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ABSTRACT
Motivation: Many signals in biological sequences are based
on the presence or absence of base signals and their spatial
combinations. One of the best known examples in this regard
is the signal identifying a core promoter—the site at which
the basal transcription machinery starts the transcription of a
gene. Our goal is a fully automatic pattern recognition system
for a family of sequences that simultaneously discovers the
base signals, their spatial relationships and a classifier based
upon them.
Results: In this paper we present a general method for
characterizing a set of sequences by their recurrent motifs.
Our approach relies on novel probabilistic models for DNA
binding sites and modules of binding sites, on algorithms
to learn them from data, and on a support vector machine
that uses the learned models to classify a set of sequences.
We demonstrate the applicability of our approach to diverse
instances, ranging from families of promoter sequences
to a data set of intronic sequences flanking alternatively
spliced exons. On a core promoter data set our results are
comparable to the state-of-the-art McPromoter. On a data
set of alternatively spliced exons we outperform a previous
approach. We also achieve high success rates in recognizing
cell cycle regulated genes. These results demonstrate that
a fully automatic pattern recognition algorithm can meet or
exceed the performance of hand-crafted approaches.
Availability: The software and data sets are available from
the authors upon request.
Contact: roded@tau.ac.il.

1 INTRODUCTION
We initially began this work with the problem of trying
to identify core promoters—the sites at which the basal
transcription machinery starts the transcription of a gene. This
is one of the earliest sequence signals studied in computational
biology dating back to Gary Stormo’s Ph.D. thesis on using
perceptrons in 1981. It remains one of the hardest signals to
find, harder even than the now trendy cis-regulatory signals,
also known as distal and proximal promoters, which serve as
the binding sites of complexes that interact with and modulate
the activity of core promoters. Solving the problem of finding

core promoters is very important as most gene prediction
programs routinely miss the 5’ exon because they are geared
to recognize coding sequence. Among other implications, this
has great impact on the accuracy of the upstream region in
which one looks for cis-regulatory control.

We wished to learn a classifier of the signal by examination
of a collection of positive and negative examples. The basic
idea is to first recognize potentially distinguishing attributes or
patterns and then learn which combinations of these attributes
discriminate positive from negative examples. The idea is
quite natural and there have been several other attempts
along these lines (Pavlidiset al., 2001; Ben-Hur & Brutlag,
2003), mainly focusing on the classification task. The specific
problem of recognizing Eukaryotic core promoters has been
studied by several authors and various approaches have been
reported for it, including neural networks (Reese, 2001), linear
discriminant analysis (Hannenhalli & Levy, 2001) and hidden
Markov models (Ohleret al., 2002). The latter method, called
McPromoter, is the best in class and a hand-crafted classifier
for Drosophila core promoters based on a great deal of human
analysis and insight.

Here we present a unified framework for the task of
recognizing sequence families. The framework consists of
two components: (1) algorithms that recognize unusual
patterns or attributes of a number of types within the training
data set; and (2) a support vector machine that uses the
learned attributes for the classification. Specifically, we learn
sequence motifs that discriminate positive from negative
examples. We also learn discriminative sequencemodules that
consist of spatial combinations of motifs. The learning relies
on novel probabilistic models for these signals. In addition, we
made our system extensible by permitting the introduction of
hand-crafted attributes if desired. These particular choices of
base attribute classes to search over result in a classifier whose
performance on the core promoter problem is comparable
to the state-of-the-art McPromoter (Ohleret al., 2002)
and exceeds that of NNPP (Reese, 2001). Moreover, we
came to realize that the method extends well beyond our
original goal and to illustrate this we apply it here to the
problems of classifying alternatively spliced exons in human,
and recognizing genes that are under cell-cycle control in
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yeast. In comparison with a previous approach for detecting
alternatively spliced exons we are able to show increased
sensitivity of the predictions.

2 METHODS
We tackle the following classification problem: The input
consists of a training set of sequences with positive and
negative examples, and a test set; the goal is to devise a
classifier for the positive examples that will best discriminate
between positives and negatives on the test set. We devise a
two-phase scheme for this problem: In the first phase we use
the training data to learnattributes (features) that are prevalent
in the positive sequences compared to background (negative)
sequences. Theattribute vector of each sequence consists
of three types of attributes: (1) discriminative motifs; (2)
discriminative modules of motifs; and (3) external attributes
that are unique to the specific application. In the second phase
we train a support vector machine (SVM) for the classification
problem using the learned attributes as sequence features. The
two phases are described in detail in the following sections.

2.1 Learning Discriminative Motifs
We model each motif using the standardposition weight
matrix (PWM) representation (Bailey & Elkan, 1994; Roth
et al., 1998), which assumes independence between positions
in a binding site. This model assigns a weight to each
position in the motif and each nucleotiden ∈ {A, C, G, T },
representing the extent to which the nucleotide’s presence in
this position is associated with the motif.

For learning PWMs we adapt the discriminative motif
model of Segalet al. (2002). This model is specified using
a logistic function withp position-specific weightswi[n], one
for each positioni and each nucleotiden ∈ {A, C, G, T },
and a thresholdw0. For a sequence examples, denote its
nucleotide sequence bys.S = s.S1, . . . , s.SL. For a motif
m, denote bys.m the location of occurrence ofm in s, with
the convention that ifm does not occur ins thens.m = −1.
The model assumes that a positive sequence contains exactly
one occurrence of the motif (we extend and refine this model
below) and a negative sequence does not contain the motif.
The location distribution of a motif’s occurrence within a
positive sequence is assumed to be uniform, i.e., the motif
occurs with equal probability at each of theL−p+1possible
positions in the sequence. Positions in which the motif does
not occur (within positive and negative sequences alike) are
modeled using a 0-order Markov model. Under this model,
the probability of a motif occurrence given the sequence is:

P (s.m ≥ 0 | s.S1, . . . , s.SL, θm) =

logit


w0 + log


L−p+1∑

j=1

pm(j) exp{
p∑

i=1

wi[s.Si+j−1]}





whereθm is the set of parameters for the motif,pm(j) =
1

L−p+1 andlogit(x) = 1
1+e−x is the logistic function. (The

reader is referred to (Segalet al., 2002) for more details on
the model and the likelihood derivation.)

We extend the above model to take into account the possible
bias in location of certain motifs along the input sequences.
Such bias was observed previously for promoter regions (see,
e.g., (Tanay & Shamir, 2003; Beer & Tavazoie, 2004)). We
use a simple model for the location preference, in which the
sequence is equally partitioned tok parts (k = 10), each
having a certain probability of containing the motif, and
within each part the probability of occurrence is assumed
to be uniform. For a given motif, we empirically estimate
the distribution of the locations of its occurrences along the
positive sequences (see below). We redefinepm(j) based on
the estimated distribution.

A complicating factor in applying this model to learn the
motif parameters from data is that we do not expect the motif
m to occur in every core promoter sequence, but only in a
fraction of the sequences. Thus, we treat the positive training
data as noisy. Precisely, letT be a set of labels for the training
sequences, specifying for each sequences whether it is a
positive or a negative example. Further denote byT + the
set of positive examples, byT − the set of negative examples,
and byS the set of all nucleotide sequences{s.S|s ∈ T }.
Defineqm ≡ P (s ∈ T +|s.m = −1) to be the probability
that a sequence is a core promoter given that motifm does not
occur in it. This probability reflects the fractionrm of positive

sequences containing the motifm: qm =
(
1 + a

1−rm

)−1

,

wherea is the ratio of negative to positive examples. The
likelihood of the data under this extended model is:

P (T |S, θm, qm) =
∏

s∈T+

{P (s.m ≥ 0|s.S, θm) +

qm(1 − P (s.m ≥ 0|s.S, θm))}
·

∏
s∈T−

{(1 − qm)(1 − P (s.m ≥ 0|s.S, θm))}

The model parameters that need to be learned are the
fraction of positive sequences containing the motif and the
position specific weights for the motif. We seek parameters
that optimize the likelihood of the data.Since this optimization
problem has no closed form solution, we use a conjugate
gradient ascent to find a local optimum in the parameter space.
The starting point for the gradient ascent process has a large
impact on quality of the result; it is found using a method
similar to Barashet al. (2001), which we describe next.

2.2 Initialization of the Motif Model
The initialization of PWMs that correspond to putative
binding sites is done using a three stage process: First,
discriminative “consensus” sequence patterns are identified;
second, these consensus sequences are scored to quantify
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their enrichment in the positive sequences versus the negative
ones; third, occurrences of these patterns along the positive
sequences are used to compute an initial PWM for the
corresponding motifs.

The pattern search is done in an exhaustive manner, scoring
all sequences of length 6-8bp, which are calledseeds. To
score a seed we count its number of occurrences up to one
mismatch in the positive and negative examples. We compute
a hypergeometricp-value for these counts, and retain only
seeds that have an adjustedp-value smaller than 0.01 (we use
a Bonferroni correction to adjust thep-values for multiple
testing). We also compute an enrichmentp-value against a 1-
order Markov model of the positive sequences, and filter seeds
that do not pass the 0.01 significance level. The surviving
seeds are further filtered in a greedy fashion to ensure that no
two seeds are similar in sequence or significantly overlap in
their occurrences.

For each remaining seed, the initial position specific weights
are computed by averaging over all occurrences (up to
one mismatch) of this seed. We use the seed occurrences
also to possibly extend the PWM at each end by positions
whose information content exceeds a threshold. Once the
initial weights are determined, the parameters of the location
distribution are estimated by considering for each positive
sequence only the highest-scoring match of the pattern to the
sequence.

2.3 Learning Discriminative Modules
In addition to the motif-based features, we also learn more
complex patterns, namely, spatial combinations of motifs, or
modules. We seek modules that are abundant in the positive
sequences relative to the negative ones. Learning modules
allows us to identify signals that are too weak in the motif
level, and also to associate motifs whose co-occurrence has a
functional significance.

To this end, we generalized the above motif model to
ordered combinations of two or more motifs. For simplicity,
we describe the model for the case that the module consists of
two ordered motifs. The assumption is that two factors (e.g.,
transcription factors) can interact if and only if the occurrences
of their motifs are at leastdL and at mostdU bases apart. We
further assume a prior uniform distribution on the distance
between the two motifs, although more complex distributions
can be incorporated into the model. The probability that a
moduleM , consisting of a pair of motifs(m1, m2), occurs at
a given positioni of a sequences is therefore:

P (s.M = i|s.S) =

1
dU − dL + 1

P (s.m1 = i|s.S)
i+dU∑

j=i+dL

P (s.m2 = j|s.S)

where

P (s.mk = l|s.S) = logit

(
w

(mk)
0 +

p∑
t=1

w
(mk)
t [s.St+l−1]

)

One can learn this model using the same gradient ascent
approach used for the single motif model. The initialization
of the model is done by enumerating pairs of seeds (consensus
sequences) that occur up to one mismatch within a window
of size w (w = 50). These putative modules are scored
by computing their enrichment in the positive set, using a
hypergeometric test. Significant pairs are then initialized in a
way similar to the initialization of seeds for the motif model.

2.4 Adding External Attributes
Up till now we have described a general framework
for learning discriminative attributes from sequence data.
However, depending on the specific problem, there may be
properties that are important for the classification task and
cannot be expressed as sequence motifs. For instance, Sorek
et al. (2004) show that exons whose length is divisible by
3 are less likely to be constitutive. Thus, in each of the
applications described below we add to our attribute vectors
also attributes that were found to be discriminative for that
specific classification problem.

In addition, we add one more feature to the attribute vectors,
representing the fit of a sequence to a probabilistic model
of the positive sequences versus the negative sequences.
Specifically, we compute a 1-order Markov model for the
positive and negative sequences, and define this feature to
be the log odds of being a positive versus being a negative
example.

2.5 Training the SVM
Support vector machine is a classification method that is
based on finding a separating hyperplane between positive
and negative samples that maximizes the distance (margin)
between the samples and the hyperplane (in case the samples
are not separable, mis-classification errors are combined into
the optimization criterion).

SVMs allow an implicit mapping of the sample vectors
(sequences in our case) into a high-dimensional, non-linear
feature space, in which the samples may be better separated
through the use of a similarity function between pairs of
samples, calledkernel. In our framework the sequence vectors
are mapped into attribute vectors and a linear support vector
machine is applied to those. To optimize internal parameters
of the SVM we use a cross-validation approach. The trained
SVM is used to classify new sequences. In order to measure
our confidence in each prediction, we compute a confidence
score based on the approach of Platt (1999). This is done by
fitting a logistic function to the output of the SVM.
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2.6 Evaluation Measures
Given a test set, denote byTP, FP, TN andFN the numbers
of true positive, false positive, true negative and false negative
predictions. Thesensitivity of a set of predictions is defined
as the percent of positives that are correctly predicted, i.e.,
sens = TP

TP+FN . Thespecificity is defined as the percent of

negatives that are correctly predicted, i.e.,spec = TN
TN+FP .

The false positive rate equals1 − spec = FP
TN+FP . For

some applications (e.g., core promoter identification—see
below) the number of true negatives in the test set far exceeds
the number of true positives. In such cases, we replace the
specificity measure with anadjusted specificity, defined as
aspec = TP

TP+FP .
It is convenient to visualize a range of sensitivities and

specificities obtained by an algorithm using areceiver
operating characteristic (ROC) curve, which depicts the
sensitivity of the predictions as a function of the false positive
rate, or a ROC-like curve that depicts the sensitivity as a
function of(1 − aspec).

3 RESULTS
3.1 Drosophila Core Promoters
As a first test, we applied our method to predict core promoters
in the Drosophila genome.A core promoter is a short sequence
region (about 100bp), flanking the transcription start site,
that serves as a recognition site for the basal transcription
apparatus. Common core promoter elements include theTATA
box at -31 to -26bp, its extension, BRE, at -37 to -32bp, the
initiator, INR, at -2 to +4bp and a downstream element, DPE,
at +28 to +32bp. A fifth element, DRE, was implicated to be
abundant in core promoters in (Ohleret al., 2002).

The training data set that we used was prepared by Ohler
et al. (2002) and includes a set of 1842 core promoters,
1799 intronic sequences and 2859 coding sequences. These
sequences are 300bp long, where for core promoters they
extend from -250 to +50bp. In order to take advantage of this
partition of the sequences,we trained our model twice:first, to
discriminate between core promoters and intronic sequences;
and second, to discriminate between core promoters and
coding sequences. Since coding sequences are very different
from core promoter sequences in their nucleotide content, we
used only external attributes for the second classification task.
We restricted the program to identify the 15 top-scoring motifs
or modules, and retained only significant motifs and modules
whose frequency in the positive set was estimated to be at least
10%. In total, the algorithm identified 13 significant motifs
and 3 significant modules, which are summarized in Table 1.

The 13 motifs that we have learned include four known
core promoter elements: TATA, INR, DRE and DPE. Five of
the other nine motifs that the algorithm learned match motifs
that were learned by MEME (Bailey & Elkan, 1994) on the
same data set (see Table 1). Specifically, Ohleret al. (2002)

applied MEME to the core promoter sequences, where in one
application MEME was applied to the entire 300bp segments
and in the other MEME was applied to shorter segments from
-60 to +40bp. While the first application failed to recover
most of the known core promoter elements, the 10 top-scoring
motifs of the second application included nine of the motifs
that our algorithm identified. We note that both our method
and MEME did not recover the BRE motif, which could imply
that it is underrepresented in the data.

In addition, we learned three significant modules on this data
set, which are shown in Table 1. The first module consists of
motifs 12 and 2.These two motifs were reported to have a high
frequency of co-occurrence incore promotersequences (Ohler
et al., 2002). The second module consists of the DRE element
and motif 6. The third module consists of the INR and DPE
motifs. This module structure is one of the most common
core promoter structures reported in the literature (Butler &
Kadonaga, 2002).

Following Ohler et al. (2002) we also used 14 external
attributes that capture the physical properties of DNA
sequences, and were shown to discriminate between core
promoters and other sequences. Specifically, the computation
of these properties uses experimentally derived tables
on physical properties of di- or tri-nucleotides, such as
bendability, GC-content, conformation etc. Full details on
these properties and their computation can be found in (Ohler
et al., 2001). We used the average value of each property
along the core promoter segment from -60bp to +40bp as a
feature. Note that more complex features can be computed
based on the external attributes, but this was not the focus of
our analysis.

To test the performance of our algorithm we applied it
after training to identify core promoters in the well annotated
Adh region (Ohleret al., 2002). This region is 2.9 Mb long
and contains 92 annotated open reading frames (not included
in our training data). The core promoter predictions were
computed by sliding a window across each of the strands,
calculating its confidence score, and choosing local maxima
of these confidence scores as the predictions. To evaluate
the results we used the same quality measures employed
in (Ohler et al., 2002): sensitivity and adjusted specificity.
ROC-like curves of the results are presented in Figure 1; a
comparison to existing methods is given in Table 2. These
results (Figure 1) also demonstrate the utility of using both
discriminative motifs and modules for the classification task.
We further examined the utility of modeling the location
preference of motifs by comparing our results to a variant
of the algorithm that assumes a uniform distribution for the
location of motif occurrences. The comparison shows a mild
improvement in accuracy when using the extended model (i.e.,
modeling location preference; data not shown).
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Motif/Module Name Consensus Length P-value MEME-Short MEME-Long
1 DRE ATCGATAG 8 1E-33 + +
2 - GGTCACACT 9 3E-23 + +
3 DPE CGGTCG 6 2E-19 + -
4 - CAGCACTG 8 4E-14 + -
5 - CAGCTGGT 8 4E-13 + -
6 - CCGATAAC 8 8E-13 - -
7 - CGACGACG 8 1E-12 - -
8 - TCGCCGCG 8 4E-11 - -
9 TATA CTATAAAA 8 6E-9 + -
10 - CGAGCGGC 8 7E-9 + -
11 INR CTCAGTCG 8 3E-7 + -
12 - GGTATTTT 8 5E-5 + -
13 - TCGGCAGC 8 6E-5 - -
1 12+2 GGTATTTT:GGTCACAC ≤ 50 9E-16 - -
2 DRE+6 ATCGATAG:CCGATAAC ≤ 50 6E-11 - -
3 INR+DPE CTCAGTCG:CGGTCG ≤ 50 7E-4 - -

Table 1. Motifs and modules in Drosophila core promoters. Top: The thirteen top-scoring motifs. For each motif, indicated are its common name (if such is
known), its consensus sequence, itsp-value (Bonferroni corrected) and whether it was identified by MEME, as reported in (Ohleret al., 2002). MEME was
applied both to the original 300bp sequences (Long) and to shorter segments from -60 to +40bp (Short). We consider a motif to match a MEME motif if their
consensus sequences are identical up to one mismatch. Bottom: The three significant modules. The name of each module refers to the motifs that compriseit.
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Fig. 1. Performance on the Adh region, shown as ROC-like curves,
where thex-axis is(1 − aspec) and they-axis is the sensitivity of
the predictions. The solid, dotted, and dashed curves describe the
performance of the algorithm when using both discriminative motifs
and modules, motifs only, and no motifs or modules (i.e., using only
external attributes), respectively.

3.2 Alternative Splicing in Human
As a second test, we applied our method to classify alternative
and constitutive exons. Recently, Soreket al. (2004) have
reported on a method to identify alternatively spliced exons
based on their sequence characteristics rather than on EST
data. Specifically, they have shown that alternative exons tend
to have length divisible by 3 and tend to be conserved along
with their flanking sequence between human and mouse.

Sensitivity Adjusted specificity
MotifBased McPromoter NNPP

20% 79% 69% 14%
35% 53% 51% 10%
50% 33% 40% 6%
65% 20% 29% -

Table 2. Comparison of classification results on the Adh region. For each
sensitivity level, the adjusted specificity of each method is indicated. The
results of McPromoter are adapted from (Ohleret al., 2002). The results of
NNPP are adapted from (Reese, 2001) and were based on a smaller training
set.

We tested our method on the training data reported in (Sorek
et al., 2004), which consists of flanking sequences for 243
alternative exons and 1753 constitutive ones. Following Sorek
et al., we evaluated our results using five-fold cross-validation.
The algorithm learned two to three significant motifs in
each cross-validation iteration, with two motifs consistently
learned in the majority of the iterations: TCCTTTTT and
TTGTCTGT. No modules were learned for this data set.

A ROC curve of the results is presented in Figure 2, where
the specificities and sensitivities represent averages over the
cross validation iterations. In particular, as highlighted in
Table 3, our method compares favorably to that reported by
Soreket al. (2004).

We note that a recent paper by Droret al. (2004) analyzed
this data using an SVM-based classification procedure and
reported on a sensitivity rate of 50%.However, the results here
and in (Soreket al., 2004) are not directly comparable to those
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of Dror et al. (2004), since the latter study used a different
validation method (the data was partitioned into a training and
a test set) and took advantage of additional external attributes
that were not part of the original data of (Soreket al., 2004).
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Fig. 2. ROC curve for the classification of alternatively spliced
exons.

Method Sensitivity Specificity
MotifBased 40.3% 99.4%

(Soreket al., 2004) 32.3% 99.7%

Table 3. Classification results on the exon data set of (Soreket al., 2004).
The specificity and sensitivity percents represent averages over five cross-
validation iterations.

3.3 Cell-Cycle Regulation in Yeast
As a third test of our method, we applied it to recognize cell
cycle regulated genes in yeast according to their promoter
sequences. The assumption underlying this experiment was
that cell cycle regulated genes carry in their promoter
sequences unique signals, corresponding to the binding sites
of cell cycle regulators. To compile a training data set we
downloaded 500bp promoter sequences for all yeast genes.
We classified a gene as cell cycle regulated if it was reported
to have a periodic expression pattern in (Spellmanet al., 1998).
In total, we had 6,323 genes with promoter information, 799
of which were determined to be cell cycle regulated. As a
negative set we arbitrarily selected 800 other genes. We tested
our success rate using five-fold cross validation. A ROC curve
of the results is depicted in Figure 3. We further examined
the motifs that were learned by the algorithm. Throughout
the cross validation iterations the algorithm learned three to
four significant motifs, consistently identifying motifs whose
consensus sequences matched those of the known cell cycle
regulators MBP1, SWI4 and SWI6.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

S
en

si
tiv

ity

1 - Specificity

Fig. 3. ROC curve for the classification of cell cycle regulated genes.

4 CONCLUSIONS
We have presented a general framework for the characterization
and classification of a family of related sequences based
on recurrent sequence motifs and modules of motifs. We
demonstrated several applications of our framework to
identifying core promoters, alternatively spliced exons and
cell cycle regulated genes.There are many possible extensions
to our work, including (1) more refined modeling of the
position preference of a motif; (2) modeling the distance
distribution among motifs in a module; (3) design of kernel
functions for the classification task based on the approach
of (Lanckriet et al., 2004) to provide explicit treatment of
the problem of combining features of different types; and (4)
application of our method to classify other sequence families,
such as core promoters in other species, promoter regions
of tissue-specific genes, and promoter regions of genes with
specific expression patterns.
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