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ABSTRACT

We present a novel method for model-based segmentation of
extended, blob-like objects on curved surfaces. Our method
addresses several challenges arising when imaging curved
biological membrane, such as out-of-membrane signal and
geometry-induced background variations. We use a particle-
based reconstruction of the membrane geometry, moment-
conserving intensity interpolation from pixels to surface par-
ticles, and model-based in-surface segmentation. Our method
denoises and deconvolves images, corrects for background
variations, and quantifies the number, size, and intensity
of segmented objects. We benchmark the accuracy of the
method and present two applications to (1) neuroepithelial
focal adhesion sites during optic cup morphogenesis in ze-
brafish and (2) reconstituted membrane domains bearing the
small GTPase Rab5 on spherical beads.

Index Terms— Fluorescence microscopy, membrane
imaging, model-based segmentation, mesh-particle interpola-
tion, curved surfaces

1. INTRODUCTION

Membranes are of central importance for a variety of biolog-
ical processes. The key players in membranes—lipids and
proteins—are known to compartmentalize laterally and orga-
nize into blob-like spatial domains or patterns on the mem-
brane that often are prerequisite to molecular function [1].
Quantification of these patterns is challenging when mem-
branes form curved surfaces. Imaging them produces 3D vol-
umetric data from which the 2D manifold needs to be recon-
structed. In fluorescence microscopy, the prevalent modality
for live imaging, this reconstruction is hampered by out-of-
membrane signal and curvature-induced intensity variations,
caused by the anisotropic point spread function (PSF) of the
microscope.

These spurious effects need to be corrected for when re-
constructing the membrane from the 3D image and segment-
ing objects intrinsic to the membrane. In previous works,
domain size on curved membranes was analyzed by thresh-
olding along 1D lines around axially symmetric shapes not
affected by imaging artifacts [2]. A popular method for spher-
ical membranes is based on projecting the intensity from the
sphere into two hemispheres [3]. While such approaches
work in individual applications, they are not generic to arbi-
trary curved surfaces.

Here, we propose a method to quantify and segment do-
mains on curved membranes of any shape, imaged by volu-
metric fluorescence microscopy, such as light-sheet or confo-
cal microscopy. Our method exploits the 2D nature of mem-
branes to reduce memory and computational costs. However,
unlike previous approaches [4], our method is not limited
to star-convex closed manifolds. Instead, we use a narrow-
band particle representation of arbitrarily shaped curved man-
ifolds, as inspired by particle level-set methods [5], and ex-
ploit intensity-moment conserving mesh-to-particle interpo-
lation [6] to map intensity values from the 3D pixel grid to
the particles representing the surface. Therefore, our pipeline
conserves total intensity and the center of intensity mass.

Besides intensity moment conservation, the particle repre-
sentation also simplifies physically correct normal projections
and deconvolving model-based in-surface segmentation. We
benchmark the accuracy of this approach using synthetic im-
ages, compare with manual segmentations, and estimate the
error of object size quantification as a function of the signal-
to-noise ratio (SNR) of the images. Finally, we demonstrate
the practical application of our pipeline to adhesion sites of
migrating neuroepithelial cells during optic cup morphogene-
sis in zebrafish and to reconstituted domains consisting of the
small GTPase Rab5 on lipid-coated beads, showcasing two
distinct biological applications that share similar methodolog-
ical challenges.
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Fig. 1. Illustration of the four steps of the present method
for intrinsic object segmentation on curved membranes (ex-
ample image: migrating neuroepithelial cell). See main text
for details.

2. METHOD

We present a particle-based segmentation pipeline to quantify
the number, size, and intensity of extended objects on curved
membranes imaged by volumetric fluorescence microscopy.
The pipeline consists of the following steps, as illustrated in
Fig. 1 and described in detail in the following sub-sections:
1. Membrane surface extraction and pixel-to-particle inten-

sity interpolation.
2. Background subtraction in tangent space [7].
3. Segmentation of domains using deconvolving segmenta-

tion [8].
4. Normal projection of the segmented structures onto the

2D manifold and size estimation.

2.1. Surface extraction and pixel-to-particle interpolation

The membrane is detected and extracted from a separate color
channel containing a specific membrane label. This provides
a relatively homogeneous signal on the membrane, which is
used for geometry processing. We start by applying a 3 × 3
median filter to reduce shot noise, followed by selecting all
pixels in the upper 0.5% intensity percentile. This should re-
sult in a subset of (but not necessarily all) pixels that belong
to the membrane surface (see Fig. 2a,b). These pixels are then
used to fit a parametric 2D surface model. In general, we fit
the surface by cubic polynomial splines. If prior knowledge
about the surface geometry is available, such as for spherical
membrane beads, this can be used here. For spherical beads,
we fit the sphere center and radius. Fitting is done using a
linear least-squares solver for the unknown coefficients of the
shape model with the normal residual as cost function. Af-
ter fitting the 2D surface model, we distribute particles on the
fitted surface to generate a discrete particle representation of
the surface. Particles are placed on a regular Cartesian grid
in x–y with z coordinates from the geometric surface model.
On a sphere, particles are placed on a latitude-longitude mesh
with 3o resolution in both azimuthal and polar directions. In

Fig. 2. Surface extraction and intensity interpolation: The
signal of the membrane (a) is thresholded (b) and used to fit
a geometric surface model. Then, the surface is represented
by a narrow band of particles, and the intensity of the imaged
objects is interpolated from the original image pixels to the
surface particles (c). Top row: example from the neuroep-
ithelial dataset; bottom row: example from the Rab5 dataset.

order to account for imaging diffraction and out-of-focus sig-
nal, the particles are subsequently extended from the surface
into a narrow band around it. This is done by replicating each
particle along the local surface normal with 1 pixel spacing
until a distance of 5 pixel from the surface. This results in a
narrow-band representation of the curved surface, as is classic
in level-set methods [5].

Image intensity values from the raw object channel (i.e.,
not thresholded) are interpolated from the pixels to the par-
ticles. This amounts to representing the object channel in-
tensity as a particle function approximation [9]. Interpolation
from the surrounding pixels onto the narrow-band particles
is done using moment-conserving interpolation schemes [6].
This yields the intensity I(xp) of particle p at continuous po-
sition xp = (xp, yp, zp) as:

I(xp) =

L∑
q=1

Ĩ(xq)W

(
xp−xq

∆x

)
W

(
yp−yq

∆y

)
W

(
zp−zq

∆z

)
(1)

from the pixel intensities Ĩ(xq) of the L neighboring pixels q
at xq = (xq, yq, zq). The interpolation kernel W is [6]:

W (s) =


1− 1

2 (5|s|2 − 3|s|3), if |s| 6 1
1
2 (2− |s|)2(1− |s|), if 1 < |s| 6 2

0, if |s| > 2

(2)

for the normalized distance s = (xp − xq)/∆x, where ∆x
is the pixel size in x-direction (analogous for y and z). The
interpolation kernel considers a neighborhood ofL = 4×4×4
pixels around each particle. The kernels are independently
evaluated in x, y, and z, leading to a linear computational cost
of 3·4 = 12 evaluations instead of 43 = 64. This interpolation
scheme is 3rd order accurate and exactly conserves the total
intensity as well as the center of intensity mass, yielding a
physically correct dimensionality reduction.
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In order to allow for fitting errors during surface extrac-
tion and small surface undulations, the particle intensity val-
ues are maximum-projected in the direction of the local sur-
face normal. This is done by replacing the interpolated in-
tensity of each on-surface particle by the maximum of any
particle in the narrow band along the surface normal through
it. This yields a topologically generic representation of the
membrane with the associated surface intensity distribution.

2.2. Background subtraction in tangent space

Imaging a curved membrane by fluorescence microscopy can
cause a homogeneously labeled membrane to appear inho-
mogeneous in the image. The magnitude of this intensity
distortion depends on the membrane curvature and on the
anisotropy of the microscope PSF. We correct for this effect
using a sliding window algorithm, inspired by the rolling ball
algorithm, which is well known in the field of biological im-
age processing [8, 10]. On a curved surface, a moving win-
dow represents a 2D segment of the surface that slides along
the surface in tangential direction. In each window, the min-
imum intensity value is taken as the background estimate at
the center pixel. We implement this algorithm on the particles
created in the previous step. In particle representation, we it-
erate through the surface particles and find all particles within
a spherical neighborhood, hence defining the in-surface slid-
ing window. The neighborhood radius is defined by the user
analogously to the window size in the classic rolling ball al-
gorithm. It must be larger than the objects of interest, but
smaller than the radius of curvature of the surface.

2.3. Surface domain segmentation

To segment domains or spatial patterns in the intensity chan-
nel of interest on the curved surface (see Fig. 3), we use
a globally optimal model-based segmentation method that
corrects for PSF blur, providing a deconvolving segmenta-
tion [11]. This is important when in-surface object sizes are
close to diffraction limited, as PSF blur on thin membranes is
significant. We use the globally optimal Squassh method [8],
implemented in the MOSAICsuite plug-in for the bio-image
processing frameworks Fiji[12] and ImageJ [13, 14].

We perform all segmentations using the following param-
eters in Squassh: the regularization parameter controlling the
smoothness of the segmentation is set to 0.35. The minimum
object intensity sets a threshold on normalized intensity below
which all objects are discarded and is set to 0.3. We enable
sub-pixel segmentation with 4-fold oversampling.

Squassh segmentation is applied on pixels after replacing
all pixel values with intensities obtained by interpolating back
from the particles to the pixels. This particle-to-pixel interpo-
lation is done using the same moment-conserving interpola-
tion scheme as described above. It yields a clean pixel image
with denoised and background-corrected intensities only at

Fig. 3. Domain segmentation: Corrected particle intensities
(a) are interpolated back to pixels to yield a clean volumetric
image (b). Segmentation is performed in 3D on the pixels to
yield surface objects (c). Top row: example from the neuroep-
ithelial dataset; bottom row: example from the Rab5 dataset.

the pixels close to the membrane. This enables using existing
pixel-based 3D segmentation tools as drop-in modules.

2.4. Normal projection of the segmentation to the surface
and domain size estimation

After the segmentation has been performed in the embedding
space, we project the segmented objects to the curved sur-
face to effectively estimate 2D sizes of domains. We use a
marching cubes algorithm [15] to construct a closed triangu-
lated mesh of the surface of each segmented object [16]. The
triangulated mesh is then used to map the segmentation to the
particles in the narrow band. Each particle within the trian-
gulated mesh is orthogonally projected onto the surface using
surface normals defined by the fitted geometry model from
Step 1. For domain size estimation, we sum areas of the sur-
face elements corresponding to the particles belonging to a
domain.

3. BENCHMARKS

We benchmark the robustness and accuracy of our method
using synthetic images of beads of 10µm (=100 pixel) di-
ameter with predetermined circular domains of varying radii
0.5. . .1.5µm and intensities representing different SNR. We
generate the benchmark images as follows: we place spheres
with surface intensityO(x) onto a constant background of in-
tensity B. Then, we convolve the scene with the measured
PSF K(x) of the microscope and add modulatory Poisson
noise to the result. This yields an image I(x) = P(K(x) ∗
(O(x) + B)), where P(λ) is a Poisson-distributed random
variable with mean λ and ∗ denotes a discrete convolution
with 5-fold oversampling. For Poisson noise, the SNR is [17]:

SNR =
max(O(x))−B√

max(O(x))
. (3)
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Fig. 4. Absolute error in segmented domain radius evaluated
in synthetic images of different SNR. The dashed line shows
the Rayleigh resolution limit. The solid line is a linear fit to
the 120 data points.

We generate images of size 111 × 111 × 48 pixel at dif-
ferent SNR by varying the foreground intensity O at constant
B = 250 for 16-bit intensity values. The SNR is computed
locally for each domain, and the segmentation error is defined
as the absolute difference between the reconstructed radius of
a domain and its true radius. Figure 4 shows the results for
120 domains of different sizes at different SNR along with a
linear trend line. As expected, the error decreases with in-
creasing SNR. The dashed line indicates the Rayleigh reso-
lution limit of the microscope. The domains on the spheres
were segmented with super-resolution precision and with er-
rors of the same order for different true radii. Nine out of the
120 domains were not segmented at all; all of these false neg-
atives were for SNR < 8 (symbols above the dashed line,“not
segmented”). Processing one image took 162 s of computer
time on a quad-core 2.2 GHz Intel Core i7 with 16 GB RAM.

4. APPLICATIONS

We showcase the application of our pipeline by quantifying
the focal adhesion sites of migrating neuroepithelial cells dur-
ing optic cup morphogenesis in zebrafish (Danio rerio) em-
bryos (see Figs. 2 and 3, top row). Zebrafish embryos were
imaged with an Andor Spinning disk microscope with an An-
dor iXon Ultra 897 monochrome EMCCD camera using an
Olympus UPLSAPO 60X/1.3NA silicon-oil objective. Using
the present method, we quantify the size of the adhesion site
to be 13.17µm2. For comparison, we also perform manual
segmentation in the tangent plane of each adhesion site, lead-
ing to an estimated area of 13.04µm2 in good agreement with
the result of the proposed pipeline.

The second application considers biochemically recon-
stituted domains of GFP-tagged Rab5 GTPase on spherical
lipid-coated beads (see Figs. 2 and 3, bottom row). Sil-
ica beads of 10µm diameter were coated in a supported
lipid bilayer (SLB) using a protocol adapted from [18]. The

lipid-coated beads were incubated with recombinant pro-
teins (geranylgeranylated GFP-Rab5/GDI complex, GDI and
Rabex5/Rabaptin5-RFP complex) and imaged using a Nikon
TiE microscope with a 100x/1.45NA Plan Apochromat DIC
oil-immersion objective, a Yokogawa CSU-X1 scan head and
an Andor DU-897 back-illuminated CCD camera. In total,
the present method segmented 449 domains on 96 beads with
a mean domain area of 1.74µm2. Quantifying the size of
membrane domains was crucial for identifying the molecular
mechanisms of self-organization by which they form [19].

5. CONCLUSION

We have presented a particle-based method to segment and
quantify extended objects and domains on curved mem-
branes. Our method exploits the 2D nature of biological
membranes using a narrow-band particle function approxi-
mation. Moment-conserving interpolation maps the image
intensity signal from the 3D pixel grid to the surface parti-
cles. We have described each step of the method in detail and
benchmarked its accuracy using synthetic images and manual
segmentation. We showcased two applications to real data
from migrating neuroepithelial cells during optic cup forma-
tion in zebrafish and Rab5 domain formation reconstituted in
vitro on complex lipid membranes.

Despite the many differences between these two applica-
tions, the present method addressed their joint methodolog-
ical challenges. Segmentation quality was good in both ex-
amples, with errors below 0.1µm (< 1 pixel) for SNR above
8, according to the presented benchmarks. Nevertheless, our
method currently has several limitations. The most important
one is that it will not perform well if the size of the domains
to be segmented on a membrane is comparable to the overall
size of the membrane. In this case, the task would better be
formulated as an end-to-end optimization problem with spe-
cific shape priors for the membrane. Second, our method cur-
rently requires two-color images with a dedicated membrane
channel separate from the object channel. While this is con-
venient, it is not strictly required, as it would be sufficient to
know the membrane geometry in the immediate vicinity of
the objects to be segmented. Third, we use rather classic and
simplistic methods for surface extraction (linear least squares)
and background removal (rolling ball). We did so in order
to demonstrate that they are sufficient to yield good results
in conjunction with the particle-based surface representation.
However, they can be replaced by more sophisticated methods
if required.

Despite these limitations, the method presented here is
applicable to a range of problems, as illustrated by the two
distinct showcases. It is easy to implement and modular.
We therefore believe that particle representation of arbitrar-
ily shaped surfaces and moment-conserving pixel-to-particle
interpolation can be useful in a variety of situations, also
beyond the specific applications considered here.
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