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ABSTRACT

We present a higher-order convergent numerical solver for active polar hydrodynamics in three-dimensional domains of arbitrary shape,
along with a scalable open-source software implementation for shared- and distributed-memory parallel computers. This enables the compu-
tational study of the nonlinear dynamics of out-of-equilibrium materials from first principles. We numerically solve the nonlinear active
Ericksen–Leslie hydrodynamic equations of three-dimensional (3D) active nematics using both a meshfree and a hybrid particle-mesh
method in either the Eulerian or Lagrangian frame of reference. The solver is validated against a newly derived analytical solution in 3D and
implemented using the OpenFPM software library for scalable scientific computing. We then apply the presented method to studying the
transition of 3D active polar fluids to spatiotemporal chaos, the emergence of coherent angular motion in a 3D annulus, and chiral vortices in
symmetric and asymmetric 3D shapes resembling dividing cells. Overall, this provides a robust and efficient open-source simulation frame-
work for 3D active matter with verified numerical convergence and scalability on parallel computers.

VC 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0169546

I. INTRODUCTION
Active matter refers to material systems whose constituents con-

vert chemical energy into mechanical work, resulting in self-organized
emergent motion. The constant input of energy at the microscopic
scale maintains the system out of thermodynamic equilibrium. The
type of emerging motion depends on many factors, including the rate
of energy injection,1 material properties,2,3 and constituent concentra-
tions.4 This gives rise to rich nonlinear dynamics, including topological
active hydrodynamics.5–7 In addition, active matter often comprises
anisotropic or orientable constituents, endowing it with nematic (liq-
uid crystal) or polar order, respectively. Examples of nematic or polar
active matter include cytoskeletal structures in living cells,8–10 bacterial
suspensions,11,12 multicellular tissues,12 and flocks of birds.13 The gov-
erning partial differential equations (PDEs) for the mean-field descrip-
tion of polar or nematic active matter have been derived from first

principles (symmetries and conservation laws),8–10,14 as comprehen-
sively reviewed by Marchetti et al.12 Studying the fascinating emergent
properties of this class of materials, however, relies on numerical simu-
lations, as the equations are analytically intractable in all but the sim-
plest one-dimensional cases.

Owing to this importance of computer simulations in the study
of active matter, various numerical methods have been proposed. On
the microscopic level, active matter has been simulated “bottom-up,”
resolving the individual molecular components and their stochastic
dynamics, as oriented active particle systems,15 by Brownian dynam-
ics,16 or by stochastic simulation algorithms.17 Furthermore, molecular
dynamics simulations using HOOMD-Blue18,19 have been used for
active matter studies at the molecular scale.20,21 On the mesoscopic
level, hybrid Lattice-Boltzmann methods (hLBM) have established
themselves as a standard for simulating active matter in both two
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dimensions (2D) and three dimensions (3D), due to their versatility in
modeling complex fluids.22 hLBM for active matter derives from a
classic algorithm for passive liquid crystals,23–25 which was extended to
active nematics. This has been successfully applied to a range of prob-
lems in active hydrodynamics, including chaotic flows (active turbu-
lence)2,26–32 and topological defect dynamics in activity
gradients.28,29,31,33,34 Despite their popularity, though, hLBM methods
are limited to periodic or no-slip boundary conditions, and conver-
gence to the correct hydrodynamic mean-field limit is only guaranteed
for certain lattice symmetries35 under specific moment constraints on
the equilibrium distribution.22,33 If they converge, the order of conver-
gence is at most 1 in domains with curved boundaries,36 but a system-
atic convergence validation for active hydrodynamics is missing in the
literature. Most importantly, an open-source implementation of hLBM
for active matter does not seem to be available, limiting reproducibility
and utility for the scientific community.

On the macroscopic, continuum level, spectral or pseudospectral
methods have been used to numerically solve the governing PDEs.37

This has, e.g., enabled studying active suspensions,38–41 bacterial suspen-
sions,42 and chaotic behavior in 2D active nematics.43,44 Spectral meth-
ods have superior accuracy (exponential convergence to machine
precision) in periodic domains, but are limited to simple domain geom-
etries and lose their spectral convergence for non-periodic boundary
conditions.45–47 Ramaswamy et al.48 therefore presented a hybrid
Lagrangian particle-mesh method for 2D active polar fluids, which
allows for arbitrary boundary conditions in rectangular domains and
was the first method solving the most general Ericksen–Leslie PDEs of
active polar fluids with Lagrange multipliers for unit polarity magni-
tude.8–10,14 This method has been used to characterize spontaneous
transitions of 2D contractile active fluid from a resting initial state to
spontaneous laminar flow, and further to traveling vortices and waves,
and eventually spatiotemporal chaos.49 Due to the use of staggered
Cartesian grids, this method is also limited to simple (rectangular or iso-
morphic to a rectangle) domain geometries. A simplified unsteady
Stokes-flow model of active hydrodynamics has been solved using finite
differences in order to study topological defect dynamics and spatiotem-
poral chaos in 2D active nematics.50,51 In 3D, a box-shooting algorithm
on a staggered Cartesian grid was proposed for solving a minimal phe-
nomenological model of active hydrodynamics that did not include
flows induced by the rotation of molecules along their axis in the
nematic field.52 Jointly, these works emphasize the progress, but also the
challenges and limitations of the different numerical methods applied to
active polar hydrodynamics. Importantly, a convergence-validated
method that solves the macroscopic symmetry-preserving PDE model
in 3D with arbitrary boundary conditions and in arbitrary 3D geome-
tries is, to our knowledge, so far missing.

This work focuses on the computational challenges to numerically
solve the full nonlinear theory of active polar hydrodynamics arising
from symmetry relations. The model considered here contains a 3D
vectorial orientation field, which is nonlinearly coupled to the flow
velocity field. More specifically, we present a numerical method to solve
the 3D active Ericksen–Leslie equations that model polar or nematic
active matter in the mean-field. The proposed hybrid particle-mesh
approach can incorporate arbitrary boundary conditions on complex-
shaped 3D domain geometries, and it is implemented as a scalable
open-source software for shared-memory and distributed-memory par-
allel computers. We use Discretization-Corrected Particle Strength

Exchange (DC-PSE)53 to consistently discretize differential operators on
geometry-adapted distributions of collocation points. This is coupled
with a pressure-correction scheme to enforce incompressibility of the
fluid, avoiding the use of staggered grids, which are challenging in com-
plex domains. We validate convergence of the presented solver for the
incompressible force balance on regular and irregular collocation-point
distributions. The computational cost associated with 3D problems is
addressed by using the open-source framework OpenFPM for scalable
and efficient scientific computing.54 The complexity of the governing
equations is tackled using a Cþþ template expression system for PDEs,
greatly reducing code complexity and improving readability and exten-
sibility.55 We present the derivation of the governing equations in 3D, a
detailed description of the algorithm, as well as its performance and
convergence. The algorithm is then applied to study the spontaneous
flow transition in an extensile active polar fluid with friction boundary
conditions, and the transition of the same system to spatiotemporal
chaos (a.k.a. active turbulence) as well as to traveling waves in a 3D
annulus. Finally, the application of the presented solver to asymmetric
3D geometries is demonstrated, simulating the onset of vortical flows in
geometries resembling dividing biological cells. Together, these results
fully validate the proposed numerical method and illustrate its applica-
tion to cases where the symmetry-preserving PDE model of active mat-
ter was hitherto impossible to solve.

II. HYDRODYNAMIC DESCRIPTION OF 3D ACTIVE
LIQUID CRYSTALS

The hydrodynamic theory of active matter describes the dynam-
ics of out-of-equilibrium systems that are driven by energy conversion
at the microscopic scale.8–10,14 The average orientation of the micro-
scopic constituents in a control volume defines the macroscopic orien-
tation field and is referred to as polarity field p with components pa,
where a stands for any coordinate direction [{x, y, z} in Cartesian coor-
dinates]. A typical example of such a material is the cytoskeleton in
biological cells. There, the polarity field describes the average orienta-
tion of the cytoskeletal filaments.56 Motor proteins bind to the fila-
ments and convert chemical energy (in the form of the “fuel”molecule
ATP) to mechanical work (in the form of forces/stresses). This
deforms the filaments and sets the surrounding fluid in motion. At the
same time, passive and elastic stresses relax the polarity field toward
uniform nematic order, and the viscosity of the surrounding fluid dis-
sipates energy. The resulting force balance leads to self-organized
emergent flows with velocity field v with components va. Based on first
principles (conservation laws, symmetry, entropy production, and
Onsager reciprocal relations), the constitutive equations can be
derived, linking all stresses to the fluid strain rate.

We consider an incompressible active polar fluid in the hydrody-
namic limit of active viscous fluids with constant activity levels at a low
Reynolds number. In a 3D domain, this results in three PDEs for the
velocity components, three PDEs for the polarity components, and the
continuity equation for the incompressibility condition. Using
Einstein’s index summation convention, wherein repeated indices
imply summation, the governing equations can be written as

Dpa
Dt

¼ ha
c
# !uabpb þ kDlpa; (1a)

@br
ðtotÞ
ab # @aP ¼ 0; (1b)
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@cvc ¼ 0; (1c)

2guab ¼ rðsÞab # fDl papb #
1
3
pcpcdab

! "

# !

2
pahb þ pbha #

2
3
pchcdab

! "
; (1d)

where a; b; c 2 fx; y; zg represent spatial vector components, g is the
fluid viscosity, c is the rotational viscosity of the polarity field (not to
be confused with the repeated subscript c), h is the so-called molecular
field as introduced below, and ! is the coupling coefficient between
mechanical stress and polarization that controls the flow-aligning
(j!j > 1) or flow-tumbling (j!j < 1) nature of the nematic order.
Additionally, k is the coefficient coupling the polarity dynamics with
the active chemical potential Dl. The coefficient f couples the activity
potential Dl to the active stress. If Dl > 0, the sign of f controls the
contractile or extensile nature of the active fluid, with f < 0 leading to
contractile stress and f > 0 to extensile stress. The time evolution of
the polarity field p ¼ ðpx; py; pzÞ> is governed by Eq. (1a) in terms of
the co-rotational Lagrangian derivative

Dpa
Dt

¼ @pa
@t

þ vc@cpa þ xabpb; (2)

where xab ¼ 1
2 ð@avb # @bvaÞ is the vorticity tensor and uab ¼ 1

2 ð@avb
þ @bvaÞ the strain-rate tensor. In the Eulerian frame of reference, Eq.
(1a) thus becomes

@pa
@t

¼ ha
c
# !uabpb þ kDlpa # vc@cpa # xabpb:

Equation (1b) is the Stokes equation, with rðtotÞab denoting the total
deviatoric stress tensor and P the pressure. Equation (1c) is the
incompressible continuity equation, imposing mass conservation. The
constitutive equation in Eq. (1d) relates the strain-rate tensor uab to
the symmetric, the active, and the passive stresses, which are the first,
second, and third terms of the right-hand side, respectively.

In the constitutive equation, the so-called molecular field h
appears. It is defined as the functional derivative ha ¼ #dF=dpa
¼ #@f =@pa þ @bð@f =@ð@bpaÞÞ of the Frank free energy F, which in
3D reads

F3D ¼
ð

Ks

2
ð@apaÞ2 þ

Kt

2
ðpaeabc@bpcÞ2 þ

Kb

2
ðedeapeðeabc@bpcÞÞ2 #

1
2
h0jjpapa

$ %

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
f

dV ;
(3)

where the constants Ks, Kt, and Kb control the splay, twist, and bend
elasticity of the fluid, respectively, and eabc is the Levi-Civita symbol.
The whole integrand is referred to as the Frank free-energy density f.
Squares over vectors imply a scalar product. The free energy is con-
strained to unit polarity magnitude by h0jj acting as a Lagrange multi-
plier. The free energy in Eq. (3) does not explicitly enforce a polarity in
the material; hence, the model considered here is equivalent to the Q-
tensor evolution of a nematic field for systems of infinite size, except
for defect nucleation and defect dynamics at sufficient activity lev-
els.12,14 However, confinement with anchoring boundary conditions
does enforce a polarity, as the equations describe the evolution of a
polarity vector field. The molecular field h can be decomposed into
polarity-parallel hjj ¼ paha and polarity-perpendicular h?;a ¼
eabcpbhc components in a local co-moving frame (see the Appendix
A). Since molecular fields that differ by a factor of h0jjpa are equiva-

lent,57 hjj ¼ h0jj becomes the Lagrange multiplier to enforce unit polar-
ity magnitude, i.e., the vector field p indicates the direction of nematic
order with jjpjj ¼ 1. Using Eq. (1a) and enforcing pc

Dpc
Dt ¼ 0, which is

equivalent to constraining the Frank free energy to only allow unit
polarity magnitude, leads to the Lagrange multiplier

h0jj ¼ hjj ¼ #c kDl# 2!
pcpc

ðuabpapbÞ
$ %

: (4)

The resulting expressions for the perpendicular components,
of which there are three in 3D (h?;x; h?;y; h?;z), are given in

Appendix A. The total deviatoric stress tensor rðtotÞab can be

decomposed into its symmetric part rðsÞab , its antisymmetric part rðaÞab ,

and the Ericksen stress tensor rðeÞab . The symmetric stresses rðsÞab are

given by Eq. (1d), whereas rðaÞab and rðeÞab are defined as

rðaÞab ¼ 1
2
ðpahb # pbhaÞ ; rðeÞab ¼ # @f

@ð@bpcÞ
@apc : (5)

The pressure P acts as another Lagrange multiplier to enforce the
incompressibility condition on the velocity field, @cvc ¼ 0. Because of
the Lagrange multiplier hjj entering the stress tensor, additional flow-
field derivatives appear in the force-balance equation when computing

the divergence of the total stresses @br
ðtotÞ
ab . This leads to the final gov-

erning equations as given in Appendix B. Since those equations would
be challenging to hand-code in a computer programming language, we
leverage a Cþþ template expression system55 to directly translate the
mathematical expressions into executable code.

III. NUMERICAL ALGORITHM
The numerical algorithm for the equations in Appendix B starts

by solving the force balance, because knowing the velocity field is pre-
requisite for evolving the polarity in time. It then computes the polarity
time evolution in either an Eulerian or Lagrangian frame of reference.
This results in a hybrid particle-mesh method with normalization cor-
rection for the polarity field as outlined in the flow chart in Fig. 1. All
computer codes are implemented in Cþþ using the open-source scal-
able scientific computing framework OpenFPM.54
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The present approach is fundamentally different from the
popular hybrid Lattice-Boltzmann method, as it directly solves the
mean-field PDE model of the system in the long time limit. Unlike
Lattice-Boltzmann, the present method does not evolve the velocity field
in time, but instead solves the force balance for the velocity at each time
step. This allows flow velocities to relax on a different timescale than the
polarity. Previous simulation methods also confined predictions to 2D
or to solving a transient Stokes equation in 3D accompanied by a finite
speed of sound. The present approach relaxes these limitations and also
affords more freedom than Lattice-Boltzmann methods in choosing the
space and time resolution of the simulations. One should always care-
fully check the relationship between viscosity, relaxation time, and mesh
resolution in order to avoid unphysical oscillations in the computed
flow fields. This is easier to do in the present framework than in Lattice-
Boltzmann methods, where the viscosity inherently depends on the
mesh resolution. This becomes particularly important when simulating
active turbulence, where numerical compressibility can influence the
results. Unlike Lattice-Boltzmann methods, the solver presented here
converges toward the incompressible limit as resolution increases, offer-
ing precise tolerance-based control over compressibility artifacts without
needing to monitor the speed of sound.

A. Force-balance solver
Given the polarity field p for any point in time t, the induced

velocity field v is determined by discretizing Eqs. (B1)–(B3) using DC-
PSE differential operators.53 Incompressibility is imposed using a
pressure-correction scheme as previously described in 2D58,59 and

successfully used with DC-PSE operators.60 Here, we extend this algo-
rithm to 3D. The solver can be used on irregular distributions of collo-
cation points, which are therefore referred to as particles. This renders
the algorithm suitable for simulations in both Eulerian and Lagrangian
frames of reference, where particles are stationary or move with the
velocity field of the flow, respectively. The resulting linear system of
equations is assembled using the OpenFPM template expression sys-
tem55 and is solved with the KSPGMRES solver from the PETSc
library.61 The pressure-correction algorithm iteratively improves the
estimate of the flow velocity to a desired numerical tolerance "v. The
tolerance "v is bounded from below by the approximation error of
the spatial derivatives, which converges with increasing resolution.
This tolerance is set it to 10#2 for h¼ 0.2 and to 10#3 for h¼ 0.1. The
full pressure-correction solver is described in Algorithm 1.

ALGORITHM 1: Incompressible force-balance solver for a given
polarity field p.

Input:
1. "v: Numerical relative tolerance for the incompressible flow
solver.

2. nmax: Maximum number of pressure-correction iterations.
3. v0;P0: Initial guess for velocity and pressure

Output: v: Incompressible flow velocity satisfying Eq. (1b) and the
boundary conditions.

n¼ 0, " ¼ 1
while jjvn # vn#1jj2 < "v and n & nmax do
Solve Stokes equations for vn using Pn#1

Correct pressure: Pn ¼ Pn#1 # @kvnk
if jjvn # vn#1jj2 > " then

Stop with error: “Requested tolerance is unachievable for the
chosen resolution”

end
" ¼ jjvn # vn#1jj2
vn#1 ¼ vn

n ¼ nþ 1
end

B. Time evolution of the polarity field
Once the velocity field has been computed, a time-integration

step for the polarity field is performed. Equation (1a) can be integrated
in time in either an Eulerian or Lagrangian frame of reference until a
desired final time tf. In an Eulerian frame of reference, the advection
operator in Eq. (2) is be computed using DC-PSE spatial operators. To
achieve numerical stability, however, predictor–corrector time integra-
tion is necessary, as the operators are centered in space and not
upwind. Hence, for the Eulerian frame of reference, we use the second-
order Adams–Bashforth–Moulton predictor–corrector scheme for
time integration, as implemented in OpenFPM.62 For Eulerian simula-

tions, the time step dt is limited by the CFL condition uxdt
h þ uydt

h

þ uzdt
h & 1 for numerical stability, where h is the average inter-particle

spacing.63 This severely limits the time step size. The issue is exacer-
bated at higher activity jfj, leading to stronger active stresses causing
faster flows. However, when computing flow steady states, and for

FIG. 1. Overall flow chart of the numerical solver.
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imposing boundary conditions in complex domain shapes, the
Eulerian frame of reference still provides better stability than the
Lagrangian approach. Steady states are detected with a user-defined
tolerance of "steady, checked against the maximal rate of change of
polarity in the entire domain.

The Lagrangian frame of reference allows for the less stringent
Lagrangian CFL condition dtjjrvjj & 1, imposing that particle trajec-
tories never cross flow streamlines.64 Moving the particles changes their
positions, which requires DC-PSE kernels to be recomputed at each
simulation time step. Time integration in the Lagrangian case is also
done using the second-order Adams–Bashforth–Moulton
predictor–corrector scheme. Alternatively, Runge–Kutta 4 can be used
in this case. This adds additional computational cost, but is amortized
in most cases by the increased stability permitting larger time steps.53

Detecting non-equilibrium steady states with nonzero flow, however, is
not easily done in the Lagrangian frame of reference. It is only possible
if the rate of change of the polarity can be equated to an approximation
of the advection operator. Computing the advection operator, however,
introduces additional numerical error and lowers the tolerance with
which the steady state can be detected. Nevertheless, the superior time-
stepping stability of the Lagrangian method makes it the preferred
choice for simulating unsteady flows in simple Cartesian geometries.

The present method supports all types of polarity boundary condi-
tions including homogeneous and inhomogeneous Dirichlet,
Neumann, and Robin (mixed) boundary conditions. Dirichlet boundary
conditions are straightforward, as the polarity simply remains constant
at boundary particles. Neumann boundary conditions are imposed
using the method of images by creating a “ghost layer” of particles in a
thin tubular neighborhood outside the domain boundary. The width of
this ghost layer is given by the radius of the DC-PSE operators used to
discretize derivatives. The ghost layer is created by mirroring particles at
the boundary along the normal n. If the particles do not move, this is
done only once at the beginning of a simulation, otherwise at each time
step. In a distributed-memory simulation, it is ensured that ghost and
source particles are stored on the same process to minimize communi-
cation. The polarity values of the “ghost particles” are reset at each time
step, ensuring the correct value of @p=@n at the boundary.

C. Remeshing
Another issue in Lagrangian simulations is that particles may

eventually evolve to a distorted distribution at long simulation times of
steady flows. Then, remeshing becomes necessary,64 whereby the parti-
cle positions are reset to a regular Cartesian lattice and the field quanti-
ties are “interpolated” from the old to the new set of particles. Multiple
methods are available for moment-conserving particle-to-mesh
remeshing.65 Here, we use the lambda kernelsKm;n, which exactly con-
serve the first m moments of the field64 and are of smoothness class
Cn. However, using such conservation-enforcing kernels only leads to
higher-order (>1) convergent results if the zeroth moment of the
remeshed field is actually conserved over time.66 The present solver
only remeshes the polarity field, since the velocity field is recomputed
from the force balance at every time step. Since the polarity field is
constrained to unit magnitude, its zeroth moment is constant. This
justifies the use of moment-conserving remeshing kernels, which con-
verge with the desired order in this case. Specifically, we use the K2;1

kernel,64 which is equivalent to the classic M0
4 kernel,

67 for remeshing
Lagrangian particles

K2;1ðdÞ ¼ M0
4ðdÞ ¼

1# 1
2
ð5d2 # 3d3Þ 0 & d < 1;

1
2
ð2# dÞ2ð1# dÞ 1 & d & 2;

0 d > 2;

8
>>>>><

>>>>>:

(6)

where d is the distance of a particle to a grid node, measured in units
of the grid spacing h. The algorithm loops through all particles and, for
each particle, over all mesh nodes in the support of the K2;1 kernel
around it. For each particle-node pair, the above formula is used to
compute the fraction of the particle’s field value that is attributed to
that mesh node. The mesh nodes accumulate (sum) the contributions
they receive from all the particles. We remesh the polarity field after
every advection time step. To ensure full particle support for the inter-
polation kernel close to boundaries, we use the method of images.48

This method mirrors all particles within a distance of 3h from a
boundary along the boundary normal. Specifically, if a particle p inside
the domain carries a polarity of pp and is distance ‘ away from the
boundary, a mirror particle will be created at distance#‘ with a polar-
ity of pmirror ¼ 2pb # pp, where pb is the polarity boundary condition.
The algorithm also takes care of renormalizing the polarity magnitude
to compensate for errors accumulated during polarity time evolution.
This is necessary, as these errors would otherwise amplify to larger
numerical errors for long-time simulations. Hence, the polarity is pro-
jected onto the unit sphere if its magnitude deviates from 1 by more
than a user-defined tolerance "p. The pseudo-code for the complete
Lagrangian advection with remeshing and polarity renormalization is
given in Algorithm 2. It is a hybrid particle-mesh method.

ALGORITHM 2: Lagrangian advection with remeshing and polarity
renormalization.

Input:
1. S0: Particle set with polarity p and velocity v stored on the
particles located on a mesh.

2. "p: Numerical tolerance for deviation in polarity magnitude.
Output: Polarity field p on S0 after advection with velocity v.
Create a particle distribution S1 by advecting particles from S0.
Create mirror particles outside the domain boundaries as required
for the method of images to impose boundary conditions.48

Interpolate polarization p from S1 to S0.
for each particle do

if j1# jjpjj2j > "p then
p ¼ p

jjpjj2
end

end

IV. RESULTS
The theoretically expected order of convergence of the method

presented above depends on the spatial discretization operators and
the time-integration scheme used. In the presented solver, all spatial
differential operators are discretized using DC-PSE with consistency of
OðN#2Þ, where N is the total number of particles used in the simula-
tion. The K2;1 remeshing scheme converges with third order OðN#3Þ
and does therefore not limit the convergence rate. Time is integrated
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using the two-step Adams–Bashforth–Moulton predictor–correc-
tor scheme, which has a global convergence order of OðN#2

t Þ,
where Nt is the total number of time steps in a simulation. We
therefore expect the method to overall be second-order accurate in
both space and time.

A. Validation: Three-dimensional active incompressible
channel flow

We validate the numerical convergence of the present solver (and
its software implementation) in a case with !¼ 0 for which an analytical
steady-state solution can be derived in 3D. Consider a 3D rectangular
channel that is infinitely long along the x and the z directions and has
thickness L in the y direction. The channel wall at y¼ L is stress-free

ðrðtotÞxy ðx; L; z; tÞ ¼ 0), has no slip in z, [vzðx; L; z; tÞ ¼ 0], and is
impenetrable ðvyðx; L; z; tÞ ¼ 0Þ. The surface at y¼ 0 is also impenetra-
ble ðvyðx; 0; z; tÞ ¼ 0Þ and has no slip in x and z [vxðx; 0; z; tÞ
¼ vzðx; 0; z; tÞ ¼ 0]. The polarity is anchored at both surfaces as
ðpx; py; pzÞðx; L; z; tÞ ¼ ð0; 1; 0Þ and ðpx; py; pzÞðx; 0; z; tÞ ¼ ð1; 0; 0Þ.
Under these conditions, vy¼ 0 everywhere due to incompressibility and
translational invariance in x and z. For the initial condition

pðx; y; z; 0Þ ¼ cos
py
2L

! "
; sin

py
2L

! "
; 0

! "
; (7)

we can derive the asymptotic (for t ! 1) steady-state solution

pðx; y; z; t ! 1Þ ¼ cos hðyÞ; sin hðyÞ; 0ð Þ; (8a)

uxyðx; y; z; t ! 1Þ ¼ uyxðx; y; z; t ! 1Þ

¼ K
c 1þ ! cos hðyÞ½ (

d2hðyÞ
dy2

: (8b)

For !¼ 0, the hydrodynamic equations reduce to

d2h
dy2

¼ Dlcf
Kð4gþ cÞ sin 2h; (9)

with

hðyÞ ¼ am
ffiffiffiffiffiffiffiffiffiffiffiffi
c1 # a

p
c2 þ yð Þ;#

2a
c1 # a

! "
; (10)

where amðu; kÞ is the Jacobi amplitude function. This solution in 3D is
invariant along z and is therefore an extension of a known 2D
problem.48

We numerically solve this problem for g¼ 1, c¼ 1, f ¼ #1,
k¼ 1, Ks ¼ Kb ¼ Kt ¼ 1; Dl ¼ #1, and L¼ 10 in the Lagrangian
frame of reference with remeshing. For this set of parameters, the ana-
lytical solution has hðyÞ ¼ amð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:2ð1þ yÞ

p
;#0:5Þ. We use the pro-

posed hybrid particle-mesh method with "v ¼ 10#5; "p ¼ 10#16;
nmax ¼ 30, and "steady ¼ 10#9 to perform the simulation in a box-
shaped domain of size ð10; 10; 5hÞ discretized by a uniform Cartesian
mesh of resolution h. The domain has periodic boundary conditions in
x and z to model the infinite extent of the fluid in these directions. In
the y direction, the boundary conditions are as specified by the
problem.

The polarity field is invariant along the x and z axes [Figs. 2(a)
and 2(b), left]. Its one-dimensional gradient in y creates coherent active
stresses that generate a unidirectional flow of material along the x axis.

This flow has a velocity gradient that respects the no-slip boundary
condition at the bottom wall and the stress-free boundary condition at
the top wall [Figs. 2(a) and 2(b), right]. Reversing the sign of the active
stress in the simulation reverses the flow direction, respecting the sym-
metry of the problem.

Refining h, we observe second-order convergence to the analytical
solution at t¼ 40, as theoretically expected. In order to satisfy the CFL
condition, the time step size is refined along with the grid resolution
according to the relation Nx ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:64Nt þ 1

p
, where Nx and Nt are the

number of particles in x direction and number of time steps to reach
t¼ 40, respectively. The initial polarity and velocity fields at t¼ 0 are
visualized in Fig. 2(a). The steady-state numerical solution at t¼ 40 is
visualized in Fig. 2(b). We plot the L2ð); •Þ and L1ð!;"Þ errors in
both the polarity field p and the nonzero components of the strain rate
uxy for increasing Nx (h ¼ 1=Nx) in Fig. 2(c). Figure 2(d) further veri-
fies that the error in the polarity magnitude jjpjj plateaus over time
and converges for decreasing h, confirming numerical convergence of
the Lagrange multiplier hk. The jaggedness in Fig. 2(d) reflects numeri-
cal “ringing” of the Lagrange multiplier. This ringing is caused by the
remeshing error causing the predictor–corrector time integration
scheme with constant time step size to overshoot the flow steady state.
The amplitude of this ringing, however, does converge with the correct
order for increasing resolution. Together with earlier convergence
results of the DC-PSE pressure-correction scheme for steady-state
Stokes flow in a 3D ball with irregular particle distributions,55 this vali-
dates the correctness of the present method also in the active polar
case.

B. Benchmarks: Computational cost and scalability
Next, we benchmark the computational performance of the

solver. The KSPGMRES algorithm68 implemented in the PETSc library
uses the Arnoldi iterations to find the orthonormal basis of the Krylov
subspace. In each Arnoldi iteration, a new basis vector is found and
orthonormalized using the Gram–Schmidt process. This requires stor-
ing the vectors from all k previous iterations. The number of multipli-
cations over k Arnoldi iterations thus is O 1

2 k
2N

( )
, where N is the total

number of particles and k¼N in the worst case. The storage require-
ment is O(Nk). We prevent the explosion of the cost with k2 by restart-
ing the solver every m¼ 5000 iterations. This restarted version
requires Oððmþ 3þ 1=mÞN þ ZÞ multiplications, where Z is the
number of nonzero elements in the sparse force-balance system matrix
of size 3N * 3N for the three spatial components.69 The memory
requirement reduces to Oððmþ 2ÞNÞ. For each iteration of the
pressure-correction algorithm, the KSPGMRES solver is run to conver-
gence. This is repeated at most nmax times. The cost for the two-step
Adams–Bashforth–Moulton time-integration scheme is O(N).
Likewise, remeshing has a computational cost of O(N), as each particle
assigns to a constant number of neighboring grid nodes. In the present
Eulerian simulation, the particle positions do not change over time.
Therefore, the DC-PSE kernels only need to be calculated once at the
beginning of the simulation. Evaluating the kernels is an O(N) opera-
tion. In summary, the overall computational cost of the simulation in
an Eulerian frame of reference is dominated by KSPGMRES, as it
needs to solve a linear system of equations for each pressure-
correction iteration, the cost of which depends on the condition num-
ber of the system. In a Lagrangian frame of reference, the DC-PSE
kernels need to be recomputed at every time step, incurring an

Physics of Fluids ARTICLE pubs.aip.org/aip/pof

Phys. Fluids 35, 105155 (2023); doi: 10.1063/5.0169546 35, 105155-6

VC Author(s) 2023

 3
0
 O

c
to

b
e
r 2

0
2
3
 1

3
:3

2
:1

0

pubs.aip.org/aip/phf


additional computational cost of O(N), albeit with a large pre-factor.
This cost then dominates the one from the linear system solver.
Overall, we thus expect the computational cost of the whole simulation
to scale linearly with the number of particles N. This is empirically
confirmed in our benchmarks with N ranging from 103 to 105.

The software implementation of the presented method relies on
OpenFPM to leverage shared- and distributed-memory parallel com-
puters to address the high computational cost of 3D simulations. We
therefore check how the runtime of the simulation from Sec. IVA
scales when distributing it across an increasing number of CPU cores.
For each configuration, ten time steps are performed on Intel Xeon
E5–2680v3 CPUs at 2.50GHz with 24 cores on each compute node.
Individual compute nodes are connected by a 4-lane FDR InfiniBand
network (at 14Gb/s per lane) with a latency of 0.7 ls for message pass-
ing using the OpenMPI library. Each experiment is repeated 10 times,
and the results are averaged over the 10 independent repetitions. We
use the ParMETIS graph domain decomposition70 of OpenFPM to
parallelize the computation over spatial particle sets.54

For a fixed number of particles (Nx¼ 64, Ny¼ 65, and Nz¼ 5),
the number of CPU cores increases from 1 to 192, hence measuring
the strong scaling of the algorithm [Fig. 3(a)]. The time measure-
ments show an almost linear scaling within one compute node.
Using more cores per node, the memory bandwidth becomes the
bottleneck, such that the speedup on 24 cores (1 full node) is about
14-fold. Scaling beyond one node, communicating data via the
interconnect network of the machine, the scaling slows down only
slightly up until 128 cores. Using more than 128 cores, runtimes
start to increase, as this problem is too small to be distributed over
more than 128 cores. We next measure the weak scaling of the sim-
ulation where the number of particles increases proportionally to
the number of CPU cores. For simplicity, this test is performed in a
cubic computational domain and increase the number of particles
from N ¼ 16* 17* 16 on 1 core to N ¼ 164* 165* 164 (one
additional particle is required in y to impose the boundary condi-
tions) on 1012 cores [Fig. 3(b)]. We observe perfect scaling in one
node up to 4 cores, while the parallel efficiency when using all 24

FIG. 2. Convergence of the presented 3D active polar fluid solver for the channel-flow problem with the analytical solution given in Eq. (8). (a) Streamlines of initial (t¼ 0) polar-
ity (left) and velocity (right) fields with arrow heads indicating direction and color indicating the Frank energy density and velocity magnitude, respectively. (b) Streamlines at
steady state (t¼ 40) for the polarity (left) and velocity (right) fields. (c) Convergence of the absolute numerical errors at t¼ 40 for the polarity p and strain rate uxy fields. The L2
norm of the errors across all particles is plotted as circles ()), the L1 norms as diamonds (!). Open symbols represent errors in the polarity field p, filled symbols in the strain
rate field uxy. The theoretically expected convergence slope is indicated by the solid line. (d) Evolution of the L1 error in the numerically computed polarity magnitude jjpjj2
over time for different resolutions h demonstrating convergence of the Lagrange multiplier hk.
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cores of a node is 58%. Scaling to more nodes, the communication
overhead of the linear system solver eventually becomes limiting,
as it requires global all-to-all communication with a volume that
grows with the total problem size. The communication time
depends on the node interconnect topology, the condition number
of the system matrix, the number of GMRES iterations until con-
vergence, the shape of the domain decomposition, and the memory
bandwidth of the compute nodes. As the number of processor
cores increases, communication overhead on average increases.
The nonmonotic behavior of the measured times in Fig. 3(b) is not
caused by measurement noise, as the error bars over the 10 inde-
pendent repetitions of each run are smaller than the symbol size.
Instead, these variations are deterministic. They are caused by the
condition number of the system matrix changing with increasing
resolution (weak scaling), the node interconnect network topology
changing as more nodes are used, and the shape of the domain
decomposition changing as data distributes across more cores
within a node.

Taken together, these results demonstrate that the parallel
OpenFPM implementation of the present code can reduce the
wall-clock time of the simulations by more than one order of mag-
nitude (strong scaling) and allows performing large simulations
(weak scaling). This enables using the code for real-world
applications.

V. APPLICATIONS
We illustrate the use of the present simulation method to active

polar flow problems in increasingly complex 3D spatial domains and
with different boundary conditions. While analytical solutions are not
available in these cases, we compare with published results where pos-
sible in order to corroborate the correctness of our simulations.
Together, these example simulations showcase the broad applicability
of the present method.

A. Active Fr"eedericksz transition in extensile polar
fluids

We simulate the spontaneous flow transition of an incompress-
ible extensile active polar fluid with friction boundary conditions and
! 6¼ 0.71 For this, we simulate the channel-flow problem from Sec.
IVA in a cuboidal domain with edge lengths Lx ¼ Ly ¼ L; Lz ¼ 5h,
discretized with a uniform Cartesian mesh of Nx, Ny ¼ Nx þ 1, and
Nz¼ 5 particles in the x, y, and z directions, respectively. Ny ¼ Nx þ 1
ensures equal spacing h along all dimensions, since periodic boundary
conditions are imposed along x (and z), but not along y. At the bound-
aries y¼ Ly and y¼ 0, the polarity is fixed to be aligned with the x axis.
For the velocity, the friction boundary conditions are as follows:

rxyðx; 0; z; tÞ ¼ lbvxðx; 0; z; tÞ; (11a)

rxyðx; Ly; z; tÞ ¼ #ltvxðx; L; z; tÞ; (11b)

rzyðx; 0; z; tÞ ¼ lbvzðx; 0; z; tÞ; (11c)

rzyðx; Ly; z; tÞ ¼ #ltvzðx; L; z; tÞ; (11d)

where lt and lb are the friction coefficients at the top and bottom
boundary, respectively. Initially, all polarity vectors point along the
positive x axis. We then induce a small perturbation to the polarity
vector of the central particle in the domain by setting h ¼ 0:01 and
u ¼ p=2þ 0:01, where h and u are the azimuthal and polar angle of
the polarity vector at that particle, respectively. The remaining model
and simulation parameters are: L ¼ Lx ¼ Ly ¼ 10, g¼ 1, c¼ 1, f¼ 1,
k¼ 1, and ! ¼ #2=5 (i.e., flow-tumbling regime), Ks ¼ Kb ¼ Kt ¼ 1;
lt=lb ¼ 4; Dl ¼ 3:0; "v ¼ 5* 10#4; "p ¼ 10#16; nmax ¼ 30; "steady
¼ 10#9. We perform the simulation using the hybrid particle-mesh
method due to its less restrictive CFL condition of the Lagrangian
frame of reference. The spatial resolution is Nx¼ 32, the time step size
is Dt ¼ 0:01, and the final simulation time is tf¼ 200. The initial con-
dition with the perturbation at the center is visualized in Fig. 4(a).

In the absence of active stress, the system behaves according to
equilibrium thermodynamics, and the perturbation relaxes to the

FIG. 3. Scaling of the simulation wall-clock time to complete 10 time steps when parallelizing the simulation from Sec. IVA over increasingly many CPU cores. Dots show the
average time over ten repetitions of each experiment with standard deviation error bars smaller than the symbol size. Dashed vertical lines show compute node boundaries
beyond which communication happens over the interconnect network. (a) Strong scaling when distributing a problem of fixed size (Nx¼ 64, Ny¼ 65, and Nz¼ 5) across an
increasing number of processor cores. The dotted line represents the ideal linear speedup. (b) Weak scaling when increasing the problem size proportional to the number of
processor cores.
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homogeneous state with no flow. This also generates the expected
back-flows as the polarity relaxes to the homogeneous state.
Sufficiently strong active stresses, however, can generate contractile or
extensile forces that permanently maintain the system out of equilib-
rium, according to the description from Sec. II. Indeed, for activity lev-
els above an analytically known71 critical threshold, we observe
bending of the polarity field lines. This is the well-known bending
instability of extensile active polar fluids.2,27,72 The bending of the
polarity field in the xz plane induces directed fluid flow in the z direc-
tion, causing a transition away from the initial homogeneous steady
state [Fig. 4(b)]. The dynamics of this transition are characteristic of a
pitchfork bifurcation. Computing the maximum velocity in the
domain as a function of Dl empirically identifies the critical activity
for this case to be around Dl ¼ 2:15, which is higher than the analyti-
cally predicted value71

Dlc ¼ # 5p2K cð! # 1Þ2 þ 4g
( )

2cL2ð! # 1Þðck! þ fÞ ¼ 1:75 (12)

for stress-free walls. In the present case, the walls have friction, for
which it is known that Dlc & Dl & 4Dlc,

49,56 which our simulation
fulfills. The locations of maximum velocity magnitude coincide with
the maxima in the Frank free-energy density, and both are located at
the hilltops and valley bottoms of the bending deformation. The
numerically solved fields also perfectly preserve translational

invariance along the z direction and the mirror symmetry of the
inward and outward bends. Simulations in a cubic domain with
Nz¼Nx show the exact same behavior. At the final time of the simula-
tion, the maximum rate of change in the polarity field measured by the
L2-norm stays on the order of 10#6, indicating a non-equilibrium
steady state. All of these observations confirm that the numerically
computed solution behaves physically correctly.

B. Transition to active turbulence
Section VA has shown that the present numerical solver accu-

rately recapitulates the space–time dynamics of the active Fr"eedericksz
transition in extensile polar fluids when the activity exceeds the critical
value Dlc. Increasing the activity even more first leads to the emer-
gence of traveling waves and traveling vortices, followed by a transition
to spatiotemporal chaos. To identify these flow transitions, we numeri-
cally compute the maximum finite-time Lyapunov exponent k1, which
measures the exponential growth rate of a small perturbation in the
system. Negative k1 indicate that the flow relaxes back to the unper-
turbed state. Positive k1 are indicative of chaos transitions. If the per-
turbation remains in the system forever, k1 is zero. We numerically
compute k1 using the classic method of Benettin et al.73 and Skokos,74

as previously implemented.49 Therefore, two Lagrangian simulations
are run with the same model and parameters, except that the second
simulation has an additional initial perturbation of d0 ¼ 0:001 to both

FIG. 4. Active Fr"eedericksz transition and transition to active turbulence in a 3D extensile polar fluid. (a) Streamlines of initial (t¼ 0) polarity (left) and velocity (right) fields with
color indicating the Frank free-energy density and velocity magnitude, respectively. A small single-point perturbation is introduced at the center of the domain (see main text).
(b) Streamlines at steady state (t¼ 200) for the polarity (left) and velocity (right) fields for activity fDl ¼ 3, showing an active Fr"eedericksz transition to spontaneous flow with
polarity-bending instability. (c) Numerically computed maximum finite-time Lyapunov exponent (dots: mean; error bars: standard deviation) as a function of the activity level. For
increasing activity, the system transits from no flow, to flow, to traveling vortices, and eventually chaos. The increasing standard deviation in the waves regime is caused by
polarity oscillations. (d) Streamlines of the polarity (left) and velocity fields (right) in the turbulent regime for fDl ¼ 50 at t¼ 200.
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h and u of the polarity vector of the central particle. Every TL¼ 50
time steps, it is checked whether the difference jdj between the two
simulations (measured by the L2-norm over all particles) increased or
decreased. In order to detect the small differences in the polarity field,
we decrease "v ¼ 1* 10#4. This provides one estimation for
k1 ¼ 1

TL
ln jdj

d0
. Then, the perturbation is reset to d0. With a time step

size of 0.01, a total of 800 k1 estimates are thus collected by the final
time tf¼ 400. We report the mean and standard deviation over the last
300 k1 estimates when the flow has transitioned into its final state.

A plot of the measured k1 (mean6 standard deviation) as a func-
tion of jfDlj is shown in Fig. 4(c) with error bars indicating the standard
deviation. The “No Flow” and “Flow” regimes are characterized by a
homogeneous and an inhomogeneous steady state, respectively. This
transition, where k1 changes from being negative to being zero, therefore
is the active Fr"eedericksz transition in extensile polar fluids as studied in
Subsection VA. At an activity level of Dl + 4:35, the system starts to
exhibit self-organized traveling waves of polarity and traveling vortices of
velocity. Both fields travel in x direction at constant group velocity. The
transition can be empirically localized by computing the maximum rate
of change or the slope of the power spectrum of the polarity field. Such
empirically estimated values, however, are always approximate and may
vary slightly for different spatial and temporal resolutions of the simula-
tion. Within the “Waves” regime, there is sub-transition happening
around Dl + 6:75. There, the polarity field starts to exhibit oscillations
leading to oscillating values of k1, as evidenced by the growing standard
deviation of k1 beyond this point. At Dl + 11, the previously oscillation
frequency starts to wobble, which is a sign of an imminent transition to
spatiotemporal chaos. The mean maximum Lyapunov exponent become
positive beyond Dl + 12, but the oscillatory behavior still dominates at
this activity. In the region between Dl + 11 and Dl + 16, the system
exhibits a mixture of signatures for oscillatory vortices and chaos. This
soft transition is indicated by a color gradient in Fig. 4(c). In the “Chaos”
regime beyond Dl + 16, the flow fields are turbulent as quantified by a
growing positive Lyapunov exponent. In this regime, we observe disclina-
tion lines in the polarity field as one-dimensional line defects preferen-
tially forming at the walls and growing into the bulk. The defect loops
move chaotically and fuse with other disclination lines upon encounter.
They always form closed loops either with themselves of by starting and
ending at a wall. A visualization of the polarity and velocity fields in the
chaotic regime is shown in Fig. 4(d) for the same resolution Nx¼ 32. To
our knowledge, this constitutes the first numerical validation of the tran-
sition to turbulence for the full three-dimensional Ericksen–Leslie hydro-
dynamic model with extensile stress.

C. Coherent motion in a 3D annulus
Moving to a non-Cartesian geometry, we test our algorithm and

implementation in a 3D annulus. The behavior of active matter in 2D
annular geometries has been extensively studied both experimen-
tally75–78 and numerically.79–81 The main focus of these studies was on
confinement-induced transitions to active turbulence. In 3D, an exper-
imental study reported coherent motion of microtubule assays con-
fined to an annulus,82 but we are not aware of any numerical
simulations of this system in 3D.

We here solve Eq. (1) of active polar hydrodynamics in a 3D annu-
lus of inner radius 1 (dimensionless units), outer radius of 5, and thick-
ness of 2.75 in the periodic z direction. The annulus is centered at
ð0; 0; 1:375Þ. At the inner and outer ring surfaces, the polarity field is

anchored tangentially and parallel to the xy plane. For the velocity field,
physically realistic no-slip boundary conditions are imposed. We use the
same model and simulation parameters as in Subsection VB, but set
Dl ¼ 60. The simulation is performed in the Eulerian frame of refer-
ence, which would be harder to do in the Lagrangian reference frame in
this case. At t¼ 0, polarity is homogeneously aligned tangentially to the
annulus and parallel to the xy plane except for a small perturbation set-
ting h ¼ 0:01 and u ¼ p=2þ 0:01, where h and u are the azimuthal
and polar angles, respectively, for particles with 1 < jxj < 2:5 and
#1 < y < 1 [Fig. 5(a)]. We observe that the polarity develops a circular
variant of the bend instability at t + 5 [Fig. 5(b)]. This bent state insta-
bility develops a sixfold angular symmetry exhibits coherent flows rotat-
ing it clockwise [Figs. 5(c) and 5(d)]. This confirms the experimentally
observed82 emergence of coherent angular motion in 3D annular
domains and suggests that extensile active materials can use the bend
instability to sustain a bent mode for generating coherent motion.

D. Chiral vortices in asymmetric 3D geometries
Finally, we demonstrate the robustness and versatility of the pre-

sent simulation algorithm in more challenging 3D geometries that
have never been considered in the literature so far. Two different
geometries are created using Blender83 that resemble shapes of divid-
ing biological cells. The first geometry is a rotationally and left-right
symmetric “peanut” shape, discretized with 1952 boundary particles
given by the vertices of Blender’s triangular surface mesh and 10 627
bulk particles placed in a regular Cartesian grid with spacing h¼ 0.1.
The second geometry is an asymmetric geometry created by manually
indenting the peanut mesh at arbitrary locations, different for the left
and right sides. It has the same number of boundary particles and 10
898 bulk particles with the same h¼ 0.1. At the boundary, polarity is
anchored to be perpendicular to the boundary, and the velocity is zero.
The initial condition consists of a random polarity field with polarity
at each bulk particle sampled uniformly randomly on the unit sphere.
The initial velocity field is zero everywhere. We use the same model
and simulations parameters as in Sec. VA, except for !¼ 0 and
"v ¼ 5* 10#4. All simulations run until tf ¼ 10:0. Due to the diffi-
culty of applying the method of images in complex geometries, we use
the Eulerian frame of reference for this simulation.

Without activity, the polarity field aligns with the boundary con-
dition, and the velocity decays to zero everywhere in the domain (not
shown). This is as expected for a purely dissipative system and con-
firms the physical plausibility of the simulation. At Dl ¼ 20:0, a
steady state with nonzero flow develops in both the symmetric and the
asymmetric geometries (Fig. 6). The polarity and velocity fields reflect
the symmetry properties of the domain. In the symmetric shape [Figs.
6(a)–6(c)], the fields are approximately left-right symmetric, but not
exactly, since the simulation starts from a random initial polarity field.
Over time (panels from left to right), the polarity fields develops two
stable asters in either body of the peanut, and the velocity field
becomes chiral with multiple stable vortices stemming from the anti-
symmetric part of the stress tensor. In the asymmetric shape [Figs. 6
(d)–6(f)], a similar pattern initially forms at t + 1:0, but later one aster
“eats” the other, and a strong steady-state streaming velocity is induced
through the neck between the two sides of the peanut. Taken together,
these simulations not only showcase the application of the present sim-
ulation framework to arbitrary 3D geometries, but predict the
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emergence of chiral flows in axially symmetric shapes and geometry-
induced left-right symmetry breaking in asymmetric domain shapes.

VI. CONCLUSION
We have presented a numerical method for solving the full,

symmetry-preserving 3D active Ericksen–Leslie equations with unit
polarity constraint. These equations model the physics of active polar
fluids from first principles. The presented method numerically solves
these complex PDEs using a hybrid particle-mesh method with
Discretization-Corrected Particle Strength Exchange (DC-PSE) to con-
sistently discretize differential operators with second-order accuracy
in space over potentially irregular distributions of discretization points
(a.k.a. particles). This simplifies the implementation of arbitrary
boundary conditions and of simulations in irregularly shaped domains.
We presented an iterative pressure-correction solver for imposing
incompressibility of the flow using DC-PSE in 3D and validated its
second-order accurate convergence. Thanks to the flexibility afforded
by DC-PSE, remeshing, and iterative pressure-correction, the method
can be used in both the Eulerian and Lagrangian frames of reference.
In the Eulerian frame of reference, particles do not move. Remeshing
is then not needed, but the CFL condition imposes a smaller time step
limit on the simulations. Detecting flow steady states and imposing
boundary conditions in complex-shaped domains, however, is easier
in the Eulerian frame. In the Lagrangian frame of reference, the par-
ticles move with the velocity field of the flow. This allows for larger
time steps, but also incurs a higher computational cost per time step,
as DC-PSE operator kernels need to be recomputed at each time step
and remeshing is required. The Lagrangian frame is therefore prefera-
ble for unsteady simulations in simple domain shapes, where the
method of images can be applied to impose the boundary conditions.

The software implementation of the present algorithm leverages
the open-source framework OpenFPM for scalable scientific comput-
ing54 and its template-expression system for PDEs.55 This allows the
simulations to scale on shared- and distributed-memory multi-proces-
sor parallel computers, addressing the computational challenges asso-
ciated with 3D active matter problems. The use of the PDE template
expression system further facilitates modifying the model equations
and domain geometry without needing to change the numerical solver
code. We have benchmarked the parallel scalability in both the strong
and the weak sense. The scalability of the simulation was predomi-
nantly contingent on the scalability of the pressure-correction solver,
which currently uses the Portable Extensible Toolkit for Scientific
Computation (PETSc)61 to solve the global linear system of equations.

The main results of this work were as follows: a comprehensive deri-
vation of the governing hydrodynamic equations of 3D active polar fluids,
a detailed description of a fully consistent numerical solver algorithm, a
validation of its second-order accurate numerical convergence, and an
analysis of its computational performance. We further validated the pro-
posed simulation algorithm by recapitulating known phenomena in active
polar fluids, including the active Fr"eedericksz transition in extensile polar
fluids, the transition to active turbulence, and the emergence of coherent
rotational motion in a 3D annulus, which was numerically simulated for
the first time here. All of these simulations compared the numerical results
with experimental observations or theoretical predictions from the litera-
ture. Finally, the presented solver was applied to more complex symmetric
and asymmetric 3D geometries that have never been considered in the lit-
erature so far. This predicted the emergence of chiral vortices in axially
symmetric domains, as well as geometry-induced left-right symmetry
breaking. Together, these simulations highlighted the versatility of our
approach over a range of 3D active polar hydrodynamics problems in dif-
ferent geometries and with different boundary conditions.

FIG. 5. Coherent angular motion of an active fluid in a 3D annular domain with visualized polarity (top, color bar: Frank free-energy density) and velocity (bottom, color bar:
velocity magnitude) streamlines. (a) Initial state at time t¼ 0. (b) Initial appearance of the circular bend instability at time t¼ 5. (c) Fully developed bent state rotating clockwise
at time t¼ 7. (d) Rotation at time t¼ 9.
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Despite these advantages, the present approach also has a number
of limitations. The most important one is its high computational cost
with a single simulation time step requiring tens to hundreds of
seconds of wall-clock time even on a parallel computer and for low spa-
tial resolution. This high computational cost is partly intrinsic to the use
of remeshed DC-PSE and partly limited by the parallel scalability of the
third-party PETSc solver used. However, the modular architecture of
OpenFPM could in the future be exploited to use alternative solvers after
assembling the system matrix in a distributed fashion. This could poten-
tially reduce the computational cost of the simulations in the future and
enhance their parallel scalability. Another measure that could reduce the
runtime of the simulations would be to perform them on Graphics

Processing Units (GPUs). This will depend on the GPU support in
OpenFPM being extended to the PDE template expression system and
to particle simulations. Furthermore, the presented algorithm was not
tested in moving or deforming domains, albeit we did show it to work
in different complex geometries. Finally, the present algorithm is limited
to solving bulk active flow problems in 3D. While it can relatively easily
be adapted to solving 2D bulk problems by changing the governing
equations in the code, extending it to flows in curved surfaces would
involve a meshfree Surface DC-PSE method,84 but first requires a num-
ber of mathematical questions to be resolved.

Taken together, the present work enables the numerical solution
of 3D active polar fluid models by providing a convergence-validated,

FIG. 6. Developing polarity (top, color bar: Frank free-energy density) and velocity (bottom, color bar: velocity magnitude) streamlines of an extensile active polar fluid in a sym-
metric (a)–(c) and an asymmetric (d)–(f) peanut-like 3D geometry. From left to right, we show the flow fields for increasing time (t ¼ 0:1; 1:0; and10:0) as indicated in the pan-
els. For better visualization, the shapes are cut open along their axial mid-planes. Gray spheres show boundary particles. A surface rendering of one half of either shape is
overlaid to the first frame as a gray, semitransparent surface.
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scalable, and open-source method capable of handling complex geom-
etries and boundary conditions. This opens up new avenues for explor-
ing and investigating of the rich and at times puzzling physics of active
fluids and their use to model living systems, including tissue morpho-
genesis and animal flocking behavior.
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APPENDIX A: MOLECULAR FIELD

The molecular field ha is decomposed into its polarity-perpendicular (h?;x; h?;y; h?;z) and polarity-parallel (hk) components

hx ¼ hkpx # h?;zpy þ h?;ypz h?;x ¼ pyhz # pzhy; (A1a)

hy ¼ h?;zpx þ hkpy # h?;xpz h?;y ¼ pzhx # pxhz ; (A1b)

hz ¼ #h?;ypx þ h?;xpy þ hkpz h?;z ¼ pxhy # pyhx : (A1c)

The parallel component is defined as the Lagrange multiplier in Eq. (4) to enforce jjpjj ¼ 1. The perpendicular components are then as above.

APPENDIX B: COMPLETE FORCE-BALANCE EQUATION
x–component :

gð2@xxvx þ @xyvy þ @yyvx þ @xzvz þ @zzvxÞ þ !2c
$

1

ðp2x þ p2y þ p2zÞ
2

$
# 2pxpyðpx@ypx þ py@ypy þ pz@ypzÞðp2x@xvx þ pxpyð@xvy þ @yvxÞ

þ p2y@yvy þ pxpzð@xvz þ @zvxÞ þ pypzð@yvz þ @zvyÞ þ p2z@zvzÞ # 2pxpzðpx@zpx þ py@zpy þ pz@zpzÞðp2x@xvx þ pxpyð@xvy þ @yvxÞ

þ p2y@yvy þ pxpzð@xvz þ @zvxÞ þ pypzð@yvz þ @zvyÞ þ p2z@zvzÞ þ
1
3
ð2ðpx@xpx þ py@xpy þ pz@xpzÞð#2p2x þ p2y þ p2zÞðp

2
x@xvx

þ pxpyð@xvy þ @yvxÞ þ p2y@yvy þ pxpzð@xvz þ @zvxÞ þ pypzð@yvz þ @zvyÞ þ pzpz@zvzÞÞ
%
þ 1
p2x þ p2y þ p2z

$!
4px@xpx

3
þ px@ypy

þ px@zpz #
2py@xpy

3
þ py@ypx #

2pz@xpz
3

þ pz@zpx

"
ðp2x@xvx þ pxpyð@xvy þ @yvxÞ þ p2y@yvy þ pxpzð@xvz@zvxÞ þ pypzð@yvz þ @zvyÞ

þ p2z@zvzÞ þ
1
3
ðð2p2x # p2y # p2zÞð2px@xpx@xvx þ p2x@xxvx þ p2y@xxvy þ p2z@xxvz þ px@xpyð@xvy þ @yvxÞ þ py@xpxð@xvy þ @yvxÞ

þ 2py@xpy@yvy þ pxpyð@xxvy þ @xyvxÞ þ px@xpzð@xvz þ @zvxÞ þ pz@xpxð@xvz þ @zvxÞ þ py@xpzð@yvz þ @zvyÞ þ pz@xpyð@yvz þ @zvyÞ
þ 2pz@xpz@zvz þ pxpzð@xxvz þ @xzvxÞ þ pypzð@xyvz þ @xzvyÞÞÞ þ pxpyð2px@ypx@xvx þ p2x@xyvx þ px@ypyð@xvy þ @yvxÞ
þ py@ypxð@xvy þ @yvxÞ þ 2py@ypy@yvy þ pxpyð@xyvy þ @yyvxÞ þ p2y@yyvy þ p2z@yzvz þ px@ypzð@xvz þ @zvxÞ þ pz@ypxð@xvz þ @zvxÞ
þ py@ypzð@yvz þ @zvyÞ þ pz@ypyð@yvz@zvyÞ þ 2pz@ypz@zvz þ pxpzð@xyvz þ @zyvxÞ þ pypzð@yyvz þ @zyvyÞÞ þ pxpzð2px@zpx@xvx
þ p2x@xzvx þ px@zpyð@xvy þ @yvxÞ þ py@zpxð@xvy þ @yvxÞ þ 2py@zpy@yvy þ pxpyð@xzvy þ @yzvxÞ þ p2y@yzvy þ px@zpzð@xvz þ @zvxÞ
þ pz@zpxð@xvz þ @zvxÞ þ py@zpzð@yvz þ @zvyÞ þ pz@zpyð@yvz þ @zvyÞ þ 2pz@zpz@zvz þ pxpzð@xzvz þ @zzvxÞ þ pypzð@yzvz þ @zzvyÞ

þ p2z@zzvzÞ
%%
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¼ #
$
# 0:5pxh?;y@zpx þ 0:5pxh?;z@ypx þ 0:5pyh?;x@zpx þ 0:5pyh?;z@ypy þ 0:5pyh?;z@zpz # 0:5pxð#h?;x@zpy þ h?;y@zpx þ px@zh?;y

# py@zh?;xÞ # 0:5pzh?;x@ypx # 0:5pzh?;y@ypy # 0:5pzh?;y@zpz þ 0:5pxð#h?;x@ypz þ h?;z@ypx þ px@yh?;z # pz@yh?;xÞ

þ 0:5pyð#h?;y@ypz þ h?;z@ypy þ py@yh?;z # pz@yh?;yÞ # 0:5pzðh?;y@zpz # h?;z@zpy # py@zh?;z þ pz@zh?;yÞ þ 0:5!
$
# pxh?;x@ypz

þ pxh?;x@zpy þ 2pxh?;y@xpz # 2pxh?;y@zpx # 2pxh?;z@xpy þ 2pxh?;z@ypx þ p2x@yh?;z # p2x@zh?;y þ pyh?;x@zpx þ pyh?;y@ypz
# 2pyh?;z@xpx # 2pyh?;z@ypy # pyh?;z@zpz # 2pxpy@xh?;z þ pxpy@zh?;x # p2y@yh?;z # pzh?;x@ypx þ 2pzh?;y@xpx þ pzh?;y@ypy

þ 2pzh?;y@zpz # pzh?;z@zpy þ 2pxpz@xh?;y # pxpz@yh?;x þ pypz@yh?;y # pypz@zh?;z þ p2z@zh?;y

%
þ !ck

$
# pxpy@yDl# pxpz@zDl

þ
ð#2p2x þ p2y þ p2zÞ@xDl

3
þ
!

#4px@xpx
3

# px@ypy # px@zpz þ
2py@xpy

3
# py@ypx þ

2pz@xpz
3

# pz@zpx

! "
Dl

"%

þ fðDl@xqxx þ Dl@yqxy þ Dl@zqxzÞ þ @xrðeÞxx þ @yrðeÞxy þ @zrðeÞxz

%
þ @xP (B1)

y–component :

gð2@yyvy þ @xxvy þ @xyvx þ @yzvz þ @zzvyÞ þ !2c
$

1

ðp2x þ p2y þ p2zÞ
2

$
# 2pxpyðpx@xpx þ py@xpy þ pz@xpzÞðp2x@xvx þ pxpyð@xvy þ @yvxÞ

þ p2y@yvy þ pxpzð@xvz þ @zvxÞ þ pypzð@yvz þ @zvyÞ þ p2z@zvzÞ # 2pypzðpx@zpx þ py@zpy þ pz@zpzÞðp2x@xvx þ pxpyð@xvy þ @yvxÞ

þ p2y@yvy þ pxpzð@xvz þ @zvxÞ þ pypzð@yvz þ @zvyÞ þ p2z@zvzÞ þ
1
3
ð2ðpx@ypx þ py@ypy þ pz@ypzÞðp2x # 2p2y þ p2zÞðp

2
x@xvx þ pxpyð@xvy

þ @yvxÞ þ p2y@yvy þ pxpzð@xvz þ @zvxÞ þ pypzð@yvz þ @zvyÞ þ pzpz@zvzÞÞ
%
þ 1
p2x þ p2y þ p2z

$!
px@xpy #

2px@ypx
3

þ py@xpx

þ
4py@ypy

3
þ py@zpz #

2pz@ypz
3

þ pz@zpy

"
ðp2x@xvx þ pxpyð@xvy þ @yvxÞ þ p2y@yvy þ pxpzð@xvz@zvxÞ þ pypzð@yvz þ @zvyÞ

þ p2z@zvzÞ þ pxpyð2px@xpx@xvx þ p2x@xxvx þ p2y@xxvy þ p2z@xxvz þ px@xpyð@xvy þ @yvxÞ þ py@xpxð@xvy þ @yvxÞ þ 2py@xpy@yvy

þ pxpyð@xxvy þ @xyvxÞ þ px@xpzð@xvz þ @zvxÞ þ pz@xpxð@xvz þ @zvxÞ þ py@xpzð@yvz þ @zvyÞ þ pz@xpyð@yvz þ @zvyÞ þ 2pz@xpz@zvz

þ pxpzð@xxvz þ @xzvxÞ þ pypzð@xyvz þ @xzvyÞÞÞ þ
1
3
ðð#p2x þ 2p2y # p2zÞð2px@ypx@xvx þ p2x@xyvx þ px@ypyð@xvy þ @yvxÞ

þ py@ypxð@xvy þ @yvxÞ þ 2py@ypy@yvy þ pxpyð@xyvy þ @yyvxÞ þ p2y@yyvy þ p2z@yzvz þ px@ypzð@xvz þ @zvxÞ þ pz@ypxð@xvz þ @zvxÞ
þ py@ypzð@yvz þ @zvyÞ þ pz@ypyð@yvz@zvyÞ þ 2pz@ypz@zvz þ pxpzð@xyvz þ @zyvxÞ þ pypzð@yyvz þ @zyvyÞÞ þ pypzð2px@zpx@xvx
þ p2x@xzvx þ px@zpyð@xvy þ @yvxÞ þ py@zpxð@xvy þ @yvxÞ þ 2py@zpy@yvy þ pxpyð@xzvy þ @yzvxÞ þ p2y@yzvy þ px@zpzð@xvz þ @zvxÞ
þ pz@zpxð@xvz þ @zvxÞ þ py@zpzð@yvz þ @zvyÞ þ pz@zpyð@yvz þ @zvyÞ þ 2pz@zpz@zvz þ pxpzð@xzvz þ @zzvxÞ þ pypzð@yzvz

þ @zzvyÞ þ p2z@zzvzÞ
%%

¼ #
$
# 0:5pxh?;y@zpy # 0:5pxh?;z@xpx # 0:5pxh?;z@zpz þ 0:5pyh?;x@zpy # 0:5pyh?;z@xpy þ 0:5pyðh?;x@zpy # h?;y@zpx # px@zh?;y

þ py@zh?;xÞ þ 0:5pzh?;x@xpx þ 0:5pzh?;x@zpz þ 0:5pzh?;y@xpy þ 0:5pxð#h?;x@xpz þ h?;z@xpx þ px@xh?;z # pz@xh?;xÞ

# 0:5pyð#h?;y@xpz þ h?;z@xpy þ py@xh?;z # pz@xh?;yÞ þ 0:5pzðh?;x@zpz # h?;z@zpx # px@zh?;z þ pz@zh?;xÞ þ 0:5!
$
# pxh?;x@xpz

# pxh?;y@zpy þ 2pxh?;z@xpx þ 2pxh?;z@ypy þ pxh?;z@zpz þ p2x@xh?;z # 2pyh?;x@ypz þ 2pyh?;x@zpy þ pyh?;y@xpz # pyh?;y@zpx
# 2pyh?;z@xpy þ 2pyh?;z@ypx þ 2pxpy@yh?;z # pxpy@zh?;y # p2y@xh?;z þ p2y@zh?;x # pzh?;x@xpx þ 2pzh?;x@ypy # 2pzh?;x@zpz

þ pzh?;y@xpy þ pzh?;z@zpx # pxpz@xh?;x þ pxpz@zh?;z þ pypz@xh?;y # 2pypz@yh?;x # p2z@zh?;x

%
þ !ck

$
# pxpy@xDl# pypz@zDl

þ
ðp2x # 2p2y þ p2zÞ@yDl

3
þ #px@xpy þ

2px@ypx
3

# py@xpx #
4py@ypy

3
# py@zpz þ

2pz@ypz
3

# pz@zpy

! "
DlÞ

%
þ fðDl@xqxy þ Dl@yqyy

þ Dl@zqyzÞ þ @xrðeÞxy þ @yrðeÞyy þ @zrðeÞyz

%
þ @yP (B2)
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z–component :

gð2@zzvz þ @xxvz þ @xzvx þ @yyvz þ @yzvyÞ þ !2c
$

1

ðp2x þ p2y þ p2zÞ
2

$
# 2pxpzðpx@xpx þ py@xpy þ pz@xpzÞðp2x@xvx þ pxpyð@xvy þ @yvxÞ

þ p2y@yvy þ pxpzð@xvz þ @zvxÞ þ pypzð@yvz þ @zvyÞ þ p2z@zvzÞ # 2pypzðpx@ypx þ py@ypy þ pz@ypzÞðp2x@xvx þ pxpyð@xvy þ @yvxÞ

þ p2y@yvy þ pxpzð@xvz þ @zvxÞ þ pypzð@yvz þ @zvyÞ þ p2z@zvzÞ þ
1
3
ð2ðpx@zpx þ py@zpy þ pz@zpzÞðp2x þ p2y # 2p2zÞðp

2
x@xvx

þ pxpyð@xvy þ @yvxÞ þ p2y@yvy þ pxpzð@xvz þ @zvxÞ þ pypzð@yvz þ @zvyÞ þ pzpz@zvzÞÞ
%
þ 1
p2x þ p2y þ p2z

$!
px@xpz #

2px@zpx
3

þ py@ypz #
2py@zpy

3
þ pz@xpx þ pz@ypy þ

4pz@zpz
3

"
ðp2x@xvx þ pxpyð@xvy þ @yvxÞ þ p2y@yvy þ pxpzð@xvz@zvxÞ þ pypzð@yvz þ @zvyÞ

þ p2z@zvzÞ þ pxpzð2px@xpx@xvx þ p2x@xxvx þ p2y@xxvy þ p2z@xxvz þ px@xpyð@xvy þ @yvxÞ þ py@xpxð@xvy þ @yvxÞ þ 2py@xpy@yvy

þ pxpyð@xxvy þ @xyvxÞ þ px@xpzð@xvz þ @zvxÞ þ pz@xpxð@xvz þ @zvxÞ þ py@xpzð@yvz þ @zvyÞ þ pz@xpyð@yvz þ @zvyÞ þ 2pz@xpz@zvz
þ pxpzð@xxvz þ @xzvxÞ þ pypzð@xyvz þ @xzvyÞÞÞ þ pypzð2px@ypx@xvx þ p2x@xyvx þ px@ypyð@xvy þ @yvxÞ þ py@ypxð@xvy þ @yvxÞ
þ 2py@ypy@yvy þ pxpyð@xyvy þ @yyvxÞ þ p2y@yyvy þ p2z@yzvz þ px@ypzð@xvz þ @zvxÞ þ pz@ypxð@xvz þ @zvxÞ þ py@ypzð@yvz þ @zvyÞ

þ pz@ypyð@yvz@zvyÞ þ 2pz@ypz@zvz þ pxpzð@xyvz þ @zyvxÞ þ pypzð@yyvz þ @zyvyÞÞ þ
1
3
ðð#p2x # p2y þ 2p2zÞð2px@zpx@xvx þ p2x@xzvx

þ px@zpyð@xvy þ @yvxÞ þ py@zpxð@xvy þ @yvxÞ þ 2py@zpy@yvy þ pxpyð@xzvy þ @yzvxÞ þ p2y@yzvy þ px@zpzð@xvz þ @zvxÞ
þ pz@zpxð@xvz þ @zvxÞ þ py@zpzð@yvz þ @zvyÞ þ pz@zpyð@yvz þ @zvyÞ þ 2pz@zpz@zvz þ pxpzð@xzvz þ @zzvxÞ þ pypzð@yzvz

þ @zzvyÞ þ p2z@zzvzÞ
%%

¼ #
$
0:5pxh?;y@xpx þ 0:5pxh?;y@ypy þ 0:5pxh?;z@ypz # 0:5pyh?;x@xpx # 0:5pyh?;x@ypy # 0:5pyh?;z@xpz þ 0:5pxð#h?;x@xpy

þ h?;y@xpx þ px@xh?;y # py@xh?;xÞ # 0:5pyðh?;x@ypy # h?;y@ypx # px@yh?;y þ py@yh?;xÞ # 0:5pzh?;x@ypz þ 0:5pzh?;y@xpz

þ 0:5pzðh?;y@xpz # h?;z@xpy # py@xh?;z þ pz@xh?;yÞ þ 0:5pzðh?;x@ypz # h?;z@ypx # px@yh?;z þ pz@yh?;xÞ þ 0:5!
$
pxh?;x@xpy

# 2pxh?;y@xpx # pxh?;y@ypy # 2pxh?;y@zpz þ pxh?;z@ypz # p2x@xh?;y þ pyh?;x@xpx þ 2pyh?;x@ypy þ 2pyh?;x@zpz # pyh?;y@ypx
# pyh?;z@xpz þ pxpy@xh?;x # pxpy@yh?;y þ p2y@yh?;x # 2pzh?;x@ypz þ 2pzh?;x@zpy þ 2pzh?;y@xpz # 2pzh?;y@zpx # pzh?;z@xpy

þ pzh?;z@ypx þ pxpz@yh?;z # 2pxpz@zh?;y # pypz@xh?;z þ 2pypz@zh?;x # p2z@xh?;y # p2z@yh?;x

%
þ !ck

$
# pxpz@xDl# pypz@yDl

þ
ðp2x þ p2y # 2p2zÞ@zDl

3
þ #px@xpz þ

2px@zpx
3

# py@ypz þ
2py@zpy

3
# pz@xpx # pz@ypy #

4pz@zpz
3

! "
Dl

"%
þ fðDl@xqxz þ Dl@yqyz

þ Dl@zqzzÞ þ @xrðeÞxz þ @yrðeÞyz þ @zrðeÞzz

%
þ @zP (B3)

REFERENCES
1F. J. N"ed"elec, T. Surrey, A. C. Maggs, and S. Leibler, “Self-organization of
microtubules and motors,” Nature 389, 305–308 (1997).
2F. Bonelli, G. Gonnella, A. Tiribocchi, and D. Marenduzzo, “Spontaneous flow
in polar active fluids: The effect of a phenomenological self propulsion-like
term,” Eur. Phys. J. E 39, 1–10 (2016).

3K. T. Stanhope, V. Yadav, C. D. Santangelo, and J. L. Ross, “Contractility in an
extensile system,” Soft Matter 13, 4268–4277 (2017).

4M. Dogterom and G. H. Koenderink, “Actin–microtubule crosstalk in cell biol-
ogy,” Nat. Rev. Mol. Cell Biol. 20, 38–54 (2019).

5G. Duclos, R. Adkins, D. Banerjee, M. S. E. Peterson, M. Varghese, I. Kolvin, A.
Baskaran, R. A. Pelcovits, T. R. Powers, A. Baskaran, F. Toschi, M. F. Hagan, S.
J. Streichan, V. Vitelli, D. A. Beller, and Z. Dogic, “Topological structure and
dynamics of three-dimensional active nematics,” Science 367, 1120–1124
(2020).

6N. Kralj, M. Ravnik, and #Z. Kos, “Defect line coarsening and refinement in
active nematics,” Phys. Rev. Lett. 130, 128101 (2023).

7J. Binysh, #Z. Kos, S. #Copar, M. Ravnik, and G. P. Alexander, “Three-dimen-
sional active defect loops,” Phys. Rev. Lett. 124, 088001 (2020).

8K. Kruse, J. F. Joanny, F. J€ulicher, J. Prost, and K. Sekimoto, “Generic theory of
active polar gels: A paradigm for cytoskeletal dynamics,” Eur. Phys. J. E 16,
5–16 (2005).

9F. J€ulicher, K. Kruse, J. Prost, and J. F. Joanny, “Active behavior of the cytoskel-
eton,” Phys. Rep. 449, 3–28 (2007).

10J. F. Joanny and J. Prost, “Active gels as a description of the actin-myosin cyto-
skeleton,” HFSP J. 3, 94–104 (2009).

11C. Dombrowski, L. Cisneros, S. Chatkaew, R. E. Goldstein, and J. O. Kessler,
“Self-concentration and large-scale coherence in bacterial dynamics,” Phys. Rev.
Lett. 93, 098103 (2004).

12M. C. Marchetti, J. F. Joanny, S. Ramaswamy, T. B. Liverpool, J. Prost, M. Rao,
and R. A. Simha, “Hydrodynamics of soft active matter,” Rev. Mod. Phys. 85,
1143–1189 (2013).

13J. Toner and Y. Tu, “Long-range order in a two-dimensional dynamical XY
model: How birds fly together,” Phys. Rev. Lett. 75, 4326–4329 (1995).

Physics of Fluids ARTICLE pubs.aip.org/aip/pof

Phys. Fluids 35, 105155 (2023); doi: 10.1063/5.0169546 35, 105155-15

VC Author(s) 2023

 3
0
 O

c
to

b
e
r 2

0
2
3
 1

3
:3

2
:1

0

https://doi.org/10.1038/38532
https://doi.org/10.1140/epje/i2016-16001-2
https://doi.org/10.1039/C7SM00449D
https://doi.org/10.1038/s41580-018-0067-1
https://doi.org/10.1126/science.aaz4547
https://doi.org/10.1103/PhysRevLett.130.128101
https://doi.org/10.1103/PhysRevLett.124.088001
https://doi.org/10.1140/epje/e2005-00002-5
https://doi.org/10.1016/j.physrep.2007.02.018
https://doi.org/10.2976/1.3054712
https://doi.org/10.1103/PhysRevLett.93.098103
https://doi.org/10.1103/PhysRevLett.93.098103
https://doi.org/10.1103/RevModPhys.85.1143
https://doi.org/10.1103/PhysRevLett.75.4326
pubs.aip.org/aip/phf


14F. J€ulicher, S. W. Grill, and G. Salbreux, “Hydrodynamic theory of active mat-
ter,” Rep. Prog. Phys. 81, 076601 (2018).

15J. Roostalu, J. Rickman, C. Thomas, F. N"ed"elec, and T. Surrey, “Determinants
of polar versus nematic organization in networks of dynamic microtubules and
mitotic motors,” Cell 175, 796–808 (2018).

16C. A. Lugo, E. Saikia, and F. J. N"ed"elec, “A typical workflow to simulate cyto-
skeletal systems,” J. Visualized Exp. 194, e64125 (2023).

17W. Yan, S. Ansari, A. Lamson, M. A. Glaser, R. Blackwell, M. D. Betterton, and
M. Shelley, “Toward the cellular-scale simulation of motor-driven cytoskeletal
assemblies,” eLife 11, e74160 (2022).

18J. A. Anderson, C. D. Lorenz, and A. Travesset, “General purpose molecular
dynamics simulations fully implemented on graphics processing units,”
J. Comput. Phys. 227, 5342–5359 (2008).

19T. D. Nguyen, C. L. Phillips, J. A. Anderson, and S. C. Glotzer, “Rigid body con-
straints realized in massively-parallel molecular dynamics on graphics process-
ing units,” Comput. Phys. Commun. 182, 2307–2313 (2011).

20M. Spellings, M. Engel, D. Klotsa, S. Sabrina, A. M. Drews, N. H. P. Nguyen, K.
J. M. Bishop, and S. C. Glotzer, “Shape control and compartmentalization
in active colloidal cells,” Proc. Natl. Acad. Sci. U. S. A. 112, E4642–E4650
(2015).

21M. Agrawal, I. R. Bruss, and S. C. Glotzer, “Tunable emergent structures and
traveling waves in mixtures of passive and contact-triggered-active particles,”
Soft Matter 13(37), 6332–6339 (2017).

22L. N. Carenza, G. Gonnella, A. Lamura, G. Negro, and A. Tiribocchi, “Lattice
Boltzmann methods and active fluids,” Eur. Phys. J. E 42, 81 (2019).

23C. Denniston, E. Orlandini, and J. M. Yeomans, “Simulations of liquid crystal
hydrodynamics in the isotropic and nematic phases,” Europhys. Lett. 52,
481–487 (2000).

24C. Denniston, E. Orlandini, and J. M. Yeomans, “Lattice Boltzmann simulations
of liquid crystal hydrodynamics,” Phys. Rev. E 63, 056702 (2001).

25C. Denniston, D. Marenduzzo, E. Orlandini, and J. M. Yeomans, “Lattice
Boltzmann algorithm for three-dimensional liquid–crystal hydrodynamics,”
Philos. Trans. R. Soc., A 362, 1745–1754 (2004).

26L. Giomi, L. Mahadevan, B. Chakraborty, and M. F. Hagan, “Excitable patterns
in active nematics,” Phys. Rev. Lett. 106, 218101 (2011).

27E. Tjhung, M. E. Cates, and D. Marenduzzo, “Nonequilibrium steady states in
polar active fluids,” Soft Matter 7, 7453–7464 (2011).

28S. P. Thampi, R. Golestanian, and J. M. Yeomans, “Velocity correlations in an
active nematic,” Phys. Rev. Lett. 111, 118101 (2013).

29S. P. Thampi, R. Golestanian, and J. M. Yeomans, “Vorticity, defects and corre-
lations in active turbulence,” Philos. Trans. R. Soc., A 372, 20130366 (2014).

30S. Chandragiri, A. Doostmohammadi, J. M. Yeomans, and S. P. Thampi, “Flow
states and transitions of an active nematic in a three-dimensional channel,”
Phys. Rev. Lett. 125, 148002 (2020).

31M. R. Nejad and J. M. Yeomans, “Active extensile stress promotes 3D director
orientations and flows,” Phys. Rev. Lett. 128, 048001 (2022).

32L. J. Ruske and J. M. Yeomans, “Activity gradients in two- and three-
dimensional active nematics,” Soft Matter 18, 5654–5661 (2022).

33D. Marenduzzo, E. Orlandini, M. E. Cates, and J. M. Yeomans, “Steady-state
hydrodynamic instabilities of active liquid crystals: Hybrid lattice Boltzmann
simulations,” Phys. Rev. E 76, 031921 (2007).

34D. Marenduzzo, E. Orlandini, and J. M. Yeomans, “Hydrodynamics and rheol-
ogy of active liquid crystals: A numerical investigation,” Phys. Rev. Lett. 98,
118102 (2007).

35U. Frisch, B. Hasslacher, and Y. Pomeau, “Lattice-gas automata for the Navier-
Stokes equation,” Phys. Rev. Lett. 56, 1505 (1986).

36Y. G. Yong, C. L. Lin, and J. Huang, “Accuracy and efficiency study of lattice
Boltzmann method for steady-state flow simulations,” Numer. Heat Transfer,
Part B 39, 21–43 (2001).

37E. J. Hemingway, P. Mishra, M. C. Marchetti, and S. M. Fielding, “Correlation
lengths in hydrodynamic models of active nematics,” Soft Matter 12,
7943–7952 (2016).

38T. Gao, M. D. Betterton, A.-S. Jhang, and M. J. Shelley, “Analytical structure,
dynamics, and coarse graining of a kinetic model of an active fluid,” Phys. Rev.
Fluids 2(9), 093302 (2017).

39L. Ohm and M. J. Shelley, “Weakly nonlinear analysis of pattern formation in
active suspensions,” J. Fluid Mech. 942, A53 (2022).

40S. Weady, D. B. Stein, and M. J. Shelley, “Thermodynamically consistent
coarse-graining of polar active fluids,” Phys. Rev. Fluids 7, 063301 (2022).

41B. Chakrabarti, M. J. Shelley, and S. F€urthauer, “Collective motion and pattern
formation in phase-synchronizing active fluids,” Phys. Rev. Lett. 130, 128202
(2023).

42V. Bratanov, F. Jenko, and E. Frey, “New class of turbulence in active fluids,”
Proc. Natl. Acad. Sci. U. S. A. 112, 15048–15053 (2015).

43R. Alert, J.-F. Joanny, and J. Casademunt, “Universal scaling of active nematic
turbulence,” Nat. Phys. 16, 682–688 (2020).

44R. Assante, D. Corbett, D. Marenduzzo, and A. Morozov, “Active turbulence
and spontaneous phase separation in inhomogeneous extensile active gels,”
Soft Matter 19, 189 (2023).

45M. M. Hejlesen, G. Winckelmans, and J. H. Walther, “Non-singular Green’s
functions for the unbounded Poisson equation in one, two and three dimen-
sions,” Appl. Math. Lett. 89, 28–34 (2019).

46M. M. Hejlesen, J. T. Rasmussen, P. Chatelain, and J. H. Walther, “A high order
solver for the unbounded Poisson equation,” J. Comput. Phys. 252, 458–467
(2013).

47M. M. Hejlesen, J. T. Rasmussen, P. Chatelain, and J. H. Walther, “High order
Poisson solver for unbounded flows,” Procedia IUTAM 18, 56–65 (2015).

48R. Ramaswamy, G. Bourantas, F. J€ulicher, and I. F. Sbalzarini, “A hybrid
particle-mesh method for incompressible active polar viscous gels,” J. Comput.
Phys. 291, 334–361 (2015).

49R. Ramaswamy and F. J€ulicher, “Activity induces traveling waves, vortices and
spatiotemporal chaos in a model actomyosin layer,” Sci. Rep. 6, 20838 (2016).

50L. Giomi, M. J. Bowick, P. Mishra, R. Sknepnek, and M. C. Marchetti, “Defect
dynamics in active nematics,” Philos. Trans. R. Soc., A 372, 20130365 (2014).

51L. Giomi, “Geometry and topology of turbulence in active nematics,” Phys.
Rev. X 5, 031003 (2015).

52M. Varghese, A. Baskaran, M. F. Hagan, and A. Baskaran, “Confinement-
induced self-pumping in 3D active fluids,” Phys. Rev. Lett. 125, 268003 (2020).

53B. Schrader, S. Reboux, and I. F. Sbalzarini, “Discretization correction of gen-
eral integral PSE operators for particle methods,” J. Comput. Phys. 229,
4159–4182 (2010).

54P. Incardona, A. Leo, and Y. Zaluzhnyi, “OpenFPM: A scalable open frame-
work for particle and particle-mesh codes on parallel computers,” Comput.
Phys. Commun. 241, 155–177 (2019).

55A. Singh, P. Incardona, and I. F. Sbalzarini, “A Cþþ expression system for par-
tial differential equations enables generic simulations of biological hydrody-
namics,” Eur. Phys. J. E 44, 117 (2021).

56R. Voituriez, J. F. Joanny, and J. Prost, “Spontaneous flow transition in active
polar gels,” Europhys. Lett. 70, 404–410 (2005).

57P. G. de Gennes and J. Prost, The Physics of Liquid Crystals, International Series
of Monographs on Physics, 2nd ed. (Clarendon Press, Oxford, England, 1995).

58P. K. Papadopoulos, “An auxiliary potential velocity method for incompressible
viscous flow,” Comput. Fluids 51, 60–67 (2011).

59G. C. Bourantas and V. C. Loukopoulos, “A meshless scheme for incompress-
ible fluid flow using a velocity–pressure correction method,” Comput. Fluids
88, 189–199 (2013).

60G. Bourantas, B. L. Cheeseman, R. Ramaswamy, and I. F. Sbalzarini, “Using
DC PSE operator discretization in Eulerian meshless collocation methods
improves their robustness in complex geometries,” Comput. Fluids 136,
285–300 (2016).

61S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith, “Efficient management
of parallelism in object-oriented numerical software libraries,” in Modern
Software Tools for Scientific Computing, edited by E. Arge, A. M. Bruaset, and
H. P. Langtangen (Birkh€auser, Boston, MA, 1997), pp. 163–202.

62A. Singh, L. Kraatz, P. Incardona, and I. F. Sbalzarini, “A distributed algebra
system for time integration on parallel computers,” arXiv:2309.05331 (2023).

63J. H. Ferziger and M. Peri"c, Computational Methods for Fluid Dynamics
(Springer, Berlin Heidelberg, 2002).

64G.-H. Cottet, J.-M. Etancelin, F. Perignon, and C. Picard, “High order semi-
Lagrangian particle methods for transport equations: Numerical analysis and
implementation issues,” ESAIM: M2AN 48, 1029–1060 (2014).

65Although these methods are commonly referred to as “interpolation” in the lit-
erature, they are not actually interpolating, as they do in general not maintain
the exact field values at the original data points.

Physics of Fluids ARTICLE pubs.aip.org/aip/pof

Phys. Fluids 35, 105155 (2023); doi: 10.1063/5.0169546 35, 105155-16

VC Author(s) 2023

 3
0
 O

c
to

b
e
r 2

0
2
3
 1

3
:3

2
:1

0

https://doi.org/10.1088/1361-6633/aab6bb
https://doi.org/10.1016/j.cell.2018.09.029
https://doi.org/10.3791/64125
https://doi.org/10.7554/eLife.74160
https://doi.org/10.1016/j.jcp.2008.01.047
https://doi.org/10.1016/j.cpc.2011.06.005
https://doi.org/10.1073/pnas.1513361112
https://doi.org/10.1039/C7SM00888K
https://doi.org/10.1140/epje/i2019-11843-6
https://doi.org/10.1209/epl/i2000-00463-3
https://doi.org/10.1103/PhysRevE.63.056702
https://doi.org/10.1098/rsta.2004.1416
https://doi.org/10.1103/PhysRevLett.106.218101
https://doi.org/10.1039/c1sm05396e
https://doi.org/10.1103/PhysRevLett.111.118101
https://doi.org/10.1098/rsta.2013.0366
https://doi.org/10.1103/PhysRevLett.125.148002
https://doi.org/10.1103/PhysRevLett.128.048001
https://doi.org/10.1039/D2SM00228K
https://doi.org/10.1103/PhysRevE.76.031921
https://doi.org/10.1103/PhysRevLett.98.118102
https://doi.org/10.1103/PhysRevLett.56.1505
https://doi.org/10.1080/104077901460669
https://doi.org/10.1080/104077901460669
https://doi.org/10.1039/C6SM00812G
https://doi.org/10.1103/PhysRevFluids.2.093302
https://doi.org/10.1103/PhysRevFluids.2.093302
https://doi.org/10.1017/jfm.2022.392
https://doi.org/10.1103/PhysRevFluids.7.063301
https://doi.org/10.1103/PhysRevLett.130.128202
https://doi.org/10.1073/pnas.1509304112
https://doi.org/10.1038/s41567-020-0854-4
https://doi.org/10.1039/D2SM01188C
https://doi.org/10.1016/j.aml.2018.09.012
https://doi.org/10.1016/j.jcp.2013.05.050
https://doi.org/10.1016/j.piutam.2015.11.006
https://doi.org/10.1016/j.jcp.2015.03.007
https://doi.org/10.1016/j.jcp.2015.03.007
https://doi.org/10.1038/srep20838
https://doi.org/10.1098/rsta.2013.0365
https://doi.org/10.1103/PhysRevX.5.031003
https://doi.org/10.1103/PhysRevX.5.031003
https://doi.org/10.1103/PhysRevLett.125.268003
https://doi.org/10.1016/j.jcp.2010.02.004
https://doi.org/10.1016/j.cpc.2019.03.007
https://doi.org/10.1016/j.cpc.2019.03.007
https://doi.org/10.1140/epje/s10189-021-00121-x
https://doi.org/10.1209/epl/i2004-10501-2
https://doi.org/10.1016/j.compfluid.2011.07.016
https://doi.org/10.1016/j.compfluid.2013.09.010
https://doi.org/10.1016/j.compfluid.2016.06.010
http://arxiv.org/abs/2309.05331
https://doi.org/10.1051/m2an/2014009
pubs.aip.org/aip/phf


66A. Magni and G.-H. Cottet, “Accurate, non-oscillatory, remeshing schemes for
particle methods,” J. Comput. Phys. 231, 152–172 (2012).

67J. J. Monaghan, “Extrapolating B splines for interpolation,” J. Comput. Phys.
60(2), 253–262 (1985).

68Y. Saad and M. H. Schultz, “GMRES: A generalized minimal residual algorithm
for solving nonsymmetric linear systems,” SIAM J. Sci. Stat. Comput. 7(3),
856–869 (1986).

69Z is related to N in a nontrivial way, as it depends on the DC-PSE kernel coeffi-
cients and the particle neighborhood used to evaluate the spatial derivatives
when constructing the system matrix. The DC-PSE kernel coefficients differ
from particle to particle, and so does the distribution of particles in a
Lagrangian simulation.

70G. Karypis and V. Kumar, “A parallel algorithm for multilevel graph partitioning
and sparse matrix ordering,” J. Parallel Distrib. Comput. 48(1), 71–95 (1998).

71A. Singh, Q. Vagne, F. J€ulicher, and I. F. Sbalzarini, “Spontaneous flow instabilities
of active polar fluids in three dimensions,” Phys. Rev. Res. 5, L022061 (2023).

72S. Ramaswamy and M. Rao, “Active-filament hydrodynamics: Instabilities,
boundary conditions and rheology,” New J. Phys. 9, 423 (2007).

73G. Benettin, L. Galgani, A. Giorgilli, and J. M. Strelcyn, “Lyapunov characteris-
tic exponents for smooth dynamical systems and for Hamiltonian systems; A
method for computing all of them. Part 2: Numerical application,” Meccanica
15, 21–30 (1980).

74C. Skokos, “The Lyapunov characteristic exponents and their computation,” in
Dynamics of Small Solar System Bodies and Exoplanets (Springer, 2009), pp.
63–135.

75A. Opathalage, M. M. Norton, M. P. N. Juniper, B. Langeslay, S. A. Aghvami, S.
Fraden, and Z. Dogic, “Self-organized dynamics and the transition to turbu-
lence of confined active nematics,” Proc. Natl. Acad. Sci. U. S. A. 116(11),
4788–4797 (2019).

76J. Hardo€uin, J. Laurent, T. Lopez-Leon, J. Ign"es-Mullol, and F. Sagu"es, “Active
microfluidic transport in two-dimensional handlebodies,” Soft Matter 16(40),
9230–9241 (2020).

77J. Hardo€uin, C. Dor"e, J. Laurent, T. Lopez-Leon, J. Ign"es-Mullol, and F. Sagu"es,
“Active boundary layers in confined active nematics,” Nat. Commun. 13(1),
6675 (2022).

78C. Joshi, Z. Zarei, M. M. Norton, S. Fraden, A. Baskaran, and M. F. Hagan,
“From disks to channels: Dynamics of active nematics confined to an annulus,”
arXiv:2304.04895 (2023).

79M. Neef and K. Kruse, “Generation of stationary and moving vortices in active
polar fluids in the planar Taylor-Couette geometry,” Phys. Rev. E 90(5),
052703 (2014).

80S. Chen, P. Gao, and T. Gao, “Dynamics and structure of an apolar active sus-
pension in an annulus,” J. Fluid Mech. 835, 393–405 (2018).

81T. N. Shendruk, A. Doostmohammadi, K. Thijssen, and J. M. Yeomans,
“Dancing disclinations in confined active nematics,” Soft Matter 13(21),
3853–3862 (2017).

82K.-T. Wu, J. B. Hishamunda, D. T. N. Chen, S. J. DeCamp, Y.-W. Chang, A.
Fern"andez-Nieves, S. Fraden, and Z. Dogic, “Transition from turbulent to
coherent flows in confined three-dimensional active fluids,” Science 355(6331),
eaal1979 (2017).

83B. O. Community, Blender—A 3D Modelling and Rendering Package (Blender
Foundation, Stichting Blender Foundation, Amsterdam, 2018).

84A. Singh, A. Foggia, P. Incardona, and I. F. Sbalzarini, “A meshfree collocation
scheme for surface differential operators on point clouds,” J. Sci. Comput.
96(3), 89 (2023).

85See https://github.com/mosaic-group/3Dactive-hydrodynamics for the Cþþ
source code of the presented examples, which use the OpenFPM simulation
framework located at https://github.com/mosaic-group/openfpm_pdata.

Physics of Fluids ARTICLE pubs.aip.org/aip/pof

Phys. Fluids 35, 105155 (2023); doi: 10.1063/5.0169546 35, 105155-17

VC Author(s) 2023

 3
0
 O

c
to

b
e
r 2

0
2
3
 1

3
:3

2
:1

0

https://doi.org/10.1016/j.jcp.2011.09.005
https://doi.org/10.1016/0021-9991(85)90006-3
https://doi.org/10.1137/0907058
https://doi.org/10.1006/jpdc.1997.1403
https://doi.org/10.1103/PhysRevResearch.5.L022061
https://doi.org/10.1088/1367-2630/9/11/423
https://doi.org/10.1007/BF02128237
https://doi.org/10.1073/pnas.1816733116
https://doi.org/10.1039/D0SM00610F
https://doi.org/10.1038/s41467-022-34336-z
http://arxiv.org/abs/2304.04895
https://doi.org/10.1103/PhysRevE.90.052703
https://doi.org/10.1017/jfm.2017.759
https://doi.org/10.1039/C6SM02310J
https://doi.org/10.1126/science.aal1979
https://doi.org/10.1007/s10915-023-02313-3
https://github.com/mosaic-group/3Dactive-hydrodynamics
https://github.com/mosaic-group/openfpm_pdata
pubs.aip.org/aip/phf

