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A B S T R A C T
Homology-driven proteomics aims at exploring the proteomes of organisms with
unsequenced genomes that, despite rapid genomic sequencing progress, still represent
the overwhelmingmajority of species in the biosphere. Methodologies have been developed
to enable automated LC-MS/MS identifications of unknown proteins, which rely on the
sequence similarity between the fragmented peptides and reference database sequences
from phylogenetically related species. However, because full sequences ofmatched proteins
are not available andmatching specificity is reduced, estimating protein abundances should
become the obligatory element of homology-driven proteomics pipelines to circumvent the
interpretation bias towards proteins from evolutionary conserved families.

© 2009 Elsevier B.V. All rights reserved.
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1. Introduction

Proteomics has become an integral part of molecular and cell
biology (reviewed in [1–3]). One, however, should admit that,
despite remarkable progress in both mass spectrometry
technologies and bioinformatics, the significance of proteo-
mics methodologies for biological research has been granted
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by the pace, precision and scope of sequencing and inter-
pretation of genomes.

In a typical LC-MS/MS or MALDI MS/MS experiment
thousands of tandem mass spectra are acquired from the
majority of detectable peptide precursor ions. Computational
post-processing converts MS/MS spectra into peak lists, which
are then submitted to database searches by the dedicated
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software (reviewed in [4–7]). Irrespectively of its algorithmic
basis, the software fulfils twomajor functions: first, it provides
a numerical estimate of the likeness of a particular MS/MS
spectrum to its in silico representation computed from the
database peptide sequence using empirical fragmentation
models. Second, it evaluates their similarity in respect to
random matches and, hence, computes the estimate of
probability that this match is correct. Despite numerous
algorithmic, statistical and bioinformatic limitations, this is
an efficient and generic approach that underpins the majority
of today's proteomics efforts.

We underscore that a typical database search does not really
interpret the spectrum. Instead, it tentatively annotates the
observed fragment ions and ultimately relies upon the scored
similarity between the observed and predicted patterns. Not
surprisingly, a very high specificity of spectrum-to-sequence
correlation requires obeying stringentmatching constraints. Any
discrepancy between the actual and database sequences —
regardless, if it originates from an amino acid substitution,
unexpected post-translational modification or peculiar fragmen-
tationpathway,mightdenythepeptide identificationcompletely.
To produce a hit, the database search would then require more
permissive (and, consequently, much less specific) error-tolerant
searches. Therefore, conventional proteomics approaches favor
the organisms for whom large and accurate database sequence
resources or fully sequenced genome are available.

These organisms, however, are not even remotely repre-
senting the full biosphere complexity, while much can be
learned by exploring a proteomosphere in its entirety. Indeed,
classic biochemical and enzymological techniques help to
purify and assay interesting activities regardless if the exact
sequences of corresponding protein factors are known. The
prospective lines of research include (yet, by far, are not
limited to) the adaptation mechanisms in animals and plants;
infection of plants by viruses and pests; exploring venoms and
natural biofluids as a source of pharmacologically important
enzymes and proteinous bioregulators, among others.

Challenges and expected benefits of expanding the orga-
nismal scope of proteomics have been debated [8–10]. Rapid
increase in size and organismal representation of sequence
databases suggested that a sizable number of proteins from
any free living species should be identifiable on the basis of
their similarity to already known protein sequences. Although
much has been accomplished in both technology develop-
ments and applications, new challenges have emerged. In this
review, we would like to re-access the achievements and
challenges of the homology- driven proteomics and discuss
possible instrumentation and bioinformatic solutions.
Fig. 1 –Matching peptide sequences in homology-driven
proteomics. The choice of optimal identification algorithm
depends on the similarity between analyzed and reference
proteins, as well as the quality of available MS/MS spectra. X
symbol stands for any amino acid residue. The local
dissimilarity regions are boxed.
2. Technical aspects of homology — driven
protein identifications

A typical scenario in homology-driven proteomics considers
the identification of unknown (i.e. not present in a database)
proteins, assuming that a database resource contains dis-
tantly homologous protein sequences from phylogenetically
related species. Therefore, the analysis more commonly hits a
family of homologous proteins in several species, rather than
a unique protein.
Homologous proteins are identified by tandem mass
spectrometry via several data mining strategies (reviewed in
[11]) (Fig. 1).

If the analyzed protein belongs to a conserved protein
family, it is likely to comprise several peptides that are fully
identical to reference sequences in a database. Its cross-
species identification does not differ from the identification of
known (i.e. present in a database) proteins by conventional
(stringent) searching means, albeit the achieved sequence
coverage might be compromised. The more peptides are
sequenced in MS/MS experiments, the larger dissimilarity to
the reference proteins can be tolerated, while protein assign-
ments would be gradually deviating from the specific protein
hit to a larger protein class sharing only a few identical peptide
sequences.

If specifically requested, several conventional algorithms
can also tolerate a single amino acid mismatch within the
compared peptide sequences or disregard the enzyme clea-
vage specificity (Fig. 1). Protein identification still proceeds
with uninterpreted MS/MS spectra. However, because of
alleviated matching specificity constraints, the search space
dramatically increases and lengthens database searches.
Moreover, maintaining the same false discovery rate requires
to employ higher confidence thresholds, which concomitantly
increases the false negative rate.

The concept of sequence tag searches (Fig. 1) assumes that
a single mismatched piece of peptide sequence (regardless of
its length) is adjacent to the N- or C-terminus of the analyzed
peptide, while the rest of its sequence is identical to the
peptide in a database. A peptide sequence tag – a sequence
stretch of, typically, 2 to 4 amino acid residues – could be
deduced from the MS/MS spectrum and, together with m/z of
the corresponding fragment ions, employed in error-tolerant
searches [12]. One part of the tag – either the sequence itself or
one of the two flanking m/z values – is allowed to mismatch.
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Therefore, error-tolerant searches typically produce large hit
lists requiring mandatory manual inspection. The search
specificity could be improved and manual inspection alle-
viated, if hit lists of multiple error-tolerant searches with
several sequence tags produced from each of the fragmented
peptides are combined and evaluated together using a
dedicated statistical model [13]. It is also possible to auto-
matically deduce tags and submit them to database searches
[14,15]. Compared to a single amino acid residue mismatch,
sequence tag searches are far more permissive, although they
do require that matched peptides share a sizable piece of
identical sequence. Importantly, it is usually straightforward
to retrieve short sequence stretches even from marginal
quality MS/MS spectra, which are not amenable to accurate
de novo interpretation. This improves the sensitivity and
sequence coverage of the analysis because it encompasses
more spectra of diverse quality. However, sequence tag
searches are not much used in homology-driven proteomics,
probably because no integrated software is available that
could cover all aspects of the protein identification pipeline
starting from generating tags till estimating the confidence of
database searching hits despite algorithmic solutions have
been developed for each of its individual elements.

Alignments of full length sequences of analyzed peptides
with reference sequences could tolerate multiple mismatches
and sequence stretches identical between the two compared
peptides can be short and scattered along the peptide back-
bone [16] (Fig. 1). Yet, it is not straightforward to obtain
sequences amenable for such comparison. Despite high mass
accuracy and mass resolution of instruments [17] that
advance spectra interpretation algorithms [18–20], de novo
sequencing still represents a considerable challenge. Tandem
mass spectra are reflecting sequences of fragmented peptides,
rather than not representing them accurately and completely
and certain m/z regions are devoid of useful fragments. It is
often possible to retrieve a few pieces of peptide sequence out
of any MS/MS spectrum (reviewed in [10,21]), yet they are
usually ambiguous and composed of intermingling correct
and false stretches. Therefore, de novo interpretation typically
yields a number of sequence candidates (rather than a single
unique sequence), which are usually short (10–15 amino acid
residues), redundant, degenerate and partially incorrect
[22,23]. Their relative location at the backbone of analyzed
protein is not known and, furthermore, peptides sequenced in
the same experiment might originate from different proteins.
Although algorithms for aligning protein sequences and
registering their homology have been perfected by bionfor-
matics over decades [24,25], peptide sequence candidate
produced by automated de novo interpretation of MS/MS
spectra cannot be fed to BLAST or FASTA engines directly
without compromising search specificity. Several database
searching tools, which handle large numbers of de novo
sequence candidates have been developed [26–29]. Some of
them are web-accessible, like (MS BLAST) [16,30] or FASTS [29],
or are now available as a part of commercial software
packages (ProBLAST from Applied Biosystems [31]; MS BLAST
option in BioTools from Bruker Daltonics).

Sequence similarity searches employ peptide sequence
candidates (rather than raw MS/MS spectra) and are not
influenced directly by the instrument type. It is only important
that sequence predictions are reasonably accurate (although
several sequence variants per each interpreted spectrum are
allowed) and de novo sequencing output is formatted into a
query string according to a few simple conventions. Large
search queries are allowed: while they could contain candi-
date sequences deduced from an unlimited number of
interpreted spectra, their full sizes are limited by 150,000
amino acid resides in total, which is roughly equivalent to a
BLAST searchwith 16.5 MDa protein chimera [30]. Therefore, it
has become technically possible to combine automated
sequence similarity searches with sensitive LC-MS/MS analy-
sis, which used to produce thousands of MS/MS spectra per
each run. Now it might be also practical to subject all acquired
spectra to de novo interpretation: besides sequence similarity
searches, de novo sequencing also assists in validating
“conventional” peptide hits having marginal statistical con-
fidence [32,33].

However, we see several reasons why “full de novo sequen-
cing” approach, if taken carelessly, might be misleading.

One of the most common concerns is that poor quality MS/
MS spectra might yield fully incorrect interpretations and, to
control the false positive rate, such spectra should be removed
prior to database searches by some quality filter [34,35]. This,
however, appears to be less of a danger. Any de novo
sequencing software offers an arbitrary quality score, which
reflects the confidence of produced sequence candidates.
Using computational experiments with simulated spectra
datasets, it is relatively straightforward to determine arbitrary
cut-off scores, below which the produced sequences have
almost no chance of hitting correct target proteins in error-
tolerant alignments (although even very high de novo quality
scores do not guarantee that this peptide(s) will produce a hit).
Hence, unreliable sequence candidates could be sorted out
based on their arbitrary de novo confidence and, if necessary,
added back to the search query later to increase the sequence
coverage of already made confident hits or to consider a few
more marginal alignments.

Second, by far more serious, concern relates to the reduced
matching specificity of sequence similarity searches. A large
fraction of MS/MS spectra acquired in a typical LC-MS/MS run
under automated data-dependent control could be directly
attributed to peptides originating from background proteins—
trypsin, human keratins, cell medium components, etc and
even more of them could be matched via error-tolerant
searches [36,37]. While peptides from background proteins
do not harm conventional protein identifications, they
strongly affect sequence similarity searches by hitting a very
large number of totally unrelated proteins towhich theymight
bear some local similarity. For example, trypsin autolysis
products used to hit a multitude of serine proteases of diverse
functional specificity and species of origin. Because of low
complexity sequence stretches, keratin peptides could match
almost any protein in a database with varying degree of
statistical confidence. We note that conventional database
searches, performed prior to de novo interpretation of spectra
only remove a relatively small fraction of background spectra
[36] with little effect on sequence similarity hit lists.

As a practical solution, it was proposed to subtract such
MS/MS spectra by comparing them to a library of non-
annotated background spectra, compiled from control and
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blank LC-MS/MS runs [36,38]. Spectra screening software is
available as a stand-alone application, or at the public web
server [30]. Depending on the relative abundances of back-
ground and target precursors, filtering removes up to a half of
the total number of acquired MS/MS spectra, while no high
quality spectra originating from bona fide target proteins are
lost. Importantly, filtering does not rely on sequence database
resources and exactly the same algorithm equally applies for
processing spectral datasets acquired from known or
unknown proteins [36].

We underscore that sequence similarity searches tolerate
the compromised accuracy of candidate sequences and
therefore no chemical modification of peptides that support
de novo interpretations [39–44] is required in most cases.
Therefore, the same data acquisition and sample processing
routines could be employed at the uncompromised detection
sensitivity, regardless if the analyzed sample might contain
known or unknown proteins. For most efficient analysis,
multiple datamining routines could be combined into a
“layered” proteomics pipeline, which supports flexible manip-
ulation with individual MS/MS spectra [28,30].

Taken together, it is reasonable to assume that major
technical issues in homology-driven protein identifications
have now been addressed. Convenient workable software
solutions for data pre-processing, de novo sequencing and
sequence-similarity searches are available and could be
integrated into automated proteomics pipelines supporting
any instrument type with adequate MS/MS capabilities.
3. Scope and applications of homology
driven proteomics

The success rate of cross-species identifications depends on
three major factors: first, on the phylogenetic distance
between the analyzed and the reference organism(s); on
the proteome coverage of the reference organism in a
database and on the number of peptides sequenced from
the analyzed protein. Computational modeling suggested
that, using a dataset of 10 to 15 de novo sequenced peptides,
sequence similarity searches should be able to match 50 to
60% of proteins having at least 50% of the sequence identity
with the reference proteins [45]. Furthermore, because of
relatively small phylogenetic divergence between individual
species and availability of several completed genomes, it
should be possible to identify N75% of proteins within
mammalian and plant kingdoms on the proteome -wide
scale [45,46]. LC-MS/MS sequencing of 10 to 20 precursors is
usually unproblematic if the target protein is present at the
low picomole level and therefore the above estimates of
proteome coverage scope are certainly within the practical
reach.

We note, however, that in phylogeneticaly distant species
the similarity of protein sequences does not necessarily imply
their functional similarity. Therefore, using homology- driven
protein identifications for ontology annotations of corre-
sponding protein products should be performed with great
caution [47,48].

There are numerous examples of successful application of
sequence-similarity identifications in plant and animal biol-
ogy, microbiology, toxicology, environmental studies, to
mention just a few areas (reviewed in [49–51]). Whereas
most abundant proteins typically come from conserved
protein families and are readily identified by conventional
searches, in our experience sequence similarity searches
usually add more than 25% of new identifications [46,52–58].
By matching more peptides, sequence-similarity searches
increase the sequence coverage and identification confidence
of hits made by conventional searches, which is helpful in
distinguishing protein isoforms and/or individual members of
protein families.

Among wild-bred species pronounced polymorphism of
protein sequences occurs [59]. Even in a digest of the same
protein spot, it is not uncommon to detect several sequence
variants of the same tryptic peptide, which differ by a single
amino acid between themselves and between the database
reference sequence (see, for example [55]). Although polymorph-
ism effectively precludes their identification by conventional
database searching means, registering sequence commonalities
by error-tolerant searches is usually unproblematic.

In conclusion, we note that the progress in EST and
genomic sequencing enhances the scope and practical
usability of homology-driven proteomics, rather than mak-
ing it redundant and obsolete. First, since novel reference
genomes appear from previously underrepresented phylo-
genetic kingdoms, more and more species and classes
become amenable to proteomic characterization [9]. Second,
homology-driven proteomics effectively bridges reference
genome sequences with the natural sequence variability of
wild living species.
4. Protein quantification: obligatory element of
a homology-driven proteomic pipeline

Identification confidence is not directly affected by the
available protein quantity and several database search
engines disregard the actual abundance of precursor and/or
fragment ions, solely operating with normalized peak inten-
sities.While analyzing proteinmixtures, we also presume that
expert consideration of physico-chemical properties of pro-
teins and fine tuning data acquisition and database searching
settings will result in adequate protein representation in the
hit lists. If necessary, relative quantities of individual protein
components could be estimated using the abundances of
matched peptide precursors or by MS/MS spectral counts or
related indices (reviewed in [1,60–62]).

This, however, is only true if complete sequences of
analyzed proteins are present in a database. In a mixture of
known and unknown proteins conventional searches will only
identify the former, despite the latter proteinmight constitute
themajor component. In the case of stringent searches, higher
abundance of precursor peaks typically translates into a better
quality of corresponding MS/MS spectra and they are more
often matched, rather than falsely mismatched. However, if
the analysis identifies a protein with unknown sequence by a
few matched peptides, it is quite common that several high
quality spectra still remain unmatched. It is not possible to tell
if they originate from an uncovered piece of sequence of the
already identified protein, or they indicate that major protein



Table 1 – Proteins identified in a spot from Fagus sylvatica by MASCOT and MS BLAST searches

Protein Accession
no.

MASCOT search⁎ MS BLAST search

Total
Score

Matched
spectra

Unique
peptides

Sequence
coverage, %

Total
Score

Matched
spectra

Unique
peptides

GTM γ tocopherol methyltransferase AAX63740 160 4 4 13
Pdx Pyridoxine biosynthesis protein NP_195761 110 2 2 8 82 4 1
LHCP Light harvesting chlorophyll

a/b binding protein
CAA48410 73 2 2 8

USP Universal stress protein (USP) BAA97516 68 1 1 4
RBP Putative RNA binding protein NP_181084 269 18 4

⁎Searches were performed against NCBI; 1 missed cleavage; mass tolerance: precursor ions: 10 ppm; fragment ions: 0.6 Da; fixed modifications:
carbamidomethyl (C); variable modifications: acetyl (N-terminal), oxidation (M), phosphorylation (S,T,Y).
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component(s) remain unidentified by all database searching
means.

The case study presented below exemplifies the problem
severity. The abundance of a silver-stained spot with apparent
MW of 38.1 kDa and pI 5.42 visualized on a two-dimensional
gel of the protein extract from leaves of the European beech
Fagus sylvatica was decreased upon infecting the tree with
root pathogen Phytophthora citricola. The corresponding spots
isolated from control and infected plants were excised from
the gels, digested with trypsin and analyzed by LC-MS/MS on a
hybrid LTQ Orbitrap mass spectrometer. MASCOT searches
produced four confident cross-species hits (Table 1), while
homology-driven proteomics pipeline [30] additionally identi-
fied an RNA binding protein based on its homology to known
Arabidopsis thaliana and Oryza sativa proteins (Fig. 2).
Fig. 2 – Identification of RNA binding protein in the same spots tha
automated de novo sequencing and MS BLAST search. Scores w
(HSPs) by the BLAST engine.
There is no robustmethodology to determine theabundance
of proteins in a mixture without internal standards [63,64].
Therefore we further followed the idea of Silva et al [65] and,
solely as a ballpark estimate, inferred the relative amounts of
proteins from the normalized intensities of most abundant
precursors matched to correspondent sequences (Fig. 3).
According to our estimate, RNAbindingprotein – only identified
by MS BLAST searches – represented a major component of the
spot, which was further supported by a large difference in MS/
MS spectra count indices, which was 4.5 for peptides from RNA
binding protein compared to 1 for peptides from other proteins
identified in the spot digest. Its abundance dropped following
the pathogen infection and is probably responsible for the
apparent decrease in the spot intensity, despite the abundance
of other minor components increased (Fig. 3).
t were excised from control and treatment gels by LC-MS/MS,
ere assigned to corresponding high scoring segment pairs



Fig. 3 –Differences in the relative abundance of five protein components identified in the silver stained spot (designated with
the pointer at the inset images) in protein extracts of control and infected plants. Full protein names are provided in Table 1.
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Hence, even qualitative interpretation of the LC-MS/MS
analysis ultimately requires to determine if it identified the
major component(s) in the sample, or only minor, yet
relatively conserved proteins were hit. In our experience,
this is the most serious bottleneck of the current homology-
driven proteomics efforts. Effectively, it requires quantifying
proteins with unknown sequences and relating most abun-
dant, yet unmatched, precursors to identified components.
Although it might be impossible to offer a generic solution, we
could think of several empirical approaches partially addres-
sing these issues. For example, quantitative comparison of
peptide profiles acquired in several independent experiments
might reveal coherent changes in abundances of certain
precursor peaks [66], irrespectively if they have (or have not)
been matched to identified proteins. Alternatively, large
species-specific libraries of non-annotated reference MS/MS
spectra could be composed by the systematic analysis of
samples with known content and used for identifying newly
acquired spectra independently of sequence database
resources [36,38,67,68].
5. Conclusions

Homology-driven proteomics is a mature field that enjoys
steady expansion of its application scope. By inferring
identities of unknown proteins, it provides insight into the
molecular mechanisms of complex biological phenomena
that were previously addressed by descriptive phenomenolo-
gical approaches. It has become possible to determine the
representative molecular composition of proteomes of biolo-
gical fluids, tissues or organs obtained from a multitude of
free-living species and quantify their dynamic response to a
variety of endogenous or environmental stimuli. The techni-
ques supporting sequence similarity identifications are gen-
eric and can be incorporated into any proteomics pipeline. We
anticipate that, in meantime, sequence similarity identifica-
tions should become routine and commonly used by proteo-
mics laboratories studying organismswith unknown genomes
and/or wild-bred species. The reviewing policies might
request the obligatory use of both stringent and error-tolerant
searches as a prerequisite of adequate representation of the
reported proteome composition.
It has also become obvious that homology driven protein
assignments should be supported with some quantitative
evidence, since sequence-similarity interpretations are inher-
ently biased towards matching known or most conserved
proteins. On the positive side, massive efforts in developing
label-free quantifications methods are on-going and corre-
sponding software algorithms for unbiased extraction of
precursor intensities will be of considerable value for validat-
ing homology-driven identifications.

Despite apparent significance of homology-driven proteo-
mics for pharmacological, environmental, conservational,
agricultural, among many other fields of biological science,
there might be some less explored, yet intriguing opportu-
nities. In particular, it seems exciting to build a tighter alliance
with developmental and evolutionary biology. In our (may be,
somewhat biased) opinion these fields “stagnate” within the
realm of established model organisms amenable to genetic
manipulations. Yet, it is conceivable that studying the cellular
molecular machinery on a wider organismal scope might
dramatically improve our understanding of the evolution and
adaptation mechanisms.
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