation compiler” to source code containing the
appropriate calls to the run-time system or middleware that implements these abstractions.

Run-Time System Structure
We outline the structure and functionality of a run-time system that supports implementations of
the abstractions defined above. In order to implement interaction operations with multiple levels
of parallelism (mixed multi-processing/multi-threading), as well as self-optimizing and fault-
tolerant mappings, the run-time system has to provide:

1. a multi-level parallelization layer that is aware of the communication/memory hierarchy,
2. a hardware-aware communication scheduler and dynamic load balancer, and
3. a fault-tolerant communication layer.

Multi-level parallelism is frequently implemented using nested OpenMP or MPI-2 threads. In

the context of the presented abstractions, shared-memory threads are used within individual
interaction and mapping modules, whereas each processor runs a separate distributed-memory
message-passing process. The parallelization layer can also internally probe, at run-time, the
network topology and the memory hierarchy of the machine and make this information available
to the communication scheduler and the load balancer.

The hardware-aware communication scheduler and load balancer uses this information to
optimize the communication schedule through graph algorithms. Approximately solving the

minimum edge-coloring problem (Vizing, 1964) on the graph of required (from the application
software) communications provides near-optimal schedules with a +1 error bound (Djordjevic &
Tosic, 1996; Durand, Jain, & Tseytlin, 2003). Bandwidth, latency, and distance between the
processors (according to the network’s hardware topology) can be accounted for by weights on
the edges of the graph (Bhatele & Kale, 2008). The load balancer can use the measured run-time
parameters in a performance prediction model in order to decide which part of an application
should run on cores of which architecture, or to dynamically migrate processes to better-suited
parts of the machine (Gruber & Keller, 2009). Among cores of the same architecture, processor
assignment can be based on graph partitioning algorithms (Karypis & Kumar, 1998a, 1998b).
There, each node of the graph corresponds to a work package (such as a sub-domain) and each
edge corresponds to a required communication between work packages. Every node is attributed
a weight reflecting the computational cost of that work package, and every edge has a weight
that represents the communication volume. The nodes are then partitioned onto the processors of
the machine such that the variance of computational costs across processors and the total edge-
cut are minimized. In this step, the relative speeds of the processors, their architecture (in a
heterogeneous machine), and their proximity relations in the machine interconnect can be
accounted for by using, for example, parameterized descriptions (Gruber & Keller, 2009). This
ensures that every work package runs in its “optimal” hardware environment. In the framework
of the proposed abstractions, this can be done at the level of topologies for the multi-processing
parts of an application, and at the level of interactions for the multi-threaded parts.

A fault-tolerant communication layer becomes important when machines grow large enough
such that the mean time between hardware failures is less than the average run-time of a
simulation. In a machine with 1 million processors, at least one node is expected to fail every 30
minutes. While the mean-time between failures can be increased by about a factor of 2 if all
unused cores and machine parts are dynamically powered down and the clock frequency is
adjusted to the application needs (Gruber & Keller, 2009), fault tolerance remains an issue.
Mostly, it is addressed by checkpointing (Elnozahy, Alvisi, Wang, & Johnson, 2002), which
means that the data of the simulation are periodically copied from the main memory of the
computer to hard disks. If one of the nodes fails, the whole simulation program halts and restarts
from the most recent checkpoint by recovering the data from disk. While global checkpointing
does not scale to large systems, local recovery protocols have an overhead that is independent of
the number of processors. In the simplest local scheme, checkpoint files are written to the scratch
disks of the individual compute nodes with a copy onto the neighboring node. The constant
overhead of local checkpointing can be reduced if the communication layer of the run-time
system includes mechanisms of fault tolerance. This has been implemented in the Converse run-
time system (Kale, Bhandarkar, Jagathesan, Krishnan, & Yelon, 1996) for Charm++ and AMPI,
and the fault-tolerant HARNESS run-time system (Beck et al., 1999; Angskun, Fagg, Bosilca,
Pjesivac-Grbovic, & Dongarra, 2006). Based on such run-time systems, fault-tolerant message-
passing libraries have been implemented. Examples include the fault-tolerant FT-MPI (Fagg et
al., 2004), which is implemented based on HARNESS, and AMPI (Huang, 2004) as
implemented based on Converse. Other fault-tolerance techniques include direct (possibly
asynchronous) use of communication sockets, message logging (Elnozahy et al., 2002), and in-
memory data redundancy (Zheng, Shi, & Kale, 2004).

A Feasibility Study: The Parallel Particle-Mesh Library (PPM)

The PPM library (Sbalzarini, Walther, Bergdorf, et al., 2006; Sbalzarini, Walther, Polasek, et al.,
2006) was a first attempt to implement the abstractions outlined in this paper in a transparent,
portable middleware. The overall goal is to provide a processor-independent, data-transparent
programming model for distributed-memory computers and to completely hide MPI from the
application programmer. In PPM, this has been done for tightly coupled parallel numerical
simulations that are formulated in the framework of hybrid particle-mesh methods. PPM is a
middleware in the sense described here, introducing an additional, transparent layer between
infrastructure libraries such as MPI, Metis (Karypis & Kumar, 1998a, 1998b), and FFTW and the
user’s simulation programs. This is schematically depicted in Fig. 2 and has made it possible to
implement scalable parallel simulations without having to know MPI, which immediately
renders supercomputing accessible to a larger user community. Since PPM limits the flexibility
of the application programmer to hybrid particle-mesh methods described by the abstractions
defined above, even inexperienced programmers can implement simulations that outperform
state-of-the-art hand-parallelized codes (see (Sbalzarini, Walther, Bergdorf, et al., 2006) for
examples).

Figure 2. The parallel particle mesh (PPM) library is a transparent middleware layer between
system-specific low-level libraries (MPI, METIS, FFTW) and the user’s parallel simulation
programs. It provides a run-time environment that implements abstract parallel data structures
and operations in encapsulated software modules. The simulation codes are then specified in
terms of these abstractions (see main text for details).

The PPM library is independent of specific applications. The library design goals include ease
of use, efficient parallel scalability in both CPU time and memory requirements, and SIMD
vectorization of all major loops. PPM implements encapsulated modules for the abstractions
defined above and provides the adaptive domain decomposition, dynamic load balancing, and
communication scheduling methods required to create topologies and mappings based on a
specific data (particle or mesh) distribution at run time. Communication scheduling is done using
an approximate solution of the minimum edge-coloring problem (Vizing, 1964). The SAR
heuristic (Moon & Saltz, 1994) is used to decide when to re-decompose a problem in order to
achieve a good trade-off between the cost of domain decomposition and arising load imbalance

from particle motion. All of this is done transparently in the background, without participation of
the user program. For further details about the PPM library architecture, the reader is referred to
the original publication (Sbalzarini, Walther, Bergdorf, et al., 2006).

Supplementing the library core functionalities, PPM also includes frequently used numerical
solvers, such as multi-grid and FFT Poisson solvers, multi-stage ODE integrators, fast multipole
methods (Greengard & Gropp, 1990), and fast marching methods (Sethian, 1999) as well as
group marching methods (Kim, 2001) for level sets. These numerical modules can be interpreted
as dwarfs that are implemented using the data and operation abstractions provided by the PPM
library core. In addition, PPM also provides transparent parallel file I/O.

The efficiency, scalability, and ease of use of PPM have been demonstrated in a number of
past applications as summarized in Table 1. In all of these past applications, the PPM-based
simulation codes outperformed the corresponding state-of-the-art hand-written codes in wall-
clock time, parallel efficiency, or both (Sbalzarini, Walther, Bergdorf, et al., 2006). Also, it is
interesting to note that the PPM codes were implemented in short time and without using a
simulation compiler. The molecular dynamics code was, for example, implemented in less than 3
months by a first-year PhD student with no prior experience in parallel programming or in using
PPM. This implementation outperformed (by more than a factor of 2) an existing handcrafted
molecular dynamics code that was developed over 6 years by the same group. It completed one
time step of an 8 million-atom simulation in 0.25 seconds at 63% parallel efficiency on 256
processors (see Table 1). The discrete element simulation (Walther & Sbalzarini, 2009) was
implemented in less than 2 days by two of the PPM developers who are acquainted with the
middleware. Discrete element methods (DEM) are particularly hard to parallelize due to the
dynamically changing contact lists and the need to integrate contact deformations over time. The
PPM-based simulation code sustained 40% parallel efficiency on 192 processors of a standard
Ethernet-Linux cluster (Table 1). The simulation used 122 million fully resolved visco-elastic
spheres, constituting the largest DEM simulation done thus far.

Table 1. Weak scaling results from past applications using the PPM library.
Application # particles # proc. Machine Parallel

efficiency
Reference

smoothed particle hydrodynamics
of compressible flow

268·106 128 Cray XT4 91% (Sbalzarini, Walther,
Bergdorf, et al., 2006)

vortex method for incompressible
flow (using the PPM-based multi-
grid Poisson solver)

268·106 512 IBM p690 76% (Sbalzarini, Walther,
Bergdorf, et al., 2006)

particle strength exchange for
diffusion in a complex biological
geometry (Sbalzarini, Mezzacasa,
Helenius, & Koumoutsakos,
2005; Sbalzarini, Hayer,
Helenius, & Koumoutsakos,
2006)

109 242 IBM p690 84% (Sbalzarini, Walther,
Bergdorf, et al., 2006)

molecular dynamics of Lennard-
Jones atoms

8·106 256 IBM p690 63% (0.25
s/time step)

unpublished

discrete element method for
granular flow

122·106 192 AMD
Opteron
Linux
cluster,
Gigabit
Ethernet

40% (Walther &
Sbalzarini, 2009)

vortex method for incompressible
turbulent flow

6.5·109 16 384 IBM BG/L 62% (Chatelain et al.,
2008a; Chatelain et
al., 2008b)

The remeshed smoothed particle hydrodynamics (SPH) simulation in Table 1 used 268

million particles transparently distributed onto 128 processors of the Cray XT4 computer at the
Swiss National Supercomputing Centre (CSCS) to simulate the fluid dynamics of a compressible
vortex ring (Sbalzarini, Walther, Bergdorf, et al., 2006). The simulation sustained 91% parallel
efficiency (weak scaling) on 128 processors. This compares well to the 85% efficiency achieved
by the GADGET SPH code of the Max-Planck Institute for Astrophysics on 32 processors. The
same PPM-based SPH code was later also used to simulate a self-propelled swimmer with an
immersed-boundary SPH. Using 13 million particles, the code took 70 seconds per time step on a
Linux cluster with 32 AMD Opteron 2.2 GHz processors (Hieber & Koumoutsakos, 2008).

Vortex methods are hybrid particle-mesh methods to simulate incompressible fluids. In

contrast to SPH, the incompressibility constraint requires the solution of a Poisson equation at
every time step. This introduces long-range interactions that need global mappings, hence
increasing the communication overhead of the parallel simulation. Together with the larger
number of processors needed, this leads to lower parallel efficiencies compared to SPH
simulations. The PPM-based vortex method code used in Table 1 nevertheless sustained 76%
parallel efficiency on 512 processors for 268 million particles (Sbalzarini, Walther, Bergdorf, et
al., 2006). A further optimized and adapted version of this code was later used on 16384
processors of an IBM BG/L for a vortex method simulation using 6.5 billion particles at 62%
parallel efficiency (Chatelain et al., 2008a; Chatelain et al., 2008b).

In complex-shaped geometries, the adaptive domain decomposition and load-balancing

methods of the PPM library become important. This has been tested in particle simulations of
diffusion in the endoplasmic reticulum, a complex tubular network in biological cells (Sbalzarini,
Mezzacasa, Helenius, & Koumoutsakos, 2005; Sbalzarini, Hayer, Helenius, & Koumoutsakos,
2006). The simulations used up to 1 billion particles distributed onto up to 242 processors of the
IBM p690 computer at CSCS. The weak-scaling efficiency was better than 84% in all cases,
demonstrating the scalability of automatic, transparent data distribution using the abstractions
presented above (Sbalzarini, Walther, Bergdorf, et al., 2006).

In summary, the PPM library has demonstrated the feasibility and viability of a processor-

independent, data-transparent parallel programming model for hybrid particle-mesh simulations.
The model was based on a preliminary version of the abstractions presented above.

CONCLUSION

As computing is becoming an integral part of many sciences and the models become more
complex, HPC will be indispensable catalyst of progress as its use proliferates. However, the
complexity of such large hardware systems and the architecture of modern (heterogeneous)
multi-core processors has led to several gaps, of which the knowledge gap is arguably the most
important one. Efficient use of HPC machines and their availability to emerging user fields
depends on new programming paradigms and algorithms. Some of the resources must thus be
invested in computer science research and education. It is widely accepted that an additional
layer of abstraction, which hides the hardware complexity and exposes a programming model
that is independent of the number and architecture of processors, is one possible solution.

We have introduced data and operation abstractions that provide intermediate granularity and
disentangle computation from communication, enabling automatic analysis and optimization.
These abstractions also define a language in which the parallel semantics of simulations can be
expressed, and they define encapsulated functionalities that can be implemented as architecture-
specifically optimized modules of a middleware or run-time system. In the future, these
implementations could be constructed and optimized using auto-tuning code generators,
provided the necessary performance prediction tools are available. It is also possible to construct
simulation compilers that directly translate an abstract definition of a simulation to the proper
sequence of middleware calls. This would have several benefits: (a) the abstract definition is
independent of the number of processors, ensuring portability and ease of use; (b) the
implementations of the individual abstractions (i.e., the modules of the middleware) can be tuned
to the machine architecture, thus transparently optimizing hardware use; (c) implementing a
parallel simulation is reduced to writing its abstract definition, thus greatly reducing code
development time and the knowledge gap; (d) if better algorithms become available they only
have to be implemented in the middleware, immediately benefitting all simulations without
changing their abstract descriptions.

The presented abstractions are deliberately kept simple, encapsulating simple and regular data
structures such as particles and meshes. This is motivated by our expectation that simple data
structures tend to scale better to larger numbers of processors, which seems to be confirmed by
the experiences made with the PPM library. In particular, operation counts lose importance
compared to memory access and communication (latency) counts. Several efficient single-
processor algorithms use trees or graphs, which might not parallelize well and tend to be memory
limited. Instead of using a complex surface triangulation on a large distributed system, for
example, it might be favorable to use a simple Cartesian mesh with an embedded boundary
method.

In summary, the abstractions and middleware presented in this paper provide a starting point
that has already led to highly scalable and easy-to-implement parallel simulations (Sbalzarini,
Walther, Bergdorf, et al., 2006). At this stage, however, there are more open questions (and
research opportunities!) than solutions. Even though many bits and pieces exist in all areas
(abstractions, languages, compilers, middleware, tools), they are yet to be combined in a
programming model that is independent of the number of processors and their architecture. In
this venture, care must be taken that the abstractions are general enough not to “over-fit” the
present-day multi-core architectures. Abstractions should be sufficiently independent of the

hardware and based on theoretical compute models. This will help prevent today’s simulations
from becoming tomorrow’s legacy codes.

REFERENCES

Angskun, T., Fagg, Bosilca, G., Pjesivac-Grbovic, J., & Dongarra, J. J. (2006). Scalable fault
tolerant protocol for parallel runtime environments. In Euro PVM/MPI (p. ICL-UT-06-12).

Asanovic, K., Bodik, R., Catanzaro, B. C., Gebis, J. J., Husbands, P., Keutzer, K., et al. (2006).
The landscape of parallel computing research: A view from Berkeley (Technical Report No.
UCB/EECS-2006-183). University of California at Berkeley.

Beck, M., Dongarra, J. J., Fagg, G. E., Geist, G. A., Gray, P., Kohl, J., et al. (1999). HARNESS:
A next generation distributed virtual machine. Future Generation Computer Systems, 15, 571–
582.

Bhatele, A., & Kale, L. V. (2008). Application-specific topology-aware mapping for three
dimensional topologies. In Proceedings of the IEEE international symposium on parallel and
distributed processing (pp. 1–8).

Bonomi, E., Flück, M., George, P., Gruber, R., Herbin, R., Perronnet, A., et al. (1989). Astrid:
Structured finite element and finite volume programs adapted to parallel vectorcomputers.
Computer Physics Reports, 11, 81–116.

Bronevetsky, G. (2009). Communication-sensitive static dataflow for parallel message passing
applications. In International symposium on code generation and optimization (CGO) (pp. 1–
12).

Carriero, N., & Gelernter, D. (1989). Linda in context. Communications of the ACM, 32(4), 444–
458.

Chapple, S. R., & Clarke, L. J. (1994). The parallel utilities library. In Proceedings of the IEEE
scalable parallel libraries conference (pp. 21–30).

Chatelain, P., Curioni, A., Bergdorf, M., Rossinelli, D., Andreoni, W., & Koumoutsakos, P.
(2008a). Billion vortex particle direct numerical simulations of aircraft wakes. Computer
Methods in Applied Mechanics and Engineering, 197, 1296–1304.

Chatelain, P., Curioni, A., Bergdorf, M., Rossinelli, D., Andreoni, W., & Koumoutsakos, P.
(2008b). Vortex methods for massively parallel computer architectures. Lecture Notes in
Computer Science, 5336, 479–489.

Colella, P. (2004). Defining software requirements for scientific computing. Presentation slides.

Djordjevic, G. L., & Tosic, M. B. (1996). A heuristic for scheduling task graphs with
communication delays onto multiprocessors. Parallel Computing, 22, 1197–1214.

Durand, D., Jain, R., & Tseytlin, D. (2003). Parallel I/O scheduling using randomized,
distributed edge coloring algorithms. Journal of Parallel and Distributed Computing, 63, 611–
618.

Elnozahy, E. N. M., Alvisi, L., Wang, Y.-M., & Johnson, D. B. (2002). A survey of rollback-
recovery protocols in message-passing systems. ACM Computing Surveys, 34(3), 375–408.

Fagg, G. E., Gabriel, E., Bosilca, G., Angskun, T., Chen, Z., Pjesivac-Grbovic, J., et al. (2004).
Extending the MPI specification for process fault tolerance on high performance computing
systems. In Proceedings of the international supercomputing conference (ISC2004).

Fatahalian, K., Knight, T. J., Houston, M., Erez, M., Horn, D. R., Leem, L., et al. (2006).
Sequoia: Programming the memory hierarchy. In Proceedings of the SC06 conference on high
performance networking and computing (p. 83). ACM/IEEE.

Greengard, L., & Gropp, W. D. (1990). A parallel version of the fast multipole method.
Computers & Mathematics with Applications, 20(7), 63–71.

Gruber, R., & Keller, V. (2009). HPC @ GreenIT. Berlin, Germany: Springer.

Hieber, S. E., & Koumoutsakos, P. (2008). An immersed boundary method for smoothed particle
hydrodynamics of self-propelled swimmers. Journal of Computational Physics, 227, 8636–8654.

Hockney, R. W., & Eastwood, J. W. (1988). Computer simulation using particles. London, UK:
Institute of Physics Publishing.

Huang, C. (2004). System support for checkpoint/restart of Charm++ and AMPI applications.
Unpublished Master thesis, University of Illinois, Dept. of Computer Science.

Huang, C., Lawlor, O., & Kale, L. V. (2004). Adaptive MPI. Lecture Notes in Computer Science,
2958, 306–322.

Kale, L. V., Bhandarkar, M., Jagathesan, N., Krishnan, S., & Yelon, J. (1996). Converse: an
interoperable framework for parallel programming. In Proceedings of the IEEE international
parallel processing symposium (IPPS) (pp. 212–217).

Kale, L. V., Bohm, E., Mendes, C. L., Wilmarth, T., & Zheng, G. (2007). Programming
Petascale Applications with Charm++ and AMPI. In Petascale computing: Algorithms and
applications. CRC Press.

Karypis, G., & Kumar, V. (1998a). A fast and high quality multilevel scheme for partitioning
irregular graphs. SIAM Journal on Scientific Computing, 20(1), 359–392.

Karypis, G., & Kumar, V. (1998b). Multilevel k-way partitioning scheme for irregular graphs.
Journal of Parallel and Distributed Computing, 48, 96–129.

Kim, S. (2001). An O(N) level set method for Eikonal equations. SIAM Journal on Scientific
Computing, 22(6), 2178–2193.

Message Passing Interface Forum. (2008). MPI: A message-passing interface standard, version
2.1. Stuttgart, Germany: High-Performance Computing Center Stuttgart.

Moon, B., & Saltz, J. (1994). Adaptive runtime support for direct simulation Monte Carlo
methods on distributed memory architectures. In Proceedings of the IEEE scalable high-
performance computing conference (pp. 176–183). IEEE.

Püschel, M., Moura, J. M. F., Johnson, J. R., Padua, D., Veloso, M. M., Singer, B. W., et al.
(2005). SPIRAL: Code generation for DSP transforms. Proceedings of the IEEE, 93(2), 232–
275.

Sbalzarini, I. F., Hayer, A., Helenius, A., & Koumoutsakos, P. (2006). Simulations of
(an)isotropic diffusion on curved biological surfaces. Biophysical Journal, 90(3), 878–885.

Sbalzarini, I. F., Mezzacasa, A., Helenius, A., & Koumoutsakos, P. (2005). Effects of organelle
shape on fluorescence recovery after photobleaching. Biophysical Journal, 89(3), 1482–1492.

Sbalzarini, I. F., Walther, J. H., Bergdorf, M., Hieber, S. E., Kotsalis, E. M., & Koumoutsakos,
P. (2006). PPM – a highly efficient parallel particle-mesh library for the simulation of continuum
systems. Journal of Computational Physics, 215(2), 566–588.

Sbalzarini, I. F., Walther, J. H., Polasek, B., Chatelain, P., Bergdorf, M., Hieber, S. E., et al.
(2006). A software framework for the portable parallelization of particle-mesh simulations.
Lecture Notes in Computer Science, 4128, 730–739.

Sethian, J. A. (1999). Level set methods and fast marching methods. Cambridge, UK: Cambridge
University Press.

Thakur, R., Bordawekar, R., Choudhary, A., Ponnusamy, R., & Singh, T. (1994). PASSION
runtime library for parallel I/O. In Proceedings of the IEEE scalable parallel libraries
conference (pp. 119–128). IEEE.

Thakur, R., Gropp, W., & Lusk, E. (1999). Data sieving and collective I/O in ROMIO. In
Proceedings of the 7th symposium on the frontiers of massively parallel computation (pp. 182–
189).

Turkiyyah, G., Reed, D., & Yang, J. (1996). Fast vortex methods for predicting wind-induced
pressures on buildings. Journal of Wind Engineering and Industrial Aerodynamics, 58, 51–79.

UPC Consortium. (2005). UPC language specifications, v1.2 (Technical Report LBNL-59208).
Lawrence Berkeley National Laboratory.

Verlet, L. (1967). Computer experiments on classical fluids. I. Thermodynamical properties of
Lennard-Jones molecules. Physical Review, 159(1), 98–103.

Vizing, V. G. (1964). On an estimate of the chromatic class of a p-graph. Diskret. Analiz, 3, 25–
30. (in Russian)

Voronenko, Y. (2008). Library generation for linear transforms. Unpublished doctoral
dissertation, Carnegie Mellon University.

Walther, J. H., & Sbalzarini, I. F. (2009). Large-scale parallel discrete element simulations of
granular flow. Engineering Computations, 26(6), 688–697.

Wray, A. A. (1988). A manual of the vectoral language (Internal report). Moffett Field,
California: NASA Ames Research Center.

Zheng, G., Shi, L., & Kale, L. V. (2004). FTC-Charm++: An in-memory checkpoint-based fault
tolerant runtime for Charm++ and MPI. In Proceedings of the IEEE conference on cluster
computing (pp. 93–103).

ACKNOWLEDGMENTS

I am deeply grateful to Prof. Dr. Jens H. Walther (DTU, Copenhagen, Denmark) for his initiative
and vision to start the PPM project as well as for countless discussions on parallel programming
and joint programming sessions. I also thank Prof. Dr. Petros Koumoutsakos (ETH Zurich,
Switzerland), in whose group the PPM project started and is still on going, as well as all
contributors to the PPM library, in particular Dr. Michael Bergdorf (ETH Zurich, Switzerland)
and Dr. Philippe Chatelain (ETH Zurich, Switzerland). Special thanks also to Prof. Dr. Ralf
Gruber (EPFL, Switzerland), Dr. Greg Bronevetsky (LLNL, USA), Prof. Dr. Jens H. Walther
(DTU, Copenhagen, Denmark), Rajesh Ramaswamy (ETH Zurich, Switzerland), and Justin Park
(ETH Zurich, Switzerland) for proofreading the manuscript and providing valuable feedback and
suggestions. We thank the Swiss National Supercomputing Centre (CSCS) for dedicated access
to their HPC systems.

ENDNOTES
1On the Intel Nehalem architecture, the ratio is one order of magnitude if only 1 or 2 cores of the
processor are used in a pipelined way.

