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a b s t r a c t

The general integral particle strength exchange (PSE) operators [J.D. Eldredge, A. Leonard, T.
Colonius, J. Comput. Phys. 180 (2002) 686–709] approximate derivatives on scattered par-
ticle locations to any desired order of accuracy. Convergence is, however, limited to a cer-
tain range of resolutions. For high-resolution discretizations, the constant discretization
error dominates and prevents further convergence. We discuss a consistent discretization
correction framework for PSE operators that yields the desired rate of convergence for any
resolution, both on uniform Cartesian and irregular particle distributions, as well as near
boundaries. These discretization-corrected (DC) PSE operators also have no overlap condi-
tion, enabling the kernel width to become arbitrarily small for constant interparticle spac-
ing. We show that, on uniform Cartesian particle distributions, this leads to a seamless
transition between DC PSE operators and classical finite difference stencils. We further
identify relationships between DC PSE operators and operators used in corrected smoothed
particle hydrodynamics and reproducing kernel particle methods. We analyze the pre-
sented DC PSE operators with respect to accuracy, rate of convergence, computational effi-
ciency, numerical dispersion, numerical diffusion, and stability.

! 2010 Elsevier Inc. All rights reserved.

1. Introduction

Lagrangian particle methods for the simulation of continuum systems, such as smoothed particle hydrodynamics (SPH) or
vortex methods, rely on accurate and efficient evaluation of spatial derivatives of a function that is discretized over scattered
particle locations. Eldredge et al. [1] presented a unified approach to approximate spatial derivatives of any degree. It is
based on a generalization of the integral particle strength exchange (PSE) operators introduced by Degond and Mas-Gallic
[2] to approximate the Laplacian in convection–diffusion problems. These integral operators are usually discretized by mid-
point quadrature over the particle positions. The discretized integral operators thus involve two errors: the mollification er-
ror and the discretization error. In order for the discretized operator to be consistent, the interparticle spacing h and the
width e of the operator kernel (not to be confused with the mollification kernel used for function representation) have to
satisfy the condition c ¼ h=e ! 0 as h and e tend to zero [3,4]. This leads to an ‘‘overlap condition” of the type
h 6 aeq;0 < a < 1; q > 1, thus typically requiring large numbers of particles (increasing as e"qn in Rn) for small kernel sizes.

This constraint can be relaxed by replacing the continuous moment conditions that are used to derive the operator kernel
[1] by the corresponding discrete moment conditions. Using such discretization-corrected (DC) kernels ensures that the dis-
cretization error can not dominate the overall order of accuracy of the approximation. DC operators are always consistent,
independent of the ratio c ¼ h=e, thus eliminating the need for the overlap condition c < 1 for the operator kernel, as well as
for c ! 0 as h; e ! 0.
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To the best of our knowledge, discretization correction for particle methods was first described by Cottet et al. [5] for
interpolation kernels. Since then, it has been used in many state-of-the-art simulations. Hieber and Koumoutsakos [6], for
example, used it for a second-order approximation of the Laplacian on symmetric particle distributions. Bergdorf et al. [7]
pointed out the possibility of discretization correction of the anisotropic diffusion operator derived by Degond and Mas-Gal-
lic [8]. Sbalzarini et al. used DC PSE operators to approximate the Laplacian with second-order accuracy [9] on uniform Carte-
sian particle distributions. Poncet [10] used the original and the DC anisotropic diffusion operators in vortical ring
simulations and compared the results to classical finite difference (FD) stencils. His corrected operator is of order one on
arbitrary particle distributions and of order two on symmetric ones. Golia et al. [11] formulated two different discretization
corrections for PSE operators to estimate the gradient and the Laplacian of a field. Their corrected operators guarantee sec-
ond-order accuracy on symmetric particle distributions and first- or zeroth-order on arbitrary particle distributions. In all
these previous applications of DC PSE operators, however, little attention has been paid to their numerical properties, and
no general analysis has been published so far. The use of DC PSE operators on moving particles is computationally expensive
since a linear system of equations has to be solved for each particle whenever particles have moved. In order to maintain the
order of accuracy, while keeping the computational cost low, the particles can be reinitialized on a Cartesian grid (‘‘re-
meshed”) at each time step (see for example Bergdorf et al. [7]) or every few time steps (see for example Koumoutsakos
[12]). Other authors combined diffusion and remeshing into a single kernel [13] to further reduce the computational cost.

In the present paper, we present a formal framework for DC PSE operators, and we derive expressions for their overall
approximation errors. We also show the relationships between DC PSE operators, FD stencils, and the operators used in cor-
rected SPH [14–20] and reproducing kernel particle methods (RKPM) [21,22]. We perform a full stability analysis based on
the dispersive and diffusive properties of the operators and show the convergence rates and computational efficiencies of the
operators on several test problems. In all cases, we compare the DC PSE operators to the original (uncorrected) ones. Our
analysis considers particles distributed both irregularly and on a uniform Cartesian grid. In addition, we also discuss and as-
sess boundary effects. The influences of the free operator parameters (ratio c ¼ h=e, cutoff radius rc , and order of accuracy r)
on the computational efficiency and the operators’ numerical properties are discussed in all cases.

The paper is organized as follows: in the following section, we present a formal DC framework for the general integral PSE
operators introduced by Eldredge et al. [1]. This provides the theoretical background for Section 3, where we outline the rela-
tionships between DC PSE operators, FD stencils, and other operators used in particle methods. We show that DC PSE oper-
ators in some cases become algebraically equivalent to FD stencils in the limit of infinitely small kernel widths. In Section 4,
we numerically compare the convergence rates and the computational efficiencies of uncorrected and corrected PSE oper-
ators and the limiting FD stencils on uniform Cartesian particle distributions, arbitrary particle distributions, and near
boundaries. In Section 5, we quantify the numerical dispersion and diffusion introduced by the corrected and uncorrected
operators. Closed-form stability conditions are given for uniform and non-uniform particle distributions based on the mod-
ified wavenumbers. Our conclusions and open questions are summarized in Section 6.

2. Discretization correction of general integral PSE operators

PSE operators approximate any spatial derivative

Dbf ðxÞ ¼ @jbjf ðxÞ
@xb11 @xb22 . . . @xbnn

ð1Þ

of a (sufficiently smooth) field f by an integral operator over scattered particle locations [1]:

Qbf ðxÞ ¼ 1
ejbj

Z

Rn
ðf ðyÞ % f ðxÞÞgb

e ðx" yÞdy ¼ Dbf ðxÞ þ OðerÞ: ð2Þ

The operator kernel gb
e ðzÞ ¼ e"ngbðz=eÞ is scaled to width e (kernel width) and chosen such as to fulfill continuous moment

conditions [1]. The sign in Eq. (2) is chosen positive for odd jbj and negative for even jbj. This convention will be used
throughout the paper. The modulus of the multiindex b; b 2 Nn, is defined as jbj ¼

Pn
i¼1bi. Moreover, xb ¼

Qn
i¼1x

bi
i and

b! ¼
Qn

i¼1bi!. A sum over all indices b for which jbj ¼ k is written as
P

jbj¼k. Here and in the sequel, n is the number of space
dimensions and ei the unit vector along dimension i.

The integral operator in Eq. (2) is discretized by midpoint quadrature over the particles, thus,

Qb
hf ðxÞ ¼

1
ejbj

X

p2NðxÞ
vpðf ðxpÞ % f ðxÞÞgb

e ðx" xpÞ; ð3Þ

where xp and vp are the position and the volume of particle p, respectively, and NðxÞ is the set of all particles in an rc-neigh-
borhood around x. The cutoff radius rc of the operator is defined such that Nð0Þ approximates the support of gb

e with a cer-
tain accuracy. The resolution of the discretization is given by the characteristic interparticle spacing h, defined as the nth root
of the average particle volume.

Using Eq. (3) to compute Eq. (1) involves two approximations: the mollification error Qbf ðxÞ " Dbf ðxÞ and the discretiza-
tion error Qb

hf ðxÞ " Qbf ðxÞ. While these two error terms are usually treated separately in particle methods, we directly
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consider the overall error !ðxÞ ¼ Qb
hf ðxÞ " Dbf ðxÞ. An expression for this error can be derived by expanding the field f in Eq. (3)

into a Taylor series around x and subtracting Dbf ðxÞ:

!ðxÞ ¼
ð"1Þjbj

b!
Zb
hðxÞ " 1

 !

Dbf ðxÞ þ
X1

jaj¼1
a–b

ð"1Þjaj

a!
ejaj"jbjZa

hðxÞD
af ðxÞ þ !0; ð4Þ

with

!0 ¼ 2e"jbjZ0
hðxÞf ðxÞ; jbj odd;

0; jbj even;

(
ð5Þ

and the discrete moments Za
h defined as

Za
hðxÞ ¼

1
en

X

p2NðxÞ
vp

x" xp

e

! "a

gb x" xp
e

! "
: ð6Þ

Directly considering the overall error in Eq. (4) enables deriving a consistent discretization framework by modifying the ker-
nel function gb such that all error terms of order s < r vanish. This can be accomplished by requiring the discrete moments Zb

h
to satisfy the conditions

Za
h

¼ ð"1Þjbjb!; a ¼ b;

¼ 0; a – b; amin 6 jaj 6 jbj þ r " 1; amin ¼
0; jbj odd;
1; jbj even;

#

< 1; jaj ¼ jbj þ r:

8
>>><

>>>:
ð7Þ

These discrete conditions are analogous to the continuous ones [1]. Satisfying the continuous moment conditions, however,
may not be sufficient for convergence of the overall error when keeping the ratio c constant. The uncorrected kernel gb fulfills
the discrete moment conditions only in the limit c ! 0, where the discrepancy between the discrete moments (Eq. (6)) and
the continuous ones (

P
p2NðxÞvp in Eq. (6) replaced by

R
Rn dx) vanishes. Depending on the desired accuracy, uncorrected ker-

nels may still be satisfactory for small enough c. Error terms proportional to es with s < r do, however, exist and can become
dominant for high resolutions when c ¼ h=e is kept constant. Discretization correction aims at removing those error terms by
designing kernels that directly fulfill the discrete moment conditions in Eq. (7). This can be done by including a correction
function Cðz; xÞ into the kernel, where x is the position where the operator is evaluated and z is a location in a local coordi-
nate system with origin at x.

We restrict the number of possible DC PSE kernels by constructing them according to the following template:

gbðz; xÞ ¼
Xjbjþr"1

jcj¼amin

acðxÞzc
 !

e"jzj2 ¼ Cðz; xÞe"jzj2 ; ð8Þ

with a polynomial correction function Cðz; xÞ. We choose this template due to its simplicity and similarity to the kernel func-
tions proposed for the original PSE operators [1]. Kernels with a small number of sign changes generally have better accuracy
and robustness [23,24]. Moreover, the non-vanishing discrete moments Za

h; jaj ¼ jbj þ r, should be as small as possible in or-
der to minimize the leading error term.

The unknown coefficients acðxÞ in Eq. (8) are determined by solving a linear system of equations. This is obtained by
substituting the discrete moments of the kernel template (Eq. (8)) into the conditions in Eq. (7):

Xjbjþr"1

jcj¼amin

acðxÞwacðxÞ ¼
ð"1Þjbjb!; a ¼ b;

0; jaj– jbj;

(
8a; amin 6 a 6 jbj þ r " 1; ð9Þ

with weights

wa;cðxÞ ¼
1

ejaþcjþn

X

p2NðxÞ
vpðx" xpÞaþce"

x"xp
ej j2 : ð10Þ

This linear system consists of m equations for m unknowns, where

m ¼
jbj þ r " 1þ n

n

$ %
" amin: ð11Þ

The multiindices a identify the equations (rows), and the multiindices c identify the unknown coefficients (columns). While
the continuous moment conditions are often redundant [1], this is not the case for the discrete ones, and the full set of m
equations must generally be considered. The condition number of this linear system is determined by the particle distribu-
tion and the choice of kernel function template [25].
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For uniform particle distributions, the coefficients ac are independent of xp. The linear system (Eq. (9)) thus needs to be
solved only once, and the same kernel can be used at all particle positions. Moreover, for symmetric particle distributions all
odd moments of even function terms and even moments of odd function terms vanish. All coefficients ac for which cþ b con-
tains odd elements can therefore be set to zero a priori. The system of equations can thus be reduced to size

msymm ¼
jbjþr"1

2

j k
þ n

n

 !
" amin

by removing all rows and columns where aþ b or cþ b contain odd elements.
For non-uniform particle distributions, the weights in Eq. (10) are functions of x. In this case, a different linear system has

to be solved at every particle position xp. The coefficients acðxÞ of the DC PSE kernels may thus be different on different par-
ticles and have to be recomputed whenever particles have moved. For small m (low-order kernels for derivatives of small
degree in low-dimensional spaces), this can efficiently be done using a closed-form expression for the coefficients acðxÞ as
a function of the weights wc;aðxÞ. In addition, the matrix of weights is symmetric if the moment conditions are properly or-
dered, and it typically contains several identical entries since wi;jðxÞ ¼ wk;lðxÞ8x if i + j = k + l.

Since the DC operators on non-uniformly distributed particles depend on particle position, particle–particle interactions
are not necessarily symmetric any more. This increases the computational cost of a simulation by up to a factor of two and
impairs the exact conservativeness of the uncorrected full-space PSE operators [17]. For first-order accurate operators, this
can be remedied by using different correction functions for each pair of particles [18–20]. These correction functions are
averages of the kernel correction functions at the two particle positions. Preserving symmetry for higher-order DC PSE oper-
ators is, to our knowledge, an open problem.

3. Related operators

For certain parameter choices, DC PSE operators become equivalent or similar to operators used in other numerical meth-
ods. We particularly highlight the connections with FD stencils, corrected SPH, and operators used in RKPM. In fact, we prove
that certain classical FD stencils are limit cases of DC PSE operators for c ! 1.

3.1. FD stencils

For uniform Cartesian particle distributions with spacing h and a finite operator support of radius rc , the discrete integral
operator (Eq. (3)) can be rewritten as

Qb
hf ðxÞ ¼

cn

ejbj
Xbr2c =h2c

jkj2¼0

ðf ðxþ khÞ % f ðxÞÞgbð"ckÞ; k 2 Zn: ð12Þ

Using the kernel template given in Eq. (8), the value of the DC kernel function at "ck is

gbð"ckÞ ¼
Xjbjþr"1

jcj¼amin
bþc even

acð"ckÞc

0

BB@

1

CCAe"c2 jkj2 ; ð13Þ

and the discrete moments become

Za
h ¼ cn

Xr2c =h
2b c

jkj2¼0

Xjbjþr"1

jcj¼amin
bþc even

acðckÞaþce"c2 jkj2 : ð14Þ

Here, ‘‘bþ c even” stands for all multiindices c for which bþ c contains only even elements. All other c need not be consid-
ered since the corresponding coefficients ac can a priori be set to zero (see Section 2).

The DC PSE operators for c ! 1 can be derived from Eqs. (12)–(14) and the moment conditions (Eq. (7)). For the second-
order accurate DC PSE operator approximating the first derivative along dimension i ðr ¼ 2; b ¼ eiÞ, for example, the DC ker-
nel function can be written as

gei ð"ckÞ ¼ kie"c2 jkj2

cnþ1
P r2c =h

2b c
jlj2¼0

l2i e"c2 jlj2
: ð15Þ

Using this kernel, the operator (Eq. (12)) becomes

Q ei
h f ðxÞ ¼

P r2c =h
2b c

jkj2¼0
ðf ðxþ khÞ þ f ðxÞÞkie"c2 jkj2

h
P r2c =h

2b c
jkj2¼0

k2i e"c2 jkj2
:
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This is a FD stencil with extent and weights that can be adjusted by the choice of the cutoff radius rc and the ratio c. Letting
c ! 1 yields

lim
c!1

Q ei
h f ðxÞ ¼

f ðxþ hiÞ " f ðx" hiÞ
2h

; hi ¼ hei; ð16Þ

for any value of rc P h. This is the classical centered difference stencil for the first derivative of f.
Following the same procedure, the second-order DC PSE operator approximating the Laplacian Df ðxÞ ¼ r2f ðxÞ becomes

lim
c!1

Q Lap
h f ðxÞ ¼ lim

c!1

Xn

i¼1

Q2ei
h f ðxÞ ¼

Pn
i¼1 f ðxþ hiÞ " 2f ðxÞ þ f ðx" hiÞ½ (

h2 ; ð17Þ

and the fourth-order DC PSE approximation of the first derivative along ei yields

lim
c!1

Q ei
h f ðxÞ ¼

"f ðxþ 2hiÞ þ 8f ðxþ hiÞ " 8f ðx" hiÞ þ f ðx" 2hiÞ
12h

: ð18Þ

The limit FD stencil of the n-dimensional anisotropic diffusion operator of order r ¼ 2, introduced by Degond and Mas-Gallic
[2] to approximate r ) ðLðxÞrf ðxÞÞ, can be found in Appendix A. On Cartesian particle distributions, all these classical com-
pact FD stencils can hence be interpreted as DC PSE operators with a kernel width e tending to zero (grid points).

For irregular particle distributions, the DC PSE operators can be made equivalent to FD stencils for irregular meshes. Dem-
kowicz et al. [26] proposed simple FD stencils approximating the two-dimensional Laplacian on irregular meshes by solving
a linear system of equations consisting of moment conditions analogous to the ones used here for DC PSE operators. The va-
lue gbðx" xp; xÞ of the DC PSE kernel is equivalent to the FD stencil weight ap for particle (mesh node) p.

Wright and Fornberg [27] used radial basis functions to generate compact FD stencils on irregularly distributed nodes. For
Cartesian node distributions, they recover the classical one- and two-dimensional FD stencils for first and second derivatives.
These stencils were obtained in the limit of the radial basis function becoming flat, thus c ! 0. This was possible because the
support of the stencils was chosen and fixed a priori. The DC PSE operator in Eq. (12) becomes equal to the respective FD
stencil (Eqs. (16)–(18)) if one fixes rc to the radius of the stencil. The limit c ! 1 in our case, however, makes it unnecessary
to fix rc beforehand. Instead, compact FD stencils naturally emerge.

3.2. Normalized smoothing functions in (corrected) SPH

In PSE operators, the kernel is weighted by a sum or difference of field values, which guarantees conservativeness of DC
PSE operators on uniform particle distributions. The operators used in SPH lack this symmetry. Rather, the kernel is weighted
only by the field values evaluated at the particle locations:

Qb
h;SPHf ðxÞ ¼

1
ejbj

X

p2NðxÞ
vpf ðxpÞgb

e;SPHðx" xpÞ: ð19Þ

This operator achieves rth-order convergence for all kernels gb
e;SPH that satisfy the discrete moment conditions

Za
hðxÞ ¼

1
ejajþn

X

p2NðxÞ
vpðxp " xÞagb

e;SPHðx" xpÞ
¼ b!; a ¼ b;

¼ 0; a– b; 0 6 jaj 6 jbj þ r " 1;
< 1; jaj ¼ jbj þ r:

8
><

>:
ð20Þ

In classical SPH, however, the kernel is designed to satisfy continuous moment conditions, and the above ones are not auto-
matically fulfilled.

Johnson and Beissel [14] therefore introduced normalized smoothing functions for SPH. Hereby, gb
e;SPH is normalized with

a scalar factor that depends on x such that the first condition in Eq. (20) is met. This is reminiscent of the corrected kernel
function in Eq. (15), where the normalization factor is equal to the discrete moment Zei

h . Normalized SPH kernels were shown
to lead to more accurate derivative estimations than unnormalized ones, especially near boundaries and on non-uniformly
distributed particles [14]. Randles and Libersky [15] have extended the normalization idea to the estimation of the diver-
gence of general tensor fields.

Bonet and Kulasegaram [16] derived second-order accurate SPH kernels for approximating a field, and first-order accurate
kernels for approximating its Laplacian. These operators involve a linear correction function for the kernel, similar to the
polynomial correction function proposed above. The coefficients of the correction function are chosen such as to satisfy
the conditions in Eq. (20) for jaj 6 jbj, hence r ¼ 1 [16].

Lanson and Vila [18–20] proposed an altered normalization that leads to a conservative scheme for approximating first
derivatives. This correction involves the PSE-like idea of replacing f ðxpÞ in Eq. (19) by the difference f ðxpÞ " f ðxÞ, such
that the condition for Z0

h vanishes. The average of the renormalization matrices at x and xp is used as an additional weight.
The resulting operators are first-order accurate and resemble DC PSE operators for even jbj. There is, however, no trivial
conservative generalization of these operators to higher derivatives or higher orders of accuracy.
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3.3. Reproducing kernel particle methods (RKPM)

In RKPM [21,22], a field f ðxÞ is represented using the particle function approximation

Q0
h;RKPMf ðxÞ ¼

X

p2NðxÞ
vpf ðxpÞge;RKPMðx" xp; xÞ: ð21Þ

The order of accuracy is given by the largest integer r for which the interpolation kernel ge;RKPM fulfills the moment conditions

Z0
hðxÞ ¼

1
en

X

p2NðxÞ
vpge;RKPMðx" xp; xÞ ¼ 1;

Za
hðxÞ ¼

1
ejajþn

X

p2NðxÞ
vpðxp " xÞage;RKPMðx" xp; xÞ ¼ 0;1 6 jaj 6 r " 1:

This is achieved by multiplying a window function by a polynomial correction function, thus forming the kernel gRKPM sim-
ilarly to Eq. (8). The bth derivative of the field is evaluated with an order of accuracy of r " jbj by taking the bth derivative of
the continuously differentiable function approximation in Eq. (21). Just as corrected SPH operators, RKPM operators are not
symmetric, making them generally non-conservative. When setting all particle volumes to vp * 1, RKPM become equivalent
to moving least squares (MLS) approximations [28,29]. In MLS, non-uniform particle distributions (holes and clusters) are
thus implicitly accounted for in the kernel function (shape function).

4. Convergence and computational efficiency of DC PSE operators

We present numerical experiments that illustrate the rate of convergence, overall error, and computational efficiency of
DC PSE operators. We compare DC PSE operators to uncorrected PSE operators and to classical FD stencils. This section com-
prises four parts: In Section 4.1, convergence and computational efficiency are tested on uniform Cartesian particle distribu-
tions. The test problems are taken from Eldredge et al. [1] in order to demonstrate the fundamental characteristics of the
operators. In Section 4.2, convergence is tested on irregular particle distributions and in Section 4.3, we assess boundary ef-
fects on finite-sized domains. Section 4.4 presents the operator’s efficiency in practical applications by studying a two-
dimensional Lagrangian advection–diffusion benchmark.

4.1. Uniform cartesian particle distributions

We present numerical experiments that demonstrate the rate of convergence and computational efficiency of DC PSE
operators on uniform Cartesian particle distributions, and we compare the DC PSE operators to the corresponding limit
FD stencils.

4.1.1. Rate of convergence
We consider the test case of evaluating the second derivative of the one-dimensional function

f ðxÞ ¼ 1ffiffiffiffiffiffiffiffiffi
pr2

p e"x2=r2
; r ¼ 0:05; ð22Þ

at the locations of all particles in the domain ["0.5,0.5]. The particles are arranged with equidistant spacing h and the ratio
c ¼ h=e is kept constant when the resolution is increased. We use the kernel function template

gbðzÞ ¼ zðb mod 2Þ
Xmsymm"1

c¼0

acjzjc
 !

e"jzj2 ; ð23Þ

which typically yields higher accuracy for one-dimensional operators on symmetric particle distributions than the more gen-
eral template of Eq. (8).

Fig. 1 shows the L2 norm of the relative error1 in the approximation of the derivative by Eq. (3) for different c and orders
r ¼ 2 (top row) and r ¼ 4 (bottom row). The cutoff radii are rc ¼ 3:5e ðr ¼ 2Þ and rc ¼ 5:5e ðr ¼ 4Þ for the uncorrected operators,
and rc ¼ 2e ðr ¼ 2Þ and rc ¼ 3e ðr ¼ 4Þ for the DC operators. The error of order s ¼ "2 for very high resolutions is due to limited
machine precision and numerical extinction. It is not a feature of the operators.

The uncorrected operators yield the desired rate of convergence over a wide range of resolutions if ratio c is small (e.g.
c ¼ 0:5, which is the ratio used by Eldredge et al.). For larger values of c (curves for c ¼ 0:9; c ¼ 1:0, and c ¼ 1:4), the error
reaches a constant plateau at lower resolutions. This is due to the constant discretization error of the quadrature. For small
c, the density of quadrature points is higher and hence the discrete moment conditions are closer to the continuous ones. The
constant minimum error level Emin for the uncorrected operators is given by the error term in Eq. (4) containing the discrete

1 We normalize the error with the L1 norm of the exact solution in the domain of interest. We do not show the L1 norm of the relative errors since it shows
the same behavior as the L2 norm.
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moment Z2
h. This moment increases with increasing c, as shown in the right-most panels of Fig. 1. The minimum error level

decreases exponentially with c. This is due to the discretization error decreasing exponentially for an integrand following the
template of Eq. (8) or (23) [30]. The discontinuities in Emin for small c and r ¼ 2 are a result of the cutoff radius being fixed in
terms of the kernel width e: At the discontinuities, the number of particles in the kernel support changes, leading to a jump
in Z2

h and, therefore, in Emin. This effect becomes negligible for larger c and larger rc . We also observe that Emin of the uncor-
rected operators increases with increasing order r. This is confirmed by results for order r ¼ 6 (not shown). The DC operators
theoretically yield the desired rate of convergence for all orders and resolutions. The condition number of the linear system
of equations (Eq. (9)), however, increases with increasing c and r. For r ¼ 6 and c ¼ 1:4, Gauss elimination with partial piv-
oting is not sufficient any more and pre-conditioning might become necessary.

We also compare the DC PSE operators to the corresponding limiting FD stencils (solid lines in Fig. 1). For r ¼ 2, these are
obtained for c ! 1 (see Section 3) and for r ¼ 4 for rc ¼ 2h and c ¼ 1. The error of the FD stencils mostly coincides with that
of the DC PSE operators for c ¼ 1:4, where the DC PSE operators effectively have the same support as the FD stencils.

4.1.2. Computational efficiency
We quantify the computational efficiency of the operators through the computational cost needed to reach a certain error

level. Table 1 reports the computational costs for the two-dimensional Eulerian advection case described in Appendix C. We
report the CPU time required for a single evaluation of the operators on all the particles ðt1Þ and the total time needed to
reach an L2 error of <1% of the initial pulse height in the whole domain at final time T ¼ 0:5 ðtallÞ. All timings were done using
MATLAB 7.6.0.324 (R2008a) on a 2 GHz Intel Core Duo processor with 1 GB RAM. For all operators, we convolve the square
matrix of precomputed kernel weights with the square matrix of field values f at the particle locations. As an implementa-
tion- and machine-independent measure, we also list the ratio N ¼ k=h2, where k is the number of neighbor particles (non-
zero entries in the stencil). The time t1ðNÞ is expected to be in OðNÞ.

For uncorrected operators with c ¼ 0:55; tall decreases considerably with increasing order r, as already reported by Eldr-
edge et al. [1]. This is true despite the fact that the cutoff radius increases from rc ¼ 3:5e to 5:5e when going from r ¼ 2 to
r ¼ 4. Increasing c to 0.9 for uncorrected operators leads to higher efficiency since the number of neighbors within the fixed
cutoff radius rc ¼ 3:5e decreases. As shown in Fig. 1, however, convergence of such operators is impaired.

Table 1 reveals that the computational efficiency of DC PSE operators is always higher than the one of the corresponding
uncorrected operators. Furthermore, increasing c for DC operators improves their efficiency (through reducing k) without
hampering convergence. In the limit c ! 1, we recover the classical compact FD stencil as the most efficient operator. Com-
pact FD stencils involve the least number of neighbors k at full accuracy and rate of convergence. They do, however, also
provide the lowest amount of regularization on noisy or discontinuous fields.

Fig. 1. Convergence of the DC PSE operator approximating the second derivative of Eq. (22) on uniform Cartesian particle distributions. We show the
convergence of the relative error for DC (left) and uncorrected (center) PSE operators of orders r ¼ 2 (top) and r ¼ 4 (bottom). The panels on the right show
the dependence of the minimum error level Emin of the uncorrected operators on the ratio c ¼ h=e.
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4.2. Irregular particle distributions

We assess the rate of convergence and computational efficiency of DC PSE operators on irregular particle distributions. In
order for the linear system (Eq. (9)) to be fully determined, each particle must have at least kmin ¼ m neighbors, where m is
the number of different multiindices a 2 Nn with jaj ¼ amin; . . . ; jbj þ r " 1 (see Eq. (7)). All results presented in this section
are obtained using the kernel function template given in Eq. (8).

4.2.1. Rate of convergence
We consider the convergence of the relative error when approximating the first derivative along x of the two-dimensional

Gauss pulse

f ðx; yÞ ¼ 1
pr2 e

"ðx"x0 Þ
2þðy"y0 Þ

2

r2 ; r ¼ 0:1; ð24Þ

at position x ¼ ðx0 þ r; y0Þ using DC PSE operators of orders r ¼ 2;4;6 on four different irregular distributions. The ratio
c ¼ h=e is kept constant at c ¼ f0:5;0:9;1:4g, while the particle arrangements are scaled according to the desired resolution.
The particle volumes are set to the average volume h2. In real-world applications where particle volumes evolve according to
the flow field, better estimates can be used.

The results are summarized in Fig. 2. It can be seen that the uncorrected operators diverge due to discretization errors
whereas the DC PSE operators yield the desired rate of convergence in all cases. For r ¼ 6, an error term of order s ¼ "1
(Eq. (5)) dominates at high resolutions, due to numerical inaccuracies when computing the coefficients acðxÞ. This underlines
the importance of satisfying the discrete moment conditions as accurately as possible.

4.2.2. Computational efficiency
On irregular particle distributions, the DC kernel function gbðzÞ becomes a field of kernel functions, gbðz; xÞ, thus requiring

the solution of a different linear system of equations for each position xwhere the operator is to be evaluated (see Section 2).
Moreover, the kernels have to be recomputed whenever the particles have moved. The computational cost then becomes
comparable to that of the vorticity redistribution method [31] or the discrete PSE scheme for the diffusion step in vortex
methods proposed by Poncet [10]. For a detailed discussion of the computational cost of DC PSE operators on moving par-
ticles, we refer to Section 4.4.

If the particle distribution is not arbitrary, but the result of a known convective velocity field, the kernels need not nec-
essarily be recomputed at every time step, but can be adapted based on the known velocity. Starting from the initial particle
distribution and the corresponding DC PSE operators, one can define a mapping from the old to the new particle positions.
The operators can then be adapted in analogy to the variable vortex blob method [32,33]. For non-linear mappings, however,
additional error terms appear. For high orders of accuracy, we thus expect velocity-based operator adaptation to be compu-
tationally more expensive than reinitializing the particles at every time step.

4.3. Boundary effects

The accuracy of uncorrected full-space PSE operators usually deteriorates near boundaries of the computational domain.
Eldredge et al. [1] therefore derived one-sided integral operators with significantly improved accuracy near boundaries. Such
a special treatment is not necessary when using DC PSE operators since they do not rely on regularity or symmetry of the
particle distribution. The skewed particle distributions near boundaries are simply treated as irregular particle distributions
and the corresponding DC PSE operators are constructed by solving the resulting linear systems of equations.

Table 1
CPU time needed for solving the two-dimensional test case of Appendix C on uniform Cartesian particle distributions to a final error of 1%. The time t1 is
required for a single evaluation of the operator on all the particles, whereas tall is the time needed to reach the target error level of 1%. The computational cost is
governed by the implementation-independent ratio N ¼ k=h2, where k is the number of particles within the kernel support (non-zero entries in the stencil) and
h the interparticle spacing.

Kernel type c r rc N t1 in ms tall in s

Uncorrected operator 0.55 2 3:5e 6,611,570 329. 82.5
Uncorrected operator 0.90 2 3:5e 840,145 37.7 5.77
DC operator 0.55 2 2e 1,974,145 86.2 20.2
DC operator 0.90 2 2e 165,035 15.3 1.98
DC operator 1.40 2 2e 68,787 4.32 0.445
FD stencil 2 29,210 3.79 0.360

Uncorrected operator 0.55 4 5:5e 1,211,890 66.5 16.3
Uncorrected operator 0.90 4 5:5e 219,074 12.9 1.50
DC operator 0.55 4 3e 304,978 15.6 3.10
DC operator 0.90 4 3e 50,013 3.61 0.321
DC operator 1.40 4 3e 11,464 1.50 0.0932
FD stencil 4 7643 1.51 0.0937
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We demonstrate that the presence of boundaries does not affect the order of accuracy of DC PSE operators by considering
a two-dimensional Gauss pulse (Eq. (24)) leaving the computational domain through an absorbing boundary (Fig. 3). Con-
vergence of the resulting relative errors is shown in Fig. 4 for uncorrected full-space, uncorrected one-sided, and DC PSE
operators approximating the directional derivative d ) rf of the Gauss pulse centered at ðx0; y0Þ ¼ ð0:35;0:45Þ in a computa-
tional domain of size ½0;0:5(2 (Fig. 3). For the one-sided uncorrected operators, we only consider particles in the upwind
direction of d. It can be seen from Fig. 4 that the uncorrected full-space operators diverge in all cases (dominating error
of order s ¼ "1) and should not be used near boundaries. The uncorrected one-sided operators show constant L1 errors (bot-
tom row of panels) for orders r ¼ 1 to r ¼ 3 and diverge for r ¼ 4. The DC PSE operators yield the desired rates of convergence
in both the L2 (upper panels) and the L1 norms until numerical inaccuracies in the determination of the kernel coefficients
start to dominate the error (r ¼ 4 with c ¼ 1:4, solid line with square symbols).

Fig. 5 visually compares the solution obtained using uncorrected one-sided operators and DC PSE operators of orders r ¼ 1
and r ¼ 3. The example shown is computed using h ¼ 0:01 and c ¼ 0:55. It can be seen that the uncorrected operators lead to
distortions and kinks in the iso-lines near boundaries, preventing convergence of the L1 error.

4.4. A Lagrangian advection–diffusion test case

We demonstrate the use of DC PSE operators in a more complex test case with moving particles: a two-dimensional
Lagrangian advection–diffusion simulation. Again, we compare the DC PSE operators with uncorrected PSE operators and

Fig. 2. Convergence of DC PSE operators (solid lines) and of uncorrected PSE operators (dashed lines) of order r ¼ 2; 4; 6 (top to bottom) on random particle
distributions. The right panels show the maximum of the relative error when approximating the first derivative of the Gauss pulse in Eq. (24) at the center
particles of four random particle distributions for c ¼ 0:5 ð+Þ; c ¼ 0:9 ð}Þ and c ¼ 1:4 ð!Þ. The considered particle distributions, with center particles at
positions x ¼ ðx0 þ r; y0Þ, are shown in the four panels on the left. The circles show the support of the operators for the different values of c. The cutoff radii
are rc ¼ 3:5e;5:5e;7:5e for r ¼ 2;4;6, respectively.

Fig. 3. The test case used to assess the convergence of the operators near boundaries. The left panel shows the contour lines of a Gauss pulse (Eq. (24))
centered at ðx0; y0Þ ¼ ð0:35; 0:45Þ in a domain ½0;0:5(2. The right panel shows the contour lines of the analytical solution of the directional derivative along
d = (0.588,0.809). The + marks the center of the pulse.
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finite differences. Details of the test case and the numerical schemes are described in Appendix B. We assess the computa-
tional cost of DC PSE operators by measuring the CPU times of simulations for the Péclet numbers Pe = {1, 10, 100, 1000} to
final relative errors of less than {0.1%,0.05%,0.05%,0.1%}, respectively. These error levels are chosen such that they can be
reached also with uncorrected operators (see Section 4.1.1). We only test second-order accurate operators. The particles
are either remeshed to regular Cartesian positions at every time step, or they are never remeshed. The latter is possible be-
cause the velocity field does not lead to holes in the particle distribution. FD stencils are evaluated using the connectivity
information of the mesh, whereas the PSE simulations use neighbor lists (we use Verlet lists [34]) even if remeshing is done
at every time step. In all cases, the Verlet lists are recomputed at every time step.

We show the convergence plots for Péclet numbers 1 and 1000 in Fig. 6. All results are summarized in Table 2. As ex-
pected, Eulerian FD show the best computational efficiency for low Péclet numbers. For high Péclet numbers (100 and
1000), Lagrangian methods are more efficient. In all cases, DC PSE operators are more efficient than uncorrected ones. DC
PSE operators can also outperform Lagrangian FD (see Appendix B.3.3) at high Péclet numbers (100 and 1000) since they
do not require remeshing. If remeshing is done at every time step, FD stencils are preferable. The larger the Péclet number,
however, the more the remeshing error dominates over the error introduced by the diffusion operator. This can be seen by
comparing the resolution h that is required to reach the target error level.

On irregular particle distributions (i.e., without remeshing), DC operators require that the correction function is recom-
puted for each particle at every time step. This additional computational cost accounts for 85–90% of the total CPU time. It is,
however, amortized by the gain in accuracy (the target error level can be reached with coarser resolution) of DC operators in
all cases except Pe = 1. This coarser resolution also allows larger time steps. In cases where the advection error dominates,
higher resolution might therefore again be required, making DC PSE operators less efficient.

Fig. 4. Convergence of the uncorrected full-space, uncorrected one-sided, and DC PSE operators approximating the directional derivative of the Gauss pulse
shown in Fig. 3. We show convergence of both the L2 (top row of panels) and L1 norms of the relative errors for operators of design orders r ¼ 1;2;3;4 (left
to right) and different c. Uncorrected full-space operators are shown for even orders r only.

Fig. 5. Visual comparison of the results obtained with uncorrected one-sided operators and DC PSE operators for the test case of Fig. 3. We show contour
lines of the numerically computed approximations of the directional derivative of the Gauss pulse for r ¼ 1 (left) and r ¼ 3 (right). Both cases use h ¼ 0:01
and c is c ¼ 0:55. The + marks the center of the pulse.
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5. Wavenumber modification: implications for numerical dispersion, numerical diffusion, and stability

We quantify the wavenumber modifications introduced by the operators. Wavenumber modifications manifest them-
selves as numerical dispersion and numerical diffusion. We analyze the wavenumber modifications of DC PSE operators
in three one-dimensional test cases: the linear wave equation, the convection equation, and the diffusion equation. Based
on the modified wavenumbers, we provide closed-form stability conditions for DC PSE operators in continuous and discrete
time.

5.1. Linear wave equation and convection equation

We derive the wavenumber modification relations kmodðkÞ of DC PSE operators for the one-dimensional linear wave
equation

@2f
@t2

" u2 @
2f

@x2
¼ 0; ð25Þ

and the one-dimensional convection equation

@f
@t

þ u
@f
@x

¼ 0 ð26Þ

for speeds u > 0.

Fig. 6. Convergence plots for the advection–diffusion simulation for Pe = 1 (left) and Pe = 1000 (right). Empty markers denote simulations with remeshing,
while filled markers denote simulations without remeshing. The FD simulations are shown as solid lines without markers. LFD refers to Lagrangian FD and
EFD to Eulerian FD.

Table 2
CPU time tCPU (in seconds) and interparticle spacing (or mesh resolution) h required for solving the two-dimensional advection–diffusion problem described in
Appendix B for Pe = {1, 10, 100, 1000} with a relative error of {0.1% , 0.05%, 0.05%, 0.1%}, respectively. We compare DC PSE operators (‘‘DC”) with uncorrected
ones (‘‘UC”) and FD for r ¼ 2 and DtK0:15h2Pe. Values are based on interpolations from simulations with h 2 f3:125; 6:25;12:5;25:0;50:0g ) 10"3.

op. c rc Pe = 1 Pe = 10 Pe = 100 Pe = 1000

103 h tCPU 103 h tCPU 103 h tCPU 103 h tCPU

Remeshing UC 0.55 3:5e 3.99 36,300 4.85 5020 5.18 583. 2.87 a 739.a

UC 0.90 3:5e 2.07a 21,300a 4.86 2160 5.40 213. 3.18 203.
DC 0.55 2e 4.27 10,900 4.89 2077 5.09 274. 2.67a 405.a

DC 0.90 2e 8.74 256. 7.34 191. 5.30 121. 3.20 89.1
DC 1.40 2e 19.5 6.87 7.60 120. 5.24 86.3 3.24 69.4

No remeshing UC 0.55 3:5e 4.10 31,600 5.02 4280 5.73 381. 2.73a 915.a

UC 0.90 3:5e 2.24a 144,000a 7.72 289. 10.2 13.9 4.79 37.1
DC 0.55 2e 6.17 10,100 7.29 1600 7.55 210. 3.50 533.
DC 0.90 2e 11.7 533. 15.6 53.1 23.9 1.49 14.9 1.21

Lagrangian FD 17.6 0.716 6.80 11.0 4.55 8.70 3.22 4.41
Eulerian FD 26.8 <0.02 9.80 0.268 2.37a 16.7a 0.883a 41.0a

a Value based on extrapolation.
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In order to derive expressions for the wavenumber modification, we compare the dispersion relation xðkÞ of a traveling
wave eı̂ðkx"xtÞ obeying the original equation (Eq. (25) or Eq. (26), respectively) with the dispersion relation obtained when the
spatial derivatives are approximated by a PSE operator (Eq. (3)). If the wave eı̂ðkx"xtÞ is a solution to the original problem, then
eı̂ðkmodðkÞx"xtÞ solves the spatially discretized equation. For irregular particle distributions, the wavenumber modification de-
pends on the position x.

For the wave equation (Eq. (25)), we find the following relation between the original wavenumbers and the modified
ones:

kmodðkÞ ¼
1
e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z0
hðxÞ " ĝð2Þ

x ðkeÞ
q

; ð27Þ

where ĝb
xðkeÞ is defined as a non-uniform analog of the discrete Fourier transform of the kernel gb centered at x, hence,

ĝb
xðkeÞ ¼

X

p2NðxÞ
vpe"ı̂kðx"xpÞgb

e ðx" xp; xÞ:

Z0
h is the zeroth discrete moment of the kernel gð2Þ as defined in Eq. (6). Taylor-expanding ĝð2Þ

x around ke ¼ 0 and substituting
into Eq. (27) yields

kmodðkÞ ¼ k
X1

a¼1

ð"ı̂keÞa"2

a! ZahðxÞ
" #1=2

: ð28Þ

For the one-dimensional convection equation (Eq. (26)), the modified wavenumber is

kmodðkÞ ¼ " ı̂
e Z0

hðxÞ þ ĝð1Þ
x ðkeÞ

h i
:

After Taylor-expanding around ke ¼ 0, this becomes

kmodðkÞ ¼ k "
X1

a¼0

ðda0 þ 1Þ ð"ı̂keÞa"1

a! ZahðxÞ
" #

; ð29Þ

where dij is the Kronecker delta, and the Zah are the ath discrete moments of the kernel gð1Þ.
For symmetric particle distributions with even kernel functions gb and even b, or with odd kernel functions gb and odd b,

the discrete moments Zah are zero for all odd a" b. The effect of the wavenumber modification is thus purely dispersive in
these cases. For non-symmetric particle distributions, there may be non-zero moments Zah for odd a" b, introducing diffusive
terms. The modified wavenumbers then contain imaginary parts that indicate position-dependent amplitude changes. This
changes the shape of the original wave, analogously to a diffusion process. For even b, the diffusive terms are typically small
compared to the dispersive terms. This is because the first discrete moments Zah that are non-zero by design are the moments
Zb
h and Zbþr

h .

5.1.1. Results on uniform cartesian particle distributions
On Cartesian particle distributions, the uniform interparticle spacing h limits the spectrum to k 6 p=h (Nyquist–Shannon

sampling theorem). We therefore restrict our analysis to the interval k 2 ½0;p=h(.
Fig. 7 shows the wavenumber modification for the wave equation (Eq. (25)) and the convection equation (Eq. (26)), both

for uncorrected and DC PSE operators for c ¼ 0:5; c ¼ 0:9, and r ¼ 2;4;6;8. For the DC PSE operators, the kernel template gi-
ven in Eq. (23) is used. For second-order operators ðr ¼ 2Þ, the curves for uncorrected and DC operators are indistinguishable.
For higher orders of accuracy, the DC operators have smaller modifications of the wavenumbers than the uncorrected ones.
DC operators thus have lower numerical dispersion than uncorrected PSE operators over the entire range of wavenumbers.
Also, the wavenumber modifications decrease with increasing order of accuracy and increasing c, both for DC and uncor-
rected operators.

The effect of numerical dispersion is further illustrated for a two-dimensional advection problem in Appendix C. As ex-
pected from the one-dimensional case discussed above, both the order of accuracy r and the ratio c influence the dispersive
properties of the operators. Since dispersion decreases with increasing c, DC operators can be made much less dispersive
than uncorrected ones as they allow larger values of c at full rate of convergence (see Section 4.1).

5.1.2. Results on irregular particle distributions
On irregular (asymmetric) particle distributions, the modified wavenumbers contain imaginary parts that lead to numer-

ical diffusion. Figs. 8 and 9 show the real and imaginary parts of the modified wavenumbers for the wave equation (Eq. (25))
and the convection equation (Eq. (26)), respectively. We compare uncorrected and DC (kernel template of Eq. (8)) PSE oper-
ators evaluated on the center particle of 10,000 random particle distributions for c ¼ 0:5 and c ¼ 0:9. We report the medians
(lines) and the areas covered by the central 68.2% of all curves kmodðkÞ (shaded bands). The particle distributions are gener-
ated as follows: We subdivide the operator support ½"rc; rc( into equisized cells of width h and place one particle per cell. The
position of each particle inside its cell is sampled from a uniform probability distribution. Particle distributions that lead to
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Fig. 7. Wavenumber modification on uniform Cartesian particle distributions. The modified wavenumbers kmod of the solutions of the one-dimensional
wave equation (top) and the one-dimensional convection equation (bottom) are shown for DC (solid lines) and uncorrected (dotted lines) PSE operators of
orders r ¼ 2;4;6;8 and c ¼ 0:5 (left) and c ¼ 0:9 (right).

Fig. 8. Wavenumber modification for the wave equation on random particle distributions. The real and imaginary parts of the modified wavenumbers kmod

are shown for DC and uncorrected PSE operators of order r ¼ 2 and r ¼ 4 for c ¼ 0:5 (left) and c ¼ 0:9 (right). Each experiment is repeated for 10,000 random
particle distributions. The lines report the median and the shaded areas the central 68.2% of the resulting curves.
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linear systems of equations with condition numbers above a certain threshold are resampled. According to the generalized
sampling theorem for non-uniform sampling [35], we use the average interparticle spacing as the characteristic h, again lim-
iting the spectrum of wavenumbers to k 6 p=h.

As in the uniform case, the modification of the real part decreases with increasing r and c. For the wave equation (Fig. 8),
the uncorrected operators lead to smaller modifications in ReðkÞ than the DC operators. For the convection equation (Fig. 9),
however, DC operators show comparable or lower numerical dispersion than uncorrected ones. The imaginary parts (leading
to numerical diffusion) are always smaller for DC operators than for uncorrected ones for wavenumbers kK cp=h.

For c ¼ 0:5 and r ¼ 2 on the wave equation (Fig. 8, left), ReðkmodðkÞÞ of DC operators splits into two curves. The upper
curve results from all operators with strictly non-negative kernel functions (83% of the random distributions tested). In this
case, non-negative kernels hence lead to less numerical dispersion. The effect on numerical diffusion is, however, negligible.

5.2. Diffusion equation

For the one-dimensional diffusion equation

@f
@t

" m @
2f

@x2
¼ 0; ð30Þ

the dispersion relation is xðkÞ ¼ "ı̂mk2, where m > 0 is the viscosity (or diffusion constant). The modified dispersion relation
xmodðkÞ ¼ "ı̂mkmodðkÞ2 leads to the same modified wavenumber (Eq. (28)) as for the wave equation. Alternatively, the mod-
ification can also be absorbed into the viscosity as xmodðkÞ ¼ "ı̂mmodðkÞk

2. This leads to the modified viscosity

mmodðkÞ ¼
m

ðkeÞ2
Z0
hðxÞ " ĝð2Þ

x ðkeÞ
h i

¼ m
X1

a¼1

ð"ı̂keÞa"2

a! ZahðxÞ:

For non-uniform particle distributions the modified viscosity depends on the position x. ReðmmodÞ=m > 1 results in overdiffu-
sion and ReðmmodÞ=m < 1 in underdiffusion. The effect of the imaginary part of the modified viscosity is both dispersive and
diffusive.

Fig. 9. Wavenumber modification for the convection equation on random particle distributions. The real and imaginary parts of the modified wavenumbers
kmod are shown for DC and uncorrected PSE operators of order r ¼ 2 and r ¼ 4 for c ¼ 0:5 (left) and c ¼ 0:9 (right). Each experiment is repeated for 10,000
random particle distributions. The lines report the median and the shaded areas the central 68.2% of the resulting curves.
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5.2.1. Results on uniform cartesian particle distributions
Fig. 10 shows mmod=m versus kh=p for operators with c ¼ 0:5 and c ¼ 0:9 on uniform Cartesian particle distributions. All

operators lead to increasing underdiffusion for increasing wavenumbers. For DC operators (kernel template of Eq. (23)), how-
ever, the modified viscosity mmod is closer to the true viscosity m than for uncorrected operators. Also, increasing r or c leads to
less underdiffusion for DC operators. For uncorrected operators, high r and c lead to underdiffusion even at kh ! 0 due to the
constant discretization error.

5.2.2. Results on random particle distributions
On non-uniform particle distributions, the modified viscosity is complex. Fig. 11 shows its real and imaginary parts for DC

(kernel template of Eq. (8)) and uncorrected operators. We show the medians and the areas covered by the central 68.2% of
all curves mmodðkÞ=m for 10,000 random particle distributions as described in Section 5.1.2.

While uncorrected operators show less underdiffusion for larger wavenumbers, they do not reproduce the correct viscos-
ity in the limit kh ! 0; their imaginary part approaches infinity and there is a bias in the real part. This inconsistency results
from the discretization error. The effect becomes worse with increasing r and c.

5.3. Stability

Numerical stability requires that small perturbations, such as round-off errors, decay over time. If the effect df ðtÞ of an
error df0, introduced at time t0, can be bounded by jdf ðtÞj 6 ekðt"t0Þjdf0jwith exponent k < 0, the system is called exponentially
stable. Typically, the amplification of each Fourier mode of df0 can be bounded separately by a wavenumber-dependent
exponent kk. Stability is then determined by k ¼ maxkkk.

We consider the stability of numerical solutions of partial differential equations of order jbj in space and a in time,

@af
@ta

¼ bDbf ; ð31Þ

with periodic boundary conditions. We distinguish two cases: (1) the continuous-time case where the spatial derivative Dbf
is replaced by the PSE approximation Qb

hf , and (2) the discrete-time case, where in addition the time derivative is approx-
imated by finite differences. For the continuous-time case we derive the exponents kk in terms of the modified wavenum-
bers. For the discrete-time case we provide CFL conditions for different time-stepping schemes.

5.3.1. Continuous time
The modified wave eı̂ðkmod )x"xtÞ satisfying Eq. (31) when Dbf is replaced with Qb

hf can be rewritten as

eı̂ðkmod )x"xtÞ ¼ eRef½bð̂ıkmodðkÞÞ
b (1=agteı̂ðk)x"Imf½bð̂ıkmodðkÞÞ
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The amplitude of the modified wave thus is ekkt with
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Of the a roots of the term ½)(1=a, the one with maximum real part is chosen. On a particle distribution of resolution h, the max-
imum exponent k is the maximum over all kk with jkjh 2(0;

ffiffiffi
n

p
p(. For the one-dimensional wave equation (Eq. (25)), convec-

tion equation (Eq. (26)), and diffusion equation (Eq. (30)), the wavenumber-dependent exponents are

Fig. 10. Viscosity modification for the diffusion equation on uniform Cartesian particle distributions. The ratio of the modified viscosity to the true viscosity
mmod=m is shown for DC and uncorrected PSE operators of order r ¼ 2;4;6;8 for c ¼ 0:5 (left) and c ¼ 0:9 (right).
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kwave
k ¼ ujImðkmodðkÞÞj; ð32Þ
kconvk ¼ u ImðkmodðkÞÞ; ð33Þ

and kdiffk ¼ m½ImðkmodðkÞÞ2 " ReðkmodðkÞÞ2(; ð34Þ

respectively. To simplify notation, we will not always explicitly state the dependency of kmod on k in the following.
Using the expressions for the modified wavenumbers presented above, these exponents imply that on uniform Cartesian

particle distributions all operators are exponentially stable for the diffusion equation and neutrally stable (kk ¼ 0, neither
error amplification nor decay) for the wave equation and the convection equation. Neutral stability is all that can be achieved
using centered operators on the hyperbolic wave and convection equations. Exponential stability on these equations would
require upwind schemes.

On irregular particle distributions, all operators lead to instabilities for the wave equation, due to the imaginary part of
the modified wavenumber. For the convection equation, most operators result in ImðkmodÞ > 0 for some kh 2(0;p( and are
thus unstable. For the diffusion equation, uncorrected operators are exponentially stable on all, and DC operators on 98%,
of the 10,000 randomly generated particle distributions. On 2% of the particle distributions, DC operators led to instabilities.
Our results, however, suggest that this is the case only for c > cmax, where the critical value cmax depends on the degree of
Lagrangian grid distortion. We test this by considering particle distributions that are perturbations of uniform Cartesian dis-
tributions. Regularly placed particles with spacing h are perturbed by adding uniform random numbers in ½"n=2; n=2( to their
positions. This mimics Lagrangian grid distortion in simulations where the particles are periodically remeshed. The param-
eter n quantifies the degree of distortion. Table 3 lists the critical cmax for different n for kernels with three different additional
conditions on the zeroth-order moment. For each n 2 f0:1;0:2; . . . ;1:5g, we report the maximum c for which no instabilities

Fig. 11. Viscosity modification for the diffusion equation on random particle distributions. The real and imaginary parts of mmod=m are shown for DC and
uncorrected PSE operators of order r ¼ 2 and r ¼ 4 for c ¼ 0:5 (left) and c ¼ 0:9 (right). Each experiment is repeated for 10,000 random particle
distributions. The lines report the median and the shaded areas the central 68.2% of the resulting curves.

Table 3
Critical c; cmax, for stability of second-order DC PSE operators on the diffusion equation as a function of the degree of Lagrangian grid distortion n. We show the
results for the additional moment condition Z0

h ¼ f0;5;10g.

n=h 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

Z0
h ¼ 0:

cmax 3.4 3.3 3.2 3.1 3.0 2.9 2.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Z0
h ¼ 5:

cmax 3.4 3.3 3.2 3.1 3.0 2.9 2.8 1.0 0.9 0.7 0.7 0.7 0.6 0.6 0.6

Z0
h ¼ 10:

cmax 3.4 3.3 3.2 3.1 3.0 2.9 2.8 1.0 0.8 0.3 0.2 0.2 0.2 0.2 0.2
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occurred over 107 random particle distortions. The results reflect the tradeoff between stability and numerical diffusion.
Operators that introduce more numerical diffusion (low c) are more robust against Lagrangian grid distortion. We find
cmax to be zero for all values of n tested if no condition is imposed on the zeroth moment. Of all conditions on the zeroth
moment tested, the conditions Z0

h ¼ f3;4;5g result in maximum values for cmax.

5.3.2. Discrete time
Discrete-time stability depends on the time discretization scheme. The maximum CFL numbers guaranteeing stable time

integration depend on the largest wavenumber-dependent exponents

k,conv ¼ 2max
k

kconvk

uhjkmodj2
; k,diff ¼ 2max

k

kdiffk

mh2jkmodj4
; k,wave ¼ 2max

k

kwave
k

uhjkmodj2
: ð35Þ

Table 4 shows the resulting time-step limits for three cases: (1) first-order forward in time, (2) second-order centered in
time, and (3) first-order backward in time.

In case (1) we approximate @f=@t using first-order FT (forward in time) finite differences (explicit Euler scheme).2

Von Neumann stability analysis shows that this scheme with time step size Dt is exponentially stable for
j1þ Dtbð̂ıkmodÞbj < 1; 8kh 2(0;p(. For the convection equation on symmetric particle distributions, kconvk ¼ 0 (see Section 5.3.1).
Any Dt > 0 thus leads to instabilities. This is because FTCS (forward in time, central in space) schemes are unstable for hyper-
bolic partial differential equations. On irregular particle distributions, however, a finite value for k,conv is obtained. The more up-
wind particles are contained in the kernel support, the more likely k,conv is negative, leading to exponentially stable explicit Euler
time stepping. For the diffusion equation, exponential stability is guaranteed in all cases for Dt < "k,diffh

2
=m. Fig. 12 shows the

dependence of k,diff on the ratio c and the order of accuracy r for uncorrected and DC PSE operators. It can be seen that the under-
diffusion introduced for low c and r improves stability. For random particle distributions, a positive upper bound for the time
step, i.e. k,diff < 0, is found for all uncorrected operators and for DC operators with c < cmax (limited Lagrangian grid distortion)
and prescribed zeroth-order moment (see Section 5.3.1).

In case (2) we consider the second-order CT (central in time) leapfrog scheme ða ¼ 1Þ

f ðx; t þ DtÞ ¼ f ðx; t " DtÞ þ 2DtQb
hf ðx; tÞ; ð36Þ

and the second-order CT scheme ða ¼ 2Þ

f ðx; t þ DtÞ ¼ 2f ðx; tÞ " f ðx; t " DtÞ þ Dt2Q2
hf ðx; tÞ: ð37Þ

The conditions guaranteeing neutral stability for the one-dimensional wave, convection, and diffusion equations are listed in
Table 4. On uniform Cartesian particle distributions neutrally stable solutions of the wave and convection equations can be
obtained with all operators. Highly dispersive operators again lead to less restrictive conditions. On random particle distri-
butions, however, none of the tested operators yields stable solutions. For the diffusion equation, none of the operators
tested is stable, neither on regular nor on random particle distributions. This is because the first condition in Table 4 is never
satisfied for CT schemes.

In case (3) we use first-order BT (backward in time) differences, leading to an implicit time integration scheme. Such
schemes have a lower bound for the time step required for exponential stability. This limits the accuracy that can be achieved
since the time step can not be lowered arbitrarily in order to reduce the approximation error. This is because the BT scheme
introduces additional numerical diffusion or dispersion. The neutral stability of the continuous-time case can thus be turned
into exponential stability by taking large enough time steps. These lower bounds are listed in Table 4. As expected, they are
complementary to the upper bounds of FT schemes: Instead of an upper bound Dt < "k,h=u, we now have a lower bound

Table 4
Wavenumber-based stability conditions for different time discretization schemes and equations. We write mink ðmaxk) for mink2(0;p=h( ðmaxk2(0;p=h().

Exponential stability with first-order FT time discretization
Convection eq. Dt < mink " 2ImðkmodÞ=ðujkmod j

2Þ ¼ "k,convh=u
Diffusion eq. Dt < mink2½ReðkmodÞ2 " ImðkmodÞ2(=ðmjkmodj4Þ ¼ "k,diffh

2=m

Neutral stability with second-order CT time discretization
Wave eq. ImðkmodÞ ¼ 0 and Dt 6 mink2=ðujkmodjÞ
Convection eq. ImðkmodÞ ¼ 0 and Dt 6 mink1=ðujkmodjÞ
Diffusion eq. jReðkmodÞj ¼ jImðkmodÞj and Dt 6 mink1=ðmjkmodj2Þ

Exponential stability with first-order BT time discretization
Wave eq. maxk2jImðkmodÞj=ðujkmodj2Þ ¼ k,waveh=u < Dt
Convection eq. maxk2ImðkmodÞ=ðujkmodj2Þ ¼ k,convh=u < Dt
Diffusion eq. maxk2½ImðkmodÞ

2 " ReðkmodÞ
2(=ðmjkmodj

4Þ ¼ k,diffh
2=m < Dt

2 We do not consider first-order FT schemes for the wave equation since they would involve two unknown values at future time points.
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Dt > k,h=u. On uniform Cartesian particle distributions, k,wave is zero and exponential stability is guaranteed for all positive
time steps. On irregular particle distributions, k,wave is positive. From Eqs. (35), (32) and (28) we see that for operators with
non-zero Z1

h; k
,
wave grows as h"1=2 when h tends to zero. This implies that the time step Dt can not be decreased at the same

rate as the interparticle spacing h. In addition, k,wave grows with decreasing c for uncorrected operators. For the convection
equation on irregular particle distributions, the lower bound for the time step can be positive or negative, depending on the
sign of Z0

h. As Z
0
h approaches zero, k,conv

'' '' grows. Solving the diffusion equation with a BT scheme on uniform Cartesian particle
distributions is unconditionally stable k,diff 6 0

( )
for all operators. On irregular particle distributions the same is the case for

all uncorrected operators and for all DC operators with c < cmax (limited Lagrangian grid distortion) and prescribed zeroth-
order moment (see Section 5.3.1).

6. Conclusions

We have presented and analyzed a formal framework for discretization correction of general integral PSE operators [1] for
approximating n-dimensional spatial derivatives of any degree. This was made possible by considering the total approxima-
tion error, thus combining the mollification and discretization errors. The discrete moments of the kernel function then nat-
urally appeared in the error expansion, and DC operators could be constructed based on the corresponding discrete moment
conditions. This also made explicit the connections between DC PSE operators and other space discretization schemes, such
as finite differences, corrected SPH, and RKPM. For DC PSE operators, the overlap condition could be relaxed and they became
algebraically equivalent to FD stencils in certain limits. We have explicitly shown this equivalence for first derivatives, the
Laplacian, and the general n-dimensional anisotropic inhomogeneous diffusion operator.

We have analyzed DC PSE operators with respect to their accuracy, computational efficiency, rate of convergence, and
stability on regular and irregular particle distributions as well as near boundaries. We have demonstrated that DC PSE oper-
ators achieve the desired rate of convergence in all cases, whereas the convergence of uncorrected operators is hampered by
the constant discretization error. The computational efficiency is mainly determined by the cutoff radius of the operators and
the ratio c. DC PSE operators are more efficient than uncorrected ones since they reach the same level of accuracy with smal-
ler cutoff radii. Moreover, the relaxed overlap condition of DC PSE operators allows higher values of c, reducing the number
of particles within the operator support. For advection-dominated problems, the efficiency of DC PSE operators can exceed
that of Lagrangian FD schemes because they require less frequent remeshing and hence are more accurate (less remeshing
error). In these cases, the computational cost of determining the position-dependent correction functions is amortized by
this gain in accuracy. If remeshing is done at every time step, the remeshing error dominates the error of the diffusion oper-
ator and FD schemes are more efficient.

DC operators introduce less numerical diffusion and dispersion into the solution than uncorrected ones. In addition, the
numerical diffusion and dispersion of DC PSE operators can be further reduced by increasing c, without affecting the rate of
convergence. We have derived analytical expressions for the modified wavenumbers of the one-dimensional wave, convec-
tion, and diffusion equations both for uniform Cartesian and random particle distributions. Based on these wavenumbers, we
presented CFL-like stability conditions for different time stepping schemes.

The main practical limitation of the presented DC PSE operators lies in determining the DC kernel. We found the approx-
imation error to be sensitive to numerical inaccuracies in the coefficients of the DC kernel. These numerical inaccuracies typ-
ically grow with increasing order of convergence, limiting the practical use of high-order operators. Also, the exact
conservativeness of uncorrected full-space PSE operators is lost for DC PSE operators on non-uniform particle distributions
and near boundaries for r > 1. Finally, the computational cost of computing the DC kernel functions on irregular particle dis-
tributions is significant, since the correction function has to be determined for each particle individually.

Taken together, our results provide a framework for discretization correction of PSE-type operators. As opposed to the
original uncorrected PSE operators, DC operators yield the design rate of convergence over the entire range of resolutions

Fig. 12. Influence of the ratio c ¼ h=e and the order r on the stability of PSE solutions of the diffusion equation ðm > 0Þ. We show the maxima k,diff of the
normalized (dimensionless) wavenumber-dependent exponents for uniform Cartesian particle distributions for uncorrected and DC PSE operators.
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as well as on irregular particle distributions and near boundaries. Moreover, they offer more freedom in choosing optimal
kernel parameters due to the relaxed overlap condition. This can lead to accuracy and efficiency exceeding those of Lagrang-
ian FD schemes.
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Appendix A. Limiting FD stencil of the second-order n-dimensional anisotropic diffusion operator

The anisotropic diffusion operator

Df ðxÞ ¼ r ) ðLðxÞrf ðxÞÞ ¼
Xn

i;j¼1

@

@xi
LijðxÞ

@f ðxÞ
@xj

$ %

can be approximated with second-order accuracy by the PSE operator [8]

Qf ðxÞ ¼ 1
e2
Z

Rn

Xn

i;j¼1

Mijðx; yÞwe
ijðy " xÞðf ðyÞ " f ðxÞÞdy: ð38Þ

In order for the operator to be symmetric (and hence conservative), the matrix Mðx; yÞ is chosen as [8]

Mðx; yÞ ¼ mðxÞ þmðyÞ
2

; with mðxÞ ¼ L" 1
nþ 2

TrðLÞI: ð39Þ

The continuous moment conditions for the kernel function wijðzÞ are

Za
ij ¼ 0 for 1 6 jaj 6 3 and jaj – 2; and
Xn

i;j¼1

mijðxÞZekþel
ij ¼ 2LklðxÞ 8k; l 2 ½1;n(; with Zaij ¼

Z

Rn
wijðzÞza dz:

If the particles are arranged on a uniform Cartesian grid, and using Eq. (39), this translates into the discrete moment
conditions

Zekþel
ij ¼ 0 if i – j and ek þ el – ei þ ej; ð40aÞ

Zeiþej
ij ¼ 1 if i– j; and ð40bÞ

Z2ei
ii ¼ 3: ð40cÞ

The integral operator Qf (Eq. (38)) is discretized as

Qhf ðxÞ ¼
1
e2
X

p

vp

Xn

i;j¼1

Mijðx; xpÞwe
ijðxp " xÞðf ðxpÞ " f ðxÞÞ: ð41Þ

DC kernel functions of the form wijðzÞ ¼ zizjða0 þ a1jzjÞe"z2 ; i; j ¼ 1; . . . ;n, automatically fulfill condition (40a) and the corre-
sponding operator is given by

Qhf ðxÞ ¼
cnþ2

2e2
Xl

jkj2¼0

Xn

i;j¼1

ðmijðxÞ þmijðxþ kceÞÞðf ðxþ kceÞ " f ðxÞÞ - ða0 þ a1cjkjÞkikje"c2 jkj2 ; k 2 Zn; ð42Þ

where k is a vector of integers and l ¼ brc=hc2 is arbitrary, but large enough to contain the resulting FD stencil. The coeffi-
cients a0 and a1 are obtained by solving the system of equations that results from substituting the kernel into conditions
(40b) and (40c), thus:

cnþ4
Xl

jkj2¼0

ða0 þ a1cjkjÞk2pk
2
qe

"c2 jkj2 ¼ 1; p – q;

cnþ4
Xl

jkj2¼0

ða0 þ a1cjkjÞk4pe
"c2 jkj2 ¼ 3:
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This system can be solved analytically and the coefficients a0 and a1 are found as

a0 ¼ 3B" D
cnþ4ðBC " ADÞ

; a1 ¼ C " 3A
cnþ5ðBC " ADÞ

; where ð43Þ

A ¼
Xl

jkj2¼0

k2pk
2
qe

"c2 jkj2 ; B ¼
Xl

jkj2¼0

jkjk2pk
2
qe

"c2 jkj2 ; p– q;

C ¼
Xl

jkj2¼0

k4pe
"c2 jkj2 ; D ¼

Xl

jkj2¼0

jkjk4pe
"c2 jkj2 :

Substituting these coefficients into Eq. (42) yields

Qhf ðxÞ ¼
1

2h2U

Xl

jkj2¼0

Xn

i;j¼1

ðmijðxÞ þmijðxþ kceÞÞðf ðxþ kceÞ " f ðxÞÞðV þWjkjÞ - kikje"c2 jkj2 where

U ¼ BC " AD; V ¼ 3B" D; W ¼ C " 3A;

which can be rewritten as

Qhf ðxÞ ¼
1

2h2U000

X

jkj2¼1

Xn

i;j¼1

ðmijðxÞ þmijðxþ kceÞÞðf ðxþ kceÞ " f ðxÞÞðV 00 þW 00Þ - kikje"c2ðjkj2"1Þ

þ 1
2h2U000

X

jkj2¼2

Xn

i;j¼1

ðmijðxÞ þmijðxþ kceÞÞðf ðxþ kceÞ " f ðxÞÞ V 0 þ
ffiffiffi
2

p
W 0

! "
- kikje"c2ðjkj2"2Þ

þ 1
2h2U000

Xl

jkj2¼3

Xn

i;j¼1

ðmijðxÞ þmijðxþ kceÞÞðf ðxþ kceÞ " f ðxÞÞðV 0 þW 0jkjÞ - kikje"c2ðjkj2"2Þ;

where U000 ¼ Ue3c
2
; V 0 ¼ Vec

2
; W 0 ¼ Wec

2
; V 00 ¼ Ve2c

2
; W 00 ¼ We2c

2
:

In the limit c ! 1,

lim
c!1

U000 ¼ 8
ffiffiffi
2

p
" 1

! "
; lim

c!1
V 0 ¼ "2; lim

c!1
W 0 ¼ 2; and lim

c!1
ðV 00 þW 00Þ ¼ 4

ffiffiffi
2

p
" 1

! "
ð4" nÞ:

Hence, we find the operator

lim
c!1

Qhf ðxÞ ¼
4" n

4h2

X

jkj2¼1

Xn

i;j¼1

ðmijðxÞ þmijðxþ kceÞÞðf ðxþ kceÞ " f ðxÞÞkikj

þ 1
8h2

X

jkj2¼2

Xn

i;j¼1

ðmijðxÞ þmijðxþ kceÞÞðf ðxþ kceÞ " f ðxÞÞkikj: ð44Þ

Using the vectors hi ¼ hei; i ¼ 1; . . . ;n, where ei is the unit vector along dimension i, this operator can be rewritten as

lim
c!1

Qhf ðxÞ ¼
4" n

4h2

Xn

i¼1

fðmiiðxÞ þmiiðxþ hiÞÞðf ðxþ hiÞ " f ðxÞÞ þ ðmiiðxÞ þmiiðx" hiÞÞðf ðx" hiÞ " f ðxÞÞg

þ 1
8h2

Xn

i;k¼1
i–k

fðmiiðxÞ þmiiðxþ hi þ hkÞÞðf ðxþ hi þ hkÞ " f ðxÞÞ þ ðmiiðxÞ þmiiðxþ hi " hkÞÞðf ðxþ hi " hkÞ " f ðxÞÞ

þ ðmiiðxÞ þmiiðx" hi þ hkÞÞðf ðx" hi þ hkÞ " f ðxÞÞ þ ðmiiðxÞ þmiiðx" hi " hkÞÞðf ðx" hi " hkÞ " f ðxÞÞg

þ 1
8h2

Xn

i;j¼1
i–j

fðmijðxÞ þmijðxþ hi þ hjÞÞðf ðxþ hi þ hjÞ " f ðxÞÞ " ðmijðxÞ þmijðxþ hi " hjÞÞðf ðxþ hi " hjÞ " f ðxÞÞ

" ðmijðxÞ þmijðx" hi þ hjÞÞðf ðx" hi þ hjÞ " f ðxÞÞ þ ðmijðxÞ þmijðx" hi " hjÞÞðf ðx" hi " hjÞ " f ðxÞÞg

¼ 4" n
2

Xn

i¼1

miiðxÞ
@2f
@x2i

þ @mii

@xi
) @f
@xi

" #

þ 1
2

Xn

i;k¼1
i–k

miiðxÞ
@2f
@x2i

þ @2f
@x2k

 !

þ @mii

@xi
) @f
@xi

þ @mii

@xk
) @f
@xk

" #

þ
Xn

i;j¼1
i–j

mijðxÞ
@2f
@xixj

þ 1
2
@mij

@xi
@f
@xj

þ 1
2
@mij

@xj
@f
@xi

" #

þ Oðh2Þ

¼
Xn

i;j¼1

@

@xi
LijðxÞ

@f
@xj

* +
þ Oðh2Þ ¼ Df ðxÞ þ Oðh2Þ:
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Expressing this in terms of the matrix L, instead of the matrix m, we find the compact second-order FD stencil for aniso-
tropic diffusion

lim
c!1

Qhf ðxÞ ¼
4" n
4h2

Xn

i¼1

fðLiiðxÞ þ Liiðxþ hiÞÞðf ðxþ hiÞ " f ðxÞÞ þ ðLiiðxÞ þ Liiðx" hiÞÞðf ðx" hiÞ " f ðxÞÞ

" 1
nþ 2

Xn

k¼1

½ðLkkðxÞ þ Lkkðxþ hiÞÞðf ðxþ hiÞ " f ðxÞÞ þ ðLkkðxÞ þ Lkkðx" hiÞÞðf ðx" hiÞ " f ðxÞÞ(g

þ 1
8h2

Xn

i;j¼1
i–j

fðLiiðxÞ þ Liiðxþ hi þ hjÞÞðf ðxþ hi þ hjÞ " f ðxÞÞ þ ðLiiðxÞ þ Liiðxþ hi " hjÞÞðf ðxþ hi " hjÞ " f ðxÞÞ

þ ðLiiðxÞ þ Liiðx" hi þ hjÞÞðf ðx" hi þ hjÞ " f ðxÞÞ þ ðLiiðxÞ þ Liiðx" hi " hjÞÞðf ðx" hi " hjÞ " f ðxÞÞ þ ðLijðxÞ
þ Lijðxþ hi þ hjÞÞðf ðxþ hi þ hjÞ " f ðxÞÞ " ðLijðxÞ þ Lijðxþ hi " hjÞÞðf ðxþ hi " hjÞ " f ðxÞÞ " ðLijðxÞ
þ Lijðx" hi þ hjÞÞðf ðx" hi þ hjÞ " f ðxÞÞ þ ðLijðxÞ þ Lijðx" hi " hjÞÞðf ðx" hi " hjÞ " f ðxÞÞ

" 1
nþ 2

Xn

k¼1

½ðLkkðxÞ þ Lkkðxþ hi þ hjÞÞðf ðxþ hi þ hjÞ " f ðxÞÞ þ ðLkkðxÞ þ Lkkðxþ hi " hjÞÞðf ðxþ hi " hjÞ " f ðxÞÞ

þ ðLkkðxÞ þ Lkkðx" hi þ hjÞÞðf ðx" hi þ hjÞ " f ðxÞÞ þ ðLkkðxÞ þ Lkkðx" hi " hjÞÞðf ðx" hi " hjÞ " f ðxÞÞ(g:

Appendix B. A Two-dimensional advection–diffusion test case

We describe the two-dimensional advection–diffusion problem that is used as a test case in Section 4.4 and provide de-
tails on the numerical methods used.

B.1. Testcase description

We solve the dimensionless advection–diffusion equation

@f ðx; tÞ
@t

þr ) ðf ðx; tÞuðxÞÞ ¼ Df ðx; tÞ
Pe

; x 2 X; t 2 ½0; T(

for the unknown field f ðxÞ ¼ f ðx; yÞ in the unit square X ¼ ½0;1(2. The Péclet number Pe represents the ratio between advec-
tion and diffusion. Higher Péclet numbers thus characterize more advection-dominated problems. The advection velocity
field uðxÞ ¼ ðy;0Þ is that of a shear flow between two parallel walls. The wall at y ¼ 0 is fixed whereas the one at y ¼ 1 moves
with unit speed. Both walls are subject to homogeneous Neumann boundary conditions, and we assume periodicity along x.
The initial condition is given as

f0ðxÞ ¼ f ðx; t ¼ 0Þ ¼
X3

k¼0

ð"1Þk cosð2ð2kþ 1ÞpxÞ
2kþ 1

;

which defines a smooth (regularized) approximation to a rectangular pulse. We consider four different Péclet numbers:
Pe 2 f1;10;100;1000g.

B.2. Reference solution

We compare the numerical results obtained with uncorrected and DC PSE operators to a reference solution at final time

T ¼ Peþ 2" 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Peþ 1

p

Pe
:

This is the time at which the mass diffusion length
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4T=Pe

p
, added to the maximum distance traveled by a particle due to

advection, becomes one. The reference solution is computed using a Lagrangian finite difference method (see Section B.3.3)
on a high-resolution grid of 1000- 1000 nodes for Pe = {1, 10, 100} and 1600- 1600 for Pe = 1000. The L1 norm of the rel-
ative error – normalized by the concentration range ðmaxi;jf

T=Dt
i;j "mini;jf

T=Dt
i;j Þ of the reference solution – is computed after

interpolating the reference solution from the grid to the particle locations.

B.3. Method details

We implemented the numerical methods described in the following in Fortran, compiled with the Intel Fortran Compiler
v11 with optimization flag -O3, and run the simulations on Intel Xeon QuadCore 2.8 GHz processors with 2 GB RAM per core
(four simulations per processor, no multithreading). The linear systems of equations of the discretization correction are
solved by LU factorization provided by LAPACK [36].
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B.3.1. PSE operators
All simulations start with a Cartesian particle distribution of resolution h and use explicit Euler time stepping with

DtK0:15h2Pe. Since the advection velocity field is divergence free, the particles have equal and constant volumes v ¼ h2.
Their strengths are initialized to Fpðt ¼ 0Þ ¼ vf0ðxpðt ¼ 0ÞÞ. The time evolution of the particle positions and strengths is then
given by:

xpðt þ DtÞ ¼ xpðtÞ þ DtuðxpðtÞÞ;

Fpðt þ DtÞ ¼ FpðtÞ þ
Dt
Pe

Q ð2;0Þ
h þ Q ð0;2Þ

h

h i
FpðtÞ;

where the subscript p ¼ 1; . . . ;N is the particle index. The operators Qb
h are chosen as either DC or uncorrected PSE operators

of varying c and rc (see Section 4.4). The discretization correction is recomputed at each time step unless the particles are
remeshed. For irregular particle distributions, the zeroth-order moment of the DC kernels is fixed to Z0

h ¼ 5. The homoge-
neous Neumann boundary conditions are imposed using mirror particles in a small band outside the domain (method of
images).

Remeshing is done by interpolating the particle strengths to a new set of particles with uniform Cartesian positions xp as:

FðxpÞ ¼
XN

q¼1

~Fð~xqÞW
xp " ~xq

h

$ %
W

yp " ~yq
h

$ %
; ð45Þ

where W is the third-order accurate M0
4 interpolation kernel [37]

WðzÞ ¼
0; jzj > 2;
1
2 ð2" jzjÞ2ð1" jzjÞ; 1 6 jzj 6 2;

1" 5
2 z

2 þ 3
2 jzj

3; jzj 6 1:

8
><

>:

B.3.2. Eulerian finite differences
The solution f ðx; tÞ is approximated on a uniform Cartesian grid of resolution h. The values f ni;j at all grid nodes fi; jg are

evolved in time ðt ¼ nDtÞ as

f nþ1
i;j ¼ f ni;j þ

Dt
h2

1
Pe0j

f niþ1;j " 2f ni;j þ f ni"1;j

! "
þ 1
Pe

f ni;jþ1 " 2f ni;j þ f ni;j"1

! "
" yjhðf ni;j " f ni"1;jÞ

" #
;

where Pe0j ¼ 2Pe=ð2" yjhPeÞ if Pe 6 2=h, and Pe0j ¼ 1 else. We use a time step of DtK min½0:15h2Pe;0:30h(. The scheme is
second-order accurate for Pe 6 2=h and first-order otherwise. The Neumann boundary conditions are again imposed using
the method of images.

B.3.3. Lagrangian finite differences
The solution is approximated on a uniform Cartesian grid, but advection and diffusion are treated using a time-splitting

scheme. In each time step, the grid nodes are advected with the flow and remeshed using theM0
4 kernel. Afterward, diffusion

is computed using the FD scheme

f nþ1
i;j ¼ f ni;j þ

Dt
h2Pe

f niþ1;j þ f ni"1;j þ f ni;jþ1 þ f ni;j"1 " 4f ni;j
h i

with a time step of DtK0:15h2Pe. The method of images is applied at the Neumann boundaries, and the periodicity is used
along x.

Appendix C. Demonstration of the dispersive wavenumber modification in a two-dimensional Eulerian advection test
case

We demonstrate the numerical dispersion induced by the wavenumber modification of the operators by simulating
advection of a two-dimensional Gauss pulse (Eq. (24)) in direction d = (0.588,0.809) with unit speed, thus,

@f
@t

þ d ) rf ¼ 0:

We approximate d ) rf using both uncorrected and DC PSE operators, as well as classical FD stencils. For the DC operators we
use the kernel function template in Eq. (8).

Figs. 13 and 14 show the simulation results for second-order ðr ¼ 2Þ and fourth-order ðr ¼ 4Þ operators, respectively, on
uniform Cartesian particle distributions ðh ¼ 0:02Þ. The panels show the pulse at times t ¼ 0 and t ¼ 0:5 in the domain
½"0:1;1(2 with homogeneous Dirichlet boundary conditions. Time integration is done using the leapfrog scheme (Eq. (36))
with a time step of Dt ¼ 0:5h for the simulations of order r ¼ 2, and Dt ¼ 20h2 for the simulations of order r ¼ 4.

The results visually illustrate that the order of accuracy r and the ratio c both influence the dispersive properties of the
operators. Dispersion decreases with increasing r and c. Since DC PSE operators allow larger values of c at full rate of
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convergence, their numerical dispersion can be reduced down to the level of the FD stencils. This is not possible for uncor-
rected operators, where the solution gradually deteriorates for increasing c. For low c, PSE operators introduce distortion
along direction d, whereas the distortion introduced by FD is oriented along the coordinate axes. This is particularly evident
for r ¼ 2.
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