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Abstract

An implicit aim in cellular infection biology is to understand the mechanisms how viruses, microbes,
eukaryotic parasites, and fungi usurp the functions of host cells and cause disease. Mechanistic insight is a
deep understanding of the biophysical and biochemical processes that give rise to an observable phenome-
non. It is typically subject to falsification, that is, it is accessible to experimentation and empirical data
acquisition. This is different from logic and mathematics, which are not empirical, but built on systems of
inherently consistent axioms. Here, we argue that modeling and computer simulation, combined with
mechanistic insights, yields unprecedented deep understanding of phenomena in biology and especially in
virus infections by providing a way of showing sufficiency of a hypothetical mechanism. This ideally
complements the necessity statements accessible to empirical falsification by additional positive evidence.
We discuss how computational implementations of mathematical models can assist and enhance the
quantitative measurements of infection dynamics of enveloped and non-enveloped viruses and thereby
help generating causal insights into virus infection biology.
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1 Introduction

Viruses are known to infect all forms of life. They are the most
ubiquitous entities on earth, exceeding 1030 particles, most of
them bacteriophages. Viruses are multifacetted entities at the nano-
scale or microscale. They have a dual nature, the virus particle,
virion, and the virus, the infected cell. Virions come in many shapes
and sizes ranging from regular icosahedral particles to membrane-
enwrapped amorphous entities. All viruses carry a ribonucleic acid
(RNA) or deoxyribonucleic acid (DNA) genome and encode their
own replicases, which normally lack proofreading activity, in con-
trast to cellular DNA or RNA polymerases. Error-prone replication
together with genetic recombination and genomic reassortment
gives rise to clouds of genetically related but not identical viral
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genomes that, when packaged into particles, give rise to a so-called
quasi-species of virus genomes [1–3]. This illustrates the notion
that viruses act as an ensemble drawn from a cloud of related
genome sequences. This is the fundamental basis for virus evolu-
tion under selection pressure, when viruses are exposed to a chang-
ing environment, for example, when they infect a new host
organism or cell type, or when they are under the pressure of
chemicals or the immune system.

Virions unconditionally require the assistance of a cell to pro-
duce their progeny. They are obligatory parasites. Virions have to
enter into a cell in order to replicate and cause an infection. This
requires that preexisting cellular mechanisms assist virus infection.
These mechanisms can be explored by studying viruses, using
viruses also as a proxy for understanding host-cell biology. Viruses
can cause disease or be cleared by the immune system. In fact, most
viruses on earth are not pathogenic to humans, since the immune
system protects against foreign agents, and many viral agents simply
have not coevolved with humans. However, virus infection dynam-
ics is complex, which is reflected in the long-standing and wide-
spread observation that not all cells and individuals become equally
infected when exposed to the same amount of virions.

To understand how viruses cause disease, quantitative measure-
ments of infection processes were developed that make use of
genetic interference, specific drugs, and the expression of
dominant-negative proteins that mimic a particular host-cell func-
tion. A classical procedure to understand mechanisms in cell and
infection biology has been to use bottom-up reconstitution experi-
ments to partially rebuild or reconstitute a certain cellular function
from scratch. This comprised, for example, the actin network, the
microtubule spindle, centriolar assemblies, the nuclear envelope,
the endoplasmic reticulum, T-cell receptor signaling, and themotil-
ity of organelles on cytoskeletal tracks [4]. Insights from such
experiments have allowed us to reconstitute cellular processes and
structures by using a small set of components from cell extracts.
But, even if there is an inventory available of the proteins and
factors used in a given reconstitution, and even if we know the
biophysical properties of all components, we still do not understand
many of the cell-based processes leading to infection until we know
how these components interact with each other. This has been
realized early on in the fields of cell motility and cell division,
where both the inventory and the biophysics of many of the under-
lying components have been successfully combined into bottom-up
in vitro systems, reproducing some key aspects of cell migration and
division [5, 6]. What is necessary for a system-wide analysis is that
the biophysical and mechanical properties of the components are
integrated into a new experimental entity to gain a more compre-
hensive and realistic understanding of the interaction mechanisms
of infection processes.
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Computational modeling and simulation can provide such an
experimental entity, where mechanisms and interaction processes
are reconstituted in silico in a fully controlled way. Experiments are
then conducted computationally in what is called a “simulation.”
Increasingly important aspects of infection dynamics are therefore
addressed by mathematical and computational modeling [for a
review, see 7]. This is particularly interesting, as it allows to estimate
otherwise hidden infection parameters. This can be done in the
context of an immune response or a secondary bacterial infection in
the respiratory tract, for example, Streptococci and Staphylococci
coinfections with influenza A virus (IAV) [8, 9]. IAVs include
seasonal human influenza viruses and are found to circulate in
wild water birds. They are highly transmissible and are estimated
to cause several hundreds of thousands of deaths per year
[10]. Notably, the Spanish influenza pandemic had caused approx-
imately 50 million deaths, and bacterial pneumonia was a main
cause for the high lethality of the 1918 IAV pandemics
[11, 12]. However, up to now, the co-pathogenic mechanisms
resulting in the high lethality of IAV and bacterial infections have
remained unknown.

We surmise that the development of mathematical modeling
frameworks of bacterial and viral infections, as well as coinfections,
will help integrate progressive immuno-senescence and identify
host genetic factors to advance the understanding of infectious
disease to an unprecedented level of depth. In this review, we
highlight some of the principles of computational modeling and
elaborate on examples for how to link in silico experiments with
infection biology in order to enhance insight into mechanisms.

2 Enhancing Information from Cell Imaging of Viral Infections

Advances in microscopy techniques have proven indispensable to
advance insights into virus infection mechanisms in all phases of the
viral life cycle, including entry, replication, assembly, and egress
[13–16]. Fluorescence as well as luminescence imaging further
provide new opportunities for bridging in vitro cell culture systems
to in vivo applications, thus aiding our understanding of virus
pathogenesis and early diagnosis of viral infection and develop-
ment. Fluorescence virus imaging at high spatiotemporal resolu-
tion and in super-resolution helps distinguish direct from indirect
effects of antiviral interference, for example, in small-compound
and RNA interference screens [17–19]. Additionally, imaging is
powerful for tracking subviral entities, such as viral genomes, with
bio-orthogonal click chemistry and for visualizing individual virion
particles in cells, as pioneered with adenoviruses [20] and followed
up with HIV [21, 22].
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Advances in light microscopy have been accompanied by devel-
opments in computational image analysis. This first included high-
accuracy single-particle tracking algorithms, used, for example, for
analyzing infection dynamics of fluorescently labeled virions at the
cellular scale [23]. Single-particle tracking of fluorescently labeled
virions has become a standard method of analysis, typically followed
by trajectory segmentation [24–26] or the calculation of motion
descriptors, such as diffusion constants and Hurst exponents. This
has led to the discovery of different viral motion types, which are
diagnostic of the stage in the virus entry program [24–28]. When
combined with nanometer-precision segmentations of intracellular
organelles involved in virus entry, such as endosomes [29], imaging
and tracking of individual virion particles enables spatial statistical
studies of how virions position in a cell with respect to those
structures. This can, for example, be used to derive interaction
maps that explain the action of a drug or a genetic perturbation
[30]. Furthermore, the development of state-of-the-art correlation
techniques involving electron microscopy with nanometer-
precision localization of components and fluorescence microscopy
with larger context of the infected cell has enhanced insights into
virus morphogenesis with unprecedented ultrastructural
detail [31].

A single high-resolution image of fluorescent virions already
contains a lot of information. For example, spatial statistics, such as
Ripley’s K-function, can be used to decide whether the virions are
uniformly distributed or clustered [32]. This provides direct evi-
dence about their interactions, even if mediated by confounding
factors. If a second color channel shows a host-cell structure of
interest, such as endocytic compartments, a generalization of spatial
statistics can be used to infer the most likely interaction between
the virions and the host-cell structure [30]. This type of analysis
estimates an interaction potential that is most likely responsible for
the observed distribution of virions with respect to the given distri-
bution of host-cell structures. As still images suffice for these ana-
lyses, the procedure naturally applies to single-molecule
localization modalities, such as PALM and STORM [33]. And,
since the gradient of the estimated potential can be interpreted as
a force, the expected dynamics of the virions can be estimated for
the next time step, i.e., a single still image can be used to predict
how the virions are likely to move in the next time instance.

3 Mechanisms of Infection

The development and manifestation of infectious diseases is highly
complex and involves host cells and pathogens in all possible com-
binations. Two principle types of approaches are used to analyze
host-pathogen interactions: top-down and bottom-up. Top-down
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approaches describe the larger context of infectious disease pheno-
types, and involve epidemiology, physiology, and omics measure-
ments, including messenger RNAs, proteins, lipids, metabolites,
and sugars at the level of an individual, an organ, or a particular
cell type. When combined with microscopy, these measurements
increasingly enable phenotypic profiling at the subcellular level, for
example, by using single RNA detection assays or imaging mass
cytometry [34, 35]. Methodological refinements further allow
quantitative assessments and data correlation.

To stringently support new concepts, mechanistic insights are,
however, required. At the level of cells, a virus infection can be
dissected into distinct steps, for which mechanisms can be eluci-
dated [13, 36, 37]. These mechanisms can then be considered
bottom-up, that is, from their constituting biochemical and bio-
physical processes. For example, the mechanism by which a virus
particle binds to cells involves one or several receptors that directly
bind to the virion and initiate infection. In addition, binding of
virions to cells may involve attachment factors, which bind to the
particle, but do not lead to infection in the absence of the receptor
[38]. To further complicate matters, the virion binding to cells
might be tuned by facilitating proteins, which do not bind the
virion, but indirectly enhance infection, for example, through cell
signaling and upregulation of the receptor levels on the cell
surface [39].

Regardless of whether a top-down or a bottom-up approach is
chosen, mechanistic insight typically starts from correlative obser-
vations. They always incorporate different layers of evidence based
on a robust and quantitative observation methodology. Ideally,
they are predictive and transferable to other systems. At the molec-
ular level, they can be interrogated by interference using knock-out
approaches or more subtle changes in the suspected molecules. A
classical approach for the identification of critical host factors in
virus infection has been genome-wide RNA interference. Initially,
screens were conducted with unmodified double-stranded syn-
thetic interfering RNA (siRNA) complementary to a given host
mRNA that was knocked down through the cellular Ago-RISC-
dependent silencing complex [40]. Subsequently, screens used
chemically modified passenger strands and 50 overhanging nucleo-
tides to enhance knock-down specificity and reduce off target
effects [41]. RNAi screens were conducted against a wide range
of virus-infected cells, including influenza A virus, vaccinia virus,
bunyavirus, adenovirus, herpesvirus, rhinovirus, and rotavirus
[42–46].

Although off-target effects of RNAi have limited the interpre-
tation of such screening data [41], the power of large-scale RNAi
screens was found to be significantly enhanced by systematic ana-
lyses of a range of different pathogens and siRNAs with different
chemical properties, notably in combination with a parallel mixed
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model (PMM) approach to enhance the statistical power of hit
detection using parallel screening [47]. PMM allowed the inclusion
of siRNA weights that could be assigned according to available
information on RNAi quality. Moreover, PMM enhanced the pre-
dictability of hits for follow-up screens through the determination
of a sharedness score. This enabled the identification of novel hit
genes involved in the entry pathway of most of the pathogens in the
study. Recently, genetic screens were reported for cell infection with
picornaviruses, a large family of positive-sense RNA viruses with
severe impact on human health. In a genome-wide haploid loss-of-
function screen, the phospholipase PLA2G16 was found to be an
essential host factor for rhinovirus infection by supporting the
translocation of the viral RNA genome from endosomes to the
cytosol [48]. The same factor was picked up for rhinovirus infection
in a genome-wide forward screen using a murine haplobank
[49]. Arguably, although elegant, genetic loss-of-function screens
for infection are limited to genes that are nonessential for host-cell
survival. Computational modeling of the infection efficiency from
toxic loss-of-function phenotypes could therefore enhance the
breath of genetic haploscreens.

4 Computational Modeling in Virology

Logic and mathematics provide strong foundations for modeling of
biological phenomena. Modeling is the intellectual process of for-
malizing knowledge about a system or a process. A model consti-
tutes a hypothesis of how one believes things could work. Models
can be extracted or learned from data or constructed from known
biochemical and biophysical evidence. Data-driven (also called
“top-down”) models formalize patterns and correlations in the
data that are extracted using methods from statistics or machine
learning. Examples range from correlation analyses to reconstruct-
ing molecular interaction networks derived from high-content
screening datasets [47, 50] to classifying viral motion types using
machine learning [24]. Data-driven models suggest mechanisms
and can be used to show necessity of a process or molecule in a
perturbation experiment.

Mechanistic (or “bottom-up”) modeling aims to reconstitute a
process or a system from known fundamental principles of chemis-
try and physics, such as conservation of mass or the statistical
mechanics of chemical kinetics. Bottom-up models are akin to
in vitro reconstitution experiments with the important difference
that all system parameters can be controlled and the exact physics
and chemistry assumed is known. As such, these models can be used
to show sufficiency of mechanisms, which is more powerful than
only showing sufficiency of ingredients, for example, in an in vitro
reconstitution [51].
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Models of both kinds are then studied in simulations. A simu-
lation is an experiment performed on a model. Computer simula-
tions enable us to leverage the power of modern electronics in order
to simulate models of unprecedented complexity and level of detail.
A simulation allows any part or parameter of a model to be system-
atically perturbed or altered, and high-performance computers can
simulate hundreds of thousands of model perturbations in a short
time. Simulations also provide access to dynamic data, while exper-
imentally end-point assays are often used. Using the end-point
datasets to build or identify a model that reproduces them, and
then using that model to predict the dynamics of how the system
transitioned from its starting point to the observed end-point,
helps interpret biological information and carve out the essential
mechanisms.

5 Bridging the Gap: From Observations to Mechanisms by Computer Simulations

Quantitative image analysis, combined with structural and bio-
chemical data, provides a wealth of information that can be used
to build models of the chemical and physical mechanisms of infec-
tion for different viruses. The model formalizes a hypothesis. It
captures our current understanding based on the available informa-
tion. An important question therefore is how to validate, test, and
further refine the model. One approach is to test if the model is
necessary and sufficient to explain a process. Showing necessity is
mostly done in perturbation experiments. If the process stops
working upon knocking out or altering a molecular component
that is predicted to be present according to the model, then we
know that it is necessary. Sufficiency is mostly shown in reconstitu-
tion. This includes in vitro reconstitution or in silico reconstitution,
that is, computer simulation. If a reconstitution of the model,
which only consists of known and controlled components, repro-
duces the correct behavior, we know that the components are
sufficient. In simulations, not only the components but also their
interactions and the assumed laws of physics can be freely recon-
stituted. Simulations therefore bridge the gap between observation
and mechanism and show sufficiency of a mechanism by in silico
reconstitution.

6 Simulations at Different Levels of Detail

A rich landscape of modeling and simulation has been developed
over many years, ranging from atoms to continua. When applied to
viruses, atomistic molecular dynamics simulations have mostly con-
sidered the capsid [52]. The basis for molecular dynamics simula-
tions are often high-resolution cryo-EM tomograms, for example,
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of the HIV capsid [53]. These structures provide the initial place-
ment of the atoms in the simulation, which then gives insight into
the atomistic dynamics over time, for example, capsid
dissolution [54].

Alternatively, simulations consider the de novo self-assembly of
theoretical capsid structures, such as idealized polyhedral struc-
tures, and explain the thermodynamics of their assembly [55]. For
some viruses, like tobacco mosaic virus (TMV), complete all-atom
simulations of the entire virion, including capsid and RNA, have
been performed [56]. Such all-atom molecular simulations are,
however, costly and limited to short time scales of nanoseconds to
milliseconds. The above all-atom study of TMV, for example,
simulated the time-resolved dynamics of one million atoms over
50 ns lifetime. Studying larger entities or longer processes, such as
virus entry and virus-receptor binding, necessitates simplifications,
such as coarse-grained methods where multiple atoms are lumped
together. For example, this approach has been used to simulate
HIV capsid shape and investigate capsid stability [57] and to study
the dynamics of several viral structures, including the full satellite
tobacco mosaic virus (STMV) particle, the satellite tobacco necrosis
virus (STNV) capsid, poliovirus capsid, and the reovirus core [58].

Structural data derived from atomistic or coarse-grained mod-
els are often only available for isolated time points and do not
represent the entire dynamic process, such as capsid assembly and
maturation. The reason is that full molecular dynamics trajectories
are computationally too expensive to obtain. In such cases, elastic
network models can be used to interpolate between structural states
by assuming that the molecular constituents or coarse-grained
particles are connected to each other by elastic springs. The
so-obtained elastic structure can then be computationally morphed
from one structural state to another, providing energetically plausi-
ble molecular trajectories. This approach has, for example, been
used to study bacteriophage HK97 capsid maturation [59] and
conformational changes in hepatitis C virus helicase [60].

Further coarse-graining models, lipid membranes can be
described as continuous elastic sheets and viruses as rigid polyhedral
arrangements of receptor binding sites. Such models have been
used to simulate virus-receptor binding in elastic diffusive mem-
branes. The corresponding simulation method, termed Brownian
Reaction Adhesion Dynamics (BRAD), was first applied to study
HIV attachment [61]. The approach was then extended to simian
virus 40 (SV40) and compared with high-resolution experimental
data, highlighting the importance of in-membrane receptor diffu-
sivity for efficient attachment of SV40 to host cells [62].

While such simulations are feasible for small numbers of virions,
they are computationally intractable for large virion concentrations.
Once the number of virions exceeds a few thousand, individual
virions cannot be represented explicitly any more. In this case, the
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density or concentration field of virions is modeled as a continuous
distribution, leading to completely continuous descriptions. This
has, for example, been used to simulate the spreading of human
adenovirus across epithelial monolayers, simulating what amounts
to hundreds of thousands of virions and thousands of cells
[63]. Continuous models have also been used to describe the
intracellular trafficking of adenoviruses in host cells using diffusion-
reaction-advection equations that also account for the intrinsic
dynamics of the microtubule network [64].

Taken together, simulations of viral structures, including cap-
sids, envelopes, genomes, and surface proteins have implications for
many fields of study, ranging from atomistic models to cell biology,
imaging, and antiviral therapeutics. Despite this importance, con-
certed community efforts of creating standardized and portable
simulation software frameworks are scarce and, as of now, have
been limited to specific applications [65]. A generic framework of
how computational modeling and wet lab experimentation com-
plement each other is illustrated in Fig. 1.

7 Types of Computational Models

Computational models in virology can be classified along five
axes—(1) discrete versus continuous, (2) spatiotemporal versus
temporal, (3) stochastic versus deterministic, (4) hypothesis-driven
versus data-driven, and (5) white-box versus black-box models.

Fig. 1 An integrative modeling and wet lab approach toward mechanisms of infection biology
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7.1 Discrete Versus

Continuous Models

Examples of discrete models include atomistic and individual virion
simulations, where atoms or virions are modeled as discrete entities.
In continuous models, the individual entities are not separately
represented, but only their density or distribution in space and/or
time is tracked. Continuous modeling approaches have been
applied to an important question in virus assembly, namely, how
does a virion become infectious? In the case of HIV, where proteo-
lytic maturation is key to gaining virion infectivity, it has been
hypothesized that the cleavage of the matrix (MA) domain from
the envelope (ENV) domain (comprising the viral glycoprotein)
and the spreading of MA in the virion allows ENV to loosen up and
cluster the trimers for assembling a functional fusion machinery in
the infectious virions [66]. Indeed, reaction-diffusion models were
used to decouple MA from ENV, and thereby simulated an aspect
of virion maturation [67]. Since assembly and maturation are cou-
pled events, and the transition of immature to mature capsid
requires conformational changes in capsid (CA), researchers also
used coarse-grained discrete models for simulating lattice molecu-
lar assembly and nondiffusional curling versus de novo assembly
[68, 69]. The ultimate aim here will be to describe the cleavage of
the heteropolymer as a cascade of events and predict to what extent
the cleavage has to occur in order to yield functional capsid
assemblies.

7.2 Spatiotemporal

Versus Temporal

Models

Spatiotemporal models explicitly represent the spatial localization
or distribution of virions, such as done in most of the abovemen-
tioned examples. In contrast, temporal models track the dynamic
evolution of an aggregated quantity, such as the total virus load or
multiplicity of infection, without reflecting its spatial localization.
This is traditionally the case in viral kinetics models [70]. Multi-
scale spatiotemporal modeling of virion maturation has been per-
formed by Markov models where the free energy landscape of
intermediate states was averaged [71]. One can expect that the
combination of molecular dynamics and Brownian dynamics mod-
els will provide more computational cost-efficient simulation
results.

7.3 Stochastic

Versus Deterministic

Models

Another distinction is whether a model is stochastic or determin-
istic. In stochastic models, certain events happen probabilistically,
such that the evolution of the infection state cannot be accurately
predicted, but probabilities of different evolutions can be evaluated.
For example, the infection probability of cells depends on the local
virion concentration, and this has been implemented into a “white-
box” model for the simulation of infection spread in a tissue culture
model [63]. Another example for stochastic modeling in virus
infection has been the trafficking of individual virions along micro-
tubules, in an attempt to better understand the number and kind of
cellular motor proteins involved in periods of virion motion bursts
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in the cytosol [72]. Stochastic simulations of fluorescent adenovirus
particle motions involved an energy function and known para-
meters of motor stepping and on/off rates on microtubules. They
predicted that one to two motors are bound per virion during an
active motion burst. The model accurately reproduced the virion
motions from live-cell imaging data. It predicted that the major
capsid protein, hexon, was the receptor for the dynein/dynactin
motor complex [72]. This notion was coincidentally confirmed
using biochemical pulldown and infection assays [73].

In contrast to stochastic models, in a deterministic model, all
events happen with certainty, which typically requires complete
knowledge of the molecular mechanisms at play. Deterministic
models have been implemented for aspects of actin polymerization
and were extrapolated to actomyosin-based cell motility
[5, 74]. Deterministic models might be implemented for simulat-
ing the disruption of a non-enveloped virion, where the interac-
tions between capsid proteins are known in atomic detail. Such
simulations would be informative to predict, for example, if
mechanical forces acting on virus particles during virion drifting
motions on the cell surface are sufficient for the partial disruption
of the virion during entry, as observed in the case of adenovirus
[26, 75–78]. The model would implement information about
protein-protein contacts from the crystal or cryo-EM structures
and the anisotropic mechanics of the icosahedral particle measured
by atomic force microscopy [79–82]. It would inform about the
force that is needed to pull out a capsomer at the virion vertex. Such
information has high relevance, since the actomyosin filaments
mediating the virion drifts on the cell surface are much larger
assemblies than the virion itself and the minimal components of
this machinery are unknown. How many motors and how many
filaments are involved? Modeling might provide information about
the organization of the cytosolic region proximal to the plasma
membrane, for example, in relation to the picket-fence model [83].

7.4 Hypothesis-

Driven Versus Data-

Driven Models

Hypothesis-driven models are formulated based on an expectation
or suspicion for which no data need to be available at first. First, a
hypothesis is formulated and then formalized, for example, in the
form of mathematical equations, rule sets, or chemical pathways.
The resulting model is then simulated in order to study its behavior
in an attempt to falsify the hypothesis by comparison with observa-
tions and known facts.

Alternatively, models can be learned from data without forma-
lizing a hypothesis. This is often useful in the initial exploratory
phase of a study or when seeking higher-order patterns in data that
are not apparent to the human observer. While methods of statisti-
cal analysis have done precisely this for a long time, recent break-
throughs in machine learning and artificial intelligence have
brought a new quality to data-driven modeling. Modern
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machine-learning methods, such as deep and convolutional neural
networks, are exceedingly powerful at discovering patterns in com-
plex datasets. As they are not hypothesis-driven, they do not
directly serve the purpose of showing a biological mechanism, but
they uncover correlations and open the possibility to classify previ-
ously unseen data. Supervised machine learning requires large
amounts of training data from known conditions in order to learn
the correlations. Therefore, it is not surprising that some of the first
applications in virology were in detecting correlations of host-cell
gene expression levels with viral infection status, for example, in
hepatitis B virus infections [84].

Another application where training data are typically available is
in single-virion tracking experiments. Using automated tracking
software [23], hundreds or thousands of trajectories can be auto-
matically extracted from large image datasets, and different motion
patterns can be labeled by hand. From these training data, a super-
vised machine-learning method can then learn the descriptive fea-
tures of the motion patterns and predict them in new trajectories as
well [24]. A third example of a successful application of machine
learning to virology is the discovery how cell-to-cell variability
influences virus infection by endocytosis [85]. This was made pos-
sible by analyzing large sets of high-content screening images and
learning models that link the cellular context in an image to the
observed infection dynamics.

7.5 White-Box

Versus Black-Box

Models

Models are also classified according to the number of free para-
meters they have, which typically are fitted to experimental data.
White-box models have no or just a few unknown parameters. A
white-box model is the most direct evidence for sufficiency of a
mechanism. If, for example, all diffusion constants, infection prob-
abilities, and binding affinities are independently measured, and the
model recapitulates the data, this is strong evidence that the mod-
eled mechanisms are sufficient. In contrast to white-box models,
black-box models are entirely identified by parameter fitting. They
therefore provide indirect ways of estimating quantities that are not
directly measurable or observable once the basic mechanism is
known. They do, however, always leave some ambiguity about the
actual mechanism, as different mechanisms could recapitulate the
same data for different parameter values.

8 Enabling Statistical Inference

An important role of simulations is to enable statistical inference
from experimental data. Inference is typically done in either the
maximum likelihood framework or the Bayesian framework. Both
require a “forward model” of the observation process. Assume, for
example, that one would like to infer how the morphology of
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endosomes changes upon virus entry. Since the question is about
dynamics, live imaging is desirable. Light diffraction, however,
limits the details visible in the images, especially when observing
small structures like endosomes [29]. Using a simulation to model
the image formation process in the microscope, however, one can
robustly infer the time-resolved endosomal shape that is most
probable to have created the observed image [86]. Likewise, a
simulation of virus plaque formation in infected tissues can be
used to infer the mechanism of virus spread that is most likely to
lead to the observed plaque dynamics [63].

9 Extracting Information from Merged Heterogeneous Complex Data

Increasingly, viral processes are studied by combining different
sources of data, such as fluorescence microscopy, electron micros-
copy, biochemical assays, infection assays in tissue culture, struc-
tural data, and epidemiological data. These data are heterogeneous,
as they come in different forms, such as images, numbers, graphs,
and time series. Merging complex heterogeneous data in order to
extract information from them usually requires a computer model
of the studied process. The simulation environment provides a
uniform container into which all data types can be fused, as long
as they can be computationally handled.

10 Aiding Experimental Design

Simulation models almost always contain parameters, such as diffu-
sion constants, reaction rates, or binding affinities. While some of
them can be measured experimentally, it is usually undesirable to
blindly measure all of them. Instead, one wishes to focus experi-
mentation on parameters that are important to the overall behavior
of the model. Once a simulation of the model is available, global
sensitivity analysis methods [87] can be used to determine parame-
ter importance. Experimental measurements or perturbations can
then focus on those parameters that are predicted to be important
for the function of the modeled process. At the same time, para-
meters that turn out to have little or no influence on the model
behavior can be removed from the model, hence simplifying the
model. Models thus become evolving hypotheses that suggest both
next experiments and iterative refinements by incorporating the
experimental results.

Computational Modeling of Virus Infection 621



11 Fitting the Values of Unknown Parameters by Design Centering

Data fitting is the standard approach to using a model to infer
unknown values of, for example, diffusion constants or reaction
rates [88]. Almost invariably, the task of model fitting is formulated
as an optimization problem. This is to find the parameter values, for
which the model output is as close as possible to the experimentally
measured data. However, optimal fitting can be dangerous for two
reasons: First, the model necessarily is an incomplete approxima-
tion to reality and the experimental data include unknown mea-
surement uncertainties. The best fit of one to the other is not
necessarily the most meaningful in reality. Second, optimizing the
fit may lead to models of growing complexity that reproduce intri-
cate details or trace meaningless measurement errors, obscuring the
basic mechanism. This is known as overfitting in machine-learning
approaches.

Instead of formulating parameter inference as an optimization
problem, it can be formulated as a design-centering problem.
Design centering is a classic problem in engineering, first described
in the electronics community [89]. In design centering, one spe-
cifies criteria that define a good model. These criteria can, for
example, be that all measurements are matches within 1% error
and all concentrations have positive values. Any set of parameter
values for which the model fulfills these criteria corresponds to an
acceptable model, of which there are usually many. Design center-
ing now finds the one model or parameters that are acceptable and
have maximal robustness against random fluctuations in the data or
the parameters. That is, the final model has the highest probability
of still being acceptable for the next yet unseen experiment and
slight changes in the parameters only minimally alter its behavior.

Since design centering finds robust models that fit “well
enough,” it is free of overfitting and naturally generalizes across
experimental conditions. Particularly in virology, this viewpoint
intuitively makes sense, since the robustness of an infection mecha-
nism against, for example, changing immune response and changes
in the biophysical parameters of the cell is evolutionarily selected
for. It is thus expected that design-centered mechanisms have
higher chances of surviving and are thus more likely to be true.
Importantly, design centering can therefore also be used to select
between different competing models and choose the more likely
one, since it naturally quantifies the robustness of a model.

Despite its advantages, design centering is only rarely used. The
reason is the high computational cost it incurs. In fact, design
centering has been proven to be non-deterministic polynomial
(NP)-hard, which means that it is impossible to be solved efficiently
on a deterministic computer [90]. Recently, however, the first
efficient approximation algorithm for general design-centering
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problems has become available [91]. This procedure may replace
optimization when fitting model parameters to data, ultimately
leading to more robust models that account for measurement
uncertainties and that are evolutionarily plausible.

12 Modeling Influenza A Virus (IAV)

With regard to enveloped viruses, emerging experimental data from
lipidome analyses, together with cryo-EM structures, have moti-
vated computational efforts to generate glycolipid-protein interac-
tion maps and to explore if a particular protein of the virion
envelope is directly exposed to the environment and might hence
present a direct drug target [92]. Mapping of the potential impact
of the glycan residues on the viral glycoproteins might inform
about the shielding of particular antigenic sites, with a possible
impact on antigenic variation influenced by the kind and extent of
glycosylation, which is a key issue in the design of effective vaccines
against influenza virus.

With respect to IAV, an interesting regulatory protein is theM2
ion channel. M2 is a homo-tetrameric protein with a single trans-
membrane segment each. It is present in the virion envelope and in
membranes of the secretory and endocytic pathways of infected
cells. M2 is well known for its proton conductance [93–95]. It is
widely conserved among IAV, indicative of important function in
the viral life cycle. In fact, if the M2 channel is blocked by drugs,
such as amantadine, virus entry is inhibited [96]. In absence of
amantadine, the interior of the virion acidifies when located in a
low-pH endosomal compartment, and the ribonucleoprotein
(RNP) complexes dissociate from the capsid-coat protein M1
[94, 97–99]. Modeling enabled elucidating the mechanism of pro-
ton conductance, involving histidine imidazole-imidazole stabiliza-
tion of the charge in the lipid bilayer [100]. The tetrameric nature
of the M2 channel thereby helps distribute the positive charge
across different histidine residues and thereby helps minimize a
futile cycle in order to favor the productive cycle of proton
conductance.

IAV rapidly evolves resistance against amantadine, and model-
ing again helped explain how this is possible. Using molecular
dynamics simulations, it has been found that a single point muta-
tion (Ser31Asn) in M2 rendered IAV resistant to the M2-channel
blocker amantadine [101]. Surprisingly, amantadine still bound to
the S31N mutant of M2, more flexibly than in the wild-type
channel, in which it stably binds to the plugging region [102]. In
the mutant configuration, water surrounding the drug can easily
transport protons past the plugging drug, thereby explaining pro-
ton transport even with the drug bound to M2. This sufficient
mechanism has later been confirmed by a combination of nuclear
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magnetic resonance (NMR) experiments and simulation data using
rimantadine, an antiviral compound structurally related to
amantadine [103].

By neutralizing the pH in acidic cellular compartments, M2
also subverts the normal function of endosomes and of the Golgi
apparatus, and it inhibits premature conformational changes in the
newly synthesized viral HA protein in the Golgi. During virion
budding from the plasma membrane, M2 replaces the ESCRT
(endosomal sorting complexes required for transport) machinery
by localizing to curved membrane domains. In simulations recon-
stituting the action of the M2 channel in membrane budding, an
excess of lipid moieties was necessary for obtaining a reliable repre-
sentation of viral budding, due to the wedging effects of M2 and
lipid bilayer curvature [100].

Besides conducting protons, M2 is thought to also conduct
Na+ and K+ ions [104–106]. This feature is important for virion
uncoating and infection, as shown in acid-bypass experiments
where extracellular IAV particles attached to the plasma membrane
gained infectivity when exposed to millimolar extracellular concen-
trations of K+ [107]. Na+ and K+ conductance through M2 is
possible, despite the clear preference that M2 has for H+ over Na+

[108]. The reason why this is possible is that the concentrations of
Na+ or K+ in endolysosomes are five to six orders of magnitude
higher than the proton concentration [109]. In liposome reconsti-
tution assays, M2was shown to be slightly permeable to Na+ and K+

[102]. Thus, it is possible that H+, Na+, and K+ have similar fluxes
across M2 when the virion is in an acidified endosome. Since the
virion is in a Na+-rich environment when infecting cells from the
outside, it will be particularly interesting to model the flux of K+

across M2 as a function of the K+ concentration and to simulate
possible effects of K+ on the M1-RNP interactions or other com-
ponents of the virion lumen, such as the viral RNA-dependent RNA
polymerase.

13 Outlook

Computational methods have come a long way in virology. They
range from now-standard computational image analysis, such as
single-virion tracking [23], to machine-learning approaches for
automated model extraction [24] and to identifying predictive
interaction potentials between virions and host-cell compartments
from images [30]. Many of these developments were inspired by
applications in virology in the first place, rendering it a truly inter-
disciplinary effort. Computer simulations of learned or hypothe-
sized models enable in silico reconstitution and can show
sufficiency of a mechanism, rather than just of a list of ingredients
or molecules. Simulations can be done at different levels of
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resolution, from all-atom molecular dynamics simulations to con-
tinuum models.

On the molecular scale, it seems obvious to take advantage of
the increasingly detailed structural information on interatomic con-
tacts in order to model viral capsid mechanics. Discrete mechanical
assembly models can be compared with continuum thin-shell
descriptions in order to disentangle stochastic and deterministic
mechanisms. Eventually, this may lead to the simulation of confor-
mational changes in virus particles, as, for example, triggered by
uncoating cues [38, 110, 111]. In a next step, the interaction of the
exposed membrane-active viral proteins with host-cell membranes
can be modeled using a coarse-gained approach. This could be
rewarding and inform about how higher-order oligomers lead to
enhanced ability to disrupt membranes, for example, by recruiting
additional monomers from the surface without a kinetic barrier of
membrane insertion for the additional monomers. Such mecha-
nism has been proposed for the disruption of bacterial membranes
by antimicrobial peptides [112]. It could have implications on the
mechanism of viral membrane rupturing proteins, such as protein
VI of the human adenovirus, which preferentially binds to and
disrupts ceramide-rich lipid bilayers [113, 114]. We anticipate
that depending on the oligomer formed, these membrane-active
peptides make different sized channels, which can be measured by
various sized dextrans, or thermodynamically disrupt the mem-
brane as proposed for antimicrobial peptides. Experiments could
be complemented by continuum simulations of membrane leakage.
In addition, structural virion information can be used for predictive
modeling of flexible regions of a virion, including intrinsically
disordered domains on the surface of the particle. These regions
are prone to interact with many different proteins in unpredictable
manners and often represent antigenic sites for the binding of
neutralizing antibodies. Including these effects would greatly
enhance the currently rather crude multi-scale models of virion
attachment and in-membrane receptor diffusion [61, 62].

Despite exciting prospects, we are aware of the difficulty and
the challenges in modeling biological phenomena, including
viruses. In this regard, we would agree with George Edward Pel-
ham Box that “all models are wrong, but some are useful,” and
knowing this with Richard Feynman—“it is much more interesting
to live not knowing than to have answers which might be wrong.”
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