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A B S T R A C T

We present a consistent mesh-free numerical scheme for solving the incompressible Navier–Stokes equations.
Our method is based on entropically damped artificial compressibility for imposing the incompressibility con-
straint explicitly, and the Discretization-Corrected Particle Strength Exchange (DC-PSE) method to consistently
discretize the differential operators on mesh-free particles. We further couple our scheme with Brinkman
penalization to solve the Navier–Stokes equations in complex geometries. The method is validated using the
3D Taylor–Green vortex flow and the lid-driven cavity flow problem in 2D and 3D, where we also compare our
method with hr-SPH and report better accuracy for DC-PSE. In order to validate DC-PSE Brinkman penalization,
we study flow past obstacles, such as a cylinder, and report excellent agreement with previous studies.
1. Introduction

Mesh-free methods discretize continuous fields over a set of points
(particles, or nodes) at given locations without any connectivity con-
straints. Removing the requirement of a structured or unstructured
mesh is advantageous to the mesh-free methods when it comes to
resolution refinement and modeling flows around complex geometries,
or deforming geometries.

Since the introduction of the Smoothed Particle Hydrodynamics
(SPH) method by Gingold and Monaghan [1], and by Lucy [2], mesh-
free methods have improved rapidly. New methods were developed,
including Vortex Particle Methods [3–5], the Generalized Finite Dif-
ference Method [6], Diffuse Element Method (DEM) [7], the Element-
Free Galerkin Method (EFGM) [8], the Reproducing Kernel Particle
Method (RKPM) [9], the ℎ − 𝑝 Cloud Method [10], the Partition
of Unity Method [11,12], the Meshless Local Petrov–Glarkin Method
(MLPG) [13], and Particle Strength Exchange (PSE) [14,15].

In fluid mechanics, the use of particles methods in the Lagrangian
frame of reference has been particularly successful for both weak
and strong forms, because the numerical stability of the advection
operator is better in the Lagrangian frame of reference than in the
Eulerian one. Therefore, mesh-free methods are particularly advan-
tageous in advection-dominated problems [16–24]. Further, particle
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methods perform well for fluid–structure interaction simulations with
large deformations [25–27] However, advecting particles can lead to
irregular particle distributions, causing the system to lose the ability to
approximate continuous fields accurately. Particle clustering/spreading
is avoided in remeshed particle methods [28] or in Eulerian mesh-free
methods [29].

Solving continuous partial differential equations in space and time
requires a computational approach that discretizes and evaluates the
spatial derivatives of a function consistently, accurately, and com-
putationally efficiently. In mesh-free methods, the spatial function
is discretized over uniformly or irregularly distributed particles. A
unified approach to approximate the spatial derivative of any degree
was presented by [15]. The work is based on a generalization of
the integral strength exchange (PSE) originally proposed by Degond
and Mas-Gallic [14,30] to approximate the Laplacian in convection–
diffusion problems. The PSE operators are derived by first constructing
an integral operator followed by discretizing the integral over the
points (particles) positions often using mid-point quadrature.

As a result of this two-step procedure, PSE operators entail two
errors: the mollification error and the discretization error. Hence, for
the discretized operator to be consistent, it requires that the inter-
particles spacing ℎ and the operator kernel width 𝜖 satisfy the condition
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𝑐 = ℎ
𝜖 ≤ 1, known as the ‘‘overlap condition’’ [31]. As a consequence,

for small kernels size a large number of particles are required. This con-
straint of PSE can be relaxed by using the discrete moment conditions
to derive the operators instead of the continuous ones.

Such discretization-corrected kernels were first introduced by Cot-
tet et al. [32] for kernel interpolation and have been widely used
since then [33–35]. This led to the development of the generalized
Discretization-Corrected PSE method (DC-PSE) by Schrader et al. [31],
which directly derives the kernels from the discrete moment conditions
evaluated on the given, possibly irregular particle distribution. This not
only renders DC-PSE numerically consistent on (almost1) any particle
istribution, but also relaxes the overlap condition to 𝑐 = ℎ

𝜖 ∈ 𝑂(1)
bounded by any constant (not necessarily 1). In other words, DC-PSE
only requires that 𝜖 → 0 as ℎ → 0.

These advantages come at the cost of having to solve a small linear
system of equations for every particle. When using the Lagrangian
frame of reference, the DC-PSE operators need to be recalculated for
every particle/point. It has been shown, however, that this additional
computational cost can be amortized by the gain in accuracy and
stability for advection-dominated problems, since remeshing is less
often required and larger time steps can be taken [31]. Alternatively,
the computational cost can be kept low while maintaining the order of
accuracy by initializing the particles on a Cartesian mesh, remeshing
after every time-step or every several time steps, depending on the
nature of the flow [20,28].

The DC-PSE was used for second order approximation of the Lapla-
cian on a cartesian grid [35], Singh et al. [36] used the DC-PSE
operators to simulate the Stokes flow on a spherical ball and simulated
Lagrangian Active fluid in two dimensional box, Bourantas et al. [29]
used the DC-PSE operator in the Eulerian frame of reference to sim-
ulate two dimensional fluid flow in complex geometries by solving
the velocity vorticity coupling formulation with velocity-correction
method.

To our knowledge, DC-PSE has so far not been used for solving
three-dimensional unsteady viscous flow problems, despite the robust-
ness that the method is known to have in both Eulerian and Lagrangian
frames of Ref. [29].

The most common way of modeling incompressible viscous flow
is by the incompressible Navier–Stokes equations (INS), where the
speed of sound is assumed to be infinite. The INS is a set of elliptic–
parabolic partial differential equations, which prove relatively difficult
to solve in complex geometries. The difficulty mainly arises from the
pressure Poisson equation, which enforces the divergence-free velocity
field. This can be avoided when using the compressible Navier–Stokes
equations (CNS) as a model, assuming the speed of sound to be finite,
but large. This so-called ‘‘weak compressibility’’ approximation replaces
the elliptic pressure Poisson equation by a parabolic one governing
the density evolution (and the density pressure relationship). The CNS
equation are straightforward to solve using explicit time integration,
but approaching incompressible flow conditions requires the speed of
the sound to be at least one order of magnitude larger than the largest
convective velocity, enforcing the use of small time steps.

The Entropically Damped Artificial Compressibility (EDAC) formu-
lation was introduced by Clausen [37] to allow explicit simulation of
the INS equations. However, The EDAC formulation is not the only
method of introducing dissipation to mitigate pressure oscillations.
Ohwada and Asinari [38] suggest the incorporation of a dissipation
term to enhance the numerical accuracy of solutions derived from ar-
tificial compressibility method. The Kinetically Reduced Local Navier–
Stokes (KRLNS) [39], which establishes a simplified equation for grand

1 DC-PSE fails on particle distributions where particle positions in the
eighborhood are linearly dependent. In such cases, the linear system for the
ernel weights does not have full rank and cannot be solved.
2

potential, and the General Pressure Equation (GPE) [40,41] that em-
ploys an identical diffusion term. In this study, we focus on the EDAC
formulation as the other formulations are similar to EDAC.

An advantage gained from the EDAC formulation is that the EDAC
equations are parabolic as a result of introducing a damping term in the
pressure evolution equation. This damping term reduces the velocity
divergence noise. This effectively avoids the computationally expen-
sive solution of a global Poisson equation, which would be required
to impose the incompressibility constraint using, e.g., projection or
velocity-correction methods [42,43]. Here, we extend DC-PSE in both
the Eulerian and Lagrangian frames of reference with an Entropically
Damped Artificial Compressibility (EDAC) formulation.

In this work the EDAC formulation is applied to the DC-PSE oper-
ators and coupled with Brinkman penalization for the simulations of
incompressible viscous fluid flow with different boundary conditions.
The motivation of this paper is to show firstly, that the EDAC formula-
tion despite its simplicity, can produce accurate results when compared
to the standard INS equations. Secondly, to show the that the DC-PSE
method converge with the desired order and provide a robust platform
for solving fluid flow problem in 2D and 3D.

The paper is organized as follows. In Section 2 we outline the EDAC
governing equations as well as the Brinkman penalization coupling. In
Section 3 we revisit the DC-PSE operators formulation and kernel. In
Section 4 we present the numerical benchmarks, illustrating the con-
vergence rate and the accuracy of the proposed scheme in both simple
and complex geometry with different boundary conditions (in/out flow,
periodic and no-slip). Finally we close with the conclusion and future
work in Section 5.

2. The governing equations of the EDAC formulation

Clausen [37] introduced the EDAC method to allow explicit simu-
lation of the incompressible Navier–Stokes equations. The EDAC for-
mulation introduces an evolution equation for the pressure 𝑝, which
s derived form the thermodynamics of the system with fixed density
, the EDAC method converges to the INS at low Mach numbers
nd is consistent at low and high Reynolds numbers. As a result, the
omentum equation and the pressure evolution equation can be solved

xplicitly in a Lagrangian frame of reference,

𝐷𝑢𝑖
𝐷𝑡

= −
𝜕𝑝
𝜕𝑥𝑖

+
𝜕𝜏𝑖𝑗
𝜕𝑥𝑗

(1)

𝐷𝑝
𝐷𝑡

= −𝑐𝑠2𝜌𝑜
𝜕𝑢𝑖
𝜕𝑥𝑖

+ 𝜈
𝜕2𝑝
𝜕𝑥𝑖𝑥𝑖

, (2)

or in an Eulerian frame of reference, in which

𝜌
𝑑𝑢𝑖
𝑑𝑡

+ 𝑢𝑗
𝜕𝑢𝑖
𝜕𝑥𝑗

= −
𝜕𝑝
𝜕𝑥𝑖

+
𝜕𝜏𝑖𝑗
𝜕𝑥𝑗

(3)

𝑑𝑝
𝑑𝑡

+ 𝑢𝑖
𝜕𝑝
𝜕𝑥𝑖

= −𝑐𝑠2𝜌𝑜
𝜕𝑢𝑖
𝜕𝑥𝑖

+ 𝜈
𝜕2𝑝
𝜕𝑥𝑖𝑥𝑖

, (4)

𝜏𝑖𝑗 = 𝜇
(

𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗
𝜕𝑥𝑖

− 2
3
𝛿𝑖𝑗

𝜕𝑢𝑘
𝜕𝑥𝑘

)

, (5)

where 𝐷⋄
𝐷𝑡 = 𝜕⋄

𝜕𝑡 +
(

𝑢 ⋅ ▽
)

(⋄) is the material derivative, 𝑢 is the velocity
vector field, 𝑝 is the pressure field, 𝑡 is time, 𝜏 is the shear stress, 𝜇 is
the dynamic viscosity, and 𝑐𝑠 is the speed of sound.

Eq. (1) is the momentum conservation equation, where Eq. (2)
represent the EDAC formulation of the pressure evolution, which in-
troduces entropy by damping the pressure oscillation. The derivation
along with the physical model of the EDAC formulation is described
in detail in [37]. Briefly, the derivation starts from the compressible
Navier–Stokes flow equations from which the pressure evolution equa-
tion is derived using mass conservation and entropy balance along
with the thermodynamics constitutive relations. The resulting equation
contains the temperature as a dependent variable. This requires an
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additional constraint on entropy to close the system. According to
Clausen, the temperature-dependence can be eliminated by considering
the density as a function of pressure and temperature in order to
dampen the density fluctuation. This is achieved by assuming a differ-
ent thermodynamic relationship, where the temperature is a function
of pressure only. With additional simplification, the pressure evolution
equation Eq. (2) results. As a clear advantage, this model does not re-
quire the equation of state to be solved implicitly, because the pressure
is explicitly evolved according to Eq. (2).

In incompressible Navier–Stokes fluid mechanics, the flow is
uniquely described by the Reynolds number 𝑅𝑒 = 𝑈𝜌𝑜𝐿∕𝜇 and the

ach number 𝑀𝑎 = 𝑈𝑜∕𝑐𝑠. Herein, 𝐿 is the characteristic length, 𝜌𝑜
is the reference density, and 𝑈𝑜 is the reference velocity.

Non-dimensional variables are obtained from the physical variables
as,

𝑥∗𝑖 =
𝑥𝑖
𝐿𝑜

, 𝜌∗𝑖 =
𝜌𝑖
𝜌𝑜

, 𝑡∗ =
𝑡𝑈𝑜
𝐿𝑜

, 𝑢∗𝑖 =
𝑢𝑖
𝑈𝑜

, 𝑝∗𝑖 =
𝑝𝑖

𝜌𝑜𝑈𝑜
2
, (6)

where the superscript (∗) indicates the non-dimensional quantities.

2.1. The EDAC formulation and Brinkman penalization

For applications requiring numerical simulations of viscous flows
around or inside complex geometries, the previous equations can be
coupled with Brinkman penalization as described [44]. The compu-
tational domain is implicitly penalized using an indicator function 𝜒
marking the regions where the solid geometry 𝑂 is located

𝜒(𝑥) =
{

1 if 𝑥 ∈ 𝑂,
0 otherwise. (7)

A penalty term is added to the momentum equation (implicit penal-
zation). The penalized conservation of momentum equation is:

𝐷𝑢𝑖
𝐷𝑡

= −
𝜕𝑝
𝜕𝑥𝑖

+
𝜕𝜏𝑖𝑗
𝜕𝑥𝑗

−
𝜒
𝜂
(𝑢𝑖 − 𝑢(𝑜𝑞)𝑖) (8)

𝐷𝑝
𝐷𝑡

= −𝑐𝑠2𝜌𝑜
𝜕𝑢𝑖
𝜕𝑥𝑖

+ 𝜈
𝜕2𝑝
𝜕𝑥𝑖𝑥𝑖

−
𝜒
𝜂
(𝑝 − 𝑝(𝑜𝑞)𝑖). (9)

Here, 𝑢(𝑜𝑞)𝑖 is the velocity of the solid body, 𝑝(𝑜𝑞)𝑖 is the pressure in the
solid body, 𝜙 is the porosity, and 𝜂 = 𝛼𝜙 is the normalized viscous
permeability. Note that 0 < 𝜙 ≪ 1 and 0 < 𝜂 ≪ 1.

To improve the numerical accuracy of the rate of change of the
momentum, 𝜒 is regularized using a polynomial step function. This
regularized step function is a function of the signed distance to the
solid surface, 1 inside the solid and smoothly decaying to 0 at the
interface [44].

3. Discretization-Corrected Particle Strength Exchange

Discretization-Corrected Particle Strength Exchange (DC-PSE) is a
numerical method for consistently discretizing differential operators on
Eulerian or moving Lagrangian particles [31]. It is a particle method
derived as an improvement to the Particle Strength Exchange (PSE)
method [14,15]. As all particle collocation methods, it is based on
the following mollification or approximation of a sufficiently smooth
function 𝑓𝜖(𝑥⃗) with a kernel function 𝜂()

𝑓 (𝑥⃗) ≈ 𝑓𝜖(𝑥⃗) = ∫𝛺
𝑓 (𝑦)𝜂𝜖(𝑥⃗ − 𝑦)d𝑦, (10)

where 𝜖 is the smoothing length or the length of the kernel for the
support particles. Differential operators are derived using Taylor series
expansion such that the operators are consistent for a desired order of
convergence. For example in two dimensions, the operator 𝐷𝑚,𝑛 can be
approximated as 𝑄𝑚,𝑛 such that

𝑄𝑚,𝑛𝑓
(

𝑥⃗
)

= 𝐷𝑚,𝑛𝑓
(

𝑥⃗
)

+ 
(

ℎ
(

𝑥⃗
)𝑟) . (11)
3

𝑝 𝑝 𝑝 k
mposing this results in integral constraints also known as the continu-
us moment conditions for the kernel function 𝜂(), leading to symmetric
ernels with support  (𝑥𝑝) such that

𝑚,𝑛𝑓
(

𝑥𝑝
)

= 1
𝜖
(

𝑥𝑝
)𝑚+𝑛

∑

𝑥𝑞∈
(

𝑥𝑝
)

(

𝑓
(

𝑥𝑞
)

± 𝑓
(

𝑥𝑝
))

𝜂

(

𝑥𝑝 − 𝑥𝑞
𝜖
(

𝑥𝑝
)

)

. (12)

However, the kernels used for PSE are inconsistent on irregular par-
ticle distributions due to the residual quadrature error resulting from
discretizing the continuous moment conditions.

DC-PSE was developed to avoid the quadrature error by directly
satisfying discrete moment conditions on the very particle distribution
given. This is done by solving a linear system locally to each particle in
order to determine the kernel weights such that they locally satisfy the
discrete moment conditions to the desired order of convergence. The
most commonly used DC-PSE kernels are of the form

𝜂(𝑥⃗) =

{

∑𝑖+𝑗<𝑟+𝑚+𝑛
𝑖,𝑗 𝑎𝑖,𝑗𝑥𝑖𝑦𝑗𝑒−𝑥

2−𝑦2
√

𝑥2 + 𝑦2 < 𝑟𝑐
0 otherwise,

(13)

here the polynomial coefficients 𝑎𝑖,𝑗 are determined from the discrete
oment conditions

𝑖,𝑗 (𝑥⃗𝑝
)

=

⎧

⎪

⎨

⎪

⎩

𝑖!𝑗!(−1)𝑖+𝑗 𝑖 = 𝑚, 𝑗 = 𝑛
0 𝛼min < 𝑖 + 𝑗 < 𝑟 + 𝑚 + 𝑛
< ∞ otherwise.

(14)

𝑚𝑖𝑛 is 0 for odd and 1 for even operators, and the discrete moments
𝑖,𝑗 are defined as

𝑖,𝑗 (𝑥⃗𝑝
)

=
∑

𝑥⃗𝑞∈
(

𝑥⃗𝑝
)

(

𝑥𝑝 − 𝑥𝑞
)𝑖 (𝑦𝑝 − 𝑦𝑞

)𝑗

𝜖
(

𝑥⃗𝑝
)𝑖+𝑗 𝜂

(

𝑥⃗𝑝 − 𝑥⃗𝑞
𝜖
(

𝑥⃗𝑝
)

)

. (15)

This not only leads to operator discretizations that are consistent on (al-
most2) all particle distributions, but also relaxes the overlap condition
of PSE to the less restrictive requirement

ℎ
(

𝑥⃗𝑝
)

𝜖
(

𝑥⃗𝑝
) ∈ (1), (16)

that is, the ratio of the kernel width 𝜖 and the inter-particle spacing ℎ
has to be bounded by an arbitrary constant as ℎ → 0.

We note that fixing the order of the convergence of the DC-PSE
operators, fixes the degree of the multinomials as described above.

4. Numerical verification

To verify the method, we perform a series of benchmarks, including:
The two-dimensional Taylor–Green flow (2D TGV), three-dimensional
Taylor–Green vortex flow (3D TGV), two-dimensional lid driven cavity
(2D LDC), three-dimensional lid driven cavity (3D LDC), flow past two
tandem cylinders, and a two-dimensional lid-driven cavity with multi-
ple internal obstacles. For all the test cases the flow is characterized by
the non-dimensional Mach number 𝑀𝑎, the Reynolds number 𝑅𝑒, and
the flow quantities 𝑢, 𝑝 and 𝜌 are normalized by either the maximum
or the reference corresponding quantity.

For the benchmarks with low Reynolds number 𝑅𝑒, we use DC-
PSE in the Lagrangian frame of reference. For flow with high Reynolds
number, the particles tend to cluster and/or spread, causing the system
to lose the ability to sustain the order of accuracy. Here, DC-PSE in the
Eulerian frame of reference is used. All the benchmarks are conducted
with DC-PSE operators of convergence order 3, an interaction cutoff
radius of 3.1𝜖, and second-order explicit Runge–Kutta time integration.

2 DC-PSE fails on particle distributions where particle positions in the
eighborhood are linearly dependent. In such cases, the linear system for the
ernel weights does not have full rank and cannot be solved.
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Fig. 1. The maximum normalized velocity decay profile for the simulation of the 2D Taylor–Green flow at 𝑅𝑒 = 102. Comparison of the DC-PSE EDAC method (—) with the exact
incompressible solution (∙).
Fig. 2. The evolution of the 𝐿∞ norm of the absolute error of the velocity magnitude for the 2D Taylor–Green flow at 𝑅𝑒 = 102 with 100 × 100 points using the DC PSE method
with the EDAC formulation.
4.1. Two-dimensional Taylor–Green vortex flow (2D TGV)

We first perform a simulation of the 2D incompressible Taylor–
Green flow in order to compare the DC-PSE EDAC formulation to the
analytical solution that is available for this case. This enables us to
quantify the order of accuracy and the convergence rate of the method.

The computational domain is the square [−𝜋, 𝜋]2 with periodic flow
of decaying vortices in the 𝑥–𝑦 plane as follows,

𝑢(𝑥, 𝑦, 𝑡) = −𝑈𝑒𝑏𝑡 cos
( 2𝜋𝑥

𝐿

)

sin
(

2𝜋𝑦
𝐿

)

(17)

𝑣(𝑥, 𝑦, 𝑡) = 𝑈𝑒𝑏𝑡 sin
( 2𝜋𝑥) cos

(

2𝜋𝑦
)

(18)
4

𝐿 𝐿
𝑝(𝑥, 𝑦, 𝑡) = 𝑝𝑜 −
𝑈2

4
𝑒𝑏𝑡

[

cos
( 4𝜋𝑥

𝐿

)

+ cos
(

4𝜋𝑦
𝐿

)]

, (19)

where 𝑏 = −8𝜋2
𝑅𝑒 , 𝐿 = 2𝜋 is the characteristic length of the computa-

tional domain, and 𝑝𝑜 is the reference pressure. To approximate the
incompressible reference solution, we set 𝑀𝑎 = 0.1 and perform the
simulation at 𝑅𝑒 = 100. The normalized velocity magnitude 𝑈∕𝑈𝑚𝑎𝑥
decay is presented in Fig. 1 together with the exact solution. The nu-
merically predicted velocity decay is in agreement with the analytical
solution.

For error analysis and convergence study, the relative maximum
error as a function in time is calculated as,

𝐿∞(𝑡) =
|

|

|

𝑢(𝑡) − 𝑈𝑒𝑥(𝑡) |
|

|

, (20)

|

𝑈𝑒𝑥(𝑡) |
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Fig. 3. The maximum relative error of the velocity for the 2D Taylor–Green flow at 𝑅𝑒 = 102 with different resolutions. The DC-PSE method shows a convergence order of 3, in
agreement with the third-order operators used.
Fig. 4. Evolution of the dissipation rate for the simulation of the 3D Taylor–Green vortex at 𝑅𝑒 = 100 and 200. We compare the DC PSE method for the EDAC formulation with
the reference solution from Brachet et al. [45].
where, 𝑢(𝑡) is the maximum velocity magnitude of the DC-PSE simula-
tion at time 𝑡, and 𝑈𝑒𝑥(𝑡) denotes the maximum velocity magnitude of
the exact solution at time 𝑡. Fig. 2 shows the evolution of the error for
the 2D Taylor–Green flow at 𝑅𝑒 = 102 with 100 × 100 points. The error
decreases with time as the velocity magnitude decay presented in Fig. 1
comes to a steady state.

We confirm spatial convergence by increasing the number of points
along each direction. Fig. 3 shows the maximum 𝐿∞(𝑡) for each reso-
lution, alongside the theoretical error scaling of order 3.

4.2. Three-dimensional Taylor–Green vortex flow (3D TGV)

We next consider the three-dimensional Taylor–Green vortex sim-
ulation due to it’s relative numerical simplicity. The computational
5

domain is a cube with edge length 𝐿 = 2𝜋 and periodic boundary
conditions in all directions and 128 × 128 particles resolution with
Mach number 𝑀𝑎 = 0.1 . The initial flow conditions are given by,

𝑢(𝑥, 𝑦, 𝑧) = 𝑈𝑜 sin
(2𝜋𝑥

𝐿

)

cos
(

2𝜋𝑦
𝐿

)

cos
( 2𝜋𝑧

𝐿

)

(21)

𝑣(𝑥, 𝑦, 𝑧) = −𝑈𝑜 cos
( 2𝜋𝑥

𝐿

)

sin
(

2𝜋𝑦
𝐿

)

cos
( 2𝜋𝑧

𝐿

)

(22)

𝑤(𝑥, 𝑦, 𝑧) = 0 (23)

𝑝(𝑥, 𝑦, 𝑧) = 𝑝0 +
𝜌0𝑈2
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(

cos
( 4𝜋𝑥

𝐿

)

+ cos
(

4𝜋𝑦
𝐿

))

(

cos
( 4𝜋𝑧

𝐿

)

+ 2
)

,

(24)

where, 𝑈0, 𝑝0, and 𝜌𝑜 are the reference velocity, pressure, and density,
respectively.
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Fig. 5. The two-dimensional lid driven cavity problem simulation at Reynolds number 𝑅𝑒 = 102 using the DC PSE method with EDAC formulation. (a) The velocity profiles of the
𝑢-component along the center vertical line at 𝑥∕𝐿 = 0.5 and the 𝑣-component along the horizontal center line at 𝑦∕𝐿 = 0.5 compared to those from Ghia [46] and a hybrid-remeshed
smoothed particle hydrodynamics (hrSPH) [44] solution. (b) The velocity field magnitude (color), direction (arrows), and selected streamlines computed for the lid-driven cavity
problem at Reynolds number 𝑅𝑒 = 102.
In spite of the smooth initial conditions, the 3D TGV flow rapidly
evolves into a turbulent flow at quasi-low Reynolds numbers 𝑅𝑒 > 500
[45]. Here, we are strictly limit our benchmarks to laminar flow.

We study the 3D TGV flow at two Reynolds numbers, 𝑅𝑒 = 100, 200
with particles advected in the Lagrangian frame of reference. The
solution is compared with Brachet et al. [45] in terms of the dissipation
rate (𝜖) calculated as,

𝜖 = −
𝑑𝐸𝑘
𝑑𝑡

, (25)

where 𝐸𝑘 is the kinetic energy is defined as,

𝐸𝑘 = 1
𝑈𝑜𝜌𝑜 ∫𝛺

𝜌
𝑢2𝑥 + 𝑢2𝑦 + 𝑢2𝑧

2
𝑑𝛺, (26)

and 𝛺 is the computational domain.
6

Fig. 4 shows the time of the dissipation rate 𝜖, Eq. (25) for the two
Reynolds numbers. The DC-PSE predictions are in good agreement with
the reference solution [45], and the DC PSE method with the EDAC
formulation is capable of capturing the flow dynamics.

4.3. Two-dimensional lid driven cavity (2D LDC)

For the two-dimensional lid-driven cavity problem, the computa-
tional domain is the unit square with the top wall moving to the right
at uniform velocity 𝑈lid = (1, 0); the other walls are no-slip stationary
walls. The no-slip boundary condition is imposed using the Brinkman
penalization technique [44].

We study the LDC problem for two different Reynolds numbers,
𝑅𝑒 = 102, 103, and Mach number 𝑀𝑎 = 0.1. The simulations are
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Fig. 6. The two-dimensional lid driven cavity problem simulation at Reynolds number 𝑅𝑒 = 103 using the DC PSE method with EDAC formulation. (a) The velocity profiles of the
𝑢-component along the center vertical line at 𝑥∕𝐿 = 0.5 and the 𝑣-component along the horizontal center line at 𝑦∕𝐿 = 0.5 compared to those from Ghia [46], a hybrid-remeshed
smoothed particle hydrodynamics (hrSPH) [44] and a velocity–vorticity formulation of the INS equations using the DC-PSE operators [29] solutions. (b) The velocity field magnitude
(color), direction (arrows), and selected streamlines computed for the lid-driven cavity problem at Reynolds number 𝑅𝑒 = 103. As a result of the higher Reynolds number, the
intensity of the vortex increases and two additional vortices develop at the left and right corners of the bottom wall.
conducted on 128 × 128 collocation point for 𝑅𝑒 = 102 and 256 × 256
for 𝑅𝑒 = 103. The Lagrangian frame of reference is used for 𝑅𝑒 = 102.
However, at 𝑅𝑒 = 103 the particles tend to cluster and the system loses
continuity, which is why we use the Eulerian frame of reference in this
case. The simulation is run until a steady state is reached (i.e., the total
kinetic energy remains constant in time).

In Fig. 5(a), we present the solution of the velocity profile com-
ponents 𝑢 and 𝑣 for the lid driven cavity for 𝑅𝑒 = 102. The results
are quantitatively compared with the numerical data set from Ghia
et al. [46] and to the ones produced in [44] using SPH. The DC-PSE
method is in perfect agreement. The results for 𝑅𝑒 = 103 are shown in
7

Fig. 6(a). Here, it becomes visible that DC-PSE shows better agreement
with the data of Ghia et al. [46] than the SPH solution does. This is
likely due to the better numerical stability and consistency properties
of DC-PSE. We also compare with the results presented by Bourantas
et al. [29], where they solved the exact incompressible Navier–Stokes
formulation using the DC-PSE operators

Fig. 5(b) shows the velocity magnitude contour with selected
streamlines for the case of 𝑅𝑒 = 102. At this low Reynolds number,
the vortex is weak and does not expand to the center of the domain.
Increasing the Reynolds number, the flow become more chaotic and
the intensity of the main vortex increases and the center of the vortex
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Fig. 7. The three-dimensional lid driven cavity flow at Reynolds number 𝑅𝑒 = 400 solved using the DC-PSE method with EDAC formulation. The velocity profiles of the 𝑢-component
along the vertical center line at 𝑥 = 0.5∕𝐿 and the 𝑤-component along the horizontal center line at 𝑧 = 0.5∕𝐿 are compared with the reference solution from Albensoeder et al. [47].
become more centered in the domain (Fig. 6(b)). Also, two additional
vortices develop at the left and right corners of the bottom wall, which
agrees with the observations made by Ghia et al. [46].

4.4. Three-dimensional lid driven cavity (3D LDC)

We next examine the lid-driven cavity flow problem in 3D in the
unit cube. The square cavity lid (upper wall) moves parallel to the
positive 𝑥-axis at a steady velocity 𝑈lid = (1, 0, 0); the rest of the cubic
cavity walls are steady with no-slip boundary conditions.

Initially, the flow is at rest, 𝑈 = 0. We therefore define the Reynolds
number 𝑅𝑒 with respect to the lid velocity, 𝑅𝑒 = 𝐿𝑈lid∕𝜈. Since 𝐿 = 1
and 𝑈lid are constant, 𝜈 alone determines the cavity flow features.

We perform several 3D LDC simulations at 𝑅𝑒 = 10,100, and 400
and 𝑀𝑎 = 0.1 with 64 points along each direction. The simulations
are run until the total kinetic energy remains constant in time. This
benchmark is conducted in the Eulerian frame of reference for 𝑅𝑒 = 400
and in the Lagrangian frame of reference for 𝑅𝑒 = 10 and 100.

The velocity profiles for this case are shown in Fig. 7 for the
components 𝑢 and 𝑤 at 𝑅𝑒 = 400. The 𝑢-component of the velocity
is plotted along the vertical center line at 𝑥∕𝐿 = 0.5, whereas the 𝑤
component is plotted along the horizontal center line at 𝑧∕𝐿 = 0.5. The
DC-PSE numerical results are in excellent agreement with the reference
solution [47].

The three-dimensional stream lines and the velocity magnitude for
three different Reynolds numbers 𝑅𝑒 = 10, 100, and 400 are visualized
in Fig. 8. One can clearly see the effect of the Reynolds number on the
developed main vortex intensity and location. At 𝑅𝑒 = 400, a secondary
vortex develops in the right side of the domain, as the flow in the
downstream moves toward the side walls in spiral way.

The vorticity components 𝜔𝑥 and 𝜔𝑧 are visualized in Fig. 9. As
a result of the no-slip boundary conditions at the side walls, a sec-
ondary flow circulation area always exists. However the intensity of
the vorticity is low at the examined Reynolds numbers.

4.5. Flow past obstacles

Using Brinkman penalization, we can simulate flow around complex
geometries by adding a penalty term to the governing equations that
imposes the boundary conditions to a specific accuracy around the
geometry as detailed in Section 2.1.
8

Table 1
Comparison of the Strouhal numbers for the flow past two
tandem cylinders with different spacing. The DC PSE predic-
tions are in a good agreement with the reference solution
from Meneghini et al. [48].

Spacing 𝑆 1.5𝐷 2𝐷 3𝐷 4𝐷

Meneghini et al.
1.67 1.30 1.250 1.74

Presented work
1.6366 1.287 0.12525 1.75

4.5.1. Flow past two tandem cylinders (FPTC)
We first use the DC-PSE EDAC formulation with Brinkman penal-

ization to study the development of viscous flow around two tandem
cylinders at 𝑅𝑒 = 𝜌𝐷𝑈∕𝜇 = 200 and 𝑀𝑎 = 0.1, where 𝐷 is the cylinder
diameter.

The computational domain is a long rectangle of dimension
[10𝐷, 2.5𝐷] with inlet/outlet flow boundary conditions in the stream-
wise direction, periodic in the spanwise direction and 64 × 256 dis-
cretization points. The tandem cylinders are arranged such that the
upstream cylinder is fixed at coordinate [1𝐷, 1.25𝐷], whereas the down-
stream cylinder’s position changes depending on the spacing 𝑆 between
the two cylinders centers. We consider four different arrangements with
𝑆 = 1.5𝐷, 2𝐷, 3𝐷, and 4𝐷.

The Strouhal number 𝑆𝑡 = 𝑓𝐷∕𝑈 , where 𝑓 is the frequency
of the vortex shedding, is calculated and presented in Table 1 in
comparison with the values from Meneghini et al. [48]. We gen-
erally observe very good agreement. The average drag coefficient
𝐶𝑑 = 2𝐹𝑥

𝜌𝑈2𝐷
2, (𝐹𝑥 is the forces acting in the 𝑥 direction) is reported in

Table 2. 𝐶𝑑,1 refers to the upstream cylinder and 𝐶𝑑,2 to the down-
stream one. We compare our results to the ones reported in Meneghini
et al. [48]. We note that as the spacing 𝑆 between the cylinders in-
creases the drag coefficient for the downstream cylinder 𝐶𝑑,2 increases.
Furthermore for spacing 𝑆 less than 3𝐷 the drag coefficient is negative
for the downstream cylinder.

Fig. 10 visualizes the wake vorticity distribution for the different
cylinder spacings 𝑆 = 1.5𝐷, 2𝐷, 3𝐷, and 4𝐷. For small 𝑆 (top row),
the tandem cylinders act as one body, such that one vortex wake can
be observed downstream, with the wake forming further behind the
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Fig. 8. 3D streamlines at 𝑅𝑒 = 10, 100 and 400 in different views: (left column) side view; (center column) back view; (right column) top view. The effect of the Reynolds number
on the main vortex intensity and location is clearly visible. At 𝑅𝑒 = 400 secondary flow circulation is observed at the lower wall.
Table 2
Comparison of the average drag coefficient for the flow past two tandem cylinders with different spacing index 1 refers to the upstream cylinder
and index 2 to the downstream one. We note that as the spacing 𝑆 between the cylinders increases the drag coefficient for the downstream
cylinder 𝐶𝑑,2 increases.

Spacing 𝑆 𝐶𝑑,1 𝐶𝑑,2

1.5𝐷 2𝐷 3𝐷 4𝐷 1.5𝐷 2𝐷 3𝐷 4𝐷

Meneghini et al. 1.06 1.03 1.0 1.18 −0.18 −0.17 −0.08 0.38
Presented work 1.04 1.023 1.01 1.187 0.-193 −0.1742 −0.0879 0.39
9
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Fig. 9. Vorticity components 𝜔𝑥 (left column) and 𝜔𝑧 (right column) for 𝑅𝑒 = 100 and 400. A secondary flow and circulation area is observed as a result of the no-slip side walls.
Table 3
List of obstacle center coordinates and obstacle radii 𝑟.

Obstacle 𝑥 𝑦 𝑟

1 L/5 L/1.176 L/20
2 L/1.6666 L/1.111 L/40
3 L/2.5 L/1.6666 L/14.285
4 L/1.25 L/1.8181 L/13.333
5 L/6.6666 L/4 L/20
6 L/1.2121 L/4 L/10.526
7 L/2.5 L/10 L/25

downstream cylinder. Increasing the spacing between the cylinders to
3𝐷 or 4𝐷, each cylinder forms its own vortex wake, and the two sets of
vortices interact downstream, leading to qualitatively different flow.

4.5.2. Two-dimensional lid driven cavity with obstacles (2D LDCO)
Finally, we consider a geometrically more complex case by placing

several circular obstacles of different radii 𝑟 inside the flow cavity of
the 2D lid-driven cavity problem. The computational domain and the
initial conditions are the same as in Section 4.3, and the simulation is
performed at 𝑅𝑒 = 100 and 1000 with 128 × 128 collocation point and
𝑀𝑎 = 0.1. The arrangement of circular obstacles in the domain is shown
in Fig. 11 with coordinates and radii of each object given in Table 3.

The magnitude and direction of the velocity field for both Reynolds
numbers are visualized in Fig. 12. For both Reynolds numbers, the
central vortex expected in the absence of internal obstacles does not
10
develop. as the flow is rather distributed by the obstacles Fig. 12. As
expected, the case with 𝑅𝑒 = 1000 has an overall higher vorticity
intensity and higher peak velocities. For both cases, the center of a
vortex is between the lid and obstacles (2) and (4), and it does not
expand. At 𝑅𝑒 = 100, a secondary vortex develops between obstacles (1)
and (2), whereas at 𝑅𝑒 = 1000 this vortex is interestingly not present.

5. Summary

We have combined the entropically damped artificial compressibil-
ity scheme of Clausen [37] for imposing the incompressibility con-
straint explicitly with Discretization-Corrected Particle Strength Ex-
change (DC-PSE) operators to approximately solve the incompressible
Navier–Stokes equations for unsteady viscous flow problems using the
EDAC formulation in 2D and 3D. The DC-PSE operators converged with
the desired order; order 3 for the operators used in this paper. We
further combined the method with Brinkman penalization to provide
a framework for the simulation of viscous flow in complex geometries
in both Lagrangian and Eulerian frames of reference.

Despite multiple advantages, our method depends on different meta
parameters. These include the cutoff radius of the differential operators
and the order of convergence the operator which fixes the monomial
basis. However, in previous studies DC-PSE has been shown to be robust
for a wide range of parameters as long as there are enough points in a
neighborhood for the estimation of the basis coefficients [31].
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Fig. 10. The wake vorticity for flow past two tandem cylinders with different spacing 𝑆 = 1.5𝐷, 2𝐷, 3𝐷, and 4𝐷. For small spacings in (a) and (b), one vortex street forms behind
the two cylinders, whereas for the larger spacings in (c) and (d) each cylinder forms its own vortex wake that interact downstream.
Fig. 11. Two-dimensional lid driven cavity with obstacles. The computational domain
with boundaries and internal obstacles is visualized by plotting the smoothed Brinkman
mask function 𝜒 used to impose the no-slip boundary conditions.

We have presented a complete algorithm for the simulation of
incompressible viscous flow and applied it to several benchmarks with
different boundary conditions, including no-slip walls, moving walls,
11
inflow/outflow, and periodic boundary conditions. In all cases, we
found the results to be in very good agreement with reference solutions,
outperforming also recent corrected SPH simulations.

In the future, we will extend the present method to multiphase flow
and fluid–structure interactions with large deformations.
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Fig. 12. Two-dimensional lid-driven cavity with internal obstacles at 𝑅𝑒 = 100 (a) and 𝑅𝑒 = 1000 (b). The color map indicates the magnitude of the velocity; arrow glyphs represent
selected velocity vectors. The main vortex in both cases does not expand and is trapped close to the lid, where a secondary vortex also develops for 𝑅𝑒 = 100.
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