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Abstract

Imaging is center stage in biology. Advances in microscopy and labeling techniques have enabled unprece-
dented observations and continue to inspire new developments. Efficient and accurate quantification and
computational analysis of the acquired images, however, are becoming the bottleneck. We review different
paradigms of computational image analysis for intracellular, single-cell, and tissue-level imaging, providing
pointers to the specialized literature and listing available software tools. We place particular emphasis on
clear categorization of image-analysis frameworks and on identifying current trends and challenges in the
field. We further outline some of the methodological advances that are required in order to use images as
quantitative scientific measurements.
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1 Introduction

“Seeing is believing” is an old saying in microscopy. With the classical biochemical methods being increasingly
complemented by imaging techniques, however, the subjective interpretation of what one sees in a microscopy
image gets in the way of scientific reproducibility and logical deduction. Arguments such as “I saw it that way”
or “it looked like” become less tolerable as conclusions are based on image data. Positing that the images are
correctly acquired and free of artifacts (North, 2006), one hence wishes to reduce, or at least quantify, viewer
bias and subjective expectations and beliefs by extracting reproducible numbers from the images.

Together with the need to process ever-larger sets of images at high throughput, reproducible quantification
motivates the use of computational image analysis (Eils and Athale, 2003; Myers, 2012). Having a computer
software do the image analysis renders the results reproducible. If the same software is run twice on the same
image, the same result is produced. Manual analysis, however, is often not reproducible, as different people
would quantify the image differently and even the same person might attribute slightly different numbers to the
same object upon different repetitions of the analysis. Computational analysis also increases the throughput,
as thousands of images can be processed, potentially even in parallel on a computer cluster. A third reason
for using computational image analysis it that algorithms can detect minute pixel variations that the human
eye cannot see (Danuser, 2011). Finally, results from computational image analysis, such as cell shapes and
fluorescence distributions, can be directly used to build systems models and computer simulations of biological
processes (Sbalzarini, 2013). Such simulations can then test whether the hypothesized, simulated mechanism is
sufficient to produce the experimentally observed behavior. Perturbation experiments can then show whether
it is also necessary. Image analysis is hence the first step toward a systems understanding of spatiotemporal
biological processes.

∗This preprint has been published as a book chapter in: “Focus on Bio-Image Informatics”, Springer Series on Advances in
Anatomy, Embryology and Cell Biology, Chapter 1, pp. 1–39, Springer, 2016.

1



Image analysis is a large and complex field, intersecting with image processing and computer vision. Image
processing is a branch of signal processing, interpreting images as multi-dimensional continuous or discrete
signals. Computer vision is the branch of artificial intelligence that tries to teach computers to “see”, i.e., to
interpret images. Computer vision has a forty-year history and is a well-researched field. Importing techniques
from computer vision can help solve problems in biological image analysis (Danuser, 2011). Nevertheless,
computer vision is not a panacea for bio-image analysis, because computer vision has evolved with different
images and goals in mind. The focus in computer vision is on interpreting complex scenes from images with
good resolution and signal, i.e., conditions under which also the human eye operates. Such images are typically
acquired with digital photo cameras and show objects that are much larger than the wavelength of the light used
to image them. This has the important consequences that diffraction effects can be neglected and that imaging
noise can be modeled as Gaussian, as the photon count per pixel is high. These assumptions pose challenges
to computational analysis that are different from those for images acquired in microscopy. Microscopy images
are typically characterized by low signal-to-noise ratios and significant diffraction artifacts. Moreover, the noise
is frequently not Gaussian. Low-signal detectors such as (EM-)CCD and CMOS cameras, as well as photo-
multiplier tubes and photodiodes, produce dominant Poisson noise, which is overlaid with the Gaussian noise
from the electronics. Finally, microscopy frequently acquires 3D or 4D images, whereas digital photography is
mostly limited to 2D. The specifics of biological images and their analysis have given rise to the new discipline
of bio-image informatics (Peng, 2008; Myers, 2012).

Despite significant advances in the past years, bio-image informatics is still in its early days, and many challenges
remain to be addressed. This includes the development of algorithms and software that better utilize the
available computer resources in order to allow high-throughput studies and high resolution with large multi-
dimensional image data. Second, the topic of uncertainty quantification needs to be addressed, which has so far
been poorly dealt with in bio-imaging. If the goal is to be quantitative, i.e., to use imaging and image analysis
as measurements in the scientific sense (Dietrich, 1991), one has to know and quantify the measurement errors
and their propagation and amplification along the analysis pipeline. Simply having an algorithm that tells us
“here is a nucleus” is not of much use in big-data studies, and it prohibits statistical tests on the results. We
need to know the probability that there is a nucleus, and the probability that the algorithm failed or produced
a wrong detection. Third, we need to develop versatile frameworks and algorithms that can be adapted to
different applications without having to re-write the software on a case-by-case basis. This requires theoretical
and algorithmic frameworks that are adapted to the specifics of biological images and provide us with systematic
and principled ways of including prior knowledge about the imaging process and the imaged objects into the
analysis. Fourth, the new algorithms need to be made available to the community as user-friendly, open-
source software. These four current challenges equally apply to all image-analysis paradigms and all imaging
modalities.

Light microscopy is probably the prevalent imaging modality in biology today, as it allows live-cell imaging and
real-time observation (Royer et al, 2015) of dynamic processes in cells and tissues. Focusing on fluorescence
microscopy, we discuss the above four challenges and show for each of them where the field currently stands and
what remains to be addressed. First, however, we outline the different paradigms of image analysis, providing a
scaffold to structure the discussion. We close this article by highlighting different design approaches and current
trends in bio-image analysis software tools, and by summarizing and generalizing our observations.

2 Computational bio-image analysis

Bio-image informatics enables us to address biological questions that could not be addressed otherwise, or only
at a much higher cost (Peng, 2008; Myers, 2012). These questions are naturally posed in terms of biological
entities and concepts, such as “do cells in the vicinity of a dividing cell have a higher propensity to divide
next during tissue growth?” Bio-image analysis has to bridge the gap between the biological question and the
image data. Questions like what it means for a cluster of pixels in an image to be considered a “cell”, how
“vicinity” is measured over the pixel grid of an image, and what cell division “looks” like in the table of pixel
intensity numbers need to be addressed and formulated as algorithmic recipes that can be programmed into a
computer. This entails addressing the “what is where” inference problem over images, just as computer vision
does. Quantitative bio-image analysis additionally needs to address the “how much of what is where” problem.
This is harder, as more ambiguities exist. Due to the diffraction limit, for example, it is not always possible
to distinguish the diffraction-limited bright spot created by a 50 nm object with high fluorophore concentration
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Figure 1: Data representation and uncertainties in image analysis. The same specimen can be imaged in different
views, giving rise to different images. Image analysis extracts quantitative information from the image, which
can then be interpreted to form conclusions. Every step increases the level of abstraction and adds uncertainties
and errors that often remain uncharacterized. Dashed arrows indicate routes of additional processing. (Image
sources: “Specimen” image from FlyBase.org; “Pixels” image courtesy of Pavel Tomancak, MPI-CBG; “processed image”, “motion
tracks”, and “interaction potentials” by Yuanhao Gong, Pietro Incardona, and Jo Helmuth, respectively, all MOSAIC Group.)

from that created by a 200 nm object with lower fluorophore concentration. This becomes an issue when
one is interested in quantifying the concentration of the labeled protein in small sub-cellular structures (e.g.,
endosomes) as a biologically meaningful readout (Helmuth et al, 2009). Unique answers can only be found when
including problem-specific prior knowledge and calibration into the analysis.

2.1 From specimen to pixels to objects to meaning

Image analysis is a data representation problem, as illustrated in Fig. 1. The information for the final conclusion
is already contained in the original specimen, albeit in a very different data representation.

Multiple steps are required working one’s way through the data representation hierarchy from the specimen
to meaning. The first step is image acquisition. The specimen can be imaged in many different ways, for
example using different imaging modalities, different microscopes, different magnifications, different viewing
angles, and different fluorescent markers. We call a specific imaging setup a view, leading to a digital image
represented as a table of numerical pixel-intensity values. This clearly amounts to information loss, as many
different images could be produced from one and the same specimen. Moreover, the intensity values in the pixel
matrix are not easily related to actual fluorophore concentrations, since the microscope optics have an imperfect
impulse-response function (Hecht, 2001), called the point spread function (PSF), the excitation light intensity
may be unknown, and light is absorbed and scattered as it propagates through the sample. In order to bridge
to biological meaning, the matrix of pixels hence needs to be interpreted in terms of the objects represented in
the image, which can be done using different approaches, as discussed in the following.
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All approaches are commonly referred to as image analysis, which aims to extract semantic meaning from images.
Image analysis hence takes an image as input and produces object representations as output, for example a
list of nuclei positions and sizes, or a 3D representation of cell shapes in a tissue. After image analysis, the
information is hence no longer encoded in pixel matrices, but explicitly available as biologically tangible objects.
This is in contrast to image processing, which transforms one image into another image that has, for example,
less noise or blur. Examples include image deconvolution and contrast enhancement. Image processing is a
sub-field of signal processing and operates within the image domain. Image restoration is a sub-field of image
processing that aims to transform an image into one where the uncertainties and errors introduced by the
image-acquisition process are reduced.

Image analysis often implies delineating objects represented in the image, a process called image segmentation.
Object detection is a sub-task of segmentation that finds occurrences of the objects of interest in the image,
and maybe counts them, but does not quantify their shapes. Spatial pattern analysis uses the detected and/or
segmented objects to ask the question whether their spatial distribution is random or follows a certain pat-
tern (Lagache et al, 2013). Interaction analysis is a special case of spatial pattern analysis, asking whether
the distribution of one type of objects (e.g., viruses) is independent of the distribution of another type of ob-
jects (e.g., endosomes) and, if not, what hypothetical interaction between the two best explains their observed
relative distribution (Helmuth et al, 2010; Lagache et al, 2015). An important analysis in time-lapse video is
motion tracking, aiming at following moving objects over time and extracting their trajectories. This requires
determining object correspondences across time points and is usually done after object detection or segmenta-
tion. Given the detected or segmented objects in each frame of a movie, tracking answers the question which
detection in one frame corresponds to which detection in the next frame in the sense that the two are images of
the same real-world object at different time points (Bar-Shalom and Blair, 2000). A wealth of tracking methods
exist in biological imaging, both for particle tracking (compared and reviewed in (Chenouard et al, 2014)) and
for cell tracking (compared and reviewed in (Maška et al, 2014)). Most of them have by now been integrated in
standard software packages. The extracted trajectories of moving objects are rich sources of information about
dynamics, types of motion (Sbalzarini and Koumoutsakos, 2005; Wieser et al, 2008; Ruprecht et al, 2011), and
motion patterns (Helmuth et al, 2007). This has, for example, been used to analyze virus motion on and inside
infected host cells (Ewers et al, 2005; Helmuth et al, 2007; Yamauchi et al, 2011) and to analyze the mobility of
single molecules in plasma membranes (Wieser and Schütz, 2008). For spatially extended objects, one can also
track the deformations of their outlines. This involves determining which point on an outline corresponds to
which point on the later outline. Solutions based on mechanical ball-and-spring models (Machacek and Danuser,
2006) and level-set methods (Shi and Karl, 2005; Machacek and Danuser, 2006) have successfully been applied.
Level-set methods (Sethian, 1999) have been used to track high-resolution outlines of polarizing and migrating
keratocyes in phase-contrast movies (Ambühl et al, 2012), and to segment and track fluorescent HeLa and CHO
cells (Dzyubachyk et al, 2010). This allows quantifying cells, their shapes, and temporal dynamics.

From this quantitative information about the shapes, positions, spatial distributions, and motion of the imaged
objects, the researcher needs to derive biological meaning and new knowledge. Such meaning may come in
the form of annotations of the objects found in the image (e.g., “this bright blob of pixels is a nucleus”),
grammar (e.g., “nuclei are inside cells”), or semantics (e.g., “if a nucleus looks condensed and bright, the cell
is entering mitosis”). This high-level interpretation of the image is application-specific and necessarily includes
prior knowledge about what has been imaged. Otherwise, an image of fluorescently labeled virus particles on a
cell membrane would be hard to distinguish from a photograph of the starry sky at night.

Including prior knowledge and interpreting the data inevitably introduces uncertainty. Indeed, errors and un-
certainties are introduced at every stage of the image-analysis process and are propagated downstream. This
includes uncertainties in the specimen itself, such as unknown labeling densities and blinking fluorophores (An-
nibale et al, 2011). Additional uncertainties are introduced by the view, i.e., the image acquisition process.
This includes light scattering in the sample, aberrations from the optics, and noise from the photon-detection
process and the electronics in the camera. Image processing and analysis are also not perfect and may amplify
noise, introduce false detections, quantification errors, and missed detections. This is not limited to compu-
tational image processing; also humans make mistakes when interpreting and quantifying images. Finally, the
interpretation of the resulting information is subject to uncertainties, as we are often implicitly assuming a
model that may not be correct. Ideally, all of these uncertainties and errors should be known and quantified,
and their influence on downstream results are bounded. Else it is impossible to decide whether an observed
difference between two analyzed images is due to biological differences in the specimen, or just due to analysis
artifacts.
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Figure 2: The forward and the inverse problem in fluorescence microscopy: the specimen u(x) is imaged using
optics with a certain point spread function K(x), yielding a diffraction-limited, blurred image of the specimen.
This image is then digitized onto the finite pixel grid of the camera, and the photon-counting process in the
detector, as well as the camera electronics, introduce noise n(x). Modeling this image-formation process, i.e.,
predicting the image for a known or hypothesized specimen is the forward problem. The inverse problem consists
in reconstructing an unknown specimen or its delineating boundary Γ (red line) from a particular observed image
u0(x). (Image source: Grégory Paul, MOSAIC Group).

2.2 The forward and the inverse problem

It is common to distinguish between the forward problem and the inverse problem in imaging, as illustrated in
Fig. 2 for the case of fluorescence microscopy. The forward problem consists of finding a predictive model, the
forward model, of the image-formation process. For a known or hypothesized specimen, this model predicts
the image. The inverse problem entails reconstructing the specimen from a given observed image. Due to
blur, noise, and other uncertainties introduced during image acquisition, there is usually no unique solution
to the inverse problem, or its solution is unstable, which is why the inverse problem is called “ill-posed”. A
solution can only be found by including application-specific prior knowledge to regularize the problem. This
prior knowledge can for example be the limit curvature of lipid membranes, or the PSF of the microscope. The
solution space of the inverse problem is then restricted to those solutions that are compatible with the prior
knowledge, eventually leading to a unique answer when sufficient prior knowledge is included.

The question arises, however, how much prior knowledge is required. In the absence of a closed theory, the
pragmatic approach in bio-image analysis is to match the analysis aims and tools to the level of detail required
by the biological question. Questions such as whether a co-localization study should account for fluorophore
blinking and chromatic aberration, or not, are largely decided opportunistically with the final aim of the analysis
in mind. This can be seen as a heuristic way of deciding which prior knowledge to include into the analysis.

2.3 Bayesian, or not?

Image analysis considers the inverse problem and is therefore an inference task. The goal is to infer shapes,
locations, and distributions of the imaged objects from the acquired images. As in any inference task, there are
two views of the problem: frequentist and Bayesian. Frequentist inference draws conclusions from the data by
looking at frequencies of occurrence. For example, thresholding considers a pixel to be part of an object if its
intensity is in the upper 10% of all pixels in the image. Bayesian inference draws conclusions that have high
probability of explaining the data given the prior.

While both approaches include prior knowledge, e.g., about how the image has been acquired or the experimental
design, the Bayesian approach formalizes the prior knowledge in the mathematical form of a Bayesian prior.
Prior knowledge and a Bayesian prior are hence not the same, and in frequentist inference the former is present
without the latter. In Bayesian inference, the inclusion of prior knowledge is not necessarily limited to the prior
either, but may also enter other terms, such as the likelihood.

Bayesian inference is based on Bayes’ theorem, as illustrated in Fig. 3. Applied to image segmentation, the
theorem states that the segmentation that is most likely to produce the observed image when run through
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Figure 3: Illustration of Bayes’ theorem: we seek the segmentation that has the highest posterior probability of
being correct given the observed image (blue). This can be achieved by maximizing the product of the likelihood
of observing the image given the forward model output (red), and the prior knowledge about the imaged objects
(green).

the given forward model is obtained by maximizing a quantity called the posterior, which is proportional to
(∝) the product of two known and computable terms: The first term is called the likelihood and it quantifies
how likely it would be to observe the given image if the hypothetical segmentation were true. This is often
done by measuring the difference between the observed image and the one predicted by the forward model for
the hypothetical segmentation. The smaller this difference, the more likely the segmentation is. The second
term is called the prior and it measures the a-priori probability that the hypothetical segmentation is correct,
irrespective of the image observed. This could, e.g., attribute lower probability to membrane segmentations that
are highly curved, formalizing our prior knowledge that lipid membranes tend to form smooth shapes.

All terms in Bayesian inference have the meaning of probabilities. However, given that in image analysis
and experimentation it is often more natural to talk about evidence rather than probability, a theory like the
Dempster-Shafer Evidence Theory might provide a more appropriate interpretation (Shafer, 1976). The key
difference is that evidence does not have to sum up to 1, as probability does. Probability is the “chance” of
there being two touching cells in the image, as opposed to a single cell. Evidence is the “degree of belief” that
there is one or two cells. If the image is so blurry that one cannot decide whether it is one or two cells, one could
give a low value to the probability of there being two cells. Since probabilities have to sum to 1, however, this
implies a high probability that there is one cell. The statement hence inevitably becomes: “I am very certain
that there is only one cell.” This is not the same as: “I cannot decide whether there is one or two.” If one
cannot decide, this means there is neither compelling evidence for one, nor for two cells. Since evidence does
not have to sum to 1, one could hence simultaneously give low evidence to both possibilities.

In summary, there are three inference frameworks for image analysis: frequentist inference, Bayesian inference,
and evidence theory. The first two currently dominate the field.

3 Image analysis paradigms

Irrespective of the inference framework used, there are different philosophies and approaches to image analysis.
Each of them has its own way of interpreting images and of including prior knowledge, and comes with its own
set of advantages and caveats. The approach implemented in a given software largely defines what the software
is in principle able to do, and what not. We discuss the three most prominent paradigms below, focusing on
how to convert an image, stored as a matrix of pixel values, to quantitative information about the features and
objects represented in it.

3.1 The filter-based paradigm

The filter-based approach to image analysis consists in applying a series of arithmetic operations to the pixel-
intensity values in order to isolate or reveal objects of interest, or compute object segmentation masks. Prior
knowledge is included in the filter design. In order to detect bright spots in an image, one could for example
run a band-pass filter over the image to reduce noise and background, and then use a relative threshold filter
to select all local maxima that are brighter than a given threshold (Crocker and Grier, 1996). More advanced
approaches to spot detection use multi-scale wavelet filters (Olivo-Marin, 2002).

Filters are classified as linear and non-linear, shift-invariant and shift-variant, discrete (digital) and continuous
(analog). Linear filters only compute linear combinations of the pixels in the input image, for example weighted
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sums or differences. Non-linear filters apply arbitrary non-linear operations. Shift-invariant filters always
perform the same operations regardless of where in the image they are applied. For example, they always
compute the average of all neighbors of a pixel, regardless of which pixel is at the center. Shift-variant filters
perform different operations depending on where they are shifted to, e.g. using a different PSF in different parts
of the image. Discrete filters operate on discrete pixel lattices with discrete intensity levels, whereas continuous
filters can also be evaluated at sub-pixel locations and may produce non-integer intensity values. Since digital
images are discrete by nature, continuous filters are often based on assuming certain continuous basis functions,
like Splines or Bézier curves. Any linear shift-invariant filter amounts to convolving the input image with a
filter kernel and can hence be efficiently computed as a convolution.

Most filter-based approaches are found in image processing, including prominent examples such as the fast
Fourier transform (Cooley and Tukey, 1965), wavelet transforms (Chan and Shen, 2005), thresholding (Otsu,
1975), edge-detection (Canny, 1986), anisotropic diffusion filters (Perona and Malik, 1990), and image natural-
ization (Gong and Sbalzarini, 2014) (see Fig. 4). A special case are the discrete filters used in mathematical
morphology (Najman and Talbot, 2010). In image analysis, a famous filter-based method is watershed seg-
mentation (Najman and Schmitt, 1996), which is a combination of linear shift-invariant filters to determine the
seeds for a subsequent watershed transform (Meyer et al, 1997) from mathematical morphology. Filter-based
approaches to motion tracking notably include those based on pixel cross-correlations (Willert and Gharib,
1991) and split/merge data-association filters, which are however often augmented with Bayesian model-based
approaches for multi-hypothesis tracking (Genovesio and Olivo-Marin, 2004). Approaches combining Gaus-
sian filtering with mathematical morphology and thresholding are routinely used for single-particle detection
(Sbalzarini and Koumoutsakos, 2005) and filament segmentation (Ruhnow et al, 2011).

Due to their explicit nature, filter-based approaches are computationally fast. They are, however, typically
specialized. Filter-based approaches are designed specifically to the task. They provide less flexibility to adapt to
different tasks than machine-learning and model-based methods do. Moreover, filter-based approaches typically
have a large number of parameters that need to be adjusted and tuned. Depending, for example, on how one
sets the threshold in a thresholding filter, one can get any result one wants. Often, there is no good a-priori
criterion to tune the parameters, leaving us with arguments like “it gave me what I wanted” or “it looked best”
that fundamentally go against the idea of image quantification. Finally, filter-based image analysis yields a label
image (e.g., a binary segmentation mask), from which objects and object information yet need to be extracted.
While this can be as straightforward as finding connected components, it can also be more sophisticated, like
in Largest Contour Segmentation (LCS) (Manders et al, 1996) where multiple segmentations/objects are found
for different thresholds and combined afterwards.

3.2 The machine-learning paradigm

The machine-learning approach is based on detecting patterns in numerical features computed from the image
(reviewed by Shamir et al (2010)). This can mean classifying each pixel to be either part of an object, or
not. However, the approach is not limited to pixels, and also patches and whole images can be classified, e.g.,
whether they contain cells or not. This classification is done based on features that are computed for each pixel
or over the whole patch/image. The simplest feature is the (average) intensity. More advanced features include
texture (Li et al, 2003; Orlov et al, 2008), gradients (Orlov et al, 2008), and shape (Etyngier et al, 2007). The
machine-learning algorithm could, e.g., classify all bright regions with rough texture as belonging to a nucleus,
or all images that contain curve-like shapes as images of filaments. Machine learning can also be used to classify
spatial patterns without prior segmentation (Huang and Murphy, 2004). The machine-learning approach is
frequently combined with the filter-based approach by either computing features of a filtered image where, for
example, edges have been enhanced, or by computing features using filters.

Machine learning can follow either an unsupervised or a supervised approach (Cherkassky and Mulier, 1998;
Duda et al, 2000; Bishop, 2007). In unsupervised learning the pixels/images are grouped according to their
features using, e.g., clustering techniques. This yields “sub-populations” that have similar features within, but
different ones across. Frequently, the assumption is that pixels or images of the same sub-population show
the same type of objects, e.g., nuclei. In the supervised approach, the classification is learned from examples.
The algorithm first has to be “trained” using pre-classified examples from each class. This typically means
segmenting or classifying a number of images by hand in order to train the algorithm. The number of examples
required for training depends on the number of features and the learning algorithm used. Prior knowledge is
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Figure 4: Example of a typical filter-based workflow: image naturalization for denoising and contrast enhance-
ment (Gong and Sbalzarini, 2014). (a) The first filter computes the gradient of the input image by applying
forward finite differences, subtracting each pixel intensity I(i, j) from its top and right neighbors. (b) The
second filter scales each pixel intensity by a value k that is automatically determined so that the naturalized
image has a gradient histogram that fits the one expected from natural-scene images (Gong and Sbalzarini,
2014). (Original image from: American Microscopical Society, Winner of the 2004 Bauchsbaum Prize (amicros.org); Lee&Matus,
U Hawaii, confocal image of Pilidium larva of the nemertean Cerebratulus sp.)

included both in the design of the learning algorithm and in the choice of features used for classification (Hong
et al, 2008). Image information that is not captured by the selected set of features is lost. In the supervised
approach, prior knowledge is additionally included in the training examples selected.

Machine learning is particularly popular for complex images, like electron microscopy images, MRI and X-ray
images, and histological sections. In these images, texture and context often play an important role in detecting
objects, hampering the design of generic filters or models. There, machine learning has for example been used
to segment brain MRI images using supervised artificial neural networks (Reddick et al, 1997), to segment
tumors in MRI images (Zhou et al, 2005), and to detect microcalcifications in mammograms (El-Naqa et al,
2002). Classification of image patches or whole images has, e.g., been used to classify sub-cellular patterns
without previous cell segmentation (Huang and Murphy, 2004). This approach is particularly prevalent in
histology (McCann et al, 2012) and pathology (Fuchs et al, 2008, 2009; Orlov et al, 2010), where entire images
are often scored, e.g., for lymphoma detection (Orlov et al, 2010). This approach is illustrated in Fig. 5, where
supervised classification of image patches is used to detect different tissue types, followed by classifying the
overall histological score for the whole image. Frequently used image feature sets include weighted neighbor
distances (WND) (Orlov et al, 2008), scale-invariant features (SIFT) (Lowe, 1999), binarized statistical image
features (BSIF) (Kannala and Rahtu, 2012), and basic image features (BIF) (Crosier and Griffin, 2010). State-of-
the-art supervised learning algorithms for image analysis include random forests (Breiman, 2001), regression tree
fields (Jancsary et al, 2012), and deep neural networks (“deep learning”) (Ciresan et al, 2012). Machine learning
approaches to motion tracking started with using Support Vector Machines (Schölkopf and Smola, 2002), a
popular supervised classification method, to track optical flows (Avidan, 2004). Later, this was generalized to
Relevance Vector Machines that predict displacements rather than detecting flow, hence leading to a model-
based Bayesian learning paradigm (Williams et al, 2005).

Machine-learning methods provide more flexibility than filter-based methods, albeit at the expense of higher
computational time. Supervised approaches are particularly flexible, as they can be trained by example to solve
a variety of image-analysis problems. Having to manually annotate and select the training samples, however, is
additional effort. Moreover, the final analysis depends on the chosen training data, hence introducing additional
user bias that is not present in other methods. Usually, one wishes to keep the feature set as small as possible, as
the computational cost of machine-learning algorithms grows with the number of features used. In a supervised
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Figure 5: Example of a typical machine-learning workflow: automatic scoring of histology sections for colitis
detection. (a) The machine-learning classifier is trained by the user manually labeling the tissues in several
example locations. (b) After training, the classifier can be used to segment the image and automatically assign
tissue class labels everywhere. From these, the final histological score is computed. The example shown here
uses the Random Forest classifier from WEKA (Hall et al, 2009) on the WND-CHARM (Orlov et al, 2008)
image features. Prior to training, 22 out of the 1025 features were determined to be important for the problem
(feature selection). (Original image from: Institute of Physiology, University Hospital Zurich, mouse colitis histology section;
Segmentation and classification by Dheeraj Mundhra, MOSAIC Group.)

approach, the amount of training data needed also increases with the feature count. Deciding which features
to include is a hard problem known as feature selection. Finally, like in filter-based approaches, pixel-level
classification yields a labeled output image from which objects and their properties still need to be extracted.
This image-to-object transformation implies additional prior knowledge and can also be done using machine
learning.

3.3 The model-based paradigm

The model-based approach does not operate on the pixels of the observed image, but rather estimates a model
of the imaged scenery that is most likely to explain the observed image. The image is hence only used as a
gold standard to compare with. A key ingredient is how a hypothetical segmentation or scenery is compared
with the image, and how the result of this comparison is used to iteratively refine and improve the former.
Approaches range from comparing image intensities (Kass et al, 1988) or gradients (Lin et al, 2003) to including
a predictive model of the image formation process (Helmuth et al, 2009). The latter is illustrated in Fig. 6,
where the segmentation is iteratively updated until the output of the forward problem (see Sec. 2.2) fits the
observed image as closely as possible.

Model-based image analysis requires up to three models to be specified: the object model, the imaging model,
and the noise model. In many cases, not all three are present, or some are implicitly assumed to be, e.g., the
identity map or a Gaussian. The imaging model describes the noise-free image-formation process, predicting the
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Figure 6: The model-based approach: an imaging model is used to predict the expected image for a given,
hypothetical segmentation. This predicted image is then compared with the actually observed image and the
segmentation is adjusted to minimize the difference between the two. The specific metric used to quantify the
difference implicitly defines the noise model one assumes. The object model defines what shapes, deformation,
and intensity distributions are admissible for the segmentation (Credit: Jo Helmuth, MOSAIC Group).

image one would expect (over the statistical distribution of the noise) to see when imaging a particular scenery.
A simple imaging model for a fluorescence microscope is the convolution with the PSF (Linfoot and Wolf, 1956;
Zhang et al, 2007), neglecting any noise. For phase-contrast microscopy, the imaging model is more complex
(Yin et al, 2010). If the image-formation process is not to be accounted for, the imaging model can also be the
identity map. If the comparison is not done on pixel intensities, but on other features, such as intensity gradients,
the imaging model computes these features (Lin et al, 2003). The hypothetical sceneries that are scored by the
imaging model correspond to different realizations of the object model. The object model defines the admissible
sceneries and parameterizes them. A simple object model for a nucleus could be a sphere, parameterized by
its center location and radius. For each realization of this model, i.e., concrete values for center and radius,
the imaging model predicts how the image features of that nucleus would look like (e.g., bright spot around
the projection of the sphere with some diffraction blur at the boundary). The imaging and object models can
be arbitrarily complex and may even include physics-based numerical simulations. For example, segmenting
cardiac deformation from ultrasound images has been done using a finite-element simulation of the mechanics of
the myocardium as an object model (Papademetris et al, 1999). Finally, the noise model specifies the statistical
distribution of the imaging noise, hence providing statistical significance to the comparison between imaging
model and data. In the simplest case, the noise model defines how to compare the imaging-model output with
the image data (Paul et al, 2013). Assuming Gaussian noise on the data, one would for example compare
images by the sum of squared pixel-intensity differences. Other noise models lead to different comparison
metrics (Chesnaud et al, 1999; Martin et al, 2004; Paul et al, 2013). In many cases, the noise model is not
explicit, but implicitly assumed, e.g., in the way the imaging model is evaluated, or in the features of the image
used for the comparison.

Model-based approaches are mostly classified with respect to the model assumptions. Examples include piece-
wise constant object models that assume the intensity within each object to be uniform (Fig. 7). Piecewise
smooth object models allow for intensity gradients within an object (Fig. 8). Deconvolving imaging models
account for the PSF of the microscope (Fig. 7). Data-driven models try to fit features (e.g., gradients) learned
from data. A second classification is with respect to the algorithm used to determine the best scenery. Exam-
ples include statistical estimators (Zhu and Yuille, 1996), variational solvers (Chan and Shen, 2005), sampling
schemes and random fields (Geman and Geman, 1984), combinatorial optimizers (Blake et al, 2011), graph-
based optimizers (Boykov et al, 2001), dynamic programming (Nilufar and Perkins, 2014), and greedy gradient
descent (Kass et al, 1988).

A dynamic-programing approach was, for example, used for whisker tracing (filament segmentation) in behav-
ioral videos of mice, by Bayesian inference over a whisker object model (called “detector” therein) (Clack et al,
2012). Additionally including an imaging model, model-based image analysis has been used to determine decon-
volved segmentations without computing a deconvolution (Helmuth and Sbalzarini, 2009; Helmuth et al, 2009).
Because the imaging model accounts for PSF blur and imaging noise, the segmentations in Fig. 7 jointly solve
the deconvolution and segmentation tasks (Paul et al, 2011, 2013). This is beneficial when segmenting small
objects near the diffraction limit, like the Rab5-GFP endosome domains in Fig. 7. The model-based approach
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Figure 7: Example of model-based image segmentation, accounting for the Point Spread Function (PSF) of
the microscope to get high-resolution outlines of small intracellular objects (Helmuth et al, 2009; Helmuth
and Sbalzarini, 2009). The images show maximum-intensity projections of confocal z-stacks of fluorescently
labeled Rab5, a protein localizing to endosomes. (a) The red outlines show the resulting object boundaries
using deconcolving active contour segmentation (Helmuth et al, 2009; Helmuth and Sbalzarini, 2009). (b)–(e)
Time-lapse sequence of reconstructed Rab5–GFP outlines illustrating a fusion event (arrow). (raw images: Greber
lab, University of Zurich; segmentations: Jo Helmuth, MOSAIC Group.)

also allows including physical properties of the imaged objects, such as bending stiffnesses of lipid membranes,
hence ensuring that the image-analysis result corresponds to a physically feasible membrane configuration. This
can be useful, e.g., when studying cell-edge dynamics in polarizing and migrating keratocytes (Ambühl et al,
2012). Efficient 3D methods for model-based image segmentation are also available (Boykov et al, 2001; El-
Zehiry and Elmaghraby, 2009; Cardinale et al, 2012) and topological constraints on the objects can be accounted
for (Cardinale et al, 2012) (Fig. 8). Data-driven models have been used to robustly segment dense and touching
nuclei in fluorescence microscopy images using a gradient model (Lin et al, 2003).

Model-based approaches are also popular for motion tracking (Kalaidzidis, 2007, 2009), for example based
on a model of how the objects move (Crocker and Grier, 1996), using approximate graph matching to fit a
model to the data (Vallotton et al, 2003), using approximate combinatorial optimization methods for model
fitting (Sbalzarini and Koumoutsakos, 2005; Ruhnow et al, 2011; Jaqaman et al, 2008), using Kalman filters
based on linear state-space models (Li et al, 2006, 2007), using particle filters based on non-linear state-space
models (Hue et al, 2002; Smal et al, 2008; Cardinale et al, 2009), using Bayesian probabilistic models for
multi-target tracking (Genovesio and Olivo-Marin, 2004) and multiple hypothesis tracking (Cox and Hingorani,
1996), and using integer-programming optimization over graph-based motion and appearance models (factor
graphs) (Schiegg et al, 2013).

Model-based image analysis includes prior knowledge via the imaging, noise, and object models. While only
the latter constitutes a prior in the Bayesian sense, all encode prior knowledge. Postulating the wrong models
leads to wrong results. Therefore, the model-based approach is particularly suited to clear-cut cases, like
fluorescence microscopy, where the object and imaging models are suggested by physics. However, even when
using appropriate models, the resulting optimization problem can be difficult to solve and is often restricted
to local optimization starting from a user-specified initial segmentation (Kass et al, 1988; Helmuth et al, 2009;
Helmuth and Sbalzarini, 2009; Cardinale et al, 2012) (Fig. 8). This is relaxed in globally optimal methods,
which are independent of initialization and guarantee that there is no other result that would explain the image
better than the one found (Pock et al, 2009; Brown et al, 2011; Paul et al, 2011, 2013). While this result
may still be wrong, it uses all the information available in the image and represents the best-possible result
under the assumed models (Rizk et al, 2014). This is a strong statement that is much harder to make in the
filter and machine-learning paradigms. Another important advantage of model-based methods is that they are
physics-based and the same algorithm can be used for a variety of cases by swapping the model. Switching
from fluorescence to phase-contrast images can be as easy as replacing the imaging model accordingly, leaving
the algorithm unchanged. Finally, model-based approaches directly yield objects and object properties. They
hence unite image labeling and image-to-object transformation into a single step.
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Figure 8: 3D model-based segmentation of germ cells in a zebrafish embryo. (a) The raw 3D confocal image stack,
showing three cells with a fluorescent membrane staining. The intensity is inhomogeneous, with the background
over the top of the cells brighter than the interior at the bottom of the cells. (b) Initial segmentation provided
by the user to the algorithm from Cardinale et al (2012). (c)–(f) Evolution of the outline as computed by
the algorithm, converging to the final segmentation using a piecewise smooth object model and a fluorescence
imaging model. (Raw image: Mohammad Goudarzi, University of Münster; segmentations: Janick Cardinale, MOSAIC Group.)

4 Challenges in computational bio-image analysis

There are currently four major challenges in computational bio-image analysis: large and multidimensional data,
uncertainty quantification, more generic algorithms, and collaborative open-source software. In addition, there
are several challenges in related areas, such as image databases (Swedlow et al, 2003), annotation systems (Peng
et al, 2010), and gold standards for testing and benchmarking of algorithms (Rajaram et al, 2012; Vebjorn et al,
2012). Together with the advancements in optics, microscopy, and labeling techniques, these developments will
enable unprecedented image-based studies.

4.1 Large and multi-dimensional data

In bio-image analysis, big data comes in two flavors: many images or large images. The former is typically
the case in high-throughput screens (Collinet et al, 2010) and can be dealt with by distributing the images
over multiple computers for analysis. The latter is a feature of multi-dimensional and high-resolution imaging
techniques, such as imaging mass spectrometry (Stoeckli et al, 2001) and light-sheet microscopy (Huisken et al,
2004; Engelbrecht and Stelzer, 2006) and requires solutions within a single image. This can, for example, be
done by multi-scale image representations, such as scale-space approaches (Witkin, 1984) and super-pixels (Xu
and Corso, 2012), akin to the “Google Maps” zooming function.

However, the question arises as to what should be done if the imaging equipment delivers data at a faster
rate than what can be written to hard disks. Recent microscopes with CMOS cameras, for example, deliver
3D images at a rate of 1 GB/second, per camera. A setup that uses two cameras hence produces almost
173 TB of data a day (Reynaud et al, 2014). This is faster than any hard disk or other permanent storage
system could archive the images and raises data-handling and storage issues that have so far been confined
to the high-performance computing and particle physics communities (Tomer et al, 2012; Weber and Huisken,
2012). Storing all raw images that come from such microscopes is infeasible. Using lossless data compression
techniques, however, fast networks are able to stream the data directly into a computer cluster, where it can be
distributed across multiple computers for analysis. Only the analysis results are then stored, e.g., the positions
of all nuclei or the shapes, sizes, and locations of all cells in the tissue. If the analysis is to be repeated, it is
quicker to image another sample than to archive the raw data, read it back, and re-run the analysis. This trend
is also observed in large computer simulations running on supercomputing systems and is known there as the
“data gap” (Sbalzarini, 2010). Analysis results and visualizations are hence determined at runtime, and if later
a new variable is to be measured or a new feature to be computed, the whole simulation is re-run.
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Fig. 11: Parallel segmentation of a real-world objects using a piecewise constant
image model (in this case eight processors). a) contour initialization; b)
segmentation result; c) single processor segmentation result
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Figure 9: Domain-decomposition approach to deal with big image data as presented by Afshar and Sbalzarini
(2016). A large image is subdivided into several smaller sub-images that are each given to a different computer or
cluster node for processing. The different computers (0 to 7 in this example) communicate with each other over
the network whenever segmentations cross sub-image boundaries. This ensures that the overall segmentation
is the same as that which would have been obtained on a single computer. The distributed result, however, is
computed faster (here: about 8 times faster) and using less memory on each computer. (Raw image: Dr. Liberali,
University of Zurich; distributed segmentation by Yaser Afshar, MOSAIC Group.)

Not storing the raw data comes with two requirements: (1) The analysis software needs to run in real time,
possibly distributed across multiple computers. (2) The confidence intervals and uncertainties of the analysis
results need to be known and stored along with the results.

The first requirement is of technical nature. Individual computer processor cores are not getting faster any more
at the rate they used to. Instead, chip manufacturers pack multiple cores into each processor and have them
operate in parallel. Leveraging this speedup, however, requires that algorithms are designed and implemented
with parallelism in mind. This is often not straightforward and requires re-thinking many image-analysis
algorithms. One way that is currently uncommon is to distribute each image (Afshar and Sbalzarini, 2016).
Instead of having one processor core analyze image after image, the images are divided into smaller sub-
images that are scattered across multiple cores (see Fig. 9). Each core then works on its part of the image
and they exchange information with the other cores over a computer network in order to collectively solve
the global analysis task in a fraction of the time it would take a single core to do so (Nicolescu and Jonker,
2000). This requires image-analysis algorithms that can be divided into concurrent work packages with as
little interdependencies as possible (Seinstra et al, 2002). Every interdependence between work packages causes
network communication overhead, which keeps the involved processor cores from working during that time.
Modern computer hardware, such as graphics processing units (GPUs) and heterogeneous many-core processors,
have more than a thousand parallel cores that need to be kept busy and orchestrated. It is hence essential that
we develop algorithms that map well onto such computer architectures (Galizia et al, 2015), like the example
of motion tracking using parallel distributed particle filters (Demirel et al, 2014a) implemented using the PPF
software library (Demirel et al, 2014c), and parallel distributed image segmentation (Afshar and Sbalzarini,
2016).

The second requirement when not storing the raw data is uncertainty quantification. If one only stores the
analysis results, but not the raw images, it is impossible to later go back and check whether there really was a
nucleus in that strange outlier image, or not. We would never know how much of the data is noise, and what is
signal. Storing proper confidence intervals would, however, tell us that the probability that there actually was
a nucleus is, e.g., 10%. So we know that the data point is not to be trusted, because the algorithm was not
sure about what it “sees” in that image. Storing the analysis results with their associated uncertainties enables
statistical significance tests in order to decide whether an observed difference between samples is real, or not.
This links to the challenge of uncertainty quantification.

4.2 Uncertainty quantification

The previous example describes a situation where uncertainty quantification is indispensable. However, it is
useful in far more cases. An algorithm for segmenting cells in a tissue could, for example, automatically detect
regions in the image where it cannot determine a confident segmentation and flag the user to look specifically at
those regions when manually post-processing the result. This would greatly reduce the proofreading overhead.

13



One could then also specify a confidence level and instruct the algorithm to only flag cases where the result is
less than, say, 95% likely to be correct. If a mutant or knock-down then shows less than 5% difference in the
readout, we know that this is not significant and could as well be explained by image-analysis errors. Clearly,
uncertainty quantification is desirable and useful.

Unfortunately, uncertainty quantification is a hard problem and has therefore not received much attention in
image analysis so far. It is often difficult to express uncertainty “scores” as true probabilities, because the
normalization is unknown. Evidence theory (Shafer, 1976) could hence provide a more straightforward way of
expressing uncertainty (see Sec. 2.3). Regardless of their expression and interpretation, however, uncertainties
in biological image analysis mainly arise from three sources:

1. The noise in the raw image is propagated through the computational analysis pipeline, leading to (poten-
tially amplified) noise and uncertainty in the analysis result.

2. The algorithm may terminate with a solution that is not the best possible one, leaving some uncertainty
about how far from the best solution it is.

3. The prior knowledge on which the algorithm is based may not adequately describe reality, leading to
uncertainty about how much of the result is due to this inadequacy.

Source (1) is particularly prevalent in fluorescence microscopy, where the imaging noise is often significant. This
noise may be further amplified by the image analysis. Consider, e.g., an edge detector that computes differences
between pixels, or a watershed filter that compares which of two pixels is brighter. If both pixel intensities
are noisy to within ±10%, the difference is noisy to within ±20% and the watershed may go down the wrong
way. The noise is hence amplified, leading to results that are less reliable than the original data. A famous
example of a noise-amplifying process is deconvolution. Source (2) is mostly important in machine-learning and
model-based methods, were the final estimated classification or scenery may not be the global optimum over
all possibilities, but only a local optimum over a subset of tested possibilities. Source (3) is again relevant to
all three paradigms, since all of them include prior knowledge in the filter design, feature selection, or model
specification that could be wrong or inadequate.

Ideally, we quantify the uncertainty in the final result due to the combined effects of all three sources, or at
least provide an upper bound for it. Unfortunately, this problem is hard (Halpern, 2005). Ground truth is
not available, synthetic benchmark images frequently do not share the intricacies of real images, a theoretical
framework for inference over images is lacking, and theoretical performance guarantees are not available for
many algorithms. Nevertheless, several promising approaches can be identified.

The first approach includes efforts to generate hand-segmented benchmark image collections (Vebjorn et al,
2012). The accuracy and robustness of algorithms can be tested on these image collections and scored against
the manual gold standard. This approach works as long as the images that the algorithms are later going
to be applied to are similar to the benchmark images. Since they are not going to be exactly the same,
though, this introduces uncertainty about the uncertainty quantification. Moreover, the manual gold standard
is not free of human error. Both points are somewhat relaxed by using synthetic ground truth (Rajaram
et al, 2012). There, ground truth is known without uncertainty, and the forward model used to generate the
synthetic images can be adapted to different acquisition conditions. The key difficulty, however, is to provide
sufficiently realistic (in shape, noise distribution, fluorophore blinking etc.) ground truth and forward models.
Using inappropriate models again leads to uncertainty in the uncertainty estimate, according to source (3)
above. Realistic shapes can, for example, be generated by sampling from shape spaces learned from training
images (Murphy, 2012). This, however, introduces uncertainty with respect to the training data chosen for
learning the shape space.

The above approaches to uncertainty quantification are data-centric. There are, however, also algorithm-
centric approaches that relax the data dependency to some extent. Source (1) can, for example, be addressed
by error-propagation analysis of the involved algorithms. The conceptual idea is to re-run the analysis for
different random input perturbations and see how the results vary. This is commonplace in scientific com-
puting, where a wealth of efficient methods has been developed, including spectral uncertainty quantification
(Le Mâıtre and Knio, 2010), simplex stochastic collocation (Witteveen and Iaccarino, 2012), and generalized
polynomial chaos expansion (Xiu and Karniadakis, 2002; Xiu, 2009). However, these are still rarely used
in image analysis, with exceptions like OMEGA, which uses error propagation in particle-tracking analysis
(https://github.com/OmegaProject).
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Most algorithm-centric approaches so far have focused on source (2) by quantifying the residual discrepancy
between the model output and the real image. These approaches do not require ground truth, but rather measure
model-fitting errors. They hence only provide a lower bound on the real uncertainty and usually do not yield
proper probabilities, but rather evidence (Shafer, 1976). The simplest approach is to use the residual value of the
posterior probability as a proxy for result certainty (Paul et al, 2013) (Fig. 10a). More sophisticated approaches
use Markov-chain Monte Carlo sampling (Geman and Geman, 1984; Chang and Fisher III, 2011) or Approximate
Bayesian Computation (Marjoram et al, 2003) to sample from the probability density of the posterior and get
an idea of the distribution of potential results. This has, e.g., been used to provide uncertainty estimates in
microtubule tracking (Cardinale et al, 2009) (Fig. 10b), model-based segmentation (Cardinale, 2013) (Fig. 10c),
and multi-scale approaches (Kohli et al, 2010). In addition, theoretical performance guarantees are available
for some optimizers and estimators used in model-based methods. Examples include graph cuts (Boykov et al,
2001), Markov random fields (Geman and Geman, 1984), and photometric estimators based on information
theory (Paul et al, 2013). While these error bounds do not provide a probability distribution, they give an
idea of the interval within which the correct result must lie. These intervals, however, are in the model-fitting
energy and not in object space. If the energy is flat (i.e., has a small gradient), the result might be arbitrarily
wrong and still have similar energy. This problem is addressed by the concept of diversity solutions, which are
alternative segmentations or analysis results that are all about equally likely to be true, but may look very
different (Ramakrishna and Batra, 2012; Batra et al, 2012). Using diversity solutions, a segmentation algorithm
could for example express its uncertainty about two overlapping blobs of high intensity being two individual
touching objects, or one fused object. Ideally, globally optimal methods are guaranteed to find the best solution
and are hence free of source-(2) uncertainty (Pock et al, 2009; Brown et al, 2011). This, however, is only possible
for simple object and imaging models, trading off uncertainties of source (3).

Source (3) is a classic issue in machine learning, called model misspecification error. To our knowledge, it has
so far not been addressed in image analysis. One way to do so could be to combine machine-learning and
model-based methods on the same problem. Looking at the discrepancy between the results could provide an
estimate of how much uncertainty is explicable by modeling errors.

Finally, rather than asking how well a given algorithm performs on an image, one could ask how well any
algorithm could possibly perform. For example, with what uncertainty is one able to quantify the center of
a point source from a fluorescence microscopy image given the finite number of photons recorded? These are
questions about absolute, often information-theoretic, bounds. For point localization, the problem has been
solved using the concept of Cramér-Rao bounds, providing a lower bound on the estimation error any algorithm
must necessarily make, given the photon count (Ober et al, 2015). For higher-dimensional objects, such as
filaments, areas, and volumes, the situation is considerably more complex, since neighboring photon sources are
correlated though the (unknown) geometry of the object. For filaments, bounds have been derived for specific
cases Xiao et al (2016), but for two- and three-dimensional objects nothing is available yet.

4.3 Generic algorithms

A current shortcoming in bio-image analysis is the tendency to treat every problem as a special case and develop
a new algorithm or software for each project, to solve exactly the specific problem of that project. While this
case-by-case approach and the associated “whatever works” mentality mostly lead to the desired results, they
are wasteful and not scalable. Not only does it take a long time to come up with and implement a new
analysis algorithm, it is a recipe for reinventing the wheel. Research groups hire image-processing specialists
and computer programmers that often reinvent or re-implement what was already there in another group, and
central image-processing facilities (if existent at all) drown in unrelated requests and do not find time to provide
more general, unifying solutions. One of the most precious features of an algorithm is its generality. A strong
trend in the field hence goes toward developing and implementing algorithms that are more generic and that are
applicable to more than just one case or imaging modality. This also includes collections of canned algorithm
building blocks and software libraries that can be used by computer programmers to more rapidly build workflow
solutions from proven components (see also Sec. 4.4).

On the algorithmic level, there are three main axes of generality: (1) combining multiple tasks into one, (2)
extending the class of problems that a given algorithm can deal with, (3) rendering an algorithm parameter-
free.

The first point could, e.g., include combining image restoration with segmentation and photometry. An example
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Fig. 2 Threshold selection using the a posteriori error upper
bound (21). (a) Ground-truth image (β1 = 10 and β2 = 14). (b)
Ground-truth image (a) corrupted with additive Gaussian noise (SNR
= 4). (c) Blurred (isotropic Gaussian, standard deviation σ = 2 pix-
els) ground-truth image corrupted with additive Gaussian noise (SNR
= 4). (d–f) Final masks obtained from applying the ASBS to (b) with

λ = 0.1 (d), to (c) with λ = 0.075 (e), and to (c) with λ = 0.125
(f). Panels (g–i) show the error upper bound (solid blue line, left axis)
and the MCC (solid red line, right axis) as a function of the threshold
t . Gray shaded regions correspond to threshold values resulting in the
correct topology. Optimal (g2, h2, and i2) and suboptimal (g1,3, h1,3,
and i1,3) segmentations are shown below

function of the threshold t (Fig. 2g–i). Knowing the ground-
truth segmentation (Fig. 2a), we assess the quality of the
binary classification resulting from the segmentation for dif-
ferent thresholds. We use the Matthews correlation coeffi-
cient (MCC) (Matthews 1975; Baldi et al. 2000) (solid red
line) as quality measure. The MCC correlates the observed
classification to the predicted one, and is normalized between
0 and 1: a value close to 1 represents perfect classification
and a value close to 0 corresponds to an average random
prediction.

In the case of exact convex relaxation, the a posteriori
upper bound is relatively small for almost all thresholds
(Fig. 2g) and quite insensitive to the actual value of the
threshold. The optimal threshold (marked g2) and its asso-
ciated segmentation (Fig. 2g2) are shown along with seg-
mentations corresponding to an upper bound 1.5 times larger
than optimal (Fig. 2g1, g3). The two suboptimal segmenta-
tions g1 and g3 are very close to ground truth and differ from
it only by a few pixels; the topology is always correct. This
robustness is reflected in the MCC saturating at 1.

In the case of approximate convex relaxation (Fig. 2h–i),
the a posteriori upper bound is higher than for exact con-

vex relaxation (Fig. 2h, h2, i, i2). We observe that the MCC
is negatively correlated with the a posteriori upper bound,
and that the threshold corresponding to the minimum upper
bound corresponds to the maximum MCC. The difference
between Fig. 2h, i is the regularization parameter used. Simi-
larly to the exact convex relaxation case, we select suboptimal
segmentations (h1, h2, i1, and i2). For lower regularization
(λ = 0.075), the optimal segmentation (h2), lies in the gray
shaded region of correct topology (Fig. 2h, h2). Between the
suboptimal segmentation h1 and the optimal h2, we observe
a kink in the error bound, corresponding to the loss of sep-
aration between the two objects (compare h1 and h2), as
driven by the regularization energy. For a larger regulariza-
tion parameter (λ = 0.125), the kink appears to the right of
the optimal segmentation, between i2 and i3. In this case,
the optimal segmentation i2 does not reconstruct the correct
topology. It is important to note that this comes from the
model attributing more or less weight to the regularization
energy. This is reflected in the soft labeling functions, where
the values between the two objects are lower for the smaller
regularization coefficient (Fig. 2e) than for the larger one
(Fig. 2f).
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and that the threshold corresponding to the minimum upper
bound corresponds to the maximum MCC. The difference
between Fig. 2h, i is the regularization parameter used. Simi-
larly to the exact convex relaxation case, we select suboptimal
segmentations (h1, h2, i1, and i2). For lower regularization
(λ = 0.075), the optimal segmentation (h2), lies in the gray
shaded region of correct topology (Fig. 2h, h2). Between the
suboptimal segmentation h1 and the optimal h2, we observe
a kink in the error bound, corresponding to the loss of sep-
aration between the two objects (compare h1 and h2), as
driven by the regularization energy. For a larger regulariza-
tion parameter (λ = 0.125), the kink appears to the right of
the optimal segmentation, between i2 and i3. In this case,
the optimal segmentation i2 does not reconstruct the correct
topology. It is important to note that this comes from the
model attributing more or less weight to the regularization
energy. This is reflected in the soft labeling functions, where
the values between the two objects are lower for the smaller
regularization coefficient (Fig. 2e) than for the larger one
(Fig. 2f).
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Fig. 2 Threshold selection using the a posteriori error upper
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Ground-truth image (a) corrupted with additive Gaussian noise (SNR
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it only by a few pixels; the topology is always correct. This
robustness is reflected in the MCC saturating at 1.

In the case of approximate convex relaxation (Fig. 2h–i),
the a posteriori upper bound is higher than for exact con-

vex relaxation (Fig. 2h, h2, i, i2). We observe that the MCC
is negatively correlated with the a posteriori upper bound,
and that the threshold corresponding to the minimum upper
bound corresponds to the maximum MCC. The difference
between Fig. 2h, i is the regularization parameter used. Simi-
larly to the exact convex relaxation case, we select suboptimal
segmentations (h1, h2, i1, and i2). For lower regularization
(λ = 0.075), the optimal segmentation (h2), lies in the gray
shaded region of correct topology (Fig. 2h, h2). Between the
suboptimal segmentation h1 and the optimal h2, we observe
a kink in the error bound, corresponding to the loss of sep-
aration between the two objects (compare h1 and h2), as
driven by the regularization energy. For a larger regulariza-
tion parameter (λ = 0.125), the kink appears to the right of
the optimal segmentation, between i2 and i3. In this case,
the optimal segmentation i2 does not reconstruct the correct
topology. It is important to note that this comes from the
model attributing more or less weight to the regularization
energy. This is reflected in the soft labeling functions, where
the values between the two objects are lower for the smaller
regularization coefficient (Fig. 2e) than for the larger one
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CHAPTER 6. ON-LINE CONFIDENCE ESTIMATES WITH
APPLICATION TO MICROTUBULE TRACKING

(a)

1µm

(b)

(c) (d)

Figure 6.1: (a) An example micrograph of labeled yeast cells in maximum-
intensity projection. Intensities are inverted for better visualization. (b)
Maximum-intensity projection of the labeled microtubules in a single cell
during mitosis. (c) 3D stack of the microtubules in (b). The spots from
left to right are the microtubule tip, SPB 2 (old pole), and SPB 1 (new
pole). (d) Image with overlaid proposal distribution. Each particle of
the particle filter gives rise to 3 dots, corresponding to the 9 estimated
position parameters.

156

CHAPTER6.ON-LINECONFIDENCEESTIMATESWITH
APPLICATIONTOMICROTUBULETRACKING

(a)

1µm

(b)

(c)(d)

Figure6.1:(a)Anexamplemicrographoflabeledyeastcellsinmaximum-
intensityprojection.Intensitiesareinvertedforbettervisualization.(b)
Maximum-intensityprojectionofthelabeledmicrotubulesinasinglecell
duringmitosis.(c)3Dstackofthemicrotubulesin(b).Thespotsfrom
lefttorightarethemicrotubuletip,SPB2(oldpole),andSPB1(new
pole).(d)Imagewithoverlaidproposaldistribution.Eachparticleof
theparticlefiltergivesriseto3dots,correspondingtothe9estimated
positionparameters.

156

CHAPTER 6. ON-LINE CONFIDENCE ESTIMATES WITH
APPLICATION TO MICROTUBULE TRACKING

Tip

SPB1

SPB2

(a)

Tip

SPB1

SPB2

(b)

Figure 6.2: 2D illustration of the proposal and posterior pdfs with the
images I and J . (a) The particles in red represent the proposal pdf. Each
particle stores 3 space coordinates and 3 intensity values. The state space
is sampled in the vicinity of the estimate of the previous frame. The gray-
scale surface represents J based on one particular particle (indicated in
black in the x-y plane). The weight of the particle is calculated based on
the distance between the simulated image and the actually measured image.
(b) Particle representation of the posterior pdf after adaptive MCMC (see
text for details). The gray-scale surface represents the data image I.
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CHAPTER 5. EFFICIENT SHAPE SAMPLING WITH
MARKOV-CHAIN MONTE CARLO

10µm

(a) (b)

2µm

(c) (d)

Figure 5.18: (a) A section from the image stack of a developing
Drosophila wing. The image stack was recorded by Zartman et al. (2012).
(b) Corresponding probability map of a 3D sampling result using a piece-
wise smooth Gaussian noise model. (c) Close-up data image in a region
where wing disc is curved. (d) Probability map corresponding to (c).
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Figure 10: Approaches to uncertainty quantification in image analysis. In all approaches, the input image (left)
is first transformed to a probability or evidence map, from which the result is then computed. (a) In the approach
of Paul et al (2013), the residual of a globally optimal model fit is used to estimate a probability map for each
pixel to be part of an object. Thresholding this map at different probability cutoffs gives different alternative
segmentations for different confidence levels (i1–i3). (b) The approach of Cardinale et al (2009) applied to
tracking microtubule tips using particle filters (Demirel et al, 2014b). The particle filter tries many different
possible model fits in order to form a cloud of possible tip localizations (middle). Using the resulting particle
representation of the posterior (Demirel et al, 2014b), the most likely tip positions and their variances can be
extracted. (c) The approach of Cardinale (2013) uses Markov-chain Monte Carlo sampling to sample many
possible segmentations from the model posterior. This yields an unnormalized evidence map (darker means
higher evidence) from which iso-surfaces can be computed. These iso-surfaces contain the correct segmentation
with the indicated evidence. (Image sources: input image in (a) from Grégory Paul, MOSAIC Group, synthetic test image;
input image in (b) from Barral lab, ETH Zurich, fluorescently labeled spindle-pole bodies (SPB) and spindle tip in dividing
S. cerevisiae; input image in (c) from Basler lab, University of Zurich, fluorescently labeled membranes in a D. melanogaster wing
imaginal disc; result in (a) by Grégory Paul, MOSAIC Group; results in (b) and (c) by Janick Cardinale, MOSAIC Group.)
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energy with η → ∞, resulting in a PC approximation of I .
While we consider arbitrary numbers of FG regions, the binary
case with two regions would correspond to the CV model
[3]. The second benchmark considers a PS approximation
with an arbitrary number of regions. In the third benchmark
we extend deconvolving active contours [9] to not previously
known numbers of regions. This is done by augmenting the PC
multiregion energy by a convolution operation in the image-
formation model.

A. Internal Energy

1) Contour Length Regularization: The contour length
energy is given by Elength = |"|. In continuous active contour
representations, such as level-set methods, the contour length
can easily be computed. In discrete methods, however, it needs
to be approximated from the discrete contour pixels using
concepts from digital geometry.

Zhu and Yuille argued [16] that blurring an image with
a Gaussian filter has similar effects as including a length-
regularization term in the energy functional. One problem
with this approach, however, is that edges get smoothed. Also,
spurious intensity fluxes across close regions can be a problem
since they change the mean intensities of these regions.

Another approximation used in [19] and [22], and in
techniques based on the Ising model, counts the number of
region changes on the pixel grid. While this approach is
computationally very efficient, it causes the regions to tend to
polygonal shapes instead of developing smooth contours [33],
[22]. Also, the contour generally does not evolve smoothly
because of the discrete objective function. Shi and Karl [23]
therefore smoothed the contour of a discretized level function
using a Gaussian kernel, followed by a rediscretization step.
A drawback of this approach is that the smoothing is not
represented in the energy functional. The resulting tradeoff
between regularity and data fidelity is therefore difficult to
assess [33].

This has been addressed by Kybic and Kratky [33], who
proposed a regularizing flow for discrete level-set methods that
approximates the local curvature κ as

κ(x) = C

(
|SRκ

x ∩ X |L(x)||
|SRκ | − 1

2

)

with SRκ
x a hypersphere of radius Rκ centered at x and |SRκ |

its volume. C is a constant that depends on the dimension d
and on Rκ . Here we adopt this approach, exploiting the fact
that curvature regularization is equivalent to contour-length
regularization.2 Unless otherwise stated, we use Rκ = 4,
which is found to provide a good tradeoff between regularity
and resolution. We directly add the curvature-regularizing flow
to the $E of the particles. The direction of the flow is given by
the outward normal on the contour. We adapt the sign of κ to
account for the direction of the flow: for expanding regions, κ
is subtracted from the energy difference; for shrinking regions
it is added to it.

2This is seen by applying variational calculus to
∑

i>0 λ|Xi | =
λ

∑
i>0

∫
"i

ds.

Fig. 4. Synthetic example using the energy EPC. (a) PC ground-truth image.
(b) Ground-truth image corrupted with Poisson noise. The five FG regions
correspond to peak signal-to-noise ratios (SNR) of 4, 5.25, 6.5, 7.75, and 9,
respectively. (c) Final result from GC when initialized with the ground-truth
number of M = 6 regions. The GC algorithm fails as a result of inaccurate
estimates of the region intensities. (d) Correct GC result with six final regions
when initializing with M = 12 regions. (e)–(h) Contour evolution at iterations
0, 15, 25, and 64 of the present algorithm with contour points shown in
white. The correct number of five connected FG regions is found. (i) Energy
evolution for both algorithms. For the present algorithm, we show Elength
(dash-dotted), EPC

data (dashed), and the total energy (solid). Circles mark region-
fusion events. The red line with crosses shows the GC energy evolution for
an initial M = 12; crosses mark iterations. The residual energy of the ground-
truth image is indicated by the horizontal dashed blue line.

2) Region-Merging Prior: Since we define regions as con-
nected components, they can naturally split during the energy-
minimization process, provided these topological changes are
permitted by the user. The criterion for regions to merge as
introduced in (1) can be formulated as a hard region-merging
penalty in the energy functional

Emerge =
∑

(i, j )>0:Xi∼X j

H
[
DKL

(
PXi ||PXi∪X j

)

+DKL
(
PX j ||PXi∪X j

)
− θ

]
. (3)

H (·) is the Heaviside distribution and Xi ∼ X j indicates that
Xi and X j are FG-connected competing regions. Two regions
merge if this is favorable for the overall energy. In order to
reflect the discrete-event character of topological changes, the
weight α of this contribution to the total energy in (2) is
set to ∞.
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Fig. 6. Real-world application using EPC to segment nuclei in a zebrafish
embryo imaged by confocal fluorescence microscopy. (a) Visualization of the
nuclei in the raw 3-D data (image: Dr. A. Oates and B. Rajasekaran, MPI-CBG
Dresden). (b) Maximum-intensity projection of the final label image L . The
algorithm is initialized with small FG regions placed at all local intensity max-
ima after Gaussian (σx = 5 px, σy = 5 px, σz = 2 px) blurring. The topology
is fixed to the initial topology, with the exception that regions are allowed to
vanish. On average, 1.03 · 106 candidate particles are processed per iteration.
Of the particles, 99.99% stop moving after 25 iterations. The algorithms
converges after 44 iterations finding 3218 connected FG regions. Since every
connected component is a separate region with its own intensity estimate,
nuclei of different brightnesses (e.g., arrows A and B) are correctly segmented.
(c) Magnified z-plane showing an overlay of the original image with the
final contours (black) in the region highlighted by the yellow rectangle in (b)
(intensities inverted for display purposes only). Touching nuclei are not fused
if region merges are disallowed during contour evolution. (d) Allowing regions
to merge, touching nuclei of similar intensities are assigned to the same region
(e.g., arrow C) and the final number of connected FG regions is 1452. The
visualizations in (a) and (b) were done using Imaris by Bitplane, Inc.

of reduced minimization robustness. The smaller the R, the
closer the initial segmentation needs to be to the final result.

We add to the external energy the data-dependent balloon
energy

Eballoon = I · H (−L + 1) . (6)

This generates an outward flow whose strength depends on
the image intensity. This flow counteracts the curvature-
regularization flow in a data-dependent manner. The external
energy for the PS case hence is EPS

data + βEballoon.
We also adapt the region-merging criterion to only rely on

local statistics: the empirical distributions PXi and PX j in (3)
are computed only over the spherical mask SR

x , as PXi∩S R
x

and PX j∩S R
x

. This prevents merging regions that are separated
by a large intensity gradient, even though they globally share
similar empirical distributions [see Fig. 7(d)]. For efficiency,
P can be computed along with #EPS

data.
2) Implementation: A neighborhood of size O(Rd ) needs

to be read from the images I and L for every evaluation of the
energy functional. Double lookups are avoided by computing
the statistics in SR

x along with the curvature flow. This results
in an overall computational complexity in O(|$|Rd ) per
iteration.

Fig. 7. Synthetic example using the energy EPS. Two overlapping linearly
shaded circles on a linearly shaded BG corrupted with Poisson noise. The
brighter parts of the circles (top right) approximately correspond to a peak
SNR of 8.7, while the low-intensity parts (bottom left) have SNR ≈ 3.2.
(a)–(d) Contour evolution at iterations 0, 5, 15, and 70 of the present algorithm.
The correct number of two connected FG regions is found. (e)–(h) Evolving
contour at iterations 0, 1, 4, and 9 of the GC algorithm, also finding the
correct number of regions. (i) Energy evolution for the two algorithms. For
the present algorithms, we show the evolution of EPS

data (dashed), Elength (dash-
dotted), Eballoon (dotted), and of the total energy EPS (solid). Circles mark
region-fusion events. The red line with crosses shows the energy for GC;
crosses mark iterations. The residual energy of the ground-truth image is
indicated by the horizontal dashed blue line.

3) Benchmarks on Synthetic Data: Fig. 7 illustrates the
behavior of the present algorithm [Fig. 7(a)–(d)] on an image
with linearly shaded FG and BG and compares it to GC
[Fig. 7(e)–(h)]. In the high-SNR areas, the data term of the
energy dominates the evolution, and the contours immediately
stick to intensity edges. Within the shaded FG circles, the
regions expand as driven by the balloon force. After five
iterations, regions that are not separated by large intensity
gradients begin to merge.

The present algorithm is robust with respect to different
choices of the patch radius R. However, R should be chosen
smaller than the length scale of intensity variations and large
enough so that |SR | constitutes a representative sample to
construct the local intensity histograms P .

Fig. 7(i) shows the evolution of all energy terms for the
present example. When initialized with 25 bubbles as shown,
GC is about 20 times slower than the present algorithm since
it evaluates the energy everywhere in the image, whereas
the present algorithm evaluates it only on the particles. Both
methods find solutions close to ground truth and correctly
estimate the number of regions.
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Fig. 8. Real-world application using EPS to segment primordial germ cells in a zebrafish embryo. (a) Raw 3-D confocal image showing three cells with a
fluorescent membrane stain (image: M. Goudarzi, University of Münster). Intensities are inverted for display purposes only. (b) Intensity isocontour illustrating
the inhomogeneity of the objects (bottom view). (c) Final segmentation using the present algorithm with EPS (bottom view). The algorithm is initialized with
a single box-shaped contour encompassing all objects and ultimately finds three connected FG regions. Visualizations were done using Imaris by Bitplane, Inc.

Fig. 9. Visual comparison on natural-scene images using EPS.
(a) and (c) Segmentation result using the present algorithm; (b) and (d) using
GC. GC finds six regions in (b) and nine in (d). The present algorithm finds
17 connected FG regions in (a) and 14 in (c).

The results for a 3-D version of the image in Fig. 7 are given
in Table I. In the 3-D case, GC is initialized with the ground-
truth number of regions and an initial contour close to the
ground-truth solution in order to keep CPU times reasonable.
The present algorithm is again initialized with bubbles.

4) Application to Real Data: Real-world applications of the
present image model are shown in Figs. 8 and 9. The data
consist of a 3-D confocal image of primordial germ cells in
a zebrafish embryo [Fig. 8(a)] and 2-D natural-scene images
from the Berkeley database (Fig. 9) [34]. The difficulty in
segmenting these images is that the intensity is inhomogeneous
within each object, as illustrated in Fig. 8(b). Also, the BG is
heavily inhomogeneous in all images, requiring a PS model.
The final segmentations obtained with the present algorithm
are shown in Figs. 8(c), 9(a), and 9(c). The segmentations
using GC are shown in Fig. 9(b) and (d). Comparing Fig. 9(c)
and (d) with Fig. 5(c) and (d) illustrates the difference between
a PC and a PS image model.

D. Multiregion Deconvolving Image Model

1) External Energy: The process of image acquisition maps
the light irradiance of a real-world scene to a scalar field in
!. This mapping is often modeled by its impulse-response

function, i.e., the PSF. Most notably in microscopes and tele-
scopes, the mapping is largely linear, with nonlinear imaging
effects playing a subordinate role. Image formation in these
cases can therefore be modeled as a (discrete) convolution of
the real-world scene with the PSF. The result is corrupted by a
pixel-wise noise process [8], [9]. Frequently, one is interested
in reconstructing the shapes of the imaged real-world objects
from the observed image, attempting to undo the PSF map-
ping. This is an inverse problem and the presence of noise
renders its direct solution infeasible. The process of solving
a regularized version of this inverse problem is often referred
to as deconvolution, and multiple regularization methods are
available, e.g., [36]–[38]. In deconvolving active contours [9],
the image model and the evolution of the contour serve as
a natural regularization for the deconvolution. Moreover, the
actual inverse problem never needs to be computed, since
forward convolution is sufficient to evaluate the model energy.
This has enabled highly accurate and robust reconstructions
of small diffraction limited objects in biological cells using
fluorescence microscopy [39]. Here we extend the concept of
deconvolving active contours to higher dimensional images
and to multiple regions, the number of which does not need
to be known a priori.

Assuming that the noise process in the image-formation
model follows a Gaussian distribution, the maximum-
likelihood solution of the deconvolution problem is found by
minimizing the energy functional

EDEC
data =

∑

x∈!

(
c0 +

(
M−1∑

i=1

ci Oi (x)

)
∗ PSF(x)− I (x)

)2

(7)

where ci is the difference between the estimated intensity in
FG region i and the BG intensity c0, Oi the indicator function
of region i , PSF the PSF of the imaging device, and I the
observed image. This model assumes that the intensities ci
are constant within regions.

2) Implementation: Naive evaluation of the energy differ-
ence at a particle p requires two local convolutions around
x p. This can be avoided by introducing the model image J =
c0 +

(∑M−1
i=1 ci Oi

)
∗ PSF. This model image is precomputed

using fast Fourier transform at the beginning of each iteration.
When a particle at position x changes from region i to
region j , the binary indicator Oi is updated to Oi − δx
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4.6. BENCHMARKS AND APPLICATIONS
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Figure 4.19: Fluorescently labeled cells (image: Michael Unger, BISON
Group, ETHZ) segmented with and without global spherical shape prior.
The topology has been fixed during contour evolution. (a–d) shows the
low-SNR raw data. (e–h) shows the segmentation results without global
shape prior. (i–l) shows the segmentation results with global shape prior.
The lower-most region in (l) can not satisfy the spherical prior due to the
image boundary and tries to compensates in another direction.
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Fig. 8. Real-world application using EPS to segment primordial germ cells in a zebrafish embryo. (a) Raw 3-D confocal image showing three cells with a
fluorescent membrane stain (image: M. Goudarzi, University of Münster). Intensities are inverted for display purposes only. (b) Intensity isocontour illustrating
the inhomogeneity of the objects (bottom view). (c) Final segmentation using the present algorithm with EPS (bottom view). The algorithm is initialized with
a single box-shaped contour encompassing all objects and ultimately finds three connected FG regions. Visualizations were done using Imaris by Bitplane, Inc.

Fig. 9. Visual comparison on natural-scene images using EPS.
(a) and (c) Segmentation result using the present algorithm; (b) and (d) using
GC. GC finds six regions in (b) and nine in (d). The present algorithm finds
17 connected FG regions in (a) and 14 in (c).

The results for a 3-D version of the image in Fig. 7 are given
in Table I. In the 3-D case, GC is initialized with the ground-
truth number of regions and an initial contour close to the
ground-truth solution in order to keep CPU times reasonable.
The present algorithm is again initialized with bubbles.

4) Application to Real Data: Real-world applications of the
present image model are shown in Figs. 8 and 9. The data
consist of a 3-D confocal image of primordial germ cells in
a zebrafish embryo [Fig. 8(a)] and 2-D natural-scene images
from the Berkeley database (Fig. 9) [34]. The difficulty in
segmenting these images is that the intensity is inhomogeneous
within each object, as illustrated in Fig. 8(b). Also, the BG is
heavily inhomogeneous in all images, requiring a PS model.
The final segmentations obtained with the present algorithm
are shown in Figs. 8(c), 9(a), and 9(c). The segmentations
using GC are shown in Fig. 9(b) and (d). Comparing Fig. 9(c)
and (d) with Fig. 5(c) and (d) illustrates the difference between
a PC and a PS image model.

D. Multiregion Deconvolving Image Model

1) External Energy: The process of image acquisition maps
the light irradiance of a real-world scene to a scalar field in
!. This mapping is often modeled by its impulse-response

function, i.e., the PSF. Most notably in microscopes and tele-
scopes, the mapping is largely linear, with nonlinear imaging
effects playing a subordinate role. Image formation in these
cases can therefore be modeled as a (discrete) convolution of
the real-world scene with the PSF. The result is corrupted by a
pixel-wise noise process [8], [9]. Frequently, one is interested
in reconstructing the shapes of the imaged real-world objects
from the observed image, attempting to undo the PSF map-
ping. This is an inverse problem and the presence of noise
renders its direct solution infeasible. The process of solving
a regularized version of this inverse problem is often referred
to as deconvolution, and multiple regularization methods are
available, e.g., [36]–[38]. In deconvolving active contours [9],
the image model and the evolution of the contour serve as
a natural regularization for the deconvolution. Moreover, the
actual inverse problem never needs to be computed, since
forward convolution is sufficient to evaluate the model energy.
This has enabled highly accurate and robust reconstructions
of small diffraction limited objects in biological cells using
fluorescence microscopy [39]. Here we extend the concept of
deconvolving active contours to higher dimensional images
and to multiple regions, the number of which does not need
to be known a priori.

Assuming that the noise process in the image-formation
model follows a Gaussian distribution, the maximum-
likelihood solution of the deconvolution problem is found by
minimizing the energy functional

EDEC
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∑

x∈!

(
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(
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ci Oi (x)

)
∗ PSF(x)− I (x)
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where ci is the difference between the estimated intensity in
FG region i and the BG intensity c0, Oi the indicator function
of region i , PSF the PSF of the imaging device, and I the
observed image. This model assumes that the intensities ci
are constant within regions.

2) Implementation: Naive evaluation of the energy differ-
ence at a particle p requires two local convolutions around
x p. This can be avoided by introducing the model image J =
c0 +

(∑M−1
i=1 ci Oi

)
∗ PSF. This model image is precomputed

using fast Fourier transform at the beginning of each iteration.
When a particle at position x changes from region i to
region j , the binary indicator Oi is updated to Oi − δx
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Figure 11: Flexibility of model-based analysis by replacing the model in the same algorithm. Left: The model-
based Snake method (Kass et al, 1988) can be used to segment (a) fluorescence images of Rab5-EGFP endosomes
in HER911 cells (Helmuth and Sbalzarini, 2009), as well as (b) phase-contrast images of polarizing fish epidermal
keratocytes (Ambühl et al, 2012) by changing the imaging model. Changing the object model allows segmenting
piecewise constant or piecewise smooth objects (Cardinale et al, 2012), such as (c) fluorescently labeled cells
with cell-specific uniform staining (Cardinale, 2013) and (d) fluorescently labeled zebrafish primordial germ cells
with highly non-uniform signal (Cardinale et al, 2012). The synthetic “ice-cream” images illustrate the concept
of piecewise constant and piecewise smooth object intensities. (Image sources: raw image in (a) from Greber lab,
University of Zurich; raw image in (b) from Verkhovsky lab, EPFL; raw image in (c) from BCS Group, TU Darmstadt; raw image
in (d) from Mohammad Goudarzi, University of Münster; segmentation in (a) by Jo Helmuth, MOSAIC Group; segmentation in
(b) by Mark Ambühl, Verkhovsky lab, EPFL; ice-cream images and all segmentations in (c) and (d) by Janick Cardinale, MOSAIC
Group.)

are deconvolving active contours (Helmuth and Sbalzarini, 2009) (see Fig. 7) that combine image deconvolution
with segmentation by directly providing segmentation results that are compatible with the microscope’s PSF.
Along the same lines, image denoising, deblurring, and segmentation have been combined into a single step
using the concept of Sobolev gradients (Jung et al, 2009). Segmentation has also been combined with denoising,
deconvolution, and inpainting into a single level-set or split-Bregman model-based algorithm (Paul et al, 2013,
2011), as implemented in the Squassh plugin for Fiji and ImageJ (Rizk et al, 2014). Jointly solving the image
restoration (e.g., denoising, deconvolution, dehazing, inpainting) and segmentation problems leads to better
results than doing so sequentially (Paul et al, 2013). The reason is that while both individual problems are
ill-posed, they naturally regularize each other when considered jointly. Computing a deconvolution, e.g., is ill-
posed because there is a multitude of results that map to the same image when convolved with the microscope
PSF. The result is hence not unique, and depending on how the parameters of the deconvolution algorithm
are tuned, different results can be obtained. When segmenting at the same time, however, the deconvolution
method does not have to produce a complete image, but only has to work in the limited solution space of
segmentations. Since this space is smaller, the ambiguity is reduced.

The second point is mostly addressed by machine-learning or model-based frameworks. Both provide principled
ways of adapting to new situations. This is less obvious in filter-based methods, where the problem-specific
prior knowledge is implicitly included in the filter design. Changing to a new problem (e.g., from segmenting
fluorescence images to segmenting phase-contrast images) would require one to re-design the filter. Machine-
learning and model-based frameworks “externalize” the prior knowledge and allow one to change it without
changing the core of the algorithm. In machine learning, this may be as simple as re-training the algorithm
using a new set of training images (e.g., phase-contrast instead of fluorescence). In a model-based approach,
the object model and/or imaging model can be replaced to adapt the algorithm to different problems. This is
illustrated in Fig. 11.
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The third point aims at rendering algorithms parameter free. Most image-analysis algorithms have a number
of user-adjustable parameters. Only few algorithms work across a spectrum of problems without requiring
parameter tuning. These parameter-free algorithms are particularly popular because they are easy to use and
deliver robust performance across many applications. Examples include Otsu thresholding (Otsu, 1975) and
image naturalization (Gong and Sbalzarini, 2014). There is a clear trend in the field to reduce the number of
parameters of an algorithm with the ideal goal of rendering it more versatile and easier to use.

4.4 Collaborative open-source software

In addition to providing generic and flexible algorithms, another proven remedy against reinventing or re-
implementing existing methods is to share software and create public repositories of open software modules.
This motivates the trend for creating and maintaining collaborative open-source software for bio-image in-
formatics (Swedlow and Eliceiri, 2009). However, the need for open-source development reaches deeper than
merely alleviating the implementation overhead for new projects. It is a fundamental prerequisite for repro-
ducible science. Closed-source software is a black box that often does not provide enough information about
the algorithms implemented. Open-source software is one way of rendering image analysis transparent, but its
coordinated development and long-term maintenance come with their own set of challenges, in particular with
respect to project coordination and funding (Cardona and Tomancak, 2012).

Open-source software is frequently developed in academic labs by scientists who are not professional software
engineers. This has traditionally had a negative effect on the usability and user-friendliness of such software.
While guidelines for software usability are available, enforcing them remains challenging (Carpenter et al, 2012).
Open-source projects also frequently start as individual research projects with specific biological questions in
mind. Many pieces of software organically grew from there, becoming more and more generic, but the original
application they were conceived for often remains the focus of the software. While this provides a rich landscape
of software tools and libraries (Eliceiri et al, 2012), each with a specific application niche, it also raises the
question of how integration and interoperability between the various tools can be achieved. Data exchange
between different tools and pipelining of tools are the main challenges for the developer community in the
coming years.

From a user-interface point of view, four different design philosophies can be distinguished, as illustrated in
Fig. 12: The first is to provide a general-purpose command-line or scripting language with a large collec-
tion of toolboxes and subroutines that the user can combine for image analysis. This is the approach taken
by tools like R, Octave (an open-source MATLAB look-alike), ScyPi, and PIL. These tools are particularly
flexible and generic, are well suited for batch processing of large image collections, but require the user to
have basic scripting skills. A second design philosophy is to provide an interactive graphical user interface,
mostly combined with a plug-in architecture for third-party developers to contribute their algorithms. Ex-
amples include ImageJ (Abramoff et al, 2004; Schneider et al, 2012), Fiji (Schindelin, 2008; Schindelin et al,
2012), Icy (de Chaumont et al, 2011, 2012), Vaa3D (Peng et al, 2010, 2014), bisque (Kvilekval et al, 2010),
OMERO (Swedlow and Eliceiri, 2009), FARSIGHT (Roysam et al, 2008), CellCognition (Held et al, 2010),
MorphoGraphX (Barbier de Reuille et al, 2015), and BioImageXD (Kankaanpää et al, 2012). A third design
approach puts the analysis workflow center stage, frequently specified using a graphical data-flow language.
Examples of this kind are CellProfiler (Carpenter et al, 2006; Lamprecht et al, 2007), the workflow engine
KNIME (Berthold et al, 2008), the workflow engine LONI Pipeline (Rex et al, 2003) and the image-processing
environment MiPipeline (Nandy, 2015) based thereon, and the image-processing environment Anima (Rantanen
et al, 2014) based on the workflow engine ANDURIL (Ovaska et al, 2010). The fourth approach is to implement
large collections of generic image-analysis algorithms in well-tested software libraries that provide an API for
developing user programs. This is the most generic approach, but requires the user to have programming skills.
Popular examples include the libraries ITK (Ibanez et al, 2005) and VIGRA (Köthe, 1999) for image analysis
and processing, OpenCV (Bradski and Kaehler, 2008) for computer vision, and OpenGM (Andres et al, 2012)
for machine learning.

Virtually all of these software projects implement filter-based analysis. However, many have their own special-
ization. ImageJ (Abramoff et al, 2004; Schneider et al, 2012) is, for example, particularly well suited for 2D
microscopy image analysis. CellCognition (Held et al, 2010) caters to time-lapse cell culture imaging, CellPro-
filer (Carpenter et al, 2006; Lamprecht et al, 2007) was originally developed for image-based high-throughput
screens (Snijder et al, 2009), MorphoGraphX (Barbier de Reuille et al, 2015) originated as a tool for plant tissue
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(a)
(b)

(c)

Figure 12: Different user-interface philosophies. (a) The scripting interface of R offers access to thousands of
functions, but requires scripting skills. (b) The point-and-click graphical user interface of Fiji (Schindelin, 2008;
Schindelin et al, 2012) requires no programming skills, but offers limited flexibility. (c) The workflow design
interface of KNIME (Berthold et al, 2008), showing a workflow for image processing with an ImageJ2-plugin
integrated. This approach requires programmatic thinking and offers intermediate flexibility. (Image credits: (a)
and (b) own screenshots; (c) from knime.org)
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morphogenesis, Vaa3D (Peng et al, 2010, 2014) and BioImageXD (Kankaanpää et al, 2012) started as interac-
tive 3D visualization tools and are particularly strong at big image data visualization, and bisque (Kvilekval
et al, 2010) and OMERO (Swedlow and Eliceiri, 2009) have their particular strength in primarily being image
databases. In addition to these generic tools, there are many specialized and often application-specific tools
available, such as PackingAnalyzer (Farhadifar et al, 2007; Aigouy et al, 2010) to segment cell membranes in
developing epithelial tissues with fluorescent membrane staining, FIESTA (Ruhnow et al, 2011) to segment flu-
orescently labeled filaments, and OMEGA (https://github.com/OmegaProject) for virus particle tracking with
uncertainty quantification.

Software packages specifically supporting model-based image analysis include Icy (de Chaumont et al, 2011,
2012) for fluorescence microscopy images and itk-SNAP (Yushkevich et al, 2006) for medical images. The BioIm-
ageSuite (Duncan et al, 2004) supports model-based image segmentation using Markov random fields (Geman
and Geman, 1984). The FARSIGHT toolkit (Roysam et al, 2008) and BioImageXD (Kankaanpää et al, 2012)
make available several model-based methods from the ITK library (Ibanez et al, 2005). Model-based image
analysis plug-ins are also available for ImageJ (Kaynig et al, 2010) and bisque (Bertelli et al, 2007). The
MOSAICsuite implements the model-based segmentation methods Squassh (Rizk et al, 2014) and RegionCom-
petition (Cardinale et al, 2012) in a plugin for Fiji and ImageJ, along with model-based spatial pattern and
interaction analysis (Shivanandan et al, 2013).

Unsupervised machine-learning approaches are notably implemented in the BioImageSuite (Duncan et al, 2004).
Supervised machine-learning segmentation is for example implemented in the software ilastik (Sommer et al,
2011). WND-CHARM (Orlov et al, 2008) uses texture features to classify images without segmenting them. The
generic machine-learning library WEKA (Hall et al, 2009) is used to provide supervised trainable segmentation
in Fiji. Again, many application-specific tools exist, like for example the tool PHANTAST (Jaccard et al,
2014) for machine-learning-based segmentation of phase-contrast images of adherent cell cultures, which is also
available as a plugin for Fiji and ImageJ.

A frequent use of machine learning is also to post-process results obtained by other image analysis means. This
is the approach taken by software tools such as CellProfiler Analyst (Jones et al, 2008), CellClassifier (Rämö
et al, 2009), and CecogAnalyzer (Held et al, 2010). More specialized examples include a machine-learning tool to
classify different mitochondrial morphologies in wide-field fluorescence microscopy images (Reis et al, 2012), to
classify sub-cellular patterns (Huang and Murphy, 2004), and a tool to classify cell cycle states after filter-based
segmentation (Wang et al, 2008).

5 Conclusions and discussion

Image analysis in biology is moving from seeing and observing to quantifying and modeling. Interpreting images
as scientific measurements, rather than as mere visualizations, brings the need for uncertainty quantification,
error analysis, statistical inference frameworks, etc. This raises a number of exciting theoretical and algorithmic
questions.

We outlined these questions, focusing on the rapidly developing field of light microscopy, and described three
conceptually different paradigms of image analysis, along with popular software tools implementing them. In
practice, of course, these approaches are often mixed. It is common, e.g., to use filter-based approaches to
compute image features and then use a machine-learning approach on those features in order to detect objects
or classify them. Likewise, filters are often included in the forward models of model-based approaches. In fact,
filter-based approaches are in some sense also model-based, albeit with an implicit model that is often not
evident. Denoising an image using a moving least squares filter (Lancaster and Salkauskas, 1981), for example,
is equivalent to maximizing a Gaussian noise likelihood. Another example is the formal link that has been
established between the model-based graph-cut framework and the filter-based watershed transform (Couprie
et al, 2011). Finally, one can design filters that compute approximate solutions for model-based problems (Gong,
2015). This is not surprising, since ultimately also model-based and machine-learning algorithms are discretized
in the computer and hence amount to filters. There is also a blurry boundary between the model-based and
machine-learning paradigms. A classical machine-learning approach classifies pixels into “object” vs. “back-
ground”, based on previously computed features for each pixel. When features use neighborhood information
around a pixel, however, there is a conceptual link to Markov random fields (Geman and Geman, 1984) and
their model-based Bayesian solution using graph cuts (Delong et al, 2011).
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We identified and discussed four main challenges in today’s bio-image analysis community: big data, uncer-
tainty quantification, generic algorithms, and collaborative software. To some extent, they mutually entail each
other. A big-data project that stores only the final analysis result, for example, critically depends on uncer-
tainty quantification; and both generic algorithms and collaborative software need to be combined to render
problem-solving more efficient and prevent reinventing the wheel. The four challenges are hence best addressed
jointly.

Addressing these challenges would enable us to work with images like we routinely do with genome and proteome
sequences. We could compare images, search image databases by content, and do statistical inference over
images. This requires image distance metrics, semantic grammars and annotation, automatic inference systems,
query by image content, and probabilistic frameworks over image spaces. All of these are open research areas,
and much progress is needed in order to provide robust and generic solutions. The ultimate goal of image
analysis is to not operate on the pixel matrix of an image, but on the information represented in the image,
independent of the view and the imaging modality chosen. This links syntax and semantics of images on the
level of biological meaning, in order to support queries like “find all images of yeast cells in M-phase with gene
Cdc11 knocked out”. Currently, this only works if the images were manually annotated before (Swedlow and
Eliceiri, 2009).

However, even upstream of image annotation open problems remain. One of them is that there are no good
forward models for some imaging modalities, including electron microscopy and dark-field microscopy. Another
problem is that object models are often ad hoc and not true to the biophysics of the sample. While there
are occasional works that use physics-based predictive object models (Papademetris et al, 1999; Papademetris,
2000), the computational cost of these models hampers their application. These models are also often black-
box with no gradient or structural information available that the optimization algorithm could exploit. This
points to the problem that many machine-learning and model-based image-analysis frameworks make implicit
assumptions about the features, training data, or models that are used with them. For example, they assume
the model to be convex, linear, Gaussian, or separable, which may not be the case for a physics-based simulation.
This still requires progress in black-box optimization algorithms (Müller, 2010).

Besides black-box optimization, it could be promising to combine machine-learning and model-based approaches.
This would, e.g., make it possible to use machine learning to learn the imaging and object models from user-
annotated examples, and then use these learned models in a model-based analysis. This would solve the
computational cost issue, since machine-learning models are quick to evaluate, and also relax the black-box
optimization problem because most machine learning models have an analytical structure with computable
gradients. Conversely, model-based approaches could be used to provide ample amounts of simulated training
data, to train and validate machine-learning approaches (Murphy, 2012).

A natural way forward is the co-design and co-evolution of mathematical theories of images and inference over
images, versatile computer algorithms for image analysis that have few parameters, software implementations
thereof that parallelize well and are user friendly, and the biological application defining the level of detail and
prior knowledge. These four ingredients need to be balanced and inter-connected. Building on the achievements
in the community so far, a quantum leap in computational bio-image analysis and understanding could lie
ahead.
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Farhadifar R, Röper JC, Aigouy B, Eaton S, Jülicher F (2007) The influence of cell mechanics, cell-cell inter-
actions, and proliferation on epithelial packing. Curr Biol 17(24):2095–2104, DOI 10.1016/j.cub.2007.11.049

Fuchs TJ, Wild PJ, Moch H, Buhmann JM (2008) Computational pathology analysis of tissue microarrays
predicts survival of renal clear cell carcinoma patients. In: Lect. Notes Comput. Sc., vol 5242, pp 1–8

Fuchs TJ, Haybaeck J, Wild PJ, Heikenwalder M, Moch H, Aguzzi A, Buhmann JM (2009) Randomized tree
ensembles for object detection in computational pathology. In: Proc. Intl. Symp. Visual Comput. (ISVC), pp
367–378

Galizia A, D’Agostino D, Clematis A (2015) An MPI–CUDA library for image processing on HPC architectures.
J Comput Appl Mech 273:414–427

Geman S, Geman D (1984) Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images.
IEEE Trans Pattern Anal Machine Intell 6(6):721–741

Genovesio A, Olivo-Marin JC (2004) Split and merge data association filter for dense multi-target tracking. In:
Proceedings of the 17th International Conference on Pattern Recognition (ICPR’04), IEEE, vol 4, pp 677–680

Gong Y (2015) Spectrally regularized surfaces. PhD thesis, Diss. ETH No. 22616, MOSAIC Group, ETH Zürich

Gong Y, Sbalzarini IF (2014) Image enhancement by gradient distribution specification. In: Jawahar CV, Shan
S (eds) Computer Vision – ACCV 2014 Workshops, Revised Selected Papers, Part II, Springer, Singapore,
Lect. Notes Comput. Sci., vol 9009, pp 47–62

Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH (2009) The WEKA data min-
ing software: an update. SIGKDD Explor Newsl 11(1):10–18, DOI 10.1145/1656274.1656278, URL
http://doi.acm.org/10.1145/1656274.1656278

Halpern JY (2005) Reasoning about Uncertainty. MIT Press

Hecht E (2001) Optics, 4th edn. Addison Wesley

24



Held M, Schmitz MHA, Fischer B, Walter T, Neumann B, Olma MH, Peter M, Ellenberg J, Gerlich DW (2010)
CellCognition: time-resolved phenotype annotation in high-throughput live cell imaging. Nature methods
7(9):747–754

Helmuth JA, Sbalzarini IF (2009) Deconvolving active contours for fluorescence microscopy images. In: Proc.
Intl. Symp. Visual Computing (ISVC), Springer, Las Vegas, USA, Lecture Notes in Computer Science, vol
5875, pp 544–553

Helmuth JA, Burckhardt CJ, Koumoutsakos P, Greber UF, Sbalzarini IF (2007) A novel supervised trajectory
segmentation algorithm identifies distinct types of human adenovirus motion in host cells. J Struct Biol
159(3):347–358

Helmuth JA, Burckhardt CJ, Greber UF, Sbalzarini IF (2009) Shape reconstruction of subcellular structures
from live cell fluorescence microscopy images. J Struct Biol 167:1–10

Helmuth JA, Paul G, Sbalzarini IF (2010) Beyond co-localization: inferring spatial interactions between sub-
cellular structures from microscopy images. BMC Bioinformatics 11:372

Hong Y, Kwong S, Chang Y, Ren Q (2008) Consensus unsupervised feature ranking from multiple views. Pattern
Recognition Lett 29:595–602

Huang K, Murphy RF (2004) Automated classification of subcellular patterns in multicell images without
segmentation into single cells. In: Proc. IEEE Intl. Symposium Biomedical Imaging (ISBI), pp 1139–1142
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Le Mâıtre OP, Knio OM (2010) Spectral Methods for Uncertainty Quantification. Springer

Li K, Miller ED, Weiss LE, Campbell PG, Kanade T (2006) Online tracking of migrating and proliferating cells
imaged with phase-contrast microscopy. In: IEEE Proceedings of the 2006 Conference on Computer Vision
and Pattern Recognition Workshop (CVPRW), IEEE Computer Society, pp 65–72

Li K, Chen M, Kanade T (2007) Cell population tracking and lineage construction with spatiotemporal context.
Med Image Comput Comput Assist Interv Int Conf Med Image Comput Comput Assist Interv 10(Pt 2):295–
302

Li S, Kwok JT, Zhu H, Wang Y (2003) Texture classification using the support vector machines. Pattern
Recognition 36:2883–2893

Lin G, Adiga U, Olson K, Guzowski JF, Barnes CA, Roysam B (2003) A hybrid 3d watershed algorithm
incorporating gradient cues and object models for automatic segmentation of nuclei in confocal image stacks.
Cytometry A 56(1):23–36

Linfoot EH, Wolf E (1956) Phase distribution near focus in an aberration-free diffraction image. Proc, Phys Soc
B 69(8):823–832

Lowe DG (1999) Object recognition from local scale-invariant features. In: Proc. 7th Intl. Conf. Computer
Vision (ICCV), IEEE, vol 2, pp 1150–1157

Machacek M, Danuser G (2006) Morphodynamic profiling of protrusion phenotypes. Biophys J 90:1439–1452

Manders EMM, Hoebe R, Strackee J, Vossepoel AM, Aten JA (1996) Largest contour segmentation: a tool for
the localization of spots in confocal images. Cytometry 23(1):15–21

Marjoram P, Molitor J, Plagnol V, Tavare S (2003) Markov chain Monte Carlo without likelihoods. Proc Natl
Acad Sci USA 100(26):15,324–15,328
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Rantanen V, Karinen S, Nousiainen K, Lahesmaa-Korpinen AM, Miettinen M, Saarinen L, Kohonen P, Wu
J, Westermarck J, Hautaniemi S (2010) Large-scale data integration framework provides a comprehensive
view on glioblastoma multiforme. Genome Med 2(9):65

Papademetris X (2000) Estimation of 3D left ventricular deformation from medical images using biomechanical
models. Ph.D.. thesis, Yale University

Papademetris X, Sinusas AJ, Dione DP, Duncan JS (1999) 3d cardiac deformation from ultrasound images. In:
Proc. MICCAI, Medical Image Computing and Computer-Assisted Intervention, pp 420–429

Paul G, Cardinale J, Sbalzarini IF (2011) An alternating split Bregman algorithm for multi-region segmentation.
In: Proc. 45th IEEE Asilomar Conf. Signals, Systems, and Computers, IEEE, Asilomar, CA, USA, pp 426–430

Paul G, Cardinale J, Sbalzarini IF (2013) Coupling image restoration and segmentation: A generalized linear
model/Bregman perspective. Int J Comput Vis 104(1):69–93, URL 10.1007/s11263-013-0615-2

Peng H (2008) Bioimage informatics: a new area of engineering biology. Bioinformatics 24(17):1827–1836, DOI
10.1093/bioinformatics/btn346

Peng H, Ruan Z, Long F, Simpson JH, Myers EW (2010) V3D enables real-time 3D visualization and quantitative
analysis of large-scale biological image data sets. Nat Biotechnol 28(4):348–353, DOI 10.1038/nbt.1612

27



Peng H, Bria A, Zhou Z, Iannello G, Long F (2014) Extensible visualization and analysis for multidimensional
images using Vaa3D. Nature protocols 9(1):193–208

Perona P, Malik J (1990) Scale-space and edge detection using anisotropic diffusion. IEEE Trans Pattern Anal
Machine Intell 12(7):629–639

Pock T, Cremers D, Bischof H, Chambolle A (2009) An algorithm for minimizing the Mumford-Shah functional.
In: Proc. IEEE Intl. Conf. Computer Vision (ICCV), pp 1133–1140, DOI 10.1109/ICCV.2009.5459348

Rajaram S, Pavie B, Hac NEF, Altschuler SJ, Wu LF (2012) SimuCell: a flexible framework for creating
synthetic microscopy images. Nat Methods 9(7):634–635

Ramakrishna V, Batra D (2012) Mode-marginals: Expressing uncertainty via diverse M-best solutions. In: Proc.
NIPS, Neural Information Processing Systems Foundation, Lake Tahoe, Nevada, USA
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