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We present a fully Lagrangian particle level-set method based on high-order polynomial 
regression. This enables meshfree simulations of dynamic surfaces, relaxing the need for particle-

mesh interpolation. Instead, we perform level-set redistancing directly on irregularly distributed 
particles by polynomial regression in a Newton-Lagrange basis on a set of unisolvent nodes. 
We demonstrate that the resulting particle closest-point (PCP) redistancing achieves high-order 
accuracy for 2D and 3D geometries discretized on irregular particle distributions and has better 
robustness against particle distortion than regression in a monomial basis. Further, we show 
convergence in classic level-set benchmark cases involving ill-conditioned particle distributions, 
and we present an example application to multi-phase flow problems involving oscillating and 
dividing droplets.

1. Introduction

The numerical representation of non-parametric surfaces is a key part of many spatio-temporal simulations, e.g., in additive 
manufacturing [1], geology [2], and biology [3]. This has motivated research into geometric computing algorithms that can achieve 
high accuracy for representing non-parametric surfaces at low computational cost. Ideally, the algorithms should also be parallelizable 
in order to leverage high-performance-computing and GPU resources.

Due to their geometric expressiveness and parallelizability, level-set methods [4] have emerged as a popular approach to geometric 
computing for non-parametric surfaces. They have been successfully applied to real-world problems involving complex geometries, 
such as the growth, division, and reconnection of tumors [5] and the diffusion of membrane proteins on the highly curved endoplasmic 
reticulum [3]. In level-set methods, a two-dimensional surface embedded in a three-dimensional space is described implicitly as the 
(usually zero) level-set of a scalar function over the embedding space. Often, the level-set function is chosen to be the signed distance 
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function (SDF) to the surface. This guarantees that the level-set function is smooth and continuously differentiable near the surface [6], 
and it simplifies surface computations as the level-set function value directly represents the shortest distance to the surface.

Level-set methods also generalize well to dynamically moving and deforming surfaces, as changes in the shape of the surface 
amount to advecting the level-set function. When advecting the level-set function, however, the signed-distance property is in general 
not conserved. Indeed, for deformation velocity fields that do not describe rigid-body motion, the advection of the level-set function 
in the embedding space destroys the signed-distance property [7]. This can be avoided by correcting the advection velocity away from 
the surface, for example by variational penalties [8,9] or Lagrange multipliers [10]. These approaches, however, are often inaccurate 
or accumulate advection errors over time. The most popular approach, therefore, is to recompute the SDF whenever the surface has 
deformed. This is known as “level-set redistancing”, where the SDF in the embedding space is recomputed from the reconstructed 
current location of the surface.

Several conceptually different methods for level-set redistancing are available: Sussman et al. [7] performed redistancing by evolv-

ing an auxiliary Partial Differential Equation (PDE) in pseudo-time, which has the SDF as a steady-state solution. Their approach 
achieves high accuracy on regular Cartesian grids and avoids numerical instabilities of the pseudo-time evolution by using higher-

order ENO/WENO finite-difference schemes [11]. The resulting algorithm, however, is computationally expensive as it amounts to 
evolving a PDE to steady state in the embedding space with sometimes stringent time-step limitations [12]. The point of compu-

tational efficiency has been addressed by fast marching or sweeping methods [13–15], which propagate the level-set values from 
the surface outward as a moving front. While this is computationally more efficient, it is limited to lower-order finite-difference 
schemes for which the resulting algebraic equations can be analytically solved, and it creates data dependencies that hamper paral-

lelization [16]. A third approach therefore aims to directly compute the distance to the surface independently for all points in the 
embedding space by finding for each query point the closest point on the surface [17]. This closest-point (CP) transform has mainly 
found application in the numerical solution of surface PDEs [18,19] and has since been extended to level-set redistancing using 
higher-order polynomial regression [20]. The resulting method achieves high orders of accuracy, is computationally efficient, and 
parallelizable. While originally formulated for regular Cartesian grids, it has recently also been demonstrated on unstructured grids 
[21] and triangulations [22], confirming the versatility of the CP approach.

Despite the efficiency and versatility of CP redistancing, however, algorithms that achieve high orders of convergence are so far 
limited to connected meshes and discretize level-set advection in an Eulerian frame of reference by evolving the level-set function 
values at the mesh nodes. In such an Eulerian mesh-based approach, fulfilling conservation laws becomes nontrivial, and the numerical 
stability and adaptivity of the overall framework is limited by the CFL condition. Both limitations can be relaxed when discretizing 
level-set advection in a Lagrangian frame of reference, where the discretization points move with the local advection velocity and 
preserve their level-set function values. Lagrangian level-set methods have been shown to be highly geometry-adaptive with excellent 
numerical stability [12] while maintaining the general conservation properties [23] of Lagrangian particle methods.

In Lagrangian particle methods, however, particle distributions become increasingly irregular as particles move with the advection 
velocity. This hampers level-set redistancing, for which so far only first-order methods exist that aim to regularize the level-set 
function by renormalization [24,25]. Previous higher-order approaches exclusively operate on grids, which requires interpolation of 
the level-set function values from the Lagrangian particles to the grid nodes before redistancing [26,12]. This introduces additional 
computational cost and interpolation errors. While high-order particle-to-mesh interpolation schemes exist [27], they are based on 
conservation laws for the moments of the represented function, which do not apply to level-set functions. While again renormalization 
approaches have been proposed to address the problem [28], their convergence is limited to linear order.

Here, we present a fully Lagrangian particle CP level-set redistancing method that achieves higher-order convergence without 
requiring interpolation to a structured or unstructured intermediate mesh. The method directly operates on Lagrangian particles, 
maintaining their conservation properties and stability, while simplifying level-set advection for dynamic surfaces by inheriting the 
accuracy, computational efficiency, and parallelizability of CP redistancing. In the present method, particles in a narrow band around 
the surface carry and advect the level-set function values. After advection, the SDF is recomputed directly on the irregularly distributed 
particles by finding their respective closest points on the surface. We do this using high-order polynomial regression in a Newton-

Lagrange basis on unisolvent nodes. The analytical form of the local regression polynomials enables straightforward computation 
of derivative geometric quantities, such as surface normals and local curvatures. The regression nodes are a suitably chosen subset 
of particles in the narrow band around the surface. We show that a clever choice of local unisolvent nodes maintains high-order 
convergence even on highly irregular particle distributions in the narrow band. We discuss accuracy, stability, and performance 
of the method on benchmark geometries with analytically known SDF, a vortex flow problem, and a multi-phase hydrodynamics 
application involving oscillating and dividing droplets. In the latter, we compare the present approach with a Smoothed Particle 
Hydrodynamics (SPH) method [29].

2. Level-set method

Level-set methods describe an evolving surface Γ𝑡 implicitly as the zero level-set of a scalar function 𝜙:

Γ𝑡 = {𝐱 ∶ 𝜙(𝐱, 𝑡) = 0}, (1)

with 𝐱 ∈ℝ𝑛𝑑 being the coordinates in the 𝑛𝑑 -dimensional space of real numbers, and 𝑡 being the time. Due to favorable properties in 
accuracy and volume conservation, as well as simplified computations of surface-geometric quantities such as normals and curvatures, 
2

a popular choice for the level-set function is a signed distance towards the surface:
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Fig. 1. Nomenclature of the method shown for a 2D domain containing a piece of a surface (For interpretation of the colors in the figure(s), the reader is referred to 
the web version of this article.)

𝜙(𝐱) = ±‖𝐜𝐩(𝐱) − 𝐱‖2, (2)

in which 𝐜𝐩(𝐱) is the closest-point function that yields the closest point of a given location on the surface, measured in 𝐿2-distance. 
The sign of the level-set function (2) is chosen as positive if outside, and negative if inside of a closed surface. A natural property of 
the SDF in Eq. (2) is that its gradient has unit length,

‖∇𝜙(𝐱)‖2 = 1. (3)

Level-set functions also allow for computing derivative fields associated with the surface, such as the surface normal field

𝐧(𝐱) = ∇𝜙(𝐱)‖∇𝜙(𝐱)‖2 (4)

and the mean curvature field in its fluid-mechanical definition (from now on simply referred to as “curvature”)

𝜅(𝐱) = ∇ ⋅ 𝐧(𝐱) . (5)

The surface Γ𝑡 can move and deform with velocity 𝐮 (𝐱, 𝑡) over time 𝑡. After any movement, material points lying on the surface 
remain on the surface:

D𝜙

D𝑡
= 0 . (6)

Eq. (6) is formulated using the material derivative D(⋅)
D𝑡

= 𝜕(⋅)
𝜕𝑡

+ 𝐮 ⋅∇(⋅) and generally only holds for material points on the surface, 
i.e. on the zero level-set. Material points surrounding the surface can either approach to or recede from the surface, which is not 
accounted for by Eq. (6), as the velocity field 𝐮 is embedded in the 3D space. If changes in distance towards the surface are not taken 
into account, the level-set function ceases to be the SDF and the property (3) is lost, hampering the computation of surface normals 
and local curvatures. Therefore, level-set redistancing is used to restore the SDF property.

3. Redistancing on irregular particle distributions

We represent the surface Γ𝑡 using a finite set of 𝑛𝑝 discrete Lagrangian particles 𝖯𝑖 , 𝑖 ∈ {1, … , 𝑛𝑝}. These particles store and 
advect the level-set function values 𝜙𝑖 in addition to their position. At the beginning of a simulation, the particles are usually seeded 
uniformly or uniformly at random with inter-particle spacing ℎ in a tubular neighborhood of diameter 𝑤 around the surface, which 
we call “narrow band” in accordance with the usual level-set terminology. Then, the particles move with the deformation velocity 𝐮
of the surface, and the particle distribution can become arbitrary.

This Lagrangian formulation offers a number of benefits: rigid-body movements of the surface are simulated exactly [23], aside 
from time integration errors, and the method has better time-integration stability as the Lagrangian CFL number is larger than the 
Eulerian CFL number [30], and no grid data structure needs to be allocated and maintained.

We extend the CP redistancing proposed by Saye [20] to irregularly distributed particles in a narrow band of width 𝑤 around the 
surface, as illustrated in Fig. 1. The set containing all particles of the narrow band is  = {𝖯𝑖 ∶ |𝜙(𝐱𝑖)| <𝑤∕2}.

Before redistancing, an additional set of sample particles  that lie precisely on the surface is created. For this, particles immediately 
3

adjacent to the surface are used as starting points (set  in Fig. 1). Using local polynomial regression over neighborhoods of such 
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near-surface particles, the level-set function 𝜙(𝐱) is locally approximated. The polynomial approximation is then used to project the 
location of the particle onto the zero level-set, yielding the corresponding sample particle.

For redistancing, the following steps are then computed for all particles in  : First, we find the closest sample particle using a 
cell-list acceleration data structure [31], which serves as an initial guess for solving a constrained optimization problem. This problem 
minimizes the distance between the query point and another point under the constraint that the polynomially approximated level-set 
function at the location of the other point is zero. This is optimized over the same local regression polynomial used to generate 
the sample particles and yields the closest point on the zero level-set of the local regression polynomial. The distance between the 
so-computed closest point and the query particle is the corrected level-set value that restores the SDF.

This procedure crucially hinges on the numerical properties of the polynomial regression scheme used. In the spirit of particle 
methods, we perform polynomial regression in a local radial neighborhood of a particle. The radius 𝑟𝑐 of this neighborhood needs to 
include at least as many particles as are required to determine the coefficients of the regression polynomial for a given polynomial 
degree. Further, the spatial arrangement of the particles within the regression neighborhood cannot be dependent in a way that 
renders the Vandermonde matrix of the regression problem singular. In the next section, we therefore pay particular attention to how 
polynomial regression is done here.

3.1. Local polynomial approximation of the level-set function

The sample particles provide a coarse estimate of the surface and are obtained by first finding a set  ⊂ containing particles in 
the narrow band that are close to the surface. A particle is in  if it has another particle with opposite sign of the level-set function 
value within a certain radius 𝜉. This radius is a parameter of the method. Larger thresholds create more sample particles, thus 
improving the sampling of the surface, but causing higher computational cost. In this paper, we use a threshold radius of 𝜉 = 1.5ℎ
throughout. Then,  is a small subset of  .

For each particle 𝖯𝑖 ∈ , we approximate the level-set function as a continuous polynomial obtained by local least-squares regres-

sion. As we show in Sec. 4.1.1, this is simpler and more accurate than directly using a particle-function approximation of the level-set 
function. Using 𝑛𝑐 monomials 𝑀𝑘 (𝐱), the local approximation of the level-set function reads:

𝜙(𝐱) ≈ 𝑝𝑖(𝐱) =
𝑛𝑐−1∑
𝑘=0

𝑐𝑘𝑀𝑘(𝐱) . (7)

The choice of the number and type of monomials can be made depending on the requirements of the application.

We determine the coefficients 𝑐𝑘 of 𝑝𝑖(𝐱) by iterating over the neighborhood of a particle 𝖯𝑖 ∈  that contains 𝑛𝑛 particles including 
𝖯𝑖 itself. In this neighborhood, we assemble the regression matrix 𝐀 ∈ℝ𝑛𝑛×𝑛𝑐 , the unknown coefficient vector 𝐜 ∈ℝ𝑛𝑐 , and the right-

hand side vector containing the level-set function values 𝝓 ∈ℝ𝑛𝑛 . Then, the linear system of equations

𝐀𝐜 = 𝝓 (8)

is solved using orthogonal decomposition. If 𝑛𝑛 = 𝑛𝑐 and 𝐀 has full rank, the polynomial 𝑝𝑖(𝐱) is the interpolation polynomial. If 
𝑛𝑛 > 𝑛𝑐 , 𝑝𝑖(𝐱) is the least-squares solution for the polynomial regression problem.

The condition number of the regression matrix depends on the distribution of particles and the choice of basis 𝑀𝑘(𝐱). We do 
not have control on the former, but we can choose the polynomial basis 𝑀𝑘(𝐱). As a basis, we use the Lagrange polynomials 𝐿𝑘(𝐱)
determined on a Chebyshev-Lobatto grid 𝐺 ⊆ [−1, 1]𝑛𝑑 in the regression neighborhood, i.e., 𝐿𝑘(𝐪𝑙) = 𝛿𝑘,𝑙 , 𝐪𝑙 ∈ 𝐺, where 𝛿𝑘,𝑙 is the 
Kronecker delta [32]. Therefore, the points at which the polynomial basis is computed (i.e., the nodes of a local Chebyshev-Lobatto 
grid) in general differ from the points 𝑝𝑖(𝐱) at which the regression polynomial is evaluated. We use basis polynomials of total degree 
(𝓁1-degree) [32]. The regression matrix is constructed by evaluating the Newton form of the Lagrange basis polynomials on the 
regression nodes. This choice of basis has been shown to effectively regularize regression over randomly distributed points for a large 
class of analytic functions [33]. We refer to this regression approach as minter regression.

Since Eq. (6) holds on the surface after any movement, solving Eq. (8) for each particle in  yields a polynomial representation of 
the surface as the zero level-set of the local regression polynomials 𝑝𝑖(𝐱). Using this representation in the proximity of the “center” 
particle 𝖯𝑖 ∈ , the locations of the sample particles  can be determined. This is done by iterative projection onto the zero level-set 
of 𝑝𝑖(𝐱), using 𝖯𝑖 ∈  as a starting point and iterating

𝐱𝑘+1 = 𝐱𝑘 − 𝑝𝑖(𝐱𝑘)
∇𝑝𝑖(𝐱𝑘)‖∇𝑝𝑖(𝐱𝑘)‖22 , 𝑘 = 0,1,2,… (9)

The iteration is stopped as soon as |𝑝𝑖 (𝐱𝑘) | < 𝜀 for a user-defined tolerance 𝜀.

Doing so for all particles in  completes the sample particle set  , as illustrated in Fig. 1. The sample particles provide starting 
points for the subsequent search for the closest point of any query point (also between particles). They further act to store the 
regression polynomials and therefore the local geometry of the surface. The resolution with which  samples the surface results 
from the particle distribution around the surface: Each particle in , from both sides of the surface, creates one sample particle. For 
example, a straight 1D surface of length 𝑙 embedded in 2D space, in which the domain has been discretized using an inter-particle 
4

spacing of ℎ, would contain 2𝑙∕ℎ sample particles.
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3.2. Finding the closest point on the surface for a given particle

From the sample particles  and the associated polynomials, the distance of any given location towards the surface can be 
computed. The query point may also lie between particles or outside of the narrow band. In level-set redistancing, however, typically 
the query points are the particles  within the narrow band.

For each query particle 𝖯𝑞 ∈ at position 𝐱𝑞 , we look for the closest sample particle 𝖯𝑠 ∈  , located at position 𝐱𝑠. In a well-

sampled surface, we know that the closest point of 𝖯𝑞 lies in a neighborhood of its closest sample particle. Hence, the zero level-set 
of the regression polynomial 𝑝𝑠 is used as a local approximation of the surface. To find the closest point 𝐱 of 𝖯𝑞 on the approximated 
surface, we solve the constrained optimization problem

argmin
𝐱

1
2
‖𝐱 − 𝐱𝑞‖22 , s.t. 𝑝𝑠(𝐱) = 0 , (10)

minimizing the distance under the constraint that the solution lies on the zero level-set of the regression polynomial. We reformulate 
this problem using a Lagrange multiplier 𝜆 and the associated Lagrangian

(𝐱, 𝜆) = 1
2
‖𝐱 − 𝐱𝑞‖22 + 𝜆𝑝𝑠(𝐱) . (11)

Stationary points of the Lagrangian fulfill

∇𝐱,𝜆 =
(
𝐱 − 𝐱𝑞 + 𝜆∇𝑝𝑠(𝐱)

𝑝𝑠(𝐱)

)
= 𝟎 (12)

and are found using the Newton method. The subscripts 𝐱 and 𝜆 indicate differential operators with respect to both variables. As 
an initial guess 𝐱0 for the iterative Newton method, we use the location of the closest sample particle: 𝐱0 = 𝐱𝑠. The initial Lagrange 
multiplier is 𝜆0 =

(
𝐱𝑞 − 𝐱0

)
⋅∇𝑝𝑠(𝐱0)∕‖∇𝑝𝑠(𝐱0)‖22. Subsequently, we iterate(

𝐱𝑘+1
𝜆𝑘+1

)
=
(
𝐱𝑘
𝜆𝑘

)
−
(
H𝐱,𝜆(𝐱𝑘, 𝜆𝑘)

)−1 ∇𝐱,𝜆(𝐱𝑘, 𝜆𝑘), (13)

where H is the Hessian, computed as

H𝐱,𝜆(𝐱, 𝜆) =
(
𝐼 + 𝜆H𝑝𝑠(𝐱) ∇𝑝𝑠(𝐱)
∇𝑝𝑠(𝐱)⊤ 0

)
. (14)

We perform the iterations in Eq. (13) until the 𝐿2-norm of the gradient in Eq. (12) falls below the tolerance 𝜀, or a maximum number 
of iterations 𝑘max is reached.

If the Newton iterations stray out of the support neighborhood of the sample point 𝖯𝑠 , this can be detected and a new iteration 
can be started from the corresponding neighboring sample point. In all benchmarks presented in this paper, however, we did not 
encounter such a case.

Following the definition in Eq. (2), we use the resulting approximation of the closest point 𝐱 ≈ 𝐜𝐩(𝐱𝑞) to update the level-set 
function value of the query particle 𝖯𝑞 :

𝜙𝑞 = sgn(𝜙𝑞)‖𝐱 − 𝐱𝑞‖2 . (15)

Here, sgn denotes the sign function that ensures that the sign of the new SDF value is the same as the sign of the old level-set function 
value.

3.3. Derivative surface quantities

From the closest point of a given query particle and the polynomial approximation of the level-set function in the vicinity of the 
closest point, it is straightforward to compute derivative surface quantities, such as the surface normal and the local curvature at the 
closest point.

We compute the surface normal at the closest point of a query particle 𝖯𝑞 as

𝐧𝑞 =
∇𝑝𝑠

(
𝐜𝐩(𝐱𝑞)

)
‖∇𝑝𝑠 (𝐜𝐩(𝐱𝑞))‖2 , (16)

and the local curvature as

𝜅𝑞 =∇ ⋅ 𝐧𝑞. (17)

Note that as during the previously outlined redistancing method, the gradient and Hessian of the polynomial are known analytically. 
Evaluating the derivative at the closest point on the surface also yields a constant normal extension of surface normals and curvature 
5

values into the narrow band.
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3.4. Narrow-band updates

During level-set advection, particles may enter or exit the narrow band of width 𝑤. We assign particles to the narrow-band set 
or its complement  𝑐 depending on their level-set function value:

𝖯𝑖 ∈

{
 , if |𝜙𝑖| ≤ 𝑤

2
 𝑐 , if |𝜙𝑖| > 𝑤

2 .
(18)

As the correct signed-distance function value of a particle is not known before redistancing, we estimate it as the distance to the closest 
sample particle. We efficiently find the closest sample particle using a cell list of edge length 𝑤∕2 over all sample particles [31]. For 
particles far away from the surface, all surrounding cells are empty. If the cells contain at least one sample particle, the closest sample 
particle is found by computing the distances. If the distance to the closest sample particle is less than 𝑤∕2, the query particle is 
assigned to the narrow band and its exact distance to the surface needs to be recomputed using the approach outlined in Sec. 3.2.

3.5. Implementation

We implement the presented Particle Closest-Point (PCP) method in C++ in the scalable scientific computing framework 
OpenFPM [34] using the minter package [35] and the Eigen library [36] for polynomial regression. Parallelization is transparently 
provided by using the internally distributed data structures of OpenFPM as described [34,37]. No further parallelization prim-

itives or communication routines are implemented in this work. The implementation is available as open-source from https://

git .mpi -cbg .de /mosaic /software /parallel -computing /openfpm /openfpm _numerics.

The implementation provides a PCP class of which an object can be initialized by passing the set of particles containing the level-

set values. The class contains a method for initialization, and a main method that can subsequently be called for any set of query 
points. The initialization routine performs the following two steps: (1) Build an internal particle list by iterating through the user’s 
particle list to find all particles in the narrow band whose smallest distance to a particle of opposite level-function sign is less than 
𝑟𝑐 + 𝜉. If the smallest distance is less than 𝜉, the particle is simultaneously flagged as a close particle. (2) Iterate through the internal 
particle list and solve the local regression problem for each close particle using the minter and Eigen libraries. Store the polynomial 
coefficients as an array-valued property of the respective particle. Subsequently, project onto the surface as described in Eq. (9) to 
find the sample particles, which are also stored as an array-valued property of the close particle.

Once initialization has been performed, the main method of the class can be called for any set of query points. The set of query 
points can be identical to, a subset of, or disjoint from the set of particles used for initialization. The main method iterates through the 
list of query points to find for each query point the closest sample particle in the internal particle list constructed during initialization. 
It then solves the constrained optimization problem for this sample particle to compute the results (closest point on the surface, SDF 
value, surface normal and curvature), and it returns the results for each query point as particle properties.

Creating and working on the (smaller and temporary) internal particle list avoids memory access to the (larger) particle list of 
the user program. It also facilitates integration into existing user code, since the user only needs to provide those particle properties 
that actually store the geometric information of interest. The separate internal particle list also allows for the PCP class to internally 
use a different cell list in order to not impose additional ghost layers onto the user code. The cutoff radius that the user code uses to 
determine particle interactions can therefore be different (and generally smaller) from the one used by PCP for determining candidate 
sample particles for a given query particle.

4. Results

We characterize the accuracy and efficiency of the method in benchmarks ranging from basic geometries with known analytical 
SDF over standard dynamic-surface test cases to a multi-phase flow problem with interfacial effects and changes in topology.

4.1. Basic geometries

In his work on mesh-based closest-point redistancing, Saye [20] presents results for elementary geometries such as 2D ellipses 
and 3D ellipsoids. To demonstrate the utility of a method tailored to data on irregularly distributed particles, we first highlight the 
problems of the apparent alternative of interpolating particle data to mesh nodes and subsequently applying a mesh-based method. 
Then, we compare it with the proposed PCP method directly on the particles.

Irregular particle distributions for the benchmarks are obtained by randomly shifting the nodes 𝐦𝑖𝑗 of a regular Cartesian mesh 
with spacing ℎ:

𝐱𝑝 =𝐦𝑖𝑗 +𝐗 , (19)

with random shifts

𝑋𝑑 = 𝛼ℎ𝜇 , (20)

for 𝑑 = {1, … , 𝑛𝑑}. The pseudo-random variables 𝜇 ∼ [−1, 1] are i.i.d. from the uniform distribution over the interval [−1, 1]. The 
6

shift amplitude 𝛼 is always chosen < 0.5 to ensure that no two particles coincide.

https://git.mpi-cbg.de/mosaic/software/parallel-computing/openfpm/openfpm_numerics
https://git.mpi-cbg.de/mosaic/software/parallel-computing/openfpm/openfpm_numerics
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Table 1

Smoothing factors 𝜖∕ℎ used for the Wendland C2 and Gaussian kernels in the 
remeshing convergence test.

ℎ 1/32 1/64 1/128 1/256 1/512 1/1024 1/2048

𝜖∕ℎ 1.3 2.0 3.0 4.0 5.0 6.0 6.0

Fig. 2. Convergence of different particle-mesh interpolation schemes (symbols, inset legend) applied to the ellipse Eq. (21) discretized on irregularly (𝛼 = 0.3) 
distributed particles. The star in the legend entries indicates that the respective remeshing formulation is renormalized by the particle volumes.

4.1.1. Remeshing followed by closest-point redistancing

As a baseline, we first characterize the classic approach of interpolating the particle values to a grid, followed by CP redistancing 
[20]. For this, we consider an ellipse in the 2D domain [−1, 1] × [−1, 1] discretized by particles with spacing ℎ and shift amplitude 
𝛼 = 0.3 covering the entire domain with periodic boundary conditions. The level-set values at the particles are initialized to

𝜙 (𝑥, 𝑦) = 1 −

√
𝑥2

𝐴2 + 𝑦2

𝐵2 , (21)

for an ellipse with semi-major axis 𝐴 = 0.75 and semi-minor axis 𝐵 = 0.5. The zero level-set of Eq. (21) coincides with the zero 
level-set of the SDF of the ellipse. Away from the surface, however, this is not a SDF. We compute a SDF approximation by remeshing 
followed by mesh-based CP redistancing according to Saye [20].

We compare a variety of remeshing schemes as described in Appendix A. We compute mesh-node values using the Λ4,4 kernel in 
both the basic formulation (A.1) and the renormalized formulation (A.2), as well as using the renormalized Wendland C2 and Gaussian 
kernel functions (A.5). We compare the remeshing results with the analytically known exact values 𝜙exact obtained by evaluating 
Eq. (21) at the mesh nodes. The absolute remeshing error on each mesh node is then computed as 𝑒 

(
𝜙(𝐦𝑖𝑗 )

)
= |𝜙(𝐦𝑖𝑗 ) −𝜙exact(𝐦𝑖𝑗 )|. 

To characterize the convergence behavior, we increase the number of particles by decreasing the spacing ℎ. For the Wendland and 
Gaussian kernels, we simultaneously increase the fraction 𝜖∕ℎ according to Table 1 as required [38]. The maximum error over all 
mesh nodes in a narrow band of radius 𝑤2 = 1

16 around the zero level-set is plotted in Fig. 2.

As expected, the Λ4,4 kernel in the basic formulation (Eq. (A.1)) does not converge with its theoretical order of four, as it is 
derived from moment conservation laws that do not hold for level-set functions. In fact, it diverges slowly, which is expected since the 
maximum error occurs in the most irregular particle neighborhood with an irregularity proportional to the total number of randomly 
perturbed particles in the domain. Convergence is restored with order 0.81 (still far from the theoretical 4) when renormalizing 
function values by the amount of contributions they experienced. If in addition to renormalizing function values, the contributions 
from individual particles are weighted by respective particle volumes, and the smoothing lengths of the kernel functions are increased 
sufficiently, convergence of order 1.3 is achieved for the Wendland C2 and Gaussian kernels. For these two, however, there is a 
noticeable effect from the irregular particle distribution, as they are expected to converge with order two for particles distributed on 
a regular Cartesian grid.

We next test if CP redistancing applied to the interpolated mesh values can restore an overall higher order of convergence. We 
therefore plot the maximum error in the approximated SDF over the same narrow band in Fig. 3. The reference SDF values were 
obtained using the method outlined in Ref. [39]. CP redistancing is done using fourth-order polynomials with a monomial basis of 
total degree (referred to as “Taylor 4” in Ref. [20]), such that we expect fifth-order convergence overall [20]. Due to the intermediate 
remeshing step, however, the errors converge slower than if redistancing was based on error-free mesh data. When remeshing with 
the standard or renormalized Λ4,4 method, the overall convergence is of order 0.95 and 0.96, respectively. When remeshing with the 
Wendland C2 and Gaussian kernels, overall convergence in the SDF error is of order 1.3.

In all cases where the remeshing itself converges, the overall redistancing accuracy is therefore limited by the particle-mesh inter-

polation error. An interesting exception is the Λ4,4 kernel without renormalization, which does not converge by itself but convergence 
7

is restored by CP redistancing. This is because CP redistancing uses a fixed number of grid layers around the surface, rather than a 
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Fig. 3. Convergence of the maximum error in the SDF after mesh-based CP redistancing of the remeshed level-set values of the 2D ellipse using different remeshing 
schemes. The star in the legend entries indicates that the respective remeshing formulation is renormalized.

Fig. 4. Convergence of the SDF computed by the present particle closest-point (PCP) method for the 2D ellipse case with irregularly (𝛼 = 0.3) distributed particles and 
fourth-order minter regression polynomials. The observed convergence order is 4.8 (theoretical: 5) with a numerical solver tolerance of 10−14.

fixed narrow-band width. If the absolute remeshing error is evaluated in a fixed number of grid layers, rather than a fixed-size narrow 
band, convergence of order 0.9 is also seen for the remeshing alone. This is because the level-set function has smaller absolute values 
closer to the surface. The relative error per mesh node nevertheless remains constant.

In summary, first interpolating from Lagrangian particles to a regular Cartesian mesh prevents mesh-based CP redistancing from 
reaching its design order of convergence as particle-mesh interpolation limits the overall accuracy.

4.1.2. Particle closest-point redistancing

We compare the above results with the present PCP redistancing method for the same ellipse example with the same irregular 
particle distribution (𝛼 = 0.3). We use a fourth-order minter basis and a cutoff radius of 𝑟𝑐 = 2.5ℎ. We set the tolerance 𝜀 = 10−14
and the maximum number of iterations 𝑘max = 1000. For the simple ellipse geometry, both the iterative projections and the Newton 
algorithm converge quickly, i.e. in 2 to 4 iterations, such that 𝑘max has no effect on the results.

Fig. 4 shows the convergence in the SDF. In absence of any grid, the errors are now evaluated directly on the query particles 
𝖯𝑞 in the entire narrow band. Even for coarse resolutions the error is orders of magnitude smaller than any accuracy achieved by 
remeshed CP redistancing. The theoretical fifth-order convergence is approximately reached, with a measured order of 4.8, until the 
error plateaus near the set tolerance 𝜀 = 10−14.

We next assess the convergence of the PCP method for computing derivative surface quantities in a 3D narrow band around an 
ellipsoid with semi-major axis 𝐴 = 0.75 and both semi-minor axes 𝐵 = 𝐶 = 0.5. We discretize the level-set function on irregularly 
distributed particles (𝛼 = 0.3) within a narrow band of width 𝑤 = 12ℎ and use a tolerance of 𝜀 = 10−14. The maximum error is reported 
over the entire narrow band in Fig. 5 for fourth- and fifth-order minter regression. For the fourth-order polynomials a cutoff radius 
of 𝑟𝑐 = 2.4ℎ is used, for the fifth-order polynomials 𝑟𝑐 = 2.6ℎ.

The theoretical convergence orders are almost achieved when using fourth-order minter regression: the SDF converges with order 
4.9, the closest-point transform 𝐜𝐩(𝐱𝑝) with 4.8, the surface normals 𝐧(𝐱𝑝) with 3.8, and the local curvature 𝜅(𝐱𝑝) with 3.0 until they 
plateau at the highest resolution. The SDF and closest-point function converge with the same order and are separated by a constant 
offset. Since the normal field and local curvatures are computed as the derivatives of the SDF, they are third- and second-order 
8

polynomials, respectively, with theoretical convergence orders of 4 and 3.
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Fig. 5. Convergence of the SDF (observed: 4.9, theoretical: 5), locations of the closest points (observed: 4.8, theoretical: 5), surface normals (observed: 3.8, theoretical: 
4), and local curvatures (observed: 3.0, theoretical: 3) computed using the PCP method for a 3D ellipsoid discretized on irregular particles (𝛼 = 0.3). SDF∗ is computed 
using fifth-order polynomials (observed order until ℎ = 1∕128: 5.9, theoretical: 6), whereas all other results use fourth-order polynomials.

Fig. 6. Maximum error of the SDF for the 3D ellipsoid case with ℎ = 1
256

for increasing irregularity of the particle distribution from a regular grid 𝛼 = 0 to the maximum 
possible irregularity. Results are computed using fourth-order bases for both minter regression and regression using monomial basis functions.

Using fifth-order polynomials increases both accuracy and convergence order (to 5.9) especially for the lower resolutions between 
ℎ = 1

32 until ℎ = 1
128 where round-off errors do not dominate. The convergence order of the other quantities computed with fifth-order 

PCP is also close to optimal (not shown in the figure to avoid clutter): 6.4 for 𝐜𝐩(𝐱𝑝), and 5.2 for 𝐧(𝐱𝑝), and 4.0 for 𝜅(𝐱𝑝).
To test the robustness of the PCP method to distortions in the particle distribution, we vary the shift amplitude 𝛼 and compare 

the results computed using a minter basis with baseline results obtained using a monomial basis. For both, we use fourth-order 
polynomials of total degree and a cutoff radius of 𝑟𝑐 = 2.4ℎ. We consider the same ellipsoid as before with resolution fixed to ℎ = 1

256 . 
Fig. 6 shows the maximum error of the SDF within the narrow band for 𝛼 from 0 (i.e., regular Cartesian grid) to 0.49. As expected, 
the errors grow for increasing irregularity of the particle distribution. Comparing the minter basis with the monomial basis, the errors 
start to differ at 𝛼 = 0.25. Beyond this point, the error on the monomial basis grows by two orders of magnitude as the regression 
problem becomes ill-conditioned. This demonstrates that indeed the minter basis and Chebyshev-Lobatto subgrids regularize the 
regression problem sufficiently to allow convergent redistancing on highly distorted particle distributions.

Finally, we confirm that the PCP method behaves as expected when applied to non-smooth surfaces. For this, we perform PCP 
redistancing for a rounded rectangle (𝐶1) and a square (𝐶0). On irregular particle distributions (𝛼 = 0.3), the SDF computed using the 
PCP method converges with order 2 for the rounded rectangle and order 1 for the square. These are the same convergence orders as 
for the mesh-based CP method [20], agnostic towards the chosen regression basis and order (> 0), since a smooth polynomial cannot 
describe the jump in the curvature (rounded rectangle) or the normals (square). Hence, the leading error term is always limited by 
the smoothness of the shape itself.

4.1.3. Parallel scalability

We test how well our OpenFPM implementation of PCP redistancing scales to multiple processor (CPU) cores. For this, we again 
use the 3D ellipsoid test case with fixed ℎ = 1

512 , 𝑤 = 12ℎ, and 𝜀 = 10−14 with a fourth-order minter basis and 𝑟𝑐 = 2.4ℎ. We measure 
the wall-clock time 𝑡cpu

(
𝑛cpu

)
for different numbers of processor cores 𝑛cpu on an AMD Ryzen Threadripper 3990X CPU with 64 cores 

and 256 GB of shared memory. We report the parallel speedup

𝑡cpu(1)
9

𝑆(𝑛cpu) =
𝑡cpu(𝑛cpu)

(22)
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Fig. 7. Speedup 𝑆 over number of processor (CPU) cores 𝑛cpu. The solid black line marks the ideal linear speedup.

for this strong scaling (i.e., fixed problem size) in Fig. 7, showing near-optimal scalability. For 𝑛cpu = 32, the parallel efficiency 
𝐸(𝑛cpu) = 𝑆(𝑛cpu)∕𝑛cpu is about 80%. The 20% communication overhead is consistent with the volume of the ghost layers required to 
localize the closest sample particle. Another likely reason is an uneven distribution of load amongst the processors. While we ensured 
that all processors have the same amount of particles, this does not necessarily result in the same surface area, and therefore ||, per 
processor. Hence there is a possible load imbalance during local polynomial regression and surface sampling.

4.2. Spiraling vortex

Moving beyond basic geometric shapes, and into dynamically deforming surfaces, we next consider a classic level-set benchmark 
case in which a circle is stretched and spiraled by an advection velocity field 𝐮(𝐱). The spiraling vortex reaches a state of maximum 
distortion, and subsequently the velocity field is reversed. At the end, an ideal method would recover the initial circle. In practice, 
however, numerical errors in the advection of the level-set function and the periodic redistancing accumulate in a final geometry that 
differs from the initial circle. This difference can be used to compare methods.

For Lagrangian particle methods without remeshing, this test case also introduces another challenge: the particle distribution 
becomes increasingly distorted and inhomogeneous. The PCP redistancing method is thus confronted with excess information along 
some directions, and a lack of information along others. This makes an ideal test case to assess the robustness of the PCP method on 
ill-conditioned particle distributions.

The initial circle of radius 𝑅 = 0.15 centered at (0.5, 0.75) in the 2D square domain [0, 1] × [0, 1] is discretized with a narrow band 
(𝑤 = 40ℎ) of particles. The particles then move with the advection velocity

𝐮(𝐱, 𝑡) = 2cos
(
𝜋𝑡

8

)(−sin2(𝜋𝑥) sin(𝜋𝑦) cos(𝜋𝑦)
sin2(𝜋𝑦) sin(𝜋𝑥) cos(𝜋𝑥)

)
. (23)

Time integration uses the explicit fourth-order Runge-Kutta scheme with time-step size Δ𝑡 = 1
30 . The velocity field is reversed at 

𝑡 = 4.0, such that the simulation ends at 𝑡end = 8.0. At 𝑡 = 0, the level-set function values on all particles are initialized to the exact 
analytical distance to the circle. PCP redistancing with fourth-order minter regression is done after each time step of the advection 
with 𝜀 = 10−10, 𝑟𝑐 = 15ℎ, and 𝑘max = 100. The reduced maximum number of iterations is required in this case, as the solver is unable 
to reach the desired tolerance for some of the most distorted particle distributions.

The large cutoff radius reduces the accuracy in the early and late time steps of this example, yet it is beneficial during steps 
involving extremely ill-conditioned particle distributions, where the particle density along one direction differs significantly from the 
density in the other direction. The flow field causing particles to align poses severe limitations to polynomial regression approaches and 
also causes the approximated zero level-set to lose its smoothness during the simulation. The most ill-conditioned particle distribution 
(at 𝑡 = 4.0) is visualized in Fig. 8. The zero level-set of the SDF is shown as an iso-contour as determined by Paraview [40].

As can be seen in Fig. 8, the particle distribution is particularly sparse in the direction orthogonal to the surface. This is challenging 
for any redistancing scheme, since the SDF solely depends on information in the orthogonal direction. Another challenging aspect of 
this particle distribution is that multiple zero level-sets are present in each 𝑟𝑐 -neighborhood, as shown exemplary for one particle in 
the closeup in Fig. 8, dotted circle.

Running the simulation until the final time 𝑡end = 8.0, we can observe how well the PCP method with redistancing at each time 
step is able to recover the initial circle. Fig. 9 visualizes the final iso-contours reconstructed by Paraview [40] for three different 
resolutions. As expected, simulations with fewer particles suffer more. For ℎ = 1

64 , the final level-set resembles a circle on average, 
but has noticeable errors. These errors do, however, converge with increasing numbers of particles, and the final shape for ℎ = 1

2048
is visually indistinguishable from the original circle. This can also be seen in the convergence of the average and maximum errors in 
the SDF and the enclosed area 𝐴 (𝑒(𝐴) = |(𝐴 −𝐴exact)|∕𝐴exact) of the level-set as reported in Table 2. The average error in the SDF 
10

converges with order 1.9, the maximum error converges with order 1.5, and the area converges with order 1.8.
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Fig. 8. The most ill-conditioned particle distribution in the spiraling vortex case with ℎ = 1
512

at 𝑡 = 4.0. Spheres represent particle positions and are colored level-set 
function values. The dotted circle is an exemplary regression neighborhood of a particle with 𝑟𝑐 = 15ℎ. The solid line represents the reconstructed surface Γ𝑡.

Fig. 9. Visualization of the final zero level-set at 𝑡end = 8.0 for three different inter-particle spacings (line styles, see inset legend).

Table 2

Errors in the SDF values and the enclosed area 𝐴 for the 
final state of the spiraling vortex.

ℎ 𝑒(𝐴) ‖𝑒(SDF)‖2 ‖𝑒(SDF)‖∞
1/32 5.85 × 10−2 3.60 × 10−2 8.8 × 10−2
1/64 3.83 × 10−2 1.42 × 10−2 2.4 × 10−2
1/128 1.18 × 10−2 2.90 × 10−3 8.1 × 10−3
1/256 1.11 × 10−3 1.10 × 10−3 2.2 × 10−3
1/512 3.24 × 10−4 3.98 × 10−4 1.1 × 10−3
1/1024 2.99 × 10−4 6.90 × 10−5 4.4 × 10−4
1/2048 4.04 × 10−5 1.62 × 10−5 1.8 × 10−4

This confirms that the PCP method converges (albeit with sub-optimal order) despite the severely ill-posed particle distributions 
11

occurring during the spiraling vortex dynamics.
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4.3. Oscillating droplet with multi-phase hydrodynamics

We next consider the more “real-world” example of droplet dynamics in multi-phase hydrodynamics in both 2D and 3D. In this 
test case, a closed surface is coupled to two surrounding fluid phases, one inside and one outside. The curved interface between the 
two fluids has a surface tension and thus exerts forces on the fluids that depend on its curvature and cause dynamic flows, which in 
turn again advect and shape the interface. Both fluids are modeled using the incompressible Navier-Stokes equations

D𝜌

D𝑡
= −𝜌∇ ⋅ 𝐮 , (24)

D𝐮
D𝑡

= −1
𝜌
∇𝑃 + 1

𝜌
𝜂Δ𝐮+ 𝐅(𝑠) , (25)

where density is denoted by 𝜌, pressure by 𝑃 , 𝜂 is the dynamic viscosity, and Δ is the Laplace operator. The surface tension effect is 
modeled through a continuum surface force [41]. Here, a volumetric surface force is active in the smoothed out interface, or transition 
region, which can be described with a smooth surface delta function 𝛿. The surface force then reads

𝐅(𝑠) = − 𝜏
𝜌
𝜅𝐧𝛿 (26)

and acts in the normal direction of the surface and is proportional to both the surface tension 𝜏 and the local curvature 𝜅.

The continuity Eq. (24) and momentum Eq. (25) are complemented by the Cole equation of state [42]

𝑃 (𝜌) =
𝑐2𝜌0
𝛾

((
𝜌

𝜌0

)𝛾
− 1

)
, (27)

linking the pressure 𝑃 to the density 𝜌 via a reference density 𝜌0, a speed of sound 𝑐 and the polytropic index of the fluid 𝛾 . We 
choose the speed of sound 𝑐 = 100 at least one order of magnitude larger than the maximum flow velocity ‖𝐮max‖2 to ensure Mach 
numbers 𝑀𝑎 ∶= ‖𝐮max‖2∕𝑐 ≲ 0.3 remain in the region of incompressible flow. We further set 𝛾 = 7 and consider two identical fluids 
with 𝜌0 = 1.0 and 𝜂 = 0.5, separated by an interface with 𝜏 = 50.0.

We solve the Navier-Stokes equations inside and outside the droplet without the interfacial forces 𝐅(𝑠) using a weakly compressible 
Smoothed Particle Hydrodynamics (SPH) approach [43]. Further details of the numerical method and the test case are given in 
Appendix B.1. The interfacial forces 𝐅(𝑠) in Eq. (26) are computed in two ways for comparison: (1) Using the present PCP method 
to compute the SDF, the surface normals, and the curvatures, resulting in the force given by Eq. (B.4). We use a fourth-order minter 
basis and threshold parameters 𝜀 = 10−12 and 𝑘max = 1000, a cutoff radius of 𝑟𝑐 = 2.8ℎ, a sample-particle threshold of 𝜉 = 1.5ℎ, and 
a narrow-band width of 𝑤 = 13ℎ.1 (2) Using a colorfield function and SPH operators [29], resulting in the force given by Eq. (B.10). 
For the quantitative analysis we first consider a 2D model. Here, we perform simulations for three different resolutions, ℎ = 1

32 , 1
64 , 

and 1
128 with a smoothing factor of 𝜖∕ℎ = 3. The time steps for the three different resolutions are Δ𝑡 = 2 × 10−4, Δ𝑡 = 1 × 10−4, and 

Δ𝑡 = 5 × 10−5.

Initially, at time 𝑡 = 0, both fluid phases are at rest (zero velocity everywhere) and the interface is an ellipse (Eq. (21)) with 𝐴 = 0.75
and 𝐵 = 0.5 embedded in the 2D domain (−1.22,1.22) × (−1.22,1.22) with periodic boundary conditions in both directions. Interface 
regions of higher curvature exert greater force than those of lower curvature, causing oscillating deformation of the incompressible 
droplet, eventually subsiding with the shape of minimal surface area, a circle. For the 3D case, this is visualized in the Supplementary 
Video 2 of the web version of this article. We run the simulations until 𝑡end = 1. Fig. 10 visualizes the particle distribution, the 
computed curvature values, and the zero level-set reconstructed from the advected level-set values at 𝑡 ≈ 0.15, when the droplet 
assumes its maximum vertical elongation.

Table 3 compares the computational times of the entire 2D simulation using the present PCP method and using colorfield-SPH 
for different resolutions ℎ with the same Δ𝑡 = 5 × 10−5. Computing geometric quantities involves more computations per particle 
in the PCP method than in the colorfield-SPH approach, which is why the computational time is not smaller for PCP at low spatial 
resolution, even though the computations are confined to the narrow band. However, as the fraction of particles that are inside the 
narrow band decreases with decreasing average inter-particle spacing ℎ, the computational cost of PCP reduces for finer resolutions 
compared to SPH.

A similar trend is seen when comparing the wall-clock times of computing the force balance using the SPH operators with those 
required by PCP (Table 4). For the coarsest resolution, the geometric computing accounts for the majority of the computational time, 
whereas this changes with increasing resolution. The ratio of the two times increases linearly with ℎ, which is expected for any 
narrow-band method.

A key advantage of a closest-point approach can be seen in Figs. 10 and C.15 (Appendix C): geometric quantities are computed at 
the closest point, i.e. on the surface itself, and then extended along the surface normal to particles in the embedding space. For finite 
ℎ, this differs from the colorfield-SPH approach, which computes geometric quantities of the iso-contours of the level-set function on 

1 The narrow-band width is determined by the maximum distance from the surface at which any geometric information is of importance. For the problem at hand, 
this is either the polynomial regression domain, which extends at most 𝑟𝑐 + 𝜉 = 2.8ℎ + 1.5ℎ = 4.3ℎ into the bulk phases, or the length scale of the smoothed surface 
tension. This length scale is given by the kernel function in Eq. (B.3) with a cutoff radius of 2𝜖 = 6ℎ. The larger value is 6ℎ to which we add a margin of 0.5ℎ for grid 
12

sampling effects, resulting in 𝑤∕2 = 6.5ℎ.
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Fig. 10. Computed curvature values of the closest points (color bar) at 𝑡 ≈ 0.15 for ℎ = 1
32

for the two-phase droplet hydrodynamics. The zero level-set in solid black 
was reconstructed by Paraview [40] from the SDF values computed using the PCP method.

Table 3

Wall-clock times in minutes required 
for the entire 2D two-phase flow sim-

ulation with different spatial reso-

lutions ℎ using a fixed time reso-

lution of Δ𝑡 = 5 × 10−5 and two 
different geometric computing ap-

proaches for the interface dynamics: 
the colorfield-SPH approach (SPH) 
and the present particle closest-point 
(PCP) method. All simulations are 
performed on a single processor 
core of an AMD Ryzen Threadripper 
3990X.

ℎ 1/32 1/64 1/128

SPH 31 122 473

PCP 39 107 341

Table 4

Wall-clock times in milliseconds per time step for 
force-balance computations using SPH (𝑡FB) and for 
geometric computing using PCP (𝑡PCP). The ratio 
𝑡FB∕𝑡PCP is expected to increase linearly with res-

olution ℎ. All simulations are performed on a sin-

gle processor core of an AMD Ryzen Threadripper 
3990X.

ℎ 1/32 1/64 1/128 1/256

𝑡FB 20 79 314 1250

𝑡PCP 38 74 148 304

𝑡FB∕𝑡PCP 0.53 1.07 2.12 4.11

which the particles lie. Hence, it is unsurprising that in Fig. C.15 in Appendix C the standard deviation of the computed curvature 
values is smaller for the PCP method. The minimum standard deviation of the curvature values occurs when the interface becomes a 
circle. For the colorfield-SPH approach in the highest resolution, the smallest achieved standard deviation is 0.105, while the values 
range from 8 ×10−4 to 3 ×10−4 for the different resolutions in the PCP approach. This is orders of magnitude better than the colorfield 
approach and generally satisfying, given that the results are limited by the time resolution of the simulations, and the exact moment 
the geometry becomes circular may not be captured. A further limiting factor of the results can be identified in the accuracy of the 
SPH approximation of the remaining terms in the Navier-Stokes equations for the surrounding fluids.

The oscillation frequency of the droplet is determined by the surface tension, whereas the dynamics of the amplitude is determined 
by the viscosity of the fluid [44]. As shown in Fig. C.15, the frequency is in good agreement between the PCP approach and the 
colorfield-SPH approach. Since the droplet oscillation frequency of the colorfield-SPH approach has been validated against theoretical 
values for droplets with large density ratios [43] and against grid-based simulation results [29], this validates the PCP method.

Looking at the average curvature across particles in the interface region (Fig. C.16, Appendix C) we notice that the PCP method is 
slightly biased towards higher curvatures than the exact value an ideally incompressible fluid would yield. The volume reconstructed 
from the computed SDF is consistent with the mean curvature. For ℎ = 1

128 , the volume reconstructed from the SDF computed by 
PCP has a relative error of -0.5% at the end of the simulation after a total of 40,000 redistancing steps (computing the volume 
using colorfield SPH is not straightforward). Given that the results from the colorfield-SPH approach have a similar bias for lower 
resolutions, but are less accurate, the bias is probably due to the simulated fluid not being ideally incompressible in the weakly 
compressible SPH approach. In summary, PCP not only computes curvature values at the correct iso-contour, but the values are also 
less noisy than those from colorfield-SPH. This is because it does not use a binary indicator function, which heavily depends on the 
particle distribution in capturing the geometry.

To validate the overall multi-phase hydrodynamics, we compute the pressure difference Δ𝑃 across the interface and compare it 
to the capillary pressure difference expected from the Young–Laplace law
13

Δ𝑃 = 𝜏𝜅 . (28)
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Fig. 11. Pressure difference Δ𝑃 across the droplet interface at the final simulation time point for different resulting droplet radii 𝑅. Numerical results are computed 
using the PCP method (blue crosses) and the SPH-colorfield approach (orange circled crosses).

We numerically compute the pressure difference across the interface of droplets of different sizes at the final simulation time point, 
when the droplets are spherical with radius 𝑅. In order to exclude finite-resolution effects, we keep the ratio 𝑅∕ℎ constant across 
simulations.

We find that both geometric computing approaches, the PCP method and the colorfield-SPH formulation, correctly recover the 
inverse relation between the radius of curvature 𝑅 of the final droplet and the pressure difference Δ𝑃 across the interface, as shown 
in Fig. 11a. However, PCP is more accurate. The relative error in Δ𝑃 , shown in Fig. 11b, is up to six-fold smaller for PCP than for 
colorfield-SPH (for radius 𝑅 = 0.327: SPH error 0.02, PCP error 0.003), and SPH systematically overestimates the pressure difference. 
The error in the pressure difference has two parts: (1) The error in the computed interface curvature, and (2) the error in the 
discretization of the pressure gradient. The PCP method improves the former, but the pressure gradient is still computed using the 
same SPH operators. The SPH error then eventually becomes limiting.

In addition to its higher accuracy, the PCP method also captures a steeper pressure gradient in the transition from one fluid phase to 
the other (Fig. C.17, Appendix C). For a droplet with initial semi-major axes 𝐴 = 0.75 and 𝐵 = 0.5 and resolutions ℎ = 1∕32, ℎ = 1∕64, 
and ℎ = 1∕128 we find a factor of roughly 1.8 in the gradient magnitude. This shows that the PCP method better approximates the 
sharp interface than the colorfield approach, in which geometric quantities on surrounding iso-contours are computed. Computing 
geometric quantities on surrounding iso-contours also leads to overestimation of the pressure jump, as the curvature increases faster 
inside the droplet, on iso-contours with smaller radii. This systematic error is not observed in the PCP method.

To assess the compatibility of the PCP method with a particle method other than SPH, we alternatively discretize the differential 
operators in Eqs. (24) and (25) using discretization-corrected particle strength exchange (DC-PSE) [50] of second-order accuracy with 
a cutoff radius 𝑟𝑐 = 3ℎ. We use the same cutoff radius for the PCP method. All other parameters remain the same as in the SPH simula-

tions. We consider the same resolutions ℎ ∈ {1∕32, 1∕64, 1∕128} and compare the final average curvature 𝜅̄ in the narrow band with 
the theoretical value 𝜅theory = 1∕

√
𝐴𝐵 for ideal incompressibility. We find decreasing errors |𝜅̄ − 𝜅theory| ∈ {0.0120, 0.0069, 0.0051}, 

indicating ℎ-convergence. A visualization of the simulations can be found in Supplementary Video 1 of the web version of this article.

We also test the PCP multi-phase SPH fluid simulation for a 3D oscillating droplet with an initial shape of an ellipsoid with 
semi-major axis 𝐴 = 0.75 and both semi-minor axes 𝐵 = 𝐶 = 0.5. We use the same parameters as in the 2D case, except for 𝜏 = 25.0, 
and choose ℎ = 1∕32. To reduce the computational burden from the SPH operators, we lower the smoothing factor to 𝜖∕ℎ = 2 and 
consequently reduce the narrow-band width to 𝑤 = 9ℎ. Fig. 12 visualizes the particles of the inner fluid phase with their computed 
curvature values during the maximum vertical elongation of the droplet at 𝑡 ≈ 0.19. We also compute results for a lower viscosity 
value of 𝜂 = 0.3, visualized in Supplementary Video 2 of the web version of this article.

Similarly as in the 2D simulations, the PCP method computes smooth curvature values of the dynamically deforming surface in 
3D. Also in 3D, the PCP results are more accurate and computationally less expensive than the colorfield-SPH approach. This suggests 
that the PCP method is well suited for simulations involving dynamically deforming shapes.

4.4. Multi-phase hydrodynamics of a dividing droplet

Handling changes in the topology of the simulated surfaces is one of the key advantages of level-set methods. This property is 
naturally inherited by the PCP method. We illustrate this by simulating a droplet dividing into two smaller droplets.

Again, we consider a multi-phase setting with a fluid droplet immersed in a surrounding fluid phase. We simulate initially spher-
14

ical droplets of radius 𝑅𝑜 = 0.25 both in the 2D domain (−1.0, −0.5) × (1.0, 0.5) and in the 3D domain (−0.75, −25∕64, −25∕64) ×
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Fig. 12. Particles of the inner fluid phase of a 3D oscillating droplet simulation, color-coded according to the computed curvature values 𝜅 (color bar).

(0.75, 25∕64, 25∕64). To induce droplet splitting, we impose external body forces in the 𝑥-direction on all particles of the inner fluid 
phase until 𝑇 = 0.5 in 2D, and 𝑇 = 0.05 in 3D. In 2D, the corresponding acceleration along 𝑥 is:

𝑎𝑥(𝑥𝑝, 𝑦𝑝, 𝑡) = 𝐹𝑏 sin(2𝜋
𝑡

2𝑇 ) sin(2𝜋
𝑥𝑝

2𝐴 ) cos(2𝜋
𝑦𝑝

4𝐵 ) , (29)

and in 3D it is:

𝑎𝑥(𝑥𝑝, 𝑦𝑝, 𝑧𝑝, 𝑡) = 𝐹𝑏 sin(2𝜋
𝑡

2𝑇 ) sin(2𝜋
𝑥𝑝

2𝐴 ) cos(2𝜋
𝑦𝑝

4𝐵 ) cos(2𝜋
𝑧𝑝

4𝐶 ) , (30)

with the body-force coefficient 𝐹𝑏 set to 1000 in 2D and 5000 in 3D. We consider a fluid of viscosity 𝜂 = 0.5 in both 2D and 3D. In 
order to reduce the forces opposing a change in topology, we choose a lower surface tension coefficient of 𝜏 = 5.0 than in the previous 
sub-section. The artificial accelerations can lead to velocity fields with non-vanishing divergence if the magnitude 𝐹𝑏 and duration 𝑇
are not chosen carefully. Further, a breakup into multiple smaller droplets which subsequently fuse again should be avoided in the 
present surface tension model (see comment to Eq. (B.4)). The system behavior is sensitive to changes in acceleration magnitude and 
duration, surface tension, and viscosity.

We also use this test case to show applicability of the PCP method in conjunction with the popular particle shifting technique 
(PST) [45]; see Appendix B.2 for details. In 3D, we use an initial inter-particle spacing of ℎ = 1∕32, a smoothing length of 𝜖 = 2ℎ, 
and a time step of Δ𝑡 = 1.5 ⋅ 10−4. In 2D, we use a time step of Δ𝑡 = 1.0 ⋅ 10−4 and assess the convergence of the method for 
ℎ ∈ {1∕32, 1∕48, 1∕64, 1∕80}. We simultaneously increase the number of neighbors per particle in the SPH operators through the 
smoothing length 𝜖 ∈ {3.0ℎ, 3.25ℎ, 3.5ℎ, 3.75ℎ} as required [38]. Both in 2D and in 3D, we use a cutoff radius for the regression 
problem in PCP of 𝑟𝑐 = 3.0ℎ and compute third-order polynomials of total degree. All other parameters remain the same as in the 
simulations of the oscillating droplet.

Fig. 13 shows the results of the 2D simulation at different time points. The iso-surface of the interface is visualized using Paraview 
[40] based on the SDF values. Despite the large deformation of the surface and the change in topology, the computed curvature field 
remains smooth. The PCP method correctly computes negative curvatures before the pinch-off and large positive curvatures shortly 
after the pinch-off. Immediately before the pinch-off, the simulations show a wrinkling of the fluid stalk with alternating positive 
and negative curvature (see Fig. 13, 𝑡 = 0.3175 inset). This is reminiscent of the Plateau-Rayleigh instability, providing a physical 
mechanism by which droplets break up [46]. Quickly, this unstable fluid stalk separates the droplets, as is correctly captured by the 
PCP method forming two separate zero-level sets with locally high positive curvature.

We confirm convergence of the average curvature in the narrow band, 𝜅̄ , at the final time point 𝑡 = 1 for the different resolutions 
ℎ. For ℎ = 1∕32 we find 𝜅̄ = 5.39698, for ℎ = 1∕48 we find 𝜅̄ = 5.61629, for ℎ = 1∕64 we find 𝜅̄ = 5.56708, and for ℎ = 1∕80 we find 
𝜅̄ = 5.54885. The difference in the computed average curvature becomes smaller with decreasing ℎ, indicating ℎ-convergence.

In the 3D simulation, as visualized in Fig. 14, the curvature is the sum of the two principal curvatures, 𝜅 = ∇ ⋅ 𝐧 = 𝜅1 + 𝜅2. The 
distribution of curvature values is therefore different than in 2D. This becomes apparent in the results computed by the PCP method 
for the time points before division, when the initial droplet begins to elongate. In the 2D simulation at 𝑡 = 0.15, negative curvature 
is observed at the central constriction (Fig. 13). In the 3D simulation, curvature remains positive everywhere at 𝑡 = 0.03 (Fig. 14). 
This is due to the dominant positive principal curvature in the 𝑦-𝑧 plane. Negative curvatures appear only after division, when the 
pinched-off tips snap back into the separated droplets.

For a lower viscosity of 𝜂 = 0.15, the snap-back causes visible capillary waves, characterized by curvature oscillating between 
negative and positive values over a short distance. The amplitude of the wave decreases over time as damped by the fluid viscosity, 
until both new droplets become spherical and stationary at the final time. Supplementary Video 3 of the web version of this article 
15

shows the full dynamics of the 3D simulation of the dividing droplets with 𝜂 = 0.15.
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Fig. 13. Visualization of the 2D splitting droplet simulation for the highest resolution (ℎ = 1∕80) at different time points (panel labels). Particles are color-coded by 
pressure (bottom color bar), whereas the interface is color-coded by curvature (top color bar) as computed by the PCP method.

Fig. 14. Particles of the inner fluid phase at different time points (panel labels) of the 3D splitting droplet simulation with 𝜂 = 0.5, color-coded by interface curvature 
(color bar) as computed by the PCP method. The inset on the left shows the initial condition.

5. Conclusions and discussion

We presented a higher-order redistancing scheme for fully Lagrangian particle level-set methods, extending closest-point redis-

tancing [20] to irregularly distributed points. Unlike previous particle level-set methods [26,12], the proposed approach does not 
16

require interpolation from particles to a regular mesh, improving convergence for non-conserved level-set functions. The presented 
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Particle Closest-Point (PCP) method relies on minter regression on Chebyshev-Lobatto subgrids to achieve numerical robustness. We 
have shown that this renders the method more robust to distortion in the particle distribution than regression using monomial bases.

In the PCP method, the particles act as sample points of the level-set function, which is in contrast to colorfield approaches where 
particles directly represent the (smoothed) presence of a certain phase [29,43,47]. Our approach is purely geometric and allows for 
arbitrarily placed query points to be redistanced. Hence, the present approach can be used to initialize geometric quantities of new 
particles, e.g., in multi-resolution methods [48], after remeshing [49,12], and in particle shifting techniques.

We showed that the PCP method provides high-order convergent geometric quantities for basic geometries without requiring 
any connected mesh. We tested the robustness of the approach by studying highly irregular particle distributions and found that 
the high-order polynomial regression in Lagrange basis on unisolvent nodes outperforms monomial regression for irregular particle 
distributions. This enabled the PCP method to converge even for highly ill-conditioned particle distributions, as seen in the spiraling 
vortex case. We also applied the method to more complex problems involving multi-phase hydrodynamics as discretized by SPH and 
DC-PSE [50]. Specifically, we simulated oscillating and dividing droplets in both 2D and 3D, showing converging curvature values. 
This also demonstrated that the proposed particle level-set method can handle changes in interface topology. We have shown how the 
popular SPH particle shifting technique can be integrated with the PCP method in such a way that the shifting does not cause nonphys-

ical interface deformation or wrinkling. Since the PCP method does not imply a specific differential-operator discretization, future 
work can explore its use in conjunction with other meshfree numerical methods, such as moving least squares [51] or generalized 
finite difference methods [52].

Overall, we found that the PCP method copes well with irregular particle distributions, yet we still expect it to require a certain 
homogeneity in the distribution as it benefited from larger smoothing lengths in the SPH operators. We also observed that some 
particles approached the zero contour and remained there. To avoid volume loss, we prevented particles from taking on a true 0 as 
a level-set value and from changing the sign of their level-set values [53]. This clearly is a limitation of the proposed approach and 
some form of particle distribution regularization will eventually be necessary. Another limitation is the non-uniform load distribution 
when implementing PCP methods on parallel computers. This is because the computational cost on a given processor not only 
depends on the number of particles it handles (which can be evenly distributed), but also on the local geometry of the surface (which 
is impossible to predict in a dynamic simulation), through the local regression problems. Nevertheless, the narrow-band character of 
the PCP approach confines the computational effort of the geometric computing framework to the proximity of the surface.

As with most level-set methods, the proposed PCP approach is suitable for continuous, orientable, closed surfaces that do not 
self-intersect. This is the case for any closed surface that possesses a tubular neighborhood. For non-smooth surfaces, the convergence 
order of the method is bounded by the smoothness class of the surface and the degree of the regression polynomials used, whichever 
is smaller. If the smoothness class of the surface is smaller than the used polynomial degree, the leading error term is then determined 
by the derivative order in which discontinuities first appear.

Future work could further optimize the numerical robustness of the method by testing different approaches to choosing particles 
that lie close to the unisolvent nodes of a Chebyshev-Lobatto subgrid. Further research could consider how Lagrangian formulations 
could incorporate interface velocity extensions [21] to reduce the required frequency of redistancing steps. Future work could also 
provide a GPU implementation of the PCP method. The current implementation in OpenFPM could make use of the GPU-accelerated 
data structures that OpenFPM provides [37] once the Eigen library supports GPU solvers.

Future applications of the PCP method can take advantage of the polynomial minter regression that is the defining feature of 
the method. This can, for example, include numerically solving PDEs on surfaces, where constant orthogonal extension is a popular 
solution approach [18,19]. There, the PCP method solves two of the main challenges: It accurately computes the CP transform using 
an orthogonal decomposition of the regression problem, which can straightforwardly be reused to also approximate the values of 
other fields at the computed closest point. Due to its computational efficiency, parallel scalability, and robustness against distortion 
in the particle distribution, the PCP method could therefore be useful in solving PDEs on dynamically deforming surfaces.
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Appendix A. Particle-mesh interpolation

A popular kernel for particle-mesh interpolation is the Λ4,4 kernel [27], which conserves the first four moments and produces 
𝐶4-regular results:

Λ4,4(𝑞) =

⎧⎪⎪⎨⎪⎪⎩

1 − 5
4 𝑞

2 + 1
4 𝑞

4 − 100
3 𝑞5 + 455

4 𝑞6 − 295
2 𝑞7 + 345

4 𝑞8 − 115
6 𝑞9, if 0 ≤ 𝑞 < 1,

−199 + 5485
4 𝑞 − 32975

8 𝑞2 + 28425
4 𝑞3 − 61953

8 𝑞4 + 33175
6 𝑞5 − 20685

8 𝑞6 + 3055
4 𝑞7 − 1035

8 𝑞8 + 115
12 𝑞

9, if 1 ≤ 𝑞 < 2,
5913 − 89235

4 𝑞 + 297585
8 𝑞2 − 143895

4 𝑞3 + 177871
8 𝑞4 − 54641

6 𝑞5 + 19775
8 𝑞6 − 1715

4 𝑞7 + 345
8 𝑞8 − 23

12 𝑞
9, if 2 ≤ 𝑞 < 3,

0, else.

It can be used to evaluate mesh node values as

𝜙𝑖𝑗 =
∑
𝑝

𝜙𝑝Λ4,4

(|𝑥𝑖 − 𝑥𝑝|
ℎ

)
Λ4,4

(|𝑦𝑗 − 𝑦𝑝|
ℎ

)
, (A.1)

in which 𝑖 and 𝑗 are the grid indices for 𝑥 and 𝑦 directions, respectively, and 𝑝 is the index for the particles.

This classic approach to particle-mesh interpolation is designed for intensive fields of conserved quantities, such as density or 
concentration fields [28,54,49]. As level-set functions generally do not obey any conservation laws, the different amounts of contri-

butions individual mesh nodes receive need to be accounted for as soon as the particle distribution becomes irregular. This is done 
by renormalizing the interpolated quantities according to

𝜙𝑖𝑗 =

(∑
𝑝

Λ4,4

(|𝑥𝑖 − 𝑥𝑝|
ℎ

)
Λ4,4

(|𝑦𝑗 − 𝑦𝑝|
ℎ

))−1∑
𝑝

𝜙𝑝Λ4,4

(|𝑥𝑖 − 𝑥𝑝|
ℎ

)
Λ4,4

(|𝑦𝑗 − 𝑦𝑝|
ℎ

)
. (A.2)

Similarly, the particle contributions can be scaled by individual volumes to yield the classic particle representation of an arbitrary 
field as

𝑓 (𝐱) ≈
∑
𝑝

𝑓𝑝𝑊𝜖

(‖𝐱 − 𝐱𝑝‖2)𝑉𝑝 , (A.3)

where 𝑊 is a local, symmetric, normalized kernel function with a smoothing length of 𝜖. The smoothing length determines how 
many particles contribute to a field evaluation, and it strongly influences the convergence properties of particle methods. Generally, 
as the inter-particle spacing ℎ becomes smaller, the smoothing length 𝜖 should also become smaller, yet the ratio 𝜖

ℎ
should grow to 

ensure convergence of the scheme [38].

In Eq. (A.3), 𝑉𝑝 is the volume associated with particle 𝑝, which can be computed as

𝑉𝑞 =

(∑
𝑝

𝑊𝜖

(‖𝐱𝑞 − 𝐱𝑝‖2))−1

. (A.4)

The particle function approximation in Eq. (A.3) of a level-set function can then also be renormalized and subsequently evaluated at 
mesh nodes 𝑖𝑗:

𝜙𝑖𝑗 =

(∑
𝑝

𝑊
(‖𝐦𝑖𝑗 − 𝐱𝑝‖2, 𝜖)𝑉𝑝)−1∑

𝑝

𝜙𝑝𝑊
(‖𝐦𝑖𝑗 − 𝐱𝑝‖2, 𝜖)𝑉𝑝 . (A.5)

In the main text, we compare this classic particle-mesh interpolation scheme with two different kernel functions popular in the SPH 
community. The first is the Wendland C2 kernel [55]

𝑊𝜖 (𝑞) =
⎧⎪⎨⎪⎩
𝜎2𝐷

(
1 − 𝑞

2

)4
(1 + 2𝑞) if 0 ≤ 𝑞 < 2,

0 else,
(A.6)

where the variable 𝑞 is defined as: 𝑞 = ‖𝐱−𝐱𝑝‖2
𝜖

, and 𝜎2𝐷 = 7
4𝜋𝜖2 is a normalization factor ensuring that the kernel integrates to one. 
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The second popular SPH kernel is the Gaussian
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𝑊𝜖 (𝑞) =

{
𝜎2𝐷𝑒

−𝑞2 if 0 ≤ 𝑞 ≤ 3,
0 else,

(A.7)

with 𝑞 defined as for the Wendland kernel, and 𝜎2𝐷 = 1
𝜋𝜖2

the normalization constant.

Appendix B. SPH formulation for multi-phase flow

We discretize both continuum fluids with a set of in total 𝑛𝑝 particles, initialized on a regular Cartesian grid of spacing ℎ covering 
the entirety of the simulation domain. The masses 𝑚𝑖 =𝑀∕𝑛𝑝 of the particles are computed by considering the total mass of the fluids 
𝑀 , resulting from the reference density and the occupied volume.

B.1. Oscillating droplet discretization

To estimate the density of a single particle 𝑖, density summation is performed as

𝜌𝑖 =𝑚𝑖

∑
𝑗

𝑊𝑖𝑗 , (B.1)

where the Wendland C2 kernel from Eq. (A.6) is used as 𝑊𝑖𝑗 =𝑊𝜖(‖𝐱𝑖 − 𝐱𝑗‖2). Simultaneously, the volume of each particle 𝑉𝑖 is 
computed according to Eq. (A.4). Having computed the densities, the pressures are obtained by evaluating Eq. (27) for 𝜌𝑖. At 𝑡0 = 0, 
all velocities are set to 𝐮𝑖 = 𝟎. The change in velocity per particle is determined by the discrete momentum equation as [43]:

D𝐮𝑖
D𝑡

= − 1
𝑚𝑖

∑
𝑗

(
𝑉 2
𝑖
+ 𝑉 2

𝑗

) 𝜌𝑖𝑃𝑗 + 𝜌𝑗𝑃𝑖

𝜌𝑖 + 𝜌𝑗
∇𝑊𝑖𝑗 +

1
𝑚𝑖

∑
𝑗

𝜂

(
𝑉 2
𝑖
+ 𝑉 2

𝑗

) 𝐮𝑖𝑗
𝑟𝑖𝑗

𝜕𝑊

𝜕𝑟𝑖𝑗
+ 𝐅(𝑠)

𝑖
, (B.2)

with 𝑟𝑖𝑗 = ‖𝐫𝑖 − 𝐫𝑗‖2 and 𝐮𝑖𝑗 = 𝐮𝑖 − 𝐮𝑗 . Note that despite the absence of large reference density fractions, we include the smoothing 
effect of the inter-particle averaged pressure term.

To determine the volumetric surface force acting on each particle, we consider two different approaches: (1) based on the present 
PCP method and (2), an approach based on a colorfield function and SPH operators. For both approaches, we require a smooth surface 
representation that distributes the surface tension effect on particles surrounding the interface. To this end, we use the Wendland C2 
kernel in 1D,

𝑊𝜖1𝐷 (𝑞) =
⎧⎪⎨⎪⎩

5
8𝜖

(
1 − 𝑞

2

)3
(1.5𝑞 + 1) if 0 ≤ 𝑞 < 2,

0 else,
(B.3)

in which 𝑞 = |𝜙|
𝜖

. The smoothing length can in principle be chosen independently from the rest of the SPH operators, but we choose 
them to be identical for convenience.

With the level-set SDF, the surface normals, and the curvatures, the discrete surface force on particle 𝑖 is computed as

𝐅(𝑠)
𝑖

= − 𝜏

𝜌𝑖
𝜅𝑖𝐧𝑖𝑊𝜖1𝐷

(
𝜙𝑖
)
. (B.4)

While this surface-tension model allows droplets to split, it cannot describe merging droplets. This is because the surface tension 
according to Eq. (B.4) points towards the interface for positive curvature. Since the PCP method computes geometric quantities of 
the zero iso-contour, this also holds for particles on surrounding iso-contours. This leads to ambient particles remaining between two 
nearby interfaces, preventing their fusion.

In the main text, we compare the level-set approach with the popular colorfield-SPH approach [29]. Colorfield-SPH identifies the 
transition region of the interface and computes normals and curvatures from a color function 𝑐 assigning a unique color to each of the 
fluid phases. Following [56,29], a smooth color value of a particle is obtained as a convolution, or particle function representation, 
of the binary indicator field,

𝑐𝑖 =
∑
𝑗

𝑐
(𝑎𝑏)
𝑗

𝑊𝑖𝑗𝑉𝑗 , (B.5)

where 𝑐(𝑎𝑏)
𝑗

is the binary phase indicator taking values of either 1 on one side of the interface or 0 on the other side, 𝑊𝑖𝑗 here is 
the Wendland C2 kernel, and the volumes 𝑉𝑗 are computed according to Eq. (A.4). The remainder of the colorfield-based geometric 
computing framework is as outlined in Ref. [29], where non-unit surface normals 𝐧̂ are obtained as

𝐧̂𝑖 =
∑
𝑗

(
𝑐𝑗 − 𝑐𝑖

)
∇𝑊𝑖𝑗 , (B.6)

whose magnitude is used as an indicator whether a particle is part of the smoothed interface or not, based on{
1 if ‖𝐧̂𝑖‖2 > 0.01∕𝜖
19

𝑁𝑖 = 0 else.
(B.7)
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Subsequently, narrow-banded unit normals can be obtained as

𝐧𝑖 =
{

𝐧̂𝑖∕‖𝐧̂𝑖‖2 if 𝑁𝑖 = 1,
0 else.

(B.8)

Finally, the curvature is approximated by the SPH divergence of the unit surface normals from all “interface particles”:

𝜅𝑖 =

(∑
𝑗

min
(
𝑁𝑖,𝑁𝑗

)
𝑊𝑖𝑗𝑉𝑗

)−1∑
𝑗

min
(
𝑁𝑖,𝑁𝑗

)(
𝐧𝑗 − 𝐧𝑖

)
⋅∇𝑊𝑖𝑗𝑉𝑗 , (B.9)

where the pre-factor accounts for differing contributions due to particles qualifying as interface particles, or not. In Eq. (26), the 
gradient of the smoothed color function, 𝐧̂𝑖, is interpreted as the product of a regularized delta function and the surface normal, 
yielding the discrete surface force on particle 𝑖 as computed using colorfield-SPH:

𝐅(𝑠)
𝑖

= − 𝜏

𝜌𝑖
𝜅𝑖𝐧̂𝑖 . (B.10)

Regardless of the approach chosen to determine the interfacial forces, PCP or colorfield-SPH, we integrate the positions of the 
particles in time with a second-order predictor-corrector scheme as in Ref. [57] and apply the geometric computations at every 
predictor and every corrector step. We determine the time-step size Δ𝑡 such that it fulfills the CFL-like conditions given in Refs. [23,

43,29]:

Δ𝑡 ≤ min
⎛⎜⎜⎝0.25 𝜖

𝑐 + ‖𝐮max‖2 , 0.125𝜌𝜖2𝜂 , 0.25

√
𝜌0𝜖

3

2𝜋𝜏

⎞⎟⎟⎠ , (B.11)

where we again use ‖𝐮max‖2 = 3.

B.2. Splitting droplet discretization

For the splitting droplet simulation we use the same discretization in time, but change to a different spatial discretization. Instead 
of performing density summation, we evolve the density over time with a diffusion term [58], yielding

D𝜌𝑖
D𝑡

= 𝜌𝑖

∑
𝑗

(
𝐮𝑖 − 𝐮𝑗

)
⋅∇𝑊𝑖𝑗𝑉𝑗 + 𝜉𝜖𝑐

∑
𝑗

2(𝜌𝑖 − 𝜌𝑗 )
𝐫𝑖𝑗
𝑟𝑖𝑗

⋅∇𝑊𝑖𝑗𝑉𝑗 . (B.12)

The magnitude of the density diffusion term is scaled by the parameter 𝜉, which we set to 𝜉 = 0.05 for all simulations.

For the momentum equation, we now use a different discretization of the pressure gradient and an artificial viscosity term [23], 
resulting in

D𝐮𝑖
D𝑡

= −𝑚𝑖

∑
𝑗

(
𝑃𝑖

𝜌2
𝑖

+
𝑃𝑗

𝜌2
𝑗

+Π𝑖𝑗

)
∇𝑊𝑖𝑗 , (B.13)

with artificial viscosity term

Π𝑖𝑗 = − 𝛼̂𝜖𝑐

0.5(𝜌𝑖 + 𝜌𝑗 )

(
𝐮𝑖𝑗 ⋅ 𝐫𝑖𝑗
𝑟2
𝑖𝑗
+ 𝜇̂𝜖2

)
. (B.14)

The parameter preventing zero denominators is chosen as 𝜇̂ = 0.01 for all simulations, and the artificial viscosity parameter 𝛼̂ can be 
linked to the physical viscosity 𝜂 as 𝛼̂ = 8𝜂

𝜌0𝜖𝑐
in 2D and 𝛼̂ = 10𝜂

𝜌0𝜖𝑐
in 3D.

As the external body-force fields in Eqs. (29) and (30) result in velocity fields with non-vanishing divergence, the particle distribu-

tion would become ill-conditioned, with voids developing in the center of the domain. In order to regularize this, and to ensure that 
the local regression problems contain similar information from both sides of the splitting surface, we use the popular particle shifting 
technique (PST) [45]. For PST, the particle-concentration gradient is computed in each time step with a gradient discretization that 
avoids tensile instability [59]:

∇𝐶𝑖 =
∑
𝑗

(
1 + 0.2

(
𝑊𝑖𝑗

𝑊 (ℎ)

)4)
∇𝑊𝑖𝑗𝑉𝑗 . (B.15)

To regularize the particle distribution, the particles are subsequently shifted in the direction opposite to the particle-concentration 
gradient with a maximum displacement limited to 0.02𝜖. The shifting displacement on particle 𝑖 is:

Δ𝐱 =

{
−0.05𝜖2∇𝐶𝑖 if 0.05𝜖2‖∇𝐶𝑖‖ < 0.02𝜖

(B.16)
20

𝑖 −0.02𝜖 ∇𝐶𝑖‖∇𝐶𝑖‖2 else .



Journal of Computational Physics 515 (2024) 113262L.J. Schulze, S.K.T. Veettil and I.F. Sbalzarini

In order to avoid that particle shifting introduces nonphysical deformation or wrinkling of the level-set interface, we compute the 
regression polynomials and create the sample particles at each time step before shifting the particles. After shifting, we redistance 
the shifted particle set using the regression polynomials and sample particles obtained for the unshifted level-set. This ensures that 
PST does not alter the embedded surface, while it still benefits the numerical stability of both the SPH operators and the PCP method 
by regularizing the particle distribution. The same approach can also be used when remeshing particle distributions [49,12].

Appendix C. Appendix figures

We provide additional figures as referred to and discussed in the main text.

Fig. C.15. Standard deviation of the computed curvature values over the particles participating in continuum surface force approximation for different resolutions 
and methods.

Fig. C.16. Mean of the computed curvature values over the particles participating in continuum surface force approximation for different resolutions and methods.

Fig. C.17. Pressure change across the interface of the stationary droplet at 𝑡 = 1.0 as determined by PCP (solid lines) and colorfield-SPH (dashed lines) using different 
21

resolutions ℎ (color, inset legend).
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Appendix D. Supplementary material

Supplementary material related to this article can be found online at https://doi .org /10 .1016 /j .jcp .2024 .113262.
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